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ABSTRACT 

 

Memory arrays cannot be as easily tested as other storage elements in a chip. 

Most of the flip-flops (FFs) in a chip can be replaced by scan cells in scan-based design. 

However, the bits in memory arrays cannot be replaced by scan cells, due to the area 

cost and the timing-critical nature of many of the paths into and out of memories. Thus, 

bits in a memory array can be considered non-scan storage elements.   

Test methods such as memory built-in self-test (MBIST), functional test, and 

macro test are used to test memory arrays. However, these tests aren’t sufficient to test 

the paths through the memory arrays. During structural (scan) test generation, memory 

arrays are treated as “black boxes” or memory arrays are bypassed to a known value. 

Black boxes decrease coverage loss while bypassing increases chip area and delay. 

Path delay test through memory arrays is proposed using pseudo functional test 

(PFT) with K Longest Paths Per Gate (KLPG). In this technique, any longest path that is 

captured into a non-scan cell (including a memory cell) is propagated to a scan cell. The 

propagation of the captured value from non-scan cell to scan cell occurs during low-

speed clock cycles. In this work, we assume that only one extra coda cycle is sufficient 

to propagate the captured value to a scan cell. This is true if the output of the memory 

feeds combinational logic that in turn feeds scan cells. When we want to launch a 

transition from a memory output, different values are written into different address 

locations and the address is toggled between the locations. The ATPG writes the 

different values into the memory cells during the preamble cycles. In the case of 
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launching a transition out of a non-scan cell, the cell must be written with an initial value 

during the preamble cycles, and the next value set on the non-scan cell input. Thus, it is 

possible to capture and launch transitions into and from memory and non-scan cells and 

thus test the path delay of the longest paths into and out of memory and non-scan cells. 
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NOMENCLATURE 

 

ATPG Automatic Test Pattern Generation 

DFT Design For Test 

LOC Launch On Capture 

PFT Pseudo Functional Test 

KLPG K Longest Path Per Gate 

SCOAP Sandia Controllability/Observability Analysis Program 

PSN Power Supply Noise 

PI Primary Input 

PO Primary Output 

PPI Pseudo Primary Input 

PPO Pseudo Primary Output 
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1.  INTRODUCTION  

1.1 Memory tests 

Most of the storage elements in a chip are replaced by scan cells in a scan based 

design. These scan cells have greater area than the normal storage elements. Most of the 

scan cells are also accompanied by a multiplexer in a muxed-scan design. There will be 

an increase in delay for any paths passing through such cells.  If timing-critical paths 

pass through any storage elements, then such elements are not replaced by scan cells. 

Since most of the critical paths of the chip pass through memory arrays, cells of the 

memory arrays cannot be replaced by scan cells [1, 2]. The chip area and power 

consumption increase from replacing memory cells with scan cells would also be 

unacceptable. 

Since the memory cells act as non-scan storage elements and do not form part of 

a scan chain, we cannot easily launch transitions from memory cells and cannot observe 

any captured values in the memory. Various techniques have been developed to test 

memory arrays.  

1.1.1 Direct memory access 

This technique uses direct access to the memory arrays using the signal pins [3]. 

This is the easiest technique, but it has many drawbacks. It is not possible to use a large 

number of pins solely for memory test. This technique can practically only be used in a 

standalone memory and if there are large memories near chip edge. 
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Scan chains or TAMs (test access methods) can also be used to deliver test 

patterns to and results from memories inside a chip. These methods can be scaled to 

multiple memories on a chip, but cannot provide a delay test. 

1.1.2 MBIST 

Memory BIST (built-in self-test) or MBIST is the most popular technique in 

which the memory is tested using functional patterns. Memory BIST is an added DFT 

structure which has its ports connected to the memory ports as shown in Figure 1.  

 

Figure 1 MBIST [4] 
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MBIST can be used to detect defects such as RAM dynamic faults, stuck-at 

faults and transition faults. MBIST also supports path delay test if the test is done using 

an at-speed clock. March patterns, which will be described later in the chapter, are 

generated by the MBIST and applied to the memory [4]. The response is captured back 

and is verified against the expected response.  

1.1.3 Black box 

This technique is used during scan test generation where each memory array is 

modeled as a “black box.” The black box has input and output ports but no internal 

description is defined. Thus, any captured transitions are lost and no transitions are 

launched as only unknown (X) values are obtained from the black box. This technique 

creates “shadow” regions around the memory that cannot be tested, reducing fault 

coverage.  

1.1.4 Memory bypassing 

The loss in fault coverage due to black boxes can be compensated by the use of 

memory bypassing. In this technique the output of the memory is fixed to a certain value 

or the input into the memory is transferred to the output. This way Xs are prevented from 

being propagated into the circuit and any memory inputs are captured. However, this 

technique does not fully test the memory operation, so a separate memory test is 

required. If the bypass logic makes use of memory circuits, it can provide a partial delay 

test and produce power supply noise (PSN) similar to functional memory operation. For 

example, in bypass mode the address decoder could always select a special bypass word 

in the memory. 
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1.2 Memory fault model for functional patterns 

 

Memory fault models for functional test are broadly classified into three 

categories [4, 5, 6]:  

 Address Decoder Faults 

 Memory Faults 

 Dynamic Faults 

a) Address Decoder Faults 

Address decoder faults (AFs) can be categorized as follows according to their 

functional behavior: (1) no cell can be accessed by a certain address; (2) multiple cells 

are accessed simultaneously by a certain address; (3) a certain cell is not accessible by 

any address; and (4) a certain cell is accessible by multiple addresses. As to the 

read/write circuitry (including buses, sense amplifiers, and write buffers), the typical 

faults are equivalent to faults in the memory cell array [4]. 

b) Memory Faults 

There are various memory faults present in memory. A few of the faults are 

described below [4]: 

 Stuck-at fault (SAF) — A cell is stuck-at-1 or 0 

 Stuck-open fault (SOF) — A cell is not accessible due to, e.g., a broken word line or 

a permanently open switch.  
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 Transition fault (TF) — A cell fails to transit i.e. if there is a rising transition, the cell 

will have a stable 0 and if there is a falling transition, the cell will have stable 1.  

