
A BRANCH PREDICTOR DIRECTED DATA CACHE PREFETCHER FOR

OUT-OF-ORDER AND MULTICORE PROCESSORS

A Thesis

by

PRABAL SHARMA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Paul Gratz
Co-Chair of Committee, Jiang Hu
Committee Member, Daniel Jimenez
Head of Department, Chanan Singh

August 2013

Major Subject: Computer Engineering

Copyright 2013 Prabal Sharma

ABSTRACT

Modern superscalar pipelines have tremendous capacity to consume the instruc-

tion stream. This has been possible owing to improvements in process technology,

technology scaling and microarchitectural design improvements that allow programs

to speculate past control and data dependencies in the superscalar architecture. How-

ever, the speed of the memory subsystem lags behind due to physical constraints in

bringing in huge amounts of data to the processor core. Cache hierarchies have sub-

dued the impact of this speed gap, however, there is much that can be still done in

improving microarchitecture. Data prefetching techniques bring in memory content

significantly before the instruction stream actually witnesses demand misses. How-

ever, a majority of the techniques proposed so far depend upon an initial demand

miss that initiates a stream of previously identified prefetches.

In this thesis, we propose a novel prefetching algorithm, which leverages branch

prediction to facilitate deep memory system speculation. The branch predictor di-

rected lookahead mechanism builds a speculative control flow path for the instruction

stream about to be fetched by the main superscalar pipeline. Prefetches are gener-

ated along this speculative path from a condensed representation of the memory

instructions, leveraging register index based correlation. The technique integrates

eloquently with the main pipeline’s branch predictor to filter out prefetches along

invalid speculative paths. Impact of the prefetching scheme is analyzed using out-

of-order model of the Gem5 cycle accurate simulator. Evaluation shows that on a

set of 13 memory intensive SPEC CPU2006 benchmarks, our prefetching technique

improves performance by an average of 5.6% over the baseline out-of-order processor.

ii

DEDICATION

To my family and friends

iii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor, Dr. Paul Gratz for

giving me an opportunity to work in the CAMSIN Group. His constant guidance

and support always helped me move in the right direction in my research. I am really

grateful to him for making my research experience a truly memorable one.

I would like to express my sincere thanks to Dr. Daniel Jimenez, for taking keen

interest and giving his invaluable advice and suggestions during the course of this

work. I would also like to thank Dr. Jiang Hu for agreeing to be on my thesis com-

mittee and providing me valuable feedback and support.

A special thanks to the CAMSIN members who have worked with me on this,

David Kadjo and Jinchun Kim. This work wouldnt have been possible without their

valuable inputs and support.

My time at Texas A&M University was made enjoyable in large part due to many

friends that became a part of my life. I am grateful for the time spent with room-

mates and friends.

I would also like to thank my family for their love, support and encouragement

throughout my life, and for inspiring me to always reach for higher and better edu-

cation.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Thesis Statement . 3
1.2 Document Organization . 4

2. PROPOSED APPROACH . 5

2.1 Background . 5
2.2 Motivation . 8

3. PRIOR WORK . 11

3.1 Prefetching . 11
3.2 B-Fetch for In-order Processors . 13

4. DESIGN AND IMPLEMENTATION . 17

4.1 Overall System Architecture . 17
4.2 System Components . 23

4.2.1 Branch Trace Cache . 23
4.2.2 Path Confidence Estimator . 26
4.2.3 Memory History Table . 29
4.2.4 Generate Deque . 35
4.2.5 Prefetch Deque . 39
4.2.6 Prefetch Filtering . 40

4.3 Working Example . 43

v

5. EVALUATION . 52

5.1 Methodology . 52
5.2 Results and Analysis . 54

5.2.1 Lookahead Depth Distribution Analysis 54
5.2.2 Hit Rate Analysis . 59
5.2.3 Load Distribution in Basic Blocks 61
5.2.4 MSHR Fill Analysis . 63
5.2.5 Performance Impact . 64

5.3 Hardware Overhead . 66

6. FUTURE WORK . 68

6.1 Priority Based Prefetch . 68
6.2 Dynamic Prefetch Region Sizing . 68
6.3 Dynamic Cache Selection . 69
6.4 Better Branch Prediction . 69
6.5 Multi-banked Tables . 70
6.6 Adaptive Lookahead Depth Threshold 71
6.7 Instruction Cache Prefetching . 71

7. CONCLUSION . 72

REFERENCES . 73

vi

LIST OF FIGURES

FIGURE Page

2.1 Relation between Data Access Pattern and Control Flow 5

2.2 Branch Directed Prefetching . 7

2.3 Code Segment from SPEC CPU2006 9

4.1 B-Fetch Pipeline for OoO Processor 18

4.2 B-Fetch Pipeline Internals . 22

4.3 Branch Trace Cache Structure . 24

4.4 Control Flow Graph and filled Trace Cache State 25

4.5 Lookahead Algorithm . 27

4.6 Composite Branch Confidence Estimator 28

4.7 Memory History Table . 30

4.8 Filled Memory History Table . 31

4.9 Prefetch Address Calculation Algorithm 33

4.10 Generate Deque . 36

4.11 Generate Deque Forwarding Algorithms 38

4.12 Prefetch Deque . 39

4.13 Prefetch Filtering via Flush from Main Pipeline 41

4.14 Prefetch Filtering via Retire from Main Pipeline 42

4.15 Memory History Update Algorithm 44

4.16 Table Update Algorithm - Initial State 45

4.17 Table Update Algorithm - Final State 47

4.18 Post Prefetch Issue Memory History Table State 48

vii

4.19 Calculating GenerateOffset Value in Offset Mode 50

5.1 Lookahead Depth Distribution for SPEC CPU2006 FP Benchmarks . 55

5.2 Lookahead Depth Distribution for SPEC CPU2006 INT Benchmarks 56

5.3 Lookahead State Distribution . 57

5.4 Branch Trace Cache Hit Rate . 60

5.5 Memory History Table Hit Rate . 61

5.6 Prefetches Issued per Basic Block . 62

5.7 MSHR Fill Count Distribution . 63

5.8 IPC of B-Fetch Compared to Baseline and Stride 64

5.9 Prefetch Lifecycle . 65

5.10 Prefetch Health . 66

viii

LIST OF TABLES

TABLE Page

5.1 Target Microarchitecture Parameters 53

5.2 Hardware Overhead . 67

ix

1. INTRODUCTION

Microarchitectural improvements and advancements in technology scaling have

steadily increased processor speeds over the past decode. All this improvement has

affected two out of the three major instruction categories, namely, control and arith-

metic. Control instructions have gained speed owing to improvements in branch

direction prediction and indirect branch prediction. Arithmetic instructions have

witnessed major gains owing to technology and microarchitecture improvement in

general. However, one front that is still left inadequately addressed has been the

memory instructions. Memory instructions use a heavy network of design elements,

which includes caches, main memory, and the underlying interconnection network,

and in some applications the secondary storage. Studies [1, 9, 10] show that memory

access latency is becoming a serious bottleneck towards further increase in system

performance.

In an effort to bridge the gap between processor and memory speeds, many im-

provements in techniques aim to mask the adverse effect of these high latencies.

There is significant spatial and temporal locality in applications owing to the design

of programs in general. This led to significant research to find ways of exploiting this

spatial and temporal locality of references using Caches [22] between the processor

and memory. With the advent of multicore systems another level of caches was added

to the hierarchy and problem now included communication between cores. Through

all this advancement in research, the ideas of spatial and temporal locality still hold

true. As long as they do so, it is possible to direct focus of microarchitecture in

exploiting these trends in memory access behavior. Several designs have been im-

1

plemented to improve cache behavior in general, which include, cache replacement

policies, lock-up free caches [13] etc. These advancements tend to either reduce the

number of misses or the hit time. However, these techniques do not target the penal-

ties associated with long latency misses. The adverse effect only increases if a level

of the cache hierarchy does not satisfy the miss, which is when main memory comes

into play. It usually ends up taking hundreds of clock cycles to access memory in

case a block does not exist in one of the caches.

The most commonly used technique currently used to hide the processor-memory

speed divide is out-of-order execution. Out-of-order processors allow the instruction

stream to continue past memory misses as long as there are no true data dependencies

and the instruction window still has the available capacity. In essence, out-of-order

execution overlaps the period in which a miss is being serviced, with execution of

actual instructions making use of the underutilized resources. It is, however, possi-

ble that much of the application code has a huge number of true data dependencies.

Presence of such dependencies in the application code cripples the out-of-order core

and forces it to operate at the speed of in-order cores while consuming many times

the power and energy.

Prefetching is a well known technique that speculates on the memory address

requirements of the instruction stream that is yet to appear in the main pipeline

[12, 20, 17, 25, 24]. It issues requests for memory significantly before the actual

memory instruction in the instruction stream issues a demand request. As previ-

ously discussed, the higher up in the cache hierarchy that a block is, the lesser the

time taken by the processor to access that block. In essence, a prefetcher eliminates

the requirement to wait for an access to the main memory by bringing cache lines

2

closer to the processor core, in the high levels of the memory hierarchy. It is the

efficiency of the prefetching technique that decides how much of the cache ends up

being polluted by these prefetches. If prefetches end up evicting useful cache lines,

they needlessly make the processor wait for those cache lines to be brought into the

higher levels of the hierarchy again. Then there is the problem of large number of

prefetch requests using up bandwidth that could otherwise be used in servicing de-

mand requests. It is therefore very important for the prefetching algorithm to not

only be proactive but also accurate.

1.1 Thesis Statement

This thesis attempts to explore and develop an innovative microarchitecture that

takes care of the aforementioned requirements in order to design a prefetcher that is

not only light weight and practical, but also highly effective in generating prefetch

requests using the method of deep path speculation. We propose to take advantage

of the advancement in branch prediction research in order create a lookahead stream

that accurately represents the most likely control flow behavior expected from the

instruction stream about to be seen in the main pipeline. Subsequently, we make use

of the predictability in address generation format of memory instructions by captur-

ing source register indices used for the same, seen at previous instances of the basic

block (at basic block entry points). We use runtime values of the register file at

these source register indices, to prefetch for basic blocks speculated by the lookahead

stream.

