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ABSTRACT 

 

The thesis considers three-dimensional analyses of fractures and wellbores in 

low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role 

of coupled thermo-hydro-mechanical processes.  Thermoporoelastic displacement 

discontinuity and stress discontinuity methods are elaborated for infinite media. 

Furthermore, injection/production-induced mass and heat transport inside fractures are 

studied by coupling the displacement discontinuity method with the finite element 

method. The resulting method is then used to simulate problems of interest in wellbores 

and fractures for related to drilling and stimulation.  

In the examination of fracture deformation, the nonlinear behavior of 

discontinuities and the change in status from joint (hydraulically open, mechanically 

closed) to hydraulic fracture (hydraulically open, mechanically open) are taken into 

account.  Examples are presented to highlight the versatility of the method and the role 

of thermal and hydraulic effects, three-dimensionality, hydraulic/natural fracture 

deformation, and induced micro earthquakes. Specifically, injection/extraction 

operations in enhanced geothermal reservoirs and hydraulic/thermal stimulation of 

fractured reservoirs are studied and analyzed with reference to induced seismicity. In 

addition, the fictitious stress method is used to study three-dimensional wellbore stresses 

in the presence of a weakness plane. It is shown that the coupling of hydro-thermo-

mechanical processes plays a very important role in low-permeability reservoirs and 

should be considered when predicting the behavior of fractures and wellbores. 
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1. INTRODUCTION  

1.1. Overview 

The simulation of hydraulic/natural fractures and stress analysis of wellbores in 

low-permeability petroleum/geothermal reservoirs often requires a three-dimensional 

(3D) multiphysics approach that considers fluid and heat flow in relation to the 

mechanics of the surrounding rocks. Although three-dimensionality and the effects of 

pore pressure and temperature are frequently omitted for mathematical and physical 

convenience, their effects in reservoir geomechanics problems are substantial, especially 

in distributions of failure potentials around an injection-induced fracture in naturally 

fractured rock (reservoir stimulated volume), analyses of enhanced geothermal reservoir 

performance, and wellbore stress analysis [1-3]. 

Fluid flow and heat transfer in the porous rock matrix and fracture network and 

modifications in the fracture aperture due to pressure and temperature must also be 

considered in the hydraulic/thermal stimulation of fractured enhanced geothermal and 

petroleum reservoirs. Moreover, in stimulation processes, the shear slip of pre-existing 

natural fracture is the dominated failure mode [4, 5].  Shear slip increases the 

permeability of the fracture through dilation [5, 6]. It is therefore necessary to model the 

occurrence of shear slip to predict stimulated reservoir volume, permeability dynamics, 

and the occurrence of failure (microseismicity) during the development of enhanced 

geothermal reservoirs or during hydraulic fracturing in fractured reservoirs. 

Moreover, temperature and pressure gradients, the presence of weakening planes 

or natural fractures, and an arbitrarily oriented stress field are important parameters to 
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consider in stress analyses of wellbores in unconventional reservoirs [1, 7, 8]. Therefore, 

proper analyses of wellbores need to consider 3D coupled thermoporomechanical 

physics in fractured reservoirs.   

The numerical technique developed in the current study includes 3D coupled 

thermoporomechanical behavior of fractured rock in the analysis of wellbores, enhanced 

geothermal systems, and hydraulic/thermal stimulation of naturally fractured reservoirs. 

1.2. Objectives and significance 

The overarching objective of the present study is to develop a numerical model to 

study the effect of thermoporomechanical processes on fractures and wellbores in low-

permeability reservoirs. To achieve this objective, mixed source/discontinuity technique 

(fluid source, heat source, and displacement or stress discontinuity), is coupled with the 

finite element method. The significance of the study is revealed through analyses of 

three major reservoir geomechanics problems: (a) a 3D study of failure or microseismic 

events possible during hydraulic or thermal stimulation of fractured reservoirs, (b) a 

response analysis of enhanced geothermal reservoirs, that considers the role of 

thermoporomechanics and fracture deformation, and (c) a 3D wellbore stress analysis in 

which plane strain or axisymmetric conditions are not fulfilled.  

1.3. Motivations 

Given the complexity of rock formations and the existence of natural fractures, 

pure elastic and continuum models by themselves are insufficient to provide accurate 

stress analysis in many problems of reservoir geomechanics. One of the reasons for this 
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has to do with the porous medium behavior of rock. Rock pores are usually saturated 

with fluid and represent a specific distribution of pressure and temperature throughout 

the reservoir. Drilling or injection/production into the saturated fractured rock disturbs 

the initial pore pressure and temperature. Stress analyses of these processes must take 

into account the influences of changes in pore pressure and temperature induced by fluid 

flow and those induced by stresses.  

The method developed here incorporate thermoporomechanical processes into 

the injection/extraction of fluid into or from a manmade or natural fracture system with 

variable rate, opening and shearing displacement discontinuity (DD), and the possibility 

of fracture propagation in different modes. Moreover, the interaction of preexisting 

natural discontinuities and the hydraulic fracture is also considered. Analyses of 

geomechanical problems that use the proposed method can shed light on 

hydraulic/thermal stimulation mechanisms of fractured reservoirs. 

Like stimulation problems in geothermal and petroleum reservoirs, wellbore 

stress analysis in fractured reservoirs necessitates 3D thermoporomechanical analysis, 

especially when a wellbore passes through a weakening plane, or stress distribution 

around wellbore is interested at the end section (leak-off test). The model considers 

mechanical, hydraulic, and thermal interactions during the drilling process. Time-

dependent characteristics of the problem are also taken into account. In wellbore stress 

analyses, rock is treated as a continuous material that was formed in an environment of 

complex stress, including discontinuities. 
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1.4. Literature review 

Biot [9, 10] and Biot and Willis[11] were the pioneers who stablishe fully 

coupling of fluid pressure and solid structure stress fields. Time-dependent fluid flow is 

incorporated into the poroelastic theory by combining the mass conservation of fluid 

with Darcy's law. Following Biot’s study, the theory of poroelasticity was developed by 

many researchers, including Verruijt [12] in a specialized version for soil mechanics and 

Rice and Cleary[13], who linked poroelastic parameters to rock and soil mechanics. In 

particular, Rice and Cleary emphasized the two asymptotic behaviors of a saturated rock: 

drained and undrained. Rice and Cleary’s formulation significantly makes the 

explanation of poroelastic phenomena simpler.  

In fluid-saturated porous rock, thermal gradients as well as pressure gradient, can 

significantly modify the stresses and pore pressure fields. This induces volumetric 

deformation due to thermal expansion and contraction of both the pore fluid and the rock 

solid. If the rock is heated and its structure prevented from moving, expansion of the 

fluid can lead to a substantial increase in pore pressure, and vice versa in the case of 

cooling. Therefore, the time-dependent poromechanical processes should be fully 

coupled to the transient temperature field. Thermally induced stresses have attracted the 

attention of many researchers. Carslaw and Jaeger[14] presented analytical solutions for 

many thermal conduction problems; however, they did not consider the coupling effect 

of mechanical or hydraulic processes. Yet drilling and injection/extraction phenomena 

affect the initial stresses, pore pressure, and temperature field, and they should be 

considered simultaneously.  
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The theory of thermoporomechanics analysis was initially developed by 

Schiffman [15] based on Biot’s linear poroelasticity. After Schiffman’s study, 

Palciauskas and Domenico [16] established thermoporoelasticity, assuming isothermal 

linear poroelasticity in combination with some nonisothermal parameters describing 

fluids, solid, and pore volume expansivities. McTigue[17] recast Palciauskas and 

Domenico’s work to obtain a diffusion equation for a combination of mean total stress, 

fluid pressure, and temperature. Kurashige [18] extended the theory to incorporate the 

transportation of heat by pore fluid flow in addition to the effect of difference in 

expansibility between pore fluid and skeletal solid. The thermoporoelasticity theory used 

in the current study is in most respects identical to that outlined by McTigue. 

In thermoporoelasticity theory, although the equations of hydromechanics are 

fully coupled in the sense that pore pressure influences deformation and deformation 

influences pore pressure, the coupling of temperature and mechanical work is 

unidirectional. Unidirectional coupling means that temperature has a large influence on 

stresses and strains, but strains do not lead to significant change in temperature. This is 

also the case for the relationship between pore pressure and temperature.  

Briefly, the coupling among mechanical, hydrological, and thermal processes in 

this study is related directly and the stress and pore pressure fields cannot be calculated 

independent of temperature. Interactions of these three main components of 

thermoporoelasticity theory are indicated in Figure 1. 
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Many studies have shown that coupled thermo-hydro-mechanical processes have 

a large influence on the evolution of fracture permeability. Moreover, reservoir 

stimulation involves a combination of manmade fracture and natural fractures. Two 

approaches can be used to model a constructed fracture system response to 

injection/extraction: (a) a statistical fracture network approach in which the reservoir is 

simulated using a system of fractured rock blocks and (b) a deterministic fracture 

modeling approach in which major fractures are directly modeled. These fractures are 

often distinguished by direct imaging of the wellbore and geological/geophysical studies. 

In the past decades, various analytical models have been developed and used in each 

category. The current section briefly reviews some of the existing stochastic and 

deterministic models of a fracture system response to injection/extraction. 

Elastic two-dimensional (2D) analytical models was used to formulized early 

models of reservoir hydraulic stimulation [20, 21] and ignored the effects of 

poroelasticity and thermoelasticity. Gringarten et al.  [22, 23] modeled heat transfer in 

multiple fractures inside of impermeable hot dry rock by assuming that fractures were 

the same distance from each other and had a constant aperture. They assumed that the 

injection rate was constant, that only gravitational force resulted in fluid transport, and 

that mechanical processes were negligible. Nemat-Naser and Ohtsubo [24] presented 

governing equations for coupled fluid flow and heat transfer inside a fracture in an 

impermeable geothermal reservoir. They discretized derived steady state governing 

equations with the finite element model. They also implicitly considered the effects of 

secondary thermal fractures with increasing fracture conductivity. Bazant and Ohtsubo 
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[25] considered the same problem, retaining the effects of buoyancy, velocity head 

(kinetic energy), and head loss due to viscous friction in the flow equation. They also 

discretized governing equations with finite element methods. 

Applications of linear elastic indirect boundary element methods in mining and 

reservoir rock mechanics were introduced by Crouch and Starfield [26]. They developed 

a flexible computational tool to analyze and calculate stresses around underground 

excavation and fractures in 2D configurations. They did not consider the effect of 

hydraulic or thermal phenomena, which are crucial in petroleum/geothermal reservoir 

geomechanics problems.   

A thermoelastic analysis of enhanced geothermal reservoir was performed by 

Abe et al. [27] and Perkins and Gonzalez [28]. They took into account the possibility of 

secondary cracks creation during reservoir development. However, they ignore the 

effects of poroelasticity.  

To better understand the effects of injection/extraction rate on reservoir response, 

Asgain [29] simulated fluid flow in a fracture system in an elastic 2D reservoir with 

elastic DD. Effects of leak-off from the fracture surface into the reservoir and the 

thermoporoelastic behavior of rock were not considered. 

Detournay and Cheng [30] presented fundamental solutions for poroelastic DD in 

plane strain media. These fundamental solutions have been used by many researchers to 

analyze injection/extraction into a fracture system in poroelastic media. Vendamme et al. 

[31, 32], Carvalho [33], and Detournay and Cheng [34] introduced a 2D poroelastic 

analysis of a stationary crack in a reservoir. They showed the time-dependent property of 
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the fracture aperture during its surface pressurization. They did not consider fluid flow 

inside the fracture, the effect of thermoelasticity, or the coupling of poroelasticity and 

thermoelasticity. Swenson and Beikmann [35] coupled the fluid flow in rock joints with 

rock mass displacement in 2D configurations. They did not consider nonlinear behavior 

of joints in the normal direction. Moreover, they did not include fluid leak-off from the 

joint surface into the rock mass.  

Kohl et al. [36] and Kohl and Hopkirk [37] presented a comprehensive thermo-

hydro-mechanical analysis of the coupling of fluid flow in a rock joint with the finite 

element method while considering nonlinear behavior of the joint in the normal direction 

and buoyancy effects. Swenson and Hardemann[38] examined the same concept in 2D 

configurations and studied the effect of multiple fractures and their interactions.  Neither 

Kohl et al., Kohl and Hopkirk, nor Swenson and Hardemann included the shear ride 

effect on permeability enhancement. They also did not consider the possibility of change 

in the rock joint behavior from mechanically closed to mechanically open. 

Ghassemi [39] used a 3D poroelastic higher order DD method to investigate the 

behavior of a fracture with fluid flow. Fluid flow in the fracture was considered as a 2D 

steady state flow in a parallel plate and was treated using the finite element method. 

Although Ghassemi considered the three-dimensionality of problem and coupled the 

fluid flow inside the fracture with its mechanical response, he did not study the effects of 

multiple cracks or increased permeability due to shear ride. 

Bruel [40] introduced a stochastic simplified thermoporoelastic method for 

simulating a circulation test in the Soultz-sous-Forets geothermal project in Rhine 



 

10 

 

Garben, France, without explicit consideration of flow through the rock. He used a 

discrete fracture network concept to study thermal and hydraulic effects on reservoir 

status. Rahman et al. [41] simulated natural fractures using a stochastic approach with a 

simplifying assumption regarding pressure distribution within fractures. They did not 

consider thermal effects. They included shear slippage of natural fractures and their 

effects on increased permeability in their analysis. Wang and Ghassemi [42] used a 

similar approach but with flow and poroelasticity as well as heat transport. 

Warpinski et al. [5] presented an analysis and predictions of failure due to 

reservoir response to hydraulic stimulation. They included only an analytical 

approximation of hydrological stresses in their model and did not consider thermal 

effects. They also ignored the presence of natural fractures and their effects. Settari et al. 

[43] presented a different numerical model to relate reservoir failure to fracture 

geometry. They considered thermal effects and the heterogeneity properties of the 

reservoir. They calibrated a continuum model with a discrete jointed rock model. 

However, they did not consider the effects of multiple fractures and fluid flow inside of 

fractures. 

Ghassemi et al. [44] applied the heat source element and integral equation 

method to investigate effects of 3D heat transfer over the life of an enhanced geothermal 

reservoir. Building on their earlier work, Ghassemi et al. [45, 46] developed a 3D heat 

extraction/thermal stress solution that was tied to an elastic stress/displacement analysis. 

They studied fracture aperture and ride variation in response to the injection of cold fluid 

into a single fracture in an assumed stress field. They did not study the effects of 
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multiple fractures or nonlinear behavior of the fracture in the normal direction. Ghassemi 

and Zhang [47] later made a fully coupled thermoporoelastic analysis of a crack. They 

used a 2D DD technique without flow modeling inside of fractures or the ability to 

model mechanically closed rock joints. 

Murdoch and Germanovich [48] presented a poroelastic analysis of fluid flow in 

a single fracture and considered the transient behavior of rock joints from mechanically 

closed to mechanically open. However, they ignored thermal and shear ride effects on 

the increasing permeability of the fracture. 

Ge and Ghassemi [49] developed an analytical technique to measure failure 

potential near enhanced geothermal reservoirs or hydraulic fractures due to fluid 

injection. They considered poroelastic and thermoelastic stresses but did not study the 

interactions of multiple fractures or fracture behavior in different states (mechanically 

open, mechanically closed). Rutqvist and Oldenberg [4] also studied induced failure due 

to injection/production in the Geysers Geothermal Field. They included coupled thermo-

hydro-mechanical processes in 2D configurations. However, they did not study the 

effects of discontinuity and their interactions. 

Ghassemi et al. [50] modified previous studies and coupled flow inside of 

fracture using simultaneous coupling of thermoelasticity and poroelasticity (pore 

pressure indirectly affected by temperature: Thermo-poroelasticity). They assumed a 

constant leak-off rate and plane fracture. They did not consider nonlinear behavior of 

rock joints. Tao and Ghassemi [51, 52] and Lee and Ghassemi [53] used a 2D coupled 

thermoporoelastic DD and finite difference method to study the problem. They 
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considered an increase in permeability due to shear ride and nonlinear behavior of a 

single joint in the normal direction.  

Koh et al.[54] studied injection/production into a discrete fracture network. They 

considered shear ride on the fracture surface, its effect on increased permeability, and 

nonlinear behavior of the rock joint in the normal direction. They did not consider the 

possibility of change in the rock joint from mechanically closed to mechanically open. 

Zhou et al.[55] used poroelastic 3D DD to study hydromechanical behavior of 

fluid flow inside of a fracture. They improved their model by simulating shear DD on 

the fracture surface [56]. Building on their previous work, they coupled fluid flow and 

convective heat transport inside the fracture to the fracture response in the normal and 

shear direction [57].  

The current study is an improvement on the Ghassemi and Zhou [57] model. 

Improvements were made by considering thermal conduction inside of the fracture, 

nonlinear behavior of elastic rock joints in the normal direction [58-60], shear ride and 

its effect on increased permeability of the fracture, transient behavior of rock joints from 

mechanically closed to mechanically open (hydraulic fracture), and the interaction of 

multiple (natural) fractures on one another. 

1.4.2. Previous work on wellbore stress analysis 

Wellbore stress analysis is a procedure used to define concentrations of stress 

around a wellbore to investigate failure of the wellbore in a realistic state. When drilling 

occurs, the original stress state of the rock is disturbed and stress concentration forms. 

Early wellbore stress analysis models [61] relied on elastic 2D analytical models. These 
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elastic models considered only far-field stresses and traction boundaries at the wellbore 

surface (mud pressure) and ignored the effects of poroelasticity and thermoelasticity. A 

poroelastic stress analysis of a wellbore was presented by Detournay and Cheng [62]. 

They considered complete interactions between hydraulics and mechanics, but did not 

study wellbore inclination. 

Rajapakse [63] introduced an analytical technique for determining the 

axisymmetric response of a cylindrical wellbore in a poroelastic medium. The medium 

was assumed to be fully saturated and governed by Biot's classic theory. He did not 

study the effect of thermal processes or the existence of discontinuities, which are 

inherent properties of fractured, low-permeability reservoirs. 

A couple analytical solution for transient fluid flow and conductive heat diffusion 

from an injection well into a 2D, plane strain poroelastic medium under non hydrostatic 

principal direction loading was presented by Wang and Papamichos [64]. The same 

problem was solved analytically by Li and Roegiers [8, 65] under conditions of general 

loading. Both studies considered the medium to be continuous rock with a plane strain 

condition. However, it is clear that in fractured reservoirs the continuity of reservoir and 

plane strain conditions are not satisfied. Abousleiman and Cui [66] presented an 

analytical solution for an inclined wellbore in anisotropic media. They did not take into 

account thermal effects or the presence of discontinuity. 

Freij-Ayoub et al.[67] introduced 2D coupled numerical analysis of wellbores in 

shale. They considered hydraulic, thermal, and mechanical processes. Wang and 

Dusseault [68], and Chen and Ewy [1] presented a fully thermoporoelastic coupled 
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solution for wellbores that considered convection in addition to conduction heat transfer. 

However, none of these authors studied the effect of discontinuity near the wellbore wall 

or the distribution of stress near the end section of wellbore. Zhang and Ghassemi [69] 

presented a fully coupled wellbore stability problem in a plane strain condition. They 

considered effect of discontinuity near the wellbore. 

Kang et al. [70] critically reviewed methods for analyzing wellbore stability and 

presented a numerical method based on discrete element techniques to study the 

distribution of stress around wellbores in 2D configurations. They considered only 

mechanical processes and ignored the effect of discontinuity near the wellbore. Lee and 

Ghassemi [7, 71] presented a real coupled 3D wellbore analysis using the mixed finite 

element method and damage mechanics. Before this, Tao and Ghassemi [72], and Wu et 

al. [73] solved the same problem in 2D configurations.  These authors did not consider 

the presence of discontinuity or a weakening plane at the beginning of problem, but 

because they used damage mechanics, the model was able to capture alterations in the 

elastic modulus due to the initiation and propagation of cracks. 

Some investigators who have considered the presence of discontinuity [69, 74, 

75] have assumed a plane strain condition that is not realistic in fractured media or near 

the end of a wellbore. 

In the current study, a 2D model presented by Zhou and Ghassemi [69] was 

improved for use with 3D thermoporoelastic media. Moreover, the presence of an end 

section of a wellbore and/or a weakening plane was considered. 
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1.5. Research plan 

To acchieve the goals and objectives of the study, the following tasks were 

completed: 

1. A review of field equations for coupled thermoporoelasticity 

2. The development of 3D fully coupled thermoporoelastic DD and fictitious 

stress (FS) techniques based on previous works by Ghassemi and Zhou[57] 

and Zhang and Ghassemi [69] 

3. The coupling of heat and mass transport inside of fracture and rock joints to 

study injection/extraction in a fracture system 

4. The application of numerical methods in petroleum/geothermal reservoir 

geomechanics problems, enhanced geothermal reservoirs, failure potential 

in reservoirs due to injection/extraction, and wellbore stress analysis in the 

presence of discontinuity. 

1.5.1. Field equations for thermoporoelasticity 

This part of study primarily presents the volumetric response of linear, 

homogeneous, and isotropic thermoporoelastic material. Total stress (tensile positive), 

variation in pore pressure, and variation in temperature are chosen as basic variables, and 

the corresponding conjugate kinematic quantities are solid strain, fluid content change 

for unit matrix volume, and heat flux. 

After governing equations are presentation for thermoporoelastic media, the 

study focuses on the main problems and describes the method chosen to solve the 

problems (the indirect boundary element method).  
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1.5.2. Thermoporoelastic indirect boundary element method  

 To study the response of fractures and wellbores within the frame of an indirect 

boundary element method, a 3D numerical model based on source/discontinuity 

elements was developed. It was used to simulate and analyze multiple arbitrary shape 

fractures and a combination of wellbores and weakening planes. 

To distinguish between conditions in which pre-existing crack geometry 

propagates during hydraulic/thermal stimulation, Mode I and II stress intensity factors 

(SIFs) are calculated based on the fracture opening and shear rides at the fracture tip. If 

the value of calculated SIFs is more than the fracture toughness for each specific mode, 

the perturbation to the system will be reduced to keep the fracture from propagating. 

1.5.3. Heat transport and fluid flow inside of fractures  

By considering the fact that fluid diffusion and heat advection-diffusion 

processes are coupled with the fracture aperture, a governing partial differential equation 

for fluid/heat transport based on mass and energy conservation is derived. The derived 

partial differential equations are discretized using the Galerkin finite element or 

streamline upwind Petrove-Galerkin finite element method, and consequent relations are 

simultaneously solved with a source/discontinuity algebraic equation. 

1.5.4. Constitutive model for reservoir discontinuities  

In addition to coupling of heat transfer and fluid flow equations inside of 

fractures to the source/discontinuity method, it is necessary to be able to model the 

progressive shear failure of pre-existing natural joints and the change in their behavior 
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from mechanically closed to mechanically open. In the current study, the slip-weakening 

model is chosen to describe the progressive shear failure of pre-existing natural 

discontinuities under compression loading. Slip weakening was developed initially to 

simulate post-shear failure of faults [76-78]. This model was used by Palmer and Rice 

[79] to study fracture in overconsolidated clay specimens under simple shear. The same 

approach as Palmer and Rice used was used in present study to model progressive shear 

failure. 

1.5.5. Applications of method in reservoir geomechanics  

The proposed method is applied to following problems: 

1. An investigation of failure potential near a hydraulic fracture or multiple 

hydraulic fractures 

2. A study of enhanced geothermal reservoir performance during 

injection/extraction, and the behavior of natural fractures during 

hydraulic/thermal stimulation 

3. A study of 3D wellbore stress analysis when the wellbore passes through 

a weakening plane, or a natural fracture 

After the results of each problem are presented, a discussion and physical 

interpretation will be discussed.  
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2. LINEAR THEORY OF THERMOPOROELASTICITY  

The current section provides an overview of thermoporoelasticity theory and the 

indirect boundary element method. Thermoporoelasticity theory is presented, and then 

field equations are derived based on some simplifications. Then the indirect boundary 

element method, which used singular solutions of thermoporoelasticity field equations, 

is presented and discussed. 