 Data retention fault (DRF) — A cell fails to retain its logic value after a pre-specified 

period of time. 

 Coupling faults 

a. Inversion coupling fault (CFin) — A transition in one cell inverts the 

content of another.  

b. Idempotent coupling fault (CFid) — A transition in one cell forces a 

constant value (1 or 0) into another.  

c. State coupling fault (CFst) — A coupled cell or line is forced to a certain 

value only if the coupling cell or line is in a given state 

d. Read disturb fault (RDF) — The cell value will flip when being read 

(repeatedly) [7]. 

c) Dynamic Faults 

A static fault is one that has a static behavior; that is, its behavior does not 

change over time. A dynamic fault, on the other hand, has a dynamic behavior that may 

change over time [4]. There are three categories of dynamic faults: 

 Recovery fault 

 Retention fault 

 Imbalance fault 
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a) A recovery fault occurs when some part of the memory cannot recover fast enough 

from a previous state. Popular recovery faults include: (1) sense amplifier recovery 

fault—the sense amplifier saturates after reading or writing a long string of 0’s or 1’s; 

and (2) write recovery fault—a write followed by a read or write at a different location 

result in reading or writing at the same location due to slow address decoder. 

b) A retention (refresh) fault occurs when the memory loses its content spontaneously, 

not caused by the read or write operation. One example is the sleeping sickness of MOS 

DRAM that is caused by, for example, charge leakage or environment sensitivity, where 

the DRAM cells lose information in less than the specified hold (refresh) time—

typically tens to hundreds of milliseconds. The problem usually affects a row or a 

column. Another example is the refresh line stuck-at fault, which also can damage the 

refresh mechanism of the DRAM. For SRAM, there can also be retention faults, caused 

by a defective pull-up device that induces excessive leakage currents which can change 

the state of a cell. 

c) Imbalance fault is the fault where the voltage imbalance between the complementary 

bit line voltages causes read errors. 

 

1.3 Motivation 

 

Embedded memories occupy a large amount of area in modern chips, and the 

trend is for increasing amounts of memory. In many designs, the critical timing paths in 
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the circuit pass through these embedded memories. It is necessary to test these paths in 

order to accurately determine the clock frequency of the circuit.  

Traditional delay testing of integrated circuits uses the transition fault, where a 

slow-to-rise or slow-to-fall fault exists at a gate input or output. These faults are detected 

by propagating a transition through the fault site, and capturing the result at a scan cell. 

The transition fault model is suitable when there is a large delay increase at a location in 

the chip. However, this fault model may miss localized small delay defects or distributed 

delay. These more subtle delay defects are increasingly important.  

Path delay faults are one of the various delay fault models. In this type of fault 

model, the delay is accumulated along the path, in contrast to a transition fault model 

where the delays are accumulated at a node. Thus a large number of paths must be tested 

for the path delay fault model.  

The path delay fault model can be used to detect small delay defects as well as 

the slowest path in the circuit because a path with low timing slack may fail if it has a 

small delay defect. This fault model is used in finding the critical path of the circuit and 

also in speed binning.  

The transition fault model and traditional memory test does not have a good 

correlation with FMAX (the maximum operating frequency of the chip). Path delay test 

through memory arrays is shown to have a good correlation with FMAX [1, 2].  Thus, 

path delay test is used in this work on delay testing embedded memory arrays. 

The path delay fault will detect small delay defects, as well as defects that can be 

modeled by transition faults. Since the number of paths in a circuit is potentially 
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exponential in the number of gates, it is not possible to test all paths. The KLPG 

algorithm was developed to test the K longest paths through each line in the circuit, 

limiting the number of paths that must be tested, but providing good coverage of defects. 

In both transition and path delay test, complex sequential elements such as 

memory arrays have been modeled as a “black box”, bypassing the memory or via 

MBIST as already discussed above. However, these techniques either make it impossible 

to test paths through memory arrays or do not target the longest paths into and out of the 

memories or have a limited correlation with functional mode, thus precluding the testing 

of small delay defects in and around the memory. In order to ensure high fault coverage 

of path and small delay defects in and around the memory, PFT KLPG tests must be 

performed on the paths into and out of the memory. 

 

1.4 Previous work 

 

Much prior work has been done on memory array test. However, most of this 

work has focused on functional test or MBIST. Memory arrays can be tested using 

functional March patterns [8, 9]. MBIST can be used to implement March patterns on 

chip [1, 10, 11, 12]. Different types of MBIST are available, such as programmable 

MBIST [5], and multiple BIST controllers for multiple embedded memories [12]. An 

Embedded Micro-Tester can be used to test the components of an SoC [13] at speed, 

similar to MBIST. However, these techniques do not guarantee coverage of small delay 

defects. 
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Classical March pattern algorithms are described in [4, 5, 7]. Operation in March 

patterns are represented by three symbols; ⇑ denotes increasing address sequence, ⇓ 

denotes decreasing address sequence and ↨ denotes increasing or decreasing address 

sequence. A ‘w’ denotes write, a ‘r’ denotes read, and a 0/1 denotes the value written or 

expected. 