3

1.2 Document Organization

The remainder of this thesis is organized as follows. In section 2 we discuss the

background and motivation of our proposed approach. In section 3, we discuss prior

work in prefetching and contrast our approach in B-Fetch for out-of-order, from

a previous study done for in-order processors. Section 4 describes the prefetcher

architecture in detail and in section 5 we discuss our methodology and evaluation

of results. Section 6 lists the improvements that could potentially provide better

performance gains in our current microarchitecture and we conclude in Section 7.

4

2. PROPOSED APPROACH

2.1 Background

This section provides a general overview of the branch-directed prefetching system

and also discusses the motivation behind the proposed approach. The way that

programs are constructed can be mapped to a control flow graph as shown in figure

2.1. The right side of the diagram shows the C code and its equivalent assembly

is mapped to a control flow graph for clearity of understanding. We see that the

direction of the branch determines which basic block shall be executed. The taken

path on the right leads to one of the load instructions and the not taken path leads

to the other load instruction. If we can predict where the branch will take us, we can

effectively have an idea of what load shall be in the basic block subsequently following

a branch instruction. This subtle but important link between branch instructions and

the subsequent loads that shall be prefetched, leads to the core idea of the B-Fetch

prefetcher.

Figure 2.1: Relation between Data Access Pattern and Control Flow

5

To find out the path that a branch instruction shall take we make use of the

branch predictor and the branch target buffer to guess the direction and the target

basic block of branch instructions. On deciding upon a direction it is easy enough to

find the link between a branch and the subsequent memory instructions seen in the

linked basic block. The method thus described constitutes lookahead down one block.

Now that it is understood how to handle on basic block, our intention is to do

so across multiple basic blocks, so as to create a path, for which, branches form the

links until we reach to the end of the path. We make use of a branch trace cache

structure to maintain a notion of what branch shall follow the current branch. The

next branch information is used to index into the branch predictor and branch target

buffer to dynamically determine the path in which the branch shall take us. However,

it is not enough just to have a notion of where the branch predictor is taking us. We

also need to be aware of certainties in going down a path. This notion of certainty is

captured using a path confidence estimate. Path confidence is simply the cumulative

confidence seen across all the branches that constitute a lookahead. The cumulative

value is found by multiplying individual branch confidence values for branches that

are part of the lookahead path. Hence, a low confidence branch tends to affect the

path confidence estimate to great degree. The figure 2.2 gives the entirety of the

B-Fetch algorithm in a very concise form.

6

Figure 2.2: Branch Directed Prefetching

The lookahead engine operates at the granularity of basic blocks and we are re-

quired to lookup the value of path confidence estimate at each branch. If it is realized

that the path confidence is not high enough, the lookahead engine stalls. It again

resumes only when the path confidence estimates are high enough. Once the path

confidence estimate is high, prefetches are issued for basic block that the branch leads

to. It is then determined whether the lookahead engine has reached its maximum

lookahead depth capacity. If it has, again, the lookahead engine is stalled. In case

7

that it is not, the lookahead engine move ahead and repeats the same process for the

next branch.

2.2 Motivation

We now refer to figure 2.3. We see that there are three basic blocks in the code

segment. In order to support the lookahead mechanism, the branches at entry points

to these basic blocks need to be stored in a cache. This cache should essentially fa-

cilitate lookaheads at the basic block granularity. We therefore, create a structure

we term the branch trace cache to establish links between a branch instruction (en-

try point of basic block), and the one that follows it in a particular direction, and

with given target. Such an arrangement is needed since branches going to different

directions (taken, not taken) and targets (indirect branches) may lead to different

subsequent branch instructions.

Many of the loads are based on only a few register indexes. The link between

branches and loads in the basic block is established using the source register indices

that are used to create load addresses in the basic block. In the figure 2.3, these are

register indices 30, 3, and 2. We link these source register indices to the correspond-

ing branches that begin the basic block (entry points). This is done in a separate

structure called the memory history table. The memory history table keeps track of

the loads that exist in the basic block and links them to the corresponding branch

instructions that lead to those basic blocks.

8

Figure 2.3: Code Segment from SPEC CPU2006

In this way, we keep a track of not only the path that branch instructions form,

but also the loads that constitute those branch instructions.

Another aspect that needs to be discussed in this section is the actual calcula-

tion of prefetch addresses. It is not enough to record the register indices that form

the load. In the main pipeline, addresses are created by reading values for source

registers of loads from the architectural register file. For the lookahead process, we

need to access a more up to date runtime register file values when creating these

addresses, since the register values would be stale if they were read from the archi-

tectural register file. A separate register file structure updated at runtime by the

dynamic execution core is maintained for this reason, which is called the execution

register file in the remainder of this thesis.

9

It has been observed that there is considerable locality in the changes of register

values across basic blocks and the change is highly correlated to fall within a 4-8

cache block spatial region size. This was the premise of a previous B-Fetch design

for in-order cores [18]. To catch up to the changing register file values, we find the

difference between the register file values read at the time of creating a prefetch ad-

dress and the one seen in the commit stage. This offset is then used the next time

prefetches are created to approximate the spatial variation in address values of the

commit stage from the value of the register seen in the execution register file that

reflects that state of the dynamic execution core.

Code based correlation is used in maintaining the branch trace cache and memory

history table, because of which the storage requirement of these structures is not

prohibitive. This is another factor that motivates our branch directed prefetcher

design and makes it practical.

10

3. PRIOR WORK

This section discusses the work that is done in prefetching which relates to the

field of study of this thesis. We first explore other approaches to prefetching and

related topics. We then discuss work that bears passing resemblance to the ideas

discussed in this thesis. The subsequent section we compare our work with a prior

work done of B-Fetch for in-order processors [18].

3.1 Prefetching

Since the time that prefetching techniques have been explored, several attemps

were made to support the design in this task. Earlier work focussed on changing the

ISA. This method of prefetching used a totally different abstraction level to embody

the idea of prefetching and has been discussed in [4], [15], and [26]. In its sim-

plest form hardware prefetching was introduced in [21] in the form of the Sequential

Prefetcher which prefeched caches lines successively following the cache block address

that resulted in a demand miss. A Stride prefetcher [2] monitors demand misses and

finds a pattern of repetitive behavior in the form of strides. Strides usually are a

result of loop behavior in code. Content directed prefetcher [6] examines the content

of the cache lines to find out if the words resemble a valid memory address and if

so, prefetches for those addresses. In an extension to this work [8] hints are taken

from the compiler in the form of ISA modifications to decide which of the addresses

created with the CDP algorithm shall prove to be useful.

Another body of work related to pre-executing instructions speculatively with the

hope that some of them might lead to memory instructions being correctly executed.

11

Such execution typically follows a demand miss leading to a long latency memory

operation and is termed runahead prefetching [7]. An out-of-order version of this

runahead mechanism [16] was proposed by Mutlu et al.

Spatial Memory Streaming [24] introduced one of the most practical prefetcher

designs. It makes use of code-based correlation and takes advantage of locality (spa-

tial) over a spatial region. As memory accesses are made the SMS prefetcher records

patterns of accesses over a spatial region and encodes them in a bit vector. Once

done they are then stored in a table. The prefetcher recognizes a pattern based on

the first miss to a spatial region. This makes the prefetcher accurate but also renders

the prefetcher dependent of witnessing misses in the data access stream which is a po-

tential issue. As an extension of the SMS idea, to potentially leverage performance

previously lost as a result of waiting for misses to trigger prefetches, the STEMS

prefetcher [23] was introduced. It took into account temporary characteristics of

accesses to spatial regions and regenerated an entire stream of prefetches much more

effectively compared to SMS. However, it incurred excessive hardware (of the order of

2 megabytes vs. roughly 33 kilobytes for SMS) for a 3% improvement in performance.

Branch Directed Prefetching techniques have been attempted in the past as well.

The earliest work [14] proposes extending the branch target buffer to include a previ-

ous address field, a stride field and metadata to manage state of the activating stride.

The idea is to issue stride based prefetches while accessing the branch predictor and

branch target buffer to go down a speculative path. A much more advanced work

on the Tango Prefetcher [19] is an enhancement to the solution by Chen et. al.[5].

In this Tango prefetcher, dedicated tables are used to store the state of strides in a

basic block while a lookahead mechanism attempts to predict branches at the rate

12

of one per clock cycle. This was done so as to issue prefetches way in advance before

the superscalar processor would get to see actual loads from the instruction stream.

3.2 B-Fetch for In-order Processors

Our work is inspired by and is an extension to the previous work done by Panda

et al. [18]. The previous work was predominantly a solution for in-order processors.

We explore the differences and contrast the design of the two prefetchers here. We

also discuss how the problem statement is different for the previous and the proposed

B-Fetch design.

Design functionality is met by constructing a 4-stage pipeline that runs parallel

to the main out-of-order pipeline. The broad goals considered while constructing

this auxiliary pipeline (hereon called the B-fetch pipeline) were the ability to achieve

very deep lookaheads across branches, to capture a subsequent amount of memory

instructions within basic blocks, and to seamlessly be able to switch between loop

and offset mode while generating memory addresses.

The new pipeline explores feasible ways to tackle problems in a previous version

of the B-fetch pipeline for in-order systems that resulted because of certain design

constraints that were sufficient for in-order systems but fall short for an out-of-

order system which is the subject of this thesis. The following text explores these

restrictions and why they need redesign.

1. Limited lookahead depths

Lookahead limit was restricted to a depth of around four basic blocks in B-fetch

for in-order systems. This did not inhibit performance in such a system since

13

the rate of instruction consumption in in-order systems is relatively flat. Not

only do they consume instructions one at a time but also end up stalling on

misses a substantial number of times. For an out-of-order system instructions

are essentially consumed at a very high rate, firstly because of its ability to ex-

ecute instructions while bypassing anti and output dependences and secondly

because of its wide construction and capacity to have more an a single instruc-

tion in each of the pipeline stages. Such a consumption hungry system can

only benefit from lookaheads that are done way in advance of when the actual

instruction even enters the main out-of-order pipeline. That can be made pos-

sible only if lookahead stage is way ahead in speculating relative to the fetch

stage. This would imply being at least twice as deep as the four basic block

depth.

