
Zhamri Che Ani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3060-3064

A Method for Group Formation Using Genetic
Algorithm

Zhamri Che Ani1, Azman Yasin2,

Mohd Zabidin Husin3, Zauridah Abdul Hamid4
UUM College of Arts and Sciences

Universiti Utara Malaysia
06100, UUM Sintok, Kedah. Malaysia

1zhamri@uum.edu.my, 2yazman@uum.edu.my, 3zabidin@uum.edu.my, 4zauree@uum.edu.my

Abstract— Due to the increasing of complexity in software
projects, group work is becoming more important in order to
ensure quality software products can be delivered on time.
Thus, in universities, group work is seen as a good preparation
for students to enter industry because by working in group, it
can reduce the individual workload, improve the ability to
manage a project and enhance the problem solving skills.
However, due to lack of programming skills especially in Java
programming language, most of the students’ software project
cannot be delivered successfully. To solve this problem,
systematic group formation is one of the initial factors that
should be considered to ensure that every group consists of
quality individuals who are good in programming. This paper
presents a method for group formation using genetic
algorithm, where the members for each group will be
generated based on the students’ programming skill.

Keywords-group formation; genetic algorithm; programming
skill

I. INTRODUCTION

Nowadays, due to the increased complexity of
Information Technology (IT) projects, many IT
organizations especially software industries are shifting
away from individual work to group work environment [1].
Group work is becoming more important, because it can
reduce individuals’ workload and also can be used to
support a variety of functions for an organization.

In academic institutions, group work has been seen as a
good preparation for students to enter the industry because
by working in group, they can improve their ability to
manage and solve project problems efficiently. Most courses
in a university normally adopt the group structure as a mean
for students to share their knowledge, enhance problem
solving skills and improve communication skills. However,
not all student groups work well [2, 3]. One of the reasons is
the groups are not systematically formed. Therefore, group
formation is very important as a starting point for the group
development and performance [4-6].

There is variety of group formation techniques have
been investigated by researchers [7-12]. However, in normal
practice, self-selection and random assignment of members
are the most popular approaches used in group formation.

Unfortunately, these two approaches are not useful in
software development group because it will not speed up the
development processes. One of the factors that need to be
considered in order to produce a quality software product
within the given period of time is good programming skill.
Therefore, this paper focuses on how to form groups with
balanced programming skills to ensure that every group
members can complete the software project successfully.

This paper is organized as follows: In section 2 we
discuss the method of group formation using genetic
algorithm. In section 3 we describe a case study based on the
real-world problem. Experiments and result are discussed in
section 4 and 5. Section 6 includes conclusion and
suggestion for future work.

II. METHOD

Genetic algorithms are search algorithms based on the
mechanics on natural selection and natural genetics [13]. It
has been applied by many researchers to solve various real-
world problems [14]. It was also applied by Wang for
solving heterogeneous groups to achieve fairness, equity and
flexibility in group formation [15]. However, in this study
we focus on group formation based on students’
programming skill. The method is divided into two main
phases: problem identification and theory building.

A. Problem Identification

Problem identification is the first step to conduct this
study. Problem will usually have constraints on certain
events that should be identified. In this study, the group
formation problem consists of a set of students S = {s1, s2,
s3, …., s|s|} and a set of groups G = {g1, g2, g3, …, g|g|}.
The goal is to obtain balanced assignment, where five
students in S are allocated to a group G based on
programming skill. Programming skill levels are decided
based on the examination result of STIA1023 Advanced
Programming course, where Java programming language is
taught.

B. Theory Building

Theory Building includes the development of methods or
models. Chromosomes are typically represented as simple
string of data and instruction. In this case, chromosomes

ISSN : 0975-3397 3060

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/18599863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Zhamri Che Ani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3060-3064

have been chosen to present a solution and students have
been chosen as a gene. The algorithm used here was adapted
from Goldberg [13, 16] and each step is discussed as below.

1) Initialization: Genetic algorithm begins with an
initial population represented by chromosomes. A
chromosome is a set of solution from one population. It can
be taken and applied to new population. The expectation is
that the new population (offspring) will be better than the
old one. The offspring will be selected according to the
degree of fitness. This solution is repeated until the best
solution is achieved. Each chromosome represents a
possible solution by sets of parameters. Sets of parameters
are identified as genes and consist of fitness score values
indicating the success or failure to fulfil all the constraints.
Each gene is assigned with a random number to represent
the students. For this study, the actual number of
chromosome is generated by system prototype based on the
total number of students for each class.