The Zero-one algorithm writes 0 in all cells and reads them and writes 1 in all 

cells and reads them again. So it is described by {⇑w0; ⇑r0; ⇑w1; ⇑r1}. This algorithm 

is also known as the MSCAN algorithm. The algorithm can also be given as follows: 

 

Procedure ZERO-ONE 

{ 

1: write 0 in all cells; 

2: read all cells; 

3: write 1 in all cells; 

4: read all cells; 

} 

Another March algorithm is the Checkerboard algorithm, which writes 0s and 

1s in alternate bits or words of the memory array so that the overall memory array looks 

like a checkerboard. The checkerboard pattern is mainly used for activating failures 

resulting from, for example, leakage, shorts between cells, and data retention, though it 

also detects stuck-at faults and half of the transition faults. The checkerboard algorithm 

is described below: 

Procedure Checkerboard 
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{ 

while (i is odd && j is even) 

{ write 0 in cell[i]; write 1 in cell[j]; 

pause; read all cells; 

complement all cells; 

pause; read all cells; } 

} 

The Galloping pattern (GALPAT) algorithm reads the base cell alternately 

with every other cell in its set – the entire cell array [4, 5, 7]. It is a strong test for most 

faults — all Address Decoder Faults, Transition Faults, Coupling Faults and Stuck-At 

Faults are detected and located. Since the time is quadratic in memory size, instead of all 

cells in the array, the set may also be a column, a row, or a diagonal. The algorithm is 

described below: 

Procedure GALPAT 

{ 

1: write 0 in all cells; 

2: for i = 0 to n−1 

{ 

complement cell[i]; 

for j = 0 to n−1, j ! = i 

{ read cell[i]; read cell[j]; } 

complement cell[i]; 

} 
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3: write 1 in all cells; 

4: replay Step 2; 

} 

The Walking pattern algorithm is similar to GALPAT except that the base cell 

is read only after all others are read. There are alternatives to the GALPAT algorithm, 

such as the galloping diagonal, galloping row and galloping column. In these 

algorithms, instead of shifting a 1 through the memory, a complete diagonal, row, or 

column of 1’s is shifted. The sliding diagonal/row/column algorithm is similar to the 

galloping diagonal/row/column algorithm, but only those cells that are supposed to 

contain 1 are read after each shift. The butterfly algorithm is modified from GALPAT, 

with the purpose to find only Address Decoder Faults and Stuck-At Faults.  In the 

moving inversion (MOVI) algorithm, the memory is initialized to all 0’s, then this 

string of 0’s is successively inverted to become all 1’s, and vice versa. It ensures that no 

cell is disturbed by a read/write operation on another unrelated cell, and it detects all 

Address Decoder Faults and Stuck-At Faults. The algorithm is described below: 

Procedure Butterfly 

{ 

1: write 0 in all cells; 

2: for i = 0 to n−1 

{ complement cell i; 

dist = 1; 

while dist <= maxdist 

/* maxdist < 0.5* col/row length */ 
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{ 

read cell at dist north from cell[i]; 

read cell at dist east from cell[i]; 

read cell at dist south from cell[i]; 

read cell at dist west from cell[i]; 

read cell[i]; 

dist *= 2; /* or dist += skip */ 

} 

complement cell[i]; } 

3: write 1 in all cells; 

4: replay Step 2; 

} 

Surround disturb algorithms attempt to examine how the cells in a particular 

row/column are affected when complementary data is written into adjacent cells of 

nearby rows/columns. 

Various bit oriented March test algorithms such as MATS, MATS+, Marching 

1/0, MATS++, March X, March C, March C
-
, March A, March X and March B are 

summarized in [14]. Each of these algorithms performs a series of actions so that various 

defects in the memory arrays can be tested. For example, March C-
 
is given by the 

following March elements: 

↨(w0); ⇑(r0,w1); ⇑(r1,w0); ⇓(r0,w1); ⇓(r1,w0); ↨(r0) 

These elements form a series of operation to be done as follows:  
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a) Write 0 in all memory cells in any address order 

b) Read expected 0 from memory cells in increasing order of their address. And 

write 1 at the same time 

c) Read expected 1 from memory cells in increasing order of their address. And 

write 0 at the same time 

d) Read expected 0 from memory cells in decreasing order of their address, i.e. 

form the highest address to the lowest address. And write 1 at the same time 

e) Read expected 1 from memory cells in decreasing order of their address. And 

write 0 at the same time 

f) Read expected 0 from all the cells in any order.  

March C− is known to completely detect Stuck at faults, Address decoder faults, 

AFs, unlinked transition faults, and coupling faults.  

Other March patterns [4, 14] are shown below: 

Modified algorithmic test sequence (MATS): { ↨(w0); ↨(r0,w1); ↨ (r1)} 

MATS+: {↨(w0); ⇑(r0,w1); ⇓(r1,w0)} 

Marching 1/0: {⇑(w0); ⇑(r0,w1,r1); ⇓(r1,w0,r0); ⇑(w1); ⇑(r1,w0,r0); ⇓(r0,w1, 

r1)} 

MATS++:  { ↨(w0); ⇑(r0,w1); ⇓(r1,w0,r0)} 

March X:  { ↨(w0); ⇑(r0,w1); ⇓(r1,w0); ↨(r0)} 

March C: { ↨(w0); ⇑(r0,w1); ⇑(r1,w0); ↨(r0); ⇓(r0,w1); ⇓(r1,w0); ↨(r0)} 

March A: {↨(w0); ⇑(r0,w1,w0,w1); ⇑(r1,w0,w1); ⇓(r1,w0,w1,w0); ⇓(r0, 

w1,w0)} 
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March Y:  {↨ (w0); ⇑(r0,w1,r1); ⇓(r1,w0,r0); ↨(r0)} 

March B: {↨(w0); ⇑ (r0,w1,r1,w0,r0,w1); ⇑ (r1,w0,w1); ⇓ (r1,w0,w1,w0); ⇓ 

(r0,w1,w0)} 

A March test for word-oriented memories is constructed starting from tests for 

bit oriented memories [7]. These March patterns are shown to test static and dynamic 

faults in RAM [15]. 