2.1. Overview 

The theory of thermoporoelasticity was developed by Palciauskas and Domenico 

[16] and later established by McTigue and Kurashige [17, 18]. McTigue and Kurashige 

formulated thermoporoelastic constitutive equations by extending Biot’s self-consistent 

theory for fluid-saturated porous media [9, 13] to non-isothermal case. The theory 

couples the transient heat transfer process with poroelastic behavior. 

A mathematical system that describes stress, pore pressure, heat and fluid flux, 

and displacement in a thermoporoelastic medium must include, constitutive laws, mass, 

momentum, and energy conservation principles. The stated relations constitute the 

governing equations of thermoporoelastic media. The relations are reduced through 

substitution and elimination of variables to produce a system of partial differential 

equations amenable for mathematical treatment, which is discussed here as a system of 

field equations. 
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2.2. Assumptions 

The theory of thermoporoelasticity as applied in the current study incorporates 

the following major assumptions: 

1. Negligible effects of pore pressure and mechanical work on temperature 

field (Figure 1). A number of geomechanical problems require 

temperature analysis inside of poroelasticity. In the past few decades 

thermoelastic problems have been solved by considering semi-coupling  

between temperature and mechanical work [80]. In semi-coupled 

thermoelasticity it is assumed that strains from boundary load and body 

force induce a negligible amount of temperature change. Carter and 

Booker [81] showed that semi-coupled thermoelasticity produces 

sufficient accuracy for solving almost all geomechanical problems. 

2. Infinitesimal deformations of the matrix. The Eulerian strain tensor 

applies and Darcy's law can be defined in terms of absolute fluid velocity 

instead of relative velocity. 

3. A single liquid phase. More effort is required to simulate multiphase flow 

in a matrix because of the need to drive a new fundamental solution; 

therefore it is ignored in the current study. However, multiphase flow 

inside of a fracture can be accounted for easily by changing the equations 

governing flow in fractures. 
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4. Negligible chemical effects. It is assumed that the chemical potential of 

injected fluid is same as that of pore fluid. In other words, produced water 

is used for the reinjection procedure.  

5. Insignificant creep behavior. Usually creep is a major concern in 

mudstone, salt deposits, and reach-clay shale [82]. In the current study, it 

is assumed that low-permeability reservoirs are not rich in total organic 

content and that creep effects or viscoelasticity can be ignored. 

6. Identical temperature for the matrix and pore fluid at the same location. 

This assumption is based on the fact that local heat exchanges between 

solid and pore fluid occur as rapidly as global heat and fluid diffusions. 

7. Negligible dynamic effects. Generally the rate of applied load to reservoir 

owing to injection or rock removal (drilling) is very low and can be 

considered static. As a consequence, deformations are considered as a 

quasi-static field. 

8. Transient linear heat conduction (no advection) in porous media. In low-

permeability reservoirs, because of extremely low speed of fluid 

movement in the matrix, conduction governs heat transfer phenomena 

and advection can be ignored. 

9. Homogeneous, isotropic, infinite porous media. Comparisons of fracture 

scale or wellbore scale to reservoir scale reveal that the boundary of the 

reservoir does not contribute to the fracture or wellbore response. 

Therefore, fractures and wellbores can be considered in an infinite region. 
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However, because of inherent limitations of the boundary element 

method the infinite region cannot be inhomogeneous and anisotropic. 

10. Constant material parameters for different temperatures. Although in 

enhanced geothermal reservoirs rock temperature can change 

considerably, for the sake of simplicity relation between rock constants 

and temperature is ignored. 

11. Fluid flow in a low-permeability reservoir governed by Darcy’s law.  

12. Thermal expansion of pores, with pore shapes remaining similar. In other 

words, the volumetric thermal expansion coefficient of the pore space is 

equal to the volumetric thermal expansion of matrix times to porosity. 

2.3. Governing equations 

Governing equations for thermoporoelasticity, within the context defined 

previously, are reviewed next. These equations consist of constitutive equations, 

transport laws, and conservation laws. 

2.3.1. Constitutive equations 

The constitutive equations (tension positive) for porous matrix and the pore space 

can be achieved based on principles of thermodynamics for fluid-saturated thermoelastic 

porous rock [18, 83]. The constitutive equations for the relations between induced strain, 

pore pressure change, and temperature change are as follows [8] (considering the in-situ 

state as a basis): 
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where ij  is total stress tensor components, ij  is an average strain tensor components, 

p is induced pore pressure, T  is induced temperature,   is fluid content change per unit 

reference volume, G is shear modulus,  is drained Poisson’s ratio, u  is undrained 

Poisson’s ratio, ij  is Kronecker delta,   is Biot’s constant, m  is volumetric thermal 

expansion of porous matrix, p  
is volumetric thermal expansion coefficient of pore 

space, f  is volumetric thermal expansion coefficient of pore fluid and   is porosity. 

2.3.2. Transport laws 

By ignoring the cross-effect between mass and heat diffusion (thermo-osmosis 

and Dufour’s effects) in isotropic porous material, the following mass and heat diffusion 

equation (Darcy’s law and Fourier’s law) can be obtained [18, 83]: 
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  (2.2) 

where iq  is fluid flux in “i” direction (unit fluid volume per unit area), k   is 

mobility (k is intrinsic permeability having dimension of length squared, and μ is fluid 

dynamic viscosity), ih  is heat flux in “i” direction (unit heat per unit area), T
mk  is 

thermal conductivity of porous matrix and pressure ( p  ) and temperature (T  ) with 

subscript “,i”  means its derivative with respect to that coordinate component. 
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Equation (2.2) shows that the transport laws for fluid flow and heat flow are 

similar to each other. 

2.3.3. Conservation laws 

In a quasi-static nonisothermal framework, three conservation laws exist [8]: 

1. Momentum linear balance or equilibrium equation: 

 ,ij j iF    (2.3) 

where iF  is total or bulk body force in i  direction. 

2. Local fluid mass conservation: 

 ,i i fq
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where f is fluid source or sink (fluid source is positive). 

3. Energy conservation. By ignoring terms representing the 

interconvertibility of thermal and mechanical energy, and ignoring 

convective heat transfer through pore fluid flow, energy balance for the 

representative volume element yields the following equation: 
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where m  and mC  are mass density and specific heat for porous matrix, 

and h  is heat source or sink (heat source is positive). The first term of 

equation (2.5) represents conductive heat transfer through the matrix.  
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Equation (2.5) is based on effective heat transfer. In other words, the mean 

temperatures of the matrix solid and fluid phases are identical for a representative 

volume element. Energy balance for fluid-saturated porous media can also expressed by 

distinguishing the mean temperature between the matrix and the pore fluid. In this case, 

energy balance equations are established for each phase (fluid and solid), and the heat 

flux transferred from one phase to another is expressed using a heat transfer coefficient. 

Compared to the model used in the current study, this model is more difficult to use. 

This is because more parameters are involved, and some of them, such as the heat 

transfer coefficient between the two phases, are difficult to define accurately. However, 

it is the more appropriate model to use when fluid velocity is high and significant 

differences in temperature between the solid and fluid phases are possible. 

2.4. Field equations for thermoporoelasticity 

A set of nine material constants, ,, , , , , , , , T
u m m u m mG C k      ,

 
is needed to 

fully characterize a linear homogeneous isotropic thermoporoelastic system. Of 

parameters ,m u  is the undrained volumetric thermal expansion of porous media. From 

the presented constitutive equations, conservation laws, and transport laws and the 

geometric relationship for small deformations, the following field equations (a modified 

Navier equation and pressure and temperature diffusion equations) can be derived: 

Modified Navier equation: 
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where iu  are displacement components. Pressure diffusion equation: 
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 (2.7) 

where M is Biot’s modulus. Temperature diffusion equation: 

 
,

T h
ii

m m

T
T m

m m

T
c T

t C

k
c

C







 




 (2.8) 

where Tc is the thermal diffusivity coefficient for matrix. 

Heat transfer is calculated separately because it is assumed that temperature field 

does not change by stress and pressure changes (semi-coupled thermoelasticity). Also, 

note that convective heat transport is ignored.  

As can be seen from equations (2.6), (2.7), and (2.8), displacement, pore 

pressure, and temperature field equations derived for a fluid-saturated, isotropic, 

thermoporoelastic body are completely coupled with one another. 

2.5. Field equations for thermoelasticity and poroelasticity 

Thermo-poroelasticity is another term for the intrinsic coupling of 

thermoelasticity and poroelasticity. Poroelasticity and thermoelasticity can be considered 

two special cases of thermoporoelasticity.  

A set of five material constants, , , , ,uG     , is needed to characterize a linear 

isotropic homogeneous poroelastic system. Likewise, a set of five material constants, 
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, , , ,T T
m mG c k  , is needed to characterize isotropic homogeneous thermoelastic 

material. Field equations for poroelasticity and thermoelasticity can be derived from 

thermoporoelastic equations by ignoring temperature or pore pressure effects in 

equations (2.6) and (2.7).  

Ignoring temperature in equations (2.6) and (2.7) results in the following 

modified 3D Navier and diffusion equation for poroelasticity [84]: 
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 (2.9) 

Correspondingly, ignoring pore pressure in the thermoporoelasticity field 

equations results in field equations for thermoelasticity [14]: 
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 (2.10) 

Equations (2.9) and (2.10) constitute governing field equations for poroelasticity 

and thermoelasticity, respectively, in fully saturated porous rock matrix. Moreover, a set 

of boundary and initial conditions is essential to solve a problem in thermoporoelastic 

media. 

2.6. Problem statements 

 The problems that are the focus of the current study are referenced in Figure 2. 

The figure shows an infinite 3D thermoporoelastic medium with two types of 

boundaries; a fracture surface and a wellbore surface. 
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2.7. Singular solution characteristics  

As pointed out in the previous section, all discontinuity surfaces can be modeled 

mathematically as a distribution of impulse point DD, point traction discontinuities (FS), 

fluid source/sink, and heat source/sink over time and space. Several researchers have 

discussed methods for deriving solutions to thermoporoelastic or 

poroelastic/thermoelastic field equations for various impulse point disturbances [13, 83, 

85-89]. The approach to solve the problem is generally established on a particular 

decomposition of the displacement field, as initially suggested by Biot [10]. The 

systematic solution method was first proposed by Cheng and Liggett [86] to derive a 

singular solution for poroelastic field equations. The proposed method is more organized 

than other methods that have been described in the literature [83, 87, 88]. Singular 

solutions of field equations to various continuous point disturbances are presented in 

Appendix A. Characteristics of these singular solutions for specific properties of 

thermoporoelastic media properties are discussed in Appendix B. 



 

29 

 

3. INDIRECT BOUNDARY ELEMENT METHOD  

3.1. Introduction 

Coupled thermoelasticity, poroelasticity, and thermoporoelasticity formalisms 

have been used to accurately solve reservoir problems. However, majority of 

geomechanical problems cannot be solved analytically and need to be treated 

numerically. The boundary element method (BEM) is a great numerical tool for solving 

systems ruled by linear partial differential equations in an infinite region [90, 91]. The 

BEM has many of its roots in potential theory [92], where field behavior is simulated by 

the superposition of proper analytical solutions. Corresponding analytical solutions 

result from the response of infinite media to an impulse at a point. The impulse can 

represent point fluid source/sink, point heat source/sink, DD in different directions, or 

tractions discontinuity in different directions. The analytical solutions of field equations 

to such an impulse are called singular solutions because, mathematically speaking, they 

behave normally everywhere in the region except at the point of the impulse, where there 

is a mathematical singularity.  

Boundary element method formulation has been used for elastic [26, 93], 

poroelastic[31, 56, 84], thermoelastic[44-46] and thermo-poroelastic[47, 50, 52, 53, 57, 

69] analyses of petroleum geomechanics problems. The value of the method is that it 

decreases problem dimensionality by one.  

In the BEM literature, the direct method and the indirect method are two 

different types of integral equations. Green’s second identity or reciprocity of work 

principle [84, 90] is the basis of integral equation in drect boundary element method. In 
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this method, integral expressions include physical quantities, such as potential, flux, 

displacement, or stress. In contrast, the integral expressions  in the indirect method 

contain fictitious parameters [26]. Connections between the two stated boundary integral 

equations for elasticity problems are well known and have been discussed in literature 

[85]. In the indirect method, fictitious parameter densities are accompanying with jumps 

between solutions of the corresponding exterior and interior domain problems under an 

identical set of boundary conditions. Physical quantities like stresses and pore pressure 

restore after defining fictitious densities by applying second application of integral 

equations.  

The numerical method discussed in this Section can be formally classified as an 

indirect boundary element method. It is a boundary element method because only the 

boundaries of the considered problem (the discontinuity/source surfaces within the 

region) need to be discretized, not the whole region as in finite difference and finite 

element methods. It is an indirect boundary element method because before the stress or 

displacement fields can be computed, intermediate variables (tractions or DDs and 

fluid/heat sources) have to be calculated. 

The indirect BEM has two categories: DD method and the stress discontinuity or 

fictitious stress (FS) method [26]. The former uses a fundamental solution based on a 

constant DD with three components in an infinite solid. Intrinsic jumps in displacement 

field from one side of a crack to other side are not fictional quantities and can be 

considered as a physical dislocation in the media. This makes the DD method the 
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preferred choice for modeling cracks. The advantage of the DD method is that it can 

model two surfaces of a crack as one entity.  

The other indirect boundary element method, the FS method, is based on a 

fundamental solution of a point force (or a traction applied on a surface) in an infinite 

solid. It is a very useful technique for simulating underground openings with a random 

configuration. The FS method is not suitable for use with crack problems, because the 

effects of elements placed along one crack surface are indistinguishable from the effects 

of elements placed along the other surface [26]. 

 A more descriptive term for the two indirect methods would be the superposition 

of a fundamental solution. Based on the superposition concept, the methods can be built 

up using the following steps: 

I. An analytical solution (in this case an analytical solution due to point DD, 

traction discontinuity, fluid and heat source in thermoporoelastic media) 

is integrated over a surface segment with a known distribution of 

discontinuities and sources along the surface segment. The surface 

segment is called the “element”.  

II. All discontinuity surfaces in media are traced using DD (for cracks) and 

FS (for wellbores) elements (see Figure 3), and the distribution of 

physical properties such as stress, pressure, and temperature in 

thermoporoelastic media is approximated by summing the effects of all 

elements. 
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II. The temperature at each element vertex at time t  is the sum of effects of 

all heat sources at time 0 t  . The strengths of heat sources, which are 

a function of time and space, are calculated in such a way that they satisfy 

the temperature field at every time at all element vertices. 

III. The pore pressure at each element node at time t  is the sum of effects of 

traction discontinuities at all element centers and fluid and heat sources at 

all element nodes at time 0 t  . The strengths of fluid sources and 

traction discontinuity, which are functions of time and space, are 

calculated in such a way that they satisfy pressure and stress fields at all 

collocation points. 

IV. The stress fields at each element center at time t  are the sum of effects of 

three traction discontinuities at the element center and fluid and heat 

sources at all nodes at time 0 t  . The strength of the heat source is 

known from step (II). 

V. By satisfying pressure and stress boundary conditions on the wellbore 

perimeter, the strengths of three traction discontinuities and fluid sources 

can be determined because contributions from heat sources are known. At 

the end of the current step all unknowns for FS elements (see Figure 6) — 

the strength of the three traction discontinuities at all element centers, the 

strength of the fluid source at four nodes of all quadrilateral elements, and 

the strength of heat source at four nodes of all elements— will be defined. 
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    x x χ χ χ x  (3.4) 

where   is stress discontinuity boundary, x  is spatial coordinates of influenced point 

(which is located inside of media), χ  is spatial coordinates of influencing point (which is 

located on   ), t  is influenced time,   is influencing time, Fi
ijk  is induced ij  stress 

component due to instantaneous unit point traction in k  direction, si
ij  is induced ij  

stress component due to instantaneous unit point fluid source, hi
ij  is induced ij  stress 

component due to instantaneous unit point heat source, Fi
iku  is induced i  component of 

displacement field due to instantaneous unit point traction in k  direction, si
iu  is induced 

i  component of displacement field due to instantaneous unit point fluid source, hi
iu  is 

induced i  component of displacement field due to instantaneous unit point heat source, 

Fi
kp  is induced pore pressure due to instantaneous unit point force in k  direction, sip  is 

induced pore pressure due to instantaneous unit point fluid source, hiT  is induced 

temperature due to instantaneous unit heat source, and      , , , , ,kF f h  χ χ χ  are 

strength of instantaneous point force in k  direction, point fluid source and point heat 
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source respectively. Subscript i, j, k can take number 1,2 or 3, which denotes three local 

directions (see Figure 6) and summation is enforced by repeated subscript. 

Note that equation (3.1) is written with the stress components on the left-hand 

side and presents six relations. However, from the point of view of traction (one normal 

and two shear tractions on a surface), the equations represent only three independent 

relations. Also, equations (3.1) and (3.2) are used interchangeably base on the type of 

stress discontinuity boundary. Equation (3.1) used for boundaries with known tractions. 

A wellbore surface is an example of a condition with defined tractions. In contrast, 

equation (3.2) is used for boundaries with known displacements. The sliding of a box on 

a free surface with a displacement control tool is one example of this. This problem is 

studied in section 5 using a combination of DD and FS elements to show the post-shear 

failure behavior of joint elements. 

There exist five unknowns at any time in integral equations:  

         1 2 3, , , , , , , , ,F F F f h    χ χ χ χ χ  (1, 2, and 3 are three components of 

traction discontinuity on the element surface). To define the unknowns, one must 

determine the left-hand sides of the equations. The positions for which the distributions 

of tractions (or displacements), pressure, and temperature are known at the time of 

solution are the boundaries of the model (wellbore or fracture surfaces). Therefore, x  

(the field point) must move toward the boundary to make known the left-hand side of the 

equation. When x  moves toward the boundary, some of the boundary integrals only 

exist in the sense of a limiting value. This existence issue occurs only in the case of self-

influence integral evaluation. One example of self-influence integral involves integration 
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over an FS element to evaluate the stress distribution of the same element. Existence 

issues also occur on a DD element when the displacement-defined boundary is treated or 

when the displacement field on both sides of the DD element is estimated.  

The simplest way to evaluate problematic integrals when x  moves toward the 

boundary is to consider that a field point is located on the boundary but that the domain 

itself is augmented by a hemisphere of radius  ,  as shown in Figure 8, and the value of 

  in the limiting sense approaches zero. Note that the normal in the figure can be toward 

the outside or the inside of medium and each normal represents different surfaces. Here 

the surface with the outward normal is considered when evaluating the problematic 

integral. A special procedure for evaluating the integral is represented in the following 

[90, 91]: 

        , ,c ct d t d free term 
 
         x χ χ x χ  (3.5) 

where the function  ,c t   x χ  represents continuous stress fundamental solution, x  

is field point that is positioned on original boundary and χ  is boundary point that is 

placed in the imaginary hemisphere boundary) and improper integral is calculated as 

sum of Cauchy principal-value integral and free term. Cauchy principal-value integral 

evaluation is described in Appendix C.  

The free term can be estimated by performing the following integration over the 

small hemispherical region: 

  
0

lim ,cfree term t d








     x χ  (3.6) 

where   is hemisphere boundary with radius of  . 
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This relation is used instead of d   in equation (3.6). By substituting equations 

(3.8) and (3.7) into equation (3.6), one can represent the free term as follows (note that R

and   are the same): 

    

22

0 0
0 0

1
lim , lim sin

8 1
c

ijkt d d d




 
   

  


 
         
  x χ   (3.9) 

 

Figure 9. Augmented hemisphere geometry with radius ɛ, 1, 2, and 3 are X, Y and 
Z respectively, Z axis is also normal vector which is directed outside of media. 

 

The free term can be evaluated for every stress component due to every stress 

discontinuity on the hemisphere region by evaluating equation (3.9). Note that, in the 

equation, initially induced stresses should be calculated in spherical coordinates and then 

transferred to Cartesian coordinates (Appendix D). For example, the free term for a 

normal stress component due to stress discontinuity in normal or direction 3, is 

calculated as follows: 
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If normal direction in Figure 9 is changed and point toward –Z, the free term 

changes to: 
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The free term will be either +0.5 or -0.5 based on the normal vector direction. 

Therefore the value of the free term depends on the way the boundary is traversed (by its 

normal vector). To make the issue more clear, consider an imaginary 3D boundary in 

Figure 10 and define two sides of the boundary,   ( n  toward the interior region, blue 

vector) and   ( n  toward the exterior region, red vector). Make a convention that curves 

 with the normal vector toward the interior region represent the exterior problem and 

curve   with the normal vector toward the exterior region represent the interior 

problem. Therefore, if  with the blue vector as a normal is used to represent exterior 

problems (like wellbores), a field point in the medium is always approaching the 

boundary of the wellbore problem from n  and the value of the free term would be +0.5. 

However, hand if  with the red vector as a normal is used to represent interior 

problems (like cores), a field point in the interior problem is always approaching the 

boundary from n , and value of free term is again +0.5. Hence by using the stated 

convention for boundary representation (the normal of the element should point toward 

the interior region for modeling exterior problems, and the normal of the element should 

point toward the exterior region for modeling  interior problems), one avoids using 

different values for the free term. 
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Note that in equation (3.14), spatial integration includes the free term and 

Cauchy principal-value integral evaluation, and these terms are calculated once during 

the solving procedure. 

3.2.3. Numerical implementation 

Usually in wellbore problems, the prescribed boundary conditions are tractions, 

temperature, and pressure. The initial step in the numerical implementation of the 

technique is establishing a set of integral equations for stated quantities that were derived 

previously in equations (3.14), (3.16), and (3.17). Note that the boundary integral 

equations presented here are in the form of no body forces.  

The unknowns in equations (3.14), (3.16), and (3.17) are normal and shear 

traction discontinuities and heat and fluid sources. The equations generally cannot be 

solved analytically. Therefore, the use of a numerical procedure is required. The 

following numerical process is used: 

1. The wellbore perimeter is divided into a number of quadrilateral FS 

elements (see Figure 4). 
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2. The distribution of traction discontinuities and fluid and heat sources are 

approximated over each element (see Figure 6). It is assumed that traction 

discontinuities have constant strength throughout an element and that the 

fluid and heat source distributions can be approximated using piecewise 

polynomial linear shape functions in space. Note that the strength of the 

unknowns during a time step is constant (because of continuous approach, 

the strength is constant during each time step). 

3. A sufficient number of collocation points are chosen along FS elements 

for traction discontinuities (an element’s center; one collocation point is 

enough for traction discontinuities due to the constant strength inside the 

element) and temperature and pressure (an element’s four vertices; owing  

to linear variation in the fluid and heat source throughout the element). 

Then with the help of numerical integration over each element, equations 

(3.14), (3.16), and (3.17) can be represented by a system of algebraic 

equations.  

4. The strengths of the unknowns at the collocation points are found by 

solving the system of algebraic equations. 

Accordingly, induced stresses, pore pressure, and temperature on a collocation 

point in element m due to constant distribution of continuous tractions and the linear 

spatial distribution of continuous heat and fluid sources on element r at current time t  

are given by: 
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where  t r
kF χ  is increment of traction discontinuities in k  direction at the center of 

element r at time t ,  t r
qf χ  is increment of fluid source at node q of element r at time 

t  which has r
qχ coordinate, and  t r

qh χ  is increment of heat source at node q of 

element r at time t . In the preceding equations, mx is coordinates of influenced element 

center, rχ  is coordinates of influencing element center, m
wx  and ,r r

q wχ χ  (w,q=1,2,3,4) is 

one of four vertices coordinates of an influenced or influencing element. Note that 

influenced and influencing elements are referred by superscripts m and r.  All quantities 

have to be in the local coordinate system of an influenced element.  