2. Lack of effective prefetch filtering

The previously explored in-order design of B-fetch had the tendency to some-

times use excessive bandwidth. Once prefetches were let loose into the prefetch

queue, there was essentially no way of retracting them in case it was realized

later that the branch at some stage during the lookahead had been mispre-

dicted. This may well have been a minor issue with for in-order systems, how-

ever, for the very deep lookaheads that our design aims of achieving it would

be very harmful if a lot of incorrect prefetches clog up the prefetch queue. Not

only would this delay the issue of correct prefetch requests from being launched

to the cache, but it would also be detrimental to overall system because of cache

pollution. Especially if the L1 Data cache has a simply LRU policy there is

more chance of a useful block being evicted to pull in prefetches. Our design

aims at combating this menace by handling prefetches before and after gen-

14

eration much the same way as histories are managed in the branch predictor.

Once it is realized that a lookahead was down a mispredicted path fetch over-

rides lookahead and forces a flush to pervasively remove any prefetches that

have already been or that may be created because of deep speculation along

that incorrect path.

3. Insufficient load coverage

For the in-order B-fetch design had a maximum of five loads that could be

allocated to the branch register table. Each entry had five units to support

identification of five loads per basic block. This was based on profiling data

collected that showed a majority of basic blocks has as many loads. However,

without too much overhead our new design is able to pull in multiple loads

for a register index into just one unit. This is possible because of a newly

proposed compact and dense representation of loads based off of a particular

register index. Also our design makes sure that loads after register redefinition

are actually allocated new entries since their behavior is inherently different

from previous loads off the same index after being modified to an arbitrary

address.

4. Overbearing Bandwidth usage

The previous design begin modeled on an in-order core did not have a limitation

as far as bandwidth availability is concerned. Because the density of loads

being seen by the in-order execution unit is very less they lay less stress on the

memory subsystem leaving substantial bandwidth available for making prefetch

requests. Hence it was possible for the previous design to prefetch a band

of cache lines termed a spatial region of eight contiguous cache lines. The

dynamics of the game completely change when we talk about doing such a

15

thing for out-of-order systems. These systems are inherently fast consumers

of instructions, be they memory or arithmetic or branch. As such because

multiple loads can be outstanding at a moment, there is considerable usage of

MSHR to hold outstanding requests while missed loads are being allowed to

bypass. Prefetching a spatial region, intuitively, does not seem the best choice

option since it would take up a large number of MSHR and bus bandwidth as

a result. It is therefore a much wiser approach to restrict prefetching to a one

cache line granularity or something that is less restrictive of the MSHRs and

the bus bandwidth and that does not choke the load store unit of the main

pipeline. Our design is restricted prefetching a single cache line.

5. The Multicore dilemma

Similar to the restrictions discussed above multicore systems is a different prob-

lem in itself. A multicore system is much more bandwidth limited and does

not play well to high demand in memory subsystem. A high prefetch rate in

component cores lay stress to not only their L1 Data caches but also to the

L2 cache. As such, having inaccurate prefetches flood the L2 cache adversely

affects throughput of the multicore system. With high bandwidth demand

comes the problem of energy wastage. Our designs tries to limit the scope of

this problem with its filtering and stalling schemes, which limits the MSHR

usage by prefetches and hence the demand for the subsystem resources.

16

4. DESIGN AND IMPLEMENTATION

We discuss the overall design and implementation of our proposed B-Fetch pipeline

in this section.

4.1 Overall System Architecture

The types of instructions in the instruction stream are varied among branch,

memory, and arithmetic types that produce the desired output of a program. Arith-

metic instructions are typically fed input through load instructions that brings in

data from lower levels of the memory hierarchy until they occupy state in the fastest

storage structure possible, which is the register file. The time that it takes to bring

in inputs to the program from down the memory hierarchy is a major contributor

to the execution time of a program. Since long, even though the speed of process-

ing arithmetic instructions has increased considerably, the speed at which input are

brought in from the slower storage medium has not increased proportionately. The

search for an answer to this problem has now fallen to microarchitects. Prefetch-

ing attempts to bridge the gap between rate of delivery of inputs to the core from

lower levels of the hierarchy and the rate at which arithmetic instructions consume

these inputs to produce outputs. A processor pipeline proceeds every clock cycle at

granularity of individual instructions. The intention behind B-fetch pipeline is to

mark out the variable latency load instructions and store them in a structure that is

representative of their behavior in the actual processor pipeline. In a sense B-fetch

traces control flow in the form of branch instructions previously encountered in the

main pipeline and attempts to pre-execute load instructions previously encountered

along that control path. Because of its imitation of the main pipeline the B-fetch

17

pipeline is constructed somewhat similar to the main processor pipeline.

Figure 4.1: B-Fetch Pipeline for OoO Processor

Each of the B-fetch pipeline stages in figure 4.1 are discussed below.

1. Branch Lookahead Stage

Much like the fetch stage of the main pipeline branch lookahead functions

with the support of a trace of previously encountered branches. This trace is

stored in a structure called the Branch Trace Cache. The branch trace cache

paves the way ahead for B-fetch pipeline at the granularity of basic blocks.

It is a terse representation of all the branch instructions recently encountered

18

the instruction stream. When designing such a lookahead mechanism it is

important to keep in mind that the directional support provided by the branch

predictor is not infallible. Branch prediction is a speculative technique, in

that, the speculation is not always correct. Hence a confidence estimator is

used along with the lookahead mechanism that stops the lookahead from going

down too deep along a speculative path.

2. Register Lookup Stage

Once it is known that the program flow will take a certain path in the future,

a list of all the loads that were last seen down that path needs to be looked up.

This lookup is of information about which registers constituted loads in a basic

block. It is observed that there are typically not too many loads in repeating

basic blocks. However, the design needs to have sufficient coverage so as to

not overlook important loads that might block the main pipeline because of

demand misses. Our design uses a very dense representation to capture the

most common cases that arise as a result of loads distributed by the compiler

in various forms within basic blocks. This representation of loads within basic

blocks is captured in a structure called the Memory History Table that is part

of this stage. It should be noted that not all basic blocks have loads. When

committing branch traces in the lookahead stage above, it is required to have

opening branch of every basic block in the trace cache. However, once the

opening branch identity is propagated down the pipeline stage to the register

lookup stage there might be a miss in the memory history table owing to the

absence of loads in that basic block. Of course there also cases where aliasing

knocks off entries that might actually be useful.

3. Mode Generate Stage

19

Once we have the knowledge of what loads are present in a basic block it is

only a matter of unpacking the information present in the compressed rep-

resentation to generate effective addresses that are dumped into the prefetch

queue. However, there is a pitfall in how this creation of effective addresses is

managed. We need to be able to propagate enough metadata into the prefetch

deque to be able to wipe out prefetching once it recognized that they were down

an incorrectly predicted lookahead path. Also it is not practically possible to

create all prefetch addresses at once and push them onto the prefetch queue

since that would require having a huge amount of write ports into the prefetch

queue. In our highly dense design there is also the issue that each register unit

defined within an MHT table entry needs to be decoded and address produced

one after the other. Hence, a stage is required where entries are buffered into

a deque structure once they are read from the MHT. Further, we reduce the

overhead of loop maintenance by overloading this deque structure with the ca-

pacity to forward running effective address values once it is recognized that a

unit exhibits looping behavior.

4. Prefetch Calculate Stage

Once mode has been set and the required forwarding done, prefetches need

to be calculated. Unlike previous B-fetch design for in-order core, address

calculation cannot be done instantaneously within a single clock cycle. The

problem mainly arises because of the densely encoded bits representing nega-

tive and positive spatial locations around the (first) basic loads based off of a

register index. The pattern needs to be decoded and related addresses need

to be generated, sequentially unsetting the bit patterns in the process to mark

that addresses corresponding to them have been created and pushed into the

20

prefetch deque. Because there are five units within an entry it can be possi-

ble to put addresses into the prefetch deque from more than one such units

at a time to parallelize the consumption of generate deque entries and speed

up the calculate stage. However, that would not gain much since the prefetch

deque addresses have only one port to make requests to the L2 cache limiting

consumption of addresses to a maximum of one per clock cycle.

We shall now summarize the working of the B-Fetch pipeline’s pre-lookahead

stage and thereafter lead the discussion toward exploring the technical design of

each individual component involved in the various auxiliary pipeline stages.

As can be seen if figure 4.2 before the main pipeline there is a pre-lookahead stage.

This stage is essentially a part of the fetch stage of the main pipeline. The func-

tion of this stage to synchronize the events that are seen in the main pipeline with

the auxiliary pipeline. Whenever a branch retires in the main pipeline the branch

predictor of the main pipeline receives information about the retired branch. This

allows the speculative history to be retired by writing its state onto the main branch

predictor structures. This is how the retire signal integrates with the branch predic-

tor. The B-Fetch pipeline simply borrows these signals and uses them to update its

structures in the all the pipeline stages. These include the B-Fetch pipeline buffers,

the generate deque, and the prefetch deque. Another signal that is borrowed from

fetch stage’s communication with the branch predictor is the flush signal. Typically

when there speculation proceeds down a path that is proved to be incorrect, all the

state created because of that speculation is treated as begin useless and needs to

be removed. The same thing needs to be done with the above mentioned structural

components of the B-Fetch pipeline as well.

21

Figure 4.2: B-Fetch Pipeline Internals

22

Technically, the prefetch deque is part of the L1 data cache, but because the

B-Fetch pipeline needs to write content directly onto the deque structure and also

flush/retire based on signals from the main pipeline, this structure is shared with

between these two components i.e. Prefetch Calculate stage and the L1 data cache.

4.2 System Components

We shall now go through descriptions of each component used in the stages of the

B-fetch pipeline. All the hardware structures are important in realizing an accurate

and flexible branch directed prefetching scheme.

4.2.1 Branch Trace Cache

Every program has control nodes that block the flow of instructions in either one

direction or the other. These branches, which are handled in the main pipeline by a

branch execution unit, may also be speculated using a branch predictor. However,

speculation itself does not form a good source of updating a trace cache structure.

We therefore make use of branch commits to update the branch trace cache. The

branch trace cache forms a series of links in the program control flow marked by

branch instructions.