Macrotest [16] was introduced to transfer handcrafted functional test patterns to 

embedded memory arrays via embedding in scan tests. This is useful when MBIST is too 

expensive. However, this technique is not a delay test. Scan test is used to test latch-

based embedded arrays [17] for stuck-at, stuck-open and bridging faults. However, no 

delay tests are used in this approach to test the memory. Higher fault coverage of non-

scan cells using at-speed functional patterns has been achieved [18]. The logic 

surrounding the memory can be tested using compressed scan-based testing [19] but the 

memory is still tested using BIST/functional patterns.  

A seven-valued algebra is used to resolve the non-scan elements [20]. However, 

it is seen that the fault coverage and the test time rises with use of this technique.   

 

1.5 Structure of thesis  

 

Pseudo Functional Test for K Longest Path per Gate (PKLPG) is introduced in 

Chapter II. In this chapter, we discuss the ATPG tool CodGen which generates patterns 
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to detect the K longest paths through each line in a circuit. Preamble cycles and path 

generation are discussed in detail.  

Our proposal to test the memory is described in Chapter III. In this chapter, we 

discuss how the memory arrays are tested using the present infrastructure and what 

needs to be added. Implementation details are described in Chapter IV. Chapter IV also 

summarizes the types of memory arrays that can be tested and impact of testing larger 

memory arrays.  The results are discussed in Chapter V followed by conclusions and 

future work in Chapter VI.  
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2. PSEUDO FUNCTIONAL TEST FOR K LONGEST PATH PER GATE 

2.1 Pseudo functional test (PFT) 

Pseudo Functional Test (PFT) is a class of structural delay tests, in which 

traditional launch-on-capture delay testing is extended to additional launch and capture 

cycles. A test pattern is scanned into the circuit, and then multiple functional clock 

cycles are applied to it, with at-speed launch and capture for the last two cycles. The 

circuit switching activity over an extended period allows the off-chip power supply noise 

transient to die down prior to the at-speed launch and capture. This helps us in reaching 

an operating environment close to functional mode when the launch and capture take 

place. This increases the delay test correlation between structural and functional models, 

and minimizes over and under testing [21]. 

However, structural delay tests like scan based test and PFT use a slow-fast-slow 

clocking approach, with slow scan and fast functional clock cycles. In launch-on-capture 

(LOC) test, the time delay between the last scan-in cycle and the first functional cycle is 

long enough to allow the scan enable (SE) signal to change. The scan cycle time is 

typically an order of magnitude slower than the functional cycle time, in order to 

minimize the area and power cost of scan chain routing and buffering. Since the power 

grid is designed for functional operation, it largely reaches its quiescent state prior to the 

first functional (launch) cycle. The power grid time constant due to off-chip inductance 

is much longer than the functional clock cycle, so it takes dozens of functional clocks 

before the inductor currents can ramp up to supply the on-chip switching activity. In the 

meantime, this current must be supplied from on-chip parasitic and decoupling 
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capacitance, causing the supply voltage to droop. This is known as the dI/dt effect, and is 

the dominant power supply noise problem during delay test. This initial voltage droop 

causes the circuit to operate more slowly than in normal functional operation [22, 23]. 

Essentially, there is a mismatch between scan and functional test speeds due to the 

mismatch between the functional and test power supply voltages. 

However, PFT can also be used to address the dI/dt effect.  One solution to the 

dI/dt problem is to apply a series of scan or functional cycles that are slower than 

functional speed, but much faster than scan speed, to ramp inductor currents prior to the 

launch and capture of the delay test [22, 23]. These cycles are termed preamble cycles, 

as shown in Figure 2. 

 

 

 

Figure 2 Preamble cycles followed by at-speed launch and capture cycles in PFT 

 

The preamble must have following characteristics: 

1. Significantly longer than the chip-to-package power grid time constant, so that 

transients have died down. 

2. Clock cycle time significantly shorter than the off-chip time constant, so that 

the off-chip supply can reach steady-state. Figure 2 shows a constant preamble cycle 
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time, but it can be ramped down towards the functional cycle time, to minimize the 

voltage transient. 

3. Propagate launch transitions on the shortest paths to minimize the chances of 

test invalidation due to a delay fault caused by supply noise during preamble cycles. 

4. Weighted switching activity (WSA) per unit time similar to full speed 

functional cycles, so the off-chip supply current can reach steady state. 

5. As few preamble cycles as possible in order to minimize ATPG effort.  

Preamble cycles can be viewed as time frame expansion of normal 2 frames of 

LOC as shown in Figure 3. So, the vector at each time frame is derived from the 

previous time frame until we get to time frame 0 where the vector is scanned in through 

the scan chain. If any of the vectors cannot be derived from the previous time frame, 

then such vectors are discarded.  

 

 

Figure 3 Time frame expansion of the circuit for PFT 
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Similarly, a transition is launched using the last 2 time frames and the necessary 

assignments obtained in those two frames are justified to time frame 0 to obtain a pattern 

as shown in Figure 4. 

 

 

Figure 4 Extending the traditional LOC model for preamble cycles in PFT 

 

 

2.2 K longest path per gate (KLPG) 

 

The KLPG algorithm generates the K longest rising and falling paths through a 

target line under robustness constraints. The search space for each fault site, as shown in 

Figure 5 shows the fan-in and fan-out paths of the target line. 
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Figure 5 KLPG path search space 

 

There are three major steps in the KLPG process: 

1. Path Initialization: The setup of the Launch Points in the circuit. A launch 

point can be a Primary Input (PI) or a Pseudo Primary Input (PPI). A PPI is a scan cell 

output. 