Relations that present effects of traction discontinuities and fluid and heat 

sources in influencing elements on the stress, pressure, and temperature distribution of 

influenced elements are given by: 
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For regular integrals, 20 × 20 Gauss numerical integration is performed. In this 

case 20 × 20 points are chosen to be sure that the variation in the fundamental solution is 

captured in an element. For singular integral evaluation, a special numerical algorithm is 

proposed [96, 97] (see Appendix C). In the method, any singular integral is equivalent to 

the sum of double and 2D regular integrals. A Gaussian quadrature with 40 × 40 integral 

points is used, which ensures the accuracy for the singular integrals. Note that stresses 

are presented at influenced element local coordinates and that normal and two shear 

stress components are essential constituents.  Spatial and temporal discretized forms of 

equations (3.15), (3.17), and (3.18) representing the boundary of the wellbore by  M  FS 

elements and time by  s  equal time steps are given by 
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where , ,,r t r t
k qF f  and ,r t

qh , are the increment of traction discontinuities at the center of 

element r, the increment of the fluid source at vertex q of element r, and the increment of 

the heat source at vertex q of element r at time t , respectively. 

Equations (3.25), (3.26), and (3.27) establish a set of linear algebraic equations 

that should be solved to define stress discontinuities and fluid and heat sources. 

Note that the procedures described here are only used to solve boundary 

conditions specified by stresses or displacements, pore pressure, and temperature. For 

boundary conditions defined by fluid flux and heat flux, consistent fundamental 

solutions are needed. Nevertheless, the process of numerical implementation is similar.  

3.3. Thermoporoelastic displacement discontinuity   

DD and FS share similar principles in terms of formulation. The main difference 

is in the singular solutions that control the formation of influence coefficients. 

An elastic DD method for elastic nonporous media was developed by Crouch and 

Starfield [26] and was used to model rock joint opening and slip due to mining 

operations. A coupled poroelastic DD method was presented by Cleary[83, 84] and 

Detournay and  Cheng[30] for fluid-saturated porous media. They also provided singular 

solutions for pore pressure, displacement, and stress induced by constant DDs or 

continuous fluid source along a plane of crack in an infinite saturated media. Using the 

linear theory of thermoporoelasticity[17], Ghassemi et al.  [47] established a 2D 

thermoporoelastic DD method that was recently used by Ghassemi and Zhou [57] to 

develop a 3D coupled thermoelasticity and poroelasticity DD method. Ghassemi and 
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Physically speaking, a DD element can be considered a planar crack. The crack 

has a normal vector in the local 3 direction. A crack’s two surfaces can be distinguish by 

saying that one is on the positive side (in Figure 13, 3+) and the other is on the negative 

side (in Figure 13, 3-). By moving from one side of crack to the other, displacements (

1 2 3, ,u u u ) experience certain changes in value. By defining DD as the difference in 

displacement between the two sides of the segment, one can represent these changes as 

follows: 

 

13 1 1

23 2 2

33 3 3

D u u

D u u

D u u

 

 

 

 

 

 

 (3.28) 

where the first subscript shows the direction of the discontinuities (1, 2, and 3) and the 

second subscript shows the direction of the normal to the surface. 

Poroelastic solutions to unit DDs were given by Cleary [83, 84] and Cheng et 

al.[85, 86]. As mentioned previously, non-isothermal poroelasticity can be decoupled to 

thermoelasticity and poroelasticity (compare to fully coupled thermoporoelasticity). 

Hence, for DD and fluid source, the presented solution in Cheng at al. [85] can be used, 

and because of similarity between thermoelasticity and poroelasticity fundamental 

solutions, the temperature and stresses induced by the heat source in thermoelastic media 

can be found easily. For fully coupled thermoporoelasticity, Berchenko [89] derived 

singular solutions that are presented in Appendix A. 

Using corresponding fundamental solutions, one can define stress components, 

temperature, and pore pressure all over thermoporoelastic media as a function of DDs, 
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fluid sources, and heat sources. Similar to the FS method, the distributions of fluid and 

heat sources are assumed to be linear across DD elements (see Figure 6), and the 

distribution of DDs are assumed to be constant throughout an element. Therefore, across 

each element, three DD components, fluid source, and heat source are the unknowns. 

3.3.1. Boundary integral equations 

Similar to the FS method, the DD method can be used to obtain stresses, pore 

pressure, and temperature at any point inside of a medium using the known history of 

heat sources, fluid sources, and DD components along the boundary. In the 

thermoporoelastic method, problems are modeled by distributing DD and fluid and heat 

sources on the crack surface and requiring that the superposition of their effects satisfy 

the prescribed traction, pressure, and temperature on all cracks. Determining the 

discontinuities and sources requires solving a set of three integral equations. The 

boundary integral equations for stresses, pore pressure, and temperature can be written 

as follows [57]: 
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where knDD  is component “kn” of displacement discontinuities, di
ijkn  is induced stress of 

component “ij” due to instantaneous point DD of component “kn”, and di
knp  is induced 

pore pressure due to instantaneous point DD of component “kn”. In these integral 

equations for thermoporoelastic DD, equation (3.31) is the same as equation (3.4), which 

is induced temperature due to a heat source in the thermoporoelastic FS method. This is 

because the temperature-governing equation is decoupled from the hydraulic and 

mechanical part, and same field equation for heat diffusion governs the behavior of 

media in both the DD and FS methods. 

Note that because displacement on the fracture surface is not predefined, there is 

no need to define the free term for DD formulation. However, if a non-crack surface will 

be modeled with a DD element and displacement is predefined on that, it is essential to 

calculate the free term. However, such a case is not investigated in the current study. 

3.3.2. Temporal integration 

In the primary formulation of thermoporoelastic DD and FS methods, 

corresponding fundamental solutions are instantaneous impulses. As described in section 

3.2.2, fundamental solutions for continuous DD impulses can be obtained by integrating 

the consistent solutions for instantaneous impulses with respect to time. Continuous 

fundamental solutions for the DD method are presented in Appendix A. 

There are different approaches to the temporal integration of corresponding 

fundamental solutions. One approach is to solve equations at the end of one time step 

and then use the results as the initial conditions for the next time step, and so on. The 
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shortcoming of this method is that it requires discretizing the spatial domain of the 

problem, which is almost impossible in the case of semi-infinite or infinite problems. 

Another approach is the time-marching technique. In this method, the solution is sought 

at the end of each time step and saved. Then the effect of the previous time step, based 

on the time difference, is used to find the solution for next time step [90, 91]. This 

method allows for change in singular impulses over time. It involves incrementing the 

strengths of singular impulses at each time step and including the influence of all 

previous increments (see section 3.2.2). This technique eliminates the need for 

discretization of the spatial domain, but a disadvantage of the method is that the 

influencing coefficient must be known to be used as required.  Implementation of the 

time-marching scheme is much easier by considering the fact that the effective 

parameter is the time interval between the influencing and influenced effects rather than 

absolute time. This is because of the translation property of fundamental solutions, 

which is also applicable to the space axis. For example, stresses at point x  and time t  

due to a heat source at point χ  and time   are equal to the stress at the relative location 

of x χ  and time t   due to a heat source at the origin of time and space. The 

translation properties can be shown as follows: 

    , ; , 0,0; ,hc hc
ij ijt t     x χ x χ  (3.32) 

Because of the translation property of fundamental solutions, the influenced and 

influencing time and location can be shifted along the time and space axis without 

affecting the values of the fundamental solutions. Consequently, the influence 

coefficient can be calculated only once during the calculation history. 
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3.3.3. Numerical implementation 

As in the FS method, the numerical implementation of boundary integral 

equations of thermoporoelastic DD requires spatial and temporal discretization. Spatial 

discretization is achieved by dividing the boundary of the problem into a number of DD 

elements and replacing the integrals over the boundary with a sum of integrals over DD 

elements. Temporal discretization is realized by dividing the time domain into a number 

of time increments, as described in section 3.2.2. Because of the similarity in structure of 

the DD and FS methods, details of the numerical procedures for the DD method are 

omitted here. Suppose that s is the number of time increments. Then boundary integral 

equations for stresses, pore pressure, and temperature in the medium can be rewritten as 

follows: 
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where  ,knDD χ  ,  ,f χ   and  ,h χ   are strengths of continuous point DD, fluid 

source and heat source in time increment  . Assume that N is the number of elements 

used to discretize the boundary. The spatial integrals over the boundary are replaced 

with the sum of the integrals over the elements.  
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Induced total stresses, pore pressure, and temperature on element m due to 

constant spatial distribution of continuous DDs and linear spatial distribution of fluid 

and heat sources on element r are given by 
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Influence coefficients denote the influences of element r which are obtained by 

integrating fundamental solutions for continuous point impulses over the influencing 

element. The spatial integration over the plane quadrilateral elements is given by 
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Singularities are handled the same as in the FS method. The singularity in the DD 

method is known as hyper-singularity and is 1 degree worse than in the FS method. 

However, the general method described in Appendix D can be used to model strong and 
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hyper-singularities. By representing the boundary of fractures by N elements, DD 

boundary integral equations are given by 
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Equations (3.41), (3.42), and (3.43) establish a set of linear algebraic equations 

whose unknowns are increments of continuous discontinuities and sources. They can be 

solved by applying the boundary conditions on all crack surfaces. 

3.3.4. Crack initiation 

During pressurization or injection/production into cracks, the surrounding rock is 

subjected to a system of external loads (stress, temperature, and pore pressure). The 

application of the load might cause the formation of a new crack within the rock mass. 

From a mathematical viewpoint, two types of issues can be distinguished during the 
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formation of a new crack: crack propagation and crack initiation. The current study does 

not consider crack propagation; however, it is useful to review the conditions for crack 

initiation and to consider it in the disturbance of a fracture system. Understanding crack 

initiation is essential for understanding the behavior of stationary existing cracks in 

geothermal fields and reservoir development. 

To determine the conditions for crack initiation, one needs to evaluate the critical 

level of applied loads that correspond to the inception of a new crack in a reservoir 

environment. Having an appropriate crack initiation criterion is necessary to enhance the 

analysis of deformation and stresses. Several criteria exist for modeling rock failure in 

various applications [98]. Maximum tensile stress theory is often used to predict the 

tensile failure of crack and fracture initiation in petroleum or geothermal reservoirs. 

However, there are indications that shear might be a mode of failure in the initiation of 

cracks [5, 6, 41, 99]. Some investigators [100] have argued that hydraulic fracture is 

induced by shear rather by than tensile failure and have thus used the Mohr–Coulomb 

shear failure criterion. Neither the tensile nor the shear failure criterion is capable of 

predicting high breakdown pressures observed in the laboratory. The fracture mechanics 

model that is based on the concept of unstable fracture propagation using the fracture 

toughness criterion seems more promising [101]. In the current study, crack initiation is 

investigated within the framework of linear elastic fracture mechanics, a framework with 

its roots in the work of Griffith [102]. 

Irwin [103] showed that Griffith's criterion for crack growth is essentially 

identical to that of crack growth when the SIF, K, reaches a critical value Kc. This 
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In the current study, the point d=0.8L is used to calculate SIFs [69].  

As mentioned previously, crack initiation criteria are met when the calculated 

SIF for each mode is equal to the critical SIF for the corresponding mode.  

 I Ic

II IIc

SIF K

SIF K




 (3.45) 

3.4. Combining fictitious stress and displacement discontinuity 

To model problems that involve both wellbores and cracks (see Figure 3), one 

can combine the FS and DD methods into a single model. This is relatively easy to do 

because of the similarity between the two methods. In a thermoporoelastic system, the 

difference between the FS and DD methods lies in the thermoporoelastic fundamental 

solutions. 

There are two possible types of discontinuities in reservoir geomechanics 

problems: boundaries of wellbores and crack-type boundaries. Crack discontinuity is 

discretized into N plane quadrilateral DD elements with constant DD and linear fluid and 

heat sources across it. The wellbore boundary is divided by M quadrilateral FS elements 

with constant traction discontinuity and linear fluid and heat sources. From the principle 

of superposition, induced stresses, pore pressure, and temperature are sum of the effects 

of all M fictitious stresses; N DDs, M + N fluid sources, and M + N heat sources. 

. 
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4. INDIRECT BOUNDARY ELEMENT MODEL TESTING 

Based on the thermoporoelastic DD and FS formulation presented in the previous 

section, a FORTRAN computer code was developed to study the response of wellbores 

and fractures in real reservoir environments. 

 Numerical methods, like indirect boundary element techniques, have the benefit 

of being able to solve real problems with complex boundary conditions. However, it is 

very helpful to verify the computer code developed before applying it to a realistic 

problem. It is almost impossible to find an analytical solution for most real reservoir 

problems. Hence, the verification process aims to create a set of conditions that most 

closely resemble analytical conditions. 

To verify the 3D thermoporoelastic FS and DD models, variety of examples are 

considered in simplified conditions. The results are compared to closed–form solutions 

or previously published results. 

4.1. Sudden removal of sphere from reservoir (isothermal) 

In this section, the behavior of a saturated sphere of rock that is suddenly 

removed from a formation and subjected to an abrupt elimination of hydrostatic load or 

internal pore pressure ( 0p p ) throughout sphere surface is considered. The sudden 

removal of the sphere from this environment is characterized by the following two 

boundary conditions: (a)  , 0 0.0rr R t     and (b)  , 0 0.0p R t    , where R is the 

sphere radius. To simulate the problem, consider a saturated sphere of rock with radius 

1.0 m. From time t = 0, the sphere is subjected to an elimination of uniform hydrostatic 
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load that is equal to 1.0 MPa. Moreover, the surface temperature is kept at the reservoir 

state during simulation; therefore, thermal loading does not contribute to the response of 

the sphere. Note that it is permitted that at the surface of the sphere pore fluid escapes 

freely.  

Cryer [107] developed a closed-form solution for the sphere response. He 

showed that pore fluid pressure inside the sphere increased by a certain amount when the 

surface normal traction was removed and then continued to increase for some time 

before decreasing. This phenomenon, a rise in pore pressure that is followed by 

dissipation during consolidation of the saturated sphere, is called the Mandel–Cryer 

effect. The physical explanation for the Mandel–Cryer effect is that the sphere contracts 

near the drained surface boundary because of a dissipation of the induced pore pressure. 

Strain compatibility requires contraction, and hence additional pore pressure builds up in 

the interior [108]. Therefore, the Mandel–Cryer effect can be viewed as a transfer of 

toward the interior. The Mandel–Cryer effect can only be simulated by considering the 

fully coupled poroelastic equations presented in section 2. 

Discretization of the sphere is illustrated in Figure 15. The surface of sphere is 

discretized with 5605 quadrilateral FS elements and 5607 nodes. Then 4 h is chosen as 

the time step. Pressure on the sphere surface was removed at the start of the analysis. 

The poroelastic properties of rock are presented in Table 1.  

Dissipation of excess pore fluid pressure at the center of the sphere in different 

time steps is selected for the verification parameter. Figure 16 is the normalized pore 

fluid pressure at the center of the sphere versus the square root of Cryer’s dimensionless 
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time throughout sequential time stages. In this figure p  is 1.0 MPa, the initial pore 

pressure of sphere, and T is Cryer’s dimensionless time.  As shown in the figure, the 

numerical results agree well with the analytical solution. However, as time passes, the 

numerical results diverge a little bit from the analytical results. This is due to numerical 

error that accumulates at different times. The results show that the FS numerical 

technique accurately simulates fully coupled poroelasticity behavior. 

Table 1. Poroelastic properties to model saturated sphere. 
Shear modulus                                  (GPa) 8.30  (1204 Ksi) 
Drained Poisson’s ratio                    ( - ) 0.33 
Undrained Poisson’s ratio                ( - ) 0.40 
Biot coefficient                                 ( - ) 0.89 
Base permeability                             (m2) 1.00×10-17 (10 Micro Darcy) 
Fluid density                                     (kg/m3) 1000.00 (0.433 psi/ft.) 
Fluid viscosity                                  (N.s/m2) 1.00×10-3 (1.0 cp) 
Fluid Diffusivity                               (m2/s) 1.417×10-4 (1.52×10-3  ft2/s) 

 

 

Figure 15. Discretized unit radius sphere with quadrilateral FS elements. 
 



 

65 

 

Cryer [107] did not investigate the time evolution of stress and strain components 

during the consolidation of the sphere, but with the proposed FS technique, all stress 

components and displacements can be presented. 

 

Figure 16. Comparison between analytical solution and FS numerical result. 
 

In Figure 17 and Figure 18 pore pressure and principal stress evolution inside the 

sphere are represented by a 1/8 sphere. Figure 17 shows the evolution of pore pressure in 

the sphere over 80 h. The blue outer surface is the region with the higher degree of 

consolidation. In this zone, the excess pore pressure approaches zero. The red zone, 

which is in the central region of the sphere, has a pore pressure larger than the initial 

pore pressure of 1 MPa. The consolidated zone (blue zone) gradually progress inward 

until the pore fluid pressure is completely dissipated. 

Figure 18 shows the evolution of tangential stress over 80 h. As expected, 

initially tangential stress on the sphere perimeter is maximum tensile (0.35 MPa) in the 
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red zone. As time passes and the sphere becomes more consolidated, tensile stress on the 

perimeter of the sphere decreases until it completely disappears. Note that in the 

spherical coordinates, tangential stresses are equal and minimum principal stress is radial 

stress.  

 

 

Figure 17. Pore pressure evolution during 80 hours of sphere consolidation. 
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Figure 18. Tangential stress evolution during 80 hours of sphere consolidation. 
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supporting stress at the wellbore wall and thus a redistribution of stresses. Hydraulic and 

thermal gradients developed between drilling mud and the formation also modify the 

stress state near the borehole. In this section, the isothermal drilling of a horizontal 

wellbore under a general loading condition is considered to examine more completely 

the FS computer code.  

Using the FS method, one can predict stresses, pore pressure, and temperature 

fields around a wellbore by solving equations (3.25), (3.26), and (3.27). The numerical 

results of the problem are compared with a plane strain analytical solution presented by 

Detournay and Cheng [30].  

Following Carter and Booker [109] and Detournay and Cheng [62], a general 

solution can be perceived by dividing the load into three loading modes and 

superimposing the results from the three loading modes onto the original condition. 

Assume that a wellbore is aligned along in–situ principal stress directions. An in–situ 

stress condition can generally be decomposed into three major modes. Among these 

discrete loading modes, Mode 1 and 2 are axisymmetric and Mode 3 is asymmetric.  

A case of general loading that can create a plane strain condition in a 3D model 

(as shown in Figure 19) is considered and described as follows:  

    0 0 0 0 0, ,zz xxP S P S p p         (4.1) 

where mean stress or hydrostatic stress is 0P , 0S is the deviatoric stress, and 0p  is 

background pore pressure. 

Consider 3.0 m of an end section of a horizontal circular well with a 0.1 m radius 

in a saturated rock. Assume that the wellbore is subjected to uniform in–situ anisotropic 
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where rand are polar coordinates defined in Figure 19. These loading modes are 

applied at infinity, and all stress components and pore pressure at the wellbore boundary 

are kept at zero.  

In the current section, 3D numerical results for stresses and pressure around a 

wellbore are verified with plane strain analytical results. Notice that there is an intrinsic 

difference between plane strain and 3D model: After a long time (depending on the 

dimensions of the wellbore and the diffusivity coefficient), end effects will be sensed by 

the whole wellbore, and as a consequence all stresses and pore pressure will be affected. 

Therefore, in the comparison of numerical results and analytical results, effects of the 

inherent difference should be considered. 

 For each loading mode, induced stress and pore pressure fields are examined and 

analyzed using the FS model. About 3 m of the end section of the wellbore is 

considered, and its surface is discretized with 2100 FS elements and 2121 nodes, as 

shown in Figure 20. It is clear from the figure that the end wall of the wellbore is also 

discretized. Each element is about 10° on the wellbore perimeter. In the presented 

results, analysis time is normalized by * 2t t c R , where c is fluid diffusivity and R is 

the radius of the wellbore.  

The wellbore is analyzed by one time step for each time period. Results of 

analyses with a single time step and with increasing time steps were compared, and very 

small differences were found. Therefore, to save computational time, one time step was 

chosen for the analysis of each period.  To compare the numerical results with the plane 

strain ones, and to realize the end effects on the results, two cross sections with the same 



fiel

Fig

Fi

MP

MP

for

 

 

ld points in 

gure 21. Sec.

 

igure 21. Se

4.2.1. M

Mode 1

Pa (tension p

Pa. There is 

rmation temp

the middle o

. 1 is the end

Figure 20. 

 

ctions insid

Mode 1: Hyd

1 is hydrosta

positive) eve

no initial po

perature is c

of the wellbo

d section and

Discretizati

de of media f

drostatic stre

atic stress lo

erywhere. Th

ore pressure

considered to

Sec.

71

ore and at th

d Sec. 2 is th

ion of wellb

for numeric
ones. 

ess loading

oading. The 

hat is, the m

e in the curre

o be zero. A

. 2

Sec.

he end of it a

he middle sec

bore with FS

cal results c

far-field stre

magnitude of

ent loading m

All three tract

. 1 

are consider

ction. 

 

S elements. 

compared w

ess is consid

f hydrostatic

mode, and t

tion compon

red as shown

with analytic

dered to be -

c stress P0 = 

the backgrou

nents, pressu

n in 

cal 

-10 

10 

und 

ure, 



 

72 

 

and temperature at the wellbore boundary are considered to be zero (poroelastic model). 

The classical analytical solution for Mode 1 in the plane stress condition is 

    2 2

0 01 , 1rr P r R P r R         

Tangential, radial stresses, and pore pressure near the wellbore are plotted for 

Sec. 1 and Sec. 2 at normalized time t* = 0.01 and t* = 10 in Figure 22 and Figure 23. In 

these figures and those that follow, the solid lines show the analytical solutions and 

symbols show numerical results. There is excellent agreement between 3D FS code 

results for Sec. 2 (Figure 23) and the plane strain analytical solution. However, there are 

insignificant differences between the analytical and numerical results in Sec. 1 in Figure 

22. This is because of wellbore end effects, which cause deviation of the numerical 

result from the analytical solution. 

4.2.2. Mode 2: Pore pressure loading 

To study the response of the wellbore under Mode 2 loading, the background 

pore pressure is kept at 1.0 MPa and the pressure inside of wellbore is suddenly changed 

to zero. Far-field stresses and temperature are considered to be zero. Figure 24 and 

Figure 25 show the pore pressure history inside of media at various locations. As is clear 

from the figures, after t*=10 for Sec. 1 (the end section) and t*=1000 for Sec. 2 (the 

middle section), the numerical results deviate from the plane strain analytical solutions. 

This is because the end of the wellbore is sensed by the medium after some time. Note 

that 0p  is the background pore pressure. 
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Figure 22. Radial, tangential stress and pore pressure distribution in field point in 
Sec. 1 of wellbore in two different time scale. 

 

Figure 23. Radial stress, tangential stress, and pore pressure distribution in field 
point in Sec. 2 or middle section of wellbore. 
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Figure 24. Pore pressure history inside of media for Sec.1 at various r/R for Mode 
2. 

 

Figure 25. Pore pressure history inside of media for Sec. 2 at various r/R for Mode 
2. 
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Figure 26 and Figure 27 show the tangential stress for Sec. 1 and Sec. 2, 

respectively. Stresses are normalized by  0p , where   is the poroelastic coefficient 

given by 

   1 2 / 2 1       

Both plots agree well with the plane strain analytical solutions. However, a slight 

deviation from the analytical solution is clear after a time (t*=1000) for Sec. 1 and Sec. 

2. The observed deviation is a manifestation of wellbore end effects. As mentioned 

previously, because of the 3D characteristics of the numerical solution, after some time 

passes, points in the medium sense the end of the wellbore and the numerical results 

deviate from analytical solution. Note that wellbore end effects are different on Sec. 1 

and Sec. 2. 

 

Figure 26. Tangential stress distribution inside of media for Sec. 1 at various times.  
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Figure 27. Tangential stress distribution inside of media for Sec. 2 at various times. 
  

 

Figure 28. Radial stress distribution inside of media for Sec. 1 at various times. 
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Figure 29. Radial stress distribution inside of media for Sec. 2 at various times. 
 

Figure 28 and Figure 29 show the distribution of radial stress for Sec. 1 and Sec. 

2, respectively. As with the distribution of tangential stress, the strength of the radial 

stress is normalized by  0p . It is clear from the figures that the analytical and 

numerical results do not agree perfectly for a long time and for nodes far from the 

wellbore wall. This is another manifestation of the inherent difference between the plane 

strain condition and the 3D model. In addition, when the element degree decreases from 

10 to 5 and less, the results getting closer to analytical results (not remarkably). 

