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ABSTRACT

Research in multi-touch interaction has typically been focused on direct spatial

manipulation; techniques have been created to result in the most intuitive mapping

between the movement of the hand and the resultant change in the virtual object.

As we attempt to design for more complex operations, the effectiveness of spatial

manipulation as a metaphor becomes weak. We introduce two new platforms for

multi-touch computing: a gesture recognition system, and a new interaction tech-

nique.

I present Multi-Tap Sliders, a new interaction technique for operation in what

we call non-spatial parametric spaces. Such spaces do not have an obvious literal

spatial representation, (Eg.: exposure, brightness, contrast and saturation for image

editing). The multi-tap sliders encourage the user to keep her visual focus on the tar-

get, instead of requiring her to look back at the interface. My research emphasizes

ergonomics, clear visual design, and fluid transition between modes of operation.

Through a series of iterations, I develop a new technique for quickly selecting and

adjusting multiple numerical parameters. Evaluations of multi-tap sliders show im-

provements over traditional sliders.

To facilitate further research on multi-touch gestural interaction, I developed

mGestr: a training and recognition system using hidden Markov models for designing

a multi-touch gesture set. Our evaluation shows successful recognition rates of upto

95%. The recognition framework is packaged into a service for easy integration with

existing applications.
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1. INTRODUCTION

This research promotes the use of multi-touch beyond spatial manipulation. We

describe a motivation from an analysis on commonly performed operation. A new

domain of interaction for manipulating non-spatial parameter spaces is identified.

We present a novel multi-touch interaction technique that merges the operations of

selection and adjustment of numerical parameters.

Historically, command line interfaces (CLIs) constituted the first modality of hu-

man computer interaction. The user had to memorize commands acceptable to the

computer. Commands were designed with ease of repetition by expert users as a pri-

ority. Shortened textual notations of described actions was the norm: ls for list, and

rm for removing files. As computing resources improved, displays allowed the visual

representation of complex content on the screen. Graphical user interfaces (GUIs)

adopted the paradigm of Windows, Icons, Menu and Pointer (WIMP) for presenting

and interacting with content. The menu emphasized recognition of operations from

a visible set, over the recall of how to invoke a command from a vast number of

options, as was the case in CLIs.

In 1983, Shneiderman [104] introduced the term direct manipulation to mean

interaction with elements of the interface using a pointer. The pointer, controlled by

the physical movement of a mouse by the human, operated on visual targets such

as buttons or menu items. With multi-touch, the human can now interact with a

computer by directly placing her hands on the visual. The pointer is no longer a

required part of the interaction between the human and the computer.

This research investigates the design space of multi-touch interaction beyond di-

rect spatial manipulation. The first approach is that of gesture recognition. I demon-
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strate techniques to recognize arbitrary multi-touch gestures. Inspired by the use of

multiple fingers of a single hand for quick command selection in keyboard shortcuts,

I demonstrate how numerical parameters can be quickly selected and adjusted.

1.1 Contributions

The summarized contributions of this research are:

1. Motivating the design space of parameter adjustment for multi-touch interac-

tion.

2. Demonstrating a new interaction paradigm for merging selection and adjust-

ment of a small sets of parameters with touch interfaces.

3. A design approach emphasizing comfort of the human participant.

4. Evaluation presenting drawbacks and benefits of using touch for relative pa-

rameter adjustment.

5. Demonstrating two domains (photo post-processing and data analysis) that

qualitatively benefit from use of the MultiTap Slider.

6. Identifying techniques for training and recognizing arbitrary multi-touch ges-

tures.

1.2 Problem statement

Engaging in visual design tasks often requires users to adjust multiple parameters

for an associated action. These are typically presented to the user as a set of sliders.

Parameter adjustment requires the user to shift visual focus away from the target to

acquire the thumb of the slider (the visual portion of the slider indicating the current

value). Design requires iterations of the following sequence of subtasks: parameter

2



selection, adjustment, and observing the effect on the target. The duration of each

iteration is further extended when the user needs to switch between different param-

eters. This leads to to-and-fro visual saccading between an interactive component

and the target object, even if the interface is located close to the target.

Jacob et al. [54] present a dual classification of how humans perceive combinations

of attributes: integral or separable. This describes aspects of a user’s mental model,

a cognitive term for describing how a user believes the system works. Attributes such

as the x and y points of a location are perceived as an integral whole. Manipulation

of location includes both the parameters. However, the tuple of attributes size and

saturation are not perceived together, but are separable. I attempt to bring the user

an experience that allows the integration of the multiple parameters of an operation

as close at hand as possible.

These distractions of repeated saccading during tasks with high cognitive loads,

such as visual design, lead to break downs in the user experience. This context is

similar to that of visual analytics, wherein the visual is not a design, but a visual-

ization of large sets of data. The problems describe above apply to interactions that

require problem-solving and analysis of data. Our research attempts to develop new

forms of interaction for manipulation in such multi-dimensional abstract parameter

spaces, that do not have an obvious 2D or 3D spatial representation.

I ask the following questions to guide this research: What movements of the hand

would map to movements of a particular parameter? How could we specify which

parameter must be altered, and by how much? Can each of these movements of the

hand be efficiently performed multiple times without little effort?

Operations in creative fields, such as post-processing of a photograph taken by

a digital camera, are delicate balancing acts. The photographers take great care in

making minute adjustments of a large number of parameters available to them. For

3



example, the tone curve consists of four parameters that can be adjusted: highlights,

lights, darks and shadows. The values of each of such parameters are used to perform

a complex set of mathematical calculations to alter the pixel color values.

Even though photographers may not fully comprehend the details of the imple-

mentation, they understand the resultant visual change. As their expertise with the

software grows, their knowledge of the relationship between the several groups of pa-

rameters increases. However, this does not imply that given a photograph, an expert

photographer can uniquely identify the desired parameter values without interaction.

There is no correct answer to these operations. The user interface exposes a set

of knobs that feed into complicated algorithms that ultimately change pixels. Details

are abstracted away from the user to simplify the experience, while delivering as much

power from the algorithms as possible. Providing more knobs would overwhelm the

user, where as providing fewer might take away control. The software attempts to

find a balance between the two.

The operation demands play. There is a constant exploration of what the pho-

tograph could look like with different values. The process of adjustment is an open-

ended task that benefits from such exploration. Each parameter is constrained to a

fixed range. However, even with just four parameters, under the menu Tone Curve,

the possible combinations are in the millions. The operation is purely subjective.

The experience and design sense of the photographer can aid in identifying the satis-

factory combination of the parameter values. This selection is the primary purpose

of the interaction. Devoting more visual and cognitive faculties of the brain, will aid

the user in making a qualitatively improved product.
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2. RELATED WORK

Our research draws from several related fields in touch interaction. Recent interest

in the field has increased considerably due ubiquity of input devices, and the low cost

for entry to do-it-yourself multi-touch screens. To frame our research, we consider

below the breadth of research in touch interaction.

The term direct manipulation was introduced [104] to mean interaction with

elements of the interface using a cursor. The cursor, controlled by the physical

movement of a mouse by the human, operated on visual targets. Changes to the

target are continuously visible. Direct manipulation brings to the forefront the new

ability to rapidly perform incremental, reversible operations while viewing their effect

on the object.

Direct manipulation was a great paradigm for human computer interaction. At

the time Shneiderman coined the term, the mouse and cursor seemed more direct

than the CLIs. However, touch allows for a more direct manipulation than the mouse

and cursor. The target of the manipulation with a cursor is physically removed from

the human hand moving the mouse.

The more direct manipulation made possible with touch interaction raises several

questions regarding existing designs of the menu and the pointer. What is the optimal

on-screen placement of the menu? What should its visual representation be? How

can the dexterity of the human hand be leveraged? Not only does this mean that

the user can interact with several on-screen objects at the same time, but also that

several users can now interact with the same screen, opening up the research field

of single display groupware [106]. This research focuses on command selection using

multi-touch interaction. We limit the survey to techniques applicable to interaction
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requiring finger and hand contact with a surface.

We consider attributes of research to classify prior work. One attribute is the

use of either direct manipulation techniques or explicit command selection. The

former deals with mappings of hand movements to implicit selection and adjustment

of spatial parameters. The latter category explicitly presents commands available

for selection.

We present a discussion on the techniques and a comparison of their evaluation

methods.

2.1 Sensing technologies

2.1.1 Input only multi-touch sensing

Westerman [112] developed a detailed finger tracking capacitive sensing input

device. The device used a combination of heuristic algorithms to detect fingers and

the palm. A keyboard layout printed on the device allowed it to function as a

keyboard, mouse, and gestural input device. It distinguishes individual fingers with

fine granularity.

Westerman developed a technique using a selection of fingers (chords) combined

with a movement to distinguish the intent of interaction. An iconic representation of

the chords and their movements was illustrated. Mappings between the combinations

of movement-chords to actions in a computer are presented as a form of gestural

interaction. However, the only evaluation of the device was self-reported by the

author himself over a period of 6 weeks.

The device was sold by the company FingerWorks. Production was ceased when

acquired by Apple Inc. This technology was the ’revolutionary’ new innovation for

the Apple iPhone and iPod, when used as a transparent overlay on an LCD display.

This innovation has made popular the idea of computing with only a touch-screen,
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sans keyboard. Today’s Apple MacBooks and the Apple Magic trackpad use a similar

capacitive sensing technology to sense multiple fingers on the trackpad. Unlike the

FingerWorks device, only rudimentary gestures such as multi-finger swiping and

pinch-to-zoom are implemented on the trackpad.

2.1.2 Integrated display input devices

The first commercially available multi-touch sensing systems such as Diamond-

Touch [26] table and SmartSkin [98] initially served as a platform for multi-user

interaction, rather than specifically multi-touch interaction. The front-projected

hardware supported the detection of the coarse shape of the contact with the screen,

allowing disambiguation of palm, open and closed hand, and single finger interaction.

The DiamondTouch table (see Figure 2.1), a product of the Mitsubishi Engi-

neering Research Lab (MERL) served as the foundation for a decade of touch-based

table top collaboration. The table enabled associating a touch point on the screen

to a particular user. A specialized stylus could also be used for precise input on

the surface. Although we constrain this survey to single-user interaction, we con-

sider important work performed on the DiamondTouch table, that has an impact on

multi-touch command selection.

Han developed a cheap rear-projected vision based system to detect touch using

frustrated total internal reflection (FTIR) of infra-red light [38]. The infra-red region

of the light spectrum is used for touch sensing, while the visual is left for display.

The inexpensive, easy to fabricate FTIR systems enabled a large influx of multi-

touch interaction research. This technique of using infra-red light to capture touch

input has been extended by amateur hardware enthusiasts and researchers.

Variations on the vision based sensing techniques include placing the camera

above the plane of interaction (inverted FTIR [28] ), and illuminating the interactive
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Figure 2.1: A view of the capacitive sensing DiamondTouch table [26], with a
top-projected display being used collaboratively.

surface from below (diffused illumination) and using a lightplane [108]. The vision

based techniques suffer from the requirement of having the infra-red lighting, camera

and, projection components occupying a significant amount of space, either in front

of or behind the screen. However, they also make it possible to sense more features

of the touch contact. Postures can be detected [20] over the tabletop display.

Moeller and Kerne present ZeroTouch[80], in which the infra-red lighting and

sensing components are compressed into a frame that can be mounted onto any

display. By reducing costs, and improving the form factor of the sensors, technologies

like the ZeroTouch will hasten the pace of adoption of large screen multi-touch in

mainstream computing.

The iPhone from Apple [47] was the first commercial display device to support

multi-touch input via capacitive sensing. The 3.7” screen could physically support
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only a couple of fingers at a time. The introduction of the iPad [47] with a 9.7”

screen, and the light-weight device brought whole handed multi-touch input into the

mainstream market. Microsoft develops a larger coffee-table form factor touch screen,

the PixelSense [49]. The table uses diffused illumination and multiple cameras to

detect the shape of the contact. The Surface also features additional functionality

such as object and fiducial (geometric barcodes) detection.

2.2 Support for legacy interfaces

This section discusses important research that tackles issues in the real-world

adoption of multi-touch technologies. Specifically, the fat finger problem and the

lack of a tracking state of the hand above the screen, analogous to the mouse over

state. Not only does the human finger visually occlude the pixels that it is attempting

to target, but it also lacks the single-pixel precision of the mouse cursor.

2.2.1 Fat fingers

Early research [94] raises the issue of moving from a cursor capable of select-

ing a single pixel to a finger that occludes several pixels at once, and the input

approximates the contact to one of those pixels. Sears and Shneiderman present

take-off [103] as a promising technique, wherein a cursor is presented to the user

with an fixed offset to their finger. Zoom-pointing [10] is developed using graphical

scaling of the target area, increasing the motor control space available to the user.

Albisson and Zhai [3] develop multiple techniques to improve the precision of the

finger on a screen, using 2D levers, an interface that allows precise manipulation of

the cursor position. Rubbing and tapping [92] on the screen has also been used to

improve the precision of interaction touch-screen displays.

Traditional user interface components such as buttons and checkboxes become

difficult to operate on touch screens when packed densely. Attempting to change the
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Figure 2.2: The SDMouse technique developed by Matejka et al. [78].

state of one checkbox with a finger could accidentally trigger an adjacent checkbox.

Moscovich [84] presents sliding widgets as a novel technique to overcome this prob-

lem. The finger is considered as an area input, instead of a singular point on screen.

A directional swipe, instead of a tap, is used to click on a button, or alter the state of

the checkbox. A list of such items require either left-to-right or right-to-left swipes,

alternately. This prevents the inaccurately placed finger from accidentally activat-

ing nearby interface components. Twelve participants are recruited for laboratory

experiment comparing traditional push buttons with sliding buttons. Their results

show that accidental activations are reduced by the use of sliding widgets.

2.2.2 Mouse emulation

In the interest of supporting general purpose use of computers using the touch

modality, researchers developed techniques to emulate the mouse, and its buttons.

The fluid DTMouse [29] describes a mapping using multiple fingers to emulate mouse

move while avoiding occlusion (mouse cursor is moved at the mid point of two fingers)

and mouse drag (a third finger toggles drag mode). Benko et al. [11] introduce a

menu for a bimanual operation that facilitates magnification, controlling speed of

cursor movement (indirect manipulation of the cursor) and snapping the cursor to
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items.

Matejka et al. [78] develop a new design (SDMouse) for multi-finger chorded

mouse emulation. Through evaluation they show an improvement over the DTMouse

techniques. Figure 2.2 shows the final design of emulation of the mouse functions :

move, drag, scroll and right-click. They present an exhaustive experimental study

with the following independent variables: four different techniques, two tasks (click

and drag), two mouse buttons (left or right), target distance and size. From their

results, we see the mouse outperforms all touch techniques. However, amongst the

touch techniques compared, theirs was the fastest.

2.2.3 Touch feedback

Unlike the mouse, many touch based systems cannot sense above-the-surface

interaction, i.e, a mouse-over (hover) state. There exist specialized hardware systems

designed to overcome this deficiency [44, 108]. However, in our research, we focus

on developing techniques that do not require the additional hardware. This implies

that the only states that can be detected are click and drag. The missing state

prevents the system from showing the user which element is currently being acted

upon. Additionally, providing visual feedback during for normal and unexpected

behaviour is the application’s responsibility. The operating system does not notify

the user if the hardware is faulty, or which interface component is going to process

the input.

Wigdor et al. introduce Ripples [115], a visual feedback mechanism that shows

an animation in response to touch interaction (see Figure 2.3). The fluid, dynamic

feedback shown around the finger, represents whether or not an on-screen element

has captured the touch. Input from a captured touch is only sent to a single interface

component, until the finger is lifted. This prevents accidental activation elsewhere
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Figure 2.3: Sequence showing ripples [115], an animation of a circle around a finger
contact, based on whether it is over an active interface element (captured) or not
(uncaptured).

on the screen. A tether is shown from the contact point to the interface component

that has captured the particular input.

2.3 Direct spatial manipulation

Researchers coined the term natural user interfaces (NUIs) [1, 116] to describe

new techniques that allow for fluid manipulation of virtual items. The goal of such

techniques is to make the resulting interaction seemingly obvious to the user, that is,

the techniques should do the right thing for a given context. Over the past decade,

new sensing technologies have made this field rich and quick-paced. Although initially

developed for the touch modality, the term NUI has also been applied for full-body

and voice interaction with devices like Microsoft XBox Kinect [50].

Following the paradigm of direct manipulation, we consider research in multi-

touch interaction focused on altering the spatial attributes of elements. Traditionally,

the term direct manipulation was used for graphical buttons that could be clicked

to perform a command. With touch, manipulation is more direct.

A user can drag photos on a canvas by dragging a finger. Placing a second finger
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on the canvas enables performance of three operations with an single movement of

the hand: rotation, translation and scaling. This simple demonstration brings the

natural hand movements that we use for physical objects to interact with the digital

world. These manipulations of spatial parameters received the majority of attention

in initial research and development on multi-touch.

We use the term direct spatial manipulation to specifically identify techniques

that alter the spatial appearance of a visual. Direct spatial manipulation makes the

selection of commands of rotation, translation and scaling implicit. These commands

are selected through the use of mappings, a relationship between the movement of

the human hand across the surface to a command or operation executed on an item

on screen. The result of these manipulations is the adjustment of visual parameters

of items, namely their X,Y location, their angle of orientation, and their scale.

The following section presents the prior work in two parts: (1) techniques for

translate-rotate-scale for two and three dimensional objects, and (2) using physics

to facilitate more natural mappings for operations on multiple elements.

2.3.1 Translate-rotate-scale

An early motivation for touch interaction was co-located collaboration. Wu and

Balakrishnan [123] used the DiamondTouch table to explore techniques using two

fingers for rotation in the context of a collaborative application (RoomPlanner) to

decide the layout of furniture in a room. Their evaluation notes the use of the thumb

and index finger as the most convenient for fine adjustments.

Kruger et al. [62], perform a study to understand the effects of orientation of

elements in a co-located tabletop collaboration context. Participants, seated around

a table, are asked to solve a puzzle that requires moving and rotating pieces of pa-

per. A video analysis of their performance reveals that orientation of pieces affected
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Figure 2.4: Kruger et al. [63] present a single touch technique for integrated rotation
and translation. Touches in the circle perform only translation.

comprehension, coordination and communication amongst teams. Performance im-

proved when elements were oriented towards each participant. When passing to

another person, re-orientation of the element helped improve coordination.

They use this result as a motivation for research and development of a single-

contact interaction technique [63] that uses simulated force to integrate the rotation

along with the translation of an object (see Figure 2.4). The tasks for evaluation

required element targeting and passing to members across a table. Their metrics were

of accuracy and qualitative user feedback, compared against a baseline technique that

uses corners of elements as rotation handles. The unified technique they developed

was shown to outperform the baseline technique. They extend their work to use

multiple fingers for the context of rotation of 3D virtual objects [39]. Through a

series of passing and docking tasks, they show quantitative and qualitative evidence

that using more fingers allows for a more natural and flexible interaction.

Davidson and Han [24] explore the novel input dimension of pressure to explore

layering of virtual items along with the development of a peeling metaphor to access
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occluded elements. Reisman and Han [96] also develop new bimanual multi-finger

interactions for 2D and 3D object manipulation, without reporting on an evaluation

of their performance.

Although integrating rotation, translation and scaling results in a more natural

behaviour, the multi-touch interaction modality makes it difficult to specify only

one of the three operations. Scaling an object with two fingers will cause a small

amounts of rotation. When performing a rotation operation, the location of the

visual changes. For design tasks, precision is necessary. Nacenta et al. design

and compare four techniques to improve performance of the integrated techniques

[88]. The evaluation tasks required participants to perform combinations of rotation,

translation and scaling of objects. Compared to a baseline of an unconstrained

manipulation, where the finger movements map directly to the object, all of their

techniques were shown to reduce errors, but not improve time for completion.

With interest in interacting in more than two dimensions increasing, researchers

attempt to identify the impact for constricting the degrees of freedom in mappings.

In an analysis of an experiment involving 3D manipulation tasks, Martinet [76] finds

that separating rotation from translation results in higher coordination, thus im-

proved control on the individual actions. By using a different number of fingers, the

user can choose to either rotate or translate the object. A single finger performs only

translation. Rotation of an object requires the use of more than one finger. Instead

of using sophisticated techniques like in [88], number of fingers in contact with the

screen makes selection of operations easier, and avoids accidental performance of

other operations.
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Figure 2.5: ’Bumptop’, a physically based desktop prototype from Agarawala and
Balakrishnan [2].

2.3.2 Physics simulations

Building on the success of using touch for direct spatial manipulation, researchers

extend the techniques from single to multiple concurrent elements. By considering

multiple elements, the set of commands that the user would like to perform increases.

The new commands include: a) selecting and forming groups of elements, b) adding

and removing elements from groups, c) affecting multiple elements simultaneously.

Agarwala and Balakrishnan [2] improve on the direct spatial manipulation paradigm

by introducing gravity, friction, piles and gravity for organizing groups of elements.

Though the project initially was designed for the pen, the implementation also sup-

ported touch. It used two fingers for spreading of piles, and flicks to add items to

piles. Figure 2.5 shows the collection of items arranged into messy and neat piles. A
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Figure 2.6: Cao et al. [18] demonstrate mappings of contact postures to varying
physical force.

study with six users was performed, wherein they explored the system while thinking

aloud. Qualitative feedback showed that the users were excited, learnt the techniques

easily and appreciated the smooth interface.

ShapeTouch [18] introduces more dimensions of input by identifying properties of

the finger contacts, and using it to distinguish the action on pile of cards. One finger

translates the top card of a pile, while two fingers spreads the pile out, the addition

of a third finger moves the pile as a whole. An initial exploratory user evaluation

showed that users liked the ability to use hands instead of fingers, and that they

could interact with multiple controls at once.

Wilson et al. [119], explore strategies to aid in the control of virtual elements

within a physically based system. They describe three different strategies: joints,

proxies and particles. These techniques presented strategies for representing the

contact of the hand on the surface within the virtual world. A physical simulation

applied on the virtual elements interacted with the representation of the contacts.
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The techniques are evaluated with six users using positioning, sorting and steering

tasks. They present quantitative results in terms of task completion time, as well a

discussion on how the different techniques may be combined.

2.4 Gestural interaction

Research in human-computer interaction deals with the unambiguous understand-

ing and processing of human intent. A goal of natural user interface [1, 116] is to

the human to express their intent comfortably, using actions we commonly use in

the world. The mappings to non-spatial operations are not self evident. We consider

research on techniques for more complex operations. Sensing technologies addition-

ally can sense different parts of the hand that make contact with the screen, such as

palms, or the side of the hand. We describe research that explores the use of these

additional dimensions of sensing. Another framework of analysing emerging inter-

action paradigms is that of the reality based interfaces (RBI)[53] that puts forward

the main theses of transferring skills from the real world : naive physics, awareness

of the body, environment and social circumstances. They discuss the tradeoffs and

limitations of designing with the RBI approach.

We return to the RoomPlanner application [123], wherein an open hand is used

for sweeping virtual items (see Figure 2.1). Here the posture of the hand is identified

as a signifier of intent. Instead of using a finger to point to a single element, the

open hand affects multiple elements. This resulting user experience resembles the

movement to sweep items off a physical desktop. Command invocation at the target

through stylus interaction was describe by Rubine [100].

Wu et al. [124], use the DiamondTouch table to explore possible mappings of the

hand for activities beyond the literal. Their implementation, a photo browser ap-

plication, enables annotation, wiping (erasing), cut/copy-pasting, and the expansion
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and collapse of piles.

They define phases of multi-touch interaction as registration (identifying the pos-

ture of the hand), relaxation (the user can relax their hand posture once identified)

and re-use (contextually redefining mappings of a gesture). The non-dominant hand

is used to establish the context of interaction, while the dominant performs the

operation.

Figure 2.7 illustrates how the hand postures are re-used across multiple opera-

tions. A qualitative survey through a post-study questionnaire established the user

comfort with the techniques. Users report that the pixel-accurate selections were

difficult to perform.

Wigdor et al. [113] use the terms rock and rails to define the hand postures of

the closed fist and vertical open respectively. They use these static gestures to aid in

the precise manipulation of elements on a canvas. The non-dominant hand performs

these postures, while the dominant hand positions the elements. This technique

demonstrates a combination of gestural techniques with direct spatial manipulation

techniques of rotation, translating and scaling.

The gestures enable an improved precision of the manipulation. A qualitative

evaluation presented eight participants with randomly sized objects, that were to be

re-arranged to a final prescribed layout. All but two participants preferred the rock

and rails techniques over traditional methods.

2.4.1 On the design of gestures

Considering that most commands lack a literal obvious real-world counterpart,

their association to a hand movement is an important interaction design topic. One

process of development of this mapping is described by Wobbrock, Morris and Wilson

[83, 120]. They use a participatory design approach to elicit a gesture vocabulary
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Figure 2.7: A state diagram showing phases of a gestural interaction [124] . Hand
postures register the command, user relaxes them during operation and reuses them
contextually for other commands.
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from the users, without first imposing a rigid set of pre-defined gestures.

A qualitative study is performed with simple graphical shapes on screen, and

the user is simply asked to perform a set of commands. The set includes non-

trivial commands such as duplicate, activate menu, accept, reject, minimize and help.

They prescribe design guidelines on the selection gesture mappings. The resultant

gesture vocabulary is said to be a simpler than the typical complex gestures that are

developed by HCI researchers.

One of their reported findings states that their users did not consider number

of fingers to be of importance in the gesture. However, this contradicts findings by

other researchers [18, 23, 39, 96], whose evaluations show that number of fingers can

be beneficial to the selection of separate operations.

2.4.2 Learning & discoverability of mappings

As we improve our understanding of gestural interaction, the vocabulary of hand

postures available to the designer increases. By combining the different postures,

with dynamic changes over the duration of their performance can lead to movements

that are difficult to describe.

Octopocus [7] developed for mouse and pen input introduces the concepts of dy-

namic guides and feedforward visualizations for single-stroke gestures. Based on the

trajectory of the cursor, the visualization is modified to show possible gestures. The

feedback was the ink left by the stroke the user has performed, while the feedforward

showed possible paths available to the user.

Multi-touch interaction has a more complex problem. The posture of the hand

may not be as interaction designer expects (for example a vertically placed palm

instead of a closed fist). Improper hand posture can make some gestures difficult to

perform. Visual representation of posture as well as performance of the gesture is
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Figure 2.8: Illustration of the visual presented to the user from [33]. The feedforward
mechanism shows two gestures from this starting point: Jaguar and Kangaroo.

non-trivial.

ShadowGuides [33] introduces a new visualization that is aimed at teaching new

gestures to the participant. The Microsoft PixelSense [49] is used as the hardware

device, providing accurate shape of the contact. Figure 2.8 shows the visualization.

The feedforward visualization is displayed adjacent to the user’s hand. A detailed

menu shows the set of gestures, along with the part of the hand that is used to

perform each gesture (see top right). They begin with a description of the taxonomy

of surface gestures. The three axes of classification are registration pose (number

of fingers or shapes), continuation pose (whether the pose changes during gesture

performance), and movement (whether the hand stays in the same place).

A set of gestures are designed to demonstrate parts of their taxonomy. These

gestures are mapped to artificial items (animals) for the benefit of a user study. The

study shows that fewer memory and performance errors are seen when using their

technique as compared to the baseline of video demonstrations. However, the paper
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lacks a discussion on the design and mapping of gestures to real-world operations.

Using such complex gestures in a real-world application requires an unambiguous

understanding of the mappings not just by the designer, but by the human partici-

pant.

Using play to alter the perceived cost of learning, Gesture Play [14] describes a

physical simulation with springs, dials, and props to teach specific gestures to the

user.

2.4.3 Gesture recognition

Gesture recognition research is not by itself novel, its application to touch has

typically meant borrowing from sketch recognition [99, 70, 69] to adapt to single-

stroke recognition algorithms [121, 102]. Multi-stroke recognizers have also been

developed, but only if the strokes were performed sequentially, not simultaneously as

is the case with multi-finger gestures [72]. With regards to commercially prevalent

multi-touch gestures, the implementations usually are hard coded. For example with

the pinch-to-zoom gesture: Event callbacks and heuristics are used to determine if

the two fingers are placed on the same graphical element. Subsequent moves of the

fingers are then used to calculate the zoom amount. This approach is infeasible when

the goal is to establish a learn-by-example gesture system.

Yamoto and Ishii developed methods for using hidden Markov models to identify

human action using video as the input medium [125]. Morimoto et al. developed

more contextualized work, using HMMs to classify facial movements as Yes or No

gestures [82]. Wilson and Bobick developed parametric HMMs for gesture recognition

[117], to allow an operation to be used by an interactive application.

New research describes mechanisms to recognize a range of multi-touch gestures.

Proton++[61] prescribes a regular expression approach to define the details of a new
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gesture. A tablature of basic primitives with touch events (up, down move) and

directional components can be used in a specified syntax. Gesture Coder [71] on

the other hand can learn-by-example. A specialized state machine is automatically

learned from a set of input samples. Both of these research products allow for

parameterization of the gesture, through specialized means. It is also important to

note that the parameters of the gestures in these multi-touch recognition systems are

designed to be used for spatial manipulations. Both systems are designed to allow

for free-form movement during the gesture to map to operations such as panning a

map.

2.5 Explicit command selection

Techniques described in Sections 2.3 and 2.4 are feasible when a clear mapping

exists between the command and the movement that the human must perform to

invoke it. Changes to spatial attributes are a great fit for direct manipulation tech-

niques. The mappings from body movements to changes in the visual are clear and

explicit. The experience from using the techniques can be considered natural to the

human.

The question of what mappings are obvious is not easy to answer. Although

mappings can be made, there isn’t a clear deterministic design process that allows

for the production or choreography of the gestural mappings to an arbitrary set of

commands. What may be considered natural or intuitive for one person, may not be

for another. The context of the mappings may have a similar effect, the gesture may

be more natural when mapped to a different operation in a different context. This

leads to an ambiguity in selecting the most obvious gesture. This subjective variance

in human opinions makes designing a vocabulary of gestures for complex actions a

difficult problem.
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Considering more complex commands such as picking a color, fetching mail, al-

tering volume, or creating a new folder in a file system. It is interesting to note that

related research, shadow guides [33], avoids to topic of gesture mapping by selecting

completely arbitrary context for the set of gestures: a list of animals.

As the size of the command set for an application increases, the discoverability of

the gestures becomes less obvious to the user. The cognitive overhead of memorizing

the gestures increases. Taking a clue that signified the paradigm shift from CLIs to

GUIs, this overhead can be reduced by encouraging recognition over recall: visualize

possible commands in a clear and consistent manner to the human.

We call this form of command selection explicit. The user must be able to navigate

to a commands from within a menu, making available commands visible. Traditional

menus are functional, and can be operated by touch interfaces. Although research

presented in section 2.2 could be used for alleviating some of the problems, we need

new fluid multi-touch techniques for command selection.

The introduction of a visualization of the menu in some form at the finger contact.

We describe two categories of menus, 1) stroke-based marking menus, that may or

may not have a visual representation of operations at all times, and 2) visual menus

that emphasize a consistent visual representation during their operation.

2.5.1 Marking menus

Stylus based interaction has been more prevalent than touch, and hence has a

considerable depth of research dedicated to accessing commands via a menu. Kurten-

bach and Buxton develop marking menus [64], that use direction of a pen-stroke to

select menu items. Each directional stroke selects items from subsequent levels in

the menu hierarchy. Chaining strokes together allows selection from a deeply nested

menu. The motivation of this technique is that the strong spatial memory of humans
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aids in the repeated selection of menu items.

Initially, a visual radial menu shows upto eight top level menu items, located in

segments of the circle. A first directional stroke selects the top level item, which

prompts eight subsequent menu items to be shown. A second stroke performs the

final selection. Thus with two strokes, a selection from upto 64 elements can be

made. The visual menu can is presented with a delay. When the user pauses at a

certain stage, the available commands are presented in a circular menu around the

cursor.

Through repeated use, the user learns the spatial location of menu items, and

the strokes required to access them. The length of the stroke need not be finely

controlled, allowing for a less constrained movement of the hand during operation.

Expert users can perform the strokes for an item from memory, instead of waiting

for the menu to be displayed. Another crucial aspect of the marking menu is the lack

of visual focus required to operate it. The strokes can be performed anywhere on

the screen while the user can keep her visual focus on the target being manipulated.

This technique has a quantifiable performance gain over regular menus, that requires

precise spatial selection of a menu item. An evaluation [91] comparing marking menus

with the toolglass [13] and hot keys shows several benefits of marking menus over

the toolglass.

Variations on marking menus [64, 65, 129, 128] have been shown to have a high

performance with both the mouse and the pen. The summary of research into stroke

based gestures is beyond the scope of this paper. All of these techniques could be ap-

plied to single-finger interaction. These techniques are aimed at facilitating a smooth

learning curve for a novice user to become an expert. The novice begins by using

the visual menu. Repetitions of item selection during normal use encourages learn-

ing. Their evaluation tasks involve numerous menu item selections using comparable
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Figure 2.9: A selected set of multi-touch chords for top level item selection from
Lepinski et al. [68]. When each of these are combined with a directional stroke in
one of eight directions, upto 64 items can be selected.

techniques. The measurements of time to completion and rate of errors in selection

are used as the golden rule for technique adoption.

Lepinski et al. [68] translate this work from the domain of stylus / pen based

interaction to multi-touch. While regular marking menus use directional strokes for

each menu level, they explore the use of hand chords for the top level menu selection.

A chord is identified by a detecting which combination of fingers make contact with

the screen. Figure 2.9 shows the final set of chords selected for the user study. Finger

disambiguation techniques are introduced to help differentiate the fingers of a single

hand. Their evaluation shows the performance (in terms of time and error) of the

multi-touch marking menu to be better than the single touch marking menu.

However, from personal experience, attempting to quickly alter between the

chords repeatedly is physically difficult, and induces undue stress in the hand. Their

evaluation neglects to raise these experiential issues that are extremely relevant to

their techniques adoption in the real-world.

Bailly et al. [5] extend the marking menus to bimanual interaction. Instead of

using hand chords, they use only the number of fingers to encode the selection of the

first level. The use of the second hand allows for a larger selection. For selection at

the next menu level, they use two techniques, directional strokes and simple multi-

finger tapping.
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The motivation behind this set of techniques is that with some training, a human

can remember spatially, and kinaesthetically (with muscle memory) the mappings

between a hand movement and a command. A short study shows that their tech-

niques initially do not outperform the baseline of selection from a standard menu bar.

Their reasoning is that the low pixel density of their hardware makes the menu bar

larger and easier to select, but higher resolution displays might show different results.

Later trial blocks show a convergence in performance of the three techniques. An im-

portant finding from this research is the ability for the human to encode information

with the number of fingers in contact with the screen.

2.5.2 Visual menus

Considering the pace of adoption of the multi-touch modality in research, it is

surprising that, to our knowledge, there have only been a handful of publications

that develop novel techniques for presenting visual menus to the user. Considering

human perceptual mechanism for organization of the menu [19].

Stacked Half Pie menus [40] use a single touch to navigate a hierarchy, visualized

as a semi-circle. A goal of the design is to reduce the distance that the hand must

traverse to access items of the menu. Stating the concern of occlusion of the screen

by the hands, they place the menu at the bottom of the screen, towards the human.

Qualitative reports from an exploratory evaluation show that users had difficulty in

understanding components of the design.

Banovic et al. use multiple fingers in their single-handed pie menus [6]. Activated

by the thumb, the menu can be accessed using the little, ring, middle or index fingers.

Figure 2.10 illustrates the three target selection techniques that are compared on the

basis of speed and accuracy for menu item selection. The items in the menu are

not hierarchical, but are placed in the partial pie menu. Their evaluation fails to
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Figure 2.10: Banovic et al. [6] present strategies for selection of menu items in a
partial pie menu.

mention the ease of completion of the selection tasks by the participants. From the

description of the interaction needed to operate the menu, the human must contort

their palm into uncomfortable positions to maintain precision and control.

Attribute gates [107] allow the user to set multiple attributes of an element (given

a discrete set of options for each) using a single stroke with co-location tabletop

collaboration as the context. Ring menus [59], uses both hands and chords to display

available commands.

The most relevant research to our own work is the dissertation of Malik [74].

The focus of his research is the exploration of single-handed multi-finger interaction.

In this work, he introduces the use of the thumb to select from a discrete set of

items (see Figure 2.11), and also manipulate a slider over a continuous range of

values. Several strategies for visualizing the menu are discussed and compared. He

presents studies identifying the comfortable human range of motion of the index

finger and the thumb. He also demonstrates the use of number of fingers to select a

specific operation. However, these new widgets were only an exploratory illustration.

They lacked a concrete implementation and evaluation. The quantitative reports

are limited to studies focused on gathering performance data of finger movements,
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Figure 2.11: Malik [74] illustrates the use of thumb for selection of discrete items.

without the context of the interaction.

The above research fails to compare against a baseline menu, making their evalu-

ation difficult to analyse in a generic context. With the recent spurt of such research,

evaluations comparing the newly developed techniques are required. A lack of stan-

dardisation in the evaluation makes comparisons difficult.

2.6 Parameter adjustment

The marking menus described in 2.5.1 as well as the prototypes of visual menus

considered in 2.5.2 are used for discrete item selection. We now consider param-

eterized operations that not only require a selection of a command, but also the

adjustment of a parameter associated with the command, for example adjusting

brightness. The selection of brightness is the command. Further, the user also needs

to specify a continuous numerical value to complete the operation of brightness ad-
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Figure 2.12: FaST sliders merge a marking menu with a traditional slider, presented
at the target location. Additional buttons are displayed on hover for increased ac-
curacy and undo capability.

justment. The techniques for command selection by themselves are insufficient to

provide a fluid experience to complete parameterized operations.

Pook et al. introduce control menus [93], an evolution of marking menus, to

perform adjustment of a parameter over a continuous numerical range. In a single

stroke, the control menu allows selection of a command as well as the adjustment of

a single numerical parameter. A pre-determined threshold distance distinguishes se-

lection of the command and the manipulation of the continuous numerical parameter

associated with the command.

In the same year Guimbretière and Winograd present flow menus [37] as an

extension of control menus. Flow menus perform selection of a command by requiring

re-entry into a fixed circular region, as opposed to the threshold distance method of

the control menu. This difference has the added advantage of reducing accidental

command activation. For continuous numerical adjustment, the menu is operated

like a knob, with circular clockwise movement to increase and counter-clockwise to

decrease the value.
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Figure 2.13: The three stages of activation of the in-context slider by Webb and
Kerne [111] for parameterization of an interest value over a target.

A laboratory study by Guimbretière et al. [35] present a comparison of the

control and flow menus. The study had two additional techniques for comparison:

(1) a movable tool palette presented as a traditional panel of items, and (2) a two-

handed toolglass that allows participats to use one hand to independently move a

transparent color palette. Participants were asked to connect a set of 12 points, after

selecting a specific color for each point. The results showed that techniques which

merge selection of the command with adjustment of the parameter outperformed the

other techniques.

FaST Sliders are designed for in-context, precise adjustment of parameters for

mouse input [79], focussing more on precise adjustment of a parameter rather than

selection. Parameters are selected through a marking menu. Figure 2.12 shows

the stages of operation of the fast slider, with selection via marking menu, followed

by coarse adjustment by sliding, and fine adjustment through the use of buttons.

The hover state of the mouse is used to fluidly chain the selection of the parameter

with its adjustment. A click on the slider thumb or on the done button ends the

manipulation. SlideBar [21]

Webb and Kerne present a mouse based in-context slider, activated at the target,

to express interest on a term, image or text clipping [111]. A transitory slider is
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visualized over a visual in three stages, (see Figure 2.13). This technique is designed

for a single parameter on the target, and can be performed with one less click. The

slider is fluidly operated by hovering (a) over the target, then (b) over the half-navel

presented and finally by clicking on a desired value. A user study uses a baseline

of a traditional slider in a popup modal window. The task requires participants to

rate words, text and images. Results show that participants were faster with the

in-context slider and found it easier to use.

symTone by Latulipe et al. [66] utilizes the tone reproduction curve visualized

over the target image as an affordance for manipulation. This technique may not be

feasible for parametric spaces of other graphical effects.

Engaging in visual design tasks often requires users to adjust multiple param-

eters for an associated action, such as those for image level (brightness, contrast,

saturation and opacity) or drop shadow (blur radius, direction, opacity and depth).

These are typically presented to the user as a set of sliders. Parameter adjustment

requires the user to shift visual focus away from the target to acquire the thumb

of the slider. Visual design often requires iterations of the following sequence of

subtasks: parameter selection, adjustment, and observing the effect on the target.

The duration of each iteration is further extended when the user needs to switch

between different parameters. This leads to to-and-fro visual saccading between an

interactive component and the target object, even if the interface is located close to

the target.

These distractions of repeated saccading during tasks with high cognitive loads,

such as visual design, lead to break downs in the user experience. This context is

similar to that of visual analytics, wherein the visual is not a design, but a visual-

ization of large sets of data. The problems describe above apply to interactions that

require problem-solving and analysis of data. Our research attempts to develop new
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forms of interaction for manipulation in such multi-dimensional abstract parameter

spaces, that do not have an obvious 2D or 3D spatial representation.

The techniques for spatial manipulation use natural mappings to target a small

subset of the parameters (location, angle, scale). Specific actions such as piles, copy-

paste, and layout have the advantage of having mappings that are unambiguous.

Parameters such as brightness or blur radius do not have such obvious mappings.

Damaraju and Kerne [23] use the term abstract parameter spaces to describe the

multi-dimensional space of a set of parameters that do not have a literal spatial rep-

resentation. From related work [16, 54], they show that the user context of graphical

editing is focused not on navigating quickly to one particular parameter value, but

the fluid and oft-repeated re-selection of a small subset of the parameters at a time.

They present findings on a user study to manipulate parameters of color (hue, satu-

ration and value) using single handed multi-finger mappings. Their technique shows

an improvement over a base line of direct manipulation, that requires pointing to the

desired parameter value on a displayed visual menu. The multi-touch technique uses

number of fingers and simple finger disambiguation to allow quick repeated selection

and adjustment of one of the three parameters.

2.7 Form factor and visual focus

Our presentation of research has considered the context of the interaction tech-

niques developed, without much emphasis on the physical experience of the human.

In research using the DiamondTouch table, we mention that the users are seated

around a table. Whole handed interaction only used with devices that can support

robust detection of shape of the contact. However, their techniques are unique to

the hardware. Wide-spread adoption of techniques in the mainstream is limited.

Moscovich and Hughes[85] perform a detailed analysis on single and two handed

34



Figure 2.14: Indirectly affecting objects through a proxy, from Wigdor et al. [113].

interaction for rotation and scaling. Although research on bi-manual interaction is

extensive [60, 67], this study is specifically geared to the understanding of the effect of

direct vs. indirect manipulation. Using the metric of coordination, Moscovich finds

that bimanual techniques require a strict visual correspondence of the movement

of the fingers to the rotation of the object in virtual space. The findings suggest

that a gain function can be applied to unimanual operations without a degrading

performance significantly. Earlier work by Everitt et al. uses the term modal spaces

[30], to describe how the same movement performs different gestures based on the

region of the screen in which it was performed.

Wigdor et al. use indirect manipulations to a large extent with the rock and

rails technique [113]. They use the concept of proxies, visual shapes connected to a

single or multiple target by a line, to promote indirect interaction (see Figure 2.14).

The proxy allows distant objects to be operated upon. The proxy supports all the

operations that can be performed on the target directly, translation, rotation and
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scaling. The proxy reduces the problem of occlusion by the human hand. A unique

advantage of their use of proxies allows a one hand movement to affect multiple items

at once.

Similarly, the abstract parameter manipulation described in [23], the mappings

allow indirect manipulation. The advantages of this are two-fold: (1) avoiding oc-

clusion of the target, and (2) adjustment can be made without necessitating visual

focus on a visual menu.

2.8 Evaluation techniques

The applicability of interaction techniques addressed by this paper is dependent

on the methods as well as results of their evaluation. The stated goal of the techniques

is to perform better, which as per the current state of research involves an evaluation

of the time to complete the task, and it’s accuracy while doing so. We discuss the

motivation and differentiate our approach and goals to the design of multi-touch

command selection techniques.

Due to the field of multi-touch interaction being fairly recent, a number of pub-

lications fail to properly evaluate their techniques against a baseline. For example,

[24] and [96] have no evaluation. Further, menu techniques such as [40] only have a

usability evaluation. This scratches the surface of how we can expect the techniques

to succeed in real-world applications.

Innovation in interaction techniques requires that we first need to understand

the flaws and benefits of existing techniques. For an exhaustive evaluation of new

techniques, we require a baseline to compare against. and a set of agreeable metrics

that can quantify the performance.
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2.8.1 Context and tasks

A majority of the highly specialized tasks discussed in this paper [3, 11, 39, 63,

68, 128, 129] are designed for generic use. To develop techniques for generic contexts,

and then evaluate them for real-world usage is a difficult problem. The context of

the research, and hence their user studies is to complete the task of selecting the

menu item, or precisely manipulate a specific element. The tasks fail to adequately

model the mental state of the user in a real-world setting. Several hundred trials are

completed by the user in a single sitting. The tasks describe in exact detail what

the user needs to accomplish, leaving very little for the user to think about. The

human is reduced to a mechanical system, asked to move given a visual stimulus. The

motivation of such research is that the optimisation of these fine-grained subtasks

will lead to a better overall user experience.

Wobbrock et al. [120] develop a complementary research approach on evaluation.

Their study shows how focusing on the user context can provide detailed and helpful

guidelines for the design gesture vocabulary. Instead of focusing on the speed and

accuracy, they attempt to elucidate the intuitiveness of the interaction from the user.

User comfort, both physical (by describing simple hand movements) and mental (the

mappings are easy to understand and remember) takes the front seat. By attempting

to perform the chorded gestures described in [68], we have realized the futility of

designing gestures solely based on what can be faster. Out of personal experience,

the awkward hand positions that the chords require, are difficult to perform over

prolonged periods of time.

Not all interaction techniques aim to make operations faster. Some of them are

aimed at improving learning [33] or making operation less obtrusive to the context of

the user [111]. As researchers focus on the larger picture, we require a standardisation

37



of tasks. Repeatability of studies will make comparison across techniques feasible.

The evaluation table shows a chronologically ordered summary of a selection of

research considered in this paper. We present their objectives, tasks, the metrics

used as well as the results of their evaluations. Additionally, we consider whether

their evaluation used a valuable baseline beyond their own techniques. Some research

does not explicitly identify whether the techniques was meant to be used with one or

two hands. For example, Martinet at al., [76] describe how some users preferred the

use of two hands for 3D manipulation tasks, while other used multiple fingers of a

single hand. On the other hand, in the rock and rails techniques, the use of multiple

fingers was ambiguous. The techniques used the posture of the one hand, but only

one finger of the other hand. This classification will help compare techniques across

their stated objectives.

2.8.2 Metrics

The most used metric for comparing techniques of multi-touch interaction are

(1) time to complete a specified task, and the (2) number of errors made by the

user. When used by themselves, the metrics fail to capture the intricacies of user

experience. Some papers extend this by analysing number of operations performed

by the user. Minimizing the number of operations is a secondary objective by the

researchers. There are several qualitative features that make comparison amongst

techniques challenging.

Qualitative evaluation has made use of questionnaires [2, 6, 15] and coded metrics

from video logs [62] to capture and understand the user’s context and evaluation that

is not possible to elicit solely from the quantitative metrics recorded from the task.

When combining operations such as rotation and translation, it is important to

understand the level of control a human can exhibit to individually perform either
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operation. Coordination during integrated adjustments can be quantitatively iden-

tified through studies. Zhai and Milgram [127] introduce a new metric, inefficiency

as a measure for coordination. The less the inefficiency, the more coordinated the

technique is. The authors used this technique to measure differences in how humans

exercise control over experimental hardware that provide six degrees of operational

freedom (along X, Y and Z axes). This metric of coordination was used in later

studies [23] to evaluate performance in abstract parameter spaces.

Metrics need not be used solely to show an improvement of an author’s technique

over a baseline. Discussion of results using a new metric may be used to gain an

analytic understanding of use. For example, Nacenta et al. [88] use normalized time,

presented as a percentage of gesture duration, to look at the temporal distribution of

the operations of rotation, translation and scaling. The metric comes from outside

the field of human-computer interaction from Mason and Bryden [77] in the journal

of experimental brain research. For this particular research, the metric may not be

of primary significance. However, the knowledge of such a metric could encourage

other researchers to re-evaluate and analyse their techniques in a new light.

For the following forms of interaction, we suggest visiting the references listed. A

discussion of these techniques is outside the scope of this survey.

∙ Tangibles [52, 97, 31, 56]

∙ Free air / distant interaction [81, 118, 36, 75, 12]

∙ 3D Volumetric displays [34]

∙ Under water [27], Under table[114].

2.9 Section summary

In the early days of touch based interaction, sensing technologies were in large

form factors, either as a wall or horizontal table-top configurations. This prompted
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the focus of initial research primarily towards co-located collaboration. The sensors

granularity was coarse, hence the gestures developed involved palms, open hands

and coarse movement. As sensing improved, the form factor became more compact,

and finer grained. A multi-touch device could fit on a users work desk, and later

into their palms. Techniques began exploring the use of fine-grained skilled finger

movements. Research approaches were shaped by the resources available at the time.

It is evident that a majority of the current research has a focus on developing direct

spatial manipulation, the lowest hanging fruit of the multi-touch modality. The

evaluation of such techniques prioritizes optimisation of the time to complete the

small sub-tasks.

This paper considers a breadth of research that utilizes the multi-touch modality

for selection of commands. Techniques of command selection beyond the literal

are also considered. Direct spatial manipulation is used to define the selection of

commands that adjust spatial parameters of visual elements. Research on gestural

interaction is presented as a form of implicit command selection.

Through an analysis of the prior work, we gain an understanding of the difficulties

in producing standardized evaluation methods that can be used as baselines for

comparing command selection techniques. The demarcation of spatial and non-

spatial operations is clear, the techniques for either of them cannot be evaluated

in the same way. Similarly, even within non-spatial operations, the presence of a

numerical parameter complicates the operation.

We presented our motivation, in Section 2.6, for designing techniques for param-

eter adjustment discussing the importance and uniqueness of the problem. Visual

design and analytic applications have a large set of commands, and benefit from

maximising their screen real-estate. The standard user interfaces for parameter ad-

justment (menus, buttons, sliders) use up crucial pixels, taking away space that can
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otherwise be devoted to the context.

Our approach values indirect manipulation, so the user’s hand can be as close to

the target object as possible, allowing visual focus on the target, while performing the

manipulation of parameters. We note that our goal isn’t just to make the interaction

faster, and more accurate, but also fluid, comfortable, and encouraging exploration

of the design space.
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3. INVESTIGATING MULTI-TOUCH MAPPINGS1

The term gestural interaction is used for any interaction that yields in a natural

user experience for non-traditional inputs (other than keyboard and mouse). In the

previous section, we develop a recognition technique as a foundation for developing

such natural user interfaces. In our related work (Section 2.4), we see that a gesture

is primarily used to perform a discrete command selection. The command may also

be parameterized if it pertains to altering the spatial features of the visual such as

zoom, scale, and translate.

Norman defines mappings are the relationship of movements of the body and the

resulting operation in the virtual space [89]. The term gesture implies a distinct

correlation between the movement and the operation. When the space of commands

is large, this correlation becomes subjective. It is important to distinguish between

the concept of a gesture and that of a mapping.

Directional swipes are often termed as gestures, but are mapped to a varied set

of operations. A four finger vertical swipe on the Apple trackpad [4] can be mapped

to bring up all open applications on one screen (called exposé[46]). Although the

finger swipe can be called a gesture, in reality it is really mapped to an arbitrary

operation. The correlation between the movement (four fingers moving vertically)

and the operation (exposé) is ambiguous.

Direct spatial manipulations for touch interactions prescribe direct mappings,

where movement of the body is performed directly on the target. Movement of the

hand has a one-to-one mapping to the that of the target. With translation on a touch

1Part of the data reported in this chapter is reprinted with permission from “Comparing multi-
touch interaction techniques for manipulation of an abstract parameter space” by Sashikanth Dama-
raju, and Andruid Kerne, Proceedings of the International Conference on Multimodal Interfaces,
221-224, c○ ACM 2011.
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screen, the object is expected to stay under the finger during the operation, which

can get tedious for larger screens. As we begin considering to non-spatial spaces,

such direct mappings are infeasible. A parametric space is not visually represented

in a two or three dimensional space.

Moscovich [85] describes the multiple advantages of indirect mappings for touch:

occlusion of the hand, and freedom from the one-to-one mapping of the movement

of the finger to that of the virtual object. Occlusion is reduced by allowing the hand

to operate away from the target. The indirection no longer necessitates a direct

mapping between the motor space of hand movement and the visual space of the

target. With an indirect mapping, we can apply a transfer function to map between

the two spaces, enabling traversal of larger virtual distances with the same amount

of movement by the finger.

Figure 3.1: Examples of non-spatial parameter spaces in image editing. On the left
are a few of the parameters in the develop menu of Adobe Lightroom. On the right
are three parameters of the brush filter ink outlines.
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3.1 Non-spatial parametric spaces

A parameter space is the set of all possible combinations of values for all the

various parameters. When considering spatial parameters, the space is typically

defined by position (𝑋, 𝑌 and 𝑍 coordinates) and size. We define the term non-

spatial parametric spaces to all parameter spaces that exclude those defined with

spatial attributes. We present below a few examples from research and commercial

applications.

The examples of parametric spaces shown in Figures 3.1 and 3.2. The parameters

we see are integral to the operation, each of them alter the effects of the visual in

some way. When performing such operations, it is more important for the result

of the operation look a certain way, rather than precisely setting a parameter to a

specific value.

Figure 3.2: Left: A design gallery is presented to set the lighting of a scene. The
three rows on top represent the amount of three different lights, shown as a series
of small multiples, with the resultant stage on the bottom left. Right: Talton et al.
[109] presents a visualization to explore the space of the types of trees. A panel of
sliders alters parameters of the tree trunk, branches and leaves.
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3.2 Color selection

We began our exploration of multi-touch beyond the established definition of

gestural interaction. Our approach focused on understanding the impact of altering

mappings. In this section, we present a user evaluation that studies the effect of new

interaction techniques. In this case, we choose color selection. From our prior work,

we differentiate our research away from spatial manipulation. The natural mappings

in the spatial domain are defined relatively objectively. Various heuristic algorithms

[88] and interaction techniques [96, 63] integrate rotation, scaling and translation to

avoid disambiguating the intent of the interaction. In the non-spatial domain, the

mappings are not as easily understood.

Color is a multi-dimensional non-spatial parameter space. It can be expressed

with a different set of parameters:

1. Red, Blue, Green (RGB): The most commonly used form of color space in

the computational domain. Monitors and most televisions contain a triad of

color components for each pixel. The power to each of the components of this

triad determines the color of a single pixel.

2. Cyan, Magenta, Yellow, Black (CMYK): Print media commonly uses

four colors of ink. Varying amounts of ink produces the entire color spectrum.

3. Hue, Saturation, Value (HSV): This color space splits the color spectrum

into a more perceptually understandable form of color. Hue defines the color,

saturation defines the amount of color, while value (sometimes called lightness)

defines the

4. CIE L*a*b*[43]: This color space that was defined to approximate human

vision, with change in value in this space would correspond to change in about
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the same in visual importance.

Figure 3.3: The displayed visual for color selection in the HSV color space. Hue is
represented on a ring. Saturation and value are the two axes for the square gradient
in the middle.

3.3 Interaction techniques

For our research we select the HSV space since it is easily to describe to par-

ticipants and implement in an application. The visual feedback of color selection is

shown in Figure 3.3. In a square at the center, we represent the saturation-value

varying subset of the HSV color space for a given hue. A ring around this square

visualizes the range of hue. The thumb is differentiated from the index finger by

being closer to the user (lower on the screen). The motor space for the hue is the

same as that of saturation and value, i.e., to move from one end of the range to the

other, the participant must move the same distance (the side of the square) for all
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three color dimensions. The multi-finger conditions described below (C1, C2) have

a common mapping for hue variation the horizontal movement of the index finger

is mapped to change in hue, while the thumb is used as a pivot.

The multi-touch techniques develop variations on the mappings of finger/thumb

movement to color dimension. We design interaction techniques to enable the user

to effectively manipulate the abstract parameter space of color. The interface widget

in Figure 1 helps reinforce the mappings from the movements of the fingers to the

adjustment of a specific parameter hue, saturation or value.

In each multi-touch technique, interaction begins when the user places two fingers

anywhere on the screen, without depending on touching a widget in a certain place,

and ends at the last adjustment made by the user before touching the done button.

C1 Constrained Manipulation: (See Figure 3.4a) The mappings are as follows:

horizontal movement of the index finger, with the thumb as a pivot, is mapped

to change in hue. Horizontal and vertical movements of the thumb, with the

index finger as a pivot, are mapped to change in saturation and value respec-

tively, however only one of saturation or value can be manipulated at a given

time. The components of the velocity vector of the thumb movement decide

the parameter to be manipulated.

C2. Index+Middle: (See right of Figure 3.4b) Horizontal movement of the index

finger pivoting from the thumb controls hue. But now, the index and middle

finger together are dragged horizontally to adjust saturation, and vertically

for value. We expect that by shifting the fingers in contact with the screen,

selection of parameters can be made with little effort.

C3. Mouse Interaction: This is a control condition that allows a practical com-

parison with the multi-touch conditions. The circular marker in the saturation-
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Figure 3.4: An illustration of the multi-touch techniques for selecting parameters of
the color. A blue dot indicates the finger(s) moving. An anchor indicates that the
finger is in contact but not moving.

value swatch moves by making clicking at a specific point on the square. Par-

ticipants click directly on the desired value, either on the two dimensional

saturation-value color square or on the hue ring, which is not possible with

the previous conditions. We expect users will be slower in this one parameter

at a time manipulation condition than in the multi-finger conditions. We use

the mouse condition as a baseline to compare the effects of the multi-touch

interaction techniques on task performance time.
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3.4 Experimental hardware

We fabricated a 55” touch-screen that used FTIR [38] for multi-touch sensing.

The hardware device was designed to be adjustable in angle and height (See Figure

3.5). For the purpose of the experiment, we selected a 30∘ angle, with the edge facing

the user at a height of 36”. This allows the participant to comfortably rest their

elbows or forearms on the 2” bezel of the screen. The participant was seated before

our hardware, and was allowed to adjust the height of the seat to make themselves

comfortable.

Figure 3.5: Configurations of the adjustable multi-touch sensing hardware we had
fabricated. For this experiment, we chose the configuration second from the left.
The angle of inclination was set at 30∘.

3.5 Evaluation

We conduct a within-subjects study to compare the efficacy of techniques that

map movement of fingers of a single hand to the adjustment of multiple parametric

dimensions. The independent variable is the interaction technique used, and the

dependent variable measured is the time taken to complete the task. We focus our

attention primarily on the index finger and thumb because they are motorically

characterized by highly independent degrees of freedom. The independent variable
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has five conditions, described below. The participant performs multiple trials (a trial

is selection of a single color) with each condition.

Participants are presented with the initial and final colors as two squares above

the color picker widget. Color matching is a cognitively demanding task. Our per-

ceptions of color are subjective, with considerable variation across users. A pilot

experiment was performed with two participants. The numerical values of the target

color were hidden, with the expectation that an exploration of the color space would

provide a more natural real-world setting for the color selection. This resulted in

several trials left incomplete, the participants were too frustrated to continue. The

task did not specify which parameter needed adjustment. They often changed a

parameter that was already at the correct target value, making the task much more

complicated than we set it to be.

In this study, we display the numerical values of each parameter below both the

initial and final color squares. For each trial, participants use one of the mappings

described above to manipulate the initial color to match the target color. The current

color is continuously updated to match the values adjusted by the user.

Each set consists of 12 trials. A set of 12 initial and target color combinations are

randomly initialized. They are common across all conditions and participants. The

order of these 12 trials is randomized for each condition. The order of conditions is

randomized for each participant by selection from a Latin square [25]. Participants

complete a set for each condition.

In total we had 18 participants × 12 trials × 3 conditions = 648 trials. Each of

which required multiple parameter selection and adjustment sub-tasks.

Each new condition is marked by a tutorial screen. The experimenter accompa-

nies this with a short demonstration of the interaction technique. Participants are

allowed to practice with each new condition at the start of each trial set until s/he
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is ready to begin the set. Participants are encouraged to rest between trial sets.

We log the movement of each finger for each trial of all study conditions. To

avoid errors resulting from the user’s perceived level of accuracy, a fixed accuracy

measure is used for all trials. The participant is notified with a mark next to each

parameter, when it is within range of the target value. Once all the parameters are

within range, the next trial begins.

3.5.1 Hypotheses

H1. Multi-finger manipulations will be faster than the mouse condition for color

selection.

H2. The efficiency of the multi-finger conditions (C1-C2) will be comparable to that

of the mouse (C3).

We verified H1 by comparing completion times for trials against the mouse condition.

Since we use a fixed accuracy measure for all trials, the traditional metric of error

is not applicable. To test H2, we use Zhai and Milgram’s measure of inefficiency

[20], defined as (𝑑 − 𝑠)/𝑠 where 𝑑 is the distance traversed by the user through the

parameter space, and s is the shortest path from initial position in the parameter

space to the target. This measures the level of control the user exhibits during the

task.

3.5.2 Results

Each trial is performed by all participants with all three conditions. Figure 3.6

shows the task completion times for the three conditions. For the following analysis,

we normalize the time taken for each trial, with the equivalent time taken to perform

the same trial by that participant with the mouse.

The following results are produced using a Welch two sample t-test. Participants
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Figure 3.6: Time for multi-touch interaction technique conditions; error bars show
95% confidence.

performed 9.25% faster with the constrained multi-finger condition (C1) than with

the mouse condition. The result was statistically significant (𝑡 = 2.951, 𝑑𝑓 = 17, 𝑝 <

0.005). They performed even faster (11.12%) with the index+middle finger condition

(C2) than with mouse, and again this was significant (𝑡 = 2.71, 𝑑𝑓 = 17, 𝑝 < 0.008).

The results validate our first hypothesis H1.

We also found from the results that the efficiencies of the multi-finger conditions

(C1, C2) were not significantly different from the mouse condition (𝑝 = 0.48, 0.43

respectively), proving our second hypothesis (H2).

3.6 Design principles

Through this evaluation, we have noted that the participants are able to quickly

learn new mappings. The movements we selected are designed to operate on the vi-

sual feedback, aiding the user to form a mental model that correlates hand movement

with the operation on screen. The mappings outperformed mouse based selection.

This implies that indirect touch interaction that does not require visual targeting of

on-screen elements have better performance than even mouse based interaction.
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4. MULTI-TAP SLIDERS1

Touch screens have recently become the most ubiquitous new interaction modality

after the keyboard and mouse, due to adoption on small to medium size screens.

When attempting to develop a touch interaction technique, there is a temptation to

follow preconceived notions that the interaction must be as intuitive as possible. We

present an argument of the limited applicability of this notion. For certain contexts

it is necessary to break away from optimizing the intuition of an interaction. We

present in this section an engaging new interaction experience with minimal training.

An interaction is considered intuitive when utilizes the users inherent knowledge

and skills from prior experience. Such as the ability to operate real world objects:

moving a piece of paper on a table is as simple as pressing on it and sliding it across.

On screen spatial operations benefit the most from this sense of intuition.

Traditional interface elements have been designed to leverage this transfer of

knowledge from the real-world to digital interactions. Buttons have shadows that

are removed when pressed, giving a three dimensional feel like buttons do in the real

world. Check boxes come from paper forms, and even the radio box has its origins

in the preset buttons of a radio. Pressing on station would deactivate the button for

the other station. The skeomorphism design approach [22] mimics real world objects

for digital interfaces. It has a large benefit during the training phase, when the lay

user attempts to figure out how to operate on the interface, without prior knowledge.

However, we see that after decades of use, the origins may be completely unknown

to the end user. A generation of users have never seen how the buttons on an older

1Part of the data reported in this chapter is reprinted with permission from “Multi-tap sliders:
advancing touch interaction for parameter adjustment” by Sashikanth Damaraju, Jinsil Hwary-
oung Seo, Tracy Hammond and Andruid Kerne, Proceedings of the International Conference on
Intelligent User Interfaces, 445-452, c○ ACM, 2013.
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radio work. They however, do know that only one item can be selected from a set of

radio buttons. These interactions are the de-facto accepted standard for computing

simply due to their ubiquity.

In this research, we first emphasize the interaction [9]. The visual interface is built

to support this interaction. The interface serves to build the mental model in the

user while providing feedback of the exact state of the interaction at all times. Due

to the cognitive complexity of the creative operation being performed, the interaction

should allow the user to focus more on the target of the operation, rather than the

interface to do so. For example, the regular sliders are usually placed on one edge of

the screen, requiring visual and motor coordination to target each parameter slider

thumb to begin operation.

4.1 Designing the interaction

The human hand has a natural resting position, with the palm and fingers slightly

curved inwards. This is similar to the position with which we hold the mouse. The

index and thumb fingers together have the most degrees of freedom and control in

daily operation.

The summarized goals for our interaction design are as follows:

∙ Minimize the requirement of targeting visual elements like the slider thumb.

∙ Palm support: The interaction shouldnt require moving the arm.

∙ Precise control using the index or thumb.

∙ Merge command selection and manipulation to make the operation integral.

We limit adjustment of the parameter to the index finger, while the middle, ring

and little fingers perform the parameter selection. The index finger moves on the
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Figure 4.1: Postures of hand demonstrating the comfortable ranges of movements of
the index finger on a flat surface, with the palm rested. On the left is with only the
index making contact with the screen, while on the left is the same movement shown
with the middle, ring, and little fingers also making contact.

screen within the comfortable limits of flexion and extension, with a total movement

of about two inches. Shown in Figure 4.1 is this limited range of movement. The

movement of the index finger is mapped to adjustment of a parameter. We use a

simple transfer function that uses the velocity of movement for faster accelerated

changes.

This adjustment is relative, meaning that the absolute position of the finger does

not correlate to a specific value. Only changes are mapped. This is different from

regular sliders that are mapped absolutely. The thumb of the slider denotes the

current position of the slider with respect to the acceptable range.

We then use the middle, ring and little fingers to operate the parameter selection

(See Figure 4.2). Unlike the related work that uses chords for maximizing the number

of operations possible, we simplify the interaction by only rely on the number of

fingers that are making contact with the screen. With no fingers making contact,

the index finger adjusts the first parameter.

With one of the other three fingers down, the second parameter is selected, and

subsequent movements of the index finger are mapped to adjustments in the second
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Figure 4.2: This series of images shows the movement of the middle, ring, and little
fingers to consecutively make contact with the screen.

parameter and so on. With all three fingers down, the index finger will adjust the

fourth and final parameter. We hypothesize that such an interaction can be learnt

and quickly passed into the motor memory. Altering parameter values would become

second nature for someone who has performed this technique for a couple of hours. It

is seen in marking menus [65] that the accessing a menu item with a stroke becomes

quicker with learning.

4.2 Designing the interface

Although technically speaking, the interaction described above could be imple-

mented without an interface; it would have a number of disadvantages. It would take

away from allowing any further operations to be performed on screen. The visual in-

terface provides a space for interaction, keeping the rest of the screen still accessible.

We prefer our technique to have an indirect interaction. The interaction should be

performed on an intermediate visual, and not directly on the target of the operation,

like direct spatial manipulations are performed. Henceforth the combination of the

interaction and the interface will be referred to as the widget.

The interface has two main components: one receives input from the index finger

56



Figure 4.3: Components of the prototype: (a)index slider to perform adjustment of
the parameter (b) finger pad to alter the selection of parameters (c) palm support to
avoid erroneous touches, and (d) visual feedback of the currently selected parameters
(parameter three shown in purple) and current values of all parameters.

(called the index slider), and the other from the rest of the fingers (the finger pad)

(See Figure 4.3). The design for the prototype is straight forward, two regions side

by side, with sizes to match the fingers. We also place a transparent region to allow

a place for the palm to rest, so as to not confuse touch input under the palm as

intentional. The resulting visual resembles a mitten, with the index finger having

a different compartment. The visual has a low opacity, meaning the screen content

below our interface is still visible to a certain extent.

We provide feedback on the currently selected parameter in a rectangular box

placed to beside the index finger. As seen in the figure, we also place a small help
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graphic beside each parameter. This graphic shows the number of fingers required

to be placed on the finger pad to have that parameter selected. For the prototype,

we keep the widget in a fixed location on screen.

4.3 Evaluation

4.3.1 Control conditions

We evaluate our new interaction technique with other touch interaction tech-

niques that allow selection and adjustment of parameters. As we first introduced

this design space, any existing techniques do not adequately support the task. In

this section, we describe three interaction conditions: bimanual, relative sliders and

traditional sliders.

Figure 4.4: Bimanual condition containing the same parameters as seen in Figure
4.3. (a) index slider and (b) finger pad, which is now detached and placed on the
other side of the screen to be used by the non-dominant hand.
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4.3.1.1 Bimanual condition

We implemented an additional two handed version of the prototype to compare

with. This required selection of parameters with the non-dominant hand, using the

same finger-count technique as the single-handed version (See Figure 4.4). Adjust-

ment of the parameter was performed with the index finger of the dominant hand.

As all participants were right handed, this meant that the index slider was to the

right of the screen, and the finger pad to the left as show here. The positions of

both components was adjusted by each participant for maximum comfort before the

experiment began.

Figure 4.5: Control condition of four relative sliders. Each rectangle is similar in
functionality with the index slider.

4.3.1.2 Relative sliders

The index slider is relative, meaning that the initial step of targeting the slider

thumb is not required. Also, we have the added advantage of using a transfer function

with acceleration that is not present in the regular slider. To make this comparison

59



fair, we implemented a new relative touch slider (See Figure 4.5). The relative slider

functions exactly like the index slider, but does not include parameter selection. Four

relative sliders were placed side-by-side vertically, one for each parameter.

4.3.1.3 Traditional sliders

As there are no special touch based slider implementations that have been de-

veloped, we placed four regular sliders arranged side-by-side vertically as the control

condition. This is an unfair comparison. Operating the regular slider requires tar-

geting the thumb of the slider first. For consistency, we disabled the feature of

mouse-based sliders that causes a larger increment change when the mouse button

is pressed on the bar of the slider. Users are required to first acquire the thumb of

the slider before adjusting the parameter. The thumb was doubled in size to allow

for easier targeting with the finger.

4.3.2 Task & procedure

We had 13 right handed participants (1 female, 12 male) perform a series of

parameter selection and adjustment. For each trial, the target parameter was high-

lighted, and a numerical target value was presented above. The task requires par-

ticipants to select the parameter, and then adjust its value to the indicated target

value. Upon completion of the trial, the next target is presented.

The order of conditions was counter balanced across the participants. Each par-

ticipant used all four conditions. A set of four targets (one for each parameter) was

presented on screen, visualized as four rectangles with the same width, and height

corresponding to the value of the parameter (See Figure 4.6).

The change in height of the rectangle as the parameter values is adjusted rein-

forces the correlation between direction of movement on the index slider and change

in the value. Moving the index finger upward increases the value, and moving down-
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Figure 4.6: Targets for the study task. Shown here is the task to select the third
parameter, and adjust its value to 0.58

ward decreases the value. The current numerical value of the parameter was displayed

as a number above the rectangle.

For each trial, a target value was displayed above one of the rectangles. The user

would have to then select and adjust this parameter from its current value to the

target value. A short demonstration was provided to explain how the single handed

and bimanual conditions work. The posture of their hands and whether or not they

rested their palms on the screen was left up to the comfort of the participants.

They had five minutes to familiarize themselves with the parameter selection and

adjustment for each control condition.

4.3.3 Results

Although participants were concerned that the hand movements required would

be inconvenient to perform, after the initial practice they felt comfortable enough to

begin the trials. The relative sliders and the regular slider conditions were familiar

to the participants. They had little difficulty operating them.

We did observe that during the regular and relative slider conditions, the par-

ticipants did not have a consistent operation posture. Based on the last parameter

adjusted and the current positioning of their fingers over the interface, they would
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use the ring or middle finger to perform both the selection and adjustment of the

parameters. This led to imprecise adjustment, as the precise motor control of the

ring and middle finger is less than that of the index finger.

There were instances of participants switching to use the index finger after an ini-

tial adjustment was made with the other finger, because of the inconvenient posture

required. This required sliding or moving the palm to a more comfortable position.

Due to this, participants reported more fatigue for the regular and relative slider

conditions.

Figure 4.7: Results for selection time.

Figure 4.7 shows the mean time taken by participants between selection of param-

eters. A repeated-measures analysis of variance (ANOVA) showed that technique had

a significant effect on parameter selection time (𝐹3,30 = 3.8, 𝑝 < 0.02). The regular

slider was significantly slower at parameter selection than the other three conditions

(See Figure 6. Single-handed: 1.43s, Bimanual: 1.54s, Relative: 1.28s, Regular:

1.85s). This was expected as the targeting area for the regular slider (the thumb)

was smaller. There was no significant difference between the other three parameters.
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Figure 4.8: Results for completion time.

On the other hand, the time taken to complete the adjustment of the parameter

for the four conditions is shown in Figure 4.8. Performing an ANOVA completion

time, we found no significant difference between the four conditions (𝐹3,30 = 3.8, 𝑝 <

0.02 with Fishers Least Significant Difference at 0.72s). The completion time for the

single handed and bimanual conditions is interesting. The bimanual condition can be

seen as a kind of kinematic chain in which the coarse operation of parameter selection

by the non-dominant hand is framing the precise value adjustment by the dominant

hand. Mapping individual fingers to parameters in the multi-touch condition is a

form of direct embodiment.

4.4 Design iteration

We improve on the visual and interaction design of the widget in our next iter-

ation, using lessons learnt from the evaluation. We note that the widget occupied

more screen real estate than was required for the functional operation, even though

the opacity of the visual was reduced, it was still occluding content.

To reduce this occlusion by the widget, we convert the finger pad region to be a

transparent affordance (an element that affords action [89]). We visually encompass
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this invisible region with a stroke from the top of the index slider. The resultant

shape resembles the top half of the yin-yang, or a brush stroke starting at the index

slider and thinning away as it borders the top of the finger pad. Figure 4.9 shows

the new visual.

Figure 4.9: An iteration of the visual design of the multi-tap slider interface with
the functional components emphasized. The index slider is the smaller region with
dotted border on the left, while the region to the right with a dashed border is the
finger pad.

In discussion with the participants, we noted that they felt constrained by having

the widget in a single location. We introduce the functionality of translating the wid-

get across the screen. From our design goals, we minimize the requirement to target

specific visual affordances. to allow eyes-free fluid interaction. From a corollary of

Fitts Law [73], we take advantage of the screen-edge concept, where the edge of the

64



screen is considered an easy target, since it is infinitely wide. A quick careless flick

will be sufficient to target such a region.

We utilize and existing visible portion of the visual as an affordance: the region

that bounds the finger pad on top. While operating the widget, using the middle

finger the user can just drag up into the curved top region of the interface. This

would start dragging the widget entirely, visually represented by a blue glow of the

entire widget shape. During translation mode, the widget can be dragged anywhere

on screen, and placed simply by raising the finger. Regular operation of the widget is

halted during translation. We extend this functionality to allow scaling the widget.

A second finger placed anywhere on the widget begins the familiar pinch-to-zoom

operation.

4.4.1 Visual feedback

Our design approach prioritizes the interaction of the technique over the specific

visual interface. However, we design the visual to be rich with state information

when required. The feedback needs to be subtle so as to not distract from the target

of the parameter adjustment operation. At the same time when the human looks

towards this widget, we expect that they receive immediate feedback of the following:

1. Currently selected parameter

2. List of parameters available

3. Feedback of interaction: whether adjustment is under way or not

4. Current value of the selected parameter

5. Position of the current value with respect to the range of acceptable values of

the parameter
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Figure 4.10: The blue outline on the right shows the feedback of parameter adjust-
ment mode when the finger makes contact with the index slider.

Figure 4.10 shows the feedback of interaction, with a blue outline around the

region of the index pad. The currently selected parameter (in this case weight) is

shown in black, while the other available parameter (opacity and flow) are shown in

grey.

4.4.2 Translation and scaling

We introduce the functionality of translation and scaling the widget in this iter-

ation of design. The main criteria in designing this interaction is to maintain the

ability to perform these operations as fluidly, with as little motor and cognitive ef-

fort as possible. Figures 4.11 and 4.12 show details of the operation, we well as the

visual feedback performed. These new operations require a mode switch, so as to

not interfere with the parameter adjustment and selection operations.

As shown in Figure 4.11, the top of the widget serves as an affordance for the
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Figure 4.11: The activation boundary serves as an infinitely large target for the
middle, ring, or little fingers. Dragging from the finger pad into the boundary changes
the widget into translation mode, made visible by the blue outline.

translation. This interaction does not require the user to specifically target this thin

portion of the widget. Instead, we capture the motion of the finger as it moves up

from the finger pad. The moment that the touch enters the affordance, subsequent

movement of the finger in any direction translate the widget to the new position.

Since the arch of the widget encloses the finger pad on the top boundary, the target

becomes easy to enter. Entering translation mode can be performed without much

effort.

The widget is designed to fit comfortably under the relaxed position of the human

hand. Since each individual hand varies in size, we require that the customization of

the widget be as simple as possible. The translation mode requires a movement of

the hand with the palm raised. When in this mode, moving a second finger performs

the scaling. Figure 4.12 shows two different styles of scaling. On the left, the thumb

moves in and out to make the widget smaller or larger respectively. On the right,

the combined movements of the index and middle fingers scales the widget.

Raising all fingers off the surface of the screen completes the operation of trans-
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Figure 4.12: Scaling the widget. Once in translation mode, scaling is performed by
movement of a second finger anywhere over the widget using the pinch gesture.

lation and scaling.

4.5 Working with existing applications

We develop a framework that enables the operation of a standard user interface

through the multi-tap sliders. This is performed through the use of the mouse to

operate existing interfaces, while touch operates on the multi-tap slidesr. We use

the open source library Sikuli [105], a product of the research from Yeh et al. [126].

The sikuli library uses computer vision to find specific labels and items on screen.

We integrate the operation of the multi-tap slider with the existing interface in an

application. Figure 4.13 shows a screenshot of the multi-tap sliders being used along

with the Adobe Lightroom [45] application. Selection of parameters on the multi-tap

slider moves the mouse cursor to the corresponding slider on the traditional interface.

Similarly, adjustment on the multi-tap slider moves the slider by the appropriate

amount. XML messages are used to communicate between the Sikuli library and our

multi-tap sliders.
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Figure 4.13: Integrated view of the widget with Adobe Lightroom [45]. The widget
shows the Tone Curve operation being performed with four parameters, the corre-
sponding parameters on the interface are seen on the right panel.

4.6 Design principles

We introduce a new space of design: non-spatial parameter manipulation. The

main contribution of this work is the fluid transition between the selection and ad-

justment of parameters. We note that traditional menus and control panels fail to

properly support the users mental model, the perceived integrality of the parameters

is under-utilized in the interaction.

In this section, we also emphasize the success of the design process. We start

not with the visual interface, but by first thinking about the movement of the hand.

The interface plays a support role in this experience. Such a design process broadens

the scope of future interaction techniques. New forms of interaction require new
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metaphors. The constraints of previous input modalities need not apply to new

ones. Rethinking interactions in a human centered process allows for innovative and

engaging experiences.

4.7 Section summary

Multi-tap sliders represent a novel approach to the multi-touch interaction design

space. Most prior work in touch can loosely be categorized into the broader categories

of spatial manipulation and gestural interaction. Both these categories have a limited

applicability to complex operations. Our research is focused on making creative tasks

fluid. Specifically, we design techniques for operations with multiple parameters that

require constant tweaking.

We present a process that begins with developing an interaction, followed by

designing an interface that supports this interaction. This distinction allows us as

interaction designers to discover movements that are first and foremost comfortable

to perform, over multiple repetitions, with the least movement throughout the oper-

ation. We have shown that such a process can lead to a widget with fluid interaction

and a clean aesthetic.

This research explores the design space of creating new paradigms of interaction.

We show how a new paradigm can combine precision with comfort. Freeing ourselves

from the literal graphical elements, we think in the abstract about mappings between

movement of the body and digital manipulation. During our evaluation, we find that

the distinguishing factor affecting parameter adjustment time is whether the sliders

are relative or absolute.

Relative sliders have an advantage of having a larger target area, not the small

thumb of the slider improves selection time. This means the users avoid one targeting

operation altogether. We show our design for parameter selection could improve over
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this relative slider. The index finger is consistently used for adjustment regardless

of which parameter is selected, making the hand movement more consistent over the

entire operation.
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5. MULTI-TAP SLIDERS FOR DATA ANALYSIS

The previous section describes the approach to the design of the multi-tap slider

with the example domain of photo post-processing. In this section, we consider an

application of the multi-tap sliders to navigate through another non-spatial multi-

dimensional parametric space. As in the case of photgraphic post-processing, there

is a significant portion of data analysis that is performed by humans through visu-

alizations of the data. Since the data itself could come in any form, a spreadsheet, a

database or a sequence of text, spatial manipulation techniques are rarely applicable

for such a context.

5.1 Myspace data set

We consider a scenario in which a researcher is given the task of analyzing data

from the Myspace social network [87]. This example used 300, 000 posts that were

scraped from the web between a period of two years between 2006 and 2008. The

researcher is interested in investigating the possibility of determining cyber bullies

and predators through this data set. The data set consists of the following parameters

that are associated with each post:

∙ AuthorID*

∙ Name*

∙ Age

∙ Gender

∙ City

∙ Region

∙ Country

∙ RelationshipStatus
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∙ HereFor

∙ SexualOrientation

∙ Hometown

∙ Height

∙ BodyType

∙ Ethnicity

∙ Religion

∙ Smoke

∙ Drink

∙ Occupation

∙ Children

∙ Education

∙ Income

*AuthorID and Name are the only two mandatory fields. The rest of the fields

are optional and self reported. We filtered the posts to only consider those whose

authors have reported their age and gender, resulting in a total of 105,000 posts.

We further associate each post with the following series of calculated parameters

∙ all caps words: number of words in a post with all upper case

∙ characters: total number of characters in the post

∙ commas

∙ common words: number of words from a pre-selected list of common words

∙ uncommon words

∙ egocentric pronouns: I, my, mine, me

∙ male words

∙ female words
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∙ ellipses: Usage of . . .

∙ emoticons

∙ nosed emoticons

∙ noseless emoticons

∙ exclamation points

∙ hedge words

∙ hyperlinks

∙ misspelled words

∙ netspeak words: abbreviations commonly used on the internet chat (eg: lol for

laugh out loud)

∙ non alphabetic words

∙ repeated letter words: (eg: hiii)

∙ sentence case words

∙ slang words

∙ swear words

∙ symbol characters

These new calculated parameters provide a multi-dimensional quantitative space

that is difficult to visualize completely. However, the researcher is primarily in-

terested in looking at correlations between her calculated parameters and the self-

reported age and gender of the author. The researcher has a hunch that perpetrators

of cyber bullying and online predation may be identifiable by certain textual patterns

in their posts.

5.2 Visualization

The size of the data set makes it infeasible for a single person to identify patterns

by looking at a spreadsheet of this data. Taking it one step further, it is also unlikely
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to understand what the patterns are without first navigating through the multi-

dimensional space to understand correlations between the various dimensions. We

use the Tableau Public [51] software to generate the figures in this section, while

the multi-tap slider interacts using the Sikuli API as in Section 4.5. Fig 5.1 shows

the distinct number of authors on the Y-axis and age of authors on the X-axis, split

vertically by gender. From this alone, there isn’t much that can be surmised apart

from the age distribution. All we can see is that a majority of the authors are in

their early twenties, with females only slightly outnumbering male authors.

Figure 5.1: Visualization of the number of authors of Myspace posts in our data set,
classified by age and gender.
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5.2.1 Interaction - data filters

In Fig 5.2, we consider a small subset of our calculated features. The researcher is

curious about the correlation of these parameters, primarily considering the impact

on the distribution of age and gender seen in Fig 5.1. What she cares about is not the

specific values of the individual parameters in Fig 5.2, but what interesting patterns

are discovered in the Age-Gender distribution.

Figure 5.2: On the top right is a subset of calculated parameters derived from a pre-
selected dictionary list. We integrate this subset of parameters with our multi-tap
slider. For legibility, subsequent figures will not show the multi-tap slider.

The sliders allow a quick filtration of the large data set based on specific pa-

rameters. The subset of four parameters seen in the figure are considered the input

parameter space, while the age-gender distribution on the left is the visualized out-

put. As a single slider is moved, the visualization on the right is updated to show
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only those authors that meet the criteria of the parameter sliders. In Fig 5.3 we see

only the authors that meet the criteria of having at a minimum of three misspellings

in their posts.

This configuration is similar to our context of photo-processing, wherein the user

is more interested in a specific visual, and not the literal target of the interaction.

The similarities between Figures 5.2 and 4.13 are clearly visible. We can clearly see

that the visual focus of the interaction is on the graph rather than the specific values

of the slider.

Figure 5.3: The multi-tap slider is used to manipulate the third parameter: Mis-
spelled words, while the visualization on the left changes to reflect the authors with
a minimum of 3 misspelled words in each post. We find that more male authors are
likely to misspell words than their female counterparts.

The researcher finds an interesting correlation in Fig 5.3 by playing with the slid-
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ers. She finds that most misspellings are made by male rather than female authors.

Findings such as these can be attributed to the ease of pursuing hunches. If the

software requires a series of steps to investigate such intuitions about the data set,

the probability of a user taking such steps diminishes exponentially.

With the multi-tap sliders, the physical and cognitive effort of navigating the four

dimensional input space seen in Fig 5.3 is qualitatively lesser than that of the mouse.

The visual and motor targetting of the slider on the right is completely replaced by

the simple act of placing fingers down on the screen. This makes the interaction less

streneous, and hence the user is more likely to experiment with various approaches

or hunches she may have about the data set.

5.3 Pattern finding scenario

In the following three figures, we show correlations between two parameters in

yet another subset. Here we consider the following subset of parameters:

∙ Egocentric pronouns

∙ Female words

∙ Male words

∙ Netspeak words

The figures reveal an interesting narrative. In Fig 5.4 we see that more women

use egocentric pronouns than men. And as expected, Fig 5.5 shows that female words

are used more frequently by the female gender. However, when it comes to using

technology savvy net-speak words, we see in Fig 5.6 that women are more likely

to adopt the new language than men in their late twenties. Such an exploration

of patterns was made possible by the fluid ability to navigate through a complex
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multi-dimensional space with a pre-defined, context-agnostic interaction technique:

the multi-tap sliders.

Figure 5.4: Adjusting the first slider on the right shows the distribution of authors
that use at least a few ego centric words. As we move the slider to the right, we
find that more woman use such words than men do. This is a dynamic process, the
revelation isn’t evident at a single value. During the process of adjustment we see
the pattern emerge.
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Figure 5.5: The third slider reveals the expected distribution that shows that female
authors are more likely to use female words.
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Figure 5.6: On increasing the fourth slider, we find an interesting result. Women in
their twenties are more likely than their male counterparts to use technology savvy
jargon in their posts.

From this scenario of data analysis, we see the benefit of using the multi-tap

sliders beyond the domain of photographic post-processing. Non-spatial parameter

spaces are prevalent in a large number of domains, it may take a non-trivial amount

of effort to transform the space into something that can easily integrate with the

multi-tap slider.

The choice of what parameters to select is up to the domain expert, and is

crucial to the successful analysis and discovery of patterns within the data set. In

the scenario above, we simplified the output visualization to only three dimensions:

number of authors, age and gender. We could have instead opted to visualize more

details. Fig 5.7 shows an example that reveals a visualization showing 10 different

parameters. This figure increases the complexity and thus the cognitive load on the
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user. There may be instances that such visualizations be unavoidable, however, care

should be taken on over-burdening the user with information on screen.

Figure 5.7: A complex visualization showing the gender and age distribution of au-
thors on several calculated parameters. Navigating a subset of parameters with such
a visualization is more time consuming, as every adjustment of the input parameter
would require a conscious awareness of what has changed in this visualization.
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6. EXPLORING THE DESIGN SPACE OF MULTI-TAP SLIDERS

In this section, we present an exploration of the design space of multi-tap sliders.

As a novel metaphor, the multi-tap sliders assign specific operations to four fingers of

the hand. The index finger performs adjustment. The ring, middle and little fingers

together are responsible for selection of the parameter. Here we describe different

parameter types. The fundamental operation and experience of the slider remains

the same, while the spaces that are being manipulated can vary.

6.1 Multi-scale navigation

The three fingers (middle, ring and little) function as mode switches. For use in

multi-scale navigation, we also overload the metaphor with increasing levels of preci-

sion. As more fingers make contact with the screen, the more precise the adjustment.

The semantics of parameter selection is transformed to adjusting the granularity of

a single adjustment. In the context of video scrolling, the timeline is used to quickly

select a time in the video. However, the precision of the selection is limited by the

width of the scroll bar. The smallest movement possible is a pixel. Consider a full-

length feature film of 2 hours (120 minutes), a single pixel of movement on a 600

pixel wide timeline would map to 12 seconds. For a touch screen, moving the finger

by a single pixel is below the threshold of what is practically possible.

With our widget, we would map the first parameter to a 5% move in the timeline

(6 minutes from our example), while the second parameter would map to a minute,

third to 1 second move in the timeline, and finally the fourth parameter would map

to a single frame movement. This would allow an ability to pick a specific frame in

a full length feature film with ease.

While navigating a dense tree of information like the phylogenic tree that repre-
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sents the ancestry of all known species, we could toggle which level of the tree we are

scrolling through. This would make the act of scrolling more functional, separating it

from targeting extraneous elements for switching levels. Our technique can be easily

applied to dates and times.

6.1.1 Range manipulation

A range consists of a minimum and a maximum value. Interacting with a range

can have three operations: altering the minimum, the maximum or for convenience

move the entire range at a time. We map parameters to each of the operations. The

widget can then perform increments or reductions in either of the parameters simply

by moving the index finger, and placing the other fingers on the screen.

The thumb, with the index finger, have the most degrees of freedom. Either finger

can be easily moved independently without causing any involuntary movements in

other fingers. The comfortable range of movement of the thumb is in two directions:

moving into and away from the palm, and an up-down motion. When using a touch

screen, this becomes a flick towards the palm, away from it and raising the thumb

off the screen. Mallik [74] demonstrates the use of the thumb, moving within the

comfortable range of motion to perform the selection of menu items.

6.2 Thumb interaction

The thumb’s natural range of movement is fairly limited while the hand is over

a touch screen. A tiny (≈ 20∘) vertical movement determines if the thumb makes

contact with the screen or not. This movement is well within the comfort zone of

a human hand. In addition, a short range of horizontal movement (≈ 15∘ on either

side of the natural position) is also within the comfort zone. We show how these

movements can be integrated into the use of the multi-tap slider.
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Figure 6.1: Placing the thumb onto the screen brings up the parameter menu.
Scrolling with the index finger selects a set, lifting the thumb enters the parame-
terization menu.

6.2.1 Parameter set menu

In our design we use the thumb for two distinct interactions. For the first, touch-

ing and holding down onto the screen raising the parameter menu. This is a distinct

mode, that the user maintains while the thumb makes contact with the screen. Fig-

ure 6.1 show the parameter menu. When this menu is displayed, the index finger

performs the selection. Raising the finger selects the set of parameters.

6.2.2 Undo/redo

The goal of this research is to encourage exploration of multi-dimensional param-

eter spaces. Fine grained adjustment in the dimension of each parameter is carefully

performed, while the visual focus is maintained on the target. Figure 6.2 shows how
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small movements of the thumb are mapped to undo and redo operations. The precise

position of the thumb region can be customized for each user. The operation can still

be performed without looking at the interface. The flicks are an easy movement to

perform. The inward undo movement takes less effort than the outward redo move-

ment, as found by a study mapping the operation to back and forth in web Browsers

[86].

Figure 6.2: Using the thumb for undo and redo operations

6.2.3 Integrated tool parameterization

Tools in design applications are loaded with a variety of customizable parameters.

The most basic brush tool in Adobe Photoshop has the following parameters: brush

type, size, hardness, opacity and flow. In the toolbox, the other tools (blur, sharpen,

smudge, burn, dodge and sponge to name a few) have a similar set of parameters.

During regular use of the tool, designers experiment with different parameter values.

This requires frequent back and forth trips from the canvas to the parameter toolbar,
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placed on the top of the screen by default. Even when the toolbar is placed closer

to the canvas, it requires targeting of small items. The Springboard technique [42]

addresses the problem of selection of the tool, we presents a solution for customizing

parameters of each tool.

Figure 6.3: The finger pad follows the first touch point, which is shown here operating
the brush tool. The dashed circle is the transparent finger pad region highlighted for
visibility. Placing the middle finger on the screen raises the widget, allowing selection
and adjustment of the stroke weight. Raising fingers from the finger pad makes the
widget invisible, while the index finger continues operating the brush.

We modify our interaction technique to make the index finger operate as a tool

brush, instead of the adjustment (see Figure 6.3). However, we make the finger pad

follow the index finger as a transparent tracking toolbar (like the ToolGlass interface

by Bier et al. [13]). The widget itself is not displayed. When required, placing a

finger onto the finger pad will raise our widget. Now, the parameters of the tool

can be selected and adjusted. Raising all fingers from the finger pad will make the

widget disappear, reverting the index finger to operate as a tool again. This provides

an in-context access to the tool parameters.
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6.2.4 Bimanual control

We recognize the limitations of the slider to allow for only four parameters. There

are operations that consist of more than four integral parameters, such as the split

toning operation, which presents upwards of 8 different hues that could be altered.

All eight of these hues are integral to the operation, grouping them in two groups

of four breaks the mental model of the user. Switching between any of these eight

parameters should be as simple as switching between the four parameters that our

technique currently supports.

In cases that require more than four parameters, we use a secondary finger pad to

be used with the non-dominant hand. The number of fingers placed on this secondary

pad selects another four parameters within the operation, supporting a total of 16

parameters for a single integral operation. To select and adjust the sixth parameter,

the user performs the following:

1. Using the non-dominant hand, place a finger on the secondary finger pad.

2. Using the dominant hand with the regular widget, place one finger on the

primary finger pad.

3. The index finger of the primary hand performs the adjustment.

However, it should be noted that juggling all sixteen parameters for a single

operation would be overwhelming for the user. Care must be taken when deciding

how many parameters must be grouped into an operation, and when possible group

other parameters into another operation.

6.3 Alternate input techniques

The input technique we developed this technique for were large (> 15 inches)

touch screens. The industry has been slower to adopt this form factor, due to the

88



lack of a strong use case that shows the strength of using touch for more complex

scenarios. The most common form factors with the capability of sensing multiple

touch contacts are, in order of prevalence: smartphones (3.5 − 5 inches), tablets /

Apple iPads[47] (7 − 11 inches) and a few laptops (10 − 15 inches).

The multi-tap sliders can function as they are on smart phones. their size is

sufficient to contain four fingers, including the range of movement for the index

finger. By having interaction on the phones, with the visual on a monitor, users can

navigate parameter spaces as they would on a large touch screen. Since the multi-tap

sliders are designed to be an indirect interaction, the visual disconnect between the

movement of the hand on the phone, and the changing visual on the screen does not

take away much from the experience. It is possible to have additional feedback on

the monitor to bridge the gap, so as to not require looking down at the phone for the

feedback. For the next range of touch input devices, tablets/laptops (7 − 15 inches)

the problem of occlusion becomes more important. With limited screen real estate,

devoting a large percentage to interaction would reduce the available space for the

rest of the application.

Another prevalent multi-touch input device are trackpads, most notably the ones

on the Apple MacBooks [48]. These are only input devices, with no visual display.

Traditionally, the trackpads are used for single directional swipes for scrolling or

switching between applications. More investigation is necessary to determine if de-

tailed movements of the fingers can be tracked so as to adapt the multi-tap sliders.

It is possible for the interaction to be completely removed from the visual. If proper

feedback is provided, the user could use only the trackpad to perform the selection

and adjustment of parameters.
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6.4 Section summary

The motivation of the design for multi-tap sliders was to provide fluid access to

non-spatial parameter spaces. The focus of the interaction was on continuous nu-

merical parameters. Based on the success of multi-tap slider over traditional sliders,

we began the exploration of the space of parameter types that would benefit from

the merged interaction of selection and adjustment.

The emphasis here is on making complex spaces accessible. By creating a new

standard for interacting with multi-dimensional non-spatial parameter spaces, we in-

crease the scope of the user to re-use the skill of using the multi-tap slider. Using this

technique allows researchers and software developers of various domains to expose

more functionality to the user. Functionality that was previously withheld to reduce

the complexity of the application.
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7. MULTITOUCH GESTURE TRAINING AND RECOGNITION1

The typical gestures used in spatial manipulation are designed during the devel-

opment of the application. The recognition of such gestures are programmed into

the code of the application at compile time. The operation is tightly integrated into

the visual feedback. The operation begins when fingers make contact with a visual

target. A quick feedback loop to makes the experience of direct spatial manipulation

more natural. For this research, we aim to expand the scope of gestures beyond

spatial manipulation.

Single touch gestures are similar to pen strokes. The received input for the sys-

tem in both cases is a sequence of point coordinates. There is a rich history of stroke

recognition algorithms for stylus based gestural interaction [41, 17, 110]. Simulta-

neously tracking multiple points of contact present a different set of challenges. We

bring up issues with recognition of multiple simultaneous finger interaction.

We begin by first attempting to expand the scope of the gestures used for multi-

touch interaction. To do so, our approach first develops a recognition technique for

arbitrarily designed sets of gestures. The goal of this stage of research is to develop

a library that can reliably learn new gestures by example [99], and subsequently be

trivially used by an application.

At the onset of this approach, we were fabricating a multi-touch input device that

would be capable of sensing pressure, width, height and even shape of each finger

input. A prototype were constructed that could successfully sense these features

from the human hand. Figure 7.1 shows the operation of the sensor, based on the

1Part of the data reported in this chapter is reprinted with permission from “Comparing multi-
touch interaction techniques for manipulation of an abstract parameter space” by Sashikanth Dama-
raju, and Andruid Kerne, Extended Abstracts of the IEEE Workshop on Tabletops and Interactive
Serfaces, 1-3, c○2011 IEEE.
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Figure 7.1: The components of a infra-red vision based multi-touch sensing system.

concept of frustrated total internal reflection [38]. Infra-red light projected into the

frame of an acrylic screen is dispersed by a finger only when contact is made. This

dispersed light is captured by a camera, and then processed into a set of features: X,

Y coordinates of each point of contact, shape, width, height and pressure of contact.

A recognition technique we select should be able to scale to more than the ba-

sic X,Y coordinates of each finger. With these touch features, we aim to capture

aesthetics of the touch. Schiphorst [101] defines a vocabulary of touch-efforts (tap,

pat, hold, stroke, glide, jab, knock, slap, press, rub and knead) that describe the

qualitative experience in a computationally definable form.

A software pipeline (Figure 7.2) is constructed, consisting of a) the image pro-

cessing library which is responsible for the feature extraction and b) the recognition

system that uses the extracted features as the basis for gesture recognition. An image

processing stage, using the open source toolkit CCV [90], is first used to process the

raw camera input with a series of filters that clean up the live video signal. Next,

points of contact are identified and tracked, resulting in extraction of a feature set

for each video frame.

92



Feature data is passed to the recognition system using UDP via the Tuio tangi-

ble interface I/O protocol [58], which is layered on the Open Sound Control proto-

col [122]. To enable our application to be cross-platform compatible we utilize the

Jahmm [55] toolkit to implement hidden Markov models.

Figure 7.2: An architectural overview of the mGestr system, showing the stages of
learning and recognizing a gesture.

7.1 mGestr

We describe our multi-touch gesture training and recognition (mGestr) system

that is designed to learn an arbitrary set of new gestures by example. Computation-

ally, we define a gesture as a human action that begins with placing one or more

fingers on the interactive surface, and ends when no fingers remain on the surface.

A sequence of frames from a camera is captured to record each gesture. For each

frame of the sequence, a feature set is derived by an open source video processing
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and feature acquisition toolkit, and used to recognize the gesture through a pipeline

of processing stages. Figure 7.2 shows the stages involved in the learning and recog-

nition pipeline.

7.1.1 Feature preprocessing

The feature preprocessing stage normalizes the data in the X, Y feature space

to allow the gesture to be recognized irrespective of where it was performed on the

screen. We center the data by first calculating the mean point of contacts on the

first frame of a gesture. The origin of the coordinate system for each point of contact

is translated from the top left of the screen to this new mean. The samples are also

scaled to a constant size for improved recognition.

7.1.1.1 Ordering fingers

The ordering of the fingers in the feature set provided by video processing is

determined by the temporal order of placement of the fingers on the surface in the

first frame of a gesture. Placing the index finger first followed by the thumb would

produce a feature stream with each frame consisting of an array of contacts. The

first element in the array represents the index finger’s features and the second that of

the thumb. In case the thumb is place first on the screen and then the index finger,

the positions of the features in the array are reversed.

This ordering is possibly inconsistent across different samples of the same gesture.

For portability and wide spread use, we constrain ourselves to hardware that does

not allow for a disambiguation of fingers. Since we have no information of the posture

of fingers or their positioning before hand, an inconsistent ordering is a problem for

the learning and recognition system.

Unlike pen and mouse interaction, multiple points of contact are simultaneously

received by the system. Since this features of this are not recognized using visual
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Figure 7.3: The order of placement of fingers creates noise in the recognition system.
(a) The same gesture performed twice, each time a different order in which the fingers
were placed on screen. (b) Two different three fingered gestures, one which requires
movement of the index finger (top) and one in which the thumb is moved (bottom).

features, the raw data must be consistent across performances of the gesture. For

an arbitrary gesture, it is not trivial to process the multi-finger stream of input

data without first ensuring that they are in the same order that is expected of

each gesture. Figure 7.3 shows how the order of placement of fingers could lead to

erroneous recognition. We do not have any prior knowledge to the positioning of

fingers for an arbitrary new gesture.

The spatial arrangement is identified for the first frame of each gesture sample

during the learning stage. Given a set of samples for a gesture, we first calculate the

distances between the fingers for the three heuristics. We pick the heuristic that yields

the highest mean distance. Figure 7.4 shows the operation of three different heuristics

used to order fingers. This is then stored along with the gesture model. Each frame of

each sample of this gesture are then re-ordered accordingly. This results in a sample
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Figure 7.4: Three simple heuristics to consistently order a range of different gestures.

set of a gesture in which all samples have consistently labeled fingers, regardless of

the order of finger placement on the screen. The selected heuristic is a property of

the gesture, and is used later on in the recognition stages.

7.1.2 Hidden Markov models

Hidden Markov models (HMMs) are state machines, that receive input, and pro-

duce a state change along with an output. They can be used to efficiently recognize

multidimensional data streams. They have been shown to be very useful for time-

series data, which is what we have in our domain of multi-touch gestures. In theory,

these characteristics of HMMs allow scaling from simple X, Y coordinates to more

advanced features that we will extract from our new multi-touch sensing hardware.

We present a summarized description of the structure and algorithms to operate a

hidden Markov model below. For a more complete description refer to Rabiner [95].
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An HMM is formally defined by the following:

∙ The number of states in the model 𝑁 .

∙ A set of distinct observation symbols 𝑉 = {𝑣1, 𝑣2 . . . 𝑣𝑀}, denoted as 𝑀 .

∙ The state transition probability distribution 𝐴 = {𝑎𝑖𝑗} where 𝑎𝑖𝑗 = 𝑃 [𝑞𝑡+1 =

𝑆𝑗|𝑞𝑡 = 𝑆𝑖], 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . This is a matrix of size 𝑁 × 𝑁 , which contains the

probability 𝑃 of transition from one state 𝑆𝑖 at time 𝑡 to another state 𝑆𝑗 at

the next time step 𝑡 + 1, where the subscripts 𝑖 and 𝑗 lie between 1 and 𝑁 .

∙ The observation symbol probability distribution in state j, 𝐵 = 𝑏𝑗(𝑘), where

𝑏𝑗(𝑘) = 𝑃 [𝑣𝑘at𝑡|𝑞𝑡 = 𝑆𝑗], 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑀 .

∙ The initial state distribution 𝜋𝑖 = 𝑃 [𝑞1 = 𝑆𝑖], 1 ≤ 𝑖 ≤ 𝑁 .

For compact notation, an HMM is denoted as 𝜆 = (𝐴,𝐵, 𝜋). To use an HMM in

a real-world application, there are three main problems that need to be solved. We

state the problem as a question, and present the solution below:

1. Training a model: Given a sequence of observations 𝑂, each representing a

gesture sample performed by a user, how can the parameters of the model (A,

B and ) be obtained such that the probability 𝑃 [𝑂|𝜆] is maximized? Although

there is no known closed-form solution for finding the parameters given a finite

observation sequence, we use the Baum-Welch algorithm [8] to iteratively find

the local maximum by using an initial estimate of 𝜆. To improve the efficiency

of finding this local maximum, we use the K-means algorithm to provide a

better estimate of the model parameters 𝐴,𝐵 and 𝜋. These two algorithms

together are used to train a model to respond with the maximum probability

for a particular gesture.
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2. Evaluation: Given an observation sequence 𝑂 = 𝑂1, 𝑂2, . . . , 𝑂𝑇 of multi-

touch features, where 𝑂𝑖 contains the feature values extracted from a frame of

raw camera input and a model 𝜆, how do we compute the probability 𝑃 (𝑂|𝜆)

of the sequence from the model efficiently? This problem is required to esti-

mate the probability of an observation sequence for a particular model. In our

system, this probability decides the recognition of the gesture. The forward-

backward search [95] performs an efficient computation for this problem.

3. Optimal State Sequence: Given an observation 𝑂 and known HMM 𝜆, how

do we choose a sequence of states 𝑄 = 𝑄1, 𝑄2 . . . 𝑄𝑇 within the model that

best fits the observation sequence? The Viterbi algorithm, based on dynamic

programming [32], obtains the single best sequence Q by maximizing the cri-

teria 𝑃 [𝑄|𝑂, 𝜆]. This helps us not only to find the optimal state sequence, but

also to understand more about the structure of the model. We can also obtain

statistics on each individual state, such as how often it has been visited, or

which states are its successors and predecessors.

We parameterize the HMMs for multitouch gesture recognition. The number of

points of contact from human hand(s) on the screen varies, so does the dimensionality

of the feature set extracted through image processing. For the first iteration of this

research we use only the coordinates of the points of contact, the dimensionality

of the data is twice the number of fingers used to perform the gesture. To model

this multi-dimensional data, we use a continuous observation probability distribution

for 𝐵. At each state of the model 𝑆𝑖, 𝑏𝑖(𝑘) is a multivariate Gaussian distribution

that represents a multidimensional vector of values corresponding to the feature set

of multitouch inputs. Each gesture is a time-based sequence of multi-dimensional

points.
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We first start with the training stage to create a set of HMMs for each gesture

that we intend to recognize, using the method outlined in (1) above. The initial

estimates for the models are obtained using the K-Means algorithm [57] as described

below. Once an HMM is trained for a particular gesture, we present each input

gesture as sequence of observations, and using (2), we form a probability estimate

for each. For an input gesture, we then have a numerical value that represents how

well it matches each of the trained gestures models. The gesture is recognized as the

one whose trained HMM returned the maximum probability.

7.1.3 Learning stage

During the learning phase, after the observations have been collected and prepro-

cessed, they are passed to the K-means clustering algorithm. The result of K-means

clustering is an initial estimate of the Hidden Markov Model parameters. The esti-

mate is, in turn, passed to the Baum-Welch algorithm, which tunes these parameters

to return a high probability for assigning the given training sample sequences to a

particular multitouch gesture from the vocabulary. Only gestures for which the

model is trained for will return a high probability. Samples of other gestures will

return lower probabilities, allowing us to use the HMMs as recognizers.

7.1.3.1 K-Means clustering algorithm

We apply the K-means clustering algorithm [57] to provide an initial estimate of

the model parameters. This initial estimate is crucial in increasing the efficiency of

the entire learning process. Initially, K-means begins with a random estimate of the

HMM model parameters (𝐴,𝐵, 𝜋). For continuous observation densities, a segmental

K-means procedure is used to cluster the observation vectors within each state into

a set of clusters using a Euclidean measure, in which each cluster represents one of

the M mixtures of the observation probability distribution. From the clustering, an
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updated set of model parameters (𝐴,𝐵, 𝜋) is derived.

The updated model obtained from these parameters is compared to the previous

model. If the model distance between the current and the previous state exceeds a

threshold, then the old model is replaced by the new one, and the loop is repeated.

If the distance score falls below the threshold, then model convergence is assumed

and the final model parameters are saved. This algorithm is used to obtain a better

than random initial estimate of the observation probability density parameter B.

This initial estimate is required for the Baum-Welch Algorithm to efficiently train

the HMM for the gesture segment.

7.1.3.2 Baum-Welch Algorithm

Given the good initial estimate generated by K-means clustering algorithm, we

pass its output to the Baum-Welch Algorithm [8]. The Baum-Welch Algorithm uses

the training set to tune the parameters (A, B, 𝜋) to obtain an optimal HMM in an

iterative fashion by converging towards the local maximum, to return the highest

probability gesture result for the feature observation sequence. This algorithm is an

implementation of the Expectation-Maximization algorithm, where the underlying

state sequence is the missing data.

The output of this algorithm is a hidden Markov model whose parameters have

been optimized to return a high probability given another sample of the same ges-

ture as input. This model is the basis for our gesture recognition system. HMMs

that are trained on other gestures will return a far lower probability. By compar-

ing these probabilities for a given input sample, we can recognize it as the gesture

corresponding to the model that returns the highest probability.
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7.1.3.3 State Size

The optimal HMM depends on the number of states in the model, which varies

for each gesture; a simple stroke may require only two states to efficiently model

it, while a complex, multi-finger gesture may require 10 or more states. To enable

hands-free online learning, we train HMMs for all state sizes starting from 2 until

15. By using the training samples, we evaluate the probability of all the samples for

the HMMs of each size. Each sample will select an optimal state size. We select the

best state size as that which has been selected by most of the samples. This optimal

HMM is then stored in the trained HMM set for sample testing.

7.1.4 Recognition stage

Each gesture has a corresponding trained HMM saved from the previous stage.

When the recognition system is live, the incoming samples are sent as input to each

of the trained HMMs. The probability of matching with each HMM is calculated

using the forward-backward algorithm described in Section 7.1.37.1.3.2. The output

probabilities from each HMM are compared. The HMM that yields the maximum

probability is identified, and the input sample is recognized as the corresponding

gesture associated with that HMM.

7.2 Evaluation

To evaluate this system, we first develop a set of new multi-touch gestures as

seen in Figure 7.5. To build a training set, we recruited participants to perform

these gestures. Ten users were recruited in total. The gesture samples chart (Figure

7.5) was presented to the participant. For each gesture, the experimenter performed

a demonstration of the gesture. The participant then performed 20 samples of each

gesture. In total, we collected 20 samples, for 20 gestures with 10 users giving us 4000
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gesture samples across users. This set is then used to perform an off-line evaluation

of the system. We present results from this evaluation.

7.2.1 Training set

Our goal is to build a practical system that uses natural movements of the hand

to perform complex actions within an application. To start, we developed a vocab-

ulary of 20 different gestures for testing the current learning and recognition system

(Figure 7.5). The gestures were formed to exemplify subtle differences in initial po-

sitions of the fingers and directions of movement. They are grouped by the number

of fingers used to perform each one. Two-finger gestures are only compared against

other two finger gestures, the same for all other gestures.

Twenty samples of each gesture were collected from each of 10 users, 9 male and

1 female, all of whom are right-handed. We expect that the ability to recognize a

vocabulary of gestures with subtle variations, such as the direction of movement of

the thumb in gestures with three fingers, will be critical for developing expressive

applications.

7.2.2 Results

To validate the robustness of the recognition system, 20 runs of training and test-

ing were performed. Each run starts with a random selection of 20 training samples

for each gesture from the entire set from all 10 users. These training samples are

used to train HMMs for each gesture. The entire collection of samples is then tested

against these trained models. The recognition labels are then verified to yield the

gesture recognition accuracy as a percentage. Figure 6 shows the recognition accu-

racy for sets of gestures. The recognition rates for the gestures using two, three, four

and five fingers are 97.3%, 95.7%, 96.1% and 91.2%, for an average gesture recog-

nition rate of 95.06%, and the result is statistically significant (𝑝 < .0001). These
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Figure 7.5: A sample gesture set, selected to test the performance of the mGestr
system.

results show that our technique recognizes gestures within a reasonable accuracy

for practical use. As it can be trained using samples from more than one user, the

trained HMM can also be stored within an application or shared across users to avoid

re-training.

We investigated the systems suitability for user-independent gesture recognition.

A leave-one-user-out cross validation was performed with the collected samples by

excluding one users samples from the random selection of 20 training samples during

the learning stage. The testing unit then performed recognition of only this users

samples. The recognition rates averaged over 20 runs for two, three, four and five

fingers are 88.12%, 86.63%, 92.83%, 75.83% with an average recognition rate of

85.74% and the result was statistically significant (𝑝 < .0001). This shows that the
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recognition system is robust in supporting the recognition of gestures performed by

a user not involved in the learning process.

Figure 7.6: The results from the evaluation. Results are grouped by number of
fingers, each group contained five gestures.

7.3 GRaaS: gesture recognition as a service

We describe components of a recognition system operating as a application-

independent service. Communication to this service is achieved via OSC messages

[122]. By encapsulating the recognition as a stand-alone service, it can be used by

an interactive application on any platform. A graphical interface is designed with

the following functionality:

1. Saving new gesture samples

2. Browsing through a repository of previous samples

3. Selecting a set of samples to train a new gesture model
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7.3.1 Graphical interface

Figure 7.7: The graphical interface for the gesture repository.

A graphical interface (see Figure 7.7) shows repository of saved samples on top,

and an example gesture set on the bottom. The samples are organized in two top-

level hierarchies: by user and by gesture. This dual categorization offers a gesture

designer two options of navigating the repository. The interface also provides the

ability to save new gestures. To enter new gestures, a gesture designer first states

the number of fingers used in the gesture, and an id for the user performing them.
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As the gesture is performed, the interface shows the points tracked. In case of the

gesture receiving more or less fingers than required, the interface reports an error.

7.3.2 Communication interface

The gesture training and recognition system can be fully operated by sending

OSC messages. We choose this messaging protocol since it has a very low require-

ment to use in an application, and is designed for a low-latency scenario such as

ours. The following list of messages details the supported functionality. Message

use /gestr/action as their OSC address pattern [122]. The first string argu-

ment is the action. The responses for each message is also detailed here, with their

arguments.

∙ save The save message uses the second argument to serialize the active gesture

set. Saved binary files have a .gestr extension.

Response: saved filepath saved to

∙ load The second argument is used the load a gesture set from a .gestr file.

Response: loaded filepath loaded from

∙ clear Clears any active gesture set. No gestures will be recognized after a

clear message.

Response: cleared

∙ parameterize The parameterize message (see Parameterize) allows addition

of parameters to any previously trained gesture. The arguments for this mes-

sage are (in order) i) the name of the gesture to parameterize ii) the name of

the new parameter and iii) the parameter specification string.

Response: parameterized "description of parameterization"
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∙ train The train message will train a new gesture with the collected gesture

samples.

Response: trained gesture name

∙ recognize The recognize message uses the active gesture set to recognize the

last sample collected.

Response: recognized gesture name X Y

For save and load, the second argument, the file path, can be either relative

to the executable, or absolute.

In addition to the /gestr/actionmessages, MGestr uses the /gestr/sample

address pattern to mark the start and end of a gesture sample. The first argument

for this message is one of the two strings: ’start’ and ’end’. This control flow is used

by the graphical user interface to pass saved gesture samples to MGestr.

Parameter updates are sent via a /gestr/action message with first argument

as parameter update followed by the list of arguments associated with the pa-

rameter:

/gestr/action parameter update parameter name parameter value 1

parameter value 2

7.3.3 Segmentation and recognition

The MGestr system reads an multitouch input stream to identify gesture segments

and subsequently recognize them using the currently active gesture set. A gesture

segment is a sequence of frames of a fixed number of fingers moving across the

multi-touch surface. The start of a gesture is made by a textttfinger down event, by

placing a finger on screen. If more fingers are placed on screen, the previous frames

are discarded. Once the finger(s) begin moving, the frames are stored as a gesture

segment. To identify the end of gestures, two delimiters are used.
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1. When a finger is lifted off the surface, the gesture segment is marked as ended.

2. Check whether all the fingers have stopped moving (within a small thresh-

old). If all fingers have stopped moving, the gesture segment is ended. Any

subsequent movement is considered a new gesture segment.

To filter noisy input, a minimum number of frames are required to be collected

before a gesture segment is recognized. The gesture segment is formed, it is tested

against the active gesture set. The result of the recognition is sent via OSC messages

on the output port.

7.3.4 Parameterization

We add functionality to a recognized gesture by associating certain parameters

to the gesture. Parameters values are derived directly or calculated from the stream

of features provided by the input device. On recognizing a gesture, if the gesture is

associated with parameters, a parameter update messages is sent on the output

port for every frame. The parameterization stage ends only when all fingers are raised

off the surface. Multiple parameters can be associated with a gesture. Gestures can

be parameterized by providing a parameterize message (see Communication). A

parameter can be defined by using one of the types provided. Each parameter type

can be declared by a string. The following list shows the list of currently supported

parameter types, along with their required information.

∙ fing x fing-index : the x coordinate of the finger identified by the index

is used as the parameter value.

∙ fing y fing-index : the y coordinate of the finger identified by the index

is used as the parameter value.
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∙ fing dist fing-index-1 fing-index-2 : A parameter is derived by

calculating the distance between two fingers, identified by their respective in-

deces.

∙ all mean : The mean of all fingers on screen.

During parameterization, if a finger is raised, parameterization is paused. Up-

dates of the parameters are not sent while paused. Once the finger is placed back on

the surface, the parameterization resumes. This allows the user to comfortably raise

and lower a finger during parameterization without having to repeat the gesture.

7.3.4.1 Example

Consider the parameterization of a three finger gesture (let’s call it GestureA),

that uses the thumb, index and middle fingers. The following messages add 3 pa-

rameters to this gesture. In this case the indices of the thumb, index and middle

fingers are 0, 1 and 2 respectively.

/gestr/action "parameterize" "GestureA" "Param1" "fing dist

0 2" This adds a parameter whose value is the distance between the thumb and

middle finger. Moving the thumb into the palm would yield smaller values, and

extending the thumb away from the palm would yield higher parameter values.

/gestr/action "parameterize" "GestureA" "Param2" "fing y 1"

The y coordinate of the index finger is used as the second parameter.

7.4 Design principles

We need to develop further methods for delimiting gestures, to bring these meth-

ods into real world applications. We do not want users to have to regularly remove

their hands from the surface, as is required for gesture delimiting in the present

implementation.
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One lesson learned during the design of our gesture vocabulary is that it is easy

to inadvertently design gestures that turn out to be similar, confusing the recognizer.

The need for clear recognition may pose constraints on the gesture design (choreog-

raphy) process. Thus, an iterative design process is called for, in which gestures are

defined in relationship to actions, and then prototyped in the recognition system.

Both the gesture set and the recognition system will need to be tuned to optimize

performance, and the participant experience. We can aid designers with a similarity

The system we developed always returns a recognized gesture, based on the set

of gestures that are currently considered. We need to enforce a rejection scheme

that will discard samples that do not achieve an acceptable match to the gestures

considered. This can be done by placing a lower threshold on the value returned by

the HMMs for recognized gestures.

Another imperative part of the iterative design process is to take human partic-

ipants into account. We have found that people vary in their manual dexterity, as

manifested in their affinity for performing particular gestures. Personality can be a

factor in which gestures will feel natural to an individual. The design implication

here is that gestural advanced visual interfaces must support more than one set of

mappings. Participants must be free to choose the one that best suits them, and,

further, to customize to create their own personal gesture set and associated.

7.5 Section summary

We have developed a robust user-independent method for learning and recogniz-

ing multi-touch gestures using Hidden Markov Models. The image processing library

extracts the screen co-ordinates for each finger in contact with the screen. Gesture

segments are temporally delimited by periods of contact by one or more fingers. Fea-

ture data for a gesture segment is processed by the recognition pipeline, terminating
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with the HMM. The data validates the method.

We achieved a recognition rate of 95.06% overall across gestures using samples

from all users, while a leave one out cross validation on users produced a recognition

rate of 85.74%. Thus, personalized training data is not required. Further, we have

identified a crucial problem for robust, user-independent recognition: consistent or-

dering of the feature values for the fingers of the human hand during the course of a

single gesture, and presented an initial solution to this problem.

Future work will develop intuitive mappings between gestures and actions. We

hypothesize that natural mappings can help users overcome the experience of com-

mand overload, in which they feel overwhelmed by the vast set of possible operations,

and the menu and icon systems that deliver them. The more varied and complex the

set of operations in a system, the more the user must remember and negotiate.

We need to develop human-centered systems to enable motivated users to create

their own gesture/mappings, and social systems for sharing the customizations.
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8. CONCLUSION

We have presented two main products as a contribution to multi-touch computing.

The first is a technique to learn by example and subsequently recognize arbitrary ges-

tures in real-time. The second is a new interaction technique that uses comfortable,

relaxed movements of the human hand to both select and adjust multiple numerical

parameters.

We shift our focus to the domain of non-spatial parameter spaces, as a problem

in navigation. We introduce this space as an important new domain for interaction

research. An operation that requires changing multiple parameters would benefit

from a fluid technique that connects adjustment with selection. Our interaction

studies mappings of movements of the hand with changes in the parameter. Our

initial study on techniques for color selection in Section 3 finds that participants were

quick to learn new mappings to pick from hue, saturation and value and subsequently

specify a value for each dimension.

In Section 4, we leverage this skill of learning new mappings to develop a new

technique. The goal was to develop a generic technique that can be applied to a

number of different parameter spaces. We approach this by first analyzing the phys-

iology of the human hand, specifically the range of comfortable movements that can

be detected by a multi-touch screen. The index finger can be moved precisely within

a short range of ≈ 2 inches, with little effort. Our technique enables exploration

of multi-dimensional parametric spaces with the available dexterity of the human

hand. An evaluation of our new interaction technique shows an improvement over

traditional sliders.

Section 5 describes the application of the MultiTap sliders in another non-spatial
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context. The data set is a series of textual posts on the social networking site Myspace

[87], tagged with metadata about the author. We describe a scenario in which a

researcher is tasked to discover patterns in the data. She begins by calculating

quantitative parameters (or features) of each post. These are then visualized. The

MultiTap slider help her to navigate through the data set by filtering it through

smaller subset of parameter values.

The research on multi-tap sliders demonstrates a design approach that satisfies

a number of constraints: (1) interaction should not require the participant to target

specific visual elements that distract her from the focus of the operation (2) the

interaction must consist only of movements within the comfortable range of motion of

the hand, and (3) the movement required to transition from selecting a parameter to

adjusting a parameter must be as fluid as possible. The design approach emphasizes

the interaction before the visual. The visual is present for feedback when necessary.

We perform an exploration of the design space of multi-tap sliders. We add to

the functionality of the sliders using the thumb, and the non-dominant hand. The

wide applicability of the sliders make this research a strong contribution to the field

of human computer interaction.

mGestr is presented in Section 7 as a platform for building new multi-touch

gestural interfaces. Issues of pre-processing multi-touch input for consistency are

raised and solutions presented. To evaluate the recognition system, we develop a

sample set that spans a range of movements. Evaluation shows a success rate of

95.06%. We develop a service with a network based communication system to allow

easy integration with interactive software.
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