2. Path Growth: Extending the path by adding one gate at a time, so that it 

extends from a Launch Point to a Capture Point. A Capture Point can be a Primary 

Output (PO) or Pseudo Primary Output (PPO). A PPO is a scan cell input. 

3. Final Justification: Finding the test pattern as well as checking 

compatibility between all internal assigned values in the circuit. 

The overall summary of the KLPG algorithm is shown in Figure 6. 
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Figure 6 Overview of KLPG Path Generation 

 

 

The KLPG algorithm is given below: 

1. Parse the input files and perform pre-processing steps such as computing 

SCOAP metrics on each gate. 

2. For each target fault site, until K paths has been generated or no more are 

possible 

3.      Initialize the paths from the target fan-in cone Launch Points. 

4.      Add these to the Partial Path Store. 

5.      Extract the partial path with maximum Esperance. 

6.      Extend the extracted path. 

7.      Add side input constraints and perform Multi-Frame Direct 

Implications. 

8.      If a conflict is detected 
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9.           Delete this partial path 

10.      End If 

11.      Else If Complete path formed 

12.           Perform Final Justification. 

13.       End If 

14.       Else If Complete Path is not formed 

15.           Apply false path elimination heuristics. 

16.           Update the Esperance. 

17.           Re-insert in a sorted fashion into the Partial Path Store 

18.           Go to step 6. 

19.      End If 

20. End For 
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3. TESTING THROUGH MEMORY ARRAYS 

3.1 Memory as a logical model 

 

CodGen can generate patterns for K longest paths for each line in the given 

circuit. So if the memory is modeled as flip-flops and combinational logic, CodGen can 

handle such a circuit. Thus the logical model of memory can be tested using the standard  

CodGen  infrastructure. However, as noted above, memory cells are non-scan cells. So 

CodGen must be modified to handle non-scan storage elements.  

 

3.2 Non-scan cell in CodGen 

 

During path generation, if any transition is captured in a non-scan cell, then it 

cannot be scanned out of the non-scan cell. The captured value needs to be propagated to 

an observation point, i.e. a scan cell. So an extra clock cycle is needed to propagate the 

Boolean value of any captured transition, as shown in Figure 7. The extra cycle is termed 

a coda cycle. The coda cycle is untimed (and so uses a slow clock) since we are just 

propagating the Boolean value. 

However, the propagated value can be captured by another non-scan cell during 

the propagation cycle. In that case, the value is still not observable. So, the Boolean 

value needs to be propagated further so that it is captured in a scan cell. Thus, another 

coda cycle is necessary. Multiple coda cycles may be required if the propagated value 

keeps getting captured in a non-scan cell as shown in Figure 8. The value is propagated 
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until the path finds a scan cell. It may be infeasible to have a large number of coda 

cycles. So for a given test, the number of coda cycles is fixed and if a given path cannot 

be propagated to a scan cell even after propagating across this fixed number of coda 

cycles, then that path is dropped and deemed as a non-propagating path. A different test 

may try a different number of coda cycles. 

 

 

 

Figure 7 Propagation of Boolean value in coda cycle 

 

 

 

 

Figure 8 Multiple coda cycles 
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3.3 Coda cycle in CodGen 

 

It was already discussed that the memory cells are non-scan cells and the 

captured transition is not observable. So, one extra coda cycle is introduced so that the 

Boolean value in the captured transition can be propagated to a scan cell. Thus, a number 

of coda cycles are added to the CodGen infrastructure for the propagation of the 

captured transition. 

Figure 9 shows the modification to the PFT KLPG so that the non-scan memories 

can be tested. There are two functional test or at-speed cycles, launch and capture. In 

other words, there is just one capture cycle. The number of preamble cycles can be set to 

more than four. Similarly, the number coda cycles can be increased to more than 4. Once 

the propagated value is captured in a scan cell, scan enable is asserted and slow scan 

clocks are provided so that the captured value is shifted out of the scan chain.  

 

 

 

Figure 9 Coda cycle in PFT KLPG 

 



 

26 

 

The path to the non-scan cell is already tested in at-speed cycle once the value is 

captured in any non-scan cell. The propagation cycle, shown by the coda cycle, is just to 

read out the captured values and verify their correctness. So the coda cycles do not use 

the at-speed clock and can use a slower clock, but do not need to be as slow as the scan 

clock.  

 

3.4 Easiest path propagation 

The ATPG uses SCOAP metrics to first select the easiest (most observable, 

needing the fewest necessary assignments) path to a scan cell. If that fails, it tries the 

next-easiest, and so on. In this work, only a single coda cycle is implemented, which 

assumes there is only combinational logic between the memory (or non-scan cell) output 

and scan cells. 

 

3.5 Writing into the memory 

The longest path into a memory or non-scan cell is tested during the at-speed 

launch and capture cycles, as shown in Figure 7. These written values are propagated to 

the nearest scan cells in number of coda cycles.  
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3.6 Reading from the memory 

 

Testing the longest paths out of the memory requires launching a transition at the 

memory output. One of the problems associated with black box memory models is that 

the memory outputs are X and so cannot produce transitions. Transitions cannot be 

launched when using memory bypassing because the outputs of the memory arrays are 

assigned to a fixed value. However, we are able to launch the transition because of the 

existing preamble cycles and use of memory arrays without bypassing or black boxing.  

Suppose we have a 2x1 memory array with two cells, C0 and C1. We have one 

output data bit coming out of the memory array. The output wire is multiplexed between 

C0 and C1 so that the output data is selected based on the address fed to the select line of 

multiplexer, as seen in Figure 10. 

 

 

Figure 10 Launching a transition by toggling the address 
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If C0 holds 0 and C1 holds 1, if we want to launch a rising transition from the 

memory, then the address line switches from 0 to 1. Prior to the address transition, we 

must write C0 and C1 during the preamble cycles. 

 

 

Figure 11 Necessary assignments inside a multiplexer to propagate a transition 

 

 

The multiplexer shown in Figure 10 is further decomposed to primitive gates in 

Figure 11 to further describe the launch of a falling output transition F. The rising 

transition, given by R, starts from the select line, which is the address of the memory 

array. The path grows as it adds the NOT gate and the AND gate to its partial path. 

When the first AND gate is selected, the value of the non-controlling input of the AND 

gate has to be 11 in the last two time frames for robust test. Since the values 11 in input 

A are obtained from the non-scan cell C0, these values are written in preamble cycles so 

that they are available during at-speed cycles. The path further grows and adds OR gate 

in the partial path and it sets all the necessary assignments.  
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All the necessary assignments that are to be written to the non-scan cells are done 

in preamble cycles as shown in Figure 12. A sufficient number of preamble cycles are 

required to write all of the necessary values in non-scan cells. 

 

 

Figure 12 Preloaded values in preamble cycles 

 

 

It is assumed that the memory is already preloaded with values before launching 

a transition from the memory. It is seen in Figure 11 that 0 and 1 have to be written in 

the two non-scan cells before a transition is launched during at-speed cycles. Thus, these 

values are written in preamble cycles which require at least two write cycles, since only 

one bit at a time can be written. In both write cycles, the write enable and chip enable 

must be asserted. In the first cycle, the address is set to the first non-scan cell and the 

data bit is set to 0. Then in the second cycle, the address is changed to the second non-

scan cell and the data bit is set to 1. Thus it is required that there are at least two 

preamble cycles in this example. 
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4.  IMPLEMENTATION 

4.1 Memory model 

 

There are various available memory implementations in industry and academia. 

Memory arrays can be combinational, high impedance when not read, etc. We have 

modeled the memory array with asynchronous read and synchronous write (using a 

global clock). In this model, data is written to the memory arrays during the edge of the 

clock when the correct address is decoded and write and chip enable signal are active 

low. This is similar to the implementation of a combinational RAM.  

Typically when a value is written in a memory cell it might not be read for a long 

time because such memory cells are enabled by the address and the same address may 

not be decoded frequently. However, industry feedback suggests that the value written in 

cells will usually be read within the next few clock cycles. So we immediately read from 

the memory after writing the value into the memory. Furthermore, the memory is 

modeled as a uniform delay model such that all the delays are lumped at interface gates, 

with the same delay to and from every memory cell.  

Large memories, such as L2 and L3 cache arrays, are not a uniform array, but a 

hierarchy of memory arrays and interconnection network. We assume that the network is 

already described and we just synthesize the memory blocks. 
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4.2 Synthesis 

 

The behavioral description of the memory array is first defined in behavioral 

Verilog. The Verilog for 4x3 memory array is shown below: 

 

`define addressBusSize  2 

`define dataBusSize  3 

module memoryArray4x3 (  

input [`addressBusSize-1:0] A,//Address     

input CLK,      

input [`dataBusSize-1:0] D, // Data In     

input EZ, // Enable chip, active low      

input WZ,//Write enable , active low     

output [`dataBusSize-1:0] Q // Data out   

); 

parameter depth=1<<`addressBusSize; //total depth = 2^addressBusSize 

reg [`dataBusSize-1:0]reg_file[depth-1:0]; //total storage 

//read operation. When chip enable is low 

assign Q=(EZ==0)?reg_file[A]:`dataBusSize'bx; 

//write operation. When both write enable and chip enable are low 

always @ (negedge CLK) 

begin 
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 if (WZ==0 && EZ==0)       

  reg_file[A]<=D;   

end 

endmodule 

 

The behavioral model is converted to a structural model using Synopsys Design 

Compiler. This tool synthesizes the behavior description to obtain a gate level 

implementation of the memory arrays. The logic model is shown in Figure 14. The 

general structure of the memory arrays can be thought as a memory cell and a feedback 

multiplexer as shown in Figure 13. If the correct address is decoded and write enable and 

chip enable are active low, new data is written to memory on the clock edge, else the 

same data loops around. The data can be read any time once the address is decoded.  

 

 

Figure 13 General structure of a memory array 

 

The model obtained may not look like the real memory, but this synthesis 

procedure can handle all memory types. The synthesized model is then flattened further 
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so that we get primitive gates from the complex logic gates like AOI (And Or Inverter), 

and XOR gates. This flattened model is then used to replace the memory black box in 

CodGen. 

 

Figure 14 Logical model of 4x3 memory array 

 

 

It can be seen in Figure 14 that there are a total of 12 non-scan cells, 4 address 

and 3 data bits. So, each address selects 4 non-scan cells. There are layers of gates for 
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writing the data into the memory and reading the data out of the memory. For reading 

the data from the memory, the first layer gives a total of 6 possible data bit values from 

12 non-scan cells. The first layer is given by a series of AND-NOR gates given by U53, 

U52, U56, U55, U61 and U58. For example, U53 and U52 selects 1 output data from the 

first four scan cells. THe data to be selected depends on the decoded address that acts as 

an input to U53 or U52. Let us visualize the memory array as a 2D array of 

memory[4][3], where the first index is memory address and second index is the data bit. 

For any address, the asynchronous memory gives a 3-bit output. So U53 and U52 gives 

the value of memory[X][0] where X can be any address from 0 to 3 depending upon the 

decoded address. For any decoded address, U53 and U52 gives the 0
th

 bit of the data bit. 