However, increasing number of elements is very expensive in term of computation cost. 
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The value of tangential stress at the wellbore wall is tensile in terms of total 

stress ( 02 p  ) but compressive in terms of Terzaghi effective stress (

  02 1 , 0.0 0.5p p       ) [62]. 

4.2.3. Mode 3: Deviatoric stress loading 

Mode 3 is deviatoric stress loading without background pore pressure and 

temperature. It is assumed that in–situ stress is 10.0 MPa at X direction and -10.0 MPa at 

Z direction, that is, the magnitude of stress deviator S0 = 10.0 MPa. 

Total pore pressure, tangential stress, and radial stress fields for θ=0 are plotted 

in Figure 30 to Figure 35 for both the middle and end sections.  

It can be seen from Figure 30 and Figure 31 that a sharp gradient in pore pressure 

exists early on. This sharp gradient is caused by the rapid drainage of fluid at the 

wellbore wall. The pore pressure peak decreases with time and moves away from the 

wellbore wall. The numerical results agree well with the plane strain analytical results, 

but again some differences result from the contribution of third dimension. 

Figure 32 and Figure 33 show the distribution of tangential stress for θ=0 at the 

end and middle sections respectively, at various time. As is clear, the numerical results 

agree well with the analytical results for tangential stress, which decreases 

monotonically with increasing distance from the wellbore wall. Note that tangential 

stress at the wellbore wall at t*=1 is fairly close to the long-term elastic value at θ = 0 

which is -4S0 [62]. 
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Figure 30. Pore pressure distribution at θ=0 for Mode 3 in Sec. 1. 
 

 
Figure 31. Pore pressure distribution at θ=0 for Mode 3 in Sec. 2. 
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Figure 32. Tangential stress variation at θ=0, π for Mode 3 in Sec. 1. 
 

 

 
Figure 33. Tangential stress variation at θ=0, π for Mode 3 in Sec. 2. 
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Figure 34. Radial stress distribution at θ=0, π for Mode 3 in Sec. 1. 

 

 
Figure 35. Radial stress distribution at θ=0, π for Mode 3 in Sec. 2. 
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Figure 34 and Figure 35 shows the distribution of radial stress in Sec. 1 and Sec. 

2 respectively. Like tangential stress, radial stress around the wellbore experiences 

insignificant variation with time. It is clear that very small differences exist between the 

figures, differences that once again are due to the effects of third dimension. 

4.3. Thermal loading of wellbore 

Pore pressure and stresses that are induced by temperature variations between 

mud and the formation are used to examine the coupling function of 

thermoporoelasticity in the FS code. The wellbore response under thermal loading was 

analytically solved using plane strain theory; the solution can be found in Li [8].  

Consider a wellbore with radius R = 0.1 m, as shown in Figure 19, in a reservoir 

with a background temperature of 200°C and with properties shown in Table 3.  

 
Table 3. Reservoir properties for thermal loading of wellbore. 

Shear modulus                                   (GPa) 15.0   (1450.38 Ksi) 
Drained Poisson’s ratio                     ( - ) 0.25 
Undrained Poisson’s ratio                 ( - ) 0.33 
Biot coefficient                                 ( - ) 0.815 
Base permeability                              (m2) 4.00×10-19  (0.4 Micro Darcy) 
Porosity                                              ( - ) 0.01 
Rock density                                      (kg/m3) 2650.00 (1.15 psi/ft.) 
Fluid density                                      (kg/m3) 1000.00 (0.433 psi/ft.) 
Fluid viscosity                                   (N.s/m2) 2.54×10-3 (2.54 cp) 
Rock thermal conductivity                (W/m/K) 10.70 
Specific heat capacity of rock           (J/kg/K) 790.00 
Specific heat capacity of fluid           (J/kg/K) 4200.00 
Linear thermal expansion of rock     (1/K) 8.00×10-6 
Linear thermal expansion of fluid     (1/K) 1.00×10-4 
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The temperature of wellbore wall is assumed to change from formation 

temperature and rapidly cooled by mud and kept at 80°C. To simplify investigation of 

the role of temperature, pressure inside of the well does not differ from formation pore 

pressure and no in-situ stress is considered. In other words, the far-field pore pressure 

and stresses are considered to be zero. The wellbore geometry is the same as in section 

4.2, and the same discretization is used here (see Figure 20). 

Figure 36 and Figure 37 compare temperature variations along the wellbore 

radius at different times and at different distances from the wellbore wall at the end (Sec. 

1) and middle (Sec. 2) sections, respectively. The numerical solution gives a very good 

approximation at Sec. 2, at times less than 104 s. For Sec. 1  after 102 s the numerical 

results deviate from the analytical solution.  Furthermore, after about 1.5 days, the 

response predicted by the numerical solution in both sections is totally different from the 

analytical solution. This is because of the influence of different outer boundary 

conditions in the numerical and analytical models. In the numerical model, the wellbore 

length is predetermined as a finite length (3 m), whereas in the plane strain analytical 

model, the wellbore length is assumed to be infinite. In this problem, after 104 s the 

developing temperature from the end section of the wellbore hits the field points in Sec. 

2 in the middle of the wellbore, and the temperature at this location differs from that of 

analytical solution. Therefore, the two results cannot be compared after the temperature 

from the end section hits the field points. As can be seen by comparing Figure 36 and 

Figure 37, the interference time of the end wall of the wellbore differs depending on the 

location of the field point. 
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Figure 36. Temperature distribution along wellbore radius in various times at 
Sec.1. 

 

Figure 37. Temperature distribution along wellbore radius in various times at 
Sec.2. 

 

r/R

T
(K

)

2 3 4 5 6 7
60

80

100

120

140

160

180

200

220

t=100 s
t=103 s
t=104 s
t=105 s
t=106 s

r/R

T
(K

)

2 3 4 5 6 7
60

80

100

120

140

160

180

200

220

t=100 s
t=103 s
t=104 s
t=105 s
t=106 s



 

85 

 

Figure 38 and Figure 39 show the distribution of pore pressure induced by 

thermal diffusion. Similar to the temperature profiles, good agreement between the 

analytical and numerical solutions is obtained at times less than 104 s for Sec.2 and 102 s 

for Sec.1. A drop in pressure profile is generated near the wellbore wall early on. As 

time passes, the pore pressure gradually recovers toward its original state. 

Figure 40 to Figure 43 compare of the total radial and tangential stresses along 

the wellbore radius at different cross sections. It is clear that radial stresses at the two 

cross sections start to deviate from the analytical results at same time as the temperature 

and pore pressure profiles. A significant peak in radial tensile stress is formed inside the 

formation. Note that when time passes, radial tensile stress moves far from wellbore 

toward formation and the peak value increase. 

 

Figure 38. Pore pressure distribution which induced by thermal diffusion at Sec.1. 
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Figure 39. Pore pressure distribution which induced by thermal diffusion at Sec.2. 
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Figure 40. Radial stress distribution which induced by thermal diffusion at Sec.1. 
 

 

Figure 41. Radial stress distribution which induced by thermal diffusion at Sec.2. 
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Figure 42. Tangential stress distribution which induced by thermal diffusion at 
Sec.1. 

 

Figure 43. Tangential stress distribution which induced by thermal diffusion at 
Sec.2. 
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It is obvious from these observations that the cooling process during mud 

circulation increases the potential for fracturing because of tensile tangential stress 

induced by material shrinkage. A tensile stress zone will develop around the wellbore 

with time, which can inspire time-delayed fracture development. 

By comparing previous examples to the corresponding plane strain solution, one 

can see that the effect of the end section of the wellbore is very important in stress 

analysis, and thus a 2D plane strain analytical solution cannot be used for the end 

section. 

4.3.1. Thermoporoelastic vs. thermo-poroelastic loading  

To investigate the functionality of direct (thermoporoelastic) and indirect 

(thermo-poroelastic) coupling in the response of a wellbore, a well geometry as 

presented in Figure 20 and media properties as presented in Table 3 are considered. As 

in the previous section, the formation is initially set to a temperature of 200°C, the mud 

(or wellbore walls) is set to 80°C, and there are no in situ stresses or pore pressure. Note 

that the thermal diffusion equation in both models is equal and that the difference is in 

the pore pressure diffusion relation and displacement field equations.  

Figure 44 to Figure 46 compare induced pore pressure, tangential stresses, and 

radial stresses at Sec. 2 at different times along the wellbore radius for fully coupled 

(thermoporoelastic) and partially coupled (thermo-poroelastic) models. The solid data 

points are for thermoporoelastic coupling, and the open data points are for thermo-

poroelastic coupling.  
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Figure 44. Pressure comparison for thermoporoelastic and thermoelastic model in 
Sec.2. 

 

Figure 45. Total tangential stress comparison for thermoporoelastic and therm-
poroelastic model in Sec.2. 
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Figure 46 Total radial stress distribution comparison for thermoporoelastic and 
thermoelastic model in Sec.2. 
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4.4.1. Mode 1: Stress loading 

Mode 1 loading controls the crack opening. The normal relative displacement of 

two crack surfaces (opening) for the current mode was solved analytically by Sneddon 

[110] for elastic media. The analytical solution can be represented as follows [110]: 

 
  24 1

1f

Pa r
w

G a




     
 

  

It is clear that because of the diffusion process, the response of the crack opening 

0is a function of time. At time t = 0+, the fracture opens according to the analytical 

solution with undrained material properties. As time passes, the crack opens and reaches 

the steady-state solution with drained material properties. The crack considered in the 

current section is simulated at these two limiting conditions with a developed DD code. 

The penny-shape crack is discretized with 2809 nodes and 2704 elements. Discretization 

is shown in Figure 48 .  

 
Figure 48. Penny shape fracture discretization. 
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Short-term (t = 1.0 s, undrained behavior) and long-term (t = 106 s, drained 

behavior) analytical and numerical results are shown in Figure 49. The results of the DD 

code agree very well with the analytical solution at both limiting conditions. Note that 

the DD code results are less accurate near the crack tip. The discrepancy can be 

attributed to the use of constant DD elements—that is, constant displacement 

approximation on each element. The results will be more accurate if the number of 

elements is increased. By comparing two crack apertures at different time scales, it 

becomes clear that the crack opens more over a long time. This is because of softer 

material behavior in the drained condition or a long time scale.  Discrepancies in the 

numerical results are due to elements of different shapes and sizes on the crack surface 

(in the same radius, from zero angle to 45, element shape change from square to 

diamond as can be seen in Figure 48). 

 

Figure 49. Short-term (1 s) and long-term (106 s) crack opening under uniformly 
stress loading, Mode I. 
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During the evolution of a crack response from an undrained condition to a 

drained one, the maximum opening along the crack occurs at its center. The maximum 

opening can be defined in the two limiting conditions as follows: 

 
   

max max

4 1 4 1
, uDrained Un drainedPa Pa

w w
G G

 
 

 
   

The maximum opening should evolve over time from an undrained value to a 

drained one. Figure 50 plots the maximum opening as a function of time. It is clear that 

the maximum opening predicted by the DD code agrees very well with closed form 

results for the two limiting conditions. The little bump in the numerical solution with 

very small and large time is due to a change in the way the error function (an essential 

function to calculating a time-dependent fundamental solution) is calculated. The Taylor 

series and asymptotic expansion is used to approximate the function. 

 

Figure 50. Maximum crack opening history under stress loading (Mode I). 
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As mentioned in section 3, SIFs are used to define the magnitude of the singular 

stress and displacement fields around the crack edge. This concept originated from 

studies of elastic materials. However, it can be used with other type of materials as well 

(e.g., poroelastic, thermoelastic, and thermoporoelastic materials). The form of stress 

singularity around the crack tip does not change with temperature or pressure field. 

Therefore, one can use the typical method for calculating elastic SIFs in 

thermoporoelastic problems. The classical elastic relationship between the normal stress 

loading of a penny-shape crack and Mode I SIF has been given by many researchers and 

can be found in Kundu [111]. Mode I SIF in an elastic pressurized penny shape crack 

can be represented as follow: 2IK P a  , where P  is the strength of normal stress 

on the crack surface and a  is the radius of the penny-shape crack. The analytical value 

can be compared with the SIF calculated from this model for a long time period. The 

Mode I SIF over time is plotted in Figure 51. This shows that the DD code can predict 

SIF values with acceptable accuracy.  

4.4.2. Mode 2: Pressure loading 

Mode 2 loading decreases the opening of the crack. As pressure inside the crack 

diffuses into formation, pore pressure increases and fracture starts to close. The increase 

of pore pressure in the formation causes an enlargement of pores in the rock around the 

crack and creates some back stress. The crack aperture response under Mode 2 loading is 

illustrated in Figure 52, which indicates that the crack closes progressively. The crack 

closure starts at zero and approaches the drained condition closure (steady state). The 
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analytical solution for the drained condition is obtained by using the analytical solution 

given by Gordeyev [112]. It can be seen from the plot that the numerical results agree 

well with the analytical solution for a long time period (t = 109 s). 

 

Figure 51. Mode I SIF of penny shape crack under stress loading. 
 

The maximum crack closure that evolves over time is shown in Figure 53. As can 
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combination of Mode 1 and Mode 2 loading. 

4.5. Penny-shape crack under pure shear 

In the current section, a penny-shape crack with radius a =10.0 m (shown in 

Figure 54) is considered under pure shear in X direction. The strength of the pure shear 

is S = 1.0 MPa and the properties of the reservoir are presented in Table 4. 
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Figure 52. Penny shape crack closure at different time, mode 2 loading, red line is 
analytical solution. 

 

Figure 53. Penny shape crack maximum closure evolution by time, mode 2 loading. 

r (m)

C
ra

c
k

c
lo

s
u

re
.(

m
m

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

t=109 s
t=108 s
t=105 s
t=104 s
t=103 s
t=102 s

time (s)

M
a

x
.c

ra
c

k
c

lo
s

u
re

(m
m

)

100 101 102 103 104 105 106 107 108 109
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Drained Solution
Numerical solution



sol

sol

res

wit

rid

1.0

Fig

lim

con

 

 

Figure
 

The sam

lved the pro

lution for cra

 

As with

sponse is a fu

th undrained

e under drai

0 s, undraine

gure 55. Th

miting condit

As in s

nditions can 

 max
Drainedu

The ma

e 54. Penny

me discretiz

oblem of a 

ack shear rid

h the crack 

function of ti

d material p

ined materia

ed condition)

e numerical

tions. 

section 4.4, 

be defined a




4 1

2

Sa

G


 






aximum shea

y shape crac

zation as sh

penny-shap

de can be rep

4
fu


 

opening du

ime. At time

properties. A

al properties

) and a long 

l results agr

the maximu

as follows: 


 max, Unu 

ar ride shoul

99

ck under pu

hown in Fig

pe crack sub

presented as 

 
 

1
1

2

Sa

G


 




uring Mode 

e t = 0+, the

As time pass

. The respon

time (t = 10

ree well wit

um crack sh

x

4drained Sa

G
 

d progress o

re shear S, 

gure 48 is u

bjected to p

follows: 

2

1
r

a
   
 

1 loading, t

e crack exper

ses, the crac

nse of the cr

06 s, drained

th the analy

hear ride in t

 
 

1

2
u

u







 

over time fro

in infinite m

used here. S

pure shear. 

the crack ri

riences shea

ck experienc

rack over a 

d condition) 

ytical solutio

the drained 

om undrained

media. 

Segedin  [1

The analyti

ide (shear D

ar displacem

ces more sh

short time (

is presented

on for the t

and undrain

d formation

13] 

ical 

 

DD) 

ment 

hear 

(t = 

d in 

two 

ned 



 

100 

 

 

Figure 55. Penny shape crack shear ride at short-term (1 s) and long-term (106 s). 

 

Figure 56. Maximum crack ride under pure shear loading during time. 
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behavior to drained behavior. Figure 56 plots the maximum shear ride over time. The 

maximum shear ride predicted by the DD code agrees very well with the closed-form 

results of the drained and undrained solutions. 

The classical elastic relationship between the pure shear loading of a penny-

shape crack and Mode II SIF is given by Kundu [111]. The Mode II SIF of a penny-

shape crack in elastic media under pure shear can be represented as follows: 
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The analytical value is compared with the M mode II SIF calculated from the 

developed program. The comparison is shown in Figure 57. The figure shows that the 

DD code can accurately predict Mode II SIF. 

 

Figure 57. Mode II SIF of penny shape crack under pure shear loading. 
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4.6. Thermal loading of penny-shape crack 

In the current section, the thermoporoelasticity behavior of a crack is 

investigated. A formation with the properties presented in Table 3 is considered. The 

formation has an initial temperature of 200°C, but is gradually cooled down by keeping 

the temperature of the crack surfaces constant at 0°C. The far-field stresses and pore 

pressure in the formation are assumed to be zero. The same geometry and discretization 

as the penny-shape crack in section 4.4 (shown in Figure 48) is used here.  

This problem in thermoelastic media with a steady state condition (drained 

condition in thermoporoelastic media) is solved analytically and presented by Olesiak 

and Sneddon [114] and by Sneddon and Lowengrub [115]. The closed form solution for 

long term behavior (steady state condition) can be represented as follows [114, 115]:  

    2
16 9 1 1f mw a T r a         

 

Figure 58. Crack aperture evolution during time, thermal loading, red line is 
analytical solution. 
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Figure 58 shows the evolution of the crack aperture over time. After about 500 

years the numerical result approaches an acceptable approximation of the steady state 

solution. This is because of the inherent behavior of thermoporoelastic media. Cooling 

on the crack surface creates negative pore pressure inside the formation. This negative 

pore pressure acts as back stress and closes the crack until all induced negative pressure 

diffuses. After a very long time (more than 500 years), temperature-induced pore 

pressure will be diffused. 

The maximum opening of the crack is plotted as a function of time in Figure 59. 

The crack gradually opens as time increases and finally reaches an asymptotic value for 

the steady state as given by the analytical solution. This crack response can be explained 

by the contraction of the formation due to the cooling process, which pulls the crack 

surface back and gradually opens it up. 

 

Figure 59. Maximum crack opening due to cooling effect, thermoporoelastic model. 
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The SIF for the thermal loading of a penny-shape crack in a steady state 

condition of thermoelastic media can be easily found by similarity between 

poroelasticity and thermoelasticity. Thus, the Mode I SIF for the steady state condition 

of the thermal loading of a penny-shape crack can be represented as follows: 

    8 1 9 1I mK G T a           

The SIF induced by cooling is plotted in Figure 60 by time. The figure indicates 

that cooling increases the SIF, which results in a higher potential for fracture 

propagation. After much time passes, the SIF begins to approach a steady state value. 

 

Figure 60. Mode I stress intensity factor under cooling effect, thermoporoelastic 
model. 

4.6.1. Thermoporoelastic vs. thermo-poroelastic loading 

 In the current section, the difference between full and partial coupling of 

thermal, hydraulic, and mechanical procedures is investigated. The effects are studied on 

induced pore pressure inside of media.  

time (s)

K
I

(M
P

a
.m

0
.5
)

102 103 104 105 106 107 108 109 1010
0

50

100

150

200

250

Analytical Solution
Numerical results



 

105 

 

 

Figure 61. Pressure distribution inside of media for thermoporoelastic and thermo-
poroelastic media at two different times. 

 

Figure 61 illustrates the distribution of pore pressure inside of media for two 

types of coupling—fully coupling (thermoporoelasticity) and partial coupling (thermo-

poroelasticity)—at two different times. The pore pressure inside the formation can be 
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symmetric negative pore pressure, and in the thermo-poroelastic model there is a 

positive pore pressure field. The negative pressure in the thermoporoelastic model is due 

to the fact that the cooling effects of pore fluid pressure overcome the opening effect of 

the crack, and thus the total induced pore pressure is negative. However, in the thermo-

poroelastic model there is no direct induced pore pressure. Therefore, the induced pore 

pressure is solely because of the crack opening, which can increase the pore pressure on 

the area near the two surfaces of crack. 
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5. INJECTION/EXTRACTION INTO FRACTURE SYSTEM  

In many petroleum/geothermal formations with low matrix permeability, fluid 

flow takes place mainly through fractures.  In some cases the majority of flow takes 

place through a single fracture, whereas in others the flow occurs through network of 

fractures. Fracture-dominated flow is important in many situations, such as hydraulic 

fracturing and enhanced geothermal field development. 

Hydraulic fracturing and heat extraction from enhanced geothermal reservoirs is 

based on enforced nonisothermal fluid flow through a created fracture network. Many 

parameters affect the performance of a fracture during injection and production, such as 

in situ stress and fracture geometry. Moreover, variation in pore pressure and 

temperature inside both the fracture and the rock matrix is a crucial factor that must be 

taken into account. Therefore, in the current section, the derivation and discretization of 

governing equations for flow and transport are presented to consider temporal and 

spatial variation in temperature and pressure.  

In the developed model, flow of incompressible fluid and conductive and 

convective heat transfer inside the fracture are considered and governing PDEs are 

discretized with the help of the finite element method. Note that the 3D incompressible 

fluid diffusion and heat transfer in the reservoir rock are treated using the 

thermoporoelastic DD method presented in section 3. The effect of fracture opening 

variation on fluid flow and heat transfer inside the fracture is also included in the model.  

In reality, fracture surfaces can be separated, stick together (elastic shear 

deformation), or slip on each other (mechanical closure in the latter two states). The state 
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of fracture surface in any DD element could be changed from one time step to another. 

Hence, the state of each fracture element must be determined anew at every time step 

because the required constitutive relations in the solution process vary by element state 

(see section 5.2). 

5.1. Governing equations and discretization 

Fluid injection into a fracture in a low-permeability thermoporoelastic medium 

include flow of injected fluid and conductive and advective heat transfer within the 

fracture, flow of injected fluid and conductive heat transfer in the matrix, and fracture 

propagation. In the proposed technique, the initiation of new fracture, fluid flow, and 

conductive heat transport in the matrix is handled with the thermoporoelastic DD 

method presented in section 3.3. In the current section, governing equations for fluid 

flow and heat transport inside of fractures are derived and discretized in time and space 

using the finite element method and the forward/backward Euler time-stepping scheme, 

respectively. In the derivation process it is assumed that the laminar flow occurs inside 

the fracture and that the fracture is of a finite size and is surrounded in an infinite size 

rock matrix.  

Note that in the following sections, lowercase variables in bold are vectors and 

uppercase variables in bold are matrices.  

5.1.1. Fluid flow in fracture 

The simplest model of flow through a rock fracture is the cubic law, in which the 

fracture is assumed to be bounded by two smooth, parallel plates separated by an 
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is equal to normal DD plus initial fracture aperture as shown in Figure 62, and  , tu x is 

flow velocity field inside of fracture. 

In addition to the cubic law, fluid continuity for incompressible fluid governs the 

flow inside the fracture. This can be written using the following equation [57]: 

          . 2inj inj ext ext

W
W Q t Q t

t
  

    


u x x  (5.2) 

where  inj injQ x and  ext extQ x  are fluid injection and extraction rate at injection ( injx )  

and extraction ( extx )  well locations respectively, W t  is the rate of volume increase, 

 is the fluid leak-off from one side of the fracture wall into reservoir matrix, and  is 

delta Dirac function. Note that all terms in equation (5.2) are in m/sec unit.  Equation 

(5.2) is expressed using a fluid velocity vector and fracture aperture term. However, one 

can substitute equation (5.1) into equation (5.2) and eliminate the fluid velocity vector.  