23

Figure 4.3: Branch Trace Cache Structure

An entry in the branch trace cache (shown in figure 4.3) is indexed by the current

branch information, viz. its program counter, direction, and the target. It is im-

portant to note here that different from in-order design for B-fetch, our design also

uses target to generate branch trace cache index. Doing so inherently takes care of

indirect branches. Hence, a branch that is predicted taken may land up executing

instructions from different targets and each will have a different closing branch. So,

once the branch trace cache is indexed as described it yields the branch that follows

the current branch. This next branch is then fed to the branch predictor to deter-

mine its target and direction, which then used to index the trace cache again to see

if a valid path forward, exists for this branch. In this way, the branch trace cache

structure helps guide lookahead stage forward and the branch predictor and target

buffer help maneuver it in the right direction.

We now illustrate how the branch trace cache structure gets filled up using a

control flow graph as the input. Figure 4.4 shows the example that we discuss

24

here. The control flow graph starts off with Branch 1 being the first encountered

branch. When the commit stage first sees this branch it loads the branch address,

the direction, and the target of this branch onto the last committed branch buffer

(LCB). When the next branch following this branch retires, the LCB buffer shall be

replace. Before that is done an entry is created whose index is decided by the current

contents of the LCB buffer. A partial tag is inserted for semantic correctness. What

the entry contains is the detail of the address of the next branch i.e. its address, and

meta information required by the branch predictor, such as whether the branch is a

call, a return, or an unconditional branch.

Figure 4.4: Control Flow Graph and filled Trace Cache State

25

In this way an entry gets created in the branch trace cache. Following the taken

path to basic block 3 (the target), the next branch is the Branch, which is an uncon-

ditional branch and is illustrated as so in the figure 4.4. It is to be noted that the

branch trace cache will have links for only the branches that have been seen by the

commit stage of the main pipeline. That is to say that only the dynamic instruction

stream gets to decide what is loaded onto the branch trace cache, not the static

layout or the physical placement of code in the stream.

4.2.2 Path Confidence Estimator

While looking ahead at the granularity of basic blocks it is not always wise to

trust the prediction of the branch predictor. Lookahead down the incorrect path

lead to incorrect address being prefetched. This can easily lead to cache pollution

in the L1 data cache. It is therefore a very important requirement of the B-fetch

design to have an estimation of the confidence of the path down which the lookahead

engine is creating prefetch candidates. Once confidence falls below a certain preset

threshold lookahead mechanism stalls to wait for the confidence to improve. Out

B-fetch design has preset confidence thresholds for each level of depth of lookahead.

More details can be found in figure 4.5.

The confidence threshold is set to a relatively lower value at small depths. This is

done because out-of-order pipelines consume instructions pretty quickly. Lookahead

always needs to be a certain number of basic blocks beyond what the main pipeline

is executing. The situation is entirely different from in-order cores where every cache

miss ends up stalling the main pipeline.

26

Figure 4.5: Lookahead Algorithm

We shall now discuss some of the technical details about the branch confidence es-

timator design. The branch confidence estimator design is approximately a 2 kilobyte

structure that uses the tournament predictor’s local and global history components

to index into a two separate tables that contain confidence counters. The design has

been inspired by Jimenez et. al. [11] that computes confidence as sum of the JRS

up/down counters and self-counters salvaged from the tournament predictor itself.

Local history is used to index a 1024 entry structure that has 5-bit confidence value

for each of the histories. In the case the prediction matches the final outcome of the

branch, the counter is incremented. However, in the situation that the prediction

does not match the final outcome the whole counter value is right shifted i.e. divided

by two. In this way, the counter remains more sensitive to misprediction than to

27

a correct prediction and is not easily biased by the high predictability of branches

in the instruction stream. The second table is index using global history and has

4096 entries of 3-bit each. On correct prediction the confidence counter value is incre-

ment and it is reset on a misprediction. The detailed algorithm is shown in figure 4.6.

The confidence values generated as a result of the prediction from the tournament

value comprise of the values read from the 2-bit saturating counters of the tables.

These values are also used as described in [11] to help compute the final confidence

number value. Once the confidence number value has been found, it is simple enough

to use this number to index into a number of ”confidence buckets”. In out design, the

maximum confidence number (sum of confidence values from local/global confidence

and predictor self counters) comes to be 44. These 44 buckets contain the confidence

estimates for a classification of branches that index into a particular bucket.

Figure 4.6: Composite Branch Confidence Estimator

28

Each of the 44 buckets keeps a track of how many predictions whose confidence

number value indexed into a particular bucket proved to correct from the total num-

ber of predictions made that indexed into that particular bucket. At regular intervals

(such as a certain number of branches), the ratio of the total correct predictions to

the total predictions that index into a bucket are computed. This fractional value

is then used to estimate the confidence of individual branches. It is this fractional

value that gets multiplied over consecutive lookaheads to determine the confidence

of a path.

4.2.3 Memory History Table

Compaction of the loads seen in basic blocks resides in the MHT. Each entry

(shown in figure 4.7) has associated metadata and a number of units that store in-

formation specific to each basic load encountered within a basic block. From profiling

it has been found that it is enough to have somewhere around five units to store indi-

vidual basic loads information. Again entry and its associated units are updated at

commit. The only exception to this is the register value picked up from the execution

register file at the time of generation of prefetch addresses in the prefetch calculate

stage of the B-fetch pipeline. There is a unit alias table associated with filling up of

the entries into the MHT.

29

Figure 4.7: Memory History Table

A UAT (unit allocation table) takes care of cases where a register redefinition

changes the register value that is used to create memory addresses. In such cases, a

new entry linked to that register index gets created since the new load address may

be completely unrelated to the initial loads and hence does not suffice as candidate

for negative and positive pattern of unit previously assigned to the load based off of

that register index.

Figure 4.8 represents the changes that occur in the MHT state. First time around

the MHT is updated, at the commit stage when the instruction stream first gets

seen by the out-of-order core. The second time around the instruction stream comes

in from the fetch, lookahead mechanism gets activated and creates prefetches fol-

lowed by writing in values of the execution register file that is used to create those

prefetches. The instruction stream then goes to the commit stage and while com-

mitting the state, realizes the difference between the actual register value used and

the ones that were used to issue the prefetches.

30

Figure 4.8: Filled Memory History Table

The core idea behind B-Fetch shall be explained in brief in the following text.

We continue the idea as explained above. We now intend to capture what the loads

in a basic block look like. We also aim to capture the functioning of the two basic

modes i.e. loop mode and offset mode.

1. Offset mode

There are three entries in the MHT that are used to support the offset mode

i.e. generateRegVal, generateValid, and generateOffset. This is the mode that

is activated by default in B-Fetch. This is actually the main core idea behind

B-Fetch. What we intend to do is to create a snapshot of what the basic block

looks like during the first go of the basic block in the commit stage of the main

pipeline. This captures the displacement, register index and related entries as

can be seen in figure 4.8 as is labeled in the figure. The next time around that

the instruction stream gets seen, the value of the register index in the execution

31

register file (the register contents as they exist in the dynamic execution core)

is picked up and recorded as the generateRegVal. The value is also marked

as valid via generateRegValid. The B-Fetch prefetch engine then proceeds

to create prefetch candidates for the memory address seen in the execution

register file. The same instruction then moves onto the commit stage of the

main pipeline where it reads the value of the architectural register file that

was used to create the effective address for the load. This value is compared

against the execution register file value that was used to create the prefetch

in the first place. The difference between the two values is quantified in an

entry called the generateOffset. Effectively, generateOffset is the difference by

which the execution register value is running away (ahead or behind in terms

of memory mapping) from the value which finally gets seen during the commit

stage of the main pipeline. The next time that the instruction stream gets seen,

the value of generateOffset gets added to the prefetch that gets created using

the execution register file value. This is done in an attempt to get as near as

possible to the value that will be seen in the commit stage in the architectural

register file. A bit more detail is captured in figure 4.9.

32

Figure 4.9: Prefetch Address Calculation Algorithm

2. Loop mode

Another important aspect of the prefetch algorithm used in B-Fetch is the loop

mode. It requires special fields to hold the value of dynamic change seen in

memory references during each iteration of the loop. The fields are Delta, Skid

and loopValid. The Delta value keeps track of the difference in commit stage

effective address values of two consecutive iterations of the loop. Using the

33

last effective address value seen by the load and adding Delta on top of that

value helps calculate value of the address for the next iteration of the loop that

needs to be prefetched. The loop algorithm is validated each time a load is

seen in the commit stage when it is not a new entry being created. Difference

between the commit register value used to create the effective address the last

time around is compared to the value of the commit register in the current

commit. At a level beyond commit register values, it is confirmed that the

delta’s are actually stable. For this the skid value is calculated as the difference

between the originally existing delta in the memory history table entry and the

one being calculated dynamically in the current commit state. If delta’s are

constant the skid is zero and hence the entry qualifies for loop mode. Some

over-provisioning has also been done, in that if the delta values are changing

but the skid is constant we still classify the mht entry’s unit as being a valid

candidate for loop mode. The loop mode algorithm comes into play in the

generate deque structure before prefetches are actually created. Only when

two instances of the same branch are seen in the generate deque structure,

the old value of the generateRunningAddr is forwarded to the next value and

delta/skid are added to create the memory address value that needs to be

prefetched for that loop iteration.

The flowchart in Figure 4.9 shows how the entries in the MHT end up being

used to create prefetch addresses in either one of the two modes - loop mode or the

offset mode. The offset mode is enabled by default and loop mode comes into play

when the generate deque has a entry that is valid for loop and was seen previously

as part of the instruction window. More details on loop mode shall be explained in

the section to follow.

34

4.2.4 Generate Deque

The third B-fetch pipeline stage called mode generate uses a deque structure

called generate deque. The basic idea behind generate deque is to store information

about loops that are inflight and to respond to squashes and updates from the main

pipeline. Loops are recognized at the granularity of units of basic loads, not just

MHT entries for the entire basic blocks. What this means is that out of the four

units that can exist in the MHT entry, three units can be operating in offset mode,

while one unit will be in loop mode. Recognizing such behavior within basic blocks

where only on the load exhibits looping behavior is very important. In such a case,

all entries were to be statically locked to loop mode behavior, there might be vari-

ation in register value that could possibly be captured by the offset mode, which is

based on dynamically reading the execution register file. We might miss out on the

prefetch candidates that would otherwise be created in the offset mode. We shall

now discuss the mechanism with which we implement looping behavior in our design.

Loops are identified in the commit stage, as discussed in the previous section.

