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ABSTRACT 
 

  

 The increasing concentration of CO2 has been linked to global warming and 

changes in climate. Geologic sequestration of CO2 in deep saline aquifers is a proposed 

greenhouse gas mitigation technology with potential to significantly reduce atmospheric 

emissions of CO2. Feasibility assessments of proposed sequestration sites require 

realistic and computationally efficient models to simulate the subsurface pressure 

response and monitor the injection process, and quantify the risks of leakage if there is 

any. This study investigates the possibility of obtaining closed form expressions for 

spatial distribution of CO2 injected in brine aquifers and gas reservoirs. 

   

 Four new semi-analytical solutions for CO2 injection in brine aquifers and gas 

reservoirs are derived in this dissertation. Both infinite and closed domains are 

considered in the study. The first solution is an analysis of CO2 injection into an initially 

brine-filled infinite aquifer, exploiting self–similarity and matched asymptotic 

expansion. The second is an expanding to the first solution to account for CO2 injection 

into closed domains. The third and fourth solutions are analyzing the CO2 injection in 

infinite and closed gas reservoirs. The third and fourth solutions are derived using 

Laplace transform. The brine aquifer solutions accounted for both Darcyian and non-

Darcyian flow, while, the gas reservoir solutions considered the gas compressibility 

variations with pressure changes.  
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 Existing analytical solutions assume injection under constant rate at the wellbore. 

This assumption is problematic because injection under constant rate is hard to maintain, 

especially for gases. The modeled injection processes in all aforementioned solutions are 

carried out under constant pressure injection at the wellbore (i.e. Dirichlet boundary 

condition). One major difficulty in developing an analytical or semi-analytical solution 

involving injection of CO2 under constant pressure is that the flux of CO2 at the wellbore 

is not known. The way to get around this obstacle is to solve for the pressure wave first 

as a function of flux, and then solve for the flux numerically, which is subsequently 

plugged back into the pressure formula to get a closed form solution of the pressure. 

While there is no simple equation for wellbore flux, our numerical solutions show that 

the evolution of flux is very close to a logarithmic decay with time. This is true for a 

large range of the reservoir and CO2 properties.  

  

 The solution is not a formation specific, and thus is more general in nature than 

formation-specific empirical relationships. Additionally, the solution then can be used as 

the basis for designing and interpreting pressure tests to monitor the progress of CO2 

injection process. Finally, the infinite domain solution is suitable to aquifers/reservoirs 

with large spatial extent and low permeability, while the closed domain solution is 

applicable to small aquifers/reservoirs with high permeability. 
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1. INTRODUCTION 

 

1.1 Motivation and Background 

 The continued use of fossil fuel, including coal, to power the generation of 

electricity since the industrial revolution has released huge amounts of CO2 to the 

atmosphere.  These emissions have led to a significant increase of CO2 concentration in 

the atmosphere. Pre-industrial CO2 concentrations were around 280 parts per million in 

volume (ppmv). Since then, CO2 concentration has increased to 392 ppmv in 2011, 

increasing at a rate of 2.0 ppm/year during the last decade. Current predictions are that 

CO2 emissions will continue increasing at similar rates over the coming years. Now 

there is almost a scientific agreement that there is a direct relationship between 

anthropogenic CO2 emission and climate change. Large power plants among other 

stationary sources of emissions are responsible for significant amounts of emissions.  

However, recent technologies can offer a good possibility to reduce the emissions from 

these stationary sources through carbon capture and sequestration (CCS).  Although, 

CCS is a temporally solution to the CO2 emission problem, it offers the use of carbon-

based energy sources and the control of CO2 emissions simultaneously [Krey and Riahi  

2009; Meinshausen et al.  2011; MIT  2007]. CCS will remain the only available current 

solution to CO2 emissions problem, until an economically feasible carbon-free energy 

alternative can be developed and deployed. 
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CCS consists of three stages; CO2 capture, CO2 transport, and then the injection 

and storage in deep geological formations. Various types of geological formations have 

high potentiality for CO2 storage. These include un-minable coal seams, depleted oil and 

gas reservoirs and deep confined saline aquifers [Bachu  2000,  2008; Bachu and Celia  

2009; Birkholzer and Zhou  2009; Gale  2004; Gunter et al.  1997; Hepple and Benson  

2005; Holloway  2005; IPCC  2005,  2007a,  2007b,  2007c; Metz et al.  2005; 

Oldenburg  2006; Vilarrasa et al.  2013; Vilarrasa et al.  2010b]. Of these three main 

subsurface formations, confined saline deep aquifers have received particular attention 

due to their high CO2 storage capacity and wide availability throughout the world 

[Gasda et al.  2004; Gasda et al.  2009; Nordbotten and Celia  2006a,  2006b; 

Nordbotten et al.  2005b]. 

 

The geo-sequestered CO2 has to be in a supercritical state (i.e. pressures greater 

than 72. 8 atm and temperatures above 30.978 °C) to ensure effective storage (high CO2 

density). Supercritical CO2 has a density of about 467.6 kg/m
3
 which allows 

significantly greater quantities to be sequestered than if it existed in the gas-phase 

[Holloway and Savage  1993; Van der Meer  1992]. Conditions that support the 

existence of supercritical CO2 should be present at depths greater than about 800 m 

where pressure and temperature would be above the critical point of CO2. 

Although,supercritical CO2 reaches relatively high densities, its density and viscosity 

still remain lower than the density of the resident brine [Bachu  2003]. Thus, CO2 will 

tend to show significant gravity override and float on the top of brine under the cap rock.  
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Injection of CO2 into deep geological formations is achieved by creating a 

pressure difference between the fluids in the injection well and the formation fluids. A 

larger pressure differential will clearly force CO2 more rapidly to invade the formation 

and replace its fluids. This may reduce the time and cost needed to complete the 

injection process. However, large injection rates can seriously raise the pressure in the 

storage formation and cause damage to the formation creating hydraulic fractures or 

rejuvenating old ones. Accordingly, the spatial and temporal distribution of pressure 

buildup in the formation is serious process and needs to be monitored. Obviously it 

depends on the rate of injection, the permeability, porosity, thickness of the storage 

formation, and the presence of faults or permeability barriers through the storage 

formation. 

 

The analysis of CCS problem always involves some set of computational models 

to provide a mathematical description of the problem. These models can have many 

purposes, but eventually they have to answer some practical questions about the 

injection system. These questions include the size of the CO2 plume, the spatial extent of 

pressure-perturbation, the possibility of leakage of fluids out of the injection formation, 

and the long-term fate of the injected CO2. Answers to these questions require models; 

the general approach to model CCS systems is to write standard conservation equations 

of fluid flow and transport. Then couple these equations with material-dependent 

constitutive relationship to build up a system of coupled nonlinear partial differential 

equations. These equations can be solved numerically in three dimensions. However, the 
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level of numerical discretization is always limited by two factors; the available 

computing power and the available information about the injection system before the 

time of injection. These limitations have motivated the development of a new set of 

analytical, semi-analytical and approximate solutions of CCS problem.   

 

Analytical solutions, including the ones that will be developed here, are based on 

certain simplifying assumptions regarding the underlying processes. Consequently, the 

predictions from an analytical solution are likely to be less accurate than those based on 

elaborate numerical simulations using extensive site-specific information. However, 

these analytical solutions often prove useful in providing guidelines, particularly before 

the start of the actual injection process, when very little about the storage formation has 

been ascertained. 

  

Over the years, a large number of analytical and semi-analytical solutions have 

been developed for flow of gases through porous and permeable formations. More 

recently and with immediate relevance to subsurface injection of CO2, Saripalli and 

McGrail [2002] developed semi-analytical solutions for modeling deep well injection of 

CO2 into brine formations. Also, Nordbotten and Celia [2005b] provided a similarity 

solution for CO2 injection into brine aquifers. Nordbotten and Celia [2005b] solution 

overlooked both the formation and fluid compressibility, however, they mentioned in 

their article some hints on how systems that are slightly compressible can be handled. As 

observed latter by Mathias et al. [2009a], a limitation of these semi-analytical solutions 
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is that they are developed assuming that both the geological formations and the fluids are 

incompressible and developed an approximate similarity solution describing the spatial 

and temporal distribution of pressure resulting from CO2 injection in brine aquifers. 

These pressure buildup results were latter used for assisting in selection of CO2 

sequestration sites by Mathias et al. [2009b] and developing an explicit approximate 

solution for estimating pressure buildup due to injection of CO2 into closed brine 

aquifers of finite radial extent [Mathias et al.  2011]. Other analytical solutions have also 

been obtained for estimating risks of pressure buildup resulting from CO2 injection 

[Oruganti et al.  2011] and for pressure buildup in overlying formations [Zeidouni et al.  

2009].  

 

Although Al-Hussainy et al. [1966] has mentioned that compressibility of gases, 

whether behaving ideally or otherwise, is a function of pressure, some of these previous 

works [Mathias et al.  2009a; Mathias et al.  2009b; Zhou et al.  2009] have assumed 

that the gas compressibility is constant and independent of pressure. In some of those 

studies [Mathias et al.  2009a; Mathias et al.  2009b], it has been further assumed that 

the gas compressibility is comparable to the compressibility of water. Vilarrasa et al. 

[2010b], has noted that CO2 compressibility is one to two orders magnitude larger than 

that of the rock or water.  In addition, Vilarrasa et al. [2010b] investigated the impact of 

CO2 compressibility on CO2 storage and proposed a method to account for 

compressibility effects and viscosity variations. Vilarrasa et al. [2010b], however, 

applied it to the analytical solutions of Nordbotten et al. [2005b] and Dentz and 



6 

 

Tartakovsky [Dentz and Tartakovsky  2009a,  2009b] without actually specifying a 

relationship (such as an equation of state) between density (or, compressibility) and 

pressure. Instead, they iteratively solved a non-linear integral equation to obtain the 

mean density within a plume volume. Mukhopadhyay et al. [2012]showed that a solution 

can be obtained through specification of a suitable equation of state. Moreover, their 

conceptual model accounts for the partial penetration of the injection well.  

 

All the analytical or semi-analytical solutions described above pertain to pressure 

buildup resulting from CO2 injection in either brine aquifers or gas reservoirs under 

constant injection rate. However, injection of gases under constant rates is almost always 

impossible to maintain.  Following Wiese and Mathias [2010], the focus of this study is 

to develop a semi-analytical solution to predict the spatial and temporal nature of CO2 

extent and the pressure buildup under constant pressure injection, which is more 

appropriate from the practical perspective. One major difficulty in developing an 

analytical or semi-analytical solution involving injection of CO2 under constant pressure 

is that, the flux of CO2 at the wellbore is not known. The flux can be solved for 

numerically by iteration, but we demonstrate that we can write a close analytic 

approximation for wellbore flux.   

 

The solutions developed here are not formation specific, and thus are more 

general in nature than formation-specific empirical relationships. Additionally, the 
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solutions then can be used as the basis for designing and interpreting pressure tests to 

monitor the progress of CO2 injection process.  

  

1.2 Objectives 

 The objective of this study is to derive a closed form solution for the problem of 

CO2 sequestration in brine aquifers using the method of matched asymptotic expansion. 

The solution will be extended to include both infinite-acting and closed aquifers. Large 

time approximation of this solution will be derived to account for inertial effects using 

the Forchheimer equation.  Another objective of the study is to develop an approximate 

solution for CO2 injection in gas reservoirs using Laplace transform. The gas 

compressibility variation with pressure will be considered. By allowing for injection rate 

to vary with time in all aforementioned cases, this study improves on previous work by 

not requiring injection under constant rate, which is practically inconvenient. These 

solutions can be used to rapidly calculate the pressure buildup during injection, as well 

as, the rate of pressure falloff once injection stops. It is applicable for both open and 

closed systems. In addition, it can be used as the basis for designing and interpreting 

pressure tests as a method of monitoring the progress of CO2 injection operations. Both 

solutions are simple to evaluate making them easy to implement in commonly available 

spreadsheet type software. 
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1.3 Organization 

The dissertation is organized into five sections. Section 2 gives solutions for the 

spread of the gas phase that occurs when CO2 is injected into an initially brine-filled 

aquifer of infinite extent. Section 3 describes a similar problem in a finite aquifer, which 

requires a different analytic approach.  Section 4 applies a third semi-analytic technique 

to study injection into gas reservoirs, in which the compressibility of the gas is explicitly 

taken into account. This dissertation is ended with a brief summary and several 

conclusions in section 5. 
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2. PRESSURE BUILDUP IN INFINTE BRINE  AQUIFERS DURING CO2 

SEQUESTRATION UNDER CONSTANT INJECTION PRESSURE 

 

2.1 Introduction  

Geologic sequestration of CO2 in deep saline aquifers is a proposed greenhouse 

gas mitigation technology with potential to significantly reduce atmospheric emissions 

of CO2 from large, stationary point sources such as fossil fuel burning power plants. 

Deep saline aquifers are particularly attractive since they have little value as water 

sources due to their high salt content. Deep saline aquifers are also considered to have 

the largest sequestration capacity [IPCC  2007c], estimated from 10,000 to 200,000 

billion tons [Bruant et al.  2002]. Aquifers currently being studied for CO2 storage 

include the Mt. Simon in the Illinois Basin [Zhou et al.  2009], the Frio along the Gulf 

Coast of Texas [Hovorka et al.  2001], the Johansen under the North Sea [Bergmo et al.  