By substituting equation (5.1) into equation (5.2), one derives the following 

governing equation for incompressible liquid flow in a fracture: 
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 (5.3) 

Before considering the weak form of the PDE equation and discretization 

process, let’s investigate the right-hand side of equation (5.3) in more detail. The first 

term on the right-hand side of equation is W t  .  Ghassemi and Zhou [57] assumed that 

W t   is constant in every time step. They calculated the parameter numerically at each 

time step and updated the value after any iteration. However, to solve the transient 
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boundary value problem presented by PDE equation (5.3) in more systematic way and to 

eliminate the assumption of having constant W t  , the following chain rule is 

considered and the derivation parameter changed from W to p : 
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  (5.4) 

In equation (5.4), it is assumed that W does not change directly with temperature 

and that the change in W due to temperature variation is already embedded in the change 

in W due to pressure. By substituting equation (5.4) into equation (5.3), one can present 

the governing equation (5.3) as follows: 
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                     (5.5) 

In equation (5.5), the parameter  , fW t p x  should be known. To define the 

parameter, rewrite equations (3.33) and (3.34) without the thermal effect. The thermal 

effect is not considered because temperature does not change with a change in pressure. 

However, in reality changes in temperature and pressure are indirectly related: Pressure 

changes the fracture aperture, and the fracture aperture changes the fluid velocity inside 

fracture, which in turn changes temperature. Nonetheless, in the current study it is 

assumed that the indirect effect does not play an important role. Equations (3.33) and 

(3.34) show the relation between stress components ( ij ) and pressure ( fp ) at location 
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x  and time t , on the fracture surface, to the distribution of DDs ( knDD ) and fluid source 

( f ) all over the fracture surface: 
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  (5.6) 

Note that in preceding relations  ,f χ   is fluid source (with m/sec unit), which 

leaks from fracture surface into media and it is equal to  2 , t χ . Moreover 

   ,0 , ,0ij fp x x  are in situ stresses and background pressure distribution on fracture 

surface. If it is assumed that DDs and fluid leak off are the only function of pressure, the 

derivative of equation (5.6) with respect to fp  can be presented as follows: 
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 (5.7) 

The strength of  ,ij ft p x is defined in section 5.2, where the constitutive 

models of joints and hydraulic fracture are defined. By considering the solution of 

algebraic equation (5.7) and the fact that all left-hand sides of the equations are known, 

one can define the numerical value of n fDD p  . Note that according to relation (5.4), 

parameter n fDD p   is equal to fW p  , whose numerical value is essential for 

solving the governing equation (5.5). 
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To solve the ordinary PDE equation that will result from the finite element 

discretization of equation (5.5), one needs to determine whether if the multiplier of 

fp t   ( fW p  ) is a function of fp  [118]. Therefore, the derivative of equations (5.7) 

due to fp  is taken as follows: 
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  (5.8) 

It is obvious from relations (5.8) that  22
n fDD p  must be zero, because the 

only possible solution for the algebraic system in equation (5.8) is a trivial solution. 

Therefore,  , fW t p x  is independent of fp  and can be considered a constant ( A ) in 

each time step. This means that the fracture aperture changes monotonically with 

variations in pressure inside the fracture. Hence, the nonlinear PDE equation in equation 

(5.5) can be rewritten as follows: 
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 (5.9) 

Note that the numerical value of A  is known at every time step by solving 

algebraic equation (5.7). Equation (5.9) is a nonlinear transient second-order elliptic 

PDE. The ellipticity is due to the positivity of  3 , 12W t x . The nonlinearity is due to 



the

equ

the

Th

sta

wh

wh

equ

one

alre

ess

dis

con

 

 

e fact that W

uation manif

e equation, i

e first bound

ted boundar

hich is not u

hich fluid ca

uation (5.9) 

e point of th

eady establis

sential initia

stribution (b

nsidered a kn

Figu
 

 ,W tx   is to

fests on the 

t is essentia

dary conditi

ry condition

unrealistic be

an leak off t

must meet 

he fracture s

shed through

al condition

background 

nown functio

ure 63. Frac

tally depend

right-hand s

al to meet tw

ion, which i

n means that

ecause the fr

to media. T

another bou

urface. How

h the use of 

n needed to

pore pressu

on through t

cture domai

114

dent on fp x

side of the e

wo boundary

s the Neuma

t there is no

fracture tip, i

To have a un

undary cond

wever, the re

the thermop

o solve the

ure) on the 

the fracture d

in and initia

, tx . The tra

quation in p

y conditions

ann type, is 

o leak-off fr

ideally is a 

nique soluti

dition that de

elation that d

poroelastic D

e PDE equ

fracture su

domain.  

al and boun

ansient chara

parameter p

s and one in

 shown in F

from the cra

line and has

on, initial b

efines press

defines fract

DD (equation

uation is in

urface ( 0p

ndary condit

acteristic of 

f t . To so

nitial conditi

Figure 63. T

ack edge (

s no area fro

boundary va

ure on at le

ture pressure

n (3.42)).   T

nitial pressu

x ), which

 

tion. 

the 

lve 

on. 

This 

f ), 

om 

alue 

east 

e is 

The 

ure 

h is 



 

115 

 

5.1.2. Weak form of fluid flow PDE  

In the current section, the Galerkin finite element method (Galerkin FEM) is 

considered as a discretization tool for numerically solving the PDE in equation (5.9), 

with the initial and boundary conditions as stated in the previous section. The main 

advantage of using the finite element method is its ability to solve problems that are 

defined on complex geometries [119]. 

Before using the Galerkin FEM to solve PDE equation (5.9), it is essential to 

convert the equation into a more suitable form for solving. Generally speaking, a weak 

formulation of an elliptic PDE has exactly the same solution as the differential equation. 

Initially the weak formulation was used to investigate the performance of a PDE solution 

and to prove the existence and uniqueness of the solution. Later the method is used to 

produce an approximat solution of a PDE in a constructive way [120]. The weak 

formulation of equation (5.9) can be derived by multiplying equation (5.9) by a so-called 

test function w  and integrating it over the domain.  

The weak formulation of the fluid flow PDE equation (equation for flow 

diffusion inside the fracture) can be derived by multiplying equation (5.9) by a so-called 

weighting function w  and integrating over it fracture domain ( f ). Thus, the weak 

formulation can be written as follows:  

 
3

2 2 0.0
12f f f

f

p W
w A d w p d w Fd

t   

 
        

     (5.10) 
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By using Green’s identity and divergence theory to eliminate the second 

derivative term and noting that    2 , . 0.0f fp t in  x n x , one can write equation 

(5.10) in the following form: 

 
3

2 2. 0.0
12f f f

f

p W
w A d w p d w Fd

t   


     

    (5.11) 

Once the weak formulation of the governing PDE equation (equation (5.9)) is 

established, the approximate solution based on the Galerkin FEM is determined. To 

construct the Galerkin FEM approximation, look at the fracture domain as discretized 

into “nels” four-node quadrilateral elements—the same as essential discretization in DD 

equations, (3.41), (3.42), and (3.43). Then the solution for equation (5.11) can be 

approximated using a linear combination of shape functions and pressure at element 

nodes as follows: 

      ˆ, ,f i f
i

p t N p tx x x   (5.12) 

where  iN x  is the ith shape function at location x  and  ˆ ,fp tx  is the nodal value of 

pressure. It is common practice in the Galerkin FEM to confine a solution to a lower 

degree shape function (linear) [120]. Moreover, in the Galerkin FEM, the weighting 

function is defined the same as the shape functions: 

   ( )w Nx x   (5.13) 

By using the linear Galerkin FEM approximation (shape functions as presented 

in equation (3.24)) for geometry and other continuous parameters in equation (5.11), one 

can establish algebraic equations for finite element approximation of the original PDE 
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equation. During the construction of algebraic equations the following necessary relation 

will be generated: 
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 (5.14) 

In equation (5.14),  , , 1,2,3,4i ix y i   are local coordinates of four points of a 

quadrilateral element, , 1,2,3,4iN i   are four linear shape functions (equation 3.25), and 

 1 2,i   are local coordinates of unit square elements (see Figure 12). With the help 

of relations in equation (5.14), global coefficient matrices based on the assembly of 

element-level matrices are constructed as follows: 
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In the preceding relations, nele  is the number of elements; m  is number of 

nodes; TááxÅuÄ is a symbol that shows the assembly process; and Q  is the zero vectors 

with m × 1 dimensions, which has the value of an injection or extraction rate at the 

nodes at which injection or extraction happens. Using equations (5.15), (5.16), and 

(5.17) and the fundamental relation in (5.14), one can write the discretized form of the 

weak formulation (equation (5.11)) in the following matrix form: 

     M p K p p F p  (5.18) 

There are three unknowns in ordinary differential equation (5.18): the pressure 

inside the fracture; the amount of leak-off from the fracture to the matrix, which reveal 

itself in vectorF; and the fracture aperture W (DD). Because the fracture aperture 

depends on the fracture pressure (equation (3.42)), equation (5.18) should be solved in 

an iterative manner with isothermal DD equations (3.41) and (3.42), with zero thermal 

effect at the initial iteration (see section 5.3 for a complete workflow). First equation 

(5.18) is solved assuming zero leak-off and initial fracture aperture, and then the 

calculated pressure is substituted in thermoporoelastic DD equations (3.41) to (3.42) 

considering ,r t
qh  as constant. Then the amount of leak-off is updated and the new 

fracture aperture is calculated based on the normal and shear DD distribution. This 

procedure is performed iteratively until the pressure inside the fracture converges within 

a certain prescribed error. 

Equation (5.18) is a discrete-space, continuous-time approximation of original 

partial differential equations. A direct time-integration procedure substitutes the 

continuous-time derivative with an approximation for the history of pressure inside the 
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fracture. The result is an incremental procedure that progresses the solution by discrete 

steps in time. In this work, a first-order implicit integration method is used to employ the 

forward Euler scheme as a predictor with the backward Euler method functioning as the 

corrector step. Ignoring the details of the derivation, the application of the explicit 

forward Euler formula to equation (5.18) produces the following: 

    1n n n n n
predictor t      M p M p F p K p p  (5.19) 

In equation (5.19), the superscript indicates the time step, and t is the duration 

of each time step. The backward Euler (or fully implicit) method is provided as a 

corrector step of the first-order scheme. Applying equation (5.19) to equation (5.18) 

yields the following implicit method:  

    1 1 11 1n n n n

t t
        

M K p p M p F p  (5.20) 

The implicit nature of the method is obvious from the form of equation (5.20), as 

it is in result a nonlinear, algebraic system for the variable p at time step 1n  . 

The solution to equation (5.20) at time step 1n   can be achieved using an 

iteration procedure such as Picard’s method[118]. Picard’s iterative process consists of 

constructing a sequence of p that will get closer and closer to the desired solution. The 

rate of convergence of Picard’s method is significantly amplified if the initial solution 

approximation is close to the true solution. The solution anticipated from equation (5.19) 

provides the initial cost-effective guess for the iterative procedure. 
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5.1.3. Heat transport in fracture 

For heat transport inside of a fracture, it is assumed that the heat storage is 

negligible compared to heat advection and conduction due to fluid flow [121, 122]. 

To derive the governing equation for heat transport inside of a fracture, one must 

consider energy conservation. The current study assumes that only thermal energy exists 

and that other types of energy (e.g., potential and dynamic energy) do not modify the 

system. Hence, the law of energy conservation results in the heat conservation relation. 

Figure 62 is considered a representative fluid volume element for heat transfer inside of 

a fracture. Combining the mass continuity equation with the heat conservation equation 

results in the following heat advection-diffusion equation [123]: 

             2
2 2, , . , , , , 0.0f f f f fC W t t T t k W t T t h t     x u x x x x x  (5.21) 

In the preceding equation, each of the three terms is in J/s/m2; fC is the injected 

fluid specific heat; f is the injected fluid density;   ,fT tx  is the temperature of the 

fluid inside the fracture which is assumed to be the same as the temperature of the 

fracture surface;  ,h tx is the rate of heat transfer from the fracture surface into  the 

medium; and fk is the injected fluid thermal conductivity. Note that equation (5.21) is a 

mixed parabolic-hyperbolic second-order partial differential equation. If the first term 

(advection term) and last term are in the equation, it is classified as parabolic; if the 

second term (diffusion term) and last term are in the equation, it is classified as a 

hyperbolic second-order PDE. 
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In the derivation of equation (5.21), it is assumed that injected fluid density is 

independent of temperature. This assumption is valid if the injected fluid is water less 

than 100°C [124]. The partial differential equation is a mixed parabolic-hyperbolic PDE 

and requires a special numerical technique (the Galerkin FEM cannot be used) to 

discretize and solve. 

Application of Galerkin FEM to mixed parabolic-hyperbolic PDEs has not 

achieved the same degree of success that has been attained for symmetric operators, such 

as the elliptic partial differential equation for fluid flow inside fracture [125-127]. This 

deficiency may be characterized as a lack of best approximation property, which 

manifests in the form of occasional spurious “wiggles” or oscillations in the temperature 

field. A number of research efforts have been undertaken to improve the finite element 

methods appropriate for use with these kinds of nonsymmetric operators. One of the 

most successful and well-known methods is the streamline upwind Petrov–Galerkin 

method, in which, unlike in the Galerkin method, the weighting functions are 

discontinuous [125-127]. 

5.1.4. Weak form of heat transport PDE and its solution 

The mathematics and fundamentals of the weak formulation of the advection-

diffusion PDE with the streamline upwind Petrove–Galerkin method is very complex 

and can be found at Brooks and Hughes [126]. However, the general procedure is same 

as the Galerkin method as described in Section 5.1.2.  

Streamline upwind method is usually implemented by modifying the diffusion 

term in the Galerkin finite element formulation. Modified diffusion can be interpreted as 
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artificial diffusion [126]. Streamline upwind method can be implemented in other way 

by modifying weighting function for the convective term in the partial differential 

equation. However, the up-winded weight of the convection term between other terms is 

not consistent. This results in excessively diffuse solutions when transient characteristic 

of equation is considered or source/sink exit as a boundary condition. Therefore, it is 

essential to have an up-winded weighting of all terms in the equation. A consistent up-

winded Petrov–Galerkin formulation is achieved by modifying weighting function of all 

terms in the equation. Note that in the usual Galerkin weighted residual method, the 

continuous weighting functions are considered throughout and across element 

boundaries. In contrast, in consistent streamline upwind Petrov–Galerkin formulation, a 

discontinuous weighting function of the following form is needed: 

 N N N    

where N is the continuous shape function and N  is the discontinuous streamline upwind 

contribution. Note that the continuous and discontinuous weighting functions are smooth 

throughout element interior. In the streamline upwind Petrov–Galerkin method, N has 

the following form: 

 ,j i j
i

k u N
N

u
   

where k is the upwind parameter (a complete definition can be found at Brooks and 

Hughes [126]), ju  is a component j of fluid velocity, and u  is the strength of 

velocity. Following the stated modification of the weighting function, and after applying 
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the Petrov–Galerkin weak formulation, equation (5.21), can be written in the following 

form: 
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 (5.22) 

This algebraic equation is considered with equation (3.43) in the DD method. 

The two equations form a set of equations with two unknowns: temperature and heat 

flux. The solution of the equation set is sought after an iterative method for pressure 

presented in the previous section. Initially temperature is assumed to have a background 

amount and heat flux with zero value. Then thermoporoelastic DD equations are solved 

and the velocity field inside the fracture is found. At that time, after the distribution of 

fluid velocity inside the fracture is defined, the temperature field is found using 

equations (3.43) and (5.22). The temperature and heat flux are updated, and this 

procedure is performed iteratively until the temperature field converges (see section 5.3 

for the full workflow). 

5.2. Natural fracture (joint) behavior 

The response of natural fractures is a key factor in hydraulic and thermal 

stimulation of unconventional resources. Slip on natural fractures increases permeability 

and results in microseismicity during the injection/production process. Numerical 
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modeling of these phenomena is needed to predict stimulated volume, permeability 

dynamics, and the occurrence of microseismicity in geothermal and gas shale reservoirs.  

The importance of natural fracture behavior has been recognized in the 

geothermal and petroleum literatures [6, 128-130], and different approaches used to 

analyze it [49, 52, 53]. However, the problem has mostly been treated two 

dimensionally, using the assumption of linear behavior of joints with a perfectly plastic 

post-peak response. Rahman et al. [41] modeled natural fractures using a stochastic 

approach with simplified assumptions regarding pressure distribution within fractures. 

Wang and Ghassemi [42] used a similar approach but considered flow and poroelasticity 

as well as heat transport.  The approach used by Zhou and Ghassemi [131] is used here 

to couple flow, stress, and fracture deformation and to estimate micro earthquakes. 

Furthermore, increases in fracture permeability due to shear deformation and dilation 

due to shear slip are considered.  

In the current study, the fundamentals of the DD equations and finite element 

formulation are the same as in Zhou and Ghassemi[131]. However, the DD equations are 

modified to simulate the effects of multiple fractures (parallel or intersecting) on each 

other and of heat transfer. Moreover, a conduction term for heat transfer inside the 

fracture is added to the energy conservation model inside the fracture. In summary, the 

model used in the current study combines DD equations with fluid flow and heat 

transport inside the fracture and mechanical properties of joint/hydraulic fracture. 

Eventually the combined governing relations result in a set of equations that have 

following the outcome: spatial and temporal variation of pressure, temperature, fracture 
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aperture, shear ride, leak-off into the matrix, normal and shear stresses on fracture 

surface. The Mohr-Coulomb criterion is used to define the slippage threshold, which 

continues according to a slip-weakening model. 

5.2.1. Hydraulic fracture constitutive relations 

Variation of stress and fracture deformation in natural fracture network follows 

specific constitutive relations for that discontinuity. Three complementary equations are 

suggested by the intrinsic behavior of discontinuities (fractures) in rock. If the effective 

stress on a fracture surface becomes zero, the fracture element behaves as a hydraulic 

fracture, which is hydraulically and mechanically open. This means that the two surfaces 

of the fracture separate from each other, and the total stress on the fracture surface 

equals the pore pressure. Moreover, the fracture cannot experience any shear stresses. 

Thus, for a discontinuity that behaves as a hydraulic fracture, the three complementary 

equations to DD equations can be represented as follows: 

        33 13 23, , , , 0.0, , 0.0ft p t t t     x x x x  (5.23) 

where    33 13, , ,t t x x and  23 , t x  are normal, and two shear stress on hydraulic 

fracture surfaces respectively, and  ,fp tx  is pressure inside of fracture.  

5.2.2. Joint constitutive relations 

Many reports contains description of the mechanical properties of rock [58, 132]. 

If a DD element has not opened completely, it can carry normal and shear stresses. It is 

assumed that shear tractions are a function of shear DD in the corresponding direction 

only. However, shear DD affects the net aperture through dilation. For joints, the 
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following constitutive models can be used (three complementary equations to DD 

equations): 

 

         
    
    

33 33 13 23

13 1 13

23 2 23

, , , , ,

, ,

, ,

n st F D t F D t D t

t F D t

t F D t







 





x x x x

x x

x x

 (5.24) 

where   33 ,nF D tx  describes closing/opening behavior of joins,

    13 23, , ,sF D t D tx x  explains dilation effect, and      1 13 2 23, , ,F D t F D tx x  define 

shear traction versus shear deformation relations.  

The normal behavior of joints is entirely related to the amount of effective stress 

on the fracture surface (see Figure 64). According to the fundamentals of rock joint 

behavior [58], the normal direction constitutive model of joints can be represented as 

follows: 
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 (5.25) 

where, On joint surface
nσ is effective stress on joint surface at time n t , Mechanical

nσ is 

mechanical share of effective stress, Dilation
nσ is dilation share of effective stress, normal

nK is 

normal stiffness of joint at time n t , and dil is dilation angle. As shown in Figure 64, 

when effective stress is large enough (e.g., larger than 2 MPa), behavior is completely 
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linearly elastic and normal
nK can be assumed to be constant [132]. However, when 

effective stress is near zero, behavior is fully nonlinearly elastic and normal
nK can be 

defined by the following general nonlinear relation[60]: 

 

1 0 1
Mechanical Mechanical normal

0 0 1
Mechanical normal normal

tn n

n

DD
A

DD DD

 



   
     

σ σ
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 (5.26) 

where, A


and t


are fitted parameters, 0
Mechanicalσ is initial effective stress on joint surface, 

and 0
normalDD is initial fracture aperture. It can be assumed that A


and t


 are equal to 1.0 

[60]; therefore, the behavior can be simplified to 

 1 1 0 0
Mechanical normal Mechanical normal
n nDD DD    σ σ  (5.27) 

The shear behavior of rock joints modeled using elastic-plastic behavior 

(softening or hardening due to a decrease or increase in effective stress) is shown in 

Figure 65. The Mohr-Coulomb failure criterion is used to distinguish the start of the 

plastic part. Because the maximum tolerable shear depends on the amount of effective 

stress, the choice of softening or hardening behavior is completely dependent on the rate 

of change in effective stress in the element. If effective stress decreases, the element 

behaves like a softening branch in the post-elastic part. In contrast, if effective increases, 

but permanent slip on the joint surface is still a factor, the element follows the hardening 

branch. For the elastic part, a simple linear model is used to describe the shear direction 

joint behavior: 
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 (5.29) 

Therefore, the slip-weakening modifications are applied on all elements that have 

experienced permanent slip, and their properties are gradually changed by increasing the 

plastic shear DD. 

5.3. Simulation of the injection/extraction process 

Based on the DD equation in section 3, the finite element form of fluid flow and 

heat transfer relations inside a fracture, and complementary constitutive relations for 

natural and hydraulic fractures, the following numerical implementation is proposed: 

 

 

 

 

 

 

 

 

 
 

Figure 69. Flow chart of injection/extraction process simulation. 
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Figure 69. Continued. 
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Figure 69. Continued. 

The flow chart in Figure 69 is simulates injection/extraction into stationary 

fractures. In the case of non-stationary fractures (which tend to propagate as a result of 

injection/extraction), the injection rate will decrease to keep the fractures stationary. The 
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6. MODEL APPLICATION TO FRACTURE/WELLBORE ANALYSIS 

In the current section, the theoretical developments described in Section 3 

(indirect boundary element, DD, and FS techniques) and Section 5 (finite element 

method and joint/hydraulic fracture constitutive behavior) are applied to several 

problems of interest in reservoir geomechanics. The versatility of the developed model is 

shown by an investigation of pore pressure and stress fields around hydraulic fractures, 

rock joints, and wellbores under coupled thermo-hydro-mechanical loading. 

The following analyses are described here: 

1. An analysis of pore pressure, stresses, and failure distribution around 

single and double hydraulic fractures  

2. A thermo-hydro-mechanical analysis of a huff-and-Puff test conductd 

during the GeneSys project in the North German basin 

3. A study of post-failure behavior of a box sliding on a frictional surface 

4. An analysis of injection into a single inclined rectangular joint under 

normal faulting stress with a slip-weakening approach 

5. An analysis of injection into a single vertical joint with a high injection 

rate and a study of the joint’s transient behavior from mechanically closed 

to mechanically open 

6. A hydraulic stimulation of the same vertical rectangular joint as in 

example 5 in the presence of natural fractures 

7. An analysis of the behavior of intersecting/parallel circular joints during 

low injection/production processes considering variation in in-situ stress 
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8. A study of the thermo-hydro-mechanical behavior of an irregularly 

shaped joint during injection when it intersects with natural fractures 

9. A study of the propagation of a natural fracture intersecting a horizontal 

inclined wellbore during well pressurization 

6.1. Hydraulic fracture analysis 

Few hydraulic fracture simulation models consider the existence of natural 

fractures and/or the interaction between different stages of hydraulic fracturing. To do 

this, the analysis must consider the hydro-mechanical behavior of intact rock and any 

existing discontinuities inside the reservoir, as described in Sections 3 and 5. 

6.1.1. Single hydraulic fracture 

It is well known that hydraulic fractures alter the stress around themselves, and if 

one tries to place a fracture near existing one, the stress shadow becomes a factor. Stress 

shadow effects include a smaller fracture aperture, a higher net pressure, and often 

change in the hydraulic fracture direction [134]. Moreover, trends in and the amount of 

micro-seismicity might change from one stage of stimulation to the next. In the current 

section the constructed numerical model is used to investigate the effects of single 

hydraulic fracturing on the neighborhood area. 

Figure 70 shows the fracture geometry and mesh used. The fracture is discretized 

with 1166 nodes and 1098 quadrilateral elements. The fracture plane is in the ZY plane, 

and the minimum horizontal stress is applied in the X direction. Table 5 presents the 

hydromechanical constants of intact rock and hydraulic fracture. The hydraulic fracture 



 

136 

 

is subjected to 0.8 MPa net pressure. To illustrate the hydraulic fracture effects in the 

surrounding medium, two cross sections are considered (see Figure 71). The planes are 

for the presentation of field stress and variations in pore pressure, and the failed zone 

around the fracture. The planes are not explicitly modeled with hydraulic fracture. 