However, in B-Fetch as entries are read out of the MHT they are thrust onto the

generate deque. When that is done the generate deque sifts between what units in

what entries are classified as loops and if so, forwarding is done to take the current

running values of memory addresses for the loop. Forwarding is possible in two ways

in the generate deque. We discuss below why we need to account for two ways of

forwarding and continue onto discussion about what exactly is forwarded.

35

Figure 4.10: Generate Deque

1. Forwarding via front pull

The forwarding algorithm of front pull is shown in the left side of figure 4.11.

There might come a case when prefetches have been created for a basic block

or its entry has been committed in the recent past. In such a case when a new

instance of the same branch is pushed from the front of the generate deque

4.10, it needs to scan the deque associatively for a match. Once a match has

been found and it is seen that the previous instance of that branch has either

prefetched or has been retired, it is then probed whether the previous units

of that branch entry were actually enabled for loops. Only when both, the

new incoming branch and the old resident branch, instances of the same static

branch have proven to be valid loops (via loopValid) do we actually forward

36

values for using front pull. Again, the pre-requisite of this technique is that the

resident branch should either be an instance that has prefetched or one that

has already committed. Another thing to keep in mind is that the associative

search may give many matches. The match that is closest to the incoming

branch being put in from the front of the deque is taken into account. This is

done so that correction iteration of the loop is the one from which the incoming

entry pulls its loop information. The forwarding in this case is driven by the

head entry of the deque.

2. Forwarding via back push

This algorithm is shown on the right hand side of figure 4.11. This happens

at the tail entry of the generate deque and the forwarding is driven by the

tail entry of the generate deque. The tail entry of the deque is one which is

the entry that is currently calculating its prefetch addresses in the prefetch

calculate stage. Once it is done calculating all the prefetches it needs to the

entry searches for a match from another instance of the same branch. Again,

if there are multiple instances, the most recent one is taken in. The whole

prioritization of associative search can be done with the help of a priority

encoder circuitry. The intent of forwarding via back push is that when an

entry is done creating prefetch candidates it should (with more priority than

front pull) forward its value onto the next incoming basic block entry that is

going to create its prefetch addresses. In the case the entry comes in later, after

the calculate has already finished prefetching for the this basic block entry, the

front pull algorithm can take care of handling the loops.

In this way, as described above, both the front pull and back push contribute to

making sure that loops are handled correctly via forwarding and adding of address

37

values in the generate deque structure itself. No additional calculation is later re-

quired when prefetches are calculated in the prefetch calculate stage since the running

sum of address holds the next address that a loop needs to create for a particular

unit.

Figure 4.11: Generate Deque Forwarding Algorithms

To sum up, once it is recognized that a unit in MHT entry is behaving as a loop

its entry in the generate deque latches onto a running value of effective addresses be-

ing generated at each loop iteration. This running value is then used is the prefetch

calculate stage to handle creation of effective addresses for loops.

Another thing that needs to be discussed in context to generate deque (that also

applies to prefetch deque in next section) is the process of filtering. Filtering is

38

brought out with the help of two predominant signals that are borrowed from the

main pipeline, i.e. the flush and the retire signals. We shall discuss, more in detail,

about filtering mechanisms in the next section once we develop an understanding of

how prefetch deque works.

4.2.5 Prefetch Deque

This structure holds the prefetch addresses that created in the prefetch calculate

stage and yet to be issues as a request. With such an aggressive lookahead mechanism

it is important to be able to discard prefetches that have been created from deep

lookaheads, once it is known that the fetch engine itself is being redirected. If that

were not done, a vast amount of prefetches would still remain in the prefetch deque

that really have not use and will just end up polluting the L1 data cache. The

structure of prefetch deque is shown in figure 4.12.

Figure 4.12: Prefetch Deque

39

All the address values that are created in the prefetch calculate stage are pushed

onto the back of the prefetch deque. How these address values are created shall be

explained in the following text. Once a value is brought to the Calculate Buffer from

the generate deque structure, it is all set to create prefetch addresses. All the candi-

dates are classified as being in offset mode unless the generate deque has a flag that

tells this stage that a loop was identified and its value was subsequently forwarded.

This is the loopForwarded bit of the calculate buffer. In case the offset mode is set,

the current value of the execution register file is read and its corresponding address

is created for prefetch using the sum of execution register file, displacement, and the

offset previously discussed.

4.2.6 Prefetch Filtering

We shall now discuss the two methods of prefetch filtering that have been de-

scribed as an integral part of the the generate deque and the prefetch deque. The

prefetch filtering process not only takes place in these two structures but is also

done in the buffers that drive each of the pipeline stages. Broadly speaking all those

prefetches need to be filtered which have no connection to the future execution path

and whose instruction stream is no longer part of the the main pipeline. What that

means is that all the prefetches that are on a path that has been known to be incor-

rect, they need to be flushed from the B-Fetch pipeline. Also, all prefetches whose

loads have already issued demand requests to L1 data cache also have no place in

the B-Fetch pipeline.

Figure 4.13 describes the algorithm for filtering the B-Fetch pipeline based on

flush signals received from either the decode stage of the main pipeline or a flush

40

due to branch mispredict. In such a case, all the instructions that appear after

the mispredicted instruction in the instruction stream - which may be part of the

lookahead stream - need to be removed, since an edge in the control flow graph has

been proven to have been speculated down the incorrect path. In the flowchart of

figure 4.13 we drive the flush through each of the buffers of the auxiliary pipeline

followed by the generate deque and then the prefetch deque. This ensures a clean

sweep of incorrect state.

Figure 4.13: Prefetch Filtering via Flush from Main Pipeline

The entire flush process can be though of as working just like the flush signal

41

affects the branch prediction history structures. In branch predictors speculatiev

histories are created as the speculation progresses one branch at a time. The main

prediction history structures cannot be updated on speculation and hence, specula-

tive local and global histories are maintained.

Prefetches are filtered both ways in the deque. First because of updates from

commit, since they would already have been taken care of by the main pipeline. And

second because of squashing due to branch mispredictions or exceptions. Filtering is

triggered by squash and commit signal from the main pipeline.

Figure 4.14: Prefetch Filtering via Retire from Main Pipeline

Now, to discuss how retire signal affects the filtering process, we need to make sure

the same mechanisms are installed for retire as are for flush. The only difference is

42

that retires take place of instructions that are older in the instruction stream, which

means that we need to remove basic block entries in generate deque and prefetch

deque from the other side of the deque than the one used by the flush signal. The

motive behind using the retire signal is that we should get to creating prefetches

which actually matter in the context that will show up in the future. Essentially,

if prefetches were not generated for a basic block and all of its instructions have

retired, they would very well have issued all their loads and got a response from

the lower levels of the cache hierarchy. In such a case it better to have the prefetch

calculate stage calculate prefetch addresses for a basic block that is about to show

up in the future of the instruction stream. We see the concise algorithm in figure 4.14.

4.3 Working Example

The working example illustrates how the the flowchart in figure 4.15 is used to

update the MHT, the first and second time the commit sees the instruction stream.

Before starting with the working example we build a bit of background as to how

we shall progress through this example. In figure 4.16 and figure 4.17 we update

table state based on the context collected during retirement of individual instruc-

tions in the commit stage of the main pipeline. The algorithm for the same has

been presented in the form of a flowchar in figure 4.15. All the components that

form an important part of the commit update process are displayed in figure 4.16.

These include the branch trace cache, the memory history table, unit allocation ta-

ble and the last committed branch buffer. To start with the description, we need to

understand that we are building links between branches in the branch trace cache

and gathering load context observed in basic blocks in the memory history table

43

entries. For the sake of simplicity this example only explains the offset mode. The

loop mode working has been explained in previous sections and shall not form part

of this discussion. For this reason the generate deque is also not an important aspect

of this discussion and is not shown here. So as branches and load instructions retire

they update B-Fetch context.

Figure 4.15: Memory History Update Algorithm

The first thing to update is the last committed branch buffer. This has infor-

mation about the branch that was committed most recently and is used to create a

44

link between that branch and the branch the will next be retired in commit order.

The initial and final state are shown in the relevant figures. Because all the branch

instructions that have been encountered has simply committed with not taken direc-

tion during this observed control flow they have only entries corresponding to that

direction alone to create the links. There are certain special aspects of entry creation

in the commit stage that we shall discuss in this example.

Figure 4.16: Table Update Algorithm - Initial State

The first thing to notice is that in the table entry for branch 1 there are two

entries with register index 4. This is so because in instruction 3, the register at index

4 has been redefined. Because it has been redefined we need to create a new entry

45

for it, since the context has the possibility to jump to anywhere within the address

space based on the content of the register at index 4 itself, which is used to create

the address for that load. The second peculiarity is the entry for Branch 6. Both

instructions 7 and 8 are loads based off of register at index 1 and since there is no

redefinition, both these loads are squeezed onto one unit in the entry for branch 6.

That has been made possible with the help of the negPatt field which is basically

the relative displacement of the second load when compared to the first load based

on that offset. It just so happens that in this example the second load off of register

at index 7 is 2 cache blocks in away from the first load in the negative direction and

hence we set the second bit of the negPatt to symbolize this relationship. Similary,

loads at instructions 10 and 11 have this relationship but set the posPatt second bit.

This basically compresses the entry and helps us store more loads from the basic

blocks into a restrictive number of entries in the memory history table, which is four

in our case.

Eventually, the table fills up and commit stage has gone through the code once.

Figure 4.17 shows the final state once we go through the code in the figure. This

state shall be used to create memory addresses for prefetch when the stream is seen

next time around in the fetch stage of the pipeline.

46

Figure 4.17: Table Update Algorithm - Final State

To summarize, figure 4.16 shows all the components in the B-Fetch pipeline that

are updated from the commit stage of the main pipeline. Once all the instructions

have been committed, both the BTC and the MHT get the information about the

instruction stream. This is illustrated in figure 4.17. This information then guides

the lookahead mechanism in creating prefetch candidates that get issued to the L1D

cache.