2011], and the Nisku in the Alberta Basin in western Canada [Michael et al.  2010]. 

 

Though CO2 injection in brine aquifers is an existing technology, the few 

currently operating projects are much smaller in scale than what is being proposed for 

greenhouse gas control. For example, the In Salah project injects approximately 1.2 

million tons per year (Mt/yr) of CO2 [Wright  2007], while a single 500 MW coal 

generated power plant produces about 3.8 Mt/yr [Rao and Rubin  2002]. The pressure 

increase due to injection must be kept below a fracture pressure limit to avoid fracturing 

the caprock above the storage aquifer, which would lead to leakage of CO2 back to the 
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atmosphere. Assessment of any proposed sequestration site requires realistic, 

computationally efficient models to simulate the subsurface pressure response and the 

size of the plume extent. Computer simulations are an essential tool for assessing the 

feasibility of CCS projects. Such simulations are used to predict the magnitude and 

spatial extent of the subsurface pressure increase due to injection as well as model the 

evolution of the injected CO2 plume and monitor the injection process. However, they 

require significant computational efforts and tremendous amount of input data which 

might not be available as a priori.  

 

Analytical solutions are more convenient in terms of implementation, especially 

at the beginning of CCS operation, when data about the injection site is limited.  They 

are also efficient in terms of computational cost, as they can be accessible using 

spreadsheet software. Nevertheless, the derivation of analytical solutions gives rise to 

many limiting restrictions with regards to boundary conditions, simulated processes 

and/or input parameters.  

 

An important analytical solution for assessing CCS potential in brine aquifers 

was introduced by Nordbotten et al. [2005b] describing the migration of a CO2 plume 

front under constant injection rate of CO2 into a homogeneous and confined aquifer. 

Mathias et al. [2009a] built on this work by evaluating an integral expression for 

pressure buildup and incorporating the presence of fluid and rock compressibility. 

However, in most situations, injection pressure should be maximized to ensure the 
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highest possible injection rate that does not exceed the fracture pressure of the storage 

formation; therefore a constant pressure boundary is preferred. Later Wiese and Mathias 

[2010] extended the solution of Mathias et al. [2009a] further, and applied a constant 

injection pressure. However, they did not provide a closed form solution for either the 

flux at the wellbore or for the pressure distribution function. This work describes the 

development of an approximate closed form solution for CO2 injection under constant 

injection pressure.  

   

2.2 Conceptual and Mathematical Model 

Figure 2.1 shows the schematic diagram of CO2 injection into an infinite, 

confined brine aquifer. We assume axisymmetry about the wellbore, with the origin of 

the cylindrical coordinate system at the aquifer base; the z axis is vertical and positive 

upward and through the center of the well; the r axis is radially horizontal. The injection 

well is fully penetrating the aquifer vertically and is perforated along the entire thickness 

of the aquifer H [L]. The top and bottom of the aquifer are impermeable for both CO2 

and brine flow. The injection process is running under a known constant pressure, Po 

[ML
−1

 T
−2

], at the wellbore, instead of constant injection rate. In other words, the 

injection rate is allowed to vary with time during the injection process.  
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Figure 2.1: Schematic diagram of CO2 injection into brine aquifer under constant 

pressure. 

 

 

 

In this problem we assume that neither the pressure perturbation nor the invading 

CO2 front reach the lateral boundaries of the aquifer during the time of interest; therefore 

we can treat the aquifer as of infinite radial extent. Following Nordbotten et al. [2005a], 

the interface between the injected CO2 and the brine is assumed to be sharp and located 

at an elevation, h [L], above the base of the aquifer. CO2 have lower density than brine, 

and is assumed to stay on the upper side of the interface, while brine only will be on the 

lower side. Capillary pressure is ignored, and the pressure, P [ML
−1

 T
−2

], is assumed to 

be in vertical equilibrium over the entire thickness, H, of the aquifer. In other words, 
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because the lateral extent of the aquifer is much greater than its thickness, we can 

assume that most of the gradients in pressure are horizontal.  Therefore, the vertical 

pressure gradient is ignored; this may not significantly affect the pressure build up in the 

proposed study, since the well is screened along the total aquifer thickness. Relative 

permeability and viscosity are assumed to be constant and uniform within both the CO2 

and the brine zones. The two fluids and the porous formation are both assumed to have a 

small compressibility that does not vary with pressure [Mathias et al.  2009a]. Detailed 

discussions concerning the theoretical basis of these assumptions are presented by 

Nordbotten et al. [2005a], Dentz and Tartakovsky [2009b], and Gasda et al. [2009].  

 

Based on the aforementioned conceptual model and the mass balance principle, 

two equations for flow of carbon dioxide and brine under isothermal conditions can be 

described as follows: 

     hH
t

qhHr
rr

ccc 








 

1
,            (2-1) 

   h
t

hqr
rr

www 










1
 ,            (2-2) 

where cq  [LT
−1

] and wq  [LT
−1

] are the fluxes of CO2 and brine, respectively, and are 

assumed to be related to the radial pressure gradient through Forchheimer’s equation 

[Forchheimer  1901], as follows: 

cccc
c qqbq

kr

P








 ,          (2-3) 
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wwww
w qqbq

kr

P








 ,                     (2-4) 

where t [T] is time,   [-] is porosity, r [L] is the radial distance from the center of the 

injection well, k [L2] is absolute permeability, b [L-1] is the Forchheimer parameter, and 

c  [ML
-3

] and w  [ML
-3

], c  [ML
-1

T
-1

] and w  [ML
-1

T
-1

] are the densities and 

viscosities of the CO2 and brine, respectively. Equations (2-1) and (2-3) hold in the CO2 

region,   trhz , , while equations (2-2) and (2-4) hold in the brine region,   trhz , . 

The following initial and boundary conditions constrain the problem as follow: 

  00,  trrP w ,                                                                                                       (2-5) 

  Htrrh w  0, ,                                                                                                      (2-6) 

  ow PtrrP  0, ,                                                                                                     (2-7) 

  00,  trrrq ww ,                                                                                                    (2-8) 

  00,  trP ,                                                                                                      (2-9) 

  Htrh  0, ,                                                                                                   (2-10)  

  00,0  trP .                                                                                                      (2-11) 

 

Derivatives of density and porosity will be converted to derivatives of pressure, 

by substituting the compressibilities [M
−1

LT
2
] for the storage formation, CO2 and brine 

[Bear  1979]: 











dP

d
C f





1
, 
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









dP

d
C c

c

c





1
, 











dP

d
C w

w

w





1
. 

 

Then we assume that the fluids and geological formation are sufficiently rigid 

such that fC , cC , wC , , c , and w  are essentially constant. This assumption has been 

used extensively in the hydrogeology literature when describing the specific storage 

coefficient,  wfws CCgS   [L
-1

] in confined aquifers, where g [LT
-2

] is the 

gravitational constant.  

 

2.3 Solution Development 

2.3.1 Non-dimensionlization  

The system is scaled by defining the following dimensionless parameters 

w

D
r

r
r  , 

H

h
hD  , 

o

D
P

P
P  , 

2

wc

o
D

r

tKP
t


 , 

o

cwc
cD

KP

qr
q


 , 

o

www
wD

KP

qr
q


 ,  

wfo CCP  , 
wc

oc

r

kPb
2

2




  , 

w

c




  , 

w

c




  , and 

wf

wc

CC

CC




 . 

Rewriting the system in dimensionless form leads to 

      wDDcDDD

DDD

D
D qhqhr

rrt

P
h 









 1

1
11  , (2-12) 
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 
D

D
DwDDD

DDD

D

t

P
hqhr

rrt

h
















1
, (2-13) 

cDcDcD

D

D qqq
r

P





 , (2-14) 

wDwDwD

D

D qqq
r

P









 , (2-15) 

  00,1  DDD trP , (2-16) 

  00,  DDD trP , (2-17) 

  10,1  DD trP , (2-18) 

  00,1  DDwD trq , (2-19) 

  10,  DDD trh , (2-20) 

  10,1  DDD trh . (2-21) 

 

2.3.2 Boltzmann transformation 

Following Mathias et al. [2009a], we will derive an approximate solution of the 

system described by equations (2-12) through (2-21), by approximating the well 

boundary as 0Dr . Then we apply the Boltzmann transform to reduce the non-

dimensional system of governing partial differential equations to a system of ordinary 

differential equations (ODEs) in a single similarity variable, 
D

D

t

r 2

  as follows: 

       















d

dP
h

d

d

d

dP
h D

D
D

D 11
4

11 , (2-22) 
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









 d

dP
h

d

dP
h

d

d

d

dh D
D

D
D

D 









4
, (2-23) 

cD
D q

d

dP



 , (2-24) 

wD
D q

d

dP



 , (2-25) 

  10 DP , (2-26) 

  0DP , (2-27) 

  00 Dh , (2-28) 

  1Dh .  (2-29) 

 

2.3.3 Solution approximation without inertial flow 

Now, we seek a solution for the reduced ODEs system by the method of matched 

asymptotic expansions [Kevorkian  2000]. In this approach, we will find analytic 

solutions for pressure and interface height in a region that is relatively close to the well 

(“inner region”), 
i

DP  and 
i

Dh  respectively, and a second solution for the far region, 
o

DP  

and 
o

Dh  respectively. Then we choose integration constants in these solutions to match 

them at intermediate distances. The inner region contains CO2 and the CO2/brine 

interface, whereas the outer region contains brine only.   
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Inner solution 

In the inner region, there are two very different velocities of propagation: the 

velocity of the invading material front and the much faster velocity of the acoustic wave. 

The term 
D

D

t

P




  in equations (2-24) and (2-25) accounts for the pressure variation 

moving through the fluids at the speed of the acoustic wave. Since this is much faster 

than the speed of CO2/brine interface, we can assume that DP  is always at equilibrium, 

so this term is small and can be neglected. By letting 
D

D

t

P




 goes to zero, equations (2-

22) and (2-23) can be further simplified to the following: 

      011
4









 





O

d

dP
h

d

d
i

Di

D , (2-30) 

 








O

d

dP
h

d

d

d

dh i

Di

D

i

D 









4
. (2-31) 

From equation (2-30) above, we have 

 
 


 O

h

c

d

dP
i

D

i

D 





















11
,  (2-32) 

where c is equal to half of undermined dimensionless flux at the wellbore.  Substituting 

equation (2-32) into equation (2-31) leads to 

  
 






O

h

ch

d

d

d

dh
i

D

i

D

i

D 













11

4
, (2-33) 

which can be simplified to  
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  
 




O

h

ch

dh

d
i

D

i

D

i

D















114
. (2-34) 

Solving equation (2-34) for 
i

Dh  yields 

 
























































c

c
c

c

c

Oh i

D

4
;1

4
4;1

4

1

1

4;0

. (2-35) 

 

Equation (2-35) can be used to track the  radial extent of the plume away from 

the injection well over time. Note above that the values of  that mark the divisions 

within the inner region depend on the flux at the wellbore that will change with time. 

The top part of the CO2/brine interface at any given time is always at distance of 


1
 

times the distance of the bottom part of the interface. So the brine+CO2 region gets 

wider with time, and the interface becomes more horizontal.  Multiplying equation (2-

35) by  1 , and then adding 1 , we have 

   





































c

c
c

c

c

Oh i

D

4
;

4
4;

4

4;1

11 . (2-36) 

Substituting equation (2-36) back into equation (2-32) gives 
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 










































cc

c
c

c

cc

O
d

dP i

D

4
;

4
4;

4

4;

. (2-37) 

From equation (2-37) we can solve for
i

DP  as follows: 

 







































c
c

c

c
cc

c

ccc

OP i

D

4
;)ln(

4
4;

4

4;)ln(

3

2

1

, (2-38) 

where 1c , 2c , 3c  are integration constants  to be determined. 

 

Now, let us simplify equation (2-83)by expressing c , 2c , 3c  in terms of 1c . At 

very small distance near the well and from equation (2-83) we have 

1)ln( ccPi

D   , (2-39) 

Substituting 
D

D

t

r 2

  and 1Dr  (i.e. at wrr  and 1i

DP ) into equation (2-93), we have  

 Dt

c
c

ln

1 1
 .  (2-40) 

Similarly, we can solve for 2c , 3c  in terms of 1c by applying the continuity principles at 

the interface between the different regions. This gives us 
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   12 24ln cccc   , (2-41) 

   

























cc
ccc

c
c

4
ln24ln

2
13 .  (2-42) 

Substituting equations (2-40) through (2-42) into equation (2-83) yields 

  

  


























































ccc
cc

c

c
ccc

c

cc

cPi

D

4
;2

4
ln24ln)ln(

4
4;24ln

4

4;)ln(

1
.  (2-43) 

 

This analytical solution of 
i

Dh  and 
i

DP  is similar to Nordbotten et al. [2005a], 

Nordbotten and Celia [2006b], and Mathias et al. [2009a], except that the flux of CO2 in 

our solution (c) is undetermined yet. The solution divides the aquifer into three regions: 

the region of c 4 near the wellbore filled only with CO2, the zone of 



c

c
4

4   

in the middle that has a layer of CO2 above a layer of brine, and finally the zone of 




c4
4   far away from the wellbore, filled only with brine.  

 

Outer solution 

Since the outer region is occupied by brine only (i.e. 1Dh  in the outer region), 

as indicated by equation (2-35), so we only need to solve for the pressure, 
o

DP , in that 
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region. To develop an outer solution for pressure wave perturbation in this region, we 

apply the scaling transform    to equation (2-22), and we obtain 

       


















d

dP
h

d

d

d

dP
h

o

D
D

o

D
D 11

4
11 22 .  (2-44) 

By letting 0  and 1Dh , and then rearranging equation (2-44) we have 

















 d

dP

d

d

d

dP o

D

o

D

4

1
.   (2-45) 

Solving equation (2-45), we obtain  








 









4
exp4c

d

dPo

D .     (2-46) 

Substituting 




4
u   into equation (2-46) yields  

u
o

D ec
du

dP
u  4 ,                                                                                                  (2-47) 

where  4c  is an integration constant. Now we can solve for 
o

DP  in the outer region as 

follows: 

ud
u

e
cdP

U

u
o

D 
 

 4 ,   (2-48) 

where    uEuEdu
u

e
i

U

u


 

1  is the exponential integral function [Abramowitz and 

Stegun  1965] and is approximated as follows: 
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 
  n

n

n

u
nn

uuE 








1

1

1
!

1
ln ,    

where ( 5772.0  is Euler’s constant). If we restricted our attention to positive values 

of u and assumed that u is small (i.e. for values of 





10
 ), then the exponential 

integral can be approximated as follows: 

    )ln(1 uuEuE i   .    (2-49) 

From equation (2-48) we have 

   514 cuEcPo

D  , (2-50) 

where 5c is an integration constant to be determined. 

 

In this region 
o

DP  and 5c go to zero as   goes to infinity, and the solution to 

equation (2-52) reduces to the Theis solution [Theis  1935] as follows: 

 uEcPo

D 14 .                                                                                                             (2-51)  

Substituting equation (2-49) into equation (2-51) leads to 

   uOucPo

D  ln4  ,                                                                                          (2-52) 

or 








 
















 











44
ln4 OcP o

D .                                                                         (2-53) 
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Substituting   back into equation (2-53) and expanding around  leads to 

   



 OcPo

D 

















4
lnln4

.                                                                     (2-54) 

 

Now, we have a solution for the pressure perturbation in the outer region, where 

4c  is an integration constant to be determined. The integration constants 4c  and 1c  can 

be determined by matching asymptotically both the inner and outer solution, and this can 

be done by setting  

fixedis

o

D

fixedis

i

D PP





 00

limlim


 .   (2-55) 

 

In other words, the outer limit of the inner solution is equal to the inner limit of 

the outer solution. Comparing equations (2-43) with equation (2-54), we obtain 

  24ln2ln
2

1 
















 cc

c

c
c 






,   (2-56) 



c
c 4 .    (2-57) 

Substituting equation (2-56) and (2-57) into equations (2-43) and (2-54), 

respectively, leads to   
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
















































































































ccc

c
c

cccc

c
cccc

c
c

Pi

D

4
;

4
ln

4
4;ln

2

4

4;ln
2

24
ln

2

2

,   (2-58) 

  
















 






ln

4
ln

c
Po

D .    (2-59) 

Equations (2-58) and (2-59) show the solution for pressure in inner region and outer 

region, respectively. Note that both solutions are still dependent on the flux at the 

wellbore.    

 

Composite solution 

We can construct the composite solution by asymptotically matching the inner 

and outer solution. In other words, we add the inner and outer solution together, and then 

subtract the common terms in the overlap domain. The common term in the overlap 

domain is equal to the inner limit of the outer solution or the outer limit of the inner 

solution as follows: 
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Based on equation (2-62), we obtain 
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Finally, we solve for the constant c , by rewriting the inner solution for pressure 

in terms in of Dr  and Dt  as follows: 
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setting 1)1( DD rP  (i.e. reverting back to the original boundary condition at the 

wellbore), this results in a transcendental equation for c  (half the flux at the wellbore):  
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Wellbore flux is a function of the dimensionless time, and only two 

dimensionless parameters: the ratio of the two fluid viscosities, , and the scaled 

wellbore pressure, . An exact solution for the flux at any time requires an iterative 
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numerical method. We can find the roots of equation (2-65) to determine c , and then 

plug it back into equations (2-63) and (2-35) to solve explicitly for pressure and 

elevation at any time from the start of injection and any distance from the injection well. 

We have done this for a large range of the two parameters in equation (2-65):  ranging 

from 0.0001 to 0.009, and  ranging from 0.001 to 0.1. Figure 2.2 shows the evolution of 

c with tD for all of these different solutions. The time ranges in Figure 2.2 corresponds to 

a scaled from one second to 100 years. This plot, as well as curve fits to each individual 

solution, show that the evolution of c  is very close to a logarithmic decay with time. 

One example numerical solution for c along with the best fit curve is shown in Figure 

2.3. 
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Figure 2.2: Plot of dimensionless flux vs. dimensionless time for 100 different 

combinations of  and
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Figure 2.3: Plot of numerically-determined dimensionless flux vs. time, along with a 

best-fit logarithmic approximation for a system and=0.1. 

 

 
 

All of the curves in Figure 2.2 can be fitted very well by the model 

)ln(410 Dtaac  ,          (2-66) 

where, 0a  and 1a  are the slope and the intercept. For the example shown in Figure 2.3,  

0a  and 1a  are equal to 0.037 and -0.00074, respectively.  The values of the slope and 

intercept will vary with the parameters   or  .  To delineate the relationship of 0a  and 

1a  with the parameters in the problem, we used MATLAB to determine the best fit 

logarithmic function to each of the c  vs. Dt  curves in Figure 2.2. Figures 2.4 and 2.5 
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show that the slope and intercept vary smoothly as  and   change. Two surfaces are 

constructed to show the variations of slop, intercept versus the parameters  and   

changes, and then two polynomials, equations (2-67) and (2-68), are fitted to the 

surfaces to capture those relationships as shown by Figure 2.6 and Figure 2.7, 

respectively.  

2

02110110001 ),(  aaaaaf  ,       (2-67) 

2

20110110002 ),(  aaaaaf  ,       (2-68) 

where ),(1 f and ),(2 f  are the functions of  the slope and intercept, respectively. 

The values of coefficients of the polynomials, iia (where 2,1,0i ), and the goodness of 

fit are summarized in  Tables 2.1 and 2.2. 
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Figure 2.4: Contours of the slope parameter, a1, in (2-66) for a range of values of  and 

. 
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Figure 2.5: Contours of the slope parameter, a0, in (2-66) for a range of values of  and 

. 
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Figure 2.6: The slope values from Fig. 2-4 plotted as a surface vs.  and  and a fitted 

polynomial in  and  (points). 
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Figure 2.7: The slope values from Fig. 2-5 plotted as a surface vs.  and  and a fitted 

polynomial in  and  (points). 

 

 

 

Table 2.1: Polynomial coefficients of the slope and the intercept with 95% confidence 

bounds. 

 

Polynomial coefficient Slope Intercept 

00a  -1.238 E-005 -5.617 E-005 

10a  4.25 E-003 1.190 

01a  1.011 E-003 2.434 E-001 

11a  -8.708 E-001 21.43 

20a  0.000 -126.30 
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Table 2.2: Summary of goodness of fit of the slope, the intercept and the flux, shows 

SSE (sum of squared errors), R
2
 (the correlation coefficient), and RMSE (residual mean 

squared error). 

 

Goodness of fit Slope Intercept flux 

SSE 1.518 E-008 1.703 E-005 1.233 E-012 

R
2
 9.957 E-001 9.983 E-001 1.000 

RMSE 1.149 E-005 3.848 E-004 1.122 E-007 

 

 

 

 

Now we can construct the final solution for the domain of infinite extent with 

non-inertial effects when 0wDr , 0 , and 1 as follows: 
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where  

     Dtc ln48702.41.0104.2124.02.1 3    .                     (2-70) 
 

2.3.4 Solution approximation with inertial flow 

Following Roose et al. [2001], we can include the nonlinear inertial terms 

provided we focus only on large times after injection begins.  Roose et al. [2001] 

introduce new dimensionless time and distance, defined by    

2


Dt , 




Dr , 






2

 ,   ,    (2-71) 
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where   is a dimensionless parameter that depends on the Forcheimer parameter. For 

1 ,  and   are auxiliary variables defined as above.  

 

Outer solution 

Now we seek a solution in the far field in terms of similarity variable





2

 . 

Note that in the previous section, inner region included all of the CO2 plus some of the 

brine. Now the outer region includes all of the brine plus some CO2, and inner region 

contains CO2 only. Substituting equation (2-71) into equation (2-12) leads to  
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Solving for 
o

DP  when 1Dh  leads to 
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where 6c  is an integration constant. At 1Dh , we revert equation (2-72) back into   

coordinate, and obtain 
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Similarly, we can substitute equation (2-74) into equation (2-13), and have 
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Substituting equation (2-74) into equation (2-75) gives 
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Solving equation (2-76) for the interface elevation, o

Dh , yields 
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Substituting equation (2-77) into equation (2-74), and then solving for 
o

DP  gives 
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where 7c  is another integration constant. 

 

 For the inner solution, where the CO2 phase exists only near the well (i.e. “” is 

so small and hD=0), it is better to revert back to the variable Dr , so that the inner limit 

process is described by 
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where “ cDq ” satisfies 
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where 1 . In equation (2-80), we used full derivatives instead of partial derivatives, 

because the solution here is to be derived at large times (i.e. the pressure is independent 

on time, and changes with radial distance only). Substituting equation (2-79) into 

equation (2-80), and then solve for 
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DP , we obtain 

    
















 











2

2

ln
2

24lnln2
4 ccc

cctctc
t

c
P DD

D

i

D
.                        (2-81) 

 

Composite solution 

Matching the inner and outer solutions asymptotically yields 
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Now we can construct the final solution for the domain of infinite extent with inertial 

effects when 0wDr , 0 , 

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Dt , and 1 as follows: 
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or in terms of Dr  and Dt the solution can be expressed as follows: 
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2.4 Results and Discussions 

We apply the solution scheme described above to a specific example aquifer, 

where the injection pressure, initial and boundary conditions, and the formation 

properties (thickness, perforation thickness, permeability and porosity) are summarized 

in Table 2.3.  The injection process continues for one hundred years, starting in the year 

2010 and ended in 2110. The pressure buildup across the entire aquifer is shown at five 

year intervals in Figure 2.8. During the entire injection period, there are large pressure 

gradients within 250 m of the well, and then gradients are much lower at larger 

distances. It also shows that the rate of pressure buildup decreases with time, with the 

late time pressure curves (i.e. after the year 2080) stacking nearly on top of one another.  

 

 

 

 

 

 

 

 

 

 



40 

 

Table 2.3: Geometrical and physical properties of the storage formation, initial and 

boundary conditions, and injection pressure used in computations. 

 

Parameter Value 

A  

315 km
2
 

T  
55[C

o
] 

cC  7.2 E-005 [bar
-1

] 

fC  7.2 E-005 [bar
-1

] 

H  

100[m] 

k  10 E-14 [m
2
] 

oP  13 [kpa] 

ip  11 [kpa] 

wr   0.2 [m] 

t  100 [year] 

c   4.6 E-10-5 [pa s] 

w   9.6 E-10-4 [pa s] 

c  610 [kg m
-3

] 

w  1139 [kg m
-3

] 

   0.3 [-] 
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Figure 2.8: Pressure vs. radial distance at 10 year intervals after the beginning of 

pumping. 
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Figure 2.9: Change in pressure over a 5 year period vs. radial distance, for 4 different 

periods (2015-2010, 2020-2015, 2040-2035, and 2080-2075). 

 

 

 

 

Figure 2.9 shows the difference between calculate reservoir pressures separated 

by 5 years in time; this difference therefore is approximately proportional to the rate of 

change of pressure. At any given time, the maximum rate of pressure increase will occur 

at some distance from the wellbore.   The decrease in amplitude and increase in radial 

distance with time demonstrates the front of pressure diffusing outward from the 

wellbore as time evolves. The rate of pressure difference between the years 2015-2010 is 

largest very near the well at r=5m.While between the years 2035-2040 the peak rate of 

change is found at r=100m. Then it is shifted to be at r=250m between the years 2040-
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2035, and then it kept migrating and attenuating away from the well to be at r= 700m 

between the years 2070-2085. This is because each pressure perturbation wave starts 

very strong nearby the wellbore, and then as it migrates away from the wellbore it 

attenuates and changes its location. In other words, the pressure perturbation wave starts 

with very sharp and high peak, and then diffuses with radial distance away from the well 

as time evolves.   
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Figure 2.10: Predicted pressure buildup as a function of time at specific radial distances 

(r= 25 m, 100 m, 1000 m, 3000 m, and 4000 m). 
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Figure 2.10 shows the results of pressure build up at five different radial 

locations (r = 25, 100, 1000, 3000, and 4000m). These locations are selected to compare 

the pressure buildup at close (i.e. r=25 and 100m), intermediate (i.e. r= 1000 and 

3000m) and at far (i.e. r=4000m) distance from the well. The pressure increased by 1622 

kpa at r=25m by the end of the first five years of injection (2010-2015), then the increase 

dropped down to be 125 kpa in the second five years and kept going down to increase 

with 10 kpa till the year 2050, and finally the increase was reduced to be 5kpa every ten 

years till the end of injection process. While at distance r=100 the pressure profile 

increased with 730 kpa in the first five years, and kept increasing with 330 and 220 kpa 

during the second and third five years (i.e. 2020-2015 and 2025-2020), respectively, and 

then fallen down  increase with  15 kpa. The last three curves (i.e. at r=1000, 3000, and 

4000m) follow the same pattern, started to increase rapidly at the first ten years with 

about 500 kpa, and then kept increasing with a smaller rate of about 30 kpas till the end 

of injection.   
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Figure 2.11: Cumulative pressure difference as a function of radial distance. 

 

 

 

Figure 2.11 confirms the results obtained from Figures 2.8, 2.9, and 2.10 that the 

pressure gradient increases nearby the wellbore and decrease with increasing the radial 

distance from the wellbore. The pressure gradient starts very high near the wellbore and 

then keeps decreasing away from the wellbore. 

 

The cumulative injection volume, IN , can be defined as follows 

 

t

wcI drrqN
0

),(  .                                                      (2-85) 
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Using equations (2-69) and (2-70) together with equation (2-85), we can calculated the 

cumulative injected volume of CO2 over the injection period as shown in Figure 2.12. 

Then we can calculate the cumulative CO2 injected mass during the injection process as 

follows: 

by definition, the universal law of gas is   

nRTPV  ,                                                      (2-86) 

where V is the volume of CO2, R is gas constant, T  is the temperature, P is the 

pressure, and n  is the number of moles. From equation (2-86) we can calculate the n , 

then having the molecular weight of CO2 we can calculate the mass of injected CO2 as 

shown in Figure 2.13. 

 

Figures 2.12 and 2.13 show the cumulative injected volume (in cubic meter) and 

mass (in megaton) during the injection process, respectively. It can be seen that the two 

curves have the same pattern; they keep increasing from the star till the end of the 

hundred year injection.   



47 

 

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

2.00E+07

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e 

C
O

2
Vo

lu
m

e 
(m

3 )

Year
 

Figure 2.12: Predicted cumulative injected CO2 volume as a function of time. 
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Figure 2.13: Predicted cumulative injected CO2 mass as a function of time. 

 

 

 

2.5 Summary and Conclusions 

The governing equations for CO2 injection into a slightly compressible brine 

aquifer with a vertical pressure equilibrium assumption were presented. The problem 

was first solved for non-inertial flow. By assuming an infinitesimal well radius and 

applying a similarity transform, the problem reduced to two ordinary differential 

equations. An assumption of small compressibility (i.e.  goes to zero) was then invoked 

and an analytical solution obtained using the method of matched asymptotic expansions 

(The small  approximation). The pressure distribution in equation (2-63) was first 

obtained as a function of the wellbore flux. Then, a closed form solution for the wellbore 
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flux was obtained as in equation (2-72). Wellbore flux was found to be a function of the 

dimensionless time, and only two dimensionless parameters: the ratio of the two fluid 

viscosities, , and the scaled wellbore pressure, . An exact solution for the flux at any 

time required an iterative numerical method. We have done this for a large range of the 

two parameters in equation (2-65):  ranging from 0.0001 to 0.009, and  ranging from 

0.001 to 0.1. The evolution of the wellbore flux was also found to be very close to a 

logarithmic decay with time. The resulting pressure distribution can be obtained by 

evaluating equation (2-63) in conjunction with equation (2-72). The corresponding CO2-

brine interface elevation can be obtained from equation (2-35). On the basis of the 

above, a solution for flow with inertial effects was obtained using Forchheimer equation 

and applying the method of matched asymptotic expansion with a large time assumption 

(the large time approximation), the pressure distribution formula is described by 

equation (2-84). 

 

Considering that the solutions were derived under constant injection pressure, the 

new solutions are more practical and can be used safely without hitting the fracture 

pressure of the storage formation. Given the likely scale of the CCS effort required over 

the coming years, this new method provides the basis for fast and cost-effective 

screening to quickly identify those sites that will be suitable for the injection procedure. 

The two approximate solutions derived in this article are highly appropriate for the kinds 

of spreadsheet software that will probably be used for this purpose.   
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3. PRESSURE BUILDUP IN BRINE CLOSED AQUIFERS DURING CO2 

SEQUESTRATION UNDER CONSTANT INJECTION PRESSURE 

 

Over the past 20 years, the concept of permanently storing (i.e. sequestering) 

carbon dioxide (CO2) in geologic media (e.g. brine aquifers) has gained increasing 

attention as part of important technology option of carbon capture and storing (CCS) 

within a portfolio of options aimed at reducing anthropogenic emissions of greenhouse 

gases to the earth’s atmosphere. 

 

Although high injection rates can minimize the cost of injection, it can result in 

huge formation damage if it leads to pressures that fracture the formation or overlying 

caprock. Optimal injection rate has to remain within the safe pressure limits. 

Accordingly, a robust monitoring of the transient pressure buildup characteristics 

resulting from CO2 sequestration in brine aquifers is compulsory. 

 

While numerical simulations can provide reliable pressure buildup predictions, they 

require extensive knowledge about the formation, which is not available at the start of 

the injection process. There have been simple analytical and semi-analytical techniques 

to support monitoring the pressure buildup, however they are all assuming constant 

injection rate. Geo-sequestration injection more commonly occurs at a constant wellbore 

CO2 pressure, with the input rate decreasing as the CO2 front penetrates into the 

formation. Therefore, a new model predicting pressure buildup resulting from CO2 

sequestration under constant pressure injection is required. The solution derived in 
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Section 2 is useful for very large reservoirs where permeability is small. In this section, 

the approximate solutions of Section 2 are extended to account for formations of finite 

radial extent, leading to an approximate analytical solution that is accurate over the 

entire domain of practical interest. 

 

We formulate the problem in terms of a CO2 potential that facilitates solution in 

horizontal layers. We find that when CO2 is injected under a constant pressure in a fully-

penetrating well, CO2 advances initially uniformly through the entire aquifer. With time, 

the CO2 advances more rapidly along the top of the reservoir than the bottom, so that the 

plume does not necessarily occupy the whole thickness of the aquifer. Both CO2 plume 

position and fluid pressure is described by the solution derived in this section. Therefore, 

this solution facilitates quick evaluations of the CO2 plume position and fluid pressure 

distribution when injecting supercritical CO2 in a deep closed saline aquifer.  

 

3.1 Introduction 

 In the year 1950, Charles Keeling initiated a program of ongoing measurements 

of atmospheric CO2 emissions. The measured data shows annual cycles of variability 

superimposed on a monotonic increase over the half-century of measurements. 

Atmospheric concentration of CO2 in the late 1950's was around 315 parts per million 

(ppm), while today's concentration has grown to about 385 ppm. The data when 

combined with ice core data also shows stable atmospheric concentration of CO2 to be 

280 ppm over the last 1000 years. The increase over the 280 ppm occurred after the start 
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of the industrial revolution and increased over time. This increase above the natural CO2 

level is regarded to be driven by anthropogenic emission [IPCC  2007a,  2007b,  2007c].    

  

Practical solutions to the carbon problem will necessarily involve modifications 

to the underlying engineering systems that have created the problem, while maintaining 

an expected standard of living. Such solutions require both modifications to existing 

technologies and development of fundamentally new technologies. 

 

In this study, we will focus on analysis of one such technology, which is referred 

to as Carbon Capture and Storage (CCS). CCS is a critical enabling technology for 

carbon-free electricity from fossil fuels [IEA  2007; IPCC  2005,  2007a,  2007b,  2007c; 

Pacala and Socolow  2004; Sheppard and Socolow  2007]. Among the possible 

formations available for storage, deep saline aquifers have the largest capacity [IPCC  

2005] and are relatively ubiquitous. There are some studies provided a useful review 

summarizing different modeling approaches [Schnaar and Digiulio  2009] and other 

ones provided a good overview of the current state of scientific knowledge on CO2 

storage in saline aquifers and experience from existing storage operations [Michael et al.  

2009; Michael et al.  2010].  Many others solved the CO2 problem over large spatial 

scales [Nordbotten et al.  2005a; Nordbotten  2004; Nordbotten and Celia  2006b; 

Nordbotten et al.  2004; Nordbotten et al.  2008]. There are some example applications 

for such problem introduced in different studies [Bachu and Celia  2009; Celia et al.  

2006; Kavetski et al.  2006; Nordbotten et al.  2005b].  
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 The injected CO2 is driven into the formation by the pressure gradients generated 

by the pressure at the well, with its flow paths modified by capillarity and the associated 

relative permeability functions as well as heterogeneities in formation properties [IPCC  

2005; Johnson et al.  2004]. The flow is also affected significantly by the strong density 

difference between the brine and CO2, which leads to a buoyancy-driven upward 

movement of CO2 that produces strong gravity segregation. This strong buoyant drive is 

one of the most important characteristics of the system because it gives a clear 

macroscopic spatial structure to the fluids. Buoyancy is also a major driving force in 

potential leakage scenarios, thereby highlighting the importance of the caprock 

formation above the injection formation. This buoyant segregation is a key element in 

approaches that allow simplifications to mathematical models for these systems 

[Nordbotten and Celia  2011], and we take full advantage of this in the model that we 

present later in this work. 

 

 In order to design an appropriate model for a particular problem, it is important 

to consider the spatial and temporal scales involved, and how the physical processes and 

parameters of the system relate to these scales. Important scales include those associated 

with the domain, system parameters, and physical processes; and those associated with 

the solution to the problem [Nordbotten and Celia  2011]. The largest spatial scale 

considered for geological storage of CO2 is the length scale of the aquifer system into 

which the injection occurs, which is on the order of a few kilometers or more. This scale 

is important, as diverse issues such as capacity estimates, liability, and computational 
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domains all relate to this scale. The vertical extent of the formation is self - explanatory, 

and is usually on the order of ten to several hundred meters. Finally, three of the largest 

length scales are defined as scales associated with the solution of the problem: the plume 

extent during injection, the extent of pressure perturbations associated with the injection, 

and the overall migration distance including postinjection migration [Nordbotten and 

Celia  2011].  

 

 The full equations for CO2 storage in three dimensions are too complex, both in 

terms of parameters and processes, to readily admit analytical solutions. Many 

assumptions have to be made to simplify the equations such that analytical and semi-

analytical solutions can be obtained [Celia and Nordbotten  2009; Celia and Nordbotten  

2011]. In contrast, several of the vertically integrated macroscale models have a 

sufficiently simple structure that analytical solutions can be obtained for relevant 

problems. These solutions serve three purposes. By themselves, analytical solutions 

provide insight into the interplay among different processes and parameters in the 

problem. Together with numerical approximations, analytical solutions are valuable 

from the perspective of verification and benchmarking. Finally, analytical solutions 

serve as building blocks for fast algorithms. 

 

In this article we present an approximate analytical solution for two–phase flow 

problems. The solution is on analysis of CO2 injection into an initially brine-filled closed 

aquifer, exploiting self–similarity and matched asymptotic expansion. The solution 
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developed in this work is based on a set of analytical and semi-analytical solutions for 

CO2 injection [Mathias et al.  2009a; Mathias et al.  2011; Nordbotten et al.  2005a; 

Nordbotten and Celia  2006b; Wiese and Mathias  2010] and more closely on the 

solution we derived in section 2.  

 

We will consider the problem of injection into a deep permeable saline aquifer 

that is bounded above and below by low–permeability cap-rock formations and is 

initially filled with brine.  We will assume injection from a single vertical well, although 

the processes governing the system are essentially independent of the orientation of the 

injection wells. We also assume that the brine is the wetting fluid, and the injected CO2 

is the non-wetting fluid. Therefore, displacement of brine by CO2 is a drainage process, 

while displacement of CO2 by brine is an imbibition process. Injection of CO2 into the 

formation is achieved by raising the pressure of CO2 in the wellbore to a value above the 

entry pressure for the formation material and limited by requirements to remain below 

the estimated fracture pressure of the formation and caprock. 

  

The injection process will take place at relatively high pressures, so that near the 

injection well, the system will tend to have wetting fluid close to, or at, its residual 

saturation, Sr. Therefore, we expect the region close to the well that is invaded by CO2 to 

have brine at residual saturation (i.e. immobile phase). In regions close to the well, dry 

CO2 will continually displace the wet CO2 and in so doing will evaporate some of the 

residual brine. Eventually, the water in the residual brine will all evaporate, and the only 



56 

 

fluid remaining in the pore space will be dry CO2 (along with some precipitated salts 

from the evaporated brine). This creates an expanding region of dry CO2 in the vicinity 

of the injection well [Nordbotten and Celia  2011]. However, we will ignore the 

evaporation process of brine near the wellbore and will consider both the residual brine 

and CO2 to coexist in this region. 

 

3.2 Conceptual Model 

Injection into a confined aquifer defines the first major time period of a CO2 

storage operation. During this period, advective two-phase flow dominates the system, 

while the dip of the aquifer, dissolution, and mineral reactions are expected to have 

minimal influence on the solution and will be ignored. Therefore, we simplify the system 

by assuming a horizontal aquifer with immiscible and slightly incompressible fluids.  

We also use the Dupuit pressure reconstruction to average the vertical pressure [Gasda 

et al.  2011]. The Dupuit assumption assigns a pressure field such that flows 

perpendicular to the aquifer boundaries are ignored; this means that flows in the z- 

direction are neglected. In other words, the vertical equilibrium assumption is essentially 

an assumption of negligible flow in the vertical direction (i.e. flow perpendicular to the 

formation is negligible, which is denoted as the Dupuit assumption). 

  

We consider injection into a confined homogeneous and isotropic aquifer with 

constant fluid properties, where the injection takes place at a constant pressure through a 

single vertical well. We assume the problem has a radial symmetry. 
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Figure 3.1, shows the schematic diagram of CO2 injection into infinite confined 

brine aquifer. The cylindrical coordinate system is set as follow: the origin of the 

coordinate is at the aquifer base; the z axis is vertical and positive upward and through 

the center of the well; the r axis is radially horizontal. The injection well is fully 

penetrating the aquifer vertically and is perforated along the entire thickness of the 

aquifer H [L]. The top and bottom of the aquifer are impermeable for both CO2 and brine 

flow. The injection process is running under a known constant pressure, P0 [ML
−1

 T
−2

], 

at the wellbore, instead of constant injection rate. In other words, the injection rate is let 

to vary with time during the injection process. The lateral boundary is of finite radial 

extent and was assumed to be no flow boundary. Following Nordbotten [2005a], the 

interface is assumed to be sharp and located at an elevation, h [L], above the base of the 

aquifer. CO2 has lower density than brine, and is assumed to stay with residual 

(immobile) brine on the upper side of the interface, while mobile brine only will be on 

the lower side. Capillary pressure is ignored, and the pressure, P [ML
−1

 T
−2

], is assumed 

to be in vertical equilibrium over the entire thickness of the aquifer. In other words, the 

vertical pressure gradient is ignored, which may not significantly affect the pressure 

buildup in the proposed study, since the well is screened along the entire aquifer 

thickness. Saturation, relative permeability, and viscosity are assumed to be constant and 

uniform within both the CO2 and the brine zones. The two fluids and the porous 

formation are assumed to have small compressibility each that does not vary with 

pressure [Mathias et al.  2009a; Mathias et al.  2011]. Detailed discussions concerning 
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the theoretical basis of these assumptions are presented in many previous studies [Dentz 

and Tartakovsky  2009a,  2009b; Gasda et al.  2009; Nordbotten et al.  2005b]. 
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Figure 3.1: Schematic diagram of CO2 injection into closed brine aquifer under constant 

pressure. 
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3.3 Mathematical Model 

Based on the conceptual model described above and the mass balance, we write 

the partial differential equation for the fluid pressures, P, and the interface elevation, h, 

initial and boundary conditions for the system in radial coordinates as follows: 

    
      

tcttcr

rrccrcc

hHzrrhHzrrS
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where  h [L] is the elevation of CO2/brine interface, r [L] is the radial distance from the 

center of the injection well, z [L] is the vertical distance from the bottom of the storage 

formation, rS [-] residual saturation of brine, t [T] is time,   [-] is porosity, k [L
2
] is 

absolute permeability, cq  [LT
−1

] is the CO2 flux, wq  [LT
−1

] is the brine flux, c  [ML
-3

] 

is the density of CO2, w  [ML
-3

] is the density of brine, c  [ML
-1

T
-1

] is the viscosity of 

CO2, w  [ML
-1

T
-1

] is the viscosity of brine,  r , z  and t  are infinitesimal changes 

in radial distance, vertical distance, and time, respectively. At the limit 0,,  tzr , 

equations (3-1) and (3-2) can be written as  
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            The fluxes cq  and wq  are assumed to be related to the radial pressure gradient 

through the Forchheimer’s equation [Forchheimer  1901], as follows: 

cccrc

r

c qqbbq
Kkr

P








 ,                                                                                     (3-5) 

wwww

w qqbq
Kr

P








 .                                                                                         (3-6)                                                                                                  

Where b [L
-1

] is the Forchheimer’s parameter, the factors kr [-] and br [-] are the relative 

permeability and relative Forchheimer’s parameters, respectively, for the CO2, 

representing the fact that the irreducible brine saturation is occupying the CO2 region 

together with the invading phase (i.e. CO2). This will reduce the transmissivity of the 

CO2 [Bennion and Bachu  2008]. Relative permeability and relative Forchheimer’s 

parameters for the brine are not required in this article, because the aquifer is assumed to 

be initially fully saturated with brine before the injection of CO2 starts. 

 

The following initial and boundary conditions are constraining our problem as 

follow: 

,                                                                                         (3-7) 

  Htrrh w  0, ,                                                                                               (3-8) 

  00, PtrrP w  ,                                                                                              (3-9) 

  00,  trrrq ec ,                                                                                              (3-10) 

  00,  trrrq ew ,                                                                                              (3-11) 

  00,  trrrq ww .                                                                                            (3-12) 

  00,  trrP w
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Substituting the compressibilities [M
-1

LT
2
] for the geological formation, CO2 and 

brine 




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1
, respectively [Bear  1979], 

we obtain 
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Then, we assume that the fluids and geological formation are sufficiently rigid 

such that
fC , cC , wC ,  , c , and w  are essentially constant. This assumption has been 

used extensively in the water resources literature when describing the specific storage 

coefficient,  
wfws CCgS   [L

-1
] in confined aquifers, where g [LT

-2
] is the 

gravitational constant. Rewriting the system using the above assumption leads to: 
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3.4  Solution Development  

3.4.1 Non-dimensionalization 

The system to be analyzed can be simplified further by defining the following 

dimensionless parameters  
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Re-writing equations from (3-5) to (3-14) in dimensionless form leads to 
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
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associated with the following initial and boundary conditions: 

  00,1  DDD trP ,                                                                                       (3-21) 
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  10,1  DDD trh ,                                                                                    (3-22) 

  10,1  DD trP ,                                                               (3-23) 

  00,  DeDDcD trrq ,                                                                           (3-24) 

  00,1  DDwD trq ,                                                                                   (3-25) 

  00,  DeDDwD trrq .                                                                           (3-26) 

 

In section 2, it has been shown that the final solution for domains of infinite 

extent when 0wDr , eDr , 0 , 
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we obtain 
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where 
D

D

t

r 2

  and 
1E  denote the nE  function with n = 1, which is related to the 

exponential integral function,  iE , via      11 EE .  

 

 The equation for a single-phase fluid of density, c , viscosity, w , and radially 

flows in steady state conditions in a formation with finite radial extent er  can be 

described as follows [Dake  1978]: 
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Applying the dimensionless transformation, we have 
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combining equations (3-27) and (3-30) and setting  cFP DD ,  gives: 
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where eDt  is the time required by the perturbed pressure wave to hit the outer boundary 

of the domain eDr . Following Mathias et al. [2011], we calculated the time span required 
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by the pressure wave to reach the outer boundary of the domain. Recalling that the 

injection process in our case is running under constant pressure at the wellbore (i.e. the 

flux at the wellbore in not known). However, we still can solve for the time span by 

using the flux formula developed previously in section 2.  Equation (3-31) shows that the 

time span eDt  needed to reach that boundary is proportional to the squared distance 

between the injection well and the outer boundary, as well as, the total compressibility of 

the formation and the fluid, and the injection pressure at the wellbore. Although, 

equation (3-28) was derived for infinite domains only, it can be used for finite domains 

as long as the injection time is less than eDt , calculated by equation (3-31). 

 

3.4.2 Pseudo-steady state solution in a radial system for single phase flow 

Physical consideration 

As in section 2, an outer region, r > ri, is assumed to consist of only a single 

phase.  To solve for this region with a closed boundary conditions, we will introduce the 

simplification that the pressure in this region is in a pseudo-steady-state. The physical 

concept of pseudosteady state is defined as the condition where the pressure at all points 

in the reservoir changes at the same rate, so that the flux becomes independent of time, 

as illustrated by Figure 3.1. This condition is applicable to a reservoir which has been 

under injection for a sufficient period of time so that the effect of the outer boundary has 

been felt. In terms of radial flow model, it is considered that the well is surrounded by a 
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solid “brick wall” outer boundary which prevents the flow of fluids outside the reservoir, 

accordingly, at the outer boundary   
 

0
,






t

trP e .  
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Figure 3.2: Plot of a schematic diagram shows pseudosteady state conditions in radial 

flow system. 
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Where initP  is the initial reservoir pressure; 1eP , 2eP and 3eP  are  the pressure at the 

reservoir boundary at times 
1t , 2t , and 3t ; 1eP , 2eP , 3eP  are the average reservoir 

pressure at times 1t , 2t , and 3t , respectively. 

 

Mathematical model 

Now consider radial single-phase flow of a fluid with density, c , and viscosity, 

w , in a closed formation of outer boundary “ er ”. The governing partial differential 

equation for flow in porous media is called the diffusivity equation. The diffusivity 

equation for a slightly compressible liquid is given as  

t
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

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 1
,                                                                     (3-32) 

where tC  is the total compressibility and is defined as 
cft CCC  . The significant 

assumptions made in equation (3-32) are: 

1. Slightly compressible liquid (i.e. constant compressibility) 

2. Constant fluid viscosity 

3. Single-phase liquid flow 

4. Gravity and capillary pressure are neglected 

5. Constant permeability 

6. Horizontal radial flow (i.e. no vertical flow). 
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 The system is subjected to the following boundary and initial conditions, 

  00,  trrrP ei ,                                (3-33) 

  00, PtrrP i  ,                                                       (3-34) 

  00,  trrq ec ,                                                                                                   (3-35) 

where 0P  and ir  [L] are the injection constant pressure, and  the radius of injection well 

in the case of single phase flow. After sufficient time has been passed for the outer 

boundary to be felt, the system will develop a pseudo-steady state. Then, the change in 

pressure with time becomes more or less uniform, so that the right hand side of equation 

(3-32) can be approximate as constant. The values of that constant can be obtained from 

a simple material balance relationship using the definition of compressibility. Once the 

reservoir reached the pseudo-steady state condition, each injection well in the reservoir 

will inject into its own no-flow boundary quite independently of the other wells. For this 

condition 
 
dt

trdP ,
 must be approximately constant throughout the entire reservoir 

otherwise flow would occur across the boundaries causing a re-adjustment in their 

positions until stability was eventually achieved. In this case a simple technique can be 

applied to determine the volume average reservoir pressure.    

  

The average aquifer pressure, P [MLT
-2

], is controlled by a material balance 

using the compressibility definition as follows:  

I

t

i
init N

VC

Hr
PP

2
 ,                                                                         (3-36) 
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where P [MLT
-2

] is the average aquifer pressure, initP [MLT
-2

] is the initial aquifer 

pressure, 
dP

dV

V
Ct

1
  [M

-1
LT

2
] is the total compressibility for a cylindrical aquifer with 

fluid volume [L
3
] , AHV  , and cross-sectional area [L

2
],  22

ie rrA  . IN is the 

cumulative integrated injection rate into the aquifer (proportional to the total injected 

volume), and is defined as follows: 
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therefore, ),( trrq
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Taking the derivative of equation (3-36) with respect to time 
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under the pseudo-steady state assumption,  
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Substituting equation (3-39) into equation (3-32) (note that partial derivatives are now 

expressed as ordinary derivatives), we have 
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Substituting equation (3-41) into equation (3-40) and integrating, we obtain 

dr

dP

r

cr
G  1

2
.                                                         (3-42) 

Evaluating equation (3-42) at the outer boundary,    0, 
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where 1c  is an integration constant. Solving for 1c , we obtain 
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Substituting equation (3-44) back into equation (3-42), multiplying through by dr , and 

integrating both sides across the entire aquifer radius (i.e. using separation of variable) 

leads to  
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evaluating the integration of equation (3-45), we obtain 
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Substituting equation (3-41) into equation (3-46) gives 
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Now, equation (3-47) can be written in dimensionless form as  
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Substituting  22

ie rrA   into equation (3-47) and solving for rP , we have 
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 which can be rewritten in dimensionless form as 
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Development of 
ir PP   relationship 

Now we will develop a relationship between the average aquifer pressure, rP , and 

the wellbore injection pressure, iP . By definition, the average aquifer pressure is given 

by  
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for a cylindrical aquifer, we have 

 22

irrHV  , and  HrdrVd 2 .                 (3-51) 

Substituting equation (3-51) into equation (3-50) gives 
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Substituting equation (3-48) into equation (3-52) yield 
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Expanding equation (3-53) and isolating each integral as follows 
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Evaluating each integral of equation (3-53) separately, we have 
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Substituting equations (3-54) through (3-56) back into equation (3-53) and collecting 

similar terms, we obtain 
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Equation (3-57) is our fundamental linking relation between the wellbore 

pressure and the average reservoir pressure during pseudo-steady state flow. However, 

rP   (the average reservoir pressure over a given radius, r) is of a little use. In order to 

obtain the average pressure of the reservoir based on the entire aquifer volume, we need 

to evaluate equation (3-57) at err  as follows  









































































































22

2

22

22

22

2

22

2

2

1

4

1

2

1
ln

ie

i

ie

ie

e

i

ie

e

ie

eCwi

i
rr

r

rr

rr

r

r

rr

r

rr

r

k

qr
PP


.(3-58) 

Assuming ie rr   (i.e. the radial extent of the plume is always much smaller than that of 

the formation), this leads to  
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 and the above solution reduces to the following equation   
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Now we can directly couple equation (3-59) with the material balance, equation 

(3-39), to develop a time-pressure relation for pseudo-steady state flow.   

Recalling equation (3-39), we have 
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which upon integration yields an estimate of the average aquifer pressure as follows 
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Substituting equation (3-60) into equation (3-59), we obtain the pressure at the inner 

boundary of the pseudo-steady state region: 





































  4

3
ln)(

2

0 e

icwi
t

c

t

i
i

r

r

k

qr
dq

VC

Hr
P





.              (3-61) 

 

3.4.3 Combining single phase solution with two phase solution 

We now set ir  to be the outside edge of the two phase region. Recalling 

that
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written in dimensional form as  
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By substituting equation (3-62) into the part represents the outer solution (i.e. when 

ei rrr  ) of equation (3-28) , we can rewrite equation (3-28) as follows: 
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The mean dimensionless pressure is defined by  
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Substituting equation (3-63) into equation (3-64) and integrating yields 
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           Now we can write  cFD ,  as follows: 
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or     
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 Recalling that 




4

e
teD   is the time needed for the pressure wave perturbation 

to reach the outer boundary of the domain. Now it becomes clear that equation (3-66) is 

the solution of a closed domain and it is the analogue of equation (3-28). 

 

 Note that the second part of equation (3-66) is obtained by substituting  
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 ) into the part of 

equation (3-60) describes the pressure propagation in the outer most region of the 

domain (i.e. when ei rrr  ). 
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  Now let’s evaluate iDP  when eDD tt   assuming that ie rr   (i.e. the radial 

extent of the plume is always much smaller than that of the formation), and hence the 

quantities: 2
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Substituting equation (3-69) into equation (3-66), we obtain 
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           Finally, we can obtain a closed form expression for DP  as follows:                                                                     
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and ctrq DDcD 2),1(  , recalling that c is half of the dimensionless flux at the wellbore 

as defined in section 2. 

 

3.5 Results and Discussion 

 We apply the solution scheme described above to a specific example aquifer, 

where the injection pressure, initial and boundary conditions, and the formation 
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properties (thickness, perforation thickness, permeability and porosity) are summarized 

in Table 2.3 and 3.1.  The injection process continues for one hundred years, starting in 

the year 2010 and ended in 2110. The pressure buildup across the entire aquifer is shown 

at five year intervals in Figure 3.3. During the entire injection period, there are large 

pressure gradients within 250 m of the well, and then gradients are much lower at larger 

distances. It also shows that the rate of pressure buildup decreases with time, with the 

late time pressure curves (i.e. after the year 2070) stacking nearly on top of one another. 

 

 

 

Table 3.1: Model parameters used in closed brine aquifer calculations. 

 

Parameter Value 

rk  

0.6[-] 

er   10 [km] 

rS  

0.15[-] 
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Figure 3.3: Predicted pressure vs. radial distance at different times for different years 

since injection begins. 
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Figure 3.4: Predicted pressure increases over 3 different 5-year periods (2015-2010, 

2025-2010, and 2030-2010) as a function of radial distance. 

 

 

 

Figure 3.4 shows the difference between calculate reservoir pressures separated 

by 5 years in time; this difference therefore is approximately proportional to the rate of 

change of pressure. At any given time, the maximum rate of pressure increase will occur 

at some distance from the wellbore.   The decrease in amplitude and increase in radial 

distance with time demonstrates the front of pressure diffusing outward from the 

wellbore as time evolves. The rate of pressure difference between the years 2015-2010 is 

largest very near the well at r=25m.While between the years 2025-2020 the peak rate of 

change is found at r=100m. Then it is shifted to be at r=200m between the years 2030-
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2025, then it kept migrating and attenuating away from the well as time proceeds . This 

is because each pressure perturbation wave starts very strong nearby the wellbore, and 

then as it migrates away from the wellbore it attenuates and changes its location. In other 

words, the pressure perturbation wave starts with very sharp and high peak, and then 

diffuses with radial distance away from the well as time evolves.   
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Figure 3.5: Comparison of predicted pressure buildup as a function of time at specific 

radial distances (r= 25 m, 100 m, 1000 m, 3000 m, and 4000 m). 
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Figure 3.5 shows the results of pressure build up at five different radial locations 

(r = 25, 100, 1000, 3000, and 4000m). These locations are selected to compare the 

pressure buildup at close (i.e. r=25 and 100m), intermediate (i.e. r= 1000 and 3000m) 

and far (i.e. r=4000m) distance from the well. The pressure increased by 1600 kpa at 

r=25m by the end of the first five years of injection (2010-2015), then the increase 

dropped down to be 120 kpa in the second five years and kept going down to increase 

with 65, 35 , 25, 20, and 18 kpa in the third, fourth, fifth, sixth and seventh periods, 

respectively. It started to level off and increase by 2.5 between the years 2060 and 2110 

to possess an overall increase in pressure with 1910 kpa from the beginning till the end 

of injection. While at distance r=100 the pressure profile increased with 700 kpa in the 

first five years, and kept increasing with 330, 290, 110, 90, 80, 65, and 30 kpa every five 

years between the year 2015 and 2070, and started to stabilize with 2.5 kpa raise up  

every five years during the last 20 years of injection.  The last three curves (i.e. at 

r=1000, 3000, and 4000m) follow the same pattern, kept their increasing rate with an 

average of 180 kpa till the year 2070, and then declined to increase with 2.5 kpa between 

the years 2070 and 2110.    
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Figure 3.6: Pressure increase after 100 years of pumping as a function of radial distance. 

 

 

 

 Figure 3.6 shows essentially the same results as Figures 3.3, 3.4 and 3.5. It shows 

that as a consequence of injection the aquifer develops a very steep pressure gradient 

near to the wellbore, and as we move away from the wellbore the gradient relaxes till it 

levels off at the outer boundary.  
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Figure 3.7: Expected cumulative injected CO2 mass vs. time. 
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Figure 3.8: Expected cumulative injected CO2 volume vs. time. 

 

 

 

Following the same procedure we can calculate both the cumulative injected CO2 

volume and mass. Figures 3.7 and 3.8 show the cumulative injected volume (in cubic 

meter) and mass (in megaton) during the injection process, respectively. It can be seen 

that the two curves have the same pattern; they keep increasing from the star till the end 

of the hundred year injection.   
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4.  PRESSURE BUILDUP DURING CO2 INJECTION THROUGH FULL-

PENETRATING WELLS IN INFINTE AND CLOSED GAS RESERVOIR 

 

Among the possible formations available for CO2 storage, deep saline aquifers 

have the largest capacity [IPCC  2005] and are relatively ubiquitous. However, because 

of the enormous scale of the problem, any full-scale implementation of CCS will likely 

require use of other geological media such as oil and gas reservoirs [IPCC  2005]. 

 

In this section, we develop a semi-analytical solution for the pressure evolution 

in depleted gas reservoirs when CO2 is injected at a constant pressure. The solution 

accounts for CO2 compressibility, and both infinite-acting and closed reservoirs are 

considered. The time-variable injection rate and the cumulative mass and volume of CO2 

injected during the injection period are also calculated 

 

4.1 Introduction 

Because of the uncertainty in predicting climate behavior and the need to avoid 

irreversible climate changes and the associated risks resulting from greenhouse effects, 

most of the industrialized world has committed to reduce the release of anthropogenic 

CO2 into the atmosphere [IPCC  2005]. Carbon capture and storage (CCS) is an 

immediately available means of reducing CO2 emissions into the atmosphere from major 

point sources, such as thermal power plants and the petrochemical industry [IPCC  

2005].   
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CCS with geo-sequestration consists of three stages. The first is the CO2 capture 

itself, the second is its transport and the third the injection and storage in deep geological 

formations. Various types of geological formations can be considered for CO2 

sequestration. These include un-minable coal seams [Krooss et al.  2002; Shi and 

Durucan  2005; Stevens et al.  1999], depleted oil and gas reservoirs  [Ferronato et al.  

2010; Gallo et al.  2002; Hawkes et al.  2005; Li et al.  2005; Li  2006; Li et al.  2006; 

Oldenburg and Benson  2002; Oldenburg et al.  2001; Oldenburg  2006; Stevens et al.  

2000; Whittaker et al.  2004], and deep saline aquifers [Bachu  2000,  2008; Birkholzer 

and Zhou  2009; Gale  2004; Gunter et al.  1997; Hepple and Benson  2005; Holloway  

2005; IPCC  2005; Vilarrasa et al.  2010a]. Currently, depleted or nearly depleted oil 

and gas reservoirs are the most appealing geological storage sites for CO2 sequestration 

for the following reasons. First, the depleted reservoirs have been extensively 

investigated during the exploitation stage. In addition, the underground and surface 

infrastructure (wells, equipment and pipelines) is already available and could be used for 

CO2 storage injection with, at most, minor modifications. Moreover, the injection of 

different gases, including CO2, into natural gas reservoirs as a technique to enhance 

recovery has been widely practiced in the gas industry. The experience gained can be 

adapted to guide the CO2 sequestration injection.  

 

Accordingly, the sequestration of CO2 in nearly depleted or even developing gas 

reservoirs can simultaneously reduce greenhouse gas emissions and increase gas 

recovery.  Recovery of natural gas is highly efficient, leaving a large amount of void 
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space to store CO2 [Stevens et al.  2001]. Also, the process has many advantages. Firstly, 

the CO2 is trapped in the reservoirs in the same way gas is stored. Therefore, this method 

can bypass an important barrier of geological storage, long-term liability of the injected 

CO2 [Kuuskraa and Ferguson  2008].  

 

Secondly, gas can be recovered, supporting the economy and creating incentives 

for gas companies [Kuuskraa and Ferguson  2008], and a CO2 sequestration market will 

be created that can balance out the cost of carbon capture, transportation, and storage.  

The size of this market is about 7,500 million tons between now and 2030 [Kuuskraa 

and Ferguson  2008]. 

 

A typical reservoir consists of a layer of permeable rock with another layer of 

impermeable rock above, forming a trap that can hold CO2 inside in the same way it 

keeps gas [Plasynski et al.  2009]. One of the biggest challenging facing large-scale 

applications of geologic sequestration in gas fields is the lack of adequate monitoring 

techniques and verification to convince regulators and the public that sequestration is 

secure over a long term. This challenge could be overcome by developing a robust and 

practical monitoring technique to the sequestration process.  

 

Different aspects of CO2 storage in depleted gas reservoirs have been extensively 

studied using numerical models, including underground migration simulation [Audigane 

et al.  2007; Johnson et al.  2004; Obi and Blunt  2006; Oldenburg et al.  2001; Van der 
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Meer  1992], geochemical modeling [André et al.  2007; Audigane et al.  2007; 

Audigane et al.  2009; Xu and Pruess  2001; Xu et al.  2004], long-term integrity and risk 

assessment [Celia et al.  2006; Duncan et al.  2009].  

 

Predictions of the CO2 plume extent and the generated overpressure should be 

performed for each potential CO2 storage site. Creating a numerical model for every one 

of these sites will be needed. Still, analytical solutions, which make simplifying 

assumptions, may help in the process of screening and decision making for initial site 

selection.  

 

Some of the existing analytical solutions of the syninjection period, [Dentz and 

Tartakovsky  2009a,  2009b; Nordbotten et al.  2005b] and those for the post-injection 

period [Hesse et al.  2008; Hesse et al.  2007; Juanes et al.  2010], assume that CO2 is 

incompressible. This assumption can induce large errors in the CO2 plume position 

estimation. There is only one explicit solution (to our knowledge) for pressure buildup in 

a gas reservoir during the injection of compressible CO2 [Mukhopadhyay et al.  2012], 

which assumed an infinite acting reservoir and a constant injection rate.   

 

Existing analytical solutions assume injection at a constant rate at the wellbore. 

This assumption is also problematic because injection under constant rate is hard to 

maintain especially for gases. This leads to the objective of this study, which 

incorporates CO2 compressibility and constant pressure injection in a semi-analytical 
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solution for the CO2 pressure distribution in gas reservoirs. One major difficulty in 

developing an analytical or semi-analytical solution involving injection of CO2 under 

constant pressure is that, the flux of CO2 at the wellbore is not known. The way to get 

around this obstacle is to solve for the pressure wave first as a function of flux, and then 

solve for the flux numerically, which is subsequently plugged back into the pressure 

formula to get a closed form solution of the pressure. 

 

The objective of this study is to develop an approximate solution for pressure 

build up during the injection of CO2 under constant pressure into gas reservoirs through 

a fully penetrating well. The solution is extended to account for both infinite acting 

reservoirs and closed ones as well. The solution is developed using Laplace transform to 

obtain the solution in Laplace domain, and then invert it back into the real time domain. 

 

4.2 Conceptual Model  

Once a gas reservoir has undergone a CO2 injection process, a supercritical CO2 

phase will replace the original hydrocarbon near the wellbore, and may fill the either the 

bottom or top of the reservoir, depending on the relative density of CO2 and 

hydrocarbon.. There are many different mechanisms that control the migration of CO2 in 

the reservoir. The most important transport mechanisms include:  fluid flow under 

pressure gradient created by the injection process, effect of buoyancy forces resulting 

from the density differences between the fluids, diffusion, dispersion and fingering 

caused by the existence of preferential pathways due to heterogeneity of the storage 
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formation and differences in mobility between fluids, and transport by capillarity arising 

from contrast of fluids wettability [IPCC  2005]. Other potentially important processes 

include the reaction of CO2 with mineral surfaces in the reservoir, dissolution into the 

original reservoir fluid, and the adsorption upon the surface of clay minerals. Following 

Mukhopadhyay et al  [2012], we simplified the system in order to develop a closed form 

solution. Dispersion, mineralization, dissolution, and adsorption processes are not 

considered since they only become significant at times larger than the time of our 

interest (i.e., during injection and the following ~100 years).  We also ignore capillary 

forces, and assume a homogeneous formation, so that the two phases remain separated 

by a sharp, simple boundary.  . The viscosity of pure supercritical CO2 can be 

significantly larger than that of pure Methane [Oldenburg and Doughty  2011], but for 

simplicity and following Mukhopadhyay et al [2012] , we assume that the viscosity of 

the resident gas phase is equal to that of the injected gas.   

 

The buoyancy forces that drive vertical flow depend on the type of the in-situ 

fluid. Also, the magnitude of the density difference between the invading gas and the in-

situ gas phase depends on formation pressure and temperature. This may lead to 

significant buoyancy effects between dense CO2 and the lighter native natural gas (e.g., 

CH4) [Oldenburg and Doughty  2011]. However, our objective is to estimate the 

maximum pressure buildup during injection (i.e. is near the injection well), which is 

dominated by viscous forces and not buoyancy forces (which are important farther 

away). We then exclude buoyancy from our conceptual model. This exclusion is likely 
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to produce a conservative estimate of the maximum extent of pressure buildup, because 

buoyancy drives fluids away vertically from the point of injection into the formation. 

Thus, the predicted pressure without buoyancy at the point of injection is larger than the 

actual pressure (when buoyancy is included). Additionally, when buoyancy is ignored, 

the model results will overestimate injection-induced horizontal migration of CO2 (i.e., 

the actual near-field horizontal spreading would be slightly less when buoyancy is 

included). 

 

The schematic diagram in Figure 4.1 shows the conceptual model. The reservoir 

is cylindrical and bounded on the top and bottom by impermeable rocks creating no flow 

boundary conditions. The well is vertical and fully penetrating the reservoir in the center. 

The flow is assumed to be horizontal and axisymmetric around the wellbore, which is 

justified since the buoyancy force is ignored as a vertical transport driving mechanism. 

The wellbore is acting as the first-type (Dirichlet) inner boundary condition, where the 

pressure is prescribed there.  
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Figure 4.1: Schematic diagram of CO2 injection into gas reservoir under constant 

pressure at the wellbore. 

 

 

 

The problem will be investigated for two different outer boundary conditions: 

constant pressure at infinite radial distance from the injection well to simulate an 

infinite-acting reservoir, or no radial flow at a specific distance from the injection well to 

simulate a bounded reservoir. The infinite-acting reservoir refers to a problem in which 

time of interest is not long enough for injection from the well to interact with the 

boundaries of the reservoir (i.e., very large reservoirs, slow injection or relatively short 

times). The storage formation is assumed to be homogeneous and has a uniform initial 

pressure. The injection process is assumed to occur under isothermal conditions. Since 

the phases are assumed to be non-mixing and the capillary pressure is ignored, the 

pressure in the two phases is continuous at the interface, and hence we will solve for one 

pressure only.   



95 

 

 4.3 Mathematical Model 

Based on the conceptual model described above, the governing equation of CO2 

flow, and the initial and boundary conditions of the system can be written in radial 

coordinate as follows 

 
t

P
rq

rr
c









 

1
,                                (4-1) 

  00, rP ,                                                    (4-2) 

  0, PtrP w  ,                                                 (4-3) 

  0,  tP ,                                                     (4-4) 

  0, 



tr

r

P
r e ,                             (4-5) 

where r , wr , er ,  , P ,  ,   , and Cq are the radial distance from wellbore, injection 

well radius, radial distance from injection well to outer boundary, porosity of storage 

formation, pressure, density, viscosity, and flux of CO2, respectively. 

 

            Assuming the CO2 is governed by Darcy’s law, we have

 

r

Pk
qc







,                        (4-6) 

where k and  are the permeability of the formation and the dynamic viscosity of CO2. 

Substituting equation (4-6) back into equation (4-1) gives  

t

P
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
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.                                (4-7) 
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Since we will let the gas density vary with pressure, we will need to have a relation 

between the density and pressure. We use Altunin’s correlation to calculate density, : 

3

3

2

210 PaPaPaaP   ,                                 (4-8) 

where  P is Pitzer’s density approximation. 

ZRT

PM
P  ,                                  (4-9) 

and Z is the gas compressibility factor: 

RT

BP
Z 1 ,                                (4-10) 

here, M, B , and T  are the molecular weight of CO2, Pitzer’s correlation coefficient, and 

temperature respectively. The coefficients na are function of temperature, and have 

specific range as shown in Table 4.1, over which equation (4-9) can be used 

[Mukhopadhyay et al.  2012]. Equation (4-10) is the simplified version of Pitzer’s 

correlation when truncated after the second term , while equation (4-8) is the corrected 

Pizer’s correlation to be used at high pressures [Mukhopadhyay et al.  2012].  

 

 

 

Table 4.1: The coefficients an range of values [Mukhopadhyay et al.  2012]. 

T [C
o
] P [atm] 

0a [M L
-3

] 1a  [M L
-3

atm
-1

] 2a  [M L
-3

atm
-2

] 
3a [M L

-3
atm

-3
] 

45 1-106 -0.0574 0.0660 -0.0083 2.700 E-004 

55 1-126 -0.0243 0.0280 -0.0035 1.100 E-004 

56 1-138 -0.0209 0.0234 -0.0023 6.090 E-005 
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            Substituting equations (4-9) into equation (4-8) we obtain 









 2

321
0 PaPaa

P

a

ZRT

M
P .                                    (4-11) 

Substituting equations 4-(10) into equation (4-11) gives 












 2

321
0 PaPaa

P

a

PBRT

M
P .                                 (4-12) 

         

 If we substitute equation (4-12) into equation (4-7), we have a highly non-linear 

equation in P.  To linearize this problem  we follow Al-Hussainy et al [1966] who 

proposed a pseudo-pressure concept to linearize the general gas diffusivity equation into 

an equivalent form of a slightly compressible liquid. We define a new variable as 

follows: 


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where iP  is the initial gas reservoir pressure and nd  are defined by Mukhopadhyay et al  

[2012], as follows: 

2
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We then define the parameter  :  
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 If we treat  as constants, then the problem reduces to a simple linear diffusion 

equation that is amenable to classical solutions.   
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By definition the isothermal gas compressibility is 
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which can be simplified and rewritten in terms of   as follows 
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4.4 Solution Development  

4.4.1 Non-dimensionlization  

 The system is scaled by defining the following dimensionless parameters  
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where the system can be rewritten as follows 
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4.4.2 Laplace transform 

 Taking Laplace transform for equations (4-24) through (4-27b) gives 
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0
dr

d ,                                                                                                               (4-30a) 

0

 edd rrd

d

d
dr

d
r


,                                                                                                       (4-30b) 

where “s” is the Laplace parameter. Equation (4-28) becomes an ordinary differential 

equation. Multiplying equation (4-28) by
2

dr , and defining the following scale 

transformation, drs , we obtain  

02

2

2
2  d

dd

d

d

d

d










 ,        (4-31) 

where equation (4-31) is the modified Bessel differential equation, and its general 

solution  is given by Abramowitz and Stegun [1965] 

      00 CKAId  ,                        (4-32) 

where the functions  0I  and  0K  are the modified Bessel functions of zero order and 

first and second type, respectively. A and C are coefficients to be determined from the 

boundary conditions of the problem. Reverting to the radial coordinates, equation (4-32) 

becomes  

     dddd rsCKrsAIsr 00,  .         (4-33) 

 

 In order to solve for A and C, we have to apply the boundary conditions. Using 

the chain rule we have  

d

d

d

d

dr

d

d

d

dr

d 




 , 
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and since, 
   

   











11

00 CKAI
d

dK
C

d

dI
A

d

d d
 ,       

and s
dr

d

d




, we obtain 

   dddd

d

d

d rsKrsCrsIrsA
dr

d
r 11 


,       (4-34) 

where functions  1I  and  1K  are the modified Bessel functions of first-order and first 

and second type, respectively 

 

4.4.3 Case-1: Infinite acting reservoir      

 Applying the boundary condition at the wellbore, by inserting equation (4-29), 

into equation (4-33) yields 

   sCKsAI
sRT

B
00

3




.        (4-35) 

Similarly, substituting equation (4-30a) into equation (4-33) gives 

     0lim 00 


dd
r

rsCKrsAI
d

.         (4-36) 

Since   drI0 , therefore 0A  and solving equation (4-35) for C gives 

 sKsRT

B
C

0

3 1
 .          (4-37) 

Substituting equation (4-37) back into equation (4-33), we obtain the particular solution 

for the infinite-acting reservoir case as follows 

 
 

 ddd rsK
sKsRT

B
sr 0

0

3 1
,


  .        (4-38) 
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Now equation (4-38) is the solution for the infinite acting reservoir in Laplace domain. 

 

4.4.4 Case-2: Closed reservoir with no flow B.C.  

 Recall that the no-flow B.C is described by 0

 edd rrd

d

d
dr

d
r


, where d  is 

described by equation (4-32b), and 
d

d

d
dr

d
r


is defined by equation (4-34). Thus  

   edededed rsCKrsrsAIsr 110  ,       (4-39) 

Rearranging equation (4-39) and writing “A” in terms of C gives 

 
 ed

ed

rsI

rsK
CA

1

1 .        (4-40) 

By substituting equation (4-40) back into equation (4-33) and solving for C, we obtain 

  
 

       










eded

ed

rsKsIrsIsK

rsI

sRT

B
C

1010

1

3
,      (4-41) 

  
 

       










eded

ed

rsKsIrsIsK

rsK

sRT

B
A

1010

1

3
.      (4-42) 

Now, we substitute equations (4-41) and (4-42) back into equation (4-33) to have 

   
       
        














eded

eddedd
dd

rsKsIrsIsK

rsIrsKrsKrsI

sRT

B
sr

1010

1010

3

,


 .    (4-43) 

 

 Since   is constant at the wellbore as OPP   at the wellbore, an exact solution 

for   can be obtained easily from equation (4-43). Equation (4-43) is a particular 
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solution for a closed reservoir with no flow outer boundary condition. Now, we need to 

convert equations (4-38) and (4-43) back into real time domain, and then substitute into 

equation (4-13) to solve for the pressure. Equations (4-38) and (4-43) cannot be inverted 

back into real time domain analytically, so a numerical inversion is needed. The De 

Hoog algorithm [De Hoog et al.  1982] was implemented in MATLAB to get the 

solution in real time domain.  

 

4.5 Results and Discussion  

 Since a numerical scheme is required for the inverse transform, to explore the 

behavior of pressure in these systems, we must specify an example reservoir. In this 

example, we will take the initial pressure in that the storage formation to be 9000 kPa. 

We also assume that the formation porosity is 0.1 and permeability is 10
−14

 m
2
. The 

imposed injection pressure is 11000 kPa and formation temperature is assumed to be 

55˚C and surface temperature 22˚C. Assuming a geothermal gradient of 0.03˚C m
-1

 

corresponds to a formation depth of 900 m.  For the set of results obtained with the 

proposed solution scheme, the injection pressure, initial and boundary conditions, and 

the formation properties (thickness, permeability and porosity) are summarized in Table 

4.2. The injection process run for hundred years, started at the year 2010 and ended at 

the year 2110. 
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Table 4.2: Input data used in gas reservoir computations. 

Parameter Value 

A  

315 km
2
 

T  55[C
o
] 

fC  

7.2 E-005 [bar
-1

] 

H  

100[m] 

k  10 E-14 [m
2
] 

oP  

9 [kpa] 

ip  

11 [kpa] 

wr   0.1 [m] 

er   10 [km] 

t  100 [year] 

c   4.6 E-10-5 [pa s] 

c  

610 [kg m
-3

] 

   0.2 [-] 

 

 

 

 The pressure buildup within 4.5 km of the well-bore in the infinite acting 

reservoir is shown at 10 year intervals after injection starts in Figure 4.2.  Injection is 

assumed to be continued at constant pressure for this entire period. 
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Figure 4.2: Predicted pressure buildup as a function of radial distance at different times 

(infinite reservoir). 

 

 

 

 Figure 4.2 shows that pressure increases very rapidly within 500 m of the well, 

and much more slowly at greater distances. It also shows that as the pressure build up is 

very high at earlier times and then starts to slow down as time evolves. 
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Figure 4.3: Expected pressure buildup vs. time at specific radial distances (r= 25 m, 100 

m, 1000 m, 3000 m, and 4000 m). 

 

 

 

            Figure 4.3 shows the pressure buildup at different radial distances from the 

wellbore (r = 25, 100, 1000, 3000, and 4000m) were selected to show their pressure 

change time. These locations are selected to compare the pressure buildup at close (i.e. 

r=25 and 100m), intermediate (i.e. r= 1000 and 3000m) and at far (i.e. r=4000m) 

distance from the well. At r=25m, the pressure jumped from 9000kpa to 1100 kpa in 

very short time (about 5 years), then increased from 1100 kpa to 1500 kpa in the last 95 

years of injection.  While at r=100, the pressure increased from 9000 kpa to 9700 kpa in 

about 7 years, then the pressure reached 10200 at the end of injection. The curves at 
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r=25 and 100m have to different slopes, reflecting two different rates of pressure change. 

The pressure curves at r= 3000 and 4000m have similar slope and the pressure across 

these curves changed from 9000 kpa to 9500 kpa by the end of injection with a slow 

rate. The pressure curve at r=1000m has changed from 9000 kpa to 9700 kpa with two 

different rates of changing; the earlier rate was higher than the later one,  but still did not 

change much like the first two curves (i.e. r= 25 and 100m).    
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Figure 4.4: Pressure increase over five different 5-year periods (0-5, 5-10, 10-15, 15-20, 

20-25 years after beginning of injection) as a function of radial distance. The position of 

the peak difference, which changes in time, shows the progression of the diffusing 

pressure front. 
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            Figure 4.4 shows the difference between calculate reservoir pressures separated 

by 5 years in time; this difference therefore is approximately proportional to the rate of 

change of pressure. At any given time, the maximum rate of pressure increase will occur 

at some distance from the wellbore (peaks in Fig. 4.4).   The decrease in amplitude and 

increase in radial distance with time demonstrates the front of pressure diffusing outward 

from the wellbore as time evolves.   
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Figure 4.5: Cumulative pressure buildup as a function of radial distance. 
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            Figure 4.5 essentially shows the same results as Figures 4.2 – total change in 

reservoir pressure after 100 years of injection. It shows that the pressure gradient is very 

high nearby the injection well and decreases significantly as radial distance increases. At 

distances greater than 2 km, the pressure has only increased by about one-third of the 

applied differential pressure at the wellbore. 

 

            Knowing the pressure distribution in the reservoir and the wellbore, we can 

calculate the flux at the wellbore. Figure 4.6 shows the predicted injection rate at the 

wellbore as a function of time. The injection rate starts very high and then within a few 

months drops to much lower value. At the beginning of injection, the pressure difference 

between the injection well and the reservoir is at its maximum, but as injection continues 

and pressure builds up in the reservoir near the well, the pressure gradient decreases and 

forces the injection rate to decrease as well.  After about 2 years, injection rate decays 

only very slowly, dropping about 25% over the next 100 years. 
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Figure 4.6: Predicted injection rate at the wellbore vs. time. 

 

 

 

 We can calculate the cumulative injection volume of CO2 at the wellbore as 

shown in Figure 4.7. Then by deploying the universal law of gas and the relation 

between the number of moles of CO2 and its molecular weight to calculate the 

cumulative injected mass of CO2 as shown in Figure 4.8. Cumulative volume and mass 

of CO2 increase with time in a near-linear way because the injection rate is only slowly 

changing over time (the initial very rapid injection rates seen in Fig. 4.6 do not last long 

enough to the account for much volume). 
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Figure 4.7: Calculated cumulative injected CO2 volume vs. time. 

 

 

 



112 

 

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

C
um

ul
at

iv
e 

C
O

2
M

as
s (

m
eg

at
on

) 

Time (year)
 

Figure 4.8: Calculated cumulative injected CO2 mass vs. time. 
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5. SUMMARY AND CONCLUSIONS 

 

 Answers to important practical questions require the availability of practical 

models that can help to answer those questions. If the problem of CO2 storage in deep 

saline aquifers is considered, these questions invariably involve CO2 plume size, the 

spatial extent of pressure increases. 

 

The main objective of this dissertation was to build a set of predictive and 

accurate approximate solutions to study the injection of CO2 in brine aquifers and gas 

reservoirs. 

 

This work has described the development of four semi-analytical solutions to 

model CO2 injection and geologic storage in infinite and closed brine aquifers and 

infinite acting and closed gas reservoirs.  

 

Section 2 detailed the mathematical foundation of the model, from the mass 

balance to the vertically-averaged, two-dimensional governing equations for flow of 

brine and CO2 in the aquifers. The method of matched asymptotic expansion was 

deployed to derive an approximate solution to predict the pressure buildup and the plume 

extent in infinite aquifers during the injection process. The solution has taken care of 

both darcyan and non-darcyan flow. In this section we derived a novel closed form 
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solution for CO2 sequestration under constant injection pressure. The main results of this 

section can be summarized as follows: 

1- A new closed form solution of CO2 injection in infinite aquifers under constant 

injection pressure is introduced. 

2-  The novel solution is shown to predict the plume extent and the spatial extent of 

pressure increases. 

3- A closed formula for the flux at the wellbore introduced 

4- The flux formula used to calculate the cumulative injected volume and mass of 

CO2 during the injection. 

5- The solution obtained in this section will provide the basis to build the solution in 

the next section. 

 

Section 3 focused on deploying the solution obtained from the previous section 

to derive a semi-analytical solution for CO2 injection problems in closed domains. First a 

closed form solution was derived for single phase flow. Then the single phase solution 

obtained in this section was combined with the two phase solution obtained in section 2. 

The results of this section can be summarized as follows: 

1. A novel solution for CO2 injection in closed domains under constant pressure 

was developed. 

2. The time required for the pressure wave perturbation to reach the outer boundary 

of the domain was calculated and can be used as a cut off criteria for which 

solution can be used (i.e. as long as the time required for the pressure 



115 

 

perturbation to reach the outer boundary is less than the injection period, the 

infinite domain solution can be used for closed domains and vice versa). 

3. The newly derived solution is used to predict the pressure buildup distribution as 

a function of time and radial distance. 

4. The cumulative injected CO2 volume and mass are calculated from the obtained 

solution. 

 

The topic of section 4 was to derive a semi-analytical solution to CO2 in depleted 

gas reservoirs for both infinite acting and closed reservoirs. Laplace transform was used 

to assist in deriving a solution in Laplace domain then a numerical algorithm [De Hoog 

et al.  1982] was used to invert the solution back in the real time domain. The solution 

considered gas compressibility as a function of pressure. The main results if this section 

can be summarized as follows: 

1. A new solution for CO2 injection into gas reservoir (both infinite acting and 

closed reservoirs) under constant pressure is produced. 

2.  The solution is used to predict the pressure distribution in the gas reservoir. 

3. The cumulative volume and mass of CO2 are calculated and also the flow rate at 

the wellbore. 
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5.1 Contributions 

 The contribution of this study can be summarized as follows: 

1. This dissertation for the first time introduces closed form solutions for CO2 

sequestration under constant pressure injection at the wellbore.  

2. These solutions can be used to predict the plume extent and the pressure build 

distribution while the injection process takes place in order to monitor the 

injection process. 

3.  The developed solutions can be extended to predict the leakage through the cap 

rocks, fractures and/or abandoned wells. 

4. It can also be modified to study the post injection behavior of the system.  

 

5.2 Future Work 

The solutions presented in this work are applicable only while CO2 injection is 

taking place. In order to model the post injection behavior of the system, modifications 

to the governing equations must be made to account for imbibition of brine into pore 

space previously occupied by CO2. These solutions were derived assuming horizontal 

storage formations; we will extend them to account for dipping systems. Thin formations 

with large lateral extent may serve as good damping reservoirs for CO2, and the most 

efficient way utilize them is to use horizontal wells instead of vertical ones for 

injections. However, up to now, there is no solution for CO2 injection through horizontal 

wells. This idea is considered as a future work.   
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We finished the derivation of a semi-analytical solution for two dimensional 

solute transport in multilayered aquifer systems in the Laplace domain. Then, we 

encountered a problem with one of the boundary conditions and we are planning to 

change this boundary condition and modify the solution.  
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NOMENCLATURE 

 
Nomenclature used in Section 2: 

 
 

A  Formation plan area [L
2
] 

V  Pore fluid volume [L
3
] 

b  Forchheimer parameter [L
-1

] 

cC  Compressibility of CO2 [M
-1

LT
2
] 

fC  Compressibility of geological formation [M
-1

LT
2
] 

wC  Compressibility of brine [M
-1

LT
2
] 

wft CCC   Total formation compressibility [M
-1

LT
2
] 

h  CO2 brine interface elevation [L] 

HhhD /  Dimensionless interface elevation[-] 

H  Formation thickness [L] 

k  Permeability[L
2
] 

oP  Mass injection pressure [ML
-1

1T
-2

] 

p  Fluid pressure [ML
-1

T
-2

] 

oD ppp   Dimensionless pressure [-] 

cq  CO2 flux [LT
-1

] 

kpqrq ocwccD   Dimensionless CO2 flux [-] 

wq  Brine flux [LT
-1

] 



119 

 

kpqrq owwcwD   Dimensionless brine flux [-] 

r  Radial distance [L] 

wD rrr   Dimensionless radius [-] 

wr  Well radius [L] 

t  Time [T] 

2

wcoD rtkpt   Dimensionless time [-] 

 wfo ccp   Dimensionless  [-] 

wcoc rkpb 22    Dimensionless Forchheimer parameter [-] 

wc    Viscosity ratio [-] 

   wrwf cccc   Normalized fluid compressibility difference [-] 

c  Viscosity of CO2 [ML
-1

T
-1

] 

w  Viscosity of brine [ML
-1

T
-1

] 

c  Density of CO2 [ML
-3

] 

w  Density of brine [ML
-3

] 

wc    Density ratio [-] 

  Porosity [-] 
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Nomenclature used in Section 3: 

 

 
A  Formation plan area [L

2
] 

V  Pore fluid volume [L
3
] 

b  Forchheimer parameter [L
-1

] 

rb  Relative Forchheimer parameter [-] 

cC  Compressibility of CO2 [M
-1

LT
2
] 

fC  Compressibility of geological formation [M
-1

LT
2
] 

wC  Compressibility of brine [M
-1

LT
2
] 

wft CCC   Total formation compressibility [M
-1

LT
2
] 

h  CO2 brine interface elevation [L] 

HhhD /  Dimensionless interface elevation[-] 

H  Formation thickness [L] 

k  Permeability[L
2
] 

rk  Relative permeability[-] 

oP  Mass injection pressure [ML
-1

1T
-2

] 

p  Fluid pressure [ML
-1

T
-2

] 

oD ppp   Dimensionless pressure [-] 

cq  CO2 flux [LT
-1

] 

kkpqrq rocwccD   Dimensionless CO2 flux [-] 
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wq  Brine flux [LT
-1

] 

kkpqrq rowwcwD   Dimensionless brine flux [-] 

r  Radial distance [L] 

er  Radial extent of reservoir [L] 

weeD rrr   Dimensionless radial extent of aquifer [-] 

wD rrr   Dimensionless radius [-] 

wr  Well radius [L] 

rS  Residual brine saturation [-] 

t  Time [T] 

 42

eDed ret   Dimensionless time at which the pressure perturbation 

reaches the aquifer boundary [-] 

  21 wcroD rstkpt    Dimensionless time [-] 

   rrwfo skccp  1  Dimensionless [-] 

wcrocr rkkpbb 222    Dimensionless Forchheimer parameter [-] 

wrc k    Viscosity ratio [-] 

    wrwfr ccccs  1  Normalized fluid compressibility difference [-] 

c  Viscosity of CO2 [ML
-1

T
-1

] 

w  Viscosity of brine [ML
-1

T
-1

] 

c  Density of CO2 [ML
-3

] 
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w  Density of brine [ML
-3

] 

wcrb    Density ratio [-] 

 

Nomenclature used in Section 4: 

 

B  =B’RT  [m
3
/ mol] 

'B  Virial coefficient 

k  Permeability [ m
2
] 

L  Thickness of the storage formation 

p  Pressure [atm]   

0p  Injection pressure [atm] 

ip  Initial pressure and [ atm] 

)(tqc  Volume flux of CO2 [ms
-1

] 

R  Universal gas constant  [J mol
-1

K
-1

] 

r  Radial distance from the center of the injection borehole  [m] 

r  Infinitesimal radial distance  [m] 

s Laplace parameter 

T  Temperature  [K] 

t  Time  [s] 

Z  Compressibility factor [-] 

z  Vertical distance from the bottom of the storage formation  [m] 
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z  Infinitesimal vertical distance, m 

  Porosity of the storage formation [-] 

  Scaling parameter to linearize the gas diffusivity equation 

  Viscosity of CO2  [kg m
-1

 s
-1]

 

  Density of CO2 as predicted by Altunin’s correlations [ kg m
-3]

 

P  Density of CO2 as predicted by Pitzer’s correlations [ kg m
-3

] 
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