 

Figure 70. Single hydraulic fracture, geometry and mesh. 
 

 

Figure 71. Cross sections and hydraulic fracture, hydraulic fracture is red, “XY” 
cross section is blue, and “XZ” cross section is green. 
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Table 5. Input parameters for rock and fracture. 
Shear modulus                                         (GPa) 18.75      (2719 Ksi) 
Drained Poisson’s ratio                          ( - ) 0.20 
Undrained Poisson’s ratio                      ( - ) 0.33 
Skempton’s coefficient                          ( - ) 0.77 
Base permeability                                   (m2) 1.00×10-18 (1 Micro Darcy) 
Initial in situ stresses (X direction)       (MPa) 33.29  (4828 psi) 
Initial in situ stresses (Y direction)       (MPa) 33.78  (4900 psi) 
Initial in situ stresses (Z direction)        (MPa) 50.26  (7290 psi) 
Initial pore pressure                               (MPa) 26.89  (3900 psi) 
Fluid density                                           (kg/m3) 1000.00 (0.433 psi/ft.) 
Fluid viscosity                                        (N.s/m2) 1.00×10-3 (1.0 cp) 
Rock density                                          (kg/m3) 2650.00 (1.15 psi/ft.) 
Rock cohesion                                        (MPa) 1.0   (145  psi) 
Rock friction angle                                 ( - ) 31 
Mode I critical fracture toughness       (MPa.m0.5) 6.00  (5460 psi.in0.5) 
Mode II critical fracture toughness      (MPa.m0.5) 10.00  (9100 psi.in0.5) 

 

Figure 72 shows the fracture aperture due to 0.80 MPa net pressure after 1 h and 

24 h. As is expected, the fracture aperture has its maximum value in the middle of the 

fracture and decreases as time increases. The fracture aperture decreases with time 

because the pore pressure in the rock is increases and forces the fracture to close. 

Therefore, hereafter, because the fracture aperture peaks after 1 h, only results of 

simulations after 1 h are presented. 

Figure 73, shows the Mode I fracture toughness after 1 h of pressurization. With 

0.80 MPa net pressure, the fracture is on the verge of propagation, and if the pressure 

increases further, the fracture will start to propagate in the tensile mode. Figure 74 shows 

the minimum stress, whose direction is initially perpendicular to the surface of the 

hydraulic fracture (X direction in the model). In the figure, the hydraulic fracture is 

shown in gray. 
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Figure 72. Fracture aperture due to 1.0 MPa net pressure after 1 and 24 hours.  
 

 

Figure 73. Mode I SIF after one hour of pressurization. 
 

 

Figure 74. Induced XX stress (minimum horizontal stress) due to 0.8 MPa net 
pressure after 1 hour, in-situ minimum stress is 33.29 MPa. 
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The perpendicular surfaces to the fracture, shown in Figure 74 (XY and XZ), are 

cross sections. In Figure 74 and subsequent figures, the negative sign represents 

compression stress and the positive sign represents tension stress. 

It can be seen from Figure 74, that after 1 h of fracture pressurization, the 

minimum principal stress around the region in front of the fracture surface has increased 

by almost the same amount of net pressure (0.8 MPa), and far from the fracture surface 

the stress has increased by a negligible amount. This effect is due to pressurization and 

opening of the hydraulic fracture and would not be as great if the fracture were less 

open. More interesting is that the tensile stress, which happens near the fracture tip. This 

is also due to the fracture opening. Induced tensile stress near the fracture tip increases 

the possibility of failure and may result in more microseismic events in that region. 

 

Figure 75. Pore pressure change after 1 hour due to 1.0 MPa net pressure, 
background pore pressure is 26.89 MPa. 

 

Figure 75 shows the variation in pore pressure after 1 h of fracture pressurization. 
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sections the existing pore pressure near the fracture tip is less than the in situ pore 

pressure. The negative induced pore pressure is due to the fracture opening, which 

creates flow from the reservoir into the fracture.  

Note that the increase in minimum in situ stress might affect the stability of 

natural fractures; however, induced shear stress is a better indicator of instability. Figure 

76 shows the shear stress induced by 0.80 MPa net pressure. Note that the shear stress 

component in the XZ plane is Sxz and that in the XY plane is Sxy.  

It is clear from Figure 76 that the maximum shear stress occurs just behind the tip 

of the fracture. The amount of induced shear stress is a linear function of net pressure; 

when the net pressure doubles, the induced shear stress doubles as well. 

 

Figure 76. Induced shear stress due to 1.0 MPa net pressure after 1 hour. 
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do hydraulic fracturing near an existing fracture, the new fracture turns. More interesting 

is the change in the direction of the maximum stress in front of the hydraulic fracture. In 

that region, the direction of the maximum stress changes 90° to perpendicular to the 

hydraulic fracture. 

 

Figure 77. Change of direction of maximum principal stress due to fracture 
pressurization. 

 

Figure 78 shows the failed region around the hydraulic fracture. Each spheroid in 

the figure represents a potential microseismic event. As is clear from the figure, 

microseismicity covers more area than the hydraulic fracture itself.  Moreover, it is clear 

from comparing Figure 76 and Figure 78 that the failed zone is located in the region with 

the maximum induced shear stress. This can help in calculation of stimulated reservoir 

volume. 

6.1.2. Double hydraulic fracture 

Multiple hydraulic fracturing is the most popular method of fracturing in 

horizontal wells in shale reservoirs. The current section considers hydraulic fracture 
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interactions, stress shadowing, pore pressure distribution, and failure of the rock around 

double hydraulic fractures due to simultaneous pressurizing.  Note that the behavior is 

studied after 1 h of uniform pressurization. 

 

Figure 78. Failed region (potential micro-seismic event location) around hydraulic 
fracture. 
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of the hydraulic fractures from each other, three models of 25 m, 50 m, and 100 m are 

considered. 

 

Figure 79. Two parallel hydraulic fracture, geometry and mesh. 
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Figure 80. Aperture and shear rides due to simultaneous 0.8 MPa net pressure. 
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Figure 81. Mode I and Mode II fracture toughness due to simultaneous 0.8 
MPa net pressure. 

 

It can be seen from Figure 81 that when the distance increases, Mode I toughness 
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Consequently, multiple fractures will propagate in shear mode when they are near to 

each other and will propagate in tensile mode when they are further away.  

Figure 82 presents the change in minimum horizontal stress (X direction). In the 

region between two hydraulic fractures, the induced horizontal stress is increased by 

almost the same amount of net pressure. The distribution of induced horizontal stress is a 

function of fracture spacing. Of interest is that when the distance between fractures 

increases, local induced tensile stress near the fracture edge increases, affecting the 

failed region around the fracture tips. 

 

 

Figure 82. Change in minimum stress due to 1.0 MPa net pressure after 1 hour. 
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Figure 83 shows the induced pore pressure after 1 h. Pore pressure increases in 

the region between the two hydraulic fractures and very near the fracture surface. When 

the distance between two hydraulic fractures is small, induced negative pore pressure is 

extended to the region near the fracture tip between the fractures. 

 

Figure 83. Pore pressure change due to 1.0 MPa net pressure after 1 hour. 
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induced shear is decreases. Note that the combination of induced pore pressure and shear 

stress might destabilize preexisting natural fractures.  

 

Figure 84. Induced shear stress due to 0.8 MPa net pressure, after 1 hour. 
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Figure 85. Failure region around two hydraulic fractures, Distance 25 m. 
 

 

Figure 86. Failure region around two hydraulic fractures, Distance 50 m. 
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Figure 87. Failure region around two hydraulic fractures, Distance 100 m. 
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extraction from hot, dry, and tight sedimentary formations [137, 138]. Often the source 

of the heat exchange is prescribed as a single rock joint [139, 140]. 

In this section, a poroelastic and thermoporoelastic analysis of a geothermal huff-

and-puff (cyclic fluid injection/extraction) field test is presented. The test was conducted 

in an abandoned gas well in the North German Basin about 80 km northeast of Hanover, 

Germany [139, 140]. The analysis involves the thermo-hydro-mechanical response of a 

penny-shape fracture. In thermo-hydro-mechanical fracture behavior, a change in 

fracture fluid pressure or temperature affects effective stress and causes a change in the 

fracture aperture.   

The huff-and-puff test was performed at adepth of 3800 m. A previous analysis 

[139, 140] showed that only the coupled physics of fracture behavior could explain the 

down-hole pressure profile (buildups and decays) that was recorded during the test. 

Here the possibility of a rock joint status change from joints to hydraulic fracture 

and the possibility of fracture propagation are investigated. It is assumed that a single 

penny-shape fracture exists in the reservoir at the beginning of the test and is subjected 

at its center to injection/extraction as depicted in Figure 88. The injection phase involves 

the injection of 2592 m3 of cold water (30°C) over 36 h (20 L/s). The possibility of 

fracture propagation is considered during the injection process and the Mode I SIF is 

calculated. The injected cold water then heats up during the subsequent shut-in phase, 

which lasts over 30 h. After the initial shut-in phase, five daily cycles of 15 h of hot 

water production with an average of 9.0 L/s and 9 h rest are carried out. 
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Figure 88. Injection extraction rate from huff and puff test. 
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down-hole pressure profile. They simulated the whole medium as a 2D configuration 

with a one-dimensional fracture. Moreover, they did not consider thermal processes in 

their analysis. 

Here the proposed numerical thermo-hydro-mechanical algorithm is used to 

model the problem. Isothermal and nonisothermal analyses of the test are presented in 

the following subsections. Table 6 presents the necessary parameters for modeling the 

problem. In the following analysis, linear and nonlinear normal joint behavior is 

considered, and the sensitivity of the method to joint behavior is investigated. Nonlinear 

normal joint behavior due to equation (5.27) and joint parameters in Table 6 is shown in 

Figure 89. 

6.2.1. Isothermal analysis 

In the isothermal simulation, it is assumed that the injected fluid and reservoir 

rock have the same temperature and that the joint behaves hydro-mechanically. The 

single joint hydro-mechanical behavior is reflected in the down-hole pressure history 

recorded during the huff-and-puff process. The presented model is used to analyze the 

variation in pore pressure and stresses in the joint when water is injected/extracted into 

the circular joint. Figure 90 shows the four types of mesh used for the analysis. The 

number of elements and nodes increased to investigate mesh dependency and 

convergence of the method.  
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Table 6. Input parameters to model Huff and Puff test. 
Shear modulus                                        (GPa) 10.30  (1494 Ksi) 
Drained Poisson’s ratio                        ( - ) 0.25 
Undrained Poisson’s ratio                    ( - ) 0.42 
Biot coefficient                                      ( - ) 1.00 
Base permeability                                  (m2) 4.00×10-17 (40 Micro Darcy) 
Initial joint aperture                               (m) 4.00×10-4 (0.004 inch) 
Minimum joint aperture                        (m) 1.00×10-5 (0.002 inch) 
Initial in situ stress                                (MPa)  68.50  (9935 psi) 
Initial pore pressure                               (MPa) 60.00  (8702 psi) 
Porosity                                                ( - ) 0.05 
Fluid density                                       (kg/m3) 1000.00 (0.433 psi/ft.) 
Fluid viscosity                                      (N.s/m2) 1.00×10-3 (1.0 cp) 
Rock density                                          (kg/m3) 2650.00 (1.15 psi/ft.) 
Rock thermal conductivity                 (W/m/K) 5.00 
Fluid thermal conductivity                  (W/m/K) 0.60 
Specific heat capacity of rock               (J/kg/K) 700.00 
Specific heat capacity of fluid                                             (J/kg/K) 4200.00 
Linear thermal expansion of rock     (1/K) 8.00×10-6 
Linear thermal expansion of fluid       (1/K) 1.00×10-4 
Initial background temperature            (K) 403.15 
Injected fluid temperature                       (K) 306.15 

 

 

Figure 89. Nonlinear joint behavior. 
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of elements increases, the pressure and fracture aperture converge to the real response. It 

is also clear that the method is very reliable for use with both structured and unstructured 

meshes, and unstructured mesh can be used for any combination of fractures.  

 

Figure 90. Four different meshes used for circular joint. 
 

The pressure distribution in the joint at the end of the injection process is shown 

in Figure 93. As can be seen, the distribution is almost uniform. The same scenario can 

be seen in Figure 91. Once again, the assumption of constant pressure in each time steps 

is considered by Mathias et al. to solve the problem [139].  

The pressure history for the midpoint of the joint is shown in Figure 94. The 

profile of the down-hole pressure agrees well with the recorded data. Note that the 

physical properties of the medium and fractures are almost the same as those used by 

Wessling et al.[140], who used optimization to match the down-hole pressure profile. 
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Figure 91. Injection point pressure profile for different meshes at the end of 
injection phase (36 hours). 

 

Figure 92. Fracture aperture profile for different meshes at the end of injection 
phase (36 hours). 
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caused by temperature diffusion during the test, which is considered in the next 

subsection. 

 

Figure 93. Pressure distribution in fracture for nonlinear joint behavior at the end 
of injection phase. Note that the pressure in nearly uniform. 

 

 

Figure 94. Injection point pressure profile, Isothermal case with non-linear joint 
behavior. 
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Figure 95. Fracture aperture, effective normal stress, leak off and amount of 
fluid in fracture at the end of injection phase. 

 

The fracture aperture, effective normal stress, leak-off, and the amount of fluid 

inside the fracture at the end of the injection phase are presented in Figure 95. The 
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boundary of the joint, and thus it is incorrect to assume that the fracture aperture or 

effective stress is constant at every time step. Yet Mathias et al [139] assumed constant 
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mainly due to the maximum aperture in the middle of the joint. Note that the amount of 

leak-off is almost constant because of the constant pressure inside the fracture. 

The sensitivity of the method to the mechanical behavior of joints is shown by 

comparing the pressure profile of the injection point for an isothermal analysis with 

linear and non-linear normal joint behavior. The pressure is greater for linear behavior 

than non-linear behavior. This is because a linear joint is stiffer than a nonlinear one and 

opens less when cold water is injected into it.  

It is clear that method is highly sensitive to the mechanical behavior of rock 

joints as shown in Figure 96. The difference between the results for linear stiffness and a 

nonlinear Goodman joint is substantial and reflects strong coupling between the 

mechanical and hydraulic behavior of the joint. In the model  for linear behavior, as is 

expected, when the pressure inside the joint is greater than 68.5 MPa (minimum total 

stress), some part of the joint is mechanically opened and the behavior changes from 

joint to hydraulic fracture. Figure 97 shows the opening process for the joint during the 

injection procedure. After 18 h, 400 m2 of joint will be open and will change its behavior 

from joint to hydraulic fracture. Elements continue to open until the end of the injection 

phase, at which point 25600 m2 of the joint are open. 

The conservation of total mass can be checked using a simple calculation (Table 

7). In the injection phase, 2592 m3 water is injected into the joint. It can be seen from 

Figure 95 that the fracture aperture after 36 h is about 4.4 mm; therefore volume of the 

injected fluid stores in the joint is 946.57 m3. The total volume of the leak-off after 36 h 

is 1710 m3. Table 7 shows the leak-off rate for each time step up to 36 h. The total 
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volume of leak-off fluid and fluid stored inside the fracture differs by 70 m3 from the 

amount of fluid injected into the fracture.  

 

Figure 96. Comparing linear and non-linear behavior of joint. 
 

Table 7. Leak off volume at each time steps during injection period. 
Time (hour) Average leak off  (m/s) Volume of leak off (m3) 
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Figure 97. Mechanically open elements for linear isothermal model during injection 
phase. 
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nonisothermal and isothermal results do not differ. This is because of the small amount 

time during the injection phase. In this period, the temperature diffusion is very small 

and does not have a considerable effect. Over five consecutive periods of rest and 

production, the nonisothermal results start to differ from the isothermal ones. By this 

time the temperature of the injected fluid has already increased to match the temperature 

of the field.  

 

Figure 98. Fracture aperture and leak off during initial injection period 
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Figure 99. Comparison between isothermal and non-isothermal case. 
 

From Figure 99, it is clear that the difference between the numerical results and 
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temperature keep continues to decrease without any apparent source of cooling. After the 

initial rest phase, the temperature for five periods of production and rest agrees well with 

the field and numerical results. 

 

Figure 100. Temperature profile of injection point, comparison between field 
measurement and model result. 
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Figure 101. Temperature distribution in joint in different time. 
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forced to slide by an applied shear displacement in X direction. A vertical load is applied 

to the top of the block to activate the frictional strength of the block to resist the shear 

slide. 

 

Figure 102. Sliding box on a surface of half-space. 

 

Figure 103. Discretization of box and surface with FS and DD elements. 
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Figure 103 shows the discretization of the box and free surface with quadrilateral 

elements. The free surface and the box surfaces (on the area that is not in contact) are 

discretized with 1573 FS elements. In addition, the contact surface between the box and 

the free surface is discretized with 121 DD elements whose behavior is enhanced by the 

slip-weakening model. 

By considering 1.0 as a frictional coefficient and applying 100 KPa to the top of 

the box, one can compute the essential horizontal load necessary to move the box by x 

shear displacement. Here it is assumed that the box and half space deform elastically; 

their properties are defined in Table 8. 

Table 8. Essential parameters to model box sliding on half space surface. 
Shear modulus                                                   (MPa) 4.16 (603 psi) 
Drained Poisson’s ratio                                  ( - ) 0.20 
Undrained Poisson’s ratio                             ( - ) 0.205 
Biot coefficient                                                ( - ) 1.0 
Base permeability                                             (m2) 1.00×10-13 (0.1 Darcy) 
 

The problem is modeled by discretizing the box surfaces (excluding the surface 

that is in contact with the half space surface) with fictitious elements and the frictional 

surface with DD elements. The DD element behavior is controlled by the Mohr-

Coulomb criterion and the slip-weakening laws described in section 5.2.3. Table 9 

presents essential parameters for slip-weakening model. 

Note that the initial stresses in the block (and half space) are due to the vertical load, and 

the box is forced to move in X direction. The results of the simulation summarized in 

relation between shear force and shear displacement in X direction which are presented 

in Figure 104. As can be seen from Figure 104, decreasing the residual friction angle 
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decreases the residual force on the frictional surface. More interesting is the complete 

softening of the joint, which is very clear for a curve with a residual friction angle equal 

to 25°. Note that the maximum residual friction force in the case of no slip-weakening 

(NO SW) is about 96 KPa, which is 4 KPa less than the expected value (for a frictional 

angle equal to 45° the residual force is expected to be the same as the applied normal 

force). This is due to the numerical accuracy of the code, which can be improved by 

increasing the number of elements. 

Table 9. Essential parameters for slip weakening law. 
Peak Friction Angle    45° 
Residual Friction Angle 20°- 40° 
Peak Cohesion                                           (MPa) 0.00    (0.00 psi) 
Residual Cohesion                                    (MPa) 0.00    (0.00 psi) 
Dilation Angle     0.00° 
Maximum Aperture due to Dilation        (m) 5.00×10-4 (0.02 inch) 
Critical value for Shear DD, D*            (m) 5.00×10-3 (0.2 inch) 
Linear normal stiffness                          (MPa/m) 1.00×103 (468 Ksi/ft) 
Linear shear stiffness                                (MPa/m) 1.00×103 (468 Ksi/ft) 

 

 

Figure 104. Horizontal shear load in “X” direction for different horizontal 
displacement, “RFA” stands for “Residual Friction Angle” and “NO SW” stands 

for simulation results without slip weakening model. 
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Figure 105 shows the total and X direction displacement of box and half space 

surface after 20-mm shear displacement which is forced to whole box. Note that the total 

displacement figure is shown in a deformed shape. 

 
Figure 105. Absolute and “X” direction displacement of box and free surface. 
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any element could vary from current time step to next one. Therefore, the element status 

must be determined at every time step because the constitutive relations are dissimilar 

for different element states (as presented in equations (5.23)  and (5.24)). 

This problem considers the effect of low-rate injection stimulation (an injection 

rate less than what is needed to propagate the fracture in Mode I or Mode II) and the 

interactions between natural joint geometry and the in situ stress field and their impact 

on the evolution of permeability. The problem geometry and wellbore placement are 

shown in Figure 106. The general parameters and in situ stress values are presented in 

Table 10. The stress state is one of a normal faulting regime, and the variation in in situ 

stresses with space is not considered in this problem. The fracture is discretized with 500 

quadrilateral elements (10 m × 10 m) and 561 nodes. Fluid injection with the low rate is 

prescribed on the middle node, as shown in Figure 106, with a constant rate of 7.5 bbl 

/min (20 L/s) where the well is placed in the mesh.   

.  

Figure 106. Hydraulic stimulation of natural fracture under shear force. 
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Initially details of the hydromechanical behavior and coupled processes during 

the first 3 min of constant-rate injection are investigated, and then the injection rate (as 

described in section 5.3) is fine-tuned to prevent the existing fracture from propagating 

and its behavior is studied under a variable injection rate.  

Figure 107 shows the shear status of all elements after 2 and 3 min of constant 

injection (using 1 min as a time step) when the element behavior is enhanced by the slip-

weakening model. Regions where the fracture has experienced permanent slip are shown 

in red. It can be seen from the plot that after 2 min, the fracture starts to experience 

permanent slip, and after 3 min the whole fracture has slipped. This is because after 2 

min elements in the middle of the fracture start to lose their strength (because of slip 

weakening and the decrease in effective stress) and attempt to pass excessive shear stress 

on to their neighbor elements. However, the neighbor elements cannot tolerate the 

induced shear stress, and they also experience permanent slip. Then the shear failure 

continues to the edge of the fracture and completely changes the hydromechanical 

behavior. It should be noted that due to dilation effect, the permeability of the fracture is 

enhanced as can be seen in Figure 108. Accordingly, the pressure inside the fracture 

decreases after permanent slip. However, because the slipped elements have already 

become weak and effective stress has decreased, they do not return to the stick condition 

(no-slip). To determine the validity of the claim that if there is no slip weakening, no 

sudden slip will be observed, the problem is run without the slip-weakening model. The 

shear status of an element without any weakening is shown in Figure 109. Without any 

slip weakening, there is no sudden status change in any area of the fracture after 3 min, 
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and any change that does occur is gradual, which is not realistic. Note that when there is 

no slip weakening the stress level is the threshold level, whereas when there is slip 

weakening the stress level drops and the threshold level also decreases. 

 

Figure 107. Slip status of elements after 2 and 3 minutes of injection with applying 
slip-weakening model, red color means slip area and blue means stick. 

 

Figure 110 shows the amount of plastic shear DD on the fracture surface for the 

slip-weakening model. These are the values used in calculating the moment magnitude 

of induced micro earthquakes. In Figure 110, plastic shear DD increases as the fluid 

pressure makes the state of the fracture more critical by lowering the effective normal 

stress and reducing the fracture shear strength. Thus, the shear slip area increases with 

time, potentially increasing the magnitude of micro earthquakes.  