It is noted that only one of U53 and U52 has a valid bit i.e. only one of them carry the 

required bit from the non-scan cell. U53 and U52 are then taken to an AND gate which 

is the second layer to read out the data. If U53 has valid data, then the output of U52 will 

be 1 and the data of U53 will be carried to the output. Similarly, while writing the data to 

the memory cell, there are layers of gates always followed by a feedback multiplexer as 

shown in Figure 13 and Figure 14.  

As the number of address bits increases, the decoding logic becomes more 

complex and more layers of gates are required for decoding. Thus, with each additional 

address bit, an additional layer of decoding logic is added to the logic. One can easily 

think that with one additional bit of address, we need 1 more layer in Figure 14  so that 

we can select each data bit from the 8 addresses such that the data bits of the cells travel 

in a tree fashion as in a 4x3 memory array shown above. However, just adding an AND 
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gate with the addition of one extra address bit can be a naïve option. Thus, it is left to the 

tool, Synopsys Design Compiler, to choose the best combination of gates for decoding.  

It is seen that the tool chooses various ranges of combinational gates to optimize 

the area and power of the circuit. Instead of using higher fan-in multiplexers, 2:1 or 

sometimes 3:1 multiplexers are used. Various combinational gates such as AND-OR-

INVERT and OR-AND-INVERT are used. With the addition of more address and data 

bits, the gates are added in a tree to optimize the logic.  Thus any size of memory can be 

synthesized.  

Figure 15 and Figure 16 shows decoding of a 256x8 memory array. Figure 15  

shows that the first data bit is decoded out of 256 possible addresses. The decoded 

address X is sent to the combinational logic and the 0
th

 data bit from the memory cell of 

the decoded address is obtained from the output of the 2:1 multiplexer. As mentioned 

above, the combinational logic depends upon the design library used by Synopsys 

Design Compiler and the type of optimization used, such as minimum power or 

minimum area. In our implementation, the default setting of medium power and 

minimum area is used. Figure 16 shows that there will be 8 instances where 8 data bits 

emerge. Each box in Figure 16 is equivalent to the whole circuit of Figure 15. The 8 bit 

output is the asynchronous output of the memory array.  

The decoded address is obtained by similar combinational logic. There will be an 

increase in layers of combinational logic with an increase in address bits. These layers 

are also obtained in a tree nature similar to the tree of combinational logic while reading 

the data.   
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Figure 15 Decoding the LSB data bit of 256x8  memory 

 

The typical RAM implementation is shown in Figure 17. It is seen that such an 

implementation also has a row decoder which is nothing but the address decoder which 

selects the correct row/address from the memory array. The data/column is then read out 

using a column decoder which is similar to the reading out of the data bits.  
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Figure 16 Concatenation of output data from the memory array 256x8 

 

 

4.3 Resilience against process variations 

The longest paths to and from the memory cells can vary due to process 

variations. There can be significant variation due to the minimum feature sizes used in 

dense memory arrays. Testing the K longest paths through each memory cell is robust 

against process variation. 
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Figure 17 Typical implementation of SRAM 
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5.  RESULTS 

 

PFT KLPG for memory test is implemented in C++ running on a 1.86 GHz Intel 

Dual Core Processor with 8 GB of memory. Robust paths are used to generate patterns.  

A total of 4 preamble cycles are used. Although 2 preambles are sufficient to 

preload values into non-scan cells, 4 cycles are used for better noise correlation. Only 1 

coda cycle is used for the propagation of the Boolean value as it is assumed that the 

propagated value finds a scan cell within the next cycle. If any paths do not find a scan 

cell within that coda cycle, then such paths are discarded. So a scan chain is put on the 

memory output.  

 

 

 

 

Figure 18 Standalone memory test 
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All the paths going into and out of the memory are tested. Thus, combined 

number of paths for writing into the memory and reading from the memory are 

generated. K equal to 1 is used, i.e. one longest and rising path per gate. Dynamic 

compaction is used so that all the patterns are compacted together. The memory arrays 

are tested as standalone memories i.e. PIs and POs of the memory arrays are directly 

tested as shown in Figure 18. However, the results obtained by using a scan wrapper 

around the memory arrays yield similar results.   

There may be cases where a scan cell feeds its value to the non-scan cell through 

a combinational cloud and the propagated value passes through another combinational 

cloud to be captured in a scan cell as shown in Figure 19.  

 

 

Figure 19 Scan cell around non-scan cell 

 

 

The circuit can be reduced to Figure 20 which shows scan and non-scan cell 

without expanding the time frame. When the non-scan cells are expanded through the 

preamble cycles, they act functionally i.e. they are similar to scan cells except in the first 

and last time frames. In the first frame the non-scan cell has an unknown value and in 
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the last frame its output cannot be read out. Such scenarios are handled by the existing 

CodGen infrastructure.  

 

 

Figure 20 Scan and non-scan cell before time frame expansion 

 

 

Different memory arrays were synthesized and tested. The memory size is given 

as A X B where A denotes the total number of words and B denotes the number of 

output bits. Table 1 below shows results obtained from the PFT KLPG. 

Table 1 Results of PFT KLPG standalone memory arrays 

 

Memory 

Size Paths Patterns Time 

Gate 

count 

2x1 15 6 0:00:00 20 

4x3 58 16 0:00:02 86 

4x8 232 16 0:00:05 275 

8x4 227 33 0:00:07 255 

16x8 1022 73 0:01:10 1167 

8x16 1044 34 0:00:48 1160 

64x8 4161 305 0:13:53 4686 

8x64 4116 35 0:09:04 4568 

128x8 8428 608 1:01:49 9419 

8x128 8212 34 0:33:00 9112 

256x8 16661 1114 3:30:17 18726 

8x256 16404 33 1:40:24 18200 
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The patterns generated are sufficient to test all of the paths in the memory arrays. 