47

Figure 4.18: Post Prefetch Issue Memory History Table State

The next time around that the fetch stage sees this instruction stream, the looka-

head stage gets activated. This link is established through the pre-lookahead being

integrated with the fetch stage of the pipeline. As this lookahead mechanism gets

activated the instruction stream is no longer a driver. What drives the lookahead

stream is the branch trace cache and the memory history table. the branch trace

cache is indexed for first branch i.e. branch 1 to find which is the linked branch in

the direction and with that particular target. Once that is known the current branch

information is flown down the pipeline and linked branch is fed back to the branch

trace cache to find the next link. As can been seen in the figure, the lookahead buffer,

lookup buffer, generate buffer, and calculate buffer are shown in this figure 4.18. So

48

in the next cycle, MHT is accessed the the accessed entry flows down the pipe until

it sees the calculate stage. When in the calculate stage, the prefetch addresses are

created one per unit at a time. In special cases, where negPatt and posPatt are seen,

they are processed in the next clock cycle which new entries are held back in the

generate deque.

While this process happens, the algorithm used to create prefetch addresses is

in offset mode. In this algorithm, the value of the execution register file is read

and thereafter prefetch addresses are created. The value that is used to create the

prefetches are recorded in the genRegVal field and its valid bit is set. This shall be

consumed in the upcoming commit phase of this instruction stream.

To summarize, once prefetches have been issued, the MHT is updated with in-

formation about what values were picked up from the execution register file while

creating prefetch addresses. Once the prefetch addresses are known, they can be

compared to the actual register values that get seen during the commit stage. This

is shown in figure 4.18.

49

Figure 4.19: Calculating GenerateOffset Value in Offset Mode

At the second commit of the instruction stream, in values of effective addresses

are observed. These need to be compared with the effective addresses that have been

generated in the lookahead stage, to find out how different they were from the ones

that calculate stage made. This is done along with retiring of individual instructions.

As genValid is recognized to be set, the value of the genValid and invalidated. The

generateOffset value is computed as the difference between the register value seen in

the architectural register file and the one seen in the execution register file. The one

seen in the execution register file was previously recorded in the genRegVal field. This

gives us the difference between the dynamic execution core based value of effective

address generated and the actual effective address as seen by the second commit.

50

So, now that the commit has seen the difference between the prefetch register

value used and the commit register value used, the difference is computed as the

Generate Offset. This offset shall be added the next time around the prefetch gets

issued. The figure 4.19 only shows the offset mode. The loop mode is similar and

hasn’t been discussed for brevity.

51

5. EVALUATION

In this section we lay emphasis on the evaluation of our design. We lay much

stress on the internals of our microarchitecture, to build to the final results, going

through statistics from each stage.

5.1 Methodology

Simulations were performed using Gem5 [3], a cycle accurate simulator . The ar-

chitectural configuration is shown in Table 5.1. We model a 5-stage 20-deep pipeline

out-of-order pipeline using the o3 pipeline model in Gem5. The pipeline is 2-wide

which is comparable in configuration to most modern architectures in use today.

The modelled memory uses the gem5 classic memory model. It is a two level cache

hierarchy with a 64 kilobyte 4-way set associative L1 instruction cache, as well as

data cache. The level 2 cache is 2 megabytes in size and 16-way set associate. The

configuration of the memory model is such that memory accesses time for level 1

caches is 1 ns, while that for level 2 cache is 16 ns. The main memory takes 60 ns to

service a request.

We run 13 of the memory intensive SPEC CPU2006 benchmarks, compiled for

ALPHA ISA. The simulation runs in system emulation mode for SPEC benchmarks.

Multicore simulations use PARSEC benchmarks in full system mode. Results pre-

sented hereafter use around 2 billion instructions to gather simulation statistics with

the reference input set.1

52

Table 5.1: Target Microarchitecture Parameters

Simulator Gem5 Simulator, ALPHA ISA, Full System Simulation

/ System Emulation Mode

Architecture O3 5-stage 20-deep Pipeline, 2-wide, 2 GHz Frequency

Branch Predictor Tournament Predictor

BTB 4096 entries

Register File Gem5 Simulator, 32 Integer Registers, 32

Floating-point Registers

ICache / DCache 64KB, 4-way set-associative cache, 64 Byte Line size, 1

ns access latency, 10 MSHRs, 3 Cache Ports

L2Cache 2MB, 16-way set associative, 64 byte line size, 16 ns

access latency, 20MSHRs, 1 port

Memory 60 ns access Latency

The number of MSHRs plays a vital role here. The number of outstanding re-

quests to the L1 data cache is dependent on the MSHRs available. Once a request

is made to the L1 cache an MSHR gets allocated and is freed only when the request

is serviced. it should be noted here that out of the 10 MSHRs, B-Fetch prefetcher is

allowed to use up only a maximum of 70% of the capacity. Rest are always left for

demand accesses.

53

5.2 Results and Analysis

5.2.1 Lookahead Depth Distribution Analysis

We saw in previous sections that the lookahead engine needs to be way ahead of

the out-of-order core in terms of what the dynamic execution core sees. That is the

only way any effective prefetches can actually be created. Hence, it is a stern re-

quirement that the lookahead engine see large depths at which it should generate the

prefetch addresses. This is also required so that the prefetch request is given enough

time way ahead of the out-of-order execution’s demand misses. Here we analyse the

lookahead depths seen in various floating point and integer benchmarks seen in the

SPEC CPU2006 benchmark suite. We take into account the different behavior seen

in the benchmarks and try to explain the reason behind the seen behavior.

Figure 5.1 shows the distribution of lookahead depths for the floating point bench-

marks. The most simple case to analyze in the figure is that of milc. Owing to the

high amount of deeper lookaheads (lookaheads at depth 12) we can affirm that milc

has large number of loops and it is such behavior that is predominantly seen by

this benchmark. In the histograms we set the lookahead depth limit to 12. By the

relative absence of the red bars we can also see that there haven’t been too many

squashes at any of the lookahead depths, which shows that the branch prediction is

fairly accurate. On another part of the spectrum of results is the sphinx benchmark

which sees a high number of lower lookahead depths. One of the major reasons of

such a profile is the presence of new code seen in the instruction stream. cactusADM

is another typical situation in which the confidence value leads to moderate distribu-

tions of lookahead depths. There is also a dominant affect of mispredicted branches

seen at higher lookahead depths of 10 and 12 in the cactusADM benchmark.

54

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for cactusADM (FP)

Lookahead

Squashes

(a) cactusADM

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for gamess (FP)

Lookahead

Squashes

(b) gamess

3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for lbm (FP)

Lookahead

Squashes

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

0 1 2

(c) lbm

2 3 4 5 6 7 8 9 10 11 12
N

u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for milc (FP)

Lookahead

Squashes

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

0 1

(d) milc

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for soplex (FP)

Lookahead

Squashes

(e) soplex

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for sphinx (FP)

Lookahead

Squashes

(f) sphinx

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for zeus (FP)

Lookahead

Squashes

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(g) zeus

Figure 5.1: Lookahead Depth Distribution for SPEC CPU2006 FP Benchmarks

55

Figure 5.2 is another example of lookahead depth distributions that represents

behavior of the integer benchmarks on the SPEC CPU2006 benchmark suite. There

is not much one can say about the difference between the branch behavior of either

of these benchmarks. Both exhibit loops and witness new basic blocks.

2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for bzip2 (INT)

Lookahead

Squashes

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

0 1

(a) bzip2

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for h264ref (INT)

Lookahead

Squashes

(b) h264ref

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for hmmer (INT)

Lookahead

Squashes

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

(c) hmmer

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for libquantum (INT)

Lookahead

Squashes

(d) libquantum

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for mcf (INT)

Lookahead

Squashes

(e) mcf

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

in
st

an
ce

s
en

co
u
n
te

re
d

Lookahead Depth

Lookahead Depth Distribution for sjeng (INT)

Lookahead

Squashes

(f) sjeng

Figure 5.2: Lookahead Depth Distribution for SPEC CPU2006 INT Benchmarks

56

What can be seen however, is that there are seem to higher number of squashes in

the integer benchmarks compared to the floating point benchmarks. Except for some

of the benchmarks most integer benchmarks seem to have good amount of looping

code. In order to better understand the distribution of these lookahead depths we

take a look at figure 5.3.

Lookahead State Distribution

misprediction_stall

cache_miss_stall

confidence_stall

gendeque_stall

depth_stall

lookahead_done

 0%

 20%

 40%

 60%

 80%

 100%

cactusA
D

M

gam
ess

lbm
m

ilc
soplex

sphinx

zeusm
p

bzip2

h264ref

hm
m

er

libquantum

m
cf

sjeng

m
ean

P
er

ce
n
ta

g
e

st
at

e
d
is

tr
ib

u
ti

o
n

Benchmark

Figure 5.3: Lookahead State Distribution

As seen in figure 5.3:

1. Mispredictions : Mispredictions still have visible contribution in stalls. This

can of-course be done away with a better branch predictor. The most number

of mispredictions that get seen are in the cactusADM benchmark. We see

that the largest number of stalls are correspondingly visible in the graph for

cactusADM. This can be seen at the lookahead depths of 10 and 12, as was

previous discussed. Among the integer benchmarks figure 5.3 has the highest

57

misprediction amounts for bzip2 and sjeng. In figure 5.2 both these benchmarks

visibly exhibit a good number of stalls.

2. Cache misses: They are one of the top reasons why lookahead engine stops.

In order to analyze the effect of a lot of cache misses we need to examine

the behavior of botht the sphinx and the mcf benchmarks. It can be seen

from figure 5.1 and 5.2 that both of these benchmarks have a high amount of

lookaheads at low depths. Even in the case of soplex, sjeng, and lbm we can

see that considerable distribution resides at lower depth levels.

3. Confidence: We are also not confident about the branches being predicted.

This can also be mitigated by a better branch predictor and a better confidence

estimator. We see in distributions for cactusADM, gamess, zeusmp, bizip2, and

h264ref how the confidence levels affect our depths. These benchmarks have

either a very flat distribution or an upward trends in the lookahead depths. This

can be contributed to insufficient confidences as we lookahead down the path.

Path confidence is found as the multiple of confidences along a path during

the lookahead stage. As confidence levels multiply with smaller numbers they

stall the lookahead and results in moderate depth levels as can be seen by the

profile of the above mentioned benchmarks.

4. GenDeque : The generate deque gets filled up only in very minor instances.

This affirms that we can easily decrease the size of the most energy hungry

structure in our entire design, which is the generate deque. The generate

deque is filled up with all the inflight branches. and when there are tight loops

in the code the generate deque can take up more than the half the reorder

buffer size or the size of the instruction window. This is because there need

to be more branches in flight than the ones in the main pipeline and because

58

of the aggressiveness of the lookahead mechanism most of the generate deque

structure gets filled up pretty fast.

5. Depth: Depth is a major stall culprit, which shows that the benchmarks have

a lot of looping code. This is especially evident in libquantum, as can also be

seen most of the figure 5.1 and figure 5.2. There are so many loops is such a

substantial part of the code that we are stalled for a lookahead depth of 12

most of the time in many of the benchmarks. This goes to show that there is

significant improvement that can be taken from the loop mode of the B-Fetch

pipeline.

6. Lookahead Done : Lookaheads are completed for roughly 10% of the time. This

means that because of all the reasons above we only end up looking ahead a

fairly less number of times. Perhaps with better branch prediction and cache

structure all the stalls can be reduced to such an amount that the lookahead

engine can start to have predominant contribution to the lookahead state.

5.2.2 Hit Rate Analysis

In this section we discuss about the hit rate analysis of the branch trace cache

and the memory history table. We can see that the hit rate of the trace cache is fairly

healthy. The trace cache is a direct mapped structure so that the power consumption

is low and there is enough time to access it within a clock cycle and still be able to

access the branch predictor.

59

Branch Trace Cache Hit Rate

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

cactusA
D

M

gam
ess

lbm
m

ilc
soplex

sphinx

zeusm
p

bzip2

h264ref

hm
m

er

libquantum

m
cf

sjeng

average

H
it

 R
at

e

Benchmark

 0

Figure 5.4: Branch Trace Cache Hit Rate

The branch trace is the backbone of the lookahead mechanism. We see in the

figure 5.4 that the average trace cache hit rate is close to 60%. This shows that there

is significant amount of hits seen in the trace cache to enable the lookahead engine.

It is only after the lookahead engine gets enabled that we move on to accessing the

memory history table in subsequent pipeline stages.

Another thing to keep in mind is that the memory history table is only a subset

of the branch trace cache. This is because not all the basic blocks have loads in them.

Hence the 70% hit rate of the memory history table in figure 5.5 is but a subset of

the 60% hit rate of the branch trace cache. In any case, this evaluation shows us that

most of the time there are enough hits in the the memory history table, especially

enough number of loads in basic blocks to exploit their distribution.

60

Memory History Table Hit Rate

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

cactusA
D

M

gam
ess

lbm
m

ilc
soplex

sphinx

zeusm
p

bzip2

h264ref

hm
m

er

libquantum

m
cf

sjeng

average

H
it

 R
at

e

Benchmark

 0

Figure 5.5: Memory History Table Hit Rate

Togeter, both figure 5.4 and figure 5.5 show that a good number of hits happen

in both these structures, to let the first two stages of the B-Fetch pipeline function

smoothly.

5.2.3 Load Distribution in Basic Blocks

Now that we have seen how branch trace cache and the memory history table

have good health, we turn our focus toward the number of prefetches calculated per

basic blocks. This gives us an idea of the capacity of each basic block to provide us

with a number of loads. We see in figure 5.6 that a large number of the basic blocks

read from the memory history table have one load in them. It can also be seen that

a significant number of these basic blocks have less than 5 loads. Around 90% of all

the prefetches generated in basic blocks had 4 or less loads. This goes to show that

a memory history table structure that has 4 units for four different register indices is

61

enough to capture the most common behavior observed. Also, owing to our negPatt

and posPatt fields we are actually able to capture significantly more loads than are

shown by the number of units i.e. 4.

3

2

1

 0%

 20%

 40%

 60%

 80%

 100%

cactusA
D

M

gam
ess

lbm
m

ilc
soplex

sphinx

zeusm
p

bzip2

h264ref

hm
m

er

libquantum

m
cf

sjeng

m
ean

P
er

ce
n
ta

g
e

Benchmark

Load prefetches issued per basic block

11+

10

9

8

7

6

5

4

Figure 5.6: Prefetches Issued per Basic Block

As can be seen in the figure 5.6 for hmmer and gamess more than 11 loads are

actually created in through prefetches. This gives us an idea of the usefulness of the

negPatt and the posPatt field in that even despite having four units we are able to

create more loads. It is also to be noted that there are many loads actually based

off of the same register index in most of the basic blocks which is what is captured

by the negPatt and the posPatt fields.

62

5.2.4 MSHR Fill Analysis

Now that we know how many loads are generated per basic block, we turn our

attention toward how these generated prefetches affect the requests being issued to

the L1 data cache. We see in figure 5.7 that most of the time zero MSHRs (miss

status and holding register) are actually being used. On average this is the case 40%

of the time. Because the simulations were done for a single core, this figure shows

how much stress a single core exerts on the memory hierarchy in general. What this

leads us to conclude is that most of the time MSHRs are either idle or have only one

outstanding request in them.

2

1

0

 0%

 20%

 40%

 60%

 80%

 100%

cactusA
D

M

gam
ess

lbm
m

ilc
soplex

sphinx

zeusm
p

bzip2

h264ref

hm
m

er

libquantum

m
cf

sjeng

m
ean

F
ra

ct
io

n
 o

f
to

ta
l

Benchmark

MSHR Occupancy

10

9

8

7

6

5

4

3

Figure 5.7: MSHR Fill Count Distribution

This helps us build the case for using B-Fetch in a multicore environment. Fig-

ure 5.6 shows the MSHR fill count distribution. Most of the time, the bandwidth is

underutilized, as is evident with the dominance of the zero MSHR count. Hence, we

63

can expand the exploration to more than one cores.

5.2.5 Performance Impact

In this section we conclude our evaluation to study the performance impact of

the prefetcher design so far. We see in figure 5.8 that there is some amount positive

impact on the preformance results again the stride prefetcher. We do see however,

that the impact is negative when we use 5 and 9 size spatial regions in the offset.

These results reflect the performance improvement for bootup of the operating sys-

tem. They show that B-Fetch in its current form gives a performance improvement

of about 5.6% over baseline while stride manages around 6.4%.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

no_prefetch

bfetch

bfetch_5_spatial

bfetch_9_spatial

stride

IP
C

Benchmark

IPC for the bootup process

 0

Figure 5.8: IPC of B-Fetch Compared to Baseline and Stride

In order to analyze the reasons for weaker results in when we prefetch spatial

regions in the offset mode, we refer to figure 5.9. We see here that as we increase

64

size of the spatial region, the number of identified prefetches goes up considerable,

as is expected. Most of these end up being seen in the cache. However, the number

of issued prefetches also goes up considerably. These issued prefetches could either

positively or negatively impact the performance, depending on whether they were

useful, useless, or untimely. We analyze the same in the figure 5.10.

identified

already_in_m
shr

already_in_cache

already_in_prefetcher

rem
oved_M

SH
R
_hit

issued

N
u
m

b
er

 o
f

p
re

fe
tc

h

Prefetch lifecycle

Comparing prefetch metrics

bfetch

bfetch_5_spatial

bfetch_9_spatial

stride

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

Figure 5.9: Prefetch Lifecycle

Figure 5.10 shows that out of all the prefetches issued (as seen in figure 5.9 most

of them end up being useless prefetches. These useless prefetches adversely affect

the bandwidth usage and hence deteriorate the performance when we prefetch for

spatial regions of size 5 and 9.

65

 8e+06

issued

useful

useless

untim
ely

N
u
m

b
er

 o
f

p
re

fe
tc

h

Prefetch Effectiveness

Comparing prefetch metrics

bfetch

bfetch_5_spatial

bfetch_9_spatial

stride

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

Figure 5.10: Prefetch Health

Our discussions lead us to conclude that more work needs to done to find out

what is the best algorithm for the offset mode. We are currently basing prefetches on

the execution register file, which we assume to be adequate. However, results show

otherwise. Some of the different things that can be tried out is to base the offset

mode address generation on the architectural register file, and more so on architec-

tural register file as it existed at the granularity of the basic block.

5.3 Hardware Overhead

This section discusses the hardware overhead involved with B-Fetch design. We

see that most of the hardware overhead (shown in table 5.2) comes from the memory

history table structure used to capture the load distribution within the basic block.

All other structures have lesser storage requirements. This shows that the B-Fetch

design is much more practical compared to the most practical existing prefetcher

66

in literature i.e. the SMS prefetcher. We can even add in a fairly accurate branch

predictor to offset the requirement on the main branch predictor and still be able to

undercut the budget that is used by the SMS prefetcher.

Table 5.2: Hardware Overhead

B-Fetch for OoO SMS

Branch Trace Cache – 1440 bytes Active Generation Table – 2.937 KB

(256 entries) (64 entries)

Memory History Table – 16544 bytes Filter Table – 1.46 KB

(128 entries) (32 entries)

Generate Deque – 2016 bytes Pattern History Table – 28 KB

(64 entries) (2K entries)

Prefetch Deque – 487.5 bytes

(100 entries)

Execution Register File – 256 bytes

Unit Allocation Table – 16 bytes

Path Confidence Estimator – 2 KB

Buffers – 400 bytes

TOTAL–20.6 KB TOTAL–32.4 KB

We see that the B-Fetch design is highly viable. Not only is it practically im-

plementable, but it also has much lower overhead compared to the SMS. The only

structure in this design that is expected to consume more power is the generate

deque, and it has been seen in our analysis in previous sections that reducing the

generate deque size is not a problem since it does not contribute to too many stalls.

67

6. FUTURE WORK

Although the core idea behind our design is fundamentally strong, there are still

some design changes that could potentially improve performance of our prefetch.

6.1 Priority Based Prefetch

Propagating misprediction information from the main pipeline and flushing old

prefetches that were queued as a result of those incorrect lookaheads help filter the

prefetch deque in our current design. Even despite filtering there is no sense of impor-

tance given to prefetches generated in the B-fetch pipeline. This could essentially be

handled by assigning priority values to each prefetch candidate in the prefetch deque.

Priority gets incremented when the B-fetch pipeline, time and again, issues the same

prefetches while looking ahead across multiple basic blocks. When prefetches are

to be assigned MSHRs, the high priority members of prefetch queue are given the

first chance to issue their prefetches, since there would be high demand for those

candidates in the upcoming basic blocks.

6.2 Dynamic Prefetch Region Sizing

Once it is learnt that in our offset mode the offset of commit from generate is

variable but within a limited range, the corresponding prefetches can be marked

with the quantity of variability seen for that offset. When the memory subsystem

is relatively in low demand, instead of prefetching a single cache block, multiple

blocks (spatial region) can be prefetched. The observed variability and the resources

available determine size of the spatial region to prefetch. This mechanism limits

68

overburdening the memory subsystem with prefetches for spatial regions when it is

already in high consumption. However, it had been observed in the previous B-fetch

design that prefetching spatial regions proves effective in a majority of cases. Doing

so intelligently in our design is expected to cover good spatial locality at the cost of

very low incremental hardware overhead.

6.3 Dynamic Cache Selection

Cache pollution of the L1 Data cache is a frequent problem for prefetchers. In

our design, as discussed in point 2 above the spatial region could be issued to the L2

cache while a single cache line is prefetched to the L1 data cache. This would ensure

a reduction in the access time even if the required cache line were not prefetched to

the L1 data cache. Prefetching spatial regions as a whole to the L2 cache has lesser

chance of polluting, especially if the hierarchy is non-inclusive, which is generally

the case in current high performance designs. Point 1 mentioned above could also

contribute to this prefetching scheme, in that, the low priority prefetches could be

assigned to the L2 cache while high priority prefetches could be allocated the valu-

able L1 data cache resource. The design of course should also take into account the

available bandwidth at both these levels of hierarchy.

6.4 Better Branch Prediction

The current design is constrained by accuracy of the tournament predictor and

a baseline confidence estimator. The B-fetch design is as good as branch predic-

tion allows it to be. Also, seeing that there is a growing focus of industry to focus

on state of the art branch predictors, having a good branch predictor would only

help increase the accuracy of lookaheads and hence prefetches issues by B-fetch. In

69

our design, there is a tendency to let prefetches go through and access the memory

subsystem very quickly. Hence some of the prefetches we intend to filter out would

already have gone through. Better branch prediction would go a great way in en-

suring that such prefetches along the wrong path dont get generated in the first place.

6.5 Multi-banked Tables

The main storage structure in our design is the MHT or the Memory History

Table. It essentially is a compressed representation of all the loads found in basic

blocks. Our current implementation covers the common case of having around 5

basic registers off of which loads are based. Even despite the compressed bit repre-

sentation, which encapsulates related loads into the same unit of the MHT entry, we

are still restricted by hardware. The simplest way around this problem is to have

multiple banks of tables. Each MHT entry is therefore spread out over these multiple

banks. Each of the banks in themselves would have a restricted set of units assigned

to that MHT entry. How many banks are used by an entry depends on how many

basic loads have been found in the basic blocks. For instance in the configuration

where each bank can store 4 basic loads in its 4 units, having 7 basic loads in a basic

block would essentially take up two banks. Now, to ensure that entries get overwrit-

ten less often the starting bank is also not fixed. Starting bank selecting is also based

on a hash just as entry selection in a table is traditionally done. This helps scatter

entries along two dimensions, i.e. banks and entries within banks. Further more,

assigning a similar structure to negative and positive patterns could also lessen the

weight of having them in the MHT. This structure would actually need to be of a

lesser size than that MHT since these patterns do not get used very often.

70

6.6 Adaptive Lookahead Depth Threshold

For certain benchmarks a case may arise when the degree of lookahead may be

so excessive that might bring in cache lines into the L1 data cache get evicted even

before being used. For scenarios like this it is a good idea to have the maximum

lookahead depth level dynamically adjusted with the rate of consumption of instruc-

tions in the main pipeline. The faster the main pipeline consumes instructions the

deeper the lookahead depth threshold needs to be. Another possibility is to still

continue to lookahead deep enough, however, prefetch requests should be made to

the L2 cache instead of the L1 cache to avoid any unwanted pollution.

6.7 Instruction Cache Prefetching

As is evident from the statistics of the lookahead mechanism, there is considerable

opportunity not only to prefetch for the data cache, but also issue prefetches for

the instruction stream. The branch trace cache of our b-fetch implementation uses

the branch target buffer in conjunction with the branch predictor and the return

address stack to make a highly accurate and well-informed assessment of the way

the instruction stream is going to go in the future. It is only natural to complement

this data cache prefetching mechanism with the inbuilt instruction cache prefetching

capability. It is safe to say that a better branch predictor (conditional and indirect)

will result in a three-way improvement in the performance. First, the performance

of the main pipeline through the use of better branch prediction technique. Second,

the method is also less restrictive because it does not require a trigger access to

launch prefetches, as is the case with other popular prefetcher designs. Third, the

high accuracy lookahead offers a good case for free of cost instruction prefetching.

71

7. CONCLUSION

This thesis proposes an advanced technique that leverages the control instructions

predictability to lookahead across a number of basic blocks. The lookahead path is

then used to recreate the memory instruction behavior in order to issue prefetches

to the data cache for the future basic blocks. The proposed approach is based on

register index-based correlation. Register index based correlation is created using

links between branch instructions and the basic blocks that they are a part of. Two

modes of operation have been proposed to handle different behavior of loads as a re-

sult of different behavior of control flow paths viz. loop mode and offset mode. Since

all structures are updated at commit time they help create a consistent lookahead

stream that closely resembles actual code behavior. The design leverages branch pre-

dictor and thus, also supports the argument of integrating better branch predictors

in modern pipelines. The technique with its low hardware overhead and practica-

bility of implementation is hence an indispensable option for prefetcher designs in

current and future microprocessors.

72

REFERENCES

[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood.

Dbmss on a modern processor: Where does time go? In Malcolm P. Atkinson,

Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie,

editors, VLDB’99, Proceedings of 25th International Conference on Very Large

Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 266–277.

Morgan Kaufmann, 1999.

[2] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading scheme to

reduce data access penalty. In Proceedings of the 1991 ACM/IEEE Conference

on Supercomputing, Supercomputing ’91, pages 176–186, New York, NY, USA,

1991. ACM.

[3] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G.

Saidi, and Steven K. Reinhardt. The m5 simulator: Modeling networked sys-

tems. IEEE Micro, 26(4):52–60, July 2006.

[4] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching.

SIGARCH Computer Architecture News, 19(2):40–52, April 1991.

[5] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data prefetching

for high-performance processors. Computers, IEEE Transactions on, 44(5):609–

623, 1995.

[6] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless, content-

directed data prefetching mechanism. SIGARCH Computer Architecture News,

30(5):279–290, October 2002.

73

[7] James Dundas and Trevor Mudge. Improving data cache performance by pre-

executing instructions under a cache miss. In Proceedings of the 11th Interna-

tional Conference on Supercomputing, ICS ’97, pages 68–75, New York, NY,

USA, 1997. ACM.

[8] E. Ebrahimi, O. Mutlu, and Y.N. Patt. Techniques for bandwidth-efficient

prefetching of linked data structures in hybrid prefetching systems. In High

Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th Interna-

tional Symposium on, pages 7–17, 2009.

[9] Richard Hankins, Trung Diep, Murali Annavaram, Brian Hirano, Harald Eri,

Hubert Nueckel, and John P. Shen. Scaling and characterizing database work-

loads: Bridging the gap between research and practice. In Proceedings of the

36th International Symposium on Microarchitecture, pages 151–162, 2003.

[10] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anas-

tassia Ailamaki, and Babak Falsafi. Database servers on chip multiprocessors:

Limitations and opportunities. In CIDR, pages 79–87. www.cidrdb.org, 2007.

[11] D.A. Jimenez. Composite confidence estimators for enhanced speculation con-

trol. In Computer Architecture and High Performance Computing, 2009. SBAC-

PAD ’09. 21st International Symposium on, pages 161–168, 2009.

[12] Norman P. Jouppi. Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers. SIGARCH Computer

Architecture News, 18(3a):364–373, May 1990.

[13] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In 25

years of the International Symposia on Computer Architecture (selected papers),

ISCA ’98, pages 195–201, New York, NY, USA, 1998. ACM.

74

[14] Yue Liu and D.R. Kaeli. Branch-directed and stride-based data cache prefetch-

ing. In Computer Design: VLSI in Computers and Processors, 1996. ICCD ’96.

Proceedings., 1996 IEEE International Conference on, pages 225–230, 1996.

[15] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of

a compiler algorithm for prefetching. SIGPLAN Not., 27(9):62–73, September

1992.

[16] O. Mutlu, J. Stark, C. Wilkerson, and Y.N. Patt. Runahead execution: an

alternative to very large instruction windows for out-of-order processors. In

High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.

The Ninth International Symposium on, pages 129–140, 2003.

[17] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global

history buffer. In Proceedings of the 10th International Symposium on High

Performance Computer Architecture, HPCA ’04, pages 96–, Washington, DC,

USA, 2004. IEEE Computer Society.

[18] R. Panda, P. Gratz, and D. Jimenez. B-Fetch:Branch Prediction Directed

Prefetching for In-Order Processors. IEEE Computer Architecture Letters,

11(2):41–44, 2012.

[19] Shlomit S. Pinter and Adi Yoaz. Tango: a hardware-based data prefetch-

ing technique for superscalar processors. In Proceedings of the 29th Annual

ACM/IEEE International Symposium on Microarchitecture, MICRO 29, pages

214–225, Washington, DC, USA, 1996. IEEE Computer Society.

[20] Timothy Sherwood, Suleyman Sair, and Brad Calder. Predictor-directed stream

buffers. In In 33rd International Symposium on Microarchitecture, pages 42–53,

2000.

75

[21] A. J. Smith. Sequential program prefetching in memory hierarchies. Computer,

11(12):7–21, December 1978.

[22] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, Septem-

ber 1982.

[23] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi.

Spatio-temporal memory streaming. SIGARCH Computer Architecture News,

37(3):69–80, June 2009.

[24] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak Falsafi,

and Andreas Moshovos. Spatial memory streaming. In Proceedings of the 33rd

Annual International Symposium on Computer Architecture, ISCA ’06, pages

252–263, Washington, DC, USA, 2006. IEEE Computer Society.

[25] Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim,

Anastassia Ailamaki, and Babak Falsafi. Temporal streaming of shared memory.

In In Proceedings of the 32nd Annual International Symposium on Computer

Architecture, 2005.

[26] Youfeng Wu. Efficient discovery of regular stride patterns in irregular programs

and its use in compiler prefetching. SIGPLAN Not., 37(5):210–221, May 2002.

76