According to McGarr et al. [142] the seismic moment due to slip u over the slip 

area can be described as follows: 

0  
SlipA

M Gu da                                                   (6.1) 

where G is the shear modulus of the rock. The magnitude of an earthquake generated by 

the seismic moment can be estimated as follows [143]: 
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   10 02 3 log 10.7M M   (6.2) 

 Table 10. Parameters used to model the fracture under shear. 
Shear modulus                                        (GPa) 8.30  (1203 Ksi) 
Drained Poisson’s ratio                            ( - ) 0.25 
Undrained Poisson’s ratio                        ( - ) 0.46 
Biot coefficient                                       ( - ) 0.96 
Base permeability                                   (m2) 1.00×10-17  (10 Micro Darcy)
Initial joint aperture                                (m) 1.00×10-4  (0.004 inch) 
Minimum joint aperture                            (m) 1.00×10-5 (0.0004 inch) 
Stress in “X” direction                               (MPa)  43.00  (6236 psi) 
Stress in “Y” direction                              (MPa)  39.00  (5656 psi) 
Stress in “Z” direction                              (MPa)  56.50  (8194 psi) 
Reservoir pore pressure                           (MPa)  28.30  (4104 psi) 
Rock density                                          (kg/m3) 2650.00 (1.15 psi/ft) 
Fluid density                                           (kg/m3) 1000.00 (0.433 psi/ft) 
Fluid viscosity                                         (N.s/m2) 3.00×10-4 (0.3 cp) 
Initial pumping rate                                  (lit/sec) 20.00  (7.5 bbl/min) 
Peak Friction Angle    30° 
Residual Friction Angle 20° 
Peak Cohesion                                           (MPa) 0.70    (101 psi) 
Residual Cohesion                                    (MPa) 0.00    (0.00 psi) 
Dilation Angle     3° 
Maximum Aperture due to Dilation       (m) 5.00×10-4 (0.02 inch) 
Critical value for Shear DD, D*               (m) 5.00×10-3 (0.2 inch) 
Linear normal stiffness                             (MPa/m) 2.00×104 (9350 Ksi/ft) 
Linear shear stiffness                                (MPa/m) 2.00×104 (9350 Ksi/ft) 
Mode I critical fracture toughness            (MPa.m0.5) 1.50  (1365 psi.in0.5) 
Mode II critical fracture toughness          (MPa.m0.5) 2.00  (1820 psi.in0.5) 

 

With the help of equations (6.1) and (6.2), the magnitude of the micro earthquake 

generated after 3 min with the slip-weakening model has 3.05 magnitude. 
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Figure 108. Pressure profile at different time in fracture with constant injection 
rate with slip weakening model. 

 

Figure 109. Shear status of elements for simulation without slip weakening, red: 
slipped elements, blue: stick elements. 

 

Figure 110. Plastic shear displacement discontinuity distribution with weakening. 
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As can be seen from Figure 107, after 3 min all elements experience permanent 

slip, and it is possible that the fracture is no longer stable and starts to propagate. The 

stability of the fracture in Mode I and Mode II is checked by comparing the critical 

fracture toughness with calculated SIF as described in Section 5. Figure 111 shows that 

after 3 min, the fracture is still stable under Mode I. However, the fracture is no longer 

stable under Mode II, as the ratio of KII to KIIc is about 8.0 at the top and bottom edge, 

which means that the fracture is going to propagate in Mode II at these locations. 

 

Figure 111. Propagation status of elements in mode I and mode II after 3 minutes. 
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Figure 112. Variable injection rate to keep the fracture on the verge of propagation, 
considering both mode I and mode II. 

 

 

Figure 113. Propagation status of all elements in mode I and mode II after 60 
minutes with changing injection rate. 
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Figure 114. Evolution of shear status of elements during injection rate change. 
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Figure 115. Dip slip or shear displacement discontinuity in dip direction on 
different time for variable injection rate. 
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The fracture aperture distribution is shown in Figure 116 for four specified times.  

This distribution is very much affected by the element shear status. The aperture 

increases over the slipped area and reaches its maximum value at the slipped area during 

slip propagation inside the fracture. This enhances permeability, which may be 

reversible to some extent when fluid injection is stopped. 

 

Figure 116. Fracture aperture at three different stages during injection. 
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stress on the fracture surface). The high value of effective stress justifies the use of linear 

joint normal behavior with a stiffness value of 20 GPa/m.  

Slip on the fracture begins after 2.0 min and the slip area propagates outward 

over time, eventually spreading over approximately 4800 m2 (48 elements) of the 

fracture after 60.0 min. Figure 113 shows that the fracture will not yet propagate when 

the slip zone reaches its edges. 

 

Figure 117. Normal effective stress on fracture. 
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seems from Figure 118 that during the first 26 min, the pressure decreases very rapidly. 

This rapid decrease in pressure is due to fracture dilation, which causes fracture opening 

and subsequent permeability enhancement. From 26 min to 32 min, the pressure remains 

constant. This is because injection compensates for permeability enhancement and 

prevents the pressure from decreasing further. This behavior is repeated one more time 

from 38 min to 46 min. These repetitive behaviors are due to competition between 

increasing shear DDs and the injection rate. Sometimes the injection rate determines 

behavior, and sometimes dilation effect or permeability enhancement does. Consistent 

with the slip-weakening model, the buildup of pressure progressively decreases, leading 

to progressively lower critical shear stress level or dilatancy suppression due to a high 

level of slip. The corresponding fracture aperture profile for the injection point is shown 

in Figure 119. It also shows an increasing trend from the start of injection at three nearly 

constant rates. In the fracture aperture the effects of both injection rate and dilation result 

in an increase in the fracture aperture. 

 

Figure 118. Pressure profile of injection point, Green arrow: effect of permeability 
enhancement, Blue arrow: intervals of pressure build up due to injection. 
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Figure 119. Fracture aperture profile of the injection point. 
 

 

Figure 120. Effective stress profile of injection point. 
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arrow). This is because of the dilation effect. Dilation increases effective stress (see 

equation (5.25)) on the fracture surface, and injection decreases it. In this period, dilation 

overtakes the fracture, and effective stress increases. After this initial stage, as in the 

pressure profile, three decreases in effective stress occur. This is because injection 

overtakes the fracture, forces the fracture surface outward, and decreases effective stress. 

Like with the change in pressure, the slope of the change in effective stress depends on 

the injection rate and the normal and shear strength of the joint. A higher injection rate 

and softer joint result in a steeper slope. 

6.5. High injection rate into hydraulic fracture 

This example illustrates some fundamentals of the opening mode of closed 

fractures and their shear failure and induced seismicity in response to injection into a 

hydraulic fracture and the fracture’s interactions with neighboring natural fractures. 

Figure 121 shows the problem, and Table 10 presents its essential properties. The initial 

injection rate is increased from 20 L/s in Table 10 (7.5 bbl/min) to 135 L/s (51 bbl/min) 

to trigger the transition of the vertical fracture from a joint to a hydraulic fracture. The 

injection rate is adjusted automatically to keep the fracture on the verge of propagation. 

To better describe the effect of a natural fracture on smaller fractures, first a large 

fracture without any natural fractures is simulated (Figure 122), and then results for the 

problem considering natural fractures are presented. 

The vertical fracture is discretized with 300 quadrilateral elements (10 m × 10 m) 

and 341 nodes (Figure 121). The  natural fractures are also discretized with 5 m × 5 m 

quadrilateral elements. The fluid injection rate is prescribed in the middle of the 
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hydraulic fracture, where the well is placed in the mesh.  A small time step duration of 

1.0 min is chosen because of nonlinearity and the necessity of capturing the transition 

from joint to hydraulic fracture. 

 

Figure 121. Geometry of a hydraulic fracture and natural fracture network, there 
are 2 sets of natural fractures with a center to center distance of 40 m in y- and z-

directions and minimum 5 m, maximum 15 m in x- direction. 
 

 

Figure 122. Hydraulic fracture without natural fracture network. 
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decrease occurs because after 24 min, elements on the edge of the fracture start to open, 

causing their aperture to increase and the fracture to move toward propagation. Thus, the 

injection rate is decreased to prevent it from propagating. The transition of elements 

from joints to hydraulic fractures at different time steps is shown in Figure 124. The 

figure shows the transition of elements from hydraulically open but mechanically close 

to hydraulically and mechanically open.  The vertical fracture starts to reopen after 4.0 

min and is completely open after 11 min (except for a narrow band at the fracture tip).  

Then after 24 min, elements on the edge start to open. At this time, the injection rate 

decreases to prevent the fracture from propagating in Mode I. 

 

 

Figure 123. Injection profile during first hour of stimulation. 
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Figure 124. Opening of hydraulic fracture during injection process. 
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Figure 125. Propagation status of edge element in mode I propagation. 
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Figure 125 shows the propagation status of the edge elements in Mode I at 

different time steps during the injection process. Before 26 min measured fracture 

toughness of critical elements is about 0.56. However, after 26 min of injection at a 

constant rate of 135 L/s, the fracture approaches propagation, and the injection rate is 

decreased, and the fracture remains on the verge of propagation (0.95 < KI/KIc < 1.0). 

 

Figure 126. Pressure profile at injection point. 
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fracture surface (except for those on the edge) are open. From that time, the pressure 

builds until the edge elements closest to the injection well start to open (balloon) and the 

fracture reaches the propagation stage. At this point, as can be seen from Figure 123, the 

injection rate decreases, and the pressure at the injection point continues to build with a 

relatively low slope to keep the fracture just below equilibrium. To observe the effect of 

injection on the stability of natural fractures near a vertical fracture (Figure 121), the 

same (vertical) fracture is modeled with two sets of natural fractures. Each natural 

fracture is a 20 m × 20 m square and is discretized by 16 quadrilateral elements (5 m × 5 

m). Each natural fracture is located 10 m from vertical fracture in the X and Z directions 

(minimum distance = 5 m, maximum distance = 15 m). The minimum and maximum 

distances of the natural fractures from the main fracture are 5 m and 15 m respectively. 

 

Figure 127. Shear status of natural fractures during different time steps. 
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The shear status of the fracture system is shown in Figure 127. Fractures A, B, C, 

and D do not experience permanent slip after 14 min. However, after 15 min of injection 

into the vertical fracture, fracture A starts to slip from its edges, and the slip continues on 

the edge of the other natural fractures until it reaches fracture C. After 17 min, Mode II 

fracture toughness of fracture A exceeds the critical fracture toughness. As a 

consequence, after 17 min the analysis is stopped automatically.  

Shear slip on natural fractures results from the diffusion of pore pressure and the 

mechanical interaction between natural and vertical fractures.  Slip is observed on the 

edge of each natural fracture. This is because the edge of the natural fracture is very near 

to the edge of the vertical fracture, where exerted shear due to the vertical fracture 

opening reaches its maximum value and forces the natural fracture to slip.  

The opening of the main fracture is shown in Figure 128. A comparison of this 

plot with Figure 124 shows that in the presence of natural fractures, the main fracture 

opens more easily, needing less effort to open completely (the same region opens in less 

time). This is because of the weakening effect of the natural fractures. 

 

Table 11. Effects of each mechanism on behavior of natural fracture (NF) with 
particular orientation considered. 

Mechanisms 
Impact of NF 

aperture 

Impact on 
effective 

normal stress 
of NF 

Impact on 
pressure inside 

of NF 

Impact on 
shear DD of 

NF 

Stress shadow Decrease Increase Decrease Increase 
Diffusion Increase Decrease Increase Increase 

Fracture dilation Increase Increase Decrease Increase 
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The pressure, aperture, normal effective stress, and profile at the midpoint of 

natural fractures A, B, C, and D are shown in Figure 129 to Figure 132, respectively. 

 

Figure 128. Opening of fracture system with natural fractures in presence. 
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is initially dominated by the stress shadow of the main fracture. All natural fractures 

(fracture A, B, C, and D) initially experience a decrease in aperture and an increase in 

effective stress (the opening of the main fracture closes the natural fractures). 

Subsequently, the fracture aperture starts to increase as effective stress starts to decrease. 

This behavior is due to combination of diffusion and dilation effects. In region 1, 

pressure and total shear DD increase continuously. In region 2, the behavior of natural 

fractures is dominated by a change in the elements of the main vertical fracture from 

mechanically closed to mechanically open. Comparing the time for region 2 in natural 

fracture A with the time when the vertical fracture continues to open (Figure 128), it is 

clear that after 5 min the region inside of the vertical fracture, in front of fracture A, has 

changed its status and at the same time there is a sudden change or bump in the behavior 

of fracture A. Same comparison can be made with the other natural fractures: when the 

elements of the vertical fracture mechanically open, a sudden change occurs in the 

behavior of the natural fracture. Thus, region 2 is observed on all natural fractures 

because of the stress shadow effect. This effect is more intense on fractures A and B than 

fractures C and D. Region 3 in the behavior of the natural fracture appears when the pore 

fluid diffusion process takes over the behavior and the fracture aperture, pressure, and 

shear DD increase while effective stress decreases. In this region, the main fracture has 

opened completely because of the zero effective stress. As a consequence, the pressure 

around the natural fractures increases at a higher rate, the fracture aperture and shear DD 

continue to increase, and effective stress decreases. 
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Figure 129. Middle point pressure profile of fracture A, B, C, and D. 
 

 
Figure 130. Middle point aperture profile of fracture A, B, C, and D. 
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Figure 131. Middle point effective stress profile of fracture A, B, C, and D.  
 

 

Figure 132. Middle point shear DD profile of fracture A, B, C, and D. 
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6.6. Hydraulic stimulation of natural fracture network 

In this application, the model is used to study the role of fracture deformation, 

slip, and in situ stress variation on flow path and induced seismicity in a geothermal 

reservoir consisting of intersecting natural fractures. The simulation models the injection 

experiment in the Soultz-sous-Forets European Hot Fractured Rock Geothermal Project 

of Rhine Garben, France, as reported by Bruel [40]. This problem involves a number of 

circular fractures that were detected in the field and is a good example of the importance 

of the interactions between natural fracture geometry and the in situ stress field and their 

impact on the evolution of permeability with injection. The simulations are carried out 

for a relatively short time so that thermal effects do not fully develop. 

Figure 134 shows the problem geometry and the location of the injection and 

extraction wells. General parameters and in situ stress values are presented in Table 12. 

The stress state is one of a normal faulting regime. Note that some of the fractures shown 

in Bruel [40] are not considered here to save computational time (see Figure 133). This 

problem considers the effect of change in vertical stress on the behavior of the fracture 

network. Variation in in situ stresses with space is considered as follows: 

 

 

 
 
 

3 6

6

6

26.5 10 80.0 10

60.0 10

70.0 10

in situ
z

in situ
x

in situ
y

Pa z

Pa

Pa













     

 

 

 



 

 

Fig
 

Figure 13

-100 -50

100

Z

-50

0

50

100

150

200

Extraction w

Injection we

gure 133. M

34. Fracture

Y
0 50

Y
--50050

well

ell

Major faults 

e network g

X

0100

100

Z

-50

0

50

100

150

200

X

Z

X0

10

-100

Y

196

and main fr

eometry an

Y

-50

X
00

X

Z

fractures at 

nd from diff

X
0 5

 = 120

 = 120

 = 120

the wells [4

ferent view d

X
0 100

R = 50 m

 = 15

R = 50 m

R = 50 m

40]. 

direction. 

150

Y

-100

-50

0

50

100

Z0100200

Y

Z

R = 75 m

R = 100 m

 = 80

 

X



 

197 

 

The circular fractures are discretized using 1814 quadrilateral elements whose 

behavior is enhanced by the slip-weakening model. The fluid injection and extraction 

rates are prescribed on the nodes where the well is placed in the mesh. Figure 135 shows 

the initial distribution of effective and shear stresses on all fractures. Directions 1 and 2 

and the fracture number are shown in the figure. Fracture 3 experiences the minimum 

shear stress along its dip, with a value of approximately 8.5 MPa. This is insufficient to 

cause slippage on this joint, which has 22 MPa effective normal stress.  

Table 12. Multiple fracture modeling parameters. 
Shear modulus                                        (GPa) 10.0   (1450.38 Ksi) 
Drained Poisson’s ratio                       ( - ) 0.25 
Undrained Poisson’s ratio                   ( - ) 0.422 
Biot coefficient                                      ( - ) 1.00 
Base permeability                                 (m2) 4.00×10-17  (40 Micro Darcy) 
Initial joint aperture                               (m) 4.00×10-4  (0.016 inch) 
Minimum joint aperture                       (m) 1.00×10-5 (0.0004 inch) 
Stress in “X” direction                          (MPa)  60.00  (8702 psi) 
Stress in “Y” direction                          (MPa)  70.00  (10153 psi) 
Stress in “Z” direction                            (MPa)  80.00  (11603 psi) 
Reservoir pore pressure                          (MPa)  45.00  (6527 psi) 
Rock density                                           (kg/m3) 2650.00 (1.15 psi/ft) 
Fluid density                                           (kg/m3) 1000.00 (0.433 psi/ft) 
Fluid viscosity                                     (N.s/m2) 1.00×10-3 (1.0 cp) 
Injection  rate     (Constant)                   (lit/sec) 1.80  (0.675 bbl/min) 
Extraction  rate  (Constant)                 (lit/sec) 1.50  (0.57 bbl/min) 
Peak Friction Angle    35° 
Residual Friction Angle 25° 
Peak Cohesion                                       (MPa) 0.00    (0.00 psi) 
Residual Cohesion                                (MPa) 0.00    (0.00 psi) 
Dilation Angle     5° 
Maximum Aperture due to Dilation    (m) 5.00×10-4 (0.02 inch) 
Critical value for Shear DD, D*           (m) 1.00×10-3 (0.04 inch) 
Linear normal stiffness                          (MPa/m) 2.00×104 (9350 Ksi/ft) 
Linear shear stiffness                            (MPa/m) 2.00×104 (9350 Ksi/ft) 
Mode I critical fracture toughness         (MPa.m0.5) 1.50  (1365 psi.in0.5) 
Mode II critical fracture toughness      (MPa.m0.5) 2.00  (1820 psi.in0.5) 
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Figure 135. Initial shear and effective stresses on fractures surface. 
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To better understand the hydromechanical behavior and coupled processes that 

develop during a short stimulation in such a system, and to assess the possibility of 

permanent slip, consider 11 h of injection into fractures 1, 2, and 3 at a constant rate and 

extraction from fractures 4 and 5 (see Figure 134). Water is injected at a rate of 1.8 L/s 

and extracted at a constant rate of 1.5 L/s. Half an hour is chosen for time step for the 

analysis.  Figure 136 shows the shear status of all elements during 11 h of the 

injection/extraction process. 

 

Figure 136. Shear status of elements during injection/extraction with slip 
weakening consideration. 
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From Figure 136 it can be seen that after 9 h, more than half of fracture 1 (with 

an area of 4710 m2) experiences permanent slip of approximately 0.51 mm. Therefore, 

based on  McGarr et al. [142] and Hanks and Kanamori [143], the magnitude of the 

seismic moment of the slip area is about 2.4 × 1018 dyne-cm, and the magnitude of 

earthquakes generated would be about 1.55. After 10 h, an area of 10995 m2 would 

experience an average slip of 4 mm. This creates a seismic moment of about 4.38 × 1019 

dyne-cm, and the earthquake generated would have a magnitude of nearly 2.4. In Figure 

137 shear DD is shown after 9 and 10 h. 

 

Figure 137. Shear displacement after 9 and 10 hours of injection/extraction. 
 

 

Figure 138. Fracture aperture after 9 and 10 hours of injection/extraction. 
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It can be seen from Figure 137 that the maximum shear DD occurs in the middle 

of slipped area in fracture 1. In addition, fracture 2 experiences permanent slip, but 

because of the minimum effective stress on fracture 1, it experiences more slip.  

The fracture aperture is shown in Figure 138. It is clear from this figure that slip 

has a large effect on the distribution of fracture aperture. The apertures of fractures 1 and 

2 are both in the range of 0.7–1.05 mm after 9 h and 0.9–1.9 mm after 10 h. In addition, 

the distribution of the fracture aperture is nearly symmetric about the injection point. 

This is because the two fractures partly overlap, and the opening of one fracture induces 

some closure on the other.  The upper part of fracture 1 is less confined than the lower 

part, and the reverse is true for fracture 2. This confinement determines the performance 

of the fractures until the entire fracture experiences permanent slip. After all of fracture 1 

experiences permanent slip, its aperture will be larger in the middle of the fracture. The 

aperture of fractures 4 and 5 is in the range of 0.2–0.4 mm, indicating that less flow 

occurs in these two fractures compared to fractures 1 and 2. Because of contact between 

fractures 3 and 4, the aperture is smaller near the intersection than in other parts. 

Moreover, fractures 4 and 5 have a smaller aperture because of fluid is being extracted 

from them. 

The propagation status of the fractures is shown in Figure 139. After 9 h fracture 

1 is near propagation in Mode I (without being near the critical state for Mode II 

propagation). However, after 10 h, because of the increased slipped area in fracture 1, 

the fracture is likely to propagate in mixed opening and shearing mode.   
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Figure 139. Propagation status of fractures in mode I and mode II after 9 and 10 
hours of injection/extraction. 

 

 

Figure 140. Fluid content inside of fractures after 10 hours. 
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Figure 140 shows the fluid content of all fractures after 10 h. Multiplying the 

fluid content by the fracture aperture reveals the total amount of fluid inside the fracture. 

Fracture 3 and 4 show a connected path, as is expected, and fractures 1, 2, and 5 show 

similar amounts of fluid. 

6.7. Response of irregular fracture in enhanced geothermal reservoir 

The numerical procedures developed here (with slip weakening) can be used to 

analyze fluid injection/extraction into an irregularly shaped fracture when it intersects 

with natural fractures. Figure 141 shows such a system. All fractures are discretized with 

1483 nodes and 1366 elements. All fractures are planar. The essential properties of the 

media and fractures are presented in Table 13. 

 

Figure 141. Discretized irregular fracture, position of injection and extraction 
wells, natural fractures are 50 m x 100 m and oriented 30° from Y direction. 
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Table 13. Hydro-thermo-mechanical properties of rock and fracture. 
Shear modulus                                        (GPa) 15.0   (1450.38 Ksi) 
Drained Poisson’s ratio                        ( - ) 0.25 
Undrained Poisson’s ratio                     ( - ) 0.27 
Biot coefficient                                       ( - ) 0.47 
Base permeability                                   (m2) 1.00×10-18  (1 Micro Darcy) 
Porosity                                               ( - ) 0.05 
Initial joint aperture                                (m) 1.00×10-4  (0.004 inch) 
Minimum joint aperture                        (m) 5.00×10-5 (0.002 inch) 
Stress in “X” direction                          (MPa)  55.88  (8105 psi) 
Stress in “Y” direction                           (MPa)  45.81  (6644 psi) 
Stress in “Z” direction                             (MPa)  65.13  (9446 psi) 
Reservoir pore pressure                          (MPa)  17.40  (2523 psi) 
Rock density                                          (kg/m3) 2650.00 (1.15 psi/ft.) 
Fluid density                                          (kg/m3) 1000.00 (0.433 psi/ft.) 
Fluid viscosity                                     (N.s/m2) 1.00×10-3 (1.0 cp) 
Injection  rate     (Constant)                  (lit/sec) 40.0  (15.1 bbl./min) 
Extraction  rate  (Constant)                 (lit/sec) -  (    -   bbl./min) 
Peak Friction Angle    30° 
Residual Friction Angle 26° 
Peak Cohesion                                       (MPa) 0.70    (101.00 psi) 
Residual Cohesion                                 (MPa) 0.00    (0.00 psi) 
Dilation Angle     3° 
Maximum Aperture due to Dilation        (m) 5.00×10-4 (0.02 inch) 
Critical value for Shear DD, D*             (m) 1.00×10-3 (0.04 inch) 
Linear normal stiffness                          (MPa/m) 1.00×104 (4675 Ksi/ft) 
Linear shear stiffness                            (MPa/m) 1.00×104 (4675 Ksi/ft) 
Mode I critical fracture toughness         (MPa.m0.5) 1.50  (1365 psi.in0.5) 
Mode II critical fracture toughness       (MPa.m0.5) 2.00  (1820 psi.in0.5) 
Rock thermal conductivity                  (W/m/K) 2.90 
Fluid thermal conductivity                  (W/m/K) 0.60 
Specific heat capacity of rock             (J/kg/K) 800.00 
Specific heat capacity of fluid               (J/kg/K) 4200.00 
Linear thermal expansion of rock        (1/K) 8.00×10-6 
Linear thermal expansion of fluid       (1/K) 1.00×10-4 
Initial background temperature           (K) 420.0 
Injected fluid temperature                    (K) 300.0 

 

Heat extraction involves an injection well with a constant flow rate of 40 L/s (15 

bbl/min) and two extraction wells with a constant down-hole pressure at the initial 
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reservoir pressure of 17.4 MPa (2523 psi). This example considers the behavior of the 

fracture system during the first 2 months of the thermoporoelastic injection/extraction 

process. 

 

Figure 142. Temperature distribution in the fracture during two months of 
operation. 