In the 8x256 memory, the paths can be tested by writing eight words of 0s and eight 

words of 1s and reading can be tested by reading those eight words of 0s and eight words 

of 1s. So, 32 patterns are necessary to test the memory. CodGen generates total of 33 

patterns. A 256x8 memory can be tested by 1024 patterns of 8-bits each, while dynamic 

compaction achieves 1114 patterns. The first reason that CodGen does not find the 

minimum number of test patterns is that the paths are generated for each bit first rather 

than the whole word. For example, in the 8x256 array, the paths are not generated for the 

256 bits at once, rather for each data bit of a word. Thus this greedy nature of the KLPG 

compaction algorithm led to the increase in number of patterns. The other reason is the 

path pool size. It is seen that there are over 16k paths for both 8x256 and 256x8 and the 

path pool size is 2000. So dynamic compaction has to write patterns to memory before 

some paths are considered. 

The paths, pattern and gate count increase approximately linearly with the 

increase in memory size. The number of paths is slightly more than linear and number of 

gates slightly less than linear due to the select logic overhead. However, CPU time 

increases super linearly with circuit size. CPU time for the 8x16 memory array is 31 

seconds and for the 8x64 memory array is 6 minutes 17 seconds. Thus the time increases 

by more than 6 times when the circuit size increases by 4 times. The total CPU time for 

path justification increases by 12 times, path generation by 13 times and dynamic 

compaction by 18 times. Since the 8x64 memory just adds four times as many paths that 

are independent (except for the enable signals), the CPU times for each of these phases 
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should have only increased by 4 times. Dynamic compaction CPU time is super linear in 

pattern count, but the compacted pattern count is nearly the same for both memories. 

Path generation consumes 92% of the total CPU time, so it is the dominant reason for 

super linear CPU time.  

Total CPU time comprises of ATPG time, which takes majority of the time and 

Dynamic Compaction time. It is seen that in ATPG time, recording the path, direct 

implication and generation of paths take more than half of the ATPG time. For example, 

in 8x64 memory array, ATPG takes 335 CPU seconds and Dynamic Compaction takes 

116 CPU seconds. ATPG CPU seconds is divided as recording path-132, direct 

implication-76, generation of path-62, FAN -23, propagation time-14 and rest of the time 

is taken for initial setup. For 8x16 memory array, ATPG takes 26 CPU seconds and 

Dynamic Compaction takes 6 CPU seconds. ATPG CPU sec is divided as recording 

path-8, direct implication-5, generation of path-5, FAN-1, propagation time - 1 and rest 

of the time is taken for initial setup. Thus superlinear nature of the CPU time is caused 

by various fragments of the code.   

The patterns generated in the above table are for standalone memories i.e. those 

memory arrays which do not have any combinational logic surrounding them as shown 

in Figure 21. However, when there is a combinational cloud around the memory arrays, 

the number of paths should decrease. Writing and reading 0s and 1s from all the 

addresses may not be possible due to the logic constraints presented by the 

combinational cloud. Furthermore, the Boolean value might fail during propagation. We 

test a memory array with a combinational cloud before the input to the memory.  
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Figure 21 Combinational cloud before memory array 

 

 

In our experiment, several of the PIs of the circuit are fed through a full adder 

before entering the memory array. For small circuits like 2x1, 4x3 and 4x8 which have 

less than 2 address lines, a half adder is used. For a 2x1 memory, the output of the half 

adder is connected the address line and the write enable line. For other models, the 

output of the adder is connected to the address lines only.   The results obtained from 

PFT KLPG are shown in Table 2. 

 

Table 2 Results of PFT KLPG of memory arrays with combinational cloud 

 

Memory 

Size 

Paths Patterns Time Gate count 

2x1 20 14 0:00:01 26 

4x3 50 17 0:00:01 92 

4x8 182 17 0:00:03 281 

8x4 195 39 0:00:05 269 

16x8 831 76 0:00:38 1181 

8x16 810 43 0:00:36 1174 

64x8 3355 320 0:10:09 4700 

8x64 3163 43 0:07:05 4582 

128x8 6781 595 0:46:56 9433 

8x128 6298 44 0:27:12 9126 

256x8 12528 996 3:38:29 18726 

8x256 16404 33 1:40:24 18214 
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It is seen that the number of paths have decreased when combinational logic is 

introduced in front of the memory arrays. However, there is an increase in pattern count 

in some circuits. This is because of the fact that the logic may introduce more constraints 

that preclude compacting paths together into the same test pattern. However in the 256x8 

memory, there is a decrease in pattern count the adder significantly reduces the number 

of testable paths (from 16661 to 12528).  
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6.  CONCLUSIONS AND FUTURE WORK 

PFT KLPG test generation is used to test the longest paths to and from all cells in 

a memory array. These patterns perform path delay tests so that critical paths through the 

memory can be tested. This approach avoids any delay or area overhead incurred by 

MBIST or loss in fault coverage incurred by treating memory as block box or just 

performing functional tests to the memory. The approach has been demonstrated with 

combinational logic constraints on the address input of the memory. 

Future work includes using a template to model the memory arrays as shown in 

Figure 22. The template has a common bus for input and output data. The output from 

each memory cell passes through a tristate buffer which is enabled when the correct 

address is decoded and output enable is active. The data is written to the cells at a clock 

edge when write enable is active and correct address is decoded. Unlike the design used 

in this research, the clock is gated so that only the word being written is clocked. These 

templates have a closer resemblance to physical memory implementations and their 

switching activity can better correlate with physical memory and with the power model 

supplied with the memory. 

We assume delays are lumped at interface and future work includes adding 

delays such that the logical model delays match that of the behavioral delay model 

supplied with the memory array. 
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Figure 22 Memory template 
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