Fig. 1 shows the example of initial population of group
formation. If there are 35 students in a class and the
maximum number of members in a group is 5, then the
number of generated groups is 7. In this case, group1
represented by Chromosome(1), group2 represented by
Chromosome(2), group3 represented by Chromosome(3),
and so forth. Genes are represented by random number,
number 1 to 35, where it is equivalent to the number of
students in the class. The fitness score of each group is
calculated based on the grade of programming skill. The
grades are categorized into three categories. Those who
score A, A- and B+ (above 3.0) are categorized as good in
programming whereas those who got D+, D and F (below
2.0) are categorized as poor in programming. The average
grades (between 2.0 and 3.0) are considered as average
students in programming.

2) Fitness Evaluation: The fitness of each individual
chromosome must be computed when populations of
chromosomes are generated. All chromosomes in one
generation are evaluated by a fitness function. Each
chromosome is compared against all the chromosomes for
any constraint violation during the evaluation process. A
penalty is given to a chromosome for each of the violated
constraint. The penalty score from the constant value is
subtracted to reduce the fitness value. The fitness of every
chromosome in the population is obtained after the
evaluation phase is complete. Fig. 2 shows the algorithm of
fitness calculation based on programming skill.

Initial Population:

==
Chromosome(1) => 09 34 19 06 07 Fitness: 30000
Chromosome(2) => 26 13 08 15 25 Fitness: 30000
Chromosome(3) => 05 23 27 22 31 Fitness: 30000
Chromosome(4) => 20 35 28 16 01 Fitness: 20000
Chromosome(5) => 03 11 30 32 24 Fitness: 20000
Chromosome(6) => 04 33 10 21 12 Fitness: 30000
Chromosome(7) => 29 02 17 14 18 Fitness: 30000

Total Fitness: 190000

Figure 1. Initial population of group formation.

G = Number of Group
GS = Number of Good Student
MS = Number of Moderate Student
PS = Number of Poor Student
MinGMP = Minimum Number of G|M|P in a group

MinGMP = (GS|MS|PS) / G

Fitness of grade in a group = 10000 if equal or greater than
 MinGMP; or
Fitness of grade in a group = 0 if less than MinGMP

Total of Fitness = MinGMPGS + MinGMPMS + MinGMPPS

Figure 2. Algorithm of fitness calculation based on programming skill.

3) Reproduction: During reproduction, chromosomes
are selected from a combination exists in the population. For
Roulette Wheel selection algorithm, the higher fitness value
represents the bigger parts of the wheel so that it will have a
high probability to be selected several times in reproduction
[13]. Crossover is the process in which two chromosomes
combine their genetic material to produce a new generation
that possesses both their characteristic. Many crossover
techniques exist such as the one-point crossover, two-point
crossover, ‘cut & splice’, uniform crossover, half-uniform
crossover and others [13]. However, one-point crossover has
been selected to be implemented in this case study. One
random point is chosen to determine the crossover point.
Then all the genes at the crossover point are copied from
parents to offspring. As a result, these new chromosomes or
offspring share some similar features taken from the parents.
The genes after the crossover point are swapped between
both parents. One-point crossover can be illustrated as Fig.
3. If the crossover is not applied, offspring are exact copies
of parents. The crossover rate in this experiment has been
set in range between 75 percent and 95 percent.

Mutation is the process used to maintain genetic diversity
from one generation of a population of chromosomes to the
next generation. The purpose of mutation is to allow the
algorithm to avoid local minima by preventing the
population of chromosomes from becoming too similar to

ISSN : 0975-3397 3061

Zhamri Che Ani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3060-3064

each other. A common example of a mutation operator
involves a probability that an arbitrary bit in genetic
sequence will be changed from its original state by
generating a random variable for each bit. This random
variable tells whether or not a particular bit will be
modified.

Initially, each chromosome is given the chance to mutate
to any sequence after crossover. However in this case study,
any changes to the sequence will not affect the fitness value
of the population. This is due to the same weight carried by
each student in the same group. Therefore, mutation is not
applied in the case of group formation.

 Parent (1) => 35 10 26 07 31
 Parent (2) => 28 30 22 34 15

Offspring (1) => 35 10 26 34 15
Offspring (2) => 28 30 22 07 31

Figure 3. One-point crossover.

III. A CASE STUDY

In this case, Roulette Wheel Method and students of
STIW3053 Real-time programming of first semester
2009/2010 have been selected as the case study, and there
are 35 students enrolled in this course. Based on the data
obtained in the Real-time Programming class, the
distribution of programming skill for STIA1023 Advanced
Programming grade is shown in Fig. 4.

The bar graph shows that the distribution of grade for
STIA1023 Advanced Programming is not equal; where only
two students score A- and five students have B+. Grade B is
the highest with seven students, followed by grade C+ with
six students. Luckily, none of the students failed this course.
The levels of programming skills for these results are
summarized in Table 1.

Out of 35 students, 20.0 percent can be categorized as
good in programming, 65.71 percent of students are
considered moderate and only 14.29 percent are rated as
poor. Based on the formula identified earlier, each group
should consist of at least one good student and three
moderate students.