 

The temperature distribution of the system during these first 2 months is shown 
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Figure 143. Pressure distribution in the system during first two months. 
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Figure 144. Effective normal stress in the system. 
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The distribution of the fracture aperture is shown in Figure 147. As time passes, 

the fracture aperture increases. This is again due to dilation and cooling effects. The 

fracture opening is more around the injection well and less in regions behind the 

extraction wells because of the influence of thermal stresses. 

 

 

Figure 145. Shear displacement discontinuity.  
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Figure 146. Shear status of elements. Red elements have undergone permanent slip. 
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Figure 147. Fracture aperture distribution in the fracture system. 
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fracture is mechanically open and hydraulically open and experiences the same pressure 

as exists inside the wellbore (this is the worst case scenario compared to mechanically 

closed, hydraulically open). 

 

 

Figure 148. Wellbore and fracture geometry and mesh. 
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Table 14. Necessary parameters for wellbore/fracture modeling. 
Shear modulus                                         (GPa) 15.0  (2175 Ksi) 
Drained Poisson’s ratio                            ( - ) 0.25 
Undrained Poisson’s ratio                        ( - ) 0.27 
Biot coefficient                                       ( - ) 0.47 
Base permeability                                   (m2) 1.00×10-18 (1 Micro Darcy) 
Initial joint aperture                                (m) 4.00×10-4 (0.004 inch) 
Minimum joint aperture                           (m) 1.00×10-5 (0.002 inch) 
Stress in “x” direction                               (MPa)  45.81  (6645 psi) 
Stress in “y” direction                               (MPa)  55.88  (8105 psi) 
Stress in “z” direction                             (MPa)  65.13  (9446 psi) 
Initial pore pressure                                (MPa) 17.40  (2523 psi) 
Pressure inside of well                              (MPa) 25.00  (3625 psi) 
Porosity                                                     ( - ) 0.05 
Fluid density                                           (kg/m3) 1000.00 (0.433 psi/ft.) 
Fluid viscosity                                          (N.s/m2) 1.00×10-3 (1.0 cp) 
Rock density                                           (kg/m3) 2650.00 (1.15 psi/ft.) 
Mode I critical fracture toughness           (MPa.m0.5) 1.50  (1365 psi.in0.5) 
Mode II critical fracture toughness         (MPa.m0.5) 2.00  (1820 psi.in0.5) 

 

 

Figure 149. Stress intensity factor of natural fracture, Mode I and II. 
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Figure 149 shows the propagation status of the intersected fracture after 10 min 

and 4 h. The fracture tends to propagate in Mode I; the Mode II SIF is less critical than 

Mode I. As time passes, the Mode I SIF increases, and at 4 h the fracture propagates in 

the horizontal Y direction because of the redistribution of stress around the wellbore. 

This redistribution of stress has a significant effect on the behavior of the fracture, 

especially for fractures that are near wellbore. The distribution of stress on and around 

the fracture surface is shown in Figure 150.  

 

 

Figure 150. Stress distribution around well. 
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7. SUMMARY 

7.1. Summary and conclusions 

A 3D transient indirect boundary element model was developed in the current 

study to study the coupled thermoporoelastic behavior of fractures and wellbores in 

hydrocarbon/geothermal reservoirs. The technique was based on linear 

thermoporoelastic theory and combines the boundary element and finite element 

methods. The model was tested and verified using a variety of examples for which 

analytical solutions were presented previously (Section 4). A number of applications 

related to hydraulic fracturing, interactions between natural and hydraulic fractures, and 

wellbore analysis were described. 

The boundary element modeling effort combined the DD and FS methods to 

enable the modeling of intersecting wellbores and fractures under thermo-hydro-

mechanical loading. 

The poroelastic FS approach was verified using the Cryer problem of a sphere of 

rock removed from a reservoir conditions. The numerical results agreed very well with 

the analytical solution and showed the fully coupled poroelastic behavior. Moreover, a 

wellbore under nonhydrostatic stress loading was studied. The numerical results and the 

analytical results showed good agreement over a short time interval. However, the two 

solutions diverged after a longer time because of the intrinsic difference between 3D 

problems and a plane strain solution (the existence of the third dimension). 

The impact of thermal effects on wellbore stress analysis was also considered. As 

expected, the FS method showed that cooling reduces pore pressure around a borehole. 
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In addition, cooling increases the potential for fracturing due to tangential tensile stress. 

The numerical results for the thermoporoelastic wellbore agreed very well with the 

analytical solutions for a short time period but diverged from a long time period. 

The DD approach was tested for the behavior of a penny-shape crack under 

conditions of poroelastic and thermoporoelastic loading. Crack openings and SIFs were 

calculated and compared with the analytical model. The analytical and numerical 

solutions were also compared, and it was found that the numerical results represented the 

behavior of the crack with sufficient accuracy.  

The DD method was combined with the finite element method for fluid flow and 

used to investigate nonisothermal injection into a fracture. The model captured the 

modification/redirection of stress around a single pressurized hydraulic fracture. 

Moreover, it showed that modified stress causes failure around the fracture tip which 

generally covers a bigger area than the fracture itself and results in an overestimation of 

the stimulated reservoir volume. 

The pressurization of two parallel fractures was also studied using the method 

developed here. As expected, it was found that the distance between hydraulic fractures 

is the most important factor in modifying the stress state and consequently impacting the 

extent of the failure region around the fracture. It was also observed that the opening of a 

fracture induces shear stresses on the other fracture. The SIF for pressurized cracks was 

calculated for Mode I and Mode II, and it was shown that when the distance between 

hydraulic fractures increases, the Mode I SIF also increases. However, the Mode SIF 

decreases. 
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The fluid flow/fracture deformation model was then used to analyze a huff-and-

puff test in geothermal reservoirs. Both down-hole pressure and temperature were 

calculated and compared with field data. The model results were very sensitive to the 

joint model. When stress state on a fracture or discontinuity is near the critical state, the 

constitutive behavior is very important and nonlinear behavior should be considered. 

The post shear-failure behavior of joints was studied by examining the slip of a 

box on a free surface. Also, the permeability enhancement of a single fracture under in 

situ shear stress due to post-shear failure behavior was studied. It was shown that 

injection into an inclined fracture can increase so rapidly that the injection rate no longer 

sufficient to sustain the pressure, and the pressure decreases. 

Interactions of natural fractures and a hydraulic fracture were also studied. It was 

shown that injection into a natural fracture resulted in a gradual change in status from 

mechanically closed to mechanically open. This change in status governs the 

hydromechanical behavior of fractures. This was shown that the most important 

mechanisms that define the behavior of natural fractures are fracture dilation, diffusion 

of fracture/pore fluid, and also stress shadow of fractures on one another. 

Finally, the model was used to study the role of fracture deformation, slip, and 

variation in in situ stress on flow path and induced seismicity in a geothermal reservoir 

with parallel and intersecting circular fractures. The magnitudes of micro earthquakes 

that could potentially occur as a result of the injection/production processes were 

estimated. 
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7.2. Contributions 

This thesis makes the following contributions to applied research on fractures 

and wellbores: 

1. Variable injection/extraction rates were modeled. In previous versions of 

the model, it was assumed that the injection/extraction rate was constant. 

In the current model this assumption was not made.  

2. Thermo-hydro-mechanical interactions of parallel/intersecting fractures 

were simulated. In previous models, only one planar fracture was 

simulated. The current model was generalized and expanded to enable the 

modeling of non-planar parallel/intersecting fractures of any shape. 

3. Fully coupled thermoporoelastic formulation was considered.  Previous 

version of the model considered partially coupling formulations, in which 

pressure did not change with temperature. However, in the current study 

the frame was generalized to include the change in pressure due to the 

change in temperature. 

4. Three-dimensional FS technique was coupled with DD. This combination 

of indirect boundary element methods enabled the modeling of 

interactions of fractures and wellbores during wellbore pressurization. 

5. Convection heat transfer inside of fractures was considered along with 

diffusion heat transfer. In previous models only advection heat transfer 

was considered. However, in the current study complete advection-

diffusion heat transfer was considered and discretized using a 
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discontinuous finite element method (the streamline upwind Petrov–

Galerkin method). 

6. The computer code was parallelized with shared memory structure 

programming (OpenMP); because of the very long run time, the 

FORTRAN computer code was parallelized with almost 90% efficiency.   

7.3. Future research 

In the current study, nonisothermal, single-phase, incompressible fluid 

injection/extraction and fully coupled hydro-thermo-mechanical physics was used to 

study the behavior of fractures and wellbores. A number of improvements can be 

recommended for future studies. First, fracture propagation could be implemented. 

Second, researchers should model compressible fluid and/or multi-phase flow in the 

reservoir due to hydro-thermal stimulation of hydrocarbon/geothermal reservoirs and/or 

take into account buoyancy effects due to the existing different fluid temperature inside 

the fracture.  Finally, using fast multipole boundary element techniques and distributed 

memory parallel programming would enhance efficiency and enable the modeling of 

problems on a larger scale. 
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APPENDIX A 

 SINGULAR SOLUTIONS 

A.1. Essential parameters 

Singular solutions of poroelastic, thermoelastic, and thermo-poroelastic solutions 

were developed and reported [13, 81, 85]. In the following section the singular solutions 

are represented based on following parameters: 
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A.2. Continuous point isothermal fluid source 

In Figure A. 1 sign convention of fluid source is defined. The solution of 

thermoporoelastic partial differential equations in isothermal condition at each point (χ ) 

at time t  due to unit continuous fluid source at location x  and time  is as follows: 
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A.3. Continuous point heat source, thermoelasticity 

Sign convention for point heat source is same as fluid source in 

thermoporoelasticity media which is shown in Figure A. 1 (Heat source is positive and 

heat sink is negative). Following equations are response of thermoelastic partial 

differential equation (see Section 2) to unit continuous heat source. 
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A.4. Continuous point heat source, thermoporoelasticity 

In this section, solution of thermoporoelastic partial differential equation to a unit 

continuous heat source is presented. The difference between this section and previous 

one is in the field equations and the way that pressure coupled to temperature. 
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For 2 1.0  .   

In the stated relations, super script “hc” means continuous heat source. 

A.5. Continuous point force 

Following equations are response of thermoporoelastic partial differential 

equation to unit continuous point force. To present fundamental solution for point force 

we always assume that the surface that force is applied on it has a normal in local “3” 

direction, as shown in Figure A. 2. 
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For “F33” or “F3”, corresponding parameters are: 
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For “F21” or “F2”, corresponding parameters are: 
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In these relations, super script “dc” means continuous displacement 

discontinuity. In previous relations, 1 2 3 11 12 13 22 23 33, , , , , , , , ,PP U U U S S S S S S , depends on 

direction of displacement discontinuity. To define these parameters for each direction, 

we need following definition: 
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For “DD33” corresponding parameters are: 
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For “DD31” corresponding parameters are: 
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For “DD32” corresponding parameters are: 
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media. Effects are studied at three cross sections (20m × 20m), as shown in Figure B. 2. 

A unit radius concentric circle in each cross section is contrived for location reference. 

Since in singular solutions, results are not accurate very near to the location of 

disturbance, the unit circles are considered and there is not any data inside of them. 

 

Figure B. 2. Three cross sections to investigate each singularity effects  
 

Table B. 1. Media properties for simulating disturbance effects 
Shear modulus                                         (Pa) 8.30×109 
Drained Poisson’s ratio                         ( - ) 0.25 
Undrained Poisson’s ratio                         ( - ) 0.47 
Biot coefficient                                       ( - ) 0.96 
Base permeability                                    (m2) 1.0×10-17 
Porosity                                                   ( - ) 0.01 
Fluid density                                            (Kg/m3) 1000.0 
Fluid viscosity                                           (N.s/m2) 0.0003 
Rock density                                           (Kg/m3) 2650.0 
Rock thermal conductivity                        (W/m/K) 2.90 
Specific heat capacity of rock                (J/kg/K) 800.0 
Linear thermal expansion of rock           (1/K) 8.00×10-6 
Linear thermal expansion of fluid         (1/K) 1.00×10-4 

 

X
Y

Z

Unit radius circles

Infinite media



left

plo

figu

the

the

Eff

inje

Fig

glo

pro

 

 

Disturb

ft side figure

ots). As it c

ures to see n

B.1. Iso

In Figu

e origin of th

esis sign con

fects of the 

ection into r

F

Induced

gure B. 6. A

obal coordin

oceeds, magn

bance effects

s in followin

an be seen, 

near effect be

othermal co

ure B. 4 to F

hermoporoel

nvention, co

isothermal 

eservoir. 

igure B. 3 P

d displaceme

All displacem

ates and hav

nitude of eac

s are studied

ng plots) and

the circle i

etter. 

ontinuous po

igure B. 13

lastic media

ompression i

fluid sourc

Point fluid s

ents field fro

ment compon

ve maximum

ch displacem

246

d at two diffe

d after 100 d

in the midd

oint fluid so

effect of 0.0

a (as shown 

is negative 

ce can be c

ource in the
 

om point flu

nents are in

m value of 0

ment compon

ferent time sc

days (all righ

dle of cross 

ource effect

001 m3/sec i

in Figure B

and tension

considered a

e origin of p

uid source ar

nverse symm

0.25 mm aft

nent is increa

cales, after 2

ht side figure

sections is 

isothermal fl

B. 3) is prese

n is positive 

as special e

 

porous medi

re shown in 

metric around

ter 20 minut

ased.  

20 minutes (

es in follow

focused on 

luid sources 

ented. Same

in all figur

effects of flu

ia 

Figure B. 4

d the origin

tes. When ti

(all 

ing 

all 

on 

e as 

res. 

uid 

4 to 

n of 

ime 



 

247 

 

 

Figure B. 4. Induced X displacement (mm) distribution due to 0.001 m3/sec fluid 
source at origin, after 20 minutes (left side figures), and after 100 days (right side 

figures) 
 

Affected area due to fluid injection is extended to larger size after long time. 

Obviously amplified displacement in larger area after relatively long time (100 days) is 

due to diffusion process. Generally after long time, media changed its behavior from 

undrained to drain and shows more displacements. As expected due to symmetry of fluid 

injection, there is analogous effect on all displacement components.  
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Figure B. 5. Induced Y displacement (mm) distribution due to 0.001 m3/sec fluid 
source at origin, after 20 minutes (left side figures), and after 100 days (right side 

figures) 
 

Induced displacement makes the stress field which is shown in Figure B. 7 to 

Figure B. 12. As one can see in Figure B. 7, Figure B. 10 and Figure B. 12, major 

components of stresses are always compressive, identical to each other and their value is 

increased by time due to diffusion process.  
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Figure B. 6. Induced Z displacement (mm) distribution due to 0.001 m3/sec fluid 
source at origin, after 20 minutes (left figures), and after 100 days (right figures) 

 

After 20 minutes maximum absolute value of compressive stress in major 

components of stress tensor, is about 9(MPa) and then it increases to 14 (MPa) after 100 

days. This is again due to diffusion process and the fact that in this specific formation, 

diffusion rate is faster than injection rate and displacement increased in long time. 
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Figure B. 7 Induced total normal XX stress (MPa) distribution due to 0.001 m3/sec 
fluid source at origin, after 20 minutes (left side figures), and after 100 days (right 

side figures) 
 

Injection procedure induces some shear stresses (Up to 3.5 MPa, in Figure B. 8, 

Figure B. 9, and Figure B. 11) in media. Induced shear stresses might destabilize natural 
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stresses and pore pressure (Figure B. 13) all together, it will be clear that by increasing 

time, effect of injection procedure will be destabilizing natural fractures.  

 

 

Figure B. 8 Induced shear XY stress (MPa) distribution due to 0.001 m3/sec fluid 
source at origin, after 20 minutes (left side figures), and after 100 days (right side 

figures) 
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Figure B. 9 Induced shear XZ stress (MPa) distribution due to 0.001 m3/sec fluid 
source at origin, after 20 minutes (left side figures), and after 100 days (right side 

figures) 
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Figure B. 10 Induced total normal YY stress (MPa) distribution due to 0.001 m3/sec 
fluid source at origin, after 20 minutes (left side figures), and after 100 days (right 

side figures) 
 

It should be mentioned that adding total normal stresses with induced pore 

pressure define the effective stress regime, which is the most important parameter in 

defining the status of natural fractures. It is also valuable to mention that because of 

isothermal injection procedure the pore pressure and stress change does not induce any 

temperature to media. 
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Figure B. 11 Induced shear YZ stress (MPa) distribution due to 0.001 m3/sec fluid 
source at origin, after 20 minutes (left side figures), and after 100 days (right side 

figures) 
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Figure B. 12 Induced total normal ZZ stress (MPa) distribution due to 0.001 m3/sec 
fluid source at origin, after 20 minutes (left side figures), and after 100 days (right 

side figures) 
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Figure B. 13 Induced pore pressure (MPa) distribution due to 0.001 m3/sec fluid 
source at origin, after 20 minutes (left side figures), and after 100 days (right side 

figures) 
 

Figure B. 13 shows pore pressure distribution due to injection process. It shows 

that when time proceeds maximum induced pore pressure increased from 9.5 (MPa) to 

22 (MPa). This is because of the fact that injection rate continues during 100 days and 

clearly more fluid enters to media and as a consequence induced pore pressure increased.  
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Figure B. 15 Induced X displacement (mm) distribution due to 1166 Watt heat sink 
at origin of thermo-poroelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
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Figure B. 16 Induced Y displacement (mm) distribution due to 1166 Watt heat sink 
at origin of thermo-poroelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
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Figure B. 17 Induced Z displacement (mm) distribution due to 1166 Watt heat sink 
at origin of thermo-poroelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
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fractures or weakening plans. In other words, thermally induced stresses might apply 

instability to reservoir after long time, but not in early time. Induced temperature is 

shown in Figure B. 24, and proves that thermal stresses come into play after long time. 

 

 

Figure B. 18 Induced total normal XX stress (MPa) distribution due to 1166 Watt 
heat sink at origin of thermo-poroelastic media, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 19 Induced shear XY stress (MPa) distribution due to 1166 Watt heat 
sink at origin of thermo-poroelastic media, after 20 minutes (left side figures), and 

after 100 days (right side figures) 
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Figure B. 20 Induced shear XZ stress (MPa) distribution due to 1166 Watt heat 
sink at origin of thermo-poroelastic media, after 20 minutes (left side figures), and 

after 100 days (right side figures) 
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Figure B. 21 Induced total normal YY stress (MPa) distribution due to 1166 Watt 
heat sink at origin of thermo-poroelastic media, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
 

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 yy

0.02
-0.02

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 yy

0.02
-0.02

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 yy

-0.002
-0.012
-0.022

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 yy

7
1

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 yy

5
2.5
0

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 yy

7
1

0

0
0.02
0.03

-0.022-0.01

-0.01

-0.008

-0.006

-0.002

-0.002

-0.01

0

0.01

0.04

3

3

4

45

6

7
8

9

10

12

8 5

5

4

3

32

2

2

1

1

0

0

0.5

0.5

1 1

1.5

1.5

2

2

3
3.5

4

4.5
5



 

265 

 

 

Figure B. 22 Induced shear YZ stress (MPa) distribution due to 1166 Watt heat at 
origin of thermo-poroelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
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Figure B. 23 Induced total normal ZZ stress (MPa) distribution due to 1166 Watt 
heat sink at origin of thermo-poroelastic media, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 24 Induced temperature (K) distribution due to 1166 Watt heat sink at 
origin of thermo-poroelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
 

Induced temperature due to point heat sink in thermo-poroelastic media is shown 

in Figure B. 24. As it is expected, induced temperature has spherical symmetry and it 

value changes faster near heat sink than far from heat sink. The special trend in 

temperature change near and far from heat sink can be seen also on induced stresses and 

displacements field.  
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B.3. Continuous point heat sink effect in thermoporoelastic media 

In Figure B. 25 to Figure B. 35 effects of 1166 Joule/sec (Watt) point heat sink 

on the origin of thermoporoelastic media is presented. The difference between this 

section and previous one is the physics of media. In previous section, temperature field 

does not induce pore pressure directly, but in current section, temperature field induced 

pore pressure directly. 

 

Figure B. 25 Induced X displacement (mm) distribution due to 1166 Watt heat sink 
at origin of thermoporoelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

u x

0.0008
0

-0.0008

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

u x

0.0008
0

-0.0008

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

u x

0.18
0

-0.18

-0.0006
-0.0002

0

0

0.0002

0.0006

0.0002
0.0002

0

-0.0002

-0.16

-0.12
-0.1

-0.06
0.04

0.1

0.16

0.18

-0.18
-0.14

-0.12

-0.108

-0.08

-0.020

0.02

04

0.08

0.1

0.12
0.12

0.14

0.18

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

u x

0

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

u x

0

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

u x

0.18
0

-0.18



 

269 

 

Same as thermo-poroelastic section heat sink is located at the origin of Cartesian 

coordinates.  

Induced displacement fields due to the heat sink are presented in Figure B. 25 to 

Figure B. 27. Same as thermo-poroelastic figures, displacements fields have spherical 

symmetry around the origin of coordinate system.  

 

 

Figure B. 26 Induced Y displacement (mm) distribution due to 1166 Watt heat sink 
at origin of thermoporoelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
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As it can be seen from comparison of Figure B. 25 to Figure B. 27 with those 

ones for thermo-poroelastic media, value of displacement fields at long time is same for 

both media. However induced displacements in thermoporoelastic media after short time 

have larger magnitude than induced displacements in thermo-poroelastic media. It is due 

to negative induced pore pressure (Figure B. 34) that increases effective stress initially 

and then due to pore pressure diffusion effective stress goes back to its original value. 

 

Figure B. 27 Induced Z displacement (mm) distribution due to 1166 Watt heat sink 
at origin of thermoporoelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
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Like as thermo-poroelastic section, thermal effects in thermoporoelastic media 

are very slow and its effect comes into play after long time (100 days).  

Induced stresses are presented in Figure B. 28 to Figure B. 33. Same as 

displacement fields, all induced stresses are same as thermo-poroelasticity in long time.  

 

 

Figure B. 28 Induced total normal XX stress (MPa) distribution due to 1166 Watt 
heat sink at origin of thermoporoelastic, after 20 minutes (left side figures), and 

after 100 days (right side figures) 
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Figure B. 29 Induced shear XY stress (MPa) distribution due to 1166 Watt heat 
sink at origin of thermoporoelastic media, after 20 minutes (left side figures), and 

after 100 days (right side figures) 
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Figure B. 30 Induced shear XZ stress (MPa) distribution due to 1166 Watt heat 
sink at origin of thermoporoelastic media, after 20 minutes (left side figures), and 

after 100 days (right side figures) 
 

Similar to thermo-poroelastic case, induced stresses are small at early time and 

they can be ignored for early time analysis.  However, when time goes on (e.g. after 100 

days), there are considerable amount of induced tensile (5 MPa) and shear stresses (1.6 

MPa) that might apply instabilities to natural fractures or weakening plan as same as 

thermo-poroelastic model. 
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Figure B. 31 Induced total normal YY stress (MPa) distribution due to 1166 Watt 
heat sink at origin of thermoporoelastic, after 20 minutes (left side figures), and 

after 100 days (right side figures) 
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Figure B. 32 Induced shear YZ stress (MPa) distribution due to 1166 Watt heat at 
origin of thermoporoelastic media, after 20 minutes (left side figures), and after 100 

days (right side figures) 
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Figure B. 33 Induced total normal ZZ stress (MPa) distribution due to 1166 Watt 
heat sink at origin of thermoporoelastic media, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 34 Induced pore pressure (MPa) distribution due to 1166 Watt heat sink 
at origin of thermoporoelastic media, after 20 minutes (left side figures), and after 

100 days (right side figures) 
 

Figure B. 34, presents induced pore pressure due to heat sink. As it can be seen, 

from the beginning of heat sink application to media pore pressure around sink changed 

and decreased. After long time, affected area increased, however amount of induced pore 
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temperature distribution around heat sinks moves toward constant value around heat sink 

and then negative induced pore pressure diffuse and its magnitude decrease.  

 

Figure B. 35 Induced temperature (K) distribution due to 1166 Watt heat sink at 
origin of thermoporoