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ABSTRACT

This dissertation explores methods for finding irreducible infeasible subsystems

(IISs) of systems of inequalities with binary decision variables and for solving proba-

bilistically constrained stochastic integer programs (SIP-C). Finding IISs for binary

systems is useful in decomposition methods for SIP-C. SIP-C has many important

applications including modeling of strategic decision-making problems in wildfire

initial response planning.

New theoretical results and two new algorithms to find IISs for systems of inequal-

ities with binary variables are developed. The first algorithm uses the new theory

and the method of the alternative polyhedron within a branch-and-bound (BAB)

approach. The second algorithm applies the new theory and the method of the

alternative polyhedron to a system in which zero/one box constraints are appended.

Decomposition schemes using IISs for binary systems can be used to solve SIP-C.

SIP-C is challenging to solve due to the generally non-convex feasible region.

In addition, very weak lower (upper) bounds on the objective function are obtained

from the linear programming (LP) relaxation of the deterministic equivalent problem

(DEP) to SIP-C. This work develops a branch-and-cut (BAC) method based on IIS

inequalities to solve SIP-C with random technology matrix and random righthand-

side vector. Computational results show that the LP relaxation of the DEP to SIP-C

can be strengthened by the IIS inequalities.

SIP-C modeling can be applied to wildfire initial response planning. A new

methodology for wildfire initial response that includes a fire behavior simulation

model, a wildfire risk model, and SIP-C is developed and tested. The new method-

ology assumes a known standard response needed to contain a fire of given size.

Likewise, this methodology is used to evaluate deployment decisions in terms of the
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number of firefighting resources positioned at each base, the expected number of

escaped and contained fires, as well as the wildfire risk associated with fires not

receiving a standard response. A study based on the Texas district 12 (TX12) that

is one of the Texas A&M Forest Service (TFS) fire planning units in east Texas

demonstrates the effectiveness of the new methodology towards making strategic

deployment decisions for wildfire initial response planning.
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NOMENCLATURE

BAB Branch-and-bound

BAC Branch-and-cut

CPU Central processing unit

DEP Deterministic equivalent problem

FD Fire day

FS Fire scenario

ID Identification

IIS Irreducible infeasible subsystem

IP Integer programming

JD John Deere

LP Linear programming

MIP Mixed integer programming

NWE Normalized wildfire exposure

NVC Net value change

PPRI Pine plantation response index

RFL Representative fire location

SIP Stochastic integer programming

TFS Texas A&M forest service

TWRA Texas wildfire risk assessment

VRI Value response index

WE Wildfire exposure

WT Wildfire threat

WUI Wildland urban interface

WUIRI Wildland urban interface response index
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1. INTRODUCTION

1.1 Motivation and Problem Statement

1.1.1 Irreducible Infeasible Subsystems

An irreducible infeasible subsystem (IIS) is a subsystem of linear inequalities that

is infeasible, but it could be made feasible by dropping any inequality from it. IISs

have been well-studied for systems of inequalities with unrestricted decision variables,

and several methods for identifying these subsystems using linear programming (LP)

and duality theory have been developed. For instance, the method of the alternative

polyhedron [23] has the property that every extreme point of the polyhedron corre-

sponds with an IIS of the original system. This method, however, cannot be directly

applied to systems of inequalities with binary variables. Finding IISs for systems with

binary variables is useful in decomposition methods for probabilistically constrained

stochastic integer programs (SIP).

This dissertation develops new theoretical results and two new algorithms to find

IISs for systems of inequalities with binary variables. The first algorithm, called

the IIS-BAB algorithm, uses the new theory and the method of the alternative

polyhedron [23] within a branch-and-bound (BAB) approach. The second algorithm,

termed the IIS-Heuristic algorithm, applies the new theory and the method of the

alternative polyhedron [23] to a system in which zero/one box constraints are ap-

pended.

1.1.2 Probabilistically Constrained Stochastic Programming

Probabilistically constrained stochastic programming involves optimizing a func-

tion subject to certain constraints where at least one of them is satisfied with a

prescribed probability. This class of program is best suited for optimization problems

1



in which satisfying a set of constraints is desirable, but it may not be done almost

surely. Consider the wildfire initial response planning problem for example. This

problem involves making effective strategic resource deployment plans so that the

total deployment, relocation, fire damage, and dispatch cost is minimized. Dispatch

of resources to all fires during a fire season may be too expensive, or it may just

not be possible, depending on the number of available resources to provide initial

response. Thus, strategic deployment decisions should be made while minimizing the

risk associated with those fires not receiving an initial response. The aim of prob-

abilistically constrained stochastic programming is to find optimal solutions while

allowing a subset of the constraints to be violated (or not included in the problem)

an acceptable amount of time based on the decision maker’s attitude towards risk.

Thus, a probabilistically constrained stochastic program can be formulated as follows:

SIP-C1: min c>x (1.1a)

s.t. Ax ≥ b (1.1b)

P{T (ω̃)x ≥ r(ω̃)} ≥ 1− β (1.1c)

x ∈ X . (1.1d)

Note that x is the decision variable vector, and the set X imposes either continu-

ous, integer, or mixed-integer restrictions on x. The random vector ω̃ with outcomes

(scenarios) ω ∈ Ω gives rise to T (ω) ∈ Rm×n and r(ω) ∈ Rm. T (ω̃) is the random

technology matrix and r(ω̃) is the random righthand-side vector. β ∈ (0, 1) is the

decision maker’s attitude towards risk. If the decision maker is either risk-seeking,

risk-averse, or risk-neutral, he or she would choose a risk attitude level close to

one, zero or 0.5, respectively. In addition, optimizing SIP-C1 is challenging due to
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the generally non-convex feasible region. Moreover, very weak lower bounds on the

objective function are obtained from the LP relaxation of the deterministic equivalent

problem (DEP) to SIP-C1.

SIP-C1 can be classified into the following categories:

1. ω̃ has continuous probability distribution with |Ω| <∞.

2. ω̃ has discrete probability distribution with |Ω| <∞.

R. r(ω̃) is random, and T (ω̃) ≡ T is deterministic.

B. T (ω̃) and r(ω̃) are random.

C. X ⊆ Rn1 .

I. X ⊆ Zn2 .

N. X ⊆ Bn2 .

M. X ⊆ Rn1 × Zn2 or X ⊆ Rn1 × Bn2 .

Most of the approaches found in the literature attempt to solve SIP-C1 for the

1RC case. This work develops an IIS decomposition method for solving SIP-C1 for

the 2BN case. This method is based on a branch-and-cut (BAC) approach with IIS

inequalities. The BAC approach can be used to solve problems in wildfire initial

response planning that are modeled as SIP-C1.

1.1.3 Wildfire Initial Response Planning

Wildfires have been an integral part of the environment for centuries. Indeed,

wildfires play an important role in maintaining balance in ecosystems and ensuring

the survival of certain plants and animals. Unfortunately, more than 90 percent of

the wildfires in Texas occur within two miles of a community [61], and more than
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32,000 wildfires were reported in this state between 2011 and 2013. These wildfires

burned over 4 million acres and destroyed around 5,800 homes and structures [61].

Due to a limited budget for strategic planning, Texas A&M Forest Service (TFS),

an agency that directs forestry matters in Texas, does not have enough resource

capacity to provide wildfire initial response to all reported fires.

This dissertation also introduces a new methodology for wildfire initial response

planning that includes a fire behavior simulation, a wildfire risk, and a probabilisti-

cally constrained SIP model. The new methodology is used to evaluate deployment

decisions in terms of the number of firefighting resources positioned at each base,

the expected number of escaped and contained fires, as well as the wildfire risk

associated with fires not receiving an initial response. Likewise, this work presents a

study based on the Texas district 12 (TX12) that is one of the TFS fire planning units

in east Texas. Computational results from this study provide several insights into

the deployment decisions made by the new methodology. For instance, they show

that the original distribution of resources at the time of this study is not consistent

with the actual wildfire risk profile of TX12.

1.2 Research Contributions

The research contributions of this dissertation can be summarized as follows:

• A method for finding IISs of systems of linear inequalities with binary variables

using BAB and heuristic approaches.

• A BAC method using IIS inequalities to solve probabilistically constrained

SIP with random technology matrix and random righthand-side vector along

with preliminary computational results obtained from an implementation using

Microsoft Visual C++ and CPLEX 12×64 Callable Library [32].

• A methodology for wildfire initial response planning that integrates a fire

4



behavior, a wildfire risk, and a probabilistically constrained SIP model in

association with computational results obtained from an implementation using

Microsoft Visual C++, CPLEX 12×64 Callable Library [32], and BehavePlus

[5].

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 introduces lit-

erature review of methods to find IISs for systems of linear inequalities, to solve

probabilistically constrained stochastic programs, and to make decisions for wildfire

initial response planning. Chapter 3 describes a new method for finding IISs of

systems of linear inequalities with binary variables. Specifically, Chapter 3 dis-

cusses methods for finding IISs for systems of inequalities with unrestricted decision

variables, new theoretical results and algorithms to identify IISs of systems with

binary variables, and it presents two example illustrations. Chapter 4 presents a new

method to solve probabilistically constrained SIP. Particularly, Chapter 4 discusses

preliminaries, a BAC algorithm, an example illustration, as well as computational

results and a discussion. Chapter 5 details a new methodology for wildfire initial

response planning. In particular, Chapter 5 presents wildfire risk, standard response,

a probabilistically constrained SIP model, computational results, and a discussion.

Finally, Chapter 6 considers the conclusion to this dissertation including a summary

and suggestions for future research.
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2. LITERATURE REVIEW

2.1 Irreducible Infeasible Subsystems

An IIS is a minimal set of infeasible inequalities. IISs have been well studied

for systems of inequalities with unrestricted decision variables, and several methods

for identifying these subsystems using LP, duality or heuristic methods have been

developed. Irreducible infeasible subsystems were first discussed in [47]. In this

thesis, the author proves that a system defined by a matrix A is infeasible if and

only if the rank of the matrix A is equal to the number of rows minus one. The

author also presents a method to check if a subsystem of linear inequalities with

unrestricted decision variables is in fact an IIS. This method is based on the values

of the slack variables after solving a standard phase I LP. If bounded variables are

considered, it is required to explicitly define constraints associated with these bounds

in the original formulation.

The authors of [9] present a variation of the phase I approach for finding IISs for

systems of linear inequalities with unrestricted decision variables that is referred to

as elastic programming. In this approach, each inequality is given both a slack and

a surplus variable, called elastic variables, with initial guesses for the price in the

objective. Just like in an ordinary phase I LP method, there is no infeasibility after

including these elastic variables. Therefore, the problem of finding an IIS is trans-

formed into one that seeks to diagnose an anomalous solution that is characterized

by positive values associated with the elastic variables.

The problem of identifying IISs for systems of inequalities with unrestricted

decision variables is reduced to the problem of finding vertices of an alternative

polyhedron in [23]. The method of the alternative polyhedron has the property
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that every extreme point of the polyhedron corresponds with an IIS of the original

system. The vertices of the alternative polyhedron can be identified using LP or

efficient algorithms to enumerate all extreme vertices of a polyhedron such as the

one described in [18]. This method provides similar results to those obtained in [40],

and it considers extreme rays of an alternative cone instead of extreme points in the

alternative polyhedron.

The authors of [12, 11] present a series of filtering algorithms that are called

the deletion, the additive, the elastic, and the sensitive filtering algorithm. These

algorithms guarantee the identification of at least one IIS for systems of inequalities

with unrestricted decision variables. These routines combine heuristic approaches

with LP methods, and they represent an alternative to methods based on phase I

LP and duality as the ones described above.

Methods to detect IISs using techniques from lexicographic goal programming are

developed in [59]. The authors present a new algorithm for detection of IISs using

multiple conflicting objective functions or constraints that guarantees the isolation

of at least one IIS for any system of linear inequalities with unrestricted decision

variables.

The authors of [27] extend the ideas in [12] to systems of inequalities with

integer and mixed-integer decision variables. In systems of linear inequalities, the

authors include not only linear constraints but also bounds and integer restrictions

on decision variables. Each of these elements is considered an independent source of

infeasibility in a system and is independently included in an IIS. Since the authors

assume that standard methods for identifying IISs for systems of inequalities with

unrestricted variables can be directly applied to systems of inequalities with integer

or mixed-integer variables, they only present filtering routines for identifying IISs of

integer or mixed-integer systems when the corresponding continuous and unrestricted
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relaxation is feasible.

More recently, the work in [1] generalizes conflict graphs analysis of satisfiability

problems (SAT) to BAB based mixed-integer programs (MIP). At a particular node,

when a relaxation to a nodal problem is infeasible, conflict variables and bounds

can be identified by constructing a conflict graph, choosing a cut in this graph, and

by producing a conflict constraint that consists of the variables in the conflict set.

These constraints can be used as cutting planes to strengthen the relaxations of other

subproblems in the tree.

Approaches for finding IISs for systems of inequalities with unrestricted, integer,

or mixed-integer decision variables have been presented. However, methods for

obtaining IISs for systems of inequalities with binary decision variables in which the

integer restrictions are implicitly included in a system have not been addressed yet

in the literature. A summary of the literature review of methods for finding IISs for

systems of linear inequalities is shown in Table 2.1. In addition, IISs for binary sys-

tems can be used to derive decomposition methods for probabilistically constrained

SIP. A literature review on probabilistically constrained SIP is introduced in the next

section.

Table 2.1: Summary of relevant literature on IIS

Paper Methodology Decision variables
[47] Method based on the phase I LP Unrestricted
[9] Elastic programming Unrestricted
[40] Method of the alternative cone Unrestricted
[18] Method to enumerate all extreme vertices in a polyhedron Unrestricted
[23] Method of the alternative polyhedron Unrestricted
[12] Method based on filtering routines Unrestricted
[59] Goal lexicographic programming Unrestricted
[27] Method based on filtering routines Mixed integer
[1] Method based on conflict graphs analysis Mixed integer
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2.2 Probabilistically Constrained Stochastic Programming

Probabilistically constrained SIP can be classified into different cases as described

in Chapter 1. This classification is summarized in Table 2.2. Approaches to solve

probabilistically constrained SIP for the 1RC, 1R1, 1BC, 2RC, 2BC, or the 2RM

case have been developed. However, a method to solve probabilistically constrained

SIP for the 2BN case has not been addressed yet in the literature.

Table 2.2: Classification of probabilistically constrained stochastic programs

Case Description
1RC Random variable with continuous probability distribution.

Random righthand-side vector. Continuous decision variables.
1RI Random variable with continuous probability distribution.

Random righthand-side vector. Integer decision variables.
1BC Random variable with continuous probability distribution.

Random technology matrix and random righthand-side vector.
Continuous decision variables.

2RC Random variable with discrete probability distribution.
Random righthand-side vector. Continuous decision variables.

2RM Random variable with discrete probability distribution.
Random righthand-side vector. Mixed-integer decision variables.

2BC Random variable with discrete probability distribution.
Random technology matrix and random righthand-side vector.
Continuous decision variables.

2BI Random variable with discrete probability distribution.
Random technology matrix and random righthand-side vector.
Integer decision variables.

2BM Random variable with discrete probability distribution.
Random technology matrix and random righthand-side vector.
Mixed-integer decision variables.

2BN Random variable with discrete probability distribution.
Random technology matrix and random righthand-side vector.
Binary decision variables.

Methods to solve SIP-C1 for the 1RC case have been reported in the litera-

ture. For example, the authors of [10] studied the scheduling heating oil production
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problem in which individual probabilistic constraints are imposed on each constraint

involving random variables. The authors of [46] went one step further by studying

the case in which joint probabilistic constraints are imposed on constraints with

dependent random variables. Afterwards, the work in [10] and [46] is generalized

in [55] by considering SIP-C1 with joint probabilistic constraints and independent

random variables. In this work, the author shows conditions in which SIP-C1 reduces

to a convex (or quasi-convex) programming problem.

In addition to the solution methods for SIP-C1 for the 1RC case, approaches to

solve SIP-C1 for the 1RI or the 1BC case have also been developed. For instance, [6]

and [15] formulated DEPs to SIP-C1 using p-efficient points for the 1RI case. In both

approaches, p-efficient points are computed via enumeration algorithms. Likewise,

[52] developed a sample average approximation (SAA) approach to SIP-C1 for the

1BC case. Their main contribution is a theoretical foundation to approximate the

joint probabilistic constraints in SIP-C1 using the SAA method. The authors also

suggest a choice of parameters that can be used in an actual implementation of the

SAA method while obtaining good candidate solutions.

Methods to solve SIP-C1 for the 2RM or the 2RC case have also been presented

in the literature. For example, [39] presents reformulations for SIP-C1 for the the

2RM case using p-efficient points. In this work, the authors derived a mathematical

programming framework to generate exact p-efficient points such that a sequence of

increasingly tighter outer approximation problems are constructed. This new method

represents an alternative to enumeration algorithms to find p-efficient points. In

addition, [42] developed a MIP approach for SIP-C1 for the 2RC case. The authors

leveraged a natural ordering in the random righthand-side vector to overcome the

weakness of the big-M formulation so that two strengthened formulations can be

obtained. As a byproduct of this analysis, the authors present new results for the
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previously studied mixing set subject to an additional knapsack inequality.

In addition to the methods described above, approaches for solving SIP-C1 for

the 2BC case have also been devised. For instance, [56] developed new valid in-

equalities for DEP reformulations to SIP-C1 that can be applied in combination

with dominance between different realizations of the random input. The author of

[41] developed a way to reduce SIP-C1 for the 2BC case to the structure studied in

[42] and ultimately apply the same types of valid inequalities for mixing sets with a

knapsack constraint. Likewise, [60] derived a BAC algorithm using IIS inequalities.

In fact, computational results for the optimal vaccine allocation problem provided

empirical evidence that the IIS inequalities offer a significant increase in the strength

of DEP reformulations to SIP-C1 for this type of problem.

IIS inequalities have also been used to generate combinatorial benders (CB) cuts

for MIPs involving logical constraints modeled through big-M coefficients [14]. This

approach closely resembles the benders decomposition method, but the cuts the

method produces are purely combinatorial, and they do not depend on the big-

M values used in the MIP formulation. Computational results show that the new

method produces a reformulation that can be solved faster than the original MIP

model in some orders of magnitude.

A summary of the literature review for probabilistically constrained stochastic

programs is shown in Table 2.3. SIP with probabilistic constraints can be used

to model strategic decision-making problems in wildfire initial response planning. A

literature review on wildfire initial response planning is presented in the next section.

2.3 Wildfire Initial Response Planning

The first step towards wildfire containment is to effectively perform a wildfire

initial response. Wildfire initial response is the action taken by the first resources

to arrive at a wildfire to protect lives, homes, and property and to prevent further
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Table 2.3: Summary of relevant literature on probabilistically constrained stochastic
programs

Paper Methodology Case
[10] SIP-C1 with single probabilistic constraints 1RC
[46] SIP-C1 with joint probabilistic constraints 1RC

and independent random variables
[55] Convexity of SIP-C1 with joint probabilistic 1RC

constraints and dependent random variables
[6] DEP to SIP-C1 obtained using p-efficient 1RI

points within a BAB approach
[15] Methods to construct lower and upper 1RI

bounds for SIP-C1 using p-efficient points
[56] New valid inequalities for DEPs of SIP-C1 2BC

and lifting procedures for these inequalities
[36] Reformulation for SIP-C1 as a minmax 2RM

multidimensional knapsack problem (MKP)
[52] SAA approach for SIP-C1 1BC
[42] MIP reformulations for SIP-C1 with mixing 2RC

sets as a substructure
[41] MIP reformulations for SP-C with mixing 2BC

sets as a substructure
[60] BAC method using IIS inequalities to solve 2BC

reformulation for SIP-C1
[39] Reformulations for SIP-C1 using p-efficient 2RM

points
[37] Redefinition of p-points as p-patterns and 2RC

reformulations for SIP-C1
[38] Sequential method to derive the collection 2RC

of p-patterns and reformulations for SIP-C1

extension of the fire. Wildfire initial response includes two sequential phases. The

first phase (strategic phase) involves making decisions about deploying or relocating

resources to operations bases. The second phase (operational phase) involves making

decisions about dispatching resources to fire locations after fires are reported.

Deployment has been addressed using mathematical programming to assign re-

sources to stations in order to minimize operational costs. For instance, [30] and

[26] present models that assign firefighting resources to operations bases to minimize

operation costs while meeting resource requirements. The authors in [45] present an
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integer program (IP) to deploy fire suppression resources to fires that have grown

beyond the initial attack phase in order to maximize the expected total utility of

all perimeter partitions. A model to assign resources to the dozer-line in order to

minimize the total expected cost of a wildfire given uncertainty in both the flame

length and the dozer-line width produced is described in [44]. As a last example, [43]

developed a mathematical programming model that identifies a home-basing strategy

that minimizes the average annual cost of daily airtanker deployment to bases.

Deployment has also been addressed using queueing theory, statistics, and heuris-

tics. For example, [33] derived a queueing model to analyze airtanker performance

associated with wildfire initial response range. The author of [25] developed a

spreadsheet procedure for evaluating airtanker deployment prior to wildfire initial

response. The spreadsheet allows for computing expectation and higher moments

of the flight distance from an airtanker base to a random fire ignition point after

specifying the spatial distribution of fire occurrence within the airtanker base’s

wildfire initial response zone. Likewise, [34] presents a wildfire initial response

airtanker system (IAAS) model and a heuristic procedure to solve the daily airtanker

deployment decision problem.

Simulation models have also been developed for deployment decisions in wildfire

initial response planning. For example, [63] presents a stochastic simulation model in

order to closely represent the dynamics of fire occurrence and suppression resource

deployment of many federal and state protection programs in the western United

States. In particular, this model can be used as a decision tool to help managers

make decisions in both locally controlled initial attack and shared aerial resource

programs.

Dispatching has been modeled to determine the number and type of containment

resources to dispatch in order to minimize damage and suppression cost. For ex-
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ample, [54] presents a deterministic model based on analytical decision rules. The

goal is to minimize the total cost of suppression plus fire damages by determining

manpower requirements for dispatching. [35] devised two dynamic programming

(DP) algorithms that minimize the cost of dispatching water bombers, helicopters,

and firefighting crews to newly reported fires in Ontario. Likewise, [62] presents a

deterministic DP model in order to find the economically efficient set of resources to

suppress a wildfire in an initial attack setting.

Dispatching has also been modeled to provide an estimate of fire damage when

making tactical decisions about fire containment. For instance, [16] developed an IP

model that determines the optimal mix of firefighting resources to dispatch in order

to achieve the minimum value of cost plus net value change (C+NVC) [24, 17]. The

authors assume that fire growth is known at any given time in the future, and they

do not take the stochastic nature of the fire spread process into consideration.

Simulation models have also been considered for dispatching decisions in wildfire

initial response planning. For example, stochastic simulation models have been used

to evaluate changes in the number and location of resources and dispatching rules

[33, 21, 22]. More recently, an integrated simulation and optimization framework for

initial response planning was developed in [31]. The authors use the DEVS-FIRE

[50] model for fire behavior simulation and stochastic programming for computing

an optimal mix of firefighting resources to dispatch to fires. Simulation of the fire

dispatch decisions is done using an agent-based simulation model in order to evaluate

the effectiveness of the decisions based on several firefighting tactics.

Deployment and dispatching have been generally addressed independently in the

literature. More recently, these two phases in wildfire initial response planning have

been jointly considered. [49] derived a simulation and a SIP methodology. This

methodology considers firefighting resources constructing a perimeter around a fire at
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discrete time intervals over the wildfire initial response planning horizon. Moreover,

the authors developed a model that minimizes the total fixed cost of deploying

available fire resources to operations bases and the total travel cost for relocating

resources between different operations bases. The model also seeks to minimize the

expected operation cost of resources dispatched to fires and the total NVC.

Standard response models have also been developed for joint deployment and

dispatching decisions in wildfire initial response planning. Urban planners define

standard response for fire protection service in terms of expected fire size, maximum

response distance and several types of suppression resources. [29] presents a standard

response model that optimizes both daily deployment and dispatching of a single type

of resource for a finite number of fire scenarios. This is an extension of the maximal

covering location problem that handles standard response requirements. [48] devised

a two-stage SIP standard response model for wildfire initial response in order to

minimize total expected cost. This model considers multiple types of resources while

assuming a standard response to contain a fire of known size.

Probabilistically constrained models are a type of optimization model in which

a subset of the constraints regarding uncertainty are satisfied an acceptable amount

of time depending on the decision maker’s risk attitude level. Probabilistically

constrained models have not been used to address wildfire initial response planning.

Nevertheless, there are some approaches in the literature in which probabilistic

constraints are considered for solving other wildfire planning problems. For instance,

[8] presents a probabilistically constrained model in order to minimize total cost

across possible treatment areas while satisfying the probability that the wildfire loss

exceeds the total cost be less than a certain parameter. Likewise, [7] developed a

probabilistically constrained SIP to allocate fire organization budgets to fire planning

units. The aim of this model is to minimize an upper bound on the total fire cost
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such that the probability that the total random fire cost exceeds the upper bound is

less than a certain level.

The methodologies discussed above contribute to efficient decision making regard-

ing deployment and dispatching of resources for wildfire initial response planning

(Table 2.4). However, these approaches do not take wildfire risk into account.

One of the goals of this dissertation is to present a new methodology for making

decisions to wildfire initial response planning while considering wildfire risk. Unlike

previous approaches, the new methodology integrates a fire behavior simulation, a

wildfire risk, and a standard response probabilistically constrained SIP model to make

strategic deployment decisions regarding initial response planning. This work uses

a probabilistically constrained SIP model since this approach gives more flexibility

when making decisions about whether or not to provide standard response to a fire.
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Table 2.4: Summary of relevant literature on wildfire initial response planning

Paper Problem Methodology
[54] Dispatching Analytical decision rules
[24] Fire damage Model for wildfire economics
[30] Deployment Mathematical programming model
[26] Deployment Mathematical programming model
[35] Dispatching DP model
[45] Deployment Mathematical programming model
[44] Dispatching Model to predict flame length and dozer-line width
[43] Deployment Models to identify home-basing strategie
[33] Deployment Queueing model
[33] Dispatching Stochastic simulation model
[21] Dispatching Stochastic simulation model
[62] Dispatching DP model
[25] Deployment Spreadsheet for modeling airtanker performance
[17] Fire damage Model for wildfire economics
[16] Dispatching IP model using NVC
[22] Dispatching Stochastic simulation model
[29] Deployment and dispatching Scenario based standard response model
[8] Mitigation Chance-constrained model
[7] Budget planning Chance-constrained model
[63] Deployment Stochastic simulation model
[50] Fire simulation DEVS-FIRE model
[31] Dispatching Optimization and simulation model
[34] Deployment Wildfire initial response airtanker system (IAAS)
[48] Deployment and dispatching 2-stage standard response SIP model
[49] Deployment and dispatching 2-stage explicit fire growth SIP model
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3. IRREDUCIBLE INFEASIBLE SUBSYSTEMS FOR SYSTEMS OF

INEQUALITIES WITH BINARY VARIABLES

3.1 Preliminaries

This chapter presents a new method for finding IISs for systems of inequalities

with binary variables. Let us introduce first the notation that will be used throughout

this chapter. Consider decision vectors x and y that are defined as x> = (x1, ..., xn)

and y> = (y1, ..., ym). The support of a decision vector is the set of indices of its

nonzero components. Let V be an index set of the components of x, xp, 1 ≤ p ≤ n.

Let G ∈ Rm×n and v ∈ Rm. Then, G, v, x and y define the systems of inequalities

(constraints) Gx ≤ v and y>G = 0, y>v ≤ 0. Let A be an index set of the constraints

in Gx ≤ v such that gsx ≤ vs, 1 ≤ s ≤ m, is an individual inequality in Gx ≤ v. Let

Ψ be an index such that Ψ ⊆ A. Then, gsx ≤ vs,∀s ∈ Ψ is a subsystem of Gx ≤ v.

Any subsystem gsx ≤ vs,∀s ∈ Ψ such that Ψ ⊂ A is a relaxation of Gx ≤ v.

Furthermore, let xp ≤ 1, −xp ≤ 0, ∀p ∈ V be a system of inequalities that can

be appended to the system Gx ≤ x. This system of inequalities (or any subsystem

related to it) will be referred to as box constraints. Let U be an index set of the

inequalities xp ≤ 1, ∀p ∈ V appended to Gx ≤ x indexed u = m + p, p = 1, ..., n.

Moreover, let L be an index set of the inequalities −xp ≤ 0, ∀p ∈ V appended to

Gx ≤ x, xp ≤ 1, ∀p ∈ V indexed l = p + m + n, p = 1, ..., n. Finally, H := U ∪ L.

Now, let us formally introduce the systems of inequalities and concepts that will be

used as part of the theory and methods in this chapter.

DEFINITION 3.1.1. B is a system of inequalities that is defined as B := {Gx ≤

v : x ∈ {0, 1}n}. A subsystem to B is denoted by BΨ, and it is defined as BΨ :=

{gsx ≤ vs, ∀s ∈ Ψ : x ∈ {0, 1}n}.
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DEFINITION 3.1.2. N is a system of inequalities that is defined as N := {Gx ≤

v : x ∈ Rn
+}. A subsystem to N is denoted by NΨ, and it is defined as NΨ := {gsx ≤

vs, ∀s ∈ Ψ : x ∈ Rn
+}.

DEFINITION 3.1.3. R is a system of inequalities that is defined as R := {Gx ≤

v, xp ≤ 1, −xp ≤ 0, ∀p ∈ V : x ∈ Rn}. A subsystem to R is denoted by R̄, and it is

defined as R̄ := {xp ≤ 1, −xp ≤ 0, ∀p ∈ V : x ∈ Rn}.

Let Φ ⊆ V be an index set that is defined as Φ := {p : axp ≤ b, a ∈ {1,−1}, b ∈

{0, 1}}. Observe that axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1} is a system of inequalities

that can be appended to Gx ≤ x, and it is a subsystem of the system defined by U∪L

(box constraints). Φ is used to define the index sets Λ1 and Λ2 as Λ1 := {λ1 : λ1 =

p + m, ∀p ∈ Φ s.t. xp ≤ 1} and Λ2 := {λ2 : λ2 = p + m + n, ∀p ∈ Φ s.t.− xp ≤ 0}.

Likewise, Λ1 ⊆ U and Λ1 ⊆ L. Let Π be an index set that is defined as Π :=

Ψ∪Λ1 ∪Λ2. Now, let us consider some additional systems of inequalities as follows.

DEFINITION 3.1.4. CΠ is a system of inequalities that is defined as CΠ := {gsx ≤

vs, ∀s ∈ Ψ, axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, ∀p ∈ Φ : x ∈ Rn}. A subsystem

to CΠ is denoted by C̄Π, and it is defined as C̄Π = {axp ≤ b, a ∈ {1,−1}, b ∈

{0, 1}, ∀p ∈ Φ : x ∈ Rn}.

DEFINITION 3.1.5. U is a system of inequalities that is defined as U := {Gx ≤

v : x ∈ Rn}. A subsystem to U is denoted by UΨ, and it is defined as UΨ := {gsx ≤

vs, ∀s ∈ Ψ : x ∈ Rn}.

A system of inequalities Gx ≤ v is called infeasible if there is no x satisfying it.

DEFINITION 3.1.6. An irreducible infeasible subsystem (IIS) S of B is a subsys-

tem BΨ that is infeasible, but it could be made feasible by dropping any inequality

from it. Note that S = Ψ. In addition, S is the set of IISs for Gx ≤ v that is defined

as S := {S1, ..., Si}, indexed j.
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The Definition 3.1.6 applies to other systems of inequalities such as N , R, CΠ,

and U including their subsystems.

3.2 IISs for Systems of Inequalities with Unrestricted Variables

Consider the following variant of the Farkas Lemma of the alternative:

LEMMA 3.2.1. (Farkas Lemma.) One of the following systems of inequalities has

a feasible solution [19, 20]:

System 1: There exists x ∈ Rn such that Gx ≥ v.

System 2: There exists y ∈ Rm
+ with y>G = 0, y>v < 0.

This version of the Farkas Lemma is used to derive Theorem 3.2.2 (see below).

This theorem is the main result in [23], and it allows us to compute an IIS for a system

of linear inequalities with unrestricted variables using LP or efficient algorithms to

enumerate extreme vertices in a polyhedron.

THEOREM 3.2.2. The indices of the IISs for an infeasible system of inequalities

U are exactly the supports of the vertices of the alternative polyhedron:

P = {y ∈ Rm : y>G = 0, y>v ≤ −1, y ≥ 0}.

The following theorem states that the maximum cardinality on each IIS of U is

n+ 1 [13].

THEOREM 3.2.3. Assume U to be infeasible, and let Ψ be an IIS of U . Then,

|Ψ| ≤ n+ 1.

The following is an example of how to obtain an IIS for systems of inequalities

with unrestricted variables.
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U = {x1 − x2 ≤ 0 (1),

x1 + x2 ≤ 1 (2),

−x1 − x2 ≤ −2 (3),

−x2 ≤ −1 (4),

−2x1 − x2 ≤ −3 (5) : x ∈ R2}.

U is a system of five inequalities subject to 2-dimensional vectors with unre-

stricted real components. This system of inequalities is infeasible. By applying

Theorem 3.2.2 to U , an alternative polyhedron P is obtained as

P = {y ∈ R5
+ : 1y1 + 0y2 − 1y3 + 0y4 − 2y5 = 0

−1y1 + 2y2 − 1y3 − 1y4 − 1y5 = 0

0y1 + 1y2 − 2y3 − 1y4 − 3y5 ≤ −1}.

The set of IISs of U are Ψ1 = {1, 2, 3},Ψ2 = {1, 2, 5}, and Ψ3 = {2, 4} as shown in

Figure 3.1. Likewise, the maximum cardinality of any IIS for U is three in agreement

with Theorem 3.2.3. Notice also how U can become feasible by dropping constraint

2 from this system.

Consider an IIS Ψ of U obtained by applying Theorem 3.2.2. Consider also a

subsystem UΨ to U . UΨ is infeasible since the corresponding y vector satisfies the

system two in Lemma 3.2.1. Likewise, UΨ is irreducible since y ≥ 0, y>v ≤ −1 in

Theorem 3.2.2. This means that at least one component in vector y has to be positive

while indexing at least one constraint in UΨ. If the constraints corresponding to zero
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Figure 3.1: System of inequalities U

elements in y ∈ P are included in Ψ, then UΨ will be infeasible but not irreducible.

Theorem 3.2.2 does not hold for a system of inequalities N since the subsystem NΨ

for the IIS Ψ will be infeasible but not irreducible. Besides, Theorem 3.2.2 does not

work for a system of inequalities B since the Farkas Lemma does not hold for this

type of system.

3.3 Identifying IISs for Systems of Inequalities with Binary Variables

3.3.1 Theoretical Results

Even though the methods for finding an IIS for a system U cannot be directly

applied to find an IIS for a system B, these methods can be used as a basis of

approaches for obtaining an IIS of B. Consider the method of the alternative

polyhedron described in [23] for finding an IIS of U . This method cannot be directly

applied to B since Theorem 3.2.2 is proved by Lemma 3.2.1. However, this method
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can be used to find an IIS of B within a branch-and-bound (BAB) approach. Let us

develop some theoretical results before the method for finding IISs of B is presented.

First, Lemma 3.3.1 states the existence of at least one IIS for an infeasible system B

whose minimal cardinality is one.

LEMMA 3.3.1. Consider an infeasible system B. Then, there exists at least one

IIS S of B such that |S| ≥ 1.

Proof. Assume that there does not exist at least one IIS S of B such that

|S| ≥ 1. This would imply that any infeasible subsystem BΨ is not irreducible.

Consider subsystem BΨ,Ψ = {s}, 1 ≤ s ≤ m that is infeasible but not irreducible.

By dropping the inequality associated with index s from BΨ, a feasible system B is

obtained. This contradicts the initial assumption of B to be infeasible. Moreover,

since there is a subsystem BΨ that is infeasible and irreducible, then S = Ψ where

|S| ≥ 1.

�

Proposition 3.3.2 states that given an infeasible system B with a known IIS S

there exists an IIS Π to the corresponding system CΠ that contains the IIS S for B.

PROPOSITION 3.3.2. Consider an infeasible system B with a known IIS S.

Then, there exist an index set Π and an infeasible system CΠ such that Π is an IIS

of CΠ and Π ⊇ S.

Proof. Consider the systems U and R associated with B as defined in Section

3.1. Observe that R is infeasible. Thus, by Theorems 3.2.2 and 3.2.3, there exists an

IIS Π of R such that |Π| ≤ n + 1. Given the IIS S of B, let US = {gsx ≤ vs, ∀s ∈

S : x ∈ Rn} be a subsystem to U . Then, consider the following two cases:

1. Assume US is feasible. There exists a nonempty index set Φ associated with

components xp, p ∈ Φ and a system of linear inequalities gsx ≤ vs, ∀s ∈
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S, axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, ∀p ∈ Φ with unrestricted decision

variables that is infeasible (by construction) and irreducible (because S is an IIS

of B). Let Λ1 ∪Λ2 be an index set of the inequalities axp ≤ b, a ∈ {1,−1}, b ∈

{0, 1}, p ∈ Φ in this system such that Π = S ∪ Λ1 ∪ Λ2 and |Λ1 ∪ Λ2| > 0.

Therefore, there exist an index set Π and an infeasible system CΠ such that Π

is an IIS of CΠ and Π ⊇ S.

2. Assume US is infeasible. There exists an empty index set Φ associated with

components xp, p ∈ Φ and a system of linear inequalities gsx ≤ vs, ∀s ∈

S with unrestricted decision variables that is infeasible (by construction) and

irreducible (because S is an IIS of B). Let Λ1 ∪ Λ2 be an empty index set of

the inequalities axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, p ∈ Φ in CΠ such that

Π = S ∪ Λ1 ∪ Λ2 and |Λ1 ∪ Λ2| = 0. Therefore, there exist an index set Π and

an infeasible system CΠ such that Π is an IIS of CΠ and Π ⊇ S.

�

Proof of Proposition 3.3.2 provides a definition of Π as Π := S ∪ Λ1 ∪ Λ2 such

that |Π| ≤ n + 1. Now, consider the reverse of Proposition 3.3.2 as follows. Let B

be an infeasible binary system. There exists an infeasible system CΠ with an IIS Π

such that the index subset S = Π\{Λ1∪Λ2} is an IIS of B. This result is formalized

in Theorem 3.3.3.

THEOREM 3.3.3. Consider an infeasible system B. There exist both an index

set Φ (associated with components xp, p ∈ Φ and the set Λ1 ∪ Λ2 that indexes the

inequalities axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, p ∈ Φ) and an infeasible system CΠ

with an IIS Π such that the index subset S = Π \ {Λ1 ∪ Λ2} is an IIS of B.

Proof. By Lemma 3.3.1, there exists an IIS S of B. By Proposition 3.3.2, there

exist both an index set Π and an infeasible system CΠ such that Π is an IIS for CΠ
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and Π = Λ1 ∪ Λ2 ∪ S. Therefore, S = Π \ {Λ1 ∪ Λ2} where S is an IIS of B.

�

The following is an example of how to obtain an IIS S of a system of inequalities

with binary variables via Theorem 3.3.3.

B = {−2x1 − 2x2 + x3 ≤ −1, (1)

x1 + x2 ≤ 0 (2) : x ∈ B3}.

B is an infeasible system of two inequalities subject to 3-dimensional vectors with

binary components. Thus, there exist both an index set Φ = {3} associated with (i)

component x3 and (ii) the sets Λ1 = ∅, Λ2 = {8} indexing inequality −x3 ≤ 0, 3 ∈ Φ

and an infeasible system CΠ (see below) with an IIS Π = {1, 2, 8} such that the index

subset S = {1, 2, 8} \ {8} = {1, 2} ⊆ Π is an IIS of B as shown in Figure 3.2.

CΠ = {−2x1 − 2x2 + x3 ≤ −1, (1)

x1 + x2 ≤ 0, (2)

−x3 ≤ 0 (8) : x ∈ R3}.

Corollary 3.3.4 states that the maximum number of indices associated with the

inequalities axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, p ∈ Φ in a system CΠ is n.

COROLLARY 3.3.4. Consider a system B and an associated system CΠ. Assume

CΠ to be infeasible. Let Π be an IIS for CΠ. If there are n components in x, then

|Π ∩H| ≤ n.
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Figure 3.2: Systems of inequalities B and CΠ

Proof. By Proposition 3.3.2, Π = S ∪ Λ1 ∪ Λ2 and |Π| ≤ n + 1. By Lemma

3.3.1, |S| ≥ 1. Since Π ∩H = Λ1 ∪ Λ2 and |Λ1 ∪ Λ2| ≤ n, then |Π ∩H| ≤ n.

�

An IIS S of B can be obtained via an IIS Π of a system CΠ by Lemma 3.3.1,

Proposition 3.3.2, Theorem 3.3.3, and Corollary 3.3.4. That is, there exists an

associated system CΠ to B such that an IIS Π for CΠ will characterize an IIS S

of B after removing from Π the indices associated with the inequalities axp ≤ b, a ∈

{1,−1}, b ∈ {0, 1}, p ∈ Φ. Two methods to find IISs of a system B are described

in the next sections. First, the IIS-BAB algorithm considers the case in which the

related system U to B is infeasible. Second, the IIS-Heuristic algorithm considers the
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case in which the associated system U to B is feasible. Let us introduce additional

notation before the methods to find IISs of B are formally introduced.

3.3.2 Additional Notation

The solution methods for finding an IIS of B in this chapter are based on tree data

structures. A tree data structure can be defined recursively as a collection of unique

nodes starting at a root node r where each node k is a data structure consisting of a

value and a list of children. Specifically, the tree data structures considered in this

chapter are the BAB binary trees.

DEFINITION 3.3.5. A BAB binary tree is a tree data structure in which each

node has at most two children nodes usually distinguished as left and right. Nodes

with children are parent nodes, and the node who is an ancestor to all nodes is the

root node. A root node that has not been developed into a binary tree is called an

open root node.

Let Q be the set of open root nodes, indexed r = 1, ..., n. Likewise, T is the set

of BAB binary trees associated with xp, ∀p ∈ V indexed t = 1, ..., |Q|. A leaf node

in a BAB binary tree is a node that has no children.

DEFINITION 3.3.6. A path is a sequence of nodes from a (leaf) node k to the

root node r with no node repetitions. A path is represented by τ(r, k) = {k, k −

1, ..., j, ..., r}. The depth of a (leaf) node k in a BAB binary tree is α = |τ(k, r)|.

Likewise, let ∆ be the set of paths that is defined as ∆ = {τ1, ...., τ|∆|}.

A node that is not part of a BAB binary tree is said to be open. Then, define the

set of open nodes in a BAB tree t ∈ T as follows.

DEFINITION 3.3.7. N (t) is the set of open nodes indexed kt = 0, ...,
∑n

i=1 2i

where kt = 0 indexes the root node in a BAB tree t ∈ T . Besides, p(kt) is a function
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that returns the parent node of a node kt. Likewise, µt is the maximum index node

in a BAB tree t ∈ T .

At a node kt, t ∈ T let A(kt), U(kt), L(kt) be index sets such that A(kt) ⊆

A, U(kt) ⊆ U , and L(kt) ⊆ L. Let us define the following additional systems of

inequalities associated with B.

DEFINITION 3.3.8. At node kt, t ∈ T , Bkt is a system of inequalities that is

defined as Bkt:={gsx ≤ vs, ∀s ∈ A(kt), xp = 1, p = ū − m, ∀ū ∈ U(kt), xp =

0, p = l̄ − (m + n), ∀l̄ ∈ L(kt) : x ∈ {0, 1}n}. Bkt is denoted as the nodal system

associated with B at node kt, t ∈ T .

DEFINITION 3.3.9. At node kt, t ∈ T , Ckt is a system of inequalities that is

defined as Ckt:= {gsx ≤ vs, ∀s ∈ A(kt), xp ≤ 1, p = ū − m, ∀ū ∈ U(kt), xp ≤

0, p = l̄ − (m+ n), ∀l̄ ∈ L(kt) : x ∈ Rn}. Ckt is denoted as the nodal system with

unrestricted variables associated with Bkt at node kt, t ∈ T .

Let us define some notation corresponding to an IIS of Ckt as follows.

DEFINITION 3.3.10. At node kt, t ∈ T , let Πkt be an IIS for Ckt. Then, Γ(Πkt)

is an index set of the inequalities axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, p ∈ Φ in IIS

Πkt such that Γ(Πkt) ⊆ U(kt) ∪ L(kt). Furthermore, Θ(Πkt) is an index set of the

original constraints in Πkt such that Θ(Πkt) ⊆ A(kt).

Sets of index sets associated with Πkt are defined as follows.

DEFINITION 3.3.11. At node kt, t ∈ T , M(kt) is a set of index sets where

M(kt) := {Πkt
1 , ...,Π

kt
j } indexed j. In addition, Y(kt) is a set of index sets where

Y(kt) := {Γ1(Πkt
1 ), ...,Γz(Π

kt
j )} indexed z. Likewise, O(kt) is a set of index sets where

O(kt) := {Θ1(Πkt
1 ), ...,Θq(Π

kt
j )} indexed q.
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3.3.3 The IIS-BAB Algorithm

Consider a system B with related systems R and U that have the same system

of inequalities to B. Provided that B and U are infeasible, the aim of the IIS-

BAB algorithm is to find at least one IIS of B by applying Theorem 3.3.3 and

Corollary 3.3.4 within a BAB framework. The algorithm terminates if either the

desired number of IISs is reached or if the sets of open nodes and open root nodes

are empty.

The IIS-BAB algorithm goes along the following lines. First, check the feasibility

of the systems B and R. If B and R are infeasible, then check if the system U is

infeasible. If U is feasible, then stop the IIS-BAB algorithm. Else, if U is infeasible,

then select either a root node r to start a BAB binary tree or a node k to keep

branching on the same tree. Then, find an IIS of the related system Ck to Bk, at the

selected node k, using Theorem 3.2.2. Node k can be fathomed based on feasibility

if the system Ck is feasible. Besides, node k can be fathomed if no improvement

in the search of an IIS is seen. If Bk ⊂ Bp(k) for the current node k and parent

node p(k), then improvement is seen in the search of an IIS. Likewise, node k can

be fathomed if an IIS of B is found. In any of these cases, one should return to the

termination step, and a new iteration might begin. Otherwise, if an IIS of Ck, which

is not an IIS of B, represents an improvement with respect to the IIS found in the

parent node p(k) to k, then proceed to the branching step in which two nodes are

created by setting one variable that has not been chosen yet to be equal to 0 and 1.

Then, one should return to the termination step, and a new iteration might start.

The IIS-BAB algorithm is now formalized.
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Input: System B

IIS-Binary Algorithm

Step 0. Initialization. Consider a system B with the related systems R

and U that have the same system of inequalities to B. Check the feasibility

of the systems B and R.

Step 1. Categorization. Classify the systems B and R into one of the

following cases:

1. If B and R are feasible, then stop algorithm.

2. If B is infeasible, but R is feasible, then stop algorithm.

3. If B and R are infeasible, then go to step 2.

Step 2. System U Check. Set A = {1, ...,m}. Then, consider the

following cases:

• If the system U is feasible, then stop algorithm.

• Else, if the system U is infeasible, then go to step 3.

Step 3. Formulation.

1. Set H = {m + 1, ...,m + 2n}, U = {m + 1, ...,m + n}, L = {m + n +

1, ...,m+ 2n}, and Q = {1, ..., n}.

2. Set S = ∅, T = ∅, δ ∈ Z+, and t = 0. Likewise, choose a node selection

and node division rule. Then, go to step 4.

Step 4. Termination. If |S| = δ or Q = ∅ and N (t) = ∅, ∀t ∈ T , then

stop algorithm. Else, go to step 5.

Step 5. Node and Root Node Selection.

If N (t) 6= ∅,∀t ∈ T :
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1. Select and delete node kt ∈ N (t). Let µt = max kt.

2. Set the nodal systems Bkt and Ckt .

3. Find an IIS Πkt
j of the nodal system Ckt using Theorem 3.2.2. Then,

add Πkt
j to the set M(kt). Go to step 6.

Else, If N (t) = ∅,∀t ∈ T and 6= ∅:

1. Select and delete root node r from Q.

2. Set t = |T |+ 1 and add t to T .

3. Add 1t and 2t to N (t). Set µt = 2t.

4. Set p(1t) = p(2t) = 0t and O(p(1t)) = O(p(2t)) = A ∪H.

5. Set A(1t) = A(2t) = A, U(1t) = {m + r}, L(1t) = ∅, U(2t) = ∅,

L(2t) = {m+ n+ r}.

6. Select and delete node kt ∈ N (t). Set the nodal systems Bkt and Ckt .

7. Find an IIS Πkt
j of the nodal system Ckt using Theorem 3.2.2. Then,

add Πkt
j to the set M(kt). Go to step 6.

Step 6. Fathoming. Set the index sets Γz(Π
kt
j ) and Θq(Π

kt
j ) for every

IIS Πkt
j 6= ∅ in the set M(kt). Fathom node if either a, b, or c. Else,

Θq(Π
kt
j ) ∪ O(kt) and Γz(Π

kt
j ) ∪ Y(kt). Then, go to step 7.

(a). Feasibility: The nodal system Ckt is feasible. Return to step 4.

(b). Non-improved IIS:

– Θq(Π
kt
j ) is not an IIS of the system B and,

– Γz(Π
kt
j ) 6= U(k, t) ∪ L(k, t) and,

– Θq(Π
kt
j ) is not a subset of some Θq(Π

p(kt)
j ) ∈ O(p(kt)).

Then, Θq(Π
kt
j ) ∪ O(kt) and Γz(Π

kt
j ) ∪ Y(kt) and return to step 4.

(c). IIS: Θq(Π
kt
j ) is an IIS of the system B. Add Θq(Π

kt
j ) to S. Then,

return to step 4.

31



Step 7. Node Division. Choose an index p ∈ V \ {r} such that m+ p /∈

U(kt) and m+ n+ p /∈ L(kt), then:

1. Step (i):

• Create two new nodes µt+1 and µt+2. Add these two nodes to the

set of open nodesN (t). Set parent nodes p(µt+1) = p(µt+2) = kt.

2. Step (ii):

• If the index set U(kt) 6= ∅, then add U(kt) and m+ i to U(kt + 1).

In addition, add the index set L(kt) to L(kt + 1).

• Else, if the index set U(kt) = ∅, then add m + i to U(kt + 1). In

addition, add the index set L(kt) to L(kt + 1).

3. Step (iii):

• If the index set L(kt) 6= ∅, then add L(kt) and m+n+i to L(kt+2).

In addition, add the index set U(kt) to U(kt + 2).

• Else, if the index set L(kt) = ∅, then add m + n + i to L(kt + 2).

In addition, add the index set U(kt) to U(kt + 2).

4. Step (iv):

• Set the index set A(kt + 1) = ∪q=1,...,|O(kt)|Θq(Π
kt
j ). Return to step

4.

Output: S such that 1 ≤ |S| ≤ δ.

At a particular node k, the size of the system Ck remains tractable by considering

only original constraints associated with indices in the IISs that are present in the

corresponding parental node. This greatly reduces the number of basic feasible

solutions to explore in the alternative polyhedron P from Theorem 3.2.2. This result

is formalized in Lemma 3.3.12
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LEMMA 3.3.12. The maximum number of basic feasible solutions to explore in

the polyhedron P (Theorem 3.2.2) at each node kt in BAB tree t in the IIS-BAB

algorithm is

ψ = C(n, |A(kt)|+ |U(kt)|+ |L(kt)|)

with ψ < C(n,m+ 2n).

Proof. At node kt, the maximum number of rows in Ckt is |A(kt)| + |U(kt)| +

|L(kt)|. Therefore, the maximum number of basic feasible solutions to explore in

polyhedron P at node kt is ψ = C(n, |A(kt)| + |U(kt)| + |L(kt)|). Since |A(kt)| +

|U(kt)|+ |L(kt)| ≤ n+ 1 < m+ 2n by Theorem 3.2.3, then ψ < C(n,m+ 2n).

�

Corollary 3.3.13 states that the maximum cardinality on each IIS S for B found

by the IIS-BAB algorithm is n+ 1.

COROLLARY 3.3.13. Consider an infeasible system B. Let S be an IIS of B

obtained by the IIS-BAB algorithm. Then, |S| ≤ n+ 1.

Proof. At node kt ∈ N , t ∈ T , consider index sets U(kt) and L(kt). By Theorem

3.3.2, |U(kt) ∪ L(kt)| ≥ 0, and |U(kt) ∪ L(kt) ∪ S| ≤ n + 1 for any node k in the

IIS-BAB algorithm. Thus, |S| ≤ n+ 1.

�

COROLLARY 3.3.14. The maximum number of nodes to explore in the IIS-BAB

algorithm is
∑n

i=1 2i.

Proof. There are n variables in B. The maximum number of feasible solutions

in B are
∑n

i=1 2i. Thus, there are
∑n

i=1 2i possibilities for assigning upper or lower

bounds to variables in a system CΠ that implies the maximum number of nodes to

explore in the IIS-BAB algorithm.

�
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Lemma 3.3.15 guarantees the isolation of an IIS of an infeasible system B by the

IIS-BAB algorithm.

LEMMA 3.3.15. Given an infeasible system B, then the IIS-BAB algorithm will

find at least one IIS of B.

Proof. The existence of an IIS S to a system B is guaranteed by Lemma 3.3.1.

Therefore, the IIS-BAB algorithm will find at least one IIS S of B by Proposition

3.3.2 and Theorem 3.3.3.

�

The finite convergence of the IIS-BAB algorithm is guaranteed by Corollary 3.3.14

and Lemma 3.3.15.

THEOREM 3.3.16. The IIS-BAB algorithm converges in a finite number of iter-

ations.

Proof. The number of nodes to search in the IIS-BAB algorithm is finite by

Corollary 3.3.14. The isolation of an IIS of B is guaranteed by Lemma 3.3.15.

Therefore, the IIS-BAB algorithm will end in a finite number of iterations.

�

3.3.4 Improving the Node Division Step

The performance of the IIS-BAB algorithm can be improved by sharing infor-

mation between subsequent binary trees. Consider a system B with an associated

system CΠ whose corresponding IIS Π leads to the IIS S of B. Let us assume that

CΠ was found using the IIS-BAB algorithm. Therefore, CΠ can be associated with

a leaf node k̄ in a BAB binary tree t̄ with root node r̄. Moreover, there is a path

τ(k̄, r̄) from the leaf node k̄ to the root node r̄ that is associated with an index set

Φ̄. Let us refer to this path as a successful path, and let ᾱ be the the depth of a node

k̄ in the BAB tree t̄. The elements in the index set Φ̄ can be used to represent ᾱ!
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successful paths whose corresponding leaf and root nodes would have led us exactly

to the same CΠ.

Given also a leaf node k̂ and root node r̂ in a BAB tree t̂, an unsuccessful path

τ(k̂, t̂) is the one whose corresponding index set Φ̂ and system CΠ does not lead to an

IIS S of B. The elements in the index set Φ̂ can be used to represent α̂! unsuccessful

paths whose corresponding leaf and root nodes would have led us exactly to the same

CΠ. Therefore, once a successful path or an unsuccessful path is identified, then there

is no need to traverse this same path in any order in subsequent BAB trees.

In the IIS-BAB algorithm, after all nodes have been fathomed in a particular

BAB binary tree t, information related to successful and unsuccessful paths should

be carried to subsequent trees. By keeping track of successful and unsuccessful paths

in a BAB tree, the number of nodes to search in the IIS-BAB algorithm can be

reduced. Let us now introduce a new tree data structure that will be refereed to

as the compass search tree. The compass search tree will be used as vademecum by

the IIS-BAB algorithm in order to share information on successful and unsuccessful

paths between different BAB binary trees. Therefore, the compass search tree can be

used as a strategy for node division (step 7) in the IIS-BAB algorithm as explained

in the following example.

Consider an arbitrary system B with m inequalities subject to 4-dimensional

decision vectors with binary components. The corresponding compass search tree

for this system B is shown in Figure 3.3. By Corollary 3.3.4, the maximum depth

α of any node in the compass search tree depicted in Figure 3.3 is 4. The goal is to

find an IIS of B. Then, let us assume that after traversing the path 1, 5, 11 in the

compass search tree depicted in Figure 3.3 no IIS for B is found while applying the

IIS-BAB algorithm. By fathoming the leaf node 11 in this compass search tree, then

no other paths will visit this node again. For example, other possible paths down
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to the third level in the compass search tree would be 1, 6, 13 or 2, 8, 14 but never

1, 6, 11 nor 2, 8, 11. Furthermore, Lemma 3.3.1, Proposition 3.3.2, Theorem 3.3.3,

and Corollary 3.3.4 still hold for the IIS-BAB algorithm using the compass search

tree approach.

𝑥1 𝑥2 

𝑥3,𝑥4 

𝑥3 

𝑥1, 𝑥2 𝑥1,𝑥3 𝑥1,𝑥4 𝑥2,𝑥3 𝑥2,𝑥4 

𝑥4 
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𝑥1,𝑥2, 
𝑥4 
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𝑥4 

𝑥2,𝑥3, 
𝑥4 
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10 9 8 7 6 5 
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Search Tree 1 

Search Tree 2 Search Tree 3 
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𝑥3, 𝑥4 

15 

Figure 3.3: Compass search tree of system B

3.3.5 The IIS-Heuristic Algorithm

An important characteristic of the IIS-BAB algorithm is that it can only be

applied to B if the associated system U is infeasible. In fact, if U is feasible, then

Theorem 3.2.2 can not be applied to the corresponding system Ckt at any node kt
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in a BAB tree t. Thus, the IIS-Heuristic algorithm represents an alternative to the

IIS-BAB algorithm when the system U is feasible. The idea behind the proposed

heuristics is that a set of inequalities axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, p ∈ Φ can

be appended to the system U at the same time until the system U is infeasible.

This can be done in an iterative manner until an IIS S of B is found. By following

this heuristic approach, the original system B can be rapidly reduced to smaller

relaxation subsystems where finding an IIS will be more likely to occur.

Consider a system B with related systems R and U that have the same system of

inequalities to B. Given an infeasible system B with the feasible system U , the goal

of the IIS-Heuristic algorithm is to find at least one IIS of B by applying Theorem

3.3.3 and Corollary 3.3.4 to an infeasible system that is related to B. Since the

IIS-Heuristic algorithm deals with iterations instead of BAB binary trees and nodes,

notation associated with node index kt, t ∈ T will be replaced by the iteration index

i. For example, A(i) ⊆ A, U(i) ⊆ U , and L(i) ⊆ L will now refer to index sets that

can define the inequalities in the system Ci:= {gsx ≤ vs, ∀s ∈ A(i), xp ≤ 1, p =

ū − m, ∀ū ∈ U(i), xp ≤ 0, p = l̄ − (m + n), ∀l̄ ∈ L(i) : x ∈ Rn} at iteration

i. Similarly, this change will apply to all the notation defined in Section 3.3.2 by

replacing kt by i.

The IIS-Heuristic algorithm terminates when the desired number of IISs is reached.

This algorithm starts by checking the feasibility of the systems B and R. If B and R

are infeasible, then check if the system U is feasible. If U is infeasible, then stop the

algorithm. Else, if U is feasible and bounded, then set the index of iterations i to one

and solve the corresponding related system Ci to B. If Ci is feasible, then append

inequalities of the form axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, p ∈ Φ to Ci until this

system is infeasible. Otherwise, find an IIS for the system Ci using Theorem 3.2.2.

If an IIS of B is found, then check the termination criteria. Else, if an IIS of Ci that
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is not an IIS of B represents an improvement with respect to the IIS found in the

previous iteration, that is, if Bi ⊂ Bi−1, then update Ci, increase the iteration index

i by one, return to the termination, and start a new iteration. The IIS-Heuristic

algorithm is now formalized.

Input: System B

IIS-Heuristic Algorithm

Step 0. Initialization. Consider a system B with the related systems R

and U that have the same system of inequalities to B. Check the feasibility

of the systems B and R.

Step 1. Categorization. Classify the systems B and R into one of the

following cases:

1. If B and R are feasible, then stop algorithm.

2. If B is infeasible, but R is feasible, then stop algorithm.

3. If B and R are infeasible, then go to step 2.

Step 2. System U Check. Set A = {1, ...,m}. Then, consider the

following cases:

• If the system U is infeasible, then stop algorithm.

• Else, if the system U is feasible and bounded, then set i = 1 and go to

step 3.

Step 3. Formulation.

1. Set H = {m + 1, ...,m + 2n}, U = {m + 1, ...,m + n}, and L =

{m+ n+ 1, ...,m+ 2n}.

2. Set A(i) = A, U(i) = ∅, and L(i) = ∅.
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3. Set S = ∅ and δ ∈ Z+. Then, go to step 4.

Step 4. Termination. If |S| = δ, then stop algorithm. Else, go to step

5.

Step 5. Solve Associated System. Solve the system Ci. If Ci is

feasible, then go to step 6. Otherwise, if Ci is infeasible, then go to step 7.

Step 6. Variable Selection. If xp > 1, then u ∪ U(i) where u =

p+m,∀p ∈ V . If xp < 0, then l∪L(i) where l = p+m+n,∀p ∈ V . Return

to step 5.

Step 7. IIS Search. Find an IIS Πi
j for the system Ci using Theorem

3.2.2. Then, add Πi
j to the set M(i). Go to step 8.

Step 8. IIS Examination. If Θq(Π
i
j) is an IIS of the system B, then

add Θq(Π
i
j) to S and go to step 4. Otherwise, if Θq(Π

i
j) is a subset of some

Θq(Π
i−1
j ) ∈ O(i− 1), then Θq(Π

i
j) ∪ O(i) and Γz(Π

i
j) ∪ Y(i). Set i = i+ 1

and A(i) = ∪q=1,...,|O(i)|Θq(Π
i
j), U(i) = ∅, L(i) = ∅. Then, return to step 4.

Output: S such that |S| = δ.

LEMMA 3.3.17. Given an infeasible system B, then the IIS-Heuristic algorithm

will find at least one IIS of B.

Proof. Since B is infeasible and U is feasible, then there exists at least one

vertex in U such that xp < 0 or xp > 1 for at least one p ∈ V. Therefore, the

system Ci at iteration i can become infeasible by appending inequalities of the form

axp ≤ b, a ∈ {1,−1}, b ∈ {0, 1}, p ∈ Φ to it. Given an infeasible system Ci, the

existence of at least one IIS of this system is guaranteed by Theorem 3.2.2.

�
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THEOREM 3.3.18. The IIS-Heuristic algorithm converges in a finite number of

iterations.

Proof. Given an infeasible system B with an associated feasible and bounded

system U , the finite convergence of the IIS-Heuristic algorithm is guaranteed by the

finite number of extreme points in U .

�

3.4 Example Illustration

3.4.1 The IIS-BAB Algorithm

Let us apply the IIS-BAB algorithm to the following system B̄ in order to find

one IIS.

B̄ = {−x2 − 2x3 + x4 − 2x5 ≤ 0 (1),

−x1 − 2x4 − x5 ≤ 0 (2),

−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

−2x1 − x2 − x3 − x4 + x5 ≤ 0 (4)

x1 + x2 + x5 ≤ 0 (5),

−x1 − 2x2 − x4 ≤ −1 (6),

−2x1 − x2 − 2x3 ≤ 0 (7),

−x2 − x3 + x4 − 2x5 ≤ 0 (8),

x2 + x3 − 2x4 − x5 ≤ 0 (9),

x1 − x2 + x3 + x4 + x5 ≤ −1 (10) : x ∈ {0, 1}5}.

A system R related to B̄ is shown below.
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R = {−x2 − 2x3 + x4 − 2x5 ≤ 0 (1),

−x1 − 2x4 − x5 ≤ 0 (2),

−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

−2x1 − x2 − x3 − x4 + x5 ≤ 0 (4),

x1 + x2 + x5 ≤ 0 (5),

−x1 − 2x2 − x4 ≤ −1 (6),

−2x1 − x2 − 2x3 ≤ 0 (7),

−x2 − x3 + x4 − 2x5 ≤ 0 (8),

x2 + x3 − 2x4 − x5 ≤ 0 (9)

x1 − x2 + x3 + x4 + x5 ≤ −1 (10),

x1 ≤ 1 (11), x2 ≤ 1 (12), x3 ≤ 1 (13), x4 ≤ 1 (14), x5 ≤ 1 (15)

−x1 ≤ 0 (16),−x2 ≤ 0 (17),−x3 ≤ 0 (18),−x4 ≤ 0 (19),

−x5 ≤ 0 (20) : x ∈ R5}.

IIS-BAB Algorithm:

Step 0. Initialization. Check feasibility of the systems B̄ and R.

Step 1. Categorization. Since the systems B̄ and R are infeasible, then go to

step 2.

Step 2. System U Check. Set A = {1, ..., 10}. Since the system U is infeasible,

then go to step 3.
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Step 3. Formulation.

1. Set H = {11, ..., 20}, U = {11, ..., 15}, L = {16, ..., 20}, and Q = {1, ..., 5}.

2. Set S = ∅, T = ∅, δ = 1, and t = 0. Choose depth-first search plus backtracking

as the node selection rule while considering variables in decreasing order and

right sons first.

Iteration 1

Step 4. Termination. Since |S| = 0, then go to step 5.

Step 5. Node Selection. Since N (t) = ∅, ∀t ∈ T , and Q 6= ∅, then:

1. Select root node r = 5 from Q. In addition, Q \ {5}.

2. Set t = 1 and T ∪ {1}.

3. Add 11 and 21 to N (1). Set µ1 = 2t.

4. Set p(11) = p(21) = 01 and O(11) = O(21) = A ∪H.

5. Set A(11) = A(21) = A, U(11) = {15}, L(11) = ∅, U(21) = ∅, L(21) = {20}.

6. Select node 21 from N (1) and N (1) \ {21}.

7. Set the following nodal system:

42



B21 = {−x2 − 2x3 + x4 − 2x5 ≤ 0 (1),

−x1 − 2x4 − x5 ≤ 0 (2),

−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

−2x1 − x2 − x3 − x4 + x5 ≤ 0 (4),

x1 + x2 + x5 ≤ 0 (5),

−x1 − 2x2 − x4 ≤ −1 (6),

−2x1 − x2 − 2x3 ≤ 0 (7),

−x2 − x3 + x4 − 2x5 ≤ 0 (8),

x2 + x3 − 2x4 − x5 ≤ 0 (9),

x1 − x2 + x3 + x4 + x5 ≤ −1 (10),

x5 = 0(20) : x ∈ B5}.

8. Set the following nodal system:
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C21 = {−x2 − 2x3 + x4 − 2x5 <= 0 (1),

−x1 − 2x4 − x5 ≤ 0 (2),

−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

−2x1 − x2 − x3 − x4 + x5 ≤ 0 (4),

x1 + x2 + x5 ≤ 0 (5),

−x1 − 2x2 − x4 ≤ −1 (6),

−2x1 − x2 − 2x3 ≤ 0 (7),

−x2 − x3 + x4 − 2x5 ≤ 0 (8),

x2 + x3 − 2x4 − x5 ≤ 0 (9),

x1 − x2 + x3 + x4 + x5 ≤ −1 (10),

−x5 ≤ 0 (20) : x ∈ R5}.

9. Let Π21
1 = {2, 3, 5, 7, 10, 20} be an IIS of C21 . Add Π21

1 to M(21). Observe

that Γ1(Π21
1 ) = Π21

1 ∩ H = {20} and |Π21
1 | = n + 1 = 6. Furthermore,

|Γ1(Π21
1 )| = 1 ≤ n = 5.

Step 6. Fathoming Rules. Θ1(Π21
1 ) = Π21

1 ∩ A = {2, 3, 5, 7, 10}. Θ1(Π21
1 ) is

not an IIS of B̄, but Γ1(Π21
1 ) = U(21) ∪ L(21) and Θ1(Π21

1 ) is a proper subset of

Θ1(p(21)). Θ1(Π21
1 ) ∪ O(21) and Γ1(Π21

1 ) ∪ Y(21). Go to step 7.

Step 7. Node Division. Choose i = 4 using the compass search tree for B̄.

1. Step (i): Create two new nodes µ1 + 1 = 31 and µ1 + 2 = 41. Add these two

new nodes to N (1). Set p(31) = 21, p(41) = 21.
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2. Step (ii): Since U(21) = ∅, then U(31) = {14} and L(31) = {20}.

3. Step (iii): Since L(21) 6= ∅, then L(41) = {19, 20} and U(41) = ∅.

4. Step (iv): Let A(31) = A(41) = O(Π21
1 ) and return to step 4.

Iteration 2

Step 4. Termination. Since |S| = 0, then go to step 5.

Step 5. Node Selection. Since N (1) 6= ∅, then:

1. Select and delete node 41 from N (1). Set µ1 = 4t.

2. Set the following nodal system:

B41 = {−x1 − 2x4 − x5 ≤ 0 (2),

−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

x1 + x2 + x5 ≤ 0 (5),

−2x1 − x2 − 2x3 ≤ 0 (7),

x1 − x2 + x3 + x4 + x5 ≤ −1 (10),

x4 = 0 (19), x5 = 0 (20) : x ∈ B5}.

3. Set the following nodal system:
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C41 = {−x1 − 2x4 − x5 ≤ 0 (2),

−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

x1 + x2 + x5 ≤ 0 (5),

−2x1 − x2 − 2x3 ≤ 0 (7),

x1 − x2 + x3 + x4 + x5 ≤ −1 (10),

−x4 ≤ 0 (19),−x5 ≤ 0 (20) : x ∈ R5}.

4. Let Π41
1 = {3, 5, 7, 10, 19, 20} be an IIS of C41 . Add Π41

1 to M(41). Observe

that Γ1(Π41
1 ) = Π41

1 ∩ H = {19, 20}. Notice that |Π41
1 | = n + 1 = 6 and

|Γ1(Π41
1 )| = 2 ≤ n = 5.

Step 6. Fathoming Rules. Θ1(Π41
1 ) = Π41

1 ∩ A = {3, 5, 7, 10}. Θ1(Π41
1 ) is not

an IIS of B̄, but Γ1(Π41
1 ) = U(41)∪L(41) and Θ1(Π41

1 ) is a proper subset of Θ1(p(41)).

Θ1(Π41
1 ) ∪ O(41) and Γ1(Π41

1 ) ∪ Y(41). Go to step 7.

Step 7. Node Division. Choose i = 3 using the compass search tree for B̄.

1. Step (i): Create two new nodes µ1 + 1 = 51 and µ1 + 2 = 61. Add these two

new nodes to N (1). Set p(51) = 41, p(61) = 41.

2. Step (ii): Since U(41) = ∅, then U(51) = {13} and L(51) = {19, 20}.

3. Step (iii): Since L(41) 6= ∅, then L(61) = {18, 19, 20} and U(61) = ∅.

4. Step (iv): Let A(51) = A(61) = O(Π41
1 ) and return to step 4.
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Iteration 3

Step 4. Termination. Since S = 0, then go to step 5.

Step 5. Node Selection. Since N (1) 6= ∅, then:

1. Select and delete node 61 from N (1). Set µ1 = 6t.

2. Set the following nodal system:

B61 = {−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

x1 + x2 + x5 ≤ 0 (5),

−2x1 − x2 − 2x3 ≤ 0 (7),

x1 − x2 + x3 + x4 + x5 ≤ −1 (10),

x3 = 0 (18), x4 = 0 (19), x5 = 0 (20) : x ∈ B5}.

3. Set the following nodal system:

C61 = {−2x1 − 2x2 + x3 + x4 − x5 ≤ −1 (3),

x1 + x2 + x5 ≤ 0 (5),

−2x1 − x2 − 2x3 ≤ 0 (7),

x1 − x2 + x3 + x4 + x5 ≤ −1 (10),

−x3 ≤ 0 (18),−x4 ≤ 0 (19),−x5 ≤ 0 (20) : x ∈ R5}.
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4. Let Π61
1 = {3, 5, 18, 19, 20} be an IIS of C61 . Add Π61

1 to M(61). Observe that

Γ1(Π61
1 ) = S61

1 ∩ H = {18, 19, 20}. Notice that |Π61
1 | = 5 ≤ n + 1 = 6 and

|Γ1(Π61
1 )| = 3 ≤ n = 5.

Step 6. Fathoming Rules. Θ1(Π61
1 ) = Π61

1 ∩ A = {3, 5} is an IIS of B̄. Add

Θ1(Π61
1 ) to S. Fathom corresponding node in the compass search tree. Go to step 4.

Iteration 4

Step 4. Termination. Since |S| = 1, then stop algorithm.

A summary of the implementation of the IIS-BAB algorithm to B is depicted in

Figures 3.4 and 3.5.
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Root 
Node  
t=1 

𝑥5 = 1 
𝑥5 = 0 

𝑥4 = 1 
𝑥4 = 0 

𝑥3 = 1 𝑥3 = 0 

𝑘𝑡=11 𝑘𝑡=21 

𝑘𝑡=31 𝑘𝑡=41 

𝑘𝑡=51 𝑘𝑡=61 

Π1
21={2,3,5,7,10,20} 

Π1
41={3,5,7,10,19,20} 

Fathomed Node:  

𝑂1(Π1
61) = 3,5 = 𝑆1 is an IIS 

to initial binary system 

Π1
61={3,5,18,19,20} 

Fathomed Node:  
Non-improved IIS 

Fathomed Node:  
Non-improved IIS 

Figure 3.4: BAB tree t = 1 with root node r = 5 and x5 = 0
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Root 
Node 
t=1 

𝑥5 = 0 
𝑥5 = 1 

𝑥4 = 1 
𝑥4 = 0 

Π1
11  ={1, 2, 3, 5, 10,15} 

Π1
81  =  {1,2,3,5,19} 

Fathomed Node:  
Non-improved IIS 

𝑥3 = 1 𝑥3 = 0 

Fathomed Node:  
Non-improved IIS 

Fathomed Node:  
Non-improved IIS 

𝑘𝑡=11 𝑘𝑡=21 

𝑘𝑡=71 𝑘𝑡=81 

𝑘𝑡=91 𝑘𝑡=101 

Figure 3.5: BAB tree t = 1 with root node r = 5 and x5 = 1
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3.4.2 The IIS-Heuristic Algorithm

Let us apply the IIS-Heuristic algorithm to the following system B̂ in order to

find one IIS.

B̂ = {3x1 − 2x2 + x3 − 4x4 − 2x5 ≤ 0 (1),

3x1 + 2x2 + x3 − 3x4 + 4x5 ≤ −1 (2),

−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4),

3x2 − 4x3 − 2x4 + 4x5 ≤ 0 (5),

−5x1 + 2x2 + x3 − 4x4 + 3x5 ≤ −2 (6),

3x2 − x3 − x4 + 3x5 ≤ −2 (7),

3x1 − 5x2 + 2x3 − 4x4 + 2x5 ≤ 0 (8),

−3x1 − 2x2 − 2x3 + x4 − 3x5 ≤ −1 (9),

−2x1 − 3x2 − 4x3 − 5x4 − x5 ≤ −1 (10) : x ∈ {0, 1}5}.

A related system to B̂ is shown below.
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R = {3x1 − 2x2 + x3 − 4x4 − 2x5 ≤ 0 (1),

3x1 + 2x2 + x3 − 3x4 + 4x5 ≤ −1 (2),

−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4),

3x2 − 4x3 − 2x4 + 4x5 ≤ 0 (5),

−5x1 + 2x2 + x3 − 4x4 + 3x5 ≤ −2 (6),

3x2 − x3 − x4 + 3x5 ≤ −2 (7),

3x1 − 5x2 + 2x3 − 4x4 + 2x5 ≤ 0 (8),

−3x1 − 2x2 − 2x3 + x4 − 3x5 ≤ −1 (9),

−2x1 − 3x2 − 4x3 − 5x4 − x5 ≤ −1 (10) : x ∈ R5}.

IIS-Heuristic Algorithm:

Step 0. Initialization. Check feasibility of the systems B̂ and R.

Step 1. Categorization. Since the systems B̂ and R are infeasible, then go to

step 2.

Step 2. System U Check. Set A = {1, ..., 10}. Since the system U is feasible,

then set i = 1 and go to step 3.

Step 3. Formulation.

1. Set H = {11, ..., 20}, U = {11, ..., 15}, and L = {16, ..., 20}.

2. Set A(1) = A, U(1) = ∅, and L(1) = ∅.
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3. Set S = ∅ and δ = 1. Then, go to step 4.

Iteration 1

Step 4. Termination. Since |S| = 0, then go to step 5.

Step 5. Solve Associated System. Solve the following system:

C1 = {3x1 − 2x2 + x3 − 4x4 − 2x5 ≤ 0 (1),

3x1 + 2x2 + x3 − 3x4 + 4x5 ≤ −1 (2),

−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4),

3x2 − 4x3 − 2x4 + 4x5 ≤ 0 (5),

−5x1 + 2x2 + x3 − 4x4 + 3x5 ≤ −2 (6),

3x2 − x3 − x4 + 3x5 ≤ −2 (7),

3x1 − 5x2 + 2x3 − 4x4 + 2x5 ≤ 0 (8),

−3x1 − 2x2 − 2x3 + x4 − 3x5 ≤ −1 (9),

−2x1 − 3x2 − 4x3 − 5x4 − x5 ≤ −1 (10) : x ∈ R5}.

Since C1 is feasible, then go to step 6.

Step 6. Variable Selection. The solution to C1 is shown in Table 3.1.

Set U(1) = {11, 12, 14} and L(1) = {20}. Go to step 5.

Step 5. Solve Associated System. Solve the following system:
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Table 3.1: Solution to the system C1 in Example 3.4.2

Variable Name Solution Value
x1 1.6909
x2 1.5455
x3 0.8909
x4 1.4364
x5 -1.4364

C1 = {3x1 − 2x2 + x3 − 4x4 − 2x5 ≤ 0 (1),

3x1 + 2x2 + x3 − 3x4 + 4x5 ≤ −1 (2),

−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4),

3x2 − 4x3 − 2x4 + 4x5 ≤ 0 (5),

−5x1 + 2x2 + x3 − 4x4 + 3x5 ≤ −2 (6),

3x2 − x3 − x4 + 3x5 ≤ −2 (7),

3x1 − 5x2 + 2x3 − 4x4 + 2x5 ≤ 0 (8),

−3x1 − 2x2 − 2x3 + x4 − 3x5 ≤ −1 (9),

−2x1 − 3x2 − 4x3 − 5x4 − x5 ≤ −1 (10),

x1 ≤ 1(11),

x2 ≤ 1(12),

x4 ≤ 1(14),

−x5 ≤ 0(20) : x ∈ R5}.

Since C1 is infeasible, then go to step 7.

Step 7. IIS Search. Let Π1
1 = {3, 4, 7, 11, 12, 14} be an IIS of C1. Add Π1

1 to

54



M(1). Observe that Γ1(Π1
1) = Π1

1∩H = {11, 12, 14} and |Π1
1| = n+1 = 6. Likewise,

|Γ1(Π1
1)| = 3 ≤ n = 5. Go to step 8.

Step 8. IIS Examination. Θ1(Π1
1) = Π1

1 ∩ A = {3, 4, 7}. Θ1(Π1
1) is not an IIS

of B̂, but Θ1(Π1
1) is a proper subset of Θ1(p(1)). Set Θ1(Π1

1)∪O(1) and Γ1(Π1
1)∪Y(1).

Likewise, set i = 2, A(2) = {3, 4, 7}, U(2) = ∅, and L(2) = ∅. Return to step 4.

Step 4. Termination. Since |S| = 0, then go to step 5.

Iteration 2

Step 5. Solve Associated System. Solve the following system:

C2 = {−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4),

3x2 − x3 − x4 + 3x5 ≤ −2 (7) : x ∈ R5}.

Since C2 is feasible, then go to step 6.

Step 6. Variable Selection. The solution to C2 is shown in Table 3.2.

Set U(1) = {14} and L(1) = {16}. Go to step 5.

Step 5. Solve Associated System. Solve the following system:
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Table 3.2: Solution to the system C2 in Example 3.4.2

Variable Name Solution Value
x1 -4.0000
x2 1.0000
x3 0.0000
x4 5.0000
x5 0.0000

C2 = {−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4),

3x2 − x3 − x4 + 3x5 ≤ −2 (7),

x4 ≤ 1(14),

−x1 ≤ 0(16) : x ∈ R5}.

Since C2 is feasible, then go to step 6.

Step 6. Variable Selection. The solution to C2 is shown in Table 3.3.

Table 3.3: Revised solution to the system C2 in Example 3.4.2

Variable Name Solution Value
x1 4.0000
x2 -5.55 ×10−17

x3 1.0000
x4 1.0000
x5 0.0000

56



Set U(1) = {11, 14} and L(1) = {16, 17}. Go to step 5.

Step 5. Solve Associated System. Solve the following system:

C2 = {−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4) ,

3x2 − x3 − x4 + 3x5 ≤ −2 (7),

x1 ≤ 1(11),

x4 ≤ 1(14),

−x1 ≤ 0(16),

−x2 ≤ 0(17) : x ∈ R5}.

Since C2 is feasible, then go to step 6.

Step 6. Variable Selection. The solution to C2 is shown in Table 3.4.

Table 3.4: Improved solution to the system C2 in Example 3.4.2

Variable Name Solution Value
x1 1.0000
x2 3.0000
x3 1.0000
x4 1.0000
x5 -3.0000

Set U(1) = {11, 12, 14} and L(1) = {16, 17, 20}. Go to step 5.
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Step 5. Solve Associated System. Solve the following system:

C2 = {−x1 − 5x2 + 3x3 − 4x5 ≤ −1 (3),

x1 + 4x2 − 4x3 + 3x5 ≤ 0 (4),

3x2 − x3 − x4 + 3x5 ≤ −2 (7),

x1 ≤ 1(11),

x2 ≤ 1(12),

x4 ≤ 1(14),

−x1 ≤ 0(16),

−x2 ≤ 0(17),

−x5 ≤ 0(20) : x ∈ R5}.

Since C2 is infeasible, then go to step 7.

Step 7. IIS Search. Let Π2
1 = {3, 7, 11, 14, 17, 20} be an IIS of C2. Add Π2

1

to M(2). Observe that Γ1(Π2
1) = Π2

1 ∩ H = {11, 14, 17, 20} and |Π2
1| = n + 1 = 6.

Besides, |Γ1(Π2
1)| = 4 ≤ n = 5. Go to step 8.

Step 8. IIS Examination. Θ1(Π2
1) = Π2

1 ∩ A = {3, 7} is an IIS of B̂. Add

Θ1(Π2
1) to S. Go to step 4.

Iteration 3

Step 4. Termination. Since |S| = 1, then stop algorithm.
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3.5 Summary

A method for finding IISs for systems of inequalities with binary variables was

presented in this chapter. New theoretical results show that an IIS for a binary

system can be obtained as subset of an IIS for an associated system of inequalities

with both unrestricted decision variables and a subset of box constraints appended

to it. Specifically, two new algorithms to find IISs for systems of inequalities with

binary variables were developed, that is, the IIS-BAB algorithm and the IIS-Heuristic

algorithm. The first algorithm uses the new theory and the method of the alternative

polyhedron [23] within a branch-and-bound (BAB) approach. The second algorithm

applies the new theory and the method of the alternative polyhedron [23] to a system

in which zero/one box constraints are appended. Decomposition schemes using IISs

for binary systems can be used to solve probabilistically constrained stochastic integer

programs (SIP). A BAC method to solve probabilistically constrained SIP using IIS

inequalities is introduced in the next chapter.
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4. BRANCH-AND-CUT METHOD FOR STOCHASTIC INTEGER

PROGRAMS WITH PROBABILISTIC CONSTRAINTS

4.1 Preliminaries

This chapter presents a method for solving probabilistically constrained SIP with

random technology matrix and random righthand-side vector. The SIP model can

be given as follows:

SIP-C2: min c>x (4.1a)

s.t. Ax ≥ b (4.1b)

P{T (ω̃)x ≥ r(ω̃)} ≥ 1− β (4.1c)

x ∈ Bn. (4.1d)

If the random variable ω̃ has a discrete probability distribution with |Ω| < ∞,

then a DEP to SIP-C2 can be formulated as follows:

SIP-C3: min c>x (4.2a)

s.t. Ax ≥ b (4.2b)

T (ω)x+Mωezω ≥ r(ω),∀ω ∈ Ω (4.2c)∑
ω∈Ω

pωzω ≤ β (4.2d)

x ∈ Bn, zω ∈ B,∀ω ∈ Ω. (4.2e)

Note that Mω is an appropriate large number, pω is the probability of occurrence
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of a scenario ω ∈ Ω, and e is an appropriate sized vector of ones. It is assumed that

pω ≤ β for each ω ∈ Ω. If there is some ω such that pω > β, T (ω)x ≥ r(ω) must

hold for any feasible x, and these inequalities can be included in the definition of

Ax ≥ b. Likewise, zω is a binary decision variable for each scenario ω that takes the

value of 0 if the constraints corresponding to ω are included, and 1 if the constraints

corresponding to ω are excluded from the programming problem. There is also a

knapsack constraint (4.2d) to guarantee that the probabilistic constraint (4.1c) is

satisfied.

Optimizing SIP-C3 is difficult since very weak lower bounds are obtained by

optimizing its LP relaxation. The aim is to strengthen the LP relaxation of SIP-C3

by finding valid inequalities for the following set:

Q1 = {(x, z) ∈ Bn1 × B|Ω| : Ax ≥ b, T (ω)x+Mzω ≥ r(ω),∑
ω∈Ω

pωzω ≤ β, ∀ω ∈ Ω}.

Remove the knapsack constraint from Q1 and drop the zω variable from it. Let

Q2 be a system of linear inequalities as follows:

Q2 = {Ax ≥ b, T (ω)x ≥ r(ω), ∀ω ∈ Ω : x ∈ Bn1}.

Q2 is generally infeasible due to the nature of the applications involving reliability

requirements. Consider the wildfire initial response planning problem described in

Chapter 1. If the decision’s maker attitude towards risk in this problem is zero,

that is, the decision maker is completely risk averse, then there might not be enough

resources available to provide initial response to all fires during a fire season. We
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are interested in finding feasible subsystems of Q2. A maximum feasible subsystem

(MFS) is a subsystem of linear inequalities with maximum cardinality. The problem

of finding a MFS is known as the maximum feasible subsystem problem (MAX FS)

[2]. The MAX FS can be formulated for exact solution via integer programming

(IP). Specifically, the MAX FS for the system Q2 can be formulated as follows:

IP1: min
∑
ω∈Ω

zω (4.5a)

s.t. Ax ≥ b (4.5b)

T (ω)x+Mωzω ≥ r(ω), ∀ω ∈ ø (4.5c)

x ∈ Bn, zω ∈ B,∀ω ∈ Ω. (4.5d)

Note that M is an appropriate large number, and zω is a binary decision variable

for each constraint in T (ω) that takes the value of 0 if the corresponding constraint

is included in IP1 and 1 if the corresponding constraint is excluded from IP1. After

solving IP1, the MAX FS to Q2 is indicated by the constraints whose corresponding

zω variables are all zero.

PROPOSITION 4.1.1. Solving SIP-C3 is equivalent to optimizing c>x over the

MFS of Q2 that satisfies the knapsack inequality.

Proof. Optimizing c>x over the MFS of Q2 that satisfies the knapsack inequality

is equivalent to optimizing:
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IP2 : min c>x+
∑
ω∈Ω

zω (4.6a)

s.t. Ax ≥ b (4.6b)

T (ω)x+Mωzω ≥ r(ω), ∀ω ∈ Ω (4.6c)∑
ω∈Ω

pωzω ≤ β (4.6d)

x ∈ Bn, zω ∈ B,∀ω ∈ Ω. (4.6e)

∑
ω∈Ω pωzω <

∑
ω∈Ω zω since pω ≤ β, ∀ω ∈ Ω. Therefore, IP2 can be rewritten

as follows:

IP3 : min c>x (4.7a)

s.t. Ax ≥ b (4.7b)

T (ω)x+Mωzω ≥ r(ω), ∀ω ∈ ø (4.7c)∑
ω∈Ω

pωzω ≤ β (4.7d)

x ∈ Bn, zω ∈ B,∀ω ∈ Ω. (4.7e)

Note that IP3 is exactly SIP-C3.

�

An IIS S is a minimal set of infeasible constraints. Let Ψ be an index set defining

some of the constraints in Q2. Thus, an IIS of Q2 is a subsystem Q2
Ψ that is infeasible,

but it could be made feasible by dropping any inequality from it. Ψ = S when Ψ

defines a subsystem than is an IIS for Q2. Moreover, S is the set of IISs to Q2 that
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is defined as S := {S1, ..., Sj}.

The MAX FS can also be viewed as finding the minimum number of linear con-

straints to remove such that the remaining constraints constitute a feasible system.

Indeed, MAX FS is an integer covering problem. Consider an infeasible system

Q2 with corresponding set S of IISs such that |S| = r. This system can be made

feasible by deleting at least one constraint associated with an element of every Sj ∈ S.

Finding the smallest cardinality system of constraints to cover all IISs is known as

the minimum cardinality IIS set-covering problem (MIN IIS COVER). Let Zj be a

subset of scenarios ω that is defined as Zj := {ω ∈ Ω : Q2 ∩ Sj 6= ∅}, j = 1, ..., r.

The MIN IIS COVER to Q2 can be formulated as follows:

IP4: min
∑
ω∈Ω

zω (4.8a)

s.t.
∑
ω∈Zj

zω ≥ 1, j = 1, ..., r (4.8b)

zω ∈ B, ∀ω ∈ Ω. (4.8c)

Constraints (4.8b) are called the IIS inequalities. These are facet-defining in-

equalities for the convex hull of feasible points of IP4 [53]. Likewise, zω is a binary

decision variable whose value is 1 if the corresponding constraints associated with ω

are chosen to be deleted, and 0 otherwise.

REMARK 4.1.2. Consider an infeasible system of inequalities Q2. If the set S

of IISs of Q2 is known, then solving the MIN IIS COVER for Q2 is equivalent to

solving the MAX FS for Q2.

The number of IISs can potentially be exponential in the size of Q2. The authors

of [53] developed a method to solve IP4 by generating IISs one at a time so that
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a new IIS that is not covered by the current MIN IIS COVER solution is found at

each iteration. An outline of this algorithm is shown as follows:

Input: Infeasible system Q2.

MIN IIS COVER Algorithm

Step 0. Initialization. Set Z = {ω : ∀ω ∈ Ω}, S = ∅.

Step 1. Termination. Check feasibility of Q2. If Q2 is feasible, then

stop algorithm. Else, go to step 2.

Step 2. IIS identification. Identify one IIS Sj to Q2 such that Sj /∈ S.

Step 3. Solve IP2. Solve the MIN IIS COVER problem (IP4).

Step 4. Set Processing. Set Z \ω for every ω such that zω = 1. Return

to step 1.

Output: MIN IIS COVER.

An IIS decomposition approach for SIP-C3 is presented next. In particular, a

BAC approach to solve SIP-C3 is developed using the IIS inequalities, Proposition

(4.1.1), Remark (4.1.2), and a variation of the MIN IIS COVER algorithm. The

BAC method branches on the zω variables and solves an LP relaxation of SIP-C3 at

each BAB tree node. Moreover, IIS inequalities are added one at a time to the LP

relaxation of SIP-C3 at each node of the BAB tree in order to tighten its feasible

region while excluding the constraints associated with at least one scenario ω ∈ Ω.

4.2 IIS Decomposition Methodology

Consider SIP-C3 and a BAB tree in which the branching decision variable is zω.

Let N be the set of open nodes in the BAB tree, indexed by k. At an arbitrary node
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of the BAB tree let

• a path be a sequence of nodes from a current node k to the root node r with

no node repetitions. A path is represented by τ(r, k) = {k, k − 1, ..., j, ..., r}.

• Ek ⊆ Ω be the set of all scenarios associated with the nodes in τ(r, k) such that

zω = 1 and P (Ek) ≤ β. This implies that the subsystem of constraints (4.11c)

associated with ω are excluded from SIP-C6k (see formulation below).

• Ik ⊆ Ω be the set of all scenarios associated with the nodes in τ(r, k) such that

zω = 0. This implies that the subsystem of constraints (4.11c) associated with

ω are included in SIP-C6k (see formulation below).

• µ be the largest node index in a BAB tree.

Let us define a relaxation of SIP-C3 for node k as follows:

SIP-C4k: min c>x (4.9a)

s.t. Ax ≥ b (4.9b)

T (ω)x ≥ r(ω), ∀ω ∈ Ω \ Ek (4.9c)

x ∈ Bn. (4.9d)

Let Sj be an IIS of SIP-C4k and D := {ω ∈ Ω : T (ω)x ≥ r(ω) ∩ Sj 6= ∅}. D is

a subset of scenarios ω ∈ Ω such that the index of at least one constraint (4.9c) in

SIP-C4k associated with ω̄ is an element of Sj. Thus, Proposition 4.2.1 defines the

IIS inequality as follows:

PROPOSITION 4.2.1. The IIS inequality
∑

ω∈D zω ≥ 1 is valid for the set Q1.
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Proof. Let SIP-C4k be infeasible with an IIS Sj such that the set D can be

defined. Let also pω ≤ β, ∀ω ∈ Ω. Thus, min{
∑

ω∈D zω : z ∈ Q1} ≥ 1, that is,∑
ω∈D zω ≥ 1 is valid for Q1.

�

Observe that by adding an IIS inequality at a particular node k in the BAB

tree, at least one scenario will be excluded from SIP-C3 so that the total number of

nodes to search in the BAB tree is reduced. Let us define an additional relaxation

of SIP-C3 for node k as follows:

SIP-C5k: min c>x (4.10a)

s.t. Ax ≥ b (4.10b)

T (ω)x+Mωezω ≥ r(ω),∀ω ∈ Ω (4.10c)∑
ω∈Ω

pωzω ≤ β (4.10d)

∑
ω∈Di

zω ≥ 1,∀i ∈ τ(r, k) (4.10e)

zω = 0,∀ω ∈ Ik (4.10f)

zω = 1,∀ω ∈ Ek (4.10g)

x ∈ Bn, 0 ≤ zω ≤ 1,∀ω ∈ Ω. (4.10h)

SIP-C5k can be rewritten as follows:
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SIP-C6k: min c>x (4.11a)

s.t. Ax ≥ b (4.11b)

T (ω)x+Mωezω ≥ r(ω),∀ω ∈ Ω \ {Ek ∪ Ik} (4.11c)

T (ω)x ≥ r(ω),∀ω ∈ Ik (4.11d)∑
ω∈Ω\{Ek∪Ik}

pωzω ≤ β −
∑
ω∈Ek

pωzω (4.11e)

∑
ω∈Di

zω ≥ 1,∀i ∈ τ(r, k) (4.11f)

x ∈ Bn, 0 ≤ zω ≤ 1,∀ω ∈ Ω \ {Ek ∪ Ik}. (4.11g)

4.2.1 The IIS-BAC Algorithm

The aim of the IIS-BAC algorithm is to find optimal solutions to SIP-C2 by

branching on the binary variable zω in SIP-C3 and generating IIS inequalities at a

particular node k in a BAB tree. First, initialize the set of scenarios I and E to be

empty. Initialize also the current node 1 with the sets I and E . Then, initialize the

set of open nodes N with the node 1 and the upper bound to infinity. This algorithm

terminates if the set of open nodes is empty meaning that the incumbent solution

is optimal. Then, select a node from the set of open nodes N , solve SIP-C6k, and

check the fathoming rules.

The fathoming rules at a particular node are based, first, on infeasibility if

constraints (4.11e) and (4.11f) are not satisfied, second, on bound if the objective

function at the current node is greater than or equal to the incumbent solution,

and, third, on optimality in which case the incumbent solution is updated. If any of

these fathoming rules is satisfied, then return to the node selection step. Otherwise,

go to the IIS inequality generation step. If SIP-C4k is infeasible, then generate an
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IIS inequality using the IIS-BAB algorithm or the IIS-Heuristic algorithm. Add the

generated IIS inequality to SIP-C6k. Solve SIP-C6k and then branch on a non-integer

zω variable. For non-integer zω variable, create two nodes, one in which zω takes the

value of 0 and other in which zω takes the value of 1. Update the corresponding sets

I and E and the set of open nodes N , increase the number of total nodes in the BAB

tree and then return to termination step. Let us now formalize a BAC algorithm for

solving SIP-C2 for the 2BN case as follows:

IIS-BAC Algorithm

Step 0. Initialization . Set k = 1, µ = −∞, Ik = ∅, Ek = ∅, N =

{(Ik, Ek)}, and θ =∞.

Step 1. Termination. If N = ∅, then the solution {x∗, {z∗ω}∀ω∈Ω} that

yielded the incumbent objective value θ = c>x∗ is optimal. Then, stop

algorithm. Otherwise, go to step 2.

Step 2. Node Selection. Set µ = max{k, µ}. Furthermore, pick and

delete node k ∈ N according to a node selection rule.

Step 3. Solve Node Problem. Solve SIP-C6k.

Step 4. Fathoming Rules. Fathom node if

(a) Infeasibility: SIP-C6k is infeasible. Return to step 1.

(b) Optimality: SIP-C6k is feasible, zω and xk are binary, and

c>xk < θ. Then, set θ = c>xk and return to step 1.

(c) Bound: c>xk ≥ θ. Return to step 1.

Else, if

(d) Feasibility: SIP-C6k is feasible, but not all of the zω variables

69



have integer values, then continue to step 5 if Dk = ∅ or to step 6 if

Dk 6= ∅.

Step 5. Inequality Generation.

• If SIP-C4k is infeasible, then find an IIS Sk to SIP-C4k using the IIS-

BAB algorithm or the IIS-Heuristic algorithm. Update Dk. Generate

and add the IIS inequality Sk to SIP-C6k. Return to step 3.

• Else, If Problem SIP-C4k is feasible, then fathom the current node. In

addition, if c>xk < θ, then set θ = c>xk. Return to step 1.

Step 6. Node Division. Pick non-integer z̄ω with the largest value.

Create two new nodes (Iµ+1 ∪ {ω : z̄ω = 0}, Eµ+1) and (Iµ+2, Eµ+2 ∪ {ω :

z̄ω = 1}). Add these two nodes to N . Then, return to step 1.

4.2.2 Example Illustration

Consider an instance of SIP-C2 as

SIP-C2: min c>x (4.12a)

s.t. P{T (ω̃)x ≥ r(ω̃)} ≥ 1− β (4.12b)

x ∈ B5 (4.12c)

where

• c> = [1 − 2 − 2 − 2 1],

• β = 0.27,

• Ω = {ω1, ω2, ω3, ω4, ω5} with ωi = (Ti, ri) for i = 1, ..., 5,
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• P (ω1) = 0.013, P (ω2) = 0.161, P (ω3) = 0.251, P (ω4) = 0.233, and P (ω5) =

0.343,

• ri ∈ R for i = 1, ..., 5 with r1 = 0, r2 = 1, r3 = 0, r3 = 0, r4 = 0, and r5 = 0,

and

• Ti is a 1 × 5 matrix with real components for i = 1, ..., 5 such that T1 =

[0, 2,−1, 0, 0]; T2 = [1,−1,−1, 1, 1]; T3 = [0,−1,−1, 0, 0]; T4 = [2,−1, 2,−1,−1];

and T5 = [−1,−1, 2,−1,−1].

The corresponding SIP-C3 model can be stated as follows:

SIP-C3: min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

−x2 − x3 + 10z3 ≥ 0

2x1 − x2 − x3 − x5 + 10z4 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.161z2 + 0.251z3 + 0.233z4 + 0.343z5 ≤ 0.27

z1, z2, z3, z4, z5 ∈ {0, 1}

x1, x2, x3, x4, x5 ∈ {0, 1}.

Let us apply the IIS-BAC algorithm to SIP-C3 in order to find an optimal solution

for SIP-C2. The node selection rule is the depth-first search, and the node division

rule is to select the binary variable zω with the maximum fractional value.
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IIS-BAC Algorithm:

Step 0. Initialization. Set I1 = ∅, E1 = ∅, 1 = (I1, E1), N = {1}, and θ =∞.

Iteration 1

Step 1. Termination. Since N = {1}, then go to step 2.

Step 2. Node Selection. Set µ = 1. Pick and delete node 1 from N according

to the depth first selection rule.

Step 3. Solve Node Problem. Solve SIP-C61.

SIP-C6:1 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

−x2 − x3 + 10z3 ≥ 0

2x1 − x2 − x3 − x5 + 10z4 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.161z2 + 0.251z3 + 0.233z4 + 0.343z5 ≤ 0.27

z1, z2, z3, z4, z5 ≥ 0

z1, z2, z3, z4, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

The optimal solution to SIP-C61 is shown in Table 4.1.
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Table 4.1: Optimal solution to SIP-C61 in Example 4.2.2

Variable Name Solution Value
x1 0.0000
x2 1.0000
x3 1.0000
x4 1.0000
x5 0.0000
z1 0.0000
z2 1.0000
z3 0.2000
z4 0.2539
z5 0.0000

Step 4. Fathoming Rules

Since SIP-C61 is feasible, but not all the zω variables have integer values, and

since D1 = ∅, then go to step 5.

Step 5. Inequality Generation. Consider SIP-C41 as follows:

SIP-C4:1 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 ≥ 0

x1 − x2 − x3 + x4 + x5 ≥ 1

−x2 − x3 ≥ 0

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 ≥ 0

x1, x2, x3, x4, x5 ∈ {0, 1}.

Notice that SIP-C41 is infeasible. Moreover, let S1 = {2, 3, 5} be an IIS of SIP-
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C41. Let also z2 +z3 +z5 ≥ 1 be the corresponding IIS inequality. Let D1 = {2, 3, 5}.

Add the IIS inequality to SIP-C61 and solve it.

SIP-C6:1 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

−x2 − x3 + 10z3 ≥ 0

2x1 − x2 − x3 − x5 + 10z4 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.161z2 + 0.251z3 + 0.233z4 + 0.343z5 ≤ 0.27

z2 + z3 + z5 ≥ 1

z1, z2, z3, z4, z5 ≥ 0

z1, z2, z3, z4, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

The updated optimal solution to SIP-C61 is shown in Table 4.2.

Step 4. Fathoming Rules. Since SIP-C61 is feasible, but not all the zω

variables have integer values, and since D1 6= ∅, then go to step 6.

Step 6. Node Division. Pick the non-integer z̄ω with the largest value, that

is, z̄3 = 0.6978. Then, create two new nodes 2 = (I2 = {ω ∈ Ω : z3 = 0}, E2 = ∅)

and 3 = (I3 = ∅, E3 = {ω ∈ Ω : z3 = 1}). Update N = {2, 3}. Return to step 1.

Iteration 2

Step 1. Termination. Since N = {2, 3}, then go to step 2.
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Table 4.2: Updated optimal solution to SIP-C61 in Example 4.2.2

Variable Name Solution Value
x1 0.0000
x2 1.0000
x3 1.0000
x4 1.0000
x5 0.0000
z1 0.0000
z2 0.3022
z3 0.6978
z4 0.2000
z5 0.0000

Step 2. Node Selection. Set µ = 3. Pick and delete node 3 from N according

to the depth first selection rule.

Step 3. Solve Node Problem. Solve SIP-C63.
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SIP-C6:3 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

2x1 − x2 − x3 − x5 + 10z4 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.161z2 + 0.233z4 + 0.343z5 ≤ 0.019

z2 + z3 + z5 ≥ 1

z1, z2, z3, z5 ≥ 0

z1, z2, z3, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

Step 4. Fathoming Rules. Since SIP-C63 is feasible, but not all the zω

variables have integer values, and since D3 = ∅, then go to step 5.

Step 5. Inequality Generation. Consider SIP-C43 as follows:

SIP-C4:3 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 ≥ 0

x1 − x2 − x3 + x4 + x5 ≥ 1

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 ≥ 0

x1, x2, x3, x4, x5 ∈ {0, 1}.
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Observe that SIP-C43 is infeasible. Moreover, let S3 = {1, 2, 5} be an IIS for SIP-

C43. Let also z1 +z2 +z5 ≥ 1 be the corresponding IIS inequality. Let D3 = {1, 2, 5}.

Add the IIS inequality to SIP-C63 and solve it.

SIP-C6:3 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

2x1 − x2 − x3 − x5 + 10z4 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.161z2 + 0.233z4 + 0.343z5 ≤ 0.019

z2 + z3 + z5 ≥ 1

z1 + z2 + z5 ≥ 1

z1, z2, z3, z5 ≥ 0

z1, z2, z3, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

The updated optimal solution to SIP-C63 is shown in Table 4.3.

Step 4. Fathoming Rules. Since SIP-C63 is feasible, but not all the zω

variables have integer values, and since D3 6= ∅, then go to step 6.

Step 6. Node Division. Pick the non-integer z̄ω with the largest value, that

is, z̄4 = 0.0279. Then, create two new nodes 4 = (I4 = {ω ∈ Ω : z4 = 0}, E4 = {ω ∈

Ω : z3 = 1}) and 5 = (I5 = ∅, E5 = {ω ∈ Ω : z3 = 1, z4 = 1}). Update N = {2, 4, 5}.

Return to step 1.
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Table 4.3: Updated optimal solution to SIP-C63 in Example 4.2.2

Variable Name Solution Value
x1 1.0000
x2 0.0000
x3 1.0000
x4 1.0000
x5 0.0000
z1 1.0000
z2 0.0000
z3 1.0000
z4 0.0279
z5 0.0000

Iteration 3

Step 1. Termination. Since N = {2, 4, 5}, then go to step 2.

Step 2. Node Selection. Set µ = 5. Pick and delete node 5 from N according

to the depth first selection rule.

Step 3. Solve Node Problem. Solve SIP-C65.
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SIP-C6:5 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.016z2 + 0.343z5 ≤ −0.214

z2 + z3 + z5 ≥ 1

z1 + z2 + z5 ≥ 1

z1, z2, z3, z5 ≥ 0

z1, z2, z3, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

Step 4. Fathoming Rules. Since SIP-C65 is infeasible, then fathom the current

node 5 and return to step 1.

Iteration 4

Step 1. Termination. Since N = {2, 4}, then go to step 2.

Step 2. Node Selection. Pick and delete node 4 from N according to the

depth first selection rule.

Step 3. Solve Node Problem. Solve SIP-C64.
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SIP-C6:4 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.016z2 + 0.233z4 + 0.343z5 ≤ 0.019

z2 + z3 + z5 ≥ 1

z1 + z2 + z5 ≥ 1

z1, z2, z3, z5 ≥ 0

z1, z2, z3, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

Step 4. Fathoming Rules. Since SIP-C64 is feasible, but not all the zω

variables have integer values, and since D4 = ∅, then go to step 5.

Step 5. Inequality Generation. Consider SIP-C44 as follows:
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SIP-C4:4 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 ≥ 0

x1 − x2 − x3 + x4 + x5 ≥ 1

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 ≥ 0

x1, x2, x3, x4, x5 ∈ {0, 1}.

Note that SIP-C44 is infeasible. Moreover, let S4 = {1, 2, 5} be an IIS of SIP-C44.

Let also z1 + z2 + z5 ≥ 1 be the corresponding IIS inequality. Let D4 = {1, 2, 5}.

Add the IIS inequality to SIP-C64 and solve it.

SIP-C6:4 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 + 10z1 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.013z1 + 0.161z2 + 0.343z5 ≤ 0.019

z2 + z3 + z5 ≥ 1

z1 + z2 + z5 ≥ 1

z1, z2, z3, z5 ≥ 0

z1, z2, z3, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.
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The updated optimal solution to SIP-C64 is shown in Table 4.4.

Table 4.4: Updated optimal solution to SIP-C64 in Example 4.2.2

Variable Name Solution Value
x1 1.0000
x2 0.0000
x3 1.0000
x4 1.0000
x5 0.0000
z1 0.9803
z2 0.0000
z3 1.0000
z4 0.0000
z5 0.0197

Step 4. Fathoming Rules. Since SIP-C64 is feasible, but not all the zω

variables have integer values, and since D4 6= ∅, then go to step 6.

Step 6. Node Division. Pick the non-integer z̄ω with the largest value, that

is, z̄1 = 0.9803. Create two new nodes 6 = (I6 = {ω ∈ Ω : z4 = 0, z1 = 0}, E6 =

{ω ∈ Ω : z3 = 1}) and 7 = (I7 = {ω ∈ Ω : z4 = 0}, E7 = {ω ∈ Ω : z3 = 1, z1 = 1}).

Update N = {2, 6, 7}. Return to step 1.

Iteration 5

Step 1. Termination. Since N = {2, 6, 7}, then go to step 2.

Step 2. Node Selection. Set µ = 7. Pick and delete node 7 from N according
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to the depth first selection rule.

Step 3. Solve Node Problem. Solve SIP-C67.

SIP-C6:7 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.016z2 + 0.233z4 + 0.343z5 ≤ 0.007

z2 + z3 + z5 ≥ 1

z1 + z2 + z5 ≥ 1

z1, z2, z3, z5 ≥ 0

z1, z2, z3, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

Step 4. Fathoming Rules. Since SIP-C67 is feasible, but not all the zω

variables have integer values, and since D7 = ∅, then go to step 5.

Step 5. Inequality Generation. Consider SIP-C47 as follows:
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SIP-C4:7 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. x1 − x2 − x3 + x4 + x5 ≥ 1

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 ≥ 0

x1, x2, x3, x4, x5 ∈ {0, 1}.

Since SIP-C47 is feasible, then fathom the current node 7. Likewise, since the

objective value of SIP-C67 is less than the current incumbent solution, that is, −3 <

∞, then θ = −3. The updated feasible solution to SIP-C67 is shown in Table 4.5.

Return to step 1.

Table 4.5: Updated feasible solution to SIP-C67 in Example 4.2.2

Variable Name Solution Value
x1 1.0000
x2 0.0000
x3 1.0000
x4 1.0000
x5 0.0000
z1 1.0000
z2 0.0000
z3 1.0000
z4 0.0000
z5 0.0000
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Iteration 6

Step 1. Termination. Since N = {2, 6}, then go to step 2.

Step 2. Node Selection. Pick and delete node 6 from N according to the

depth first selection rule.

Step 3. Solve Node Problem. Solve SIP-C66.

SIP-C6:6 min x1 − 2x2 − 2x3 − 2x4 + x5

s.t. 2x2 − x3 ≥ 0

x1 − x2 − x3 + x4 + x5 + 10z2 ≥ 1

2x1 − x2 − x3 − x5 ≥ 0

−x1 − x2 + 2x3 − x4 − x5 + 10z5 ≥ 0

0.016z2 + 0.233z4 + 0.343z5 ≤ 0.007

z2 + z3 + z5 ≥ 1

z1 + z2 + z5 ≥ 1

z1, z2, z3, z5 ≥ 0

z1, z2, z3, z5 ≤ 1

x1, x2, x3, x4, x5 ∈ {0, 1}.

Step 4. Fathoming Rules. Since SIP-C66 is infeasible, then fathom the current

node 6 and return to step 1.
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Iteration 7

Step 1. Termination. Since N = {2}, then go to step 2.

Step 2. Node Selection. Pick and delete node 2 from N according to the

depth first selection rule. The objective value of SIP-C62 is −2. Since −2 > θ = −3,

then fathom the current node 2. Return to step 1.

Iteration 8

Step 1. Termination. Since N = ∅, then stop the IIS-BAC algorithm. The

solution shown in Table 4.5 is optimal with an optimal objective value of −3.

A summary of the IIS-BAC algorithm implementation to the current example is

shown in Table 4.6. The total number of nodes to explore in the IIS-BAC algorithm

is 7 when compared to 26 if a standard branch-and-bound method without the IIS

inequalities is used. Note that SIP-C3 as stated in the beginning of the section with

zω = 0 for ω = 1, ..., 5 has two IISs, that is, S1 = {2, 3, 5} and S3 = S4 = {1, 2, 5}.

Table 4.6: Summary of the IIS-BAC algorithm in Example 4.2.2

Iteration Node Fathoming IIS Branching New Incumbent
Selection Rule Inequality Variable Node Solution

1 1 Cut generation 2,3,5 z3 2,3 −
2 3 Cut generation 1,2,5 z4 4,5 −
3 5 Infeasible SIP-C6 − − − −
4 4 Cut generation 1,2,5 z1 6,7 −
5 7 Feasible SIP-C4 − − − -3
6 6 Infeasible SIP-C6 − − − . −
7 2 Bounding function − − − −
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4.3 Preliminary Computational Results

Computational results showing the effectiveness of the IIS-BAC algorithm in

solving SIP-C3 are now presented. The IIS-BAC algorithm was implemented using

Microsoft Visual C++ and the CPLEX 12×64 Callable Library. We developed

instances of SIP-C3 with single probabilistic constraints for different numbers of

scenarios and decision variables. In fact, we fixed the number of scenarios per

instance to 90, 100, 150, 200, 250, 300, and 350 and the number of decision variables

to 5, 10, 15, 20, 25, and 30. The constant M used in the inequalities (4.11c) was

chosen for each instance to be the smallest value to ensure feasibility without causing

computational instability.

All the test instances were solved on a Dell X5355 computer with 2 Intel(R)

Xeon(R) X processors at 2.66 GHz each with 12.0 GB of RAM. For these compu-

tational results, all solution times are given in seconds, and a time limit of 7200

seconds (2 hours) is imposed. The average and standard deviation for computing an

IIS were 8 seconds and 7 seconds, respectively. The maximum time for obtaining an

IIS for an infeasible SIP-C4k was 32 seconds.

Three different sets of experiments were studied. First, we solved all SIP-C3

instances using the CPLEX MIP solver directly in order to provide a benchmark

solution. Second, we solved all SIP-C3 instances using the IIS-BAC algorithm, so

the IIS inequalities were added at some nodes of the corresponding BAB tree. Finally,

we solved all SIP-C3 instances using a standard BAB algorithm. This algorithm is

similar to the IIS-BAC algorithm described in section 4.2.1 but without the inequality

generation step, that is, without adding IIS inequalities at any node of a BAB tree.

Depth-first search plus backtracking and breadth-first search were considered as

the node selection rules for each set of experiments. In the depth-first search, if

the current node was not fathomed, the next node to consider was one of its two

87



sons. Backtracking means that when a node was fathomed, we went back on the

path from this node towards the root until we found the first open node. In the

breadth-first search, all of the nodes at a given level in a BAB tree were considered

before any other nodes at the next lower level. In addition, two different node rules

were applied for each set of experiments. First, we considered the component zω

with the maximum fractional value. Second, we selected the component zω with the

minimum fractional.

Tables 4.8, 4.9, 4.10, and 4.11 show the results of the SIP-C3 instances for the

three different sets of experiments as well as for the different node selection and the

node creation rules. In all tables, the first column gives the name of the test instance

while the second and third column show the number of rows and binary decision

variables, respectively. The next four columns give the CPLEX results. Particularly,

the fourth column gives the best solution found by CPLEX; the fifth column gives

the optimality gap returned by CPLEX; the sixth column gives the number of nodes

searched in the BAB tree; and the seventh column gives the time to prove optimality.

The next four columns, in Tables 4.8, 4.9, 4.10, and 4.11, give the results of the

IIS-BAC algorithm on the test instances. Specifically, the eighth column gives the

best objective value found; the ninth column gives the number of nodes searched;

the tenth column gives the number of IIS inequalities added to the formulation; and

the eleventh column gives the wall-clock time in seconds.

The final three columns give the results of the implementation of a standard BAB

algorithm, that is, without adding the IIS inequalities. The first of these columns

gives the best solution value found; the second of these columns gives the number of

nodes searched in the BAB tree; and the third column gives the wall-clock time in

seconds.

If Tables 4.8, 4.9, 4.10, or 4.11 show a dash, then it means that either CPLEX, the
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IIS-BAC algorithm, or the standard BAB algorithm was not able to find a feasible

solution within the 2-hour time limit. Likewise, if the tables show that the number

of nodes searched is greater than some number, then it means that the algorithm

was unable to prove optimality within the 2-hour time limit.

Table 4.7 shows a summary of the computational results presented in Tables 4.8,

4.9, 4.10, and 4.11. These computational results provide empirical evidence that

shows that the IIS inequalities offer an increase in the strength of the LP relaxation

of SIP-C3. When compared to the implementation of a standard BAB algorithm,

the IIS-BAC algorithm finds a solution for a larger percentage of instances. When

compared to CPLEX, the BAC method reduces the number of nodes to explore in a

BAB tree in order to find a solution. The results presented in Table 4.7 are dissected

in the next section.

Table 4.7: Summary of the computational results

DEPTH Nodes % of Problems Solved IIS Inequalities Time[sec.]
MAX Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

CPLEX 37,820 112,551 77% 0% − − 25 61
IIS-BAC 116 177 60% 0% 19 32 2,761 3,398

BAB 363 976 43% 0% − − 567 1,788
DEPTH Nodes % of Problems Solved IIS Inequalities Time[sec.]

MIN Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.
CPLEX 37,820 112,551 77% 0% − − 26 64

IIS-BAC 32 83 37% 0% 3 6 159 406
BAB 191 581 37% 0% − − 223 736

BREADTH Nodes % of Problems Solved IIS Inequalities Time[sec.]
MAX Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

CPLEX 37,820 112,551 77% 0% − − 29 73
IIS-BAC 34 83 40% 0% 6 7 551 1,759

BAB 109 339 37% 0% − − 62 204
BREADTH Nodes % of Problems Solved IIS Inequalities Time[sec.]

MIN Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.
CPLEX 37,820 112,551 77% 0% − − 25 62

IIS-BAC 32 94 37% 0% 5 6 578 1,807
BAB 127 424 40% 0% − − 730 1,942
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4.4 Discussion

Figure 4.1 shows the percentage of instances solved by CPLEX, the IIS-BAC

algorithm, and the BAB algorithm. For the case that considered the depth-first node

selection rule while branching on the zω variable with maximum fractional value,

CPLEX was able to find a solution for 77% of the instances followed by the IIS-

BAC algorithm with 60% and the BAB algorithm with 43% of the instances. This

situation is observed also for other node selection and node division rules considered

in the computational experiments as shown in Figure 4.1.
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Figure 4.1: Percentage of instances solved by CPLEX, IIS-BAC and BAB

Figure 4.2 shows the average number of nodes explored by CPLEX, the IIS-BAC

algorithm, and the BAB algorithm in order to find a solution. For the case that
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considered the depth-first node selection rule while branching on the zω variable with

maximum fractional value, the IIS-BAC algorithm had to search the least number of

nodes, that is, 116. For this same case, the average number of IIS inequalities added

at a particular node where a solution can be found was 19. the IIS-BAC algorithm is

followed by the BAB algorithm that explored an average of 363 nodes and by CPLEX

that searched an average of 38,720 nodes. This same situation is observed for other

node selection and node division rules considered in the computational experiments

as shown in Figure 4.2.
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Figure 4.2: Average number of nodes explored by CPLEX, IIS-BAC and BAB

Figure 4.3 shows the average solution time by CPLEX, the IIS-BAC algorithm,

and the BAB algorithm. For the case that considered the depth-first node selection
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rule while branching on the zω variable with maximum fractional value, CPLEX

could find a solution in 25 seconds on average followed by the BAB algorithm with

an average of 567 seconds and the IIS-BA algorithm with an average of 2,761 seconds.

The IIS-BAC algorithm is the approach with the largest time since the time required

to generate an IIS of SIP-C4k was considered in the solution time. This situation

is observed also for other node selection and node division rules considered in the

computational experiments as shown in Figure 4.3.
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Figure 4.3: Average solution time by CPLEX, IIS-BAC and BAB

Decomposition methods based on IIS inequalities provide promising computa-

tional results for solving SIP-C2. The IIS-BAC algorithm outperformed the BAB

algorithm in terms of the percentage of instances solved and both CPLEX and the
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BAB algorithm in terms of the average number of nodes to explore in order to find

a solution. However, CPLEX outperformed the IIS-BAC algorithm in terms of both

the percentage of instances solved and the solution time.

Even though CPLEX solved the largest number of problems, there were instances

for which CPLEX did not find a solution. Note that the instances considered in the

computational experiments are smaller than instances of practical applications such

as the wildfire initial response planning. In fact, instances with only 20 scenarios for

this type of problem can have more than 500,000 constraints and decision variables.

The IIS decomposition methods presented in this chapter can be improved by

strengthening the IIS inequality or by using additional inequalities that consider

the decision variable x. The IIS inequality can be strengthened by including the

decision variable x in it such that inequalities of the form
∑

i∈I tixi +
∑

ω∈D zω ≥ h

can be obtained. This can be achieved by performing linear combinations of the IIS

inequality with other valid inequalities such as the n-step MIR for the n-mixing set

[57]. Likewise, disjunctive decomposition inequalities [58] can be appended to SIP-

C6k at a particular node k in the IIS-BAC algorithm along with the IIS inequalities

discussed in this chapter.

Another path to consider when solving probabilistically constrained SIP would be

to obtain new valid inequalities for the set Q1. Consider a reformulation of SIP-C3

as follows:

97



SIP-C7: min c>x (4.27a)

s.t. y(ω) = T (ω)x,∀ω ∈ Ω (4.27b)

y(ω) + aωzω ≥ r(ω),∀ω ∈ Ω (4.27c)∑
ω∈Ω

pωzω ≤ 1− β (4.27d)

x ∈ Bn ∩ X̄, zω ∈ B, ∀ω ∈ Ω. (4.27e)

Note that y(ω) ∈ Rm,∀ω ∈ Ω. Likewise, X̄ = {x ∈ Rn : Ax ≤ b} and aω =

Mωe. The aim is to strengthen SIP-C7 by finding strong formulations for the set

Q3 = {(y, z) ∈ Rm × B|Ω| :
∑

ω∈Ω pωzω ≤ 1 − β, y(ω) + aωzω ≥ r(ω), ∀ω ∈ Ω}.

If T (ω) ∈ R1×n,∀ω ∈ Ω, then Q3 can be rewritten as Q4 = {(y, z) ∈ R × B|Ω| :∑
ω∈Ω pωzω ≤ 1 − β, y(ω) + aωzω ≥ r(ω),∀ω ∈ Ω}. Consider also Q5 = {(y, z) ∈

R× B|Ω| : y(ω) + aωzω ≥ r(ω),∀ω ∈ Ω} that is a relaxation of Q4.

Similar sets to Q5 have been studied in the literature such as the knapsack (Q6 =

{z ∈ ×B|Ω| :
∑

ω∈Ω aωzω ≤ r(ω),∀ω ∈ Ω}), the mixing set (Q7 = {(y, z) ∈ R× B|Ω| :

y + aωzω ≥ r(ω), ∀ω ∈ Ω}), and the n-mixing set (Q8 = {(y, z) ∈ R × B|Ω| : y +∑
i∈I a

i
ωz

i
ω ≥ r(ω),∀ω ∈ Ω}). In fact, facet-defining inequalities have been developed

for these sets [28, 57, 4]. However, valid inequalities with facet-defining properties

have not been presented in the literature neither for the set Q5 nor for the set

Q9 = {(y, z) ∈ Rm×B|Ω| :
∑

ω∈Ω pωzω ≤ 1− β, y(ω) +
∑

i∈I a
i
ωz

i
ω ≥ r(ω), ∀ω ∈ Ω}.

Therefore, the IIS decomposition method presented in this dissertation could be

improved by obtaining valid inequalities for the set Q1 via facet-defining inequalities

for the sets Q5 or Q9.
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5. WILDFIRE INITIAL RESPONSE PLANNING USING

PROBABILISTICALLY CONSTRAINED STOCHASTIC INTEGER

PROGRAMMING

5.1 Introduction

This chapter presents a new methodology for wildfire initial response planning.

The new methodology integrates a fire behavior simulation, a wildfire risk, and a

probabilistically constrained SIP model as shown in Figure 5.1. Both the fire behavior

simulation and the wildfire risk model provide the required input data to the SIP

model. The fire behavior model simulates fire growth and computes burned area and

fire perimeter during the planning horizon. The wildfire risk model identifies the

areas that would have the most negative impact on people in case of a wildfire. The

SIP model that assumes a known standard response needed to contain a fire yields

different outputs including deployment plans, dispatch plans, and the risk associated

with fires not receiving a standard response. Details of the fire behavior, the wildfire

risk, and the SIP model are provided in the next sections. Likewise, this chapter

presents the application of the new methodology to a real fire planning unit in east

Texas.

5.2 Wildfire Risk Model

The wildfire risk model is an important component of the new methodology for

wildfire initial response planning. The aim of this model is to identify which areas

within a region of interest would have the most negative impact on people and

valuable resources in case of a wildfire. This work uses the Texas Wildfire Risk

Assessment (TWRA) system to define the wildfire risk model since our study area is

located in Texas. However, the new methodology can be extended to allow for other
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Figure 5.1: Schematic diagram of the simulation and probabilistically constrained
optimization methodology

wildfire risk criteria.

Texas A&M Forest Service (TFS) established the TWRA system in response to

increasing demand for more accurate and up-to-date wildfire risk information across

the state of Texas. The goal of the TWRA system is to provide a consistent and

comparable set of scientific results to be used as a foundation for wildfire emergency

response planning activities in Texas. These activities are mitigation, initial and

extended response, and evacuation planning.

The main components of the TWRA system are: wildfire threat (WT), value
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response index (VRI), and wildfire exposure (WE). There is a relation between these

components and the definition of wildfire risk. Wildfire risk is the likelihood of

suffering loss of lives, homes and property due to wildfires not receiving wildfire

initial response. Thus, WT is related to the likelihood of a fire happening, VRI

is associated with the potential negative impact that a fire would have on people

and resources, and WE is the overall measure of risk associated with a wildfire not

receiving an initial response.

A summary of the TWRA system is depicted in Figure 5.2. The grey boxes indi-

cate input data such as percentile weather, topography, landscape, and historic fire

report data and locations. Input data is used to compute output data, represented

by the white boxes, such as WT, VRI, and WE, which are discussed in detail next.

5.2.1 Wildfire Threat

WT is the likelihood of a fire occurring by igniting in an area. It is calculated

for different percentile weather categories and then summed to obtain an overall

WT for a particular area. Percentile weather is described in terms of percentage of

fire occurrence and environmental values for four categories: low, moderate, high,

and extreme. The percentage of fire occurrence for each category are: low (0-15%),

moderate (16-90%), high (91-97%), and extreme (98-100%).

WT is categorized into seven classes from 0 to 7 with 0 corresponding to non-

burnable areas and 7 corresponding to areas with very high WT. The actual proba-

bility range of values for each of the seven WT categories are shown in Table 5.1.

5.2.2 Value Response Index

VRI is an overall rating of the potential impact of a wildfire. VRI combines

the impact ratings for wildland urban interface response index (WUIRI) and pine

plantation response index (PPRI). The calculation of WUIRI depends on the values
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Figure 5.2: The TWRA system for Texas

Table 5.1: Wildfire threat categories and probabilities

WT Classes Interval
0 Non-burnable
1 0.000 - 0.002
2 0.002 - 0.004
3 0.004 - 0.006
4 0.006 - 0.008
5 0.008 - 0.010
6 0.010 - 0.020
7 0.020 - 0.061
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for wildland urban interface (WUI), and the estimation of PPRI depends on the

values for pine plantations (PPs) (Figure 5.2).

WUI is the area where structures and other human improvements meet with

undeveloped wildland, and it is measured in houses per acre. Population growth

within WUI substantially increases the risk from wildfires. Flame length is used as

the measure of wildfire risk at WUI since the higher the flame length the worse the

impact on people and their homes. Thus, WUIRI is a rating of the potential impact

of a wildfire on WUI, and it assigns values to areas where WUI and flame length

overlap. WUIRI ranges from -1 to -9 with -1 representing the least negative impact

and -9 representing the most negative impact.

PPs are pine stands that are planted and actively managed for financial gain.

PPs are recognized as a key economic resource in Texas. Thus, PPRI is a rating of

the potential impact of a wildfire on PPs. In other words, PPRI measures potential

economic impact due to wildfires. PPRI ranges from 3 to -9 with 3 representing the

most positive impact and -9 representing the most negative impact.

WUI and PPRI are used to calculate VRI. VRI ranges from 1 to -9 for the state of

Texas. A value of 1 represents the most positive impact while a value of -9 represents

the worst possible impact. This worst possible impact may happen at regions where

both the flame length can potentially be greater than 12 feet due to PPs and the

house and population density are very high.

5.2.3 Wildfire Exposure

WE is an overall metric that defines the possibility of loss or harm due to a

wildfire not receiving an initial response. WE is calculated by multiplying WT

and VRI. Thus, WE ranges between -0.549 and 0.061 with -0.549 representing the

maximum negative impact and 0.061 corresponding to the least negative impact. Let

af be the WE associated with the area around an arbitrary fire f . Thus, WE can
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be normalized as follows:

g(af ) =
0.061− af

0.61

where g(af ) is referred to as the normalized wildfire exposure (NWE) around the

area of fire f such that 0 ≤ g(af ) ≤ 1.

5.3 Standard Response

The capacity to provide wildfire initial response to a fire is characterized in terms

of both wildfire risk and the number of firefighting resources (dozers) required to

contain a fire. Fires representing a higher wildfire risk are given a higher priority in

relation to the number of dozers dispatched. When a dozer arrives at an incident, it

can construct a dozer-line or barrier scraped to mineral soil around the fire to contain

it. If the perimeter of a dozer-line is greater than or equal to the fire perimeter, then

it is said that wildfire initial response is achieved. An escaped fire occurs when it

exceeds the initial response capabilities, for instance when a fire jumps a dozer-line.

In this work, standard response will be defined as the combination of dozers

located within a maximum response time that are required to fully contain a fire that

is receiving wildfire initial response. A wildfire receives standard response if the total

dozer-line rate is greater than or equal to its fire perimeter. On the contrary, a wildfire

cannot receive standard response if it has very long flames under strong fire-induced

winds, or if there is a lack in response capacity due to resource availability and

response time restrictions. The standard response values used in the probabilistically

constrained SIP model are calculated following the same guidelines described in [48].

A let it burn policy is not assumed in the new methodology, that is, all fires

can receive standard response even if these fires occur in remote areas. However,
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fires occurring in less densely populated areas are given lower priority when dozers

are needed to respond to other fires that represent a higher wildfire risk. The new

probabilistically constrained SIP model, which is presented next, makes deployment

and dispatching decisions to wildfires according to our definition of standard response

and the wildfire risk they represent.

5.4 Probabilistically Constrained Model

Wildfire initial response planning requires making strategic deployment and tac-

tical dispatching plans of firefighting resources while prioritizing areas where fire

occurrences would have a higher impact on homes and other valuable resources.

Thus, we developed a probabilistically constrained standard response model that

determines the resources to deploy to each operations base and the optimal mix of

resources to dispatch to each fire from operations bases every day during a fire season.

The goal of the probabilistically constrained model is to provide standard response

to as many fires as possible while minimizing both total cost and wildfire risk of fires

not receiving a standard response during a fire season. Throughout this chapter, we

make the following assumptions on the probabilistically constrained model:

A1. Firefighting resource characteristics (e.g. dozer-line rate, arrival time to

the fire, operation cost) are known (but stochastic) or can be estimated.

A2. Firefighting resources are dispatched to wildfires after the fires have been

reported. Each resource can only be dispatched to one fire on a given day.

A3. The distribution of final fire sizes (perimeter and area burned) for the fire

planning unit is known or can be estimated.

A4. The distribution of wildfire risk for the fire planning unit is known or can

be estimated.

A5. Standard dozer-line rates required to contain a given fire size within
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standard response time are known or can be estimated.

A6. The multivariate random vector that characterizes the uncertainties in the

probabilistically constrained model has a discrete probability distribution and

finite support.

Firefighting resource characteristics can be obtained from the literature to satisfy

assumption (A1). Assumption (A2) allows a resource to be committed to fight a

single fire in a given day. Historical wildfire data and a wildfire behavior simulation

can be used to generate possible final fire sizes to meet assumption (A3). Wildfire

risk values can be obtained from databases created by forest service agencies, or it

can be estimated by experts based on their experience. This assumption enables the

probabilistically constrained model to make deployment plans based on the potential

impact of wildfires on people and resources. Regarding assumption (A5), standard

dozer-line rates required to contain a given fire size within a specified amount of

response time can be estimated either through simulation or expert experience. This

assumption enables the probabilistically constrained SIP model to compute a mix of

different types of resources (with different dozer-line rates) to dispatch to a given fire.

Assumption (A6) will allow for devising a deterministic equivalent problem (DEP)

to the probabilistically constrained model.
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5.4.1 Mathematical Formulation

The notation required for the probabilistically constrained model is described in

Tables 5.2, 5.3, and 5.4.

Table 5.2: Sets

Notation Definition
R: Set of all resources, indexed i.
B: Set of all bases, indexed j and k.
F : Set of all fires, indexed f .
D: Set of all days during a fire season, indexed d.
T : T = {1, · · · , T} is the set of discrete time periods (in hours or hr) during a

fire season day, indexed t.

R̂(j): Set of resources (initially) located at base j such that R̂(j) ⊆ R.
R̄(j, k): Set of resources located at base j that can be relocated to base k

such that R̄(j, k) ⊆ R̂(j).

B̂(i): Set of bases to which resource i can be relocated such that B̂(i) ⊆ B.

F̂(d): Set of fires during fire season day d such that F̂(d) ⊆ F .
F̄(k, d): Set of fires that can be reached by resources

dispatched from base k ∈ B within maximum response

time tmax during fire season day d such that F̄(k, d) ⊆ F̂(d).
Ω: Set of fire scenarios, indexed ω. A fire scenario ω is a sequence of fire days d

during a fire season. Each day in ω has a unique pattern of fire occurrences f .
B′(ω, d): Set of bases from which resources can reach a fire f in scenario ω

during fire season day d within the maximum response time tmax

such that B′(ω, d) ⊆ B.

F ′(ω, d): Set of fires f during fire season day d under scenario ω such that F ′(ω, d) ⊆ F̂(d).
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Table 5.3: Parameters

Notation Definition
b: Fixed deployment, relocation cost, operations cost and

net value change (NVC) budget for all scenarios ω ∈ Ω.
β: Decision maker’s risk attitude level associated with scenarios ω ∈ Ω with β ∈ (0, 1).
ρ1: Fraction of the overall NWE for scenario ω with ρ1 ∈ [0, 1].
ρ2: Fraction of fires receiving a standard response for scenario ω with ρ2 ∈ [0, 1].
M : Large constant.
e: Appropriately sized vector of ones.
cik: Fixed rental cost ($) of resource i assigned to based k.
cijk: Relocation cost ($) of resource i from its initial base j to base k,

cijk = 0 if j = k.
hdif : Standard operation time (hr) of resource i at fire f on fire season day d

that takes the value of |T |.
qik: Hourly cost ($/hr) of operation resource i from base k.

αd,ω
f : Minimum standard dozer-line rate required at fire f on fire season day d

in scenario ω in (km/hr).
αi: Dozer line rate of resource i in (km/hr).
pω: Probability of occurrence of scenario ω.
µd
f : NVC for fire f on fire season day d if it receives standard response.

adf : WE value associated with the area around fire f in fire season day d

tmax: Maximum response time of any resource to reach fire f under any
scenario ω ∈ Ω and any fire season day d ∈ D.

nk: Maximum number of resources that can be deployed to base k.
g(adf ):= NWE for fire f during fire season day d.

e(ω):= Overall NWE for scenario ω
such that e(ω) =

∑
d∈D

∑
f∈F ′(ω,d) g(adf ).

p(ω):= Probability of occurrence for scenario ω.
h(ω):= Weighted NWE for scenario ω

such that h(ω) = p(ω)e(ω).
r(ω):= Normalized risk value associated with scenario ω

such that r(ω) = h(ω)∑
ω̂∈Ω h(ω̂) .

Table 5.4: Decision variables

Notation Definition
xijk: xijk = 1 if resource i initially at base j is deployed to base k,

xijk = 0 otherwise.
zdijkf : zdijkf = 1 if resource i from base k (initially at base j) is dispatched to

fire f during fire season day d, zdijkf = 0 otherwise.

ydf : ydf = 1 if fire f receives standard response during fire season day d,

ydf = 0 otherwise.

υω: υω = 1 if the constraints associated with scenario ω are included in the formulation,
υω = 0 otherwise.
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The probabilistically constrained model for wildfire initial response is now pre-

sented.

SIP-CW:min
∑
j∈B

∑
i∈R̂(j)

∑
k∈B̂(i)

cikxijk +
∑
j∈B

∑
i∈R̂(j)

∑
k∈B̂(i)

cijkxijk

+
∑
d∈D

∑
j∈B

∑
k∈B

∑
i∈R̄(j,k)

∑
f∈F̄(k,d)

hifqikz
d
ijkf +

∑
d∈D

∑
f∈F̂(d)

µfy
d
f (5.2a)

s.t.
∑

k∈B̂(i)

xijk = 1, ∀j ∈ B,∀i ∈ R̂(j) (5.2b)

∑
f∈F̄(k,d)

zdijkf ≤ xijk, ∀d ∈ D, ∀j ∈ B, ∀k ∈ B, ∀i ∈ R̄(j, k) (5.2c)

∑
j∈B

∑
i∈R̂(j)

∑
k∈B̂(i)

cikxijk +
∑
j∈B

∑
i∈R̂(j)

∑
k∈B̂(i)

cijkxijk

+
∑
d∈D

∑
j∈B

∑
k∈B

∑
i∈R̄(j,k)

∑
f∈F̄(k,d)

hifqikz
d
ijkf +

∑
d∈D

∑
f∈F̂(d)

µfy
d
f ≤ b (5.2d)
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∑
j∈B

∑
k∈B′(ω̃,d)

∑
i∈R̄(j,k) αiz

d
ijkf ≥ α

d,ω̃
f ydf , ∀d ∈ D, ∀f ∈ F ′(ω̃, d)∑

d∈D
∑

f∈F ′(ω̃,d) g(adf )ydf ≥ ρ1e(ω)∑
d∈D

∑
f∈F ′(ω̃,d) y

d
f ≥ ρ2

∑
d∈D | F ′(ω̃, d) |

ydf ≥ zdijkf , ∀d ∈ D, ∀f ∈ F ′(ω̃, d), ∀j ∈ B, ∀k ∈ B, ∀i ∈ R̄(j, k)


≥ 1− β (5.2e)

xijk ∈ {0, 1}, ∀j ∈ B, ∀i ∈ R̂(j), ∀k ∈ B̂(i) (5.2f)

zdijkf ∈ {0, 1}, ydf ∈ {0, 1}, ∀d ∈ D, ∀j ∈ B, ∀k ∈ B, ∀i ∈ R̄(j, k), ∀f ∈ F (5.2g)

SIP-CW aims to minimize the total fixed cost of deploying available resources

to operations bases, the total travel cost for relocating resources between bases, the

total resource operation cost and the total cost of fire damages, as shown in the

objective function (5.2a). Constraint (5.2b) ensures that each resource i can only

be assigned to exactly one operations base. It also implies that either a resource i

remains at its initial base j, when j = k, or it is deployed to operations base k, when

j 6= k. Constraint (5.2c) guarantees that a resource i can only respond to one fire in
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a day, and it is returned to its home base k by the end of the day. Likewise, (5.2d)

imposes a budgetary constraint on the total deployment, relocation, operation, and

fire damages cost. The joint probabilistic constraint is represented in (5.2e). This

ensures that a set of four different constraints are satisfied with probability 1 − β.

These four constraints are: the minimum standard dozer-line rate required to contain

a fire; the maximum NWE associated with fires not receiving a standard response

during a fire season; the minimum number of fires receiving a standard response; and

a logic constraint used to tighten the formulation. Likewise, constraints (5.2f) and

(5.2g) ensure binary restrictions on the decision variables.

The random vector ω̃ is discretely distributed with |Ω| <∞ by assumption (A6).

Thus, a DEP to SIP-CW can be written as DEP-W (Formulation 5.3) where υω

is a binary decision variable for each scenario ω that takes the value of 0 if the

constraints corresponding to ω are included, and 1 if the constraints corresponding

to ω are excluded from the formulation. There is also a knapsack constraint (5.3i) to

guarantee that the probabilistic constraint (5.2e) is satisfied. DEP-W can be directly

solved using an off-the-shelf solver such as CPLEX. We selected CPLEX since this

MIP solver allows for solving instances of DEP-W up to 320,000 constraints and

300,000 variables within a reasonable amount of time (about an hour).
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DEP-W:min
∑
j∈B

∑
i∈R̂(j)

∑
k∈B̂(i)

cikxijk +
∑
j∈B

∑
i∈R̂(j)

∑
k∈B̂(i)

cijkxijk

+
∑
d∈D

∑
j∈B

∑
k∈B

∑
i∈R̄(j,k)

∑
f∈F̄(k,d)

hifqikz
d
ijkf +

∑
d∈D

∑
f∈F̂(d)

µfy
d
f (5.3a)

s.t.
∑

k∈B̂(i)

xijk = 1, ∀j ∈ B,∀i ∈ R̂(j) (5.3b)

∑
f∈F̄(k,d)

zdijkf ≤ xijk, ∀d ∈ D, ∀j ∈ B, ∀k ∈ B, ∀i ∈ R̄(j, k) (5.3c)

∑
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∑
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cikxijk +
∑
j∈B

∑
i∈R̂(j)

∑
k∈B̂(i)

cijkxijk

+
∑
d∈D

∑
j∈B

∑
k∈B

∑
i∈R̄(j,k)

∑
f∈F̄(k,d)

hifqikz
d
ijkf +

∑
d∈D

∑
f∈F̂(d)

µfy
d
f ≤ b (5.3d)

∑
j∈B

∑
k∈B′(ω,d)

∑
i∈R̄(j,k)

αiz
d
ijkf +Meυω ≥ αd,ω

f ydf , ∀d ∈ D, ∀f ∈ F ′(ω, d), ∀ω ∈ Ω (5.3e)

∑
d∈D

∑
f∈F ′(ω,d)

g(adf )ydf +Meυω ≥ ρ1e(ω), ∀ω ∈ Ω (5.3f)

∑
d∈D

∑
f∈F ′(ω,d)

ydf +Meυω ≥ ρ2

∑
d∈D

| F ′(ω, d) |, ∀ω ∈ Ω (5.3g)

ydf +Meυω ≥ zdijkf , ∀d ∈ D, ∀f ∈ F ′(ω, d), ∀j ∈ B, ∀k ∈ B, ∀i ∈ R̄(j, k), ∀ω ∈ Ω (5.3h)∑
ω∈Ω

pωυω ≤ β (5.3i)

xijk ∈ {0, 1}, ∀j ∈ B, ∀i ∈ R̂(j), ∀k ∈ B̂(i) (5.3j)

zdijkf ∈ {0, 1}, ydf ∈ {0, 1}, ∀d ∈ D, ∀j ∈ B, ∀k ∈ B, ∀i ∈ R̄(j, k), ∀f ∈ F (5.3k)

5.5 Application

5.5.1 Overview

An overview of the new methodology is shown in Figure 5.1. This methodology

integrates three models: a wildfire risk model (e.g., TWRA system), SIP-CW, and a

fire behavior simulation model (e.g., BehavePlus). The fire behavior model simulates
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fire growth and computes burned area and fire perimeter for a six-hour wildfire initial

response horizon that becomes an input to SIP-CW. Fire growth is simulated in a fire

planning unit under different weather scenarios (low, medium, high and extreme).

The input data for the fire behavior simulation includes GIS landscape, fuels data,

weather scenarios, and historical fire data. Likewise, NWE is computed using the

TWRA system that is also an input to SIP-CW. The input data for the TWRA

system includes WT and VRI.

SIP-CW computes different outputs that can be used to make effective decisions

regarding wildfire initial response at the beginning of a fire season before fires occur.

Outputs of SIP-CW include resource deployment and dispatch plans, total number

of fires contained, total wildfire risk associated with fires not receiving a standard

response, and total containment cost.

This chapter also describes the application of the new methodology to a real fire

planning unit in east Texas. The goals of the computational experiments can be

summarized as follows:

1. Demonstrate the effectiveness of the new methodology for making strategic

deployment decisions for wildfire initial response.

2. Compare the deployment decisions provided by the new methodology with the

current deployment plan of firefighting resources in TX12.

3. Estimate future budgetary needs to effectively provide standard response.

4. Identify the regions in TX12 with the highest wildfire risk and the highest

density of historical fires.
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5.5.2 Study Area

We applied SIP-CW to a real fire planning unit that is managed by TFS. This

fire planning unit that is called TX12 is located on the northeastern part of Texas

as shown in Figure 5.3. TX12 has seven operations bases from which firefighting

resources are dispatched to reported fires. TX12 is one of the districts in Texas with

the highest historical density of fires per square mile over the past 20 years and the

largest historical fires with fire sizes as large as 4000 acres. Likewise, TX12 is one of

the districts in Texas with the highest wildfire risk with VRI, PPRI, and WT values

as high as -8, -7 and 3, respectively. All input data used in the study including

historical fire data was provided by TFS.

NEW BOSTON 

PITTSBURG LINDEN 

GILMER 

MARSHALL 

HENDERSON 
CARTHAGE 

Figure 5.3: Location of TX12 in east Texas

We consider historical fire data between 1985 and 2006. There was a total
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of 13,163 fire occurrences during this time period in TX12. We implemented a

clustering algorithm and generated representative fire locations (RFLs) in order to

bring the problem size down to something tractable (Figure 5.4). A RFL is a single

location that represents a fire or group of fires that actually occurred within the same

geographic area and shared not only similar fuel models but also similar wildfire risk.

We created 46 RFLs for the study in TX12 as suggested in the literature [29, 48, 49].

This number is a good and an uniform representation of fuels, weather, and wildfire

risk over TX12 since more RFLs are located on areas with high wildfire risk. In

addition, this number allows RFLs to be well-spread over the region of interest.

We used a clustering algorithm that constructs a covering perimeter with constant

incremental value around arbitrary historical fire location until the number of desired

RFLs is achieved.

Standard response models for wildfire initial response require specifying the final

fire size (burned area and perimeter) for each RFL for different weather scenarios.

TFS defines four weather scenarios: low, moderate, high and extreme. Final fire size

also depends on fuel models and landscape. TFS provided weighted fuel model and

landscape samples around each RFL within a circular area of 200 acres. This selection

was made through experimentation to ensure that the fuel models at each RFL were

well represented and that the final fire sizes obtained by BehavePlus were within the

range of historical values for the RFL. Using the weighted fuel models, the landscape

data, and the four different weather scenarios, we performed fire simulations using

BehavePlus to obtain final fire size at each RFL for a 6-hour wildfire initial response

planning horizon.

SIP-CW for wildfire initial response requires specifying the NWE values around

each RFL on any day during a fire season. TFS provided the WE sample values

around each RFL within a circular area of 200, 2000, and 8000 acres. Since WE is
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Figure 5.4: Representative fire locations and operations bases in TX12

calculated for each 30 m by 30 m cell on burnable surface within the circular areas,

the WE values can be either summed or averaged to obtain an overall estimate of the

WE value at each RFL. These estimates are then used to calculate the associated

NWE at each RFL.

Fire seasons are the periods of the year during which wildfires are likely to occur

and spread while affecting resource values such that organized fire management

activities are needed. Fire seasons are composed of fire days (FDs) d ∈ D. Each FD

during a fire season has a unique pattern of fire occurrences f ∈ F at RFLs. Note

that there could be FDs with no fire occurrences. Likewise, a fire scenario (FS) ω is
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a sequence of FDs during a fire season with an associated probability of occurrence

p(ω) and an overall NWE e(ω). We focused our study on the summer fire seasons

in TX12 for the 22-year period from 1986 and 2006 because of the high frequency of

occurrence of multiple fires (2 or more) on a single day (Figure 5.5). The summer

fire season for TX12 consists of 92 FD from July 1 to September 30.

0

40

80

120

160

200

240

280

320

360

400

440

480

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fr
e

q
u

e
n

cy
 

Number of fires per FD 

Figure 5.5: Empirical distribution of multiple fires on a single day in TX12

FSs can be created using different methods such as forecasting models or historic

data. In this work, we created 22 FS using the 46 RFLs and the historical fire data

for the period between 1985 and 2006 such that each year represents a FS. FSs can
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be sampled using a uniform distribution since there are not two or more years with

exactly the same sequence of FDs at the RFLs, that is, each FSs is unique. In

addition, FSs are weighted using a risk value r(ω) representing an overall measure

of wildfire risk for a particular FS ω. This value is computed by multiplying the

overall NWE times its probability of occurrence (p(ω)× e(ω)) and then normalized

to be between zero and one. The probability distribution of the normalized risk

values associated with all FSs ω ∈ Ω is the one imposed to the constraint (5.2e) in

SIP-CW. Figure 5.6 summarizes how this probability distribution is computed.
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Figure 5.6: Normalized wildfire risk measure
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SIP-CW for wildfire initial response requires the selection of a risk attitude level β.

This establishes the decision maker’s tendency towards risk when making decisions

for wildfire initial response planning. For example, a risk-seeking decision maker

would choose a risk attitude level close to one. Consequently, wildfire initial response

planning decisions would be made using the fewest number of scenarios. Likewise, a

risk-averse decision maker would choose a risk attitude level close to zero. As a result,

wildfire initial response planning decisions would be made using as many scenarios

as possible. The size of SIP-CW in terms of the number of decision variables and

constraints is proportional to the number of scenarios considered for decision making.

In other words, the higher the number of scenarios the larger the size of SIP-CW,

and the harder it is to solve. Therefore, it is up to the decision maker to decide the

appropriate risk attitude level depending on the number of available resources and

the number of fires during a fire season receiving a standard response or not.

5.5.3 Experimental Design and Software Implementation

We designed four different sets of experiments to test the research goals stated

above. First, we considered DEP-W while excluding the budgetary constraint (5.3d)

and the constraints related to the minimum number of fires receiving a standard

response (5.3g). Second, we studied DEP-W in which the budgetary constraint (5.3d)

is included and the constraints (5.3g) are excluded. Third, we considered DEP-W

while only excluding the budgetary constraint (5.2d). We studied an additional set

of experiments in which all constraints in DEP-W are included.

We based the computational study on the seven operations bases and resources

available in TX12. These bases are located at Pittsburg, Marshall, Carthage, Linden,

Gilmer, Henderson, and New Boston. We used an initial set of 18 dozers (resources)

in TX12 with dozer-line rates ranging from 1.03 to 3.18 kilometers per hour (km/hr)

(Table 5.5). These are standard values from the National Wildfire Coordinating
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Group Fire Handbook [51]. We allowed each resource to be redeployed from any of

the seven operations bases to any other base within TX12. We consider an average

relocation cost of $100 per resource since, within its limits, any location in TX12 can

be reached from any other location in less than 60 minutes.

In our model we also allow for 20 additional resources located at a dummy base

(Table 5.6). Since this dummy base does not exist, the additional resources assigned

to it must be deployed to any of the other seven operations bases before they can be

actually dispatched to any RFL. The relocation of resources from the dummy base

to any other operations base in TX that can be done at zero cost allows us to avoid

any bias when comparing the deployment plans provided by the new methodology

with the current deployment plan for firefighting resources in TX12.

Table 5.5: Set of initial resources in TX12 at the operations bases

Base Resource Description Dozer Prod. Fixed Cost Supp. Cost
ID Type (km/hr) ($) ($/hr)

Pittsburg 1 JD 400G 1989 III 1.03 350 250
2 JD 450D 1984 III 1.77 350 250

Marshall 3 JD 400G 1990 III 1.03 350 250
4 JD 450G 1996 III 1.77 350 250

Carthage 5 JD 400G 1991 III 1.03 350 250
6 JD 450E 1984 III 1.77 350 250

Linden 7 JD 400G 1992 III 1.03 350 250
8 JD 450G 1991 III 1.77 350 250

Gilmer 9 JD 400G 1992 III 1.03 350 250
10 JD 450H 2000 III 1.77 350 250

Henderson 11 JD 400G 1991 III 1.03 350 250
12 JD 450E 1991 III 1.77 350 250
13 JD 450G 1996 III 1.77 350 250

New Boston 14 JD 400G 1992 III 1.03 350 250
15 JD 400G 1989 III 1.03 350 250
16 JD 450G 1994 III 1.77 350 250
17 JD 550 2002 III 2.15 350 250
18 JD 750 2002 I 3.18 350 250

All four sets of experiments assume that both the initial 18 dozers and the

additional 20 dozers are available for deployment and dispatching in TX12. The
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experiments also assume a 60-minute response time restriction such that all RFLs

in TX12 can be reached by at least one dozer since the maximum of the minimum

traveling times from all bases to any RFL is 54 minutes (we approximated this to 60

minutes for consistency). Since fire growth data is required by SIP-CW, we simulate

fire behavior at each RFL using the four weather scenarios: low, moderate, high and

extreme. Afterwards, the simulated fire behavior is sampled for each RFL using a

uniform distribution.

Table 5.6: Set of additional resources in TX12 at the dummy base

Base Resource Description Dozer Prod. Fixed Cost Supp. Cost
ID Type (km/hr) ($) ($/hr)

Dummy base 19 JD 400G 1989 III 1.03 350 250
20 JD 400G 1989 III 1.03 350 250
21 JD 450G 1994 III 1.77 350 250
22 JD 400G 1989 III 1.03 350 250
23 JD 400G 1989 III 1.03 350 250
24 JD 450G 1994 III 1.77 350 250
25 JD 400G 1989 III 1.03 350 250
26 JD 400G 1992 III 1.03 350 250
27 JD 400G 1992 III 1.03 350 250
28 JD 450G 1994 III 1.77 350 250
29 JD 400G 1989 III 1.03 350 250
30 JD 400G 1989 III 1.03 350 250
31 JD 450G 1994 III 1.77 350 250
32 JD 400G 1989 III 1.03 350 250
33 JD 400G 1989 III 1.03 350 250
34 JD 450G 1994 III 1.77 350 250
35 JD 400G 1989 III 1.03 350 250
36 JD 400G 1992 III 1.03 350 250
37 JD 400G 1992 III 1.03 350 250
38 JD 450G 1994 III 1.77 350 250

NVC is the net wildfire damage to a given area in monetary terms. We adopt the

cost plus net value change (C+NVC) model for wildfire economics [17] to estimate

the cost of fire damages. Even though we use the C+NVC concept, SIP-CW can be

extended to allow for other fire damage valuation criteria. Following recommenda-

tions made by TFS, we assumed an average NVC of $500 per acre. The C+NVC
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model for wildfire economics will allow us to estimate the future budgetary needs to

effectively provide standard response to fires during a summer fire season in TX12.

TFS provided wildfire risk values in terms of aggregated WE corresponding to

circular areas of 8000 acres around each RFL. We chose to use aggregated WE values

for areas of 8000 acres since wildfire risk around each RFL can be underestimated

if either smaller areas or other statistics such as the average are considered instead.

Thus, these aggregated WE values can be used to calculate the corresponding NWE

at each RFL. Figure 5.7 shows a comparison of the NWE values at each RFL using

the sum of WE values within circular areas of 200, 2000, and 8000 acres. The NWE

values along with the number of relocated resources at operations bases will help us

to clearly identify those regions within TX12 with the highest wildfire risk.
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Figure 5.7: NWE within circular areas of 200, 2000, and 8000 acres
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We implemented DEP-W in Microsoft Visual C++ 2010 and the CPLEX 12×64

Callable Library [32]. To create problem instances for each of the four sets of

experiments, we established different value for FSs, ρ1, ρ2, and β. Since the total

number of available FSs is 22, we fixed the number of scenarios per instance to 5, 10,

15, 20, and 22. Since ρ1 ∈ [0, 1] is the fraction of the overall NWE for a FS ω, and

ρ2 ∈ [0, 1] is the fraction of the total number of fires receiving a standard response

for FS ω, it is desirable to choose ρ1 and ρ2 close to one. Thus, we set the values of

both ρ1 and ρ2 to 0.97, 0.98, 0.99, and 1.00. Since wildfires in Texas are very likely

to occur within 2 miles of a community, we assume a risk averse tendency with risk

attitude levels close to zero. Therefore, β values were set to 0.100, 0.050, 0.025, 0.001

and 0.000 in the experiments.

Each instance of DEP-W was solved using CPLEX 12×64 on a Dell Intel (R) Core

(TM) at 2.66 Ghz each with 4.00 GB of RAM. We ran CPLEX with the following

settings: node file indicator was set to 3; node selection strategy was set to best-

bound search; variable selection was set to strong branching ; clique cut was set to

aggressive; and cover cut was set to aggressive. Each instance ran to optimality or

was stopped when a CPU time limit of 3,600 seconds (1 hour) was reached.

5.5.4 Computational Results

Computational results for the four different sets of experiments and related in-

stances are shown next. We evaluate deployment and dispatching decisions provided

by SIP-CW in terms of the expected number of contained and escaped fires, NWE

associated with contained and escaped fires, and total expected cost in terms of fixed

rental, relocation and operation cost for different risk attitude levels. We also report

on the number of initial and positioned firefighting resources or dozers at each base.

The resources initially located at a base before applying SIP-CW are referred to as

initial resources, and the resources assigned to a base after applying SIP-CW are

122



referred to as positioned resources.

We report on instances with 15 FSs and ρ1, ρ2 values of 0.97, 0.98, and 0.99

since these computational results are typical for all the different sets of experiments.

Instances with 20 and 22 FSs and risk attitude levels greater than or equal to 0.5,

and they could not not be solved by CPLEX within the time limit of one hour. In

fact, these instances have more than 500,000 constraints and decision variables.

Table 5.7: DEP-W output values for ρ1=0.97 and 15 fire scenarios

DEP-W Output β=0.100 β=0.050 β=0.025 β=0.001 β=0.000
Fires contained 1,288 1,380 1,431 1,464 1,464
Escaped fires 263 282 292 297 297
% of contained fires 83.04 83.03 83.05 83.13 83.13
Normalized wildfire exposure
of fires contained 456.38 483.11 494.14 506.50 506.23
Normalized wildfire exposure
of escaped fires 13.61 14.42 14.82 15.07 15.34
Fixed rental cost c1 ($) 13,300 13,300 13,300 13,300 13,300
Relocation cost c2 ($) 200 200 200 200 200
Operation cost 1,936,500 2,074,500 2,155,500 2,202,000 2,202,000
NVC cost cnvc ($) 772,800 828,000 858,600 878,400 878,400
Total cost ($) 2,722,800 2,916,000 3,027,600 3,093,900 3,093,900
CPLEX CPU time (sec.) 3,602 3,601 625 429 667

We first consider DEP-W while excluding the budgetary constraint (5.2d) and

the constraints related to the minimum number of fires receiving a standard response

(5.3g). Table 5.7 shows the computational results for this case with ρ1=0.97 and

15 FSs. The total NWE of fires receiving a standard response increases when the

risk attitude level decreases with values ranging from 456.38 to 506.23. This is a

consequence of an increasing number of fires contained with values ranging from

1,288 to 1,464. Consequently, the total expected cost increases up to $3,093,900

mainly because of an increasing operation cost since more dozers are utilized to

provide standard response.
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The fixed rental cost remains constant at $13,300 ($350 × 38) for the different

risk attitude levels in Table 5.7. This happens because constraint (5.3b) in DEP-CW

ensures that all resources including the additional ones are deployed to at least one

operations base. Likewise, the relocation cost is $200 for all instances due to the

relocation of resources 17 and 18 from New Boston to other operations bases since

these are the two available resources with the highest dozer-line rates, that is, 2.15

km/hr and 3.18 km/hr, respectively.

The number of escaped fires also increases when the risk attitude level decreases

as shown in Table 5.7. Every time the risk attitude level is reduced then more infor-

mation, in terms of a larger number of FSs, is considered in DEP-W for deployment

decisions. Therefore, the percentage of fires contained remains stable around 83%

even though more fires are contained. All instances for this set of experiments were

solved to optimality within the time limit of 3,600 seconds (1 hour).

Figure 5.8 shows the initial and positioned number of resources at each operations

base for the first set of experiments with ρ1=0.97 and 15 FSs for different risk attitude

levels. Pittsburg, Henderson, and Gilmer are in the top three of operations bases with

the largest number of positioned resources. For instance, the number of positioned

resources at Pittsburg ranges from 7 to 13 with only 2 initial resources while the

number of positioned resources at Henderson ranges from 4 to 10 with only 3 initial

resources. New Boston is another operations base with a high number of positioned

resources. However, unlike Pittsburg, Henderson and Gilmer, this is due to the high

number of initial resources at this base, that is, 5. Most of the relocated resources

come from the dummy base since the number of positioned resources at this base is

zero for all the risk attitude levels.

Table 5.8 shows the computational results for the first set of experiments with

ρ1=0.98 and 15 FSs. The total NWE associated with fires receiving a standard
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Figure 5.8: Initial versus positioned resources for ρ1=0.97 and 15 fire scenarios

Table 5.8: DEP-W output values for ρ1=0.98 and 15 fire scenarios

DEP-W Output β=0.100 β=0.050 β=0.025 β=0.001 β=0.000
Fires contained 1,343 1,440 1,493 1,527 1,527
Escaped fires 208 222 230 234 234
% of contained fires 86.59 86.64 86.65 86.71 86.71
Normalized wildfire exposure
of fires contained 460.91 488.01 499.02 511.54 511.53
Normalized wildfire exposure
of escaped fires 9.09 9.52 9.94 10.03 10.04
Fixed rental cost c1 ($) 13,300 13,300 13,300 13,300 13,300
Relocation cost c2 ($) 200 200 200 200 200
Operation cost 2,025,000 2,172,000 2,247,000 2,295,000 2,304,000
NVC cost cnvc ($) 805,800 864,000 895,800 916,200 916,200
Total cost ($) 2,844,300 3,049,500 3,156,300 3,224,700 3,233,700
CPLEX CPU time (sec.) 3,601 3,632 2,087 836 1,456
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response increases when the risk attitude level decreases with values ranging from

460.91 to 511.53. Therefore, the number of fires contained also increases with values

ranging from 1,343 to 1,464. The latter represents a 4% increase not only in the

number of fires contained but also in the total expected cost compared to the case

with ρ1=0.97.

Figure 5.9 shows the initial and positioned number of resources at each operations

base for the first set of experiments with ρ1=0.98 and 15 FSs for different risk attitude

levels. Gilmer is now the operations base with the largest number of positioned

resources with values ranging from 7 to 9 followed by New Boston, Pittsburg, and

Henderson or Carthage in that order. Most of the relocated resources come from the

dummy base since the number of positioned resources at this base is zero for all the

risk attitude levels.

Table 5.9: DEP-W output values for ρ1=0.99 and 15 fire scenarios

DEP-W Output β=0.100 β=0.050 β=0.025 β=0.001 β=0.000
Fires contained 1,403 1,502 1,557 1,593 1,593
Escaped fires 148 160 166 168 168
% of contained fires 90.46 90.37 90.37 90.46 90.46
Normalized wildfire exposure
of fires contained 465.63 492.83 504.21 516.71 516.53
Normalized wildfire exposure
of Escaped fires 4.36 4.70 4.75 4.86 5.04
Fixed rental cost c1 ($) 13,300 13,300 13,300 13,300 13,300
Relocation cost c2 ($) 200 200 200 200 200
Operation cost 2,116,500 2,263,500 2,356,500 2,398,500 2,401,500
NVC cost cnvc ($) 841,800 901,200 934,200 955,800 955,800
Total cost ($) 2,971,800 3,178,200 3,304,200 3,367,800 3,370,800
CPLEX CPU time (sec.) 3,600 3,155 578 668 810

Table 5.9 shows the computational results for the first set of experiments with

ρ1=0.99 and 15 FSs. The total NWE of fires receiving a standard response increases

when the risk attitude level decreases with values ranging from 465.63 to 516.53.
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Figure 5.9: Initial versus positioned resources for ρ1=0.98 and 15 fire scenarios

Therefore, the number of fires contained also increases with values ranging from

1,403 to 1,593. The latter represents a 4% increase not only in the number of fires

contained but also in the total expected cost compared to the case with ρ1=0.98 and

almost a 8% increase in both categories for the case with ρ1=0.97.

Figure 5.10 shows the initial and positioned number of resources at each oper-

ations base for the case with ρ1=0.99 and 15 FSs for different risk attitude levels.

Gilmer remains as the operations base with the largest number of positioned resources

with values ranging from 4 to 13 followed now by Pittsburg, New Boston, and

Henderson in that order. Since the difference in the number of positioned resources

is so large between the top two bases and the rest, this result suggests that the region

with the highest wildfire risk in TX12 is the one exactly located around and between
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Figure 5.10: Initial versus positioned resources for ρ1=0.99 and 15 fire scenarios

the operations bases of Gilmer and Pittsburg. Most of the relocated resources come

from the dummy base since the number of positioned resources at this base is zero

for all the risk attitude levels. The latter suggests that the current deployment plan

of resources at TX12 is not sufficient to provide wildfire standard response to all fires

during the summer fire season. In fact, the current deployment plan at TX12 has

more resources assigned to bases located in regions with a lower wildfire risk such as

New Boston.

We now report results on the second set of experiments. Here we consider DEP-

W while excluding only the constraint associated with the minimum number of fires

receiving a standard response (5.3g). Table 5.10 shows the computational results

for this case with ρ1=0.99, 15 FSs, and a budget of $3,321,000. Values for the total
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Table 5.10: DEP-W output values for ρ1=0.99, 15 fire scenarios, and a budget of
$3,321,000

DEP-W Output β=0.100 β=0.050 β=0.025 β=0.001 β=0.000
Fires contained 1,403 1,502 1,557 0 0
Escaped fires 148 160 166 0 0
% of contained fires 0.90 0.90 0.90 0 0
Normalized wildfire exposure 0 0
of fires contained 465.67 492.93 504.20 0 0
Normalized wildfire exposure
of escaped fires 4.32 4.60 4.76 0 0
Fixed rental cost c1 ($) 13,300 13,300 13,300 0 0
Relocation cost c2 ($) 200 200 200 0 0
Operation cost 2,115,000 2,268,000 2,346,000 0 0
NVC cost cnvc ($) 841,800 901,200 934,200 0 0
Total cost ($) 2,970,300 3,182,700 3,293,700 0 0
CPLEX CPU time (sec.) 3,715 1,513 1,878 0 0

NWE, number of fires contained, and total expected cost exhibit a similar pattern

as the one seen for the case in which the budgetary constraint (5.2d) is excluded.

Observe how all these values increase when the risk attitude level decreases, and how

no solutions are obtained for instances with a risk attitude level less than or equal

to 0.001 since the total cost for for these cases exceed the available budget.

Figure 5.11 shows the initial and positioned number of resources at each opera-

tions base for the case with ρ1=0.99, 15 FSs, and a budget of $3,321,000 for different

risk attitude levels. Similarly to the case with unrestricted budget, Gilmer is the

operations base with the largest number of positioned resources with values ranging

from 10 to 12 followed by Pittsburg, Marshall, and New Boston in that order. This

shows that when a budget is imposed, then the model prioritizes resource deployment

to the base located in the region with the highest wildfire risk, in this case Gilmer,

while evenly distributing resources among those bases located at regions with a

medium and low-level of wildfire risk. As before, most of the relocated resources

come from the dummy base since the number of positioned resources at this base is

zero for all the risk attitude levels.
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Figure 5.11: Initial versus positioned resources for ρ1=0.99, 15 fire scenarios, and a
budget of $3,321,000

Table 5.11: DEP-W output values for ρ1=0.97, ρ2=0.97, and 15 fire scenarios

DEP-W Output β=0.100 β=0.050 β=0.025 β=0.001 β=0.000
Fires contained 1,510 1,618 1,678 1,715 1,715
Escaped fires 41 44 45 46 46
% of contained fires 97.36 97.35 97.39 97.39 97.39
Normalized wildfire exposure
of fires contained 459.22 485.91 496.59 509.17 509.41
Normalized wildfire exposure
of escaped fires 10.77 11.62 12.37 12.40 12.16
Fixed rental cost c1 ($) 13,300 13,300 13,300 13,300 13,300
Relocation cost c2 ($) 100 100 100 100 200
Operation cost 2,265,000 2,427,000 2,517,000 2,572,500 2,572,500
NVC cost cnvc ($) 906,000 970,800 1,006,800 1,029,000 1,029,000
Total cost ($) 3,184,400 3,411,200 3,537,200 3,614,900 3,615,000
CPLEX CPU time (sec.) 4,162 908 2,085 1,468 1,591
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We now present results for the third set of experiments. Here only the budgetary

constraint (5.2d) in DEP-W is excluded. Observe that constraints (5.3e), (5.3f),

(5.3g), and (5.3h) are now included in the model. Table 5.11 shows the computational

results for this case with ρ1=0.97, ρ2=0.97, and 15 FSs. The total NWE of fires

receiving a standard response increases when the risk attitude level decreases with

values ranging from 459.22 to 509.23. This is a consequence of an increasing number

of fires contained with values ranging from 1,510 to 1,715. This constitutes a 17%

increase in the number of fires contained with respect to the case in which only

ρ1=0.97 is considered in the first set of experiments. In addition, the total expected

cost increases up to $3,615,000 for a zero risk attitude level. This value is 17%

larger than the total expected cost obtained for the case in which only ρ1=0.97 is

considered. As expected, the percentage of fires contained is around 97% for all

instances due to ρ2 = 0.97. All instances were solved to optimality within the time

limit of 3,600 seconds (1 hour) with the exception of the instance corresponding to

β =0.1000 whose solution was obtained after 4,162 seconds.

Figure 5.12 shows the initial and positioned number of resources at each oper-

ations base for the third set of experiments with ρ1=0.97, ρ2=0.97, and 15 FSs for

different risk attitude levels. Gilmer and Henderson are the bases with the largest

number of relocated resources followed closely by Pittsburg. For instance, the number

of positioned resources at Gilmer ranges from 6 to 9 with only 2 initial resources

while the number of positioned resources at Henderson ranges from 5 to 7 with only

3 initial resources. This result suggests that the area between and around Gilmer

and Henderson is the region with the highest density of historical fires in TX12 and

one of the areas with the highest wildfire risk within the same Texas district. Most

of the relocated resources come from the dummy base since the number of positioned

resources at this base is zero for all the risk attitude levels.

131



0

2

4

6

8

10

12

14

16

18

20

Pittsburg Marshall Carthage Linden Gilmer Henderson New Boston Dummy Base

P
o

si
ti

o
n

e
d

 R
e

so
u

rc
e

s 

Operations Base 

Original beta=0.1 beta=0.05 beta=0.025 beta=0.001 beta=0

Figure 5.12: Initial versus positioned resources for ρ1=0.97, ρ2=0.97, and 15 fire
scenarios

Table 5.12: DEP-W output values for ρ1=0.99, ρ2=0.99, and 15 fire scenarios

DEP-W Output β=0.100 β=0.050 β=0.025 β=0.001 β=0.000
Fires contained 1,542 1,652 1,713 1,751 1,751
Escaped fires 9 10 10 10 10
% of contained fires 99.42 99.40 99.42 99.43 99.43
Normalized wildfire exposure 468.28 495.91 507.06 518.67 519.08
of fires contained
Normalized wildfire exposure 1.71 1.62 1.90 2.89 2.49
of escaped fires
Fixed rental cost c1 ($) 13,300 13,300 13,300 13,300 13,300
Relocation cost c2 ($) 200 200 200 200 200
Operation cost 2,313,000 2,484,000 2,586,000 2,637,000 2,647,500
NVC cost cnvc ($) 925,200 991,200 1,027,800 1,050,600 1,050,600
Total cost ($) 3,251,700 3,488,700 3,627,300 3,701,100 3,711,600
CPLEX CPU time (sec.) 1,310 988 261 311 311
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Table 5.12 shows the computational results for the third set of experiments with

ρ1=0.99, ρ2=0.99, and 15 FSs. The total NWE of fires receiving a standard response

increases when the risk attitude level decreases with values ranging from 468.28 to

519.08. Therefore, the number of fires contained also increases with values ranging

from 1,542 to 1,751. The latter represents almost a 20% increase in the number of

fires contained compared to the case where only ρ1=0.97 is considered in the first

set of experiments. Besides, the total expected cost increases up to $3,711,600 for a

zero risk attitude level. As expected, the percentage of fires contained is now more

than 99% for all instances due to ρ2 = 0.99.
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Figure 5.13: Initial versus positioned resources for ρ1=0.99, ρ2=0.99, and 15 fire
scenarios
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Figure 5.13 shows the initial and positioned number of resources at each oper-

ations base for the third set of experiments with ρ1=0.99, ρ2=0.99, and 15 FSs for

different risk attitude levels. It is clear that Gilmer is the operations base with

the largest number of positioned resources while the remaining resources are evenly

distributed among the other operations bases. This result suggests that the area

around Gilmer is the region in TX12 not only with the highest wildfire risk but also

with the highest density of historical fires. Most of the relocated resources come from

the dummy base since the number of positioned resources at this base is zero for all

the risk attitude levels. The latter suggests a current deployment plan of resources

for TX12 that is not consistent with the actual wildfire risk profile of TX12.

Table 5.13: DEP-W output values for ρ1=0.99, ρ2=0.99, 15 fire scenarios, and a
budget of $3,600,000

DEP-W Output β=0.100 β=0.050 β=0.025 β=0.001 β=0.000
Fires contained 1,542 1,652 0 0 0
Escaped fires 9 10 0 0 0
% of contained fires 0.99 0.99 0 0 0
Normalized wildfire exposure
of fires contained 467.54 495.88 0 0 0
Normalized wildfire exposure
of escaped fires 2.45 1.65 0 0 0
Fixed rental cost c1 ($) 13,300 13,300 0 0 0
Relocation cost c2 ($) 200 200 0 0 0
Operation cost 2,316,000 2,485,500 0 0 0
NVC cost cnvc ($) 925,200 991,200 0 0 0
Total cost ($) 3,254,700 3,490,200 0 0 0
CPLEX CPU time (sec.) 1,313 787 0 0 0

We now report results on the fourth set of experiments. Here we consider DEP-W

without excluding any of the constraint. Table 5.13 shows the computational results

for this case with ρ1=0.99, ρ2=0.99, 15 FSs, and a budget of $3,600,000. Values for

the total NWE, number of fires contained, and total expected cost increase when

the risk attitude level decreases. No solutions are obtained for instances with a risk
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attitude level less than or equal to 0.025 since the total cost for for these cases exceed

the available budget. All feasible instances were solved to optimality within the time

limit of 3,600 seconds (1 hour).
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Figure 5.14: Initial versus positioned resources for ρ1=0.99, ρ2=0.99, 15 fire scenarios,
and a budget of $ 3,600,000

Figure 5.14 shows the initial and positioned number of resources at each opera-

tions base for the fourth set of experiments with ρ1=0.99, ρ2=0.99, 15 FSs, and a

budget of $3,600,000 for different risk attitude levels. Results show that Gilmer is the

operations base with the largest number of positioned resources with values ranging

from 7 to 9 followed by Pittsburg, Henderson, and New Boston in that order. This

shows that when a budget is imposed, then the model prioritizes resource deployment
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to bases located in the region with the highest wildfire risk, in this case between

Gilmer and Pittsburg, while evenly distributing resources among those bases with

a medium and low-level of wildfire risk. As before, most of the relocated resources

come from the dummy base since the number of positioned resources at this base is

zero for all the risk attitude levels.

5.6 Discussion

The methodology presented in this work yields quantitative plans regarding the

deployment of firefighting resources or dozers to operations bases in a fire planning

unit and the dispatching of the deployed resources from these bases to fires before

they occur. We used the probabilistically constrained SIP model (SIP-CW) to

allow for making decisions that hedge against uncertain future fire occurrences and

behavior. Specifically, SIP-CW makes decision plans regarding deployment and

dispatching while considering wildfire risk, that is, by prioritizing assignment of

resources to operations bases located in areas where potential fire occurrences would

have a higher impact on homes and other valuable resources.

SIP-CW also calculates the fixed rental costs, relocation costs, operations cost

and NVC associated with the deployment and dispatch decisions. In addition, SIP-

CW computes the expected number of contained fires, expected number of escaped

fires due to lack of response capacity, and wildfire risk associated with fires receiving

and not receiving a standard response. The information produced by the new

methodology is useful for planning future resource needs for a fire planning unit

based on weather forecasts, and for projecting future budgetary needs.

A DEP-W formulation to SIP-CW can be written since the multivariate random

vector that characterizes the uncertainties in SIP-CW has discrete probability distri-

bution and finite support. Four different set of experiments were designed using DEP-

W. First, we considered DEP-W while relaxing the budgetary constraint (5.3d) and
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the constraints related to the minimum number of fires receiving a standard response

within the probabilistic constraint (5.3g). Second, we studied the same formulation

considered in the first set of experiments but now including the budgetary constraint

(5.3d). Then, we considered DEP-W while only relaxing the budgetary constraint

(5.3d). Finally, we considered an additional set of experiments in which we studied

DEP-W including all the constraints. Afterwards, DEP-W to several instances for

each set of experiments were solved using CPLEX 12×64. These instances considered

different number of scenarios, various risk attitude levels, and different fractional

values of the total NWE and number of fires associated with a FS.

We experimented with varying the risk attitude level for different instances. In

all cases, we found that both the total NWE and the total number of fires contained

increase when the risk attitude level decreases with percentages of fires contained

up to 99.39%. As expected, every time the risk attitude level is reduced, due to a

tendency towards risk averseness, then more fires receive standard response especially

those occurring at regions where the wildfire risk is higher. Therefore, the total

expected cost increased in all instances when the risk attitude level was decreased

with values up to $ 3,700,000. In fact, if more fires receive standard response, then

more firefighting resources are used which makes the operation cost to increase as

well. Almost all instances were solved to optimality within the time limit of 3,600

seconds (1 hour).

Computational results showed that the initial distribution of resources at the time

of this study is not consistent with the wildfire risk profile of TX12. This also shows

that the current deployment plan of resources is not sufficient to provide wildfire

standard response to all fires during the summer fire season in TX12. Indeed, the

number of positioned resources at either Gilmer, Pittsburg, or Henderson goes up

to 13 with only 2 or 3 initial resources while the number of positioned resources at
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other operations bases such as New Boston goes up to 8 with 5 initial resources. In

addition, results show that when a budget is imposed, then the model prioritizes

resource deployment to bases located in the region with the highest wildfire risk, in

this case between Gilmer and Pittsburg, while evenly distributing resources among

those bases with a medium and low-level of wildfire risk

We identified three important regions within TX12 regarding wildfire risk and

density of historical fires based on the distribution of positioned resources described

above. First, the area between and around Gilmer and Pittsburg is identified as the

region with the highest wildfire risk in TX12. Observe that this area is not necessarily

the region with the highest density of historical fires. Second, the area between and

around Gilmer and Henderson is recognized as the region with the highest density

of historical fires in TX12. This area is not necessarily the region with the highest

wildfire risk. Therefore, the area around Gilmer is identified not only as the region

with the highest density of historical fires but also with the highest wildfire risk.

This is exactly the region where the two areas described above intersect as shown in

Figure 5.15.

There are several possible directions for future work. For example, this methodol-

ogy can be extended to include other stages in wildfire emergency response planning

such as mitigation, extended response and evacuation planning. In addition, the

probability of escaped fires or response failure probability [3] can be incorporated in

the definition of standard response. This methodology can also be easily extended

to allow for the location of new operations bases due to storage capacity or wildfire

initial response time restrictions.
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Figure 5.15: Wildfire risk profile of TX12
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6. CONCLUSION

6.1 Summary

This dissertation presents methods for finding irreducible infeasible subsystems

(IISs) of systems of inequalities with binary decision variables and for solving proba-

bilistically constrained stochastic integer programs (SIP-C). Finding IISs for binary

systems is useful in decomposition methods for SIP-C. SIP-C has many important

applications including modeling of strategic decision-making problems in wildfire

initial response planning. The research contributions of this dissertation can be

summarized as follows:

• A method for finding IISs of systems of linear inequalities with binary variables

using branch-and-bound (BAB) and heuristic approaches.

• A branch-and-cut (BAC) method using IIS inequalities to solve SIP-C with ran-

dom technology matrix and random righthand-side vector along with prelimi-

nary computational results obtained from an implementation using Microsoft

Visual C++ and CPLEX 12×64 Callable Library [32].

• A methodology for wildfire initial response planning that integrates a fire

behavior simulation model, a wildfire risk model, and SIP-C in association

with computational results obtained from an implementation using Microsoft

Visual C++, CPLEX 12×64 Callable Library [32], and BehavePlus [5].

New theoretical results and two new algorithms to find IISs for systems of in-

equalities with binary variables were developed. The theoretical results show that an

IIS for a binary system can be obtained as subset of an IIS to an associated system of
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inequalities with unrestricted decision variables. The first algorithm, called the IIS-

BAB algorithm, uses the new theory and the method of the alternative polyhedron

[23] within a branch-and-bound (BAB) approach. The second algorithm, termed the

IIS-Heuristic algorithm, applies the new theory and the method of the alternative

polyhedron [23] to a system in which zero/one box constraints are appended.

IISs for binary systems can be used to derive decomposition schemes to solve

SIP-C. A BAC method based on IIS inequalities for SIP-C with random technology

and random righthand-side vector was devised in this work. The IIS inequalities

were first used to model the minimum cardinality IIS set-covering problem (MIN IIS

COVER). Computational results provided empirical evidence that the IIS inequali-

ties strengthen the LP relaxation of the DEP to SIP-C.

SIP-C can be used to model strategic decision-making problems in wildfire initial

response planning. A new methodology for wildfire initial response was presented

in this dissertation. This methodology includes a fire behavior simulation model, a

wildfire risk model, and SIP-C, and it assumes a known standard response needed to

contain a fire of given size. The new methodology can be used to evaluate deployment

decisions in terms of the number of firefighting resources positioned at each base, the

expected number of escaped and contained fires, as well as the wildfire risk associated

with fires not receiving a standard response.

A study based on Texas district 12 (TX12), which is one of the Texas A&M Forest

Service (TFS) fire planning units in east Texas, provided several insights into the

deployment decisions made by the new methodology. For instance, computational

results showed that the original distribution of resources at the time of this study is

not consistent with the actual wildfire risk profile of TX12. Indeed, more resources

are deployed to operations bases located in regions with low wildfire risk while less

resources are allocated to operations bases located in regions with high wildfire risk.
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6.2 Future Research

6.2.1 IIS Decomposition Method

Although the BAC method using IIS inequalities showed promising computa-

tional results for solving probabilistically constrained SIP, there is still room for

improvement since neither this method nor CPLEX was able to find feasible or

optimal solutions for all the instances considered in the computational experiments.

Thus, the IIS decomposition method presented in Chapter 4 can be improved by

strengthening the IIS inequality or by using additional inequalities that include the

decision variable x. The IIS decomposition method can be also enhanced by obtaining

new inequalities with facet-defining properties for the set of feasible points of the DEP

to SIP-C.

6.2.2 Wildfire Initial Response Planning

There are several possible directions for future work regarding wildfire initial

response. For example, the methodology described in this work can be extended

to allow actions such as staging and/or the location of new operations bases due

to storage capacity or initial response time restrictions. Likewise, the probability

of escaped fires or response failure probability [3] can be also incorporated in the

definition of standard response. Another direction would be to extend the method-

ology for wildfire initial response planning to a multi-stage decision-making setting.

In this case, deployment decisions can be made in the first stage and relocation and

dispatching decisions can be made in subsequent stages based on wildfire growth and

risk.

Wildfire emergency response planning involves several phases: mitigation, initial

response planning, which is the one considered in this work, extended response

planning and evacuation planning. The goal of the mitigation phase is to prevent
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potentially harmful fires. Decisions related to fire containment are made during the

initial response planning phase. This phase lasts during the first eight hours after

a fire is reported. The extended response phase deals with all the decisions made

after the initial response phase, and its goal is to fully suppress a fire or group of

fires. Finally, decisions associated with evacuation planning represent an integral

aspect of protecting public safety in locations where intense, fast-spreading forest

fires co-occur with human populations

Methods for wildfire emergency response planning that involves all its phases

have not been presented in the literature yet. Note that strategic decision planning

regarding deployment of resources at any stage will affect the effectiveness of the

decisions made at any other phase within the wildfire emergency planning process.

For example, the deployment plans made for initial response will determine the

immediate number of resources available for extended response planning. Therefore,

there is a need for new models to assist fire managers in making deployment and

dispatching plans for emergency response planning.
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