Figure 4. Distribution of grade of Advanced Programming.

TABLE I. LEVELS OF PROGRAMMING SKILL

Grade Total
Student

(TS)

Percentage
(%)

TS/
Group

Minimum
Student(s)

A, A-, B+ 7 20.00 1.00 1
B, B-, C+, C 23 65.71 3.29 3

D+, D, F 5 14.29 0.71 0

IV. EXPERIMENTATION

Forming optimal groups can be a time consuming and
complex task [17]. To test the feasibility of the algorithm, a
system prototype called QuickGroup was developed using
Java programming language and several experiments have
been conducted using a different set of parameters.
Combination of number of generation and crossover rate
should be obtained to achieve balanced solution.

For the first experiment, different number of population
size has been explored. The sample of population size
varied from 200 to 2000. Based on the first experiment, the
number of population size that produced the highest fitness
score was 1000, followed by 2000 and 1600. The highest
fitness score recorded was 200000. Therefore, 1000 will be
used as a population size for the next experiment.

For the second experiment, different number of crossover
rate has been explored and the sample of crossover rate
varied from 75 to 95. Based on the second experiment, the
value of crossover rate that produced the highest fitness
score was 90, followed by 95 and 75. The highest fitness
score recorded was 190000. Therefore, 90 will be used as a
crossover rate for the next experiment.

V. RESULT

Based on the experimental result carried out in this
research, the best combination of parameters for generating
groups in a class in this study is, Population Size =1000,
Crossover Rate = 90. The final generation is shown in Fig.
5. To prove that each group has balanced programming skill
and adhere to the specification determined earlier in this
study, Table II shows the number of students for every level

ISSN : 0975-3397 3062

Zhamri Che Ani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3060-3064

of programming skill of each group. The result shows that
every group consists of at least one good student and at least
three moderate students.

To evaluate whether the groups formed using genetic
algorithm approach perform better compared to manual
group assignment performed in previous semesters, the
result of the software products that was given to the students
as their project work was checked in this study. The results
show that out of seven groups, only one group failed to
deliver the software product successfully on time. Our
assumption, 85.71% of the groups can write java programs
without errors. However, in practice, it is difficult to
measure the individual ability systematically [18].

Generation: 1000
 ==

Chromosome(1) => 08 17 29 33 30 Fitness: 30000
Chromosome(2) => 26 13 04 35 07 Fitness: 30000
Chromosome(3) => 19 06 05 22 27 Fitness: 30000
Chromosome(4) => 34 10 25 03 01 Fitness: 30000
Chromosome(5) => 28 09 11 32 24 Fitness: 30000
Chromosome(6) => 21 31 18 12 15 Fitness: 30000
Chromosome(7) => 16 02 14 20 23 Fitness: 30000

Total Fitness: 210000

Figure 5. Result of final generation.

TABLE II. RESULT OF GROUP FORMATION

Group Good Moderate Poor
1 1 3 1
2 1 3 1
3 1 4 0
4 1 3 1
5 1 3 1
6 1 3 1
7 1 4 0

Total 7 23 5

VI. CONCLUSION AND FUTURE WORK

This research focused on group formation for IT or
Computer Science students where programming skill is the
most important criteria that have to be considered in order to
form a solid group. In order to form balanced groups in a
class, the genetic algorithm approach has been chosen in
this study. This approach was applied in the STIW3053
Real-time Programming class, where all 35 students were
required to give their previous results of STIA1023
Advanced Programming for the semester 2009/2010.

The results show that the genetic algorithm is a good
optimizing method for the group formation. The method
used in this study is capable to produce balanced group
where each group consists of good, moderate and poor
programming skills. In this case, we are hoping that weaker
students will learn from stronger students how to solve
programming problems while developing software
applications. We will continue to enhance this work and our
future work includes further systematic analysis of individual
group performance.

ACKNOWLEDGMENT

The researchers acknowledge the financial support
(Fundamental Research Grant Scheme) received from the
Ministry of Higher Education, Malaysia via University Utara
Malaysia (S/O Code: 11649).

REFERENCES
[1] J. Brown and G. Dobbie, "Supporting and evaluating team dynamics

in group projects," in Proceedings of the thirtieth SIGCSE technical
symposium on Computer science education New Orleans, Louisiana,
United States: ACM, 1999, pp. 281 - 285.

[2] C. Chalmers and R. Nason, "Group metacognition in a computer-
supported collaborative learning environment," in Proceeding of the
2005 conference on Towards Sustainable and Scalable Educational
Innovations Informed by the Learning Sciences: Sharing Good
Practices of Research, Experimentation and Innovation: IOS Press,
2005, pp. 35-41.

[3] D. W. Johnson and R. T. Johnson, "Making cooperative learning
work," Theory into practice, vol. 38, pp. 67-73, 1999.

[4] K. Anewalt, J. A. Polack-Wahl, J. Beidler, and D. L. Smarkusky,
"Group projects across the curriculum," Journal of Computing
Sciences in Colleges, vol. 19, pp. 232-237, 2003.

[5] G. L. Stewart, "A meta-analytic review of relationships between team
design features and team performance," Journal of Management, vol.
32, p. 29, 2006.

[6] C. E. Christodoulopoulos and K. A. Papanikolaou, "A group
formation tool in an e-learning context," in Proceedings of the 19th
IEEE International Conference on Tools with Artificial Intelligence:
IEEE Computer Society, 2007, pp. 117-123.

[7] R. C. Haller, V. J. Gallagher, T. L. Weldon, and R. M. Felder,
"Dynamics of peer interactions in cooperative learning," Journal
Engineering Education, vol. 89, pp. 285-293, 2000.

[8] T. Daradoumis, M. Guitert, F. Gimenez, J. M. Marqu, and T. Lloret,
"Supporting the composition of effective virtual groups for
collaborative learning," in Proceedings of the International
Conference on Computers in Education: IEEE Computer Society,
2002, p. 332

[9] I. A. G. Wilkinson and I. Y. Y. Fung, "Small-group composition and
peer effects," International Journal of Educational Research, vol. 37,
pp. 425-447, 2002.

[10] E. Martin and P. Paredes, "Using learning styles for dynamic group
formation in adaptive collaborative hypermedia systems," in
Proceedings of the 1st International Workshop on Adaptive
Hypermedia and Collaborative Web-based Systems, 2004, pp. 188-
198.

[11] S. Graf and R. Bekele, "Forming heterogeneous groups for intelligent
collaborative learning systems with ant colony optimization," in
Proceedings of the 8th International Conference on Intelligent
Tutoring Systems, 2006, pp. 217-226.

[12] T. Lappas, K. Liu, and E. Terzi, "Finding a team of experts in social
networks," in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining: ACM, 2009,
pp. 467-476.

[13] D. E. Goldberg, Genetic algorithms in search, optimization, and
machine learning: Addison-wesley Reading Menlo Park, 1989.

[14] E. Falkenauer, "Applying genetic algorithms to real-world problems,"
IMA Volumes In Mathematics And Its Applications, vol. 111, pp. 65-
88, 1999.

[15] D. Y. Wang, S. S. J. Lin, and C. T. Sun, "DIANA: A computer-
supported heterogeneous grouping system for teachers to conduct
successful small learning groups," Computers in Human Behavior,
vol. 23, pp. 1997-2010, 2007.

ISSN : 0975-3397 3063

Zhamri Che Ani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3060-3064

[16] D. E. Goldberg and K. Deb, "A comparative analysis of selection
schemes used in genetic algorithms," Foundations of genetic
algorithms, vol. 1, pp. 69-93, 1991.

[17] A. Ounnas, H. Davis, and D. Millard, "A framework for semantic
group formation," in Proceedings of the 2008 Eighth IEEE
International Conference on Advanced Learning Technologies: IEEE
Computer Society, 2008, pp. 34-38.

[18] H. Wi, S. Oh, J. Mun, and M. Jung, "A team formation model based
on knowledge and collaboration," Expert Systems with Applications,
vol. 36, pp. 9121-9134, 2009.

AUTHORS PROFILE

Zhamri Che Ani (Corresponding author) is a lecturer at the
College of Arts and Sciences, Applied Science Division,
Universiti Utara Malaysia, 06010 UUM Sintok, Kedah.
Malaysia (e-mail: zhamri@uum.edu.my). His research
interest includes software engineering education, real time
system and computer-supported heterogeneous grouping
system.

Azman Yasin is a senior lecturer at the College of Arts and
Sciences, Applied Science Division, Universiti Utara
Malaysia, 06010 UUM Sintok, Kedah. Malaysia (e-mail:
yazman@uum.edu.my). His research interest includes
software engineering education, information retrieval
specifically scheduling and timetabling using artificial
intelligence techniques.

Mohd Zabidin Husin is a lecturer at the College of Arts
and Sciences, Applied Science Division, Universiti Utara
Malaysia, 06010 UUM Sintok, Kedah. Malaysia (e-mail:
zabidin@uum.edu.my). His research interest includes
software oriented architecture, search engine using artificial
intelligence techniques.

Zauridah Abdul Hamid is a lecturer at the College of Arts
and Sciences, Applied Science Division, Universiti Utara
Malaysia, 06010 UUM Sintok, Kedah. Malaysia (e-mail:
zauree@uum.edu.my). Her research interest includes
software engineering education system and computer-
supported heterogeneous grouping system.

ISSN : 0975-3397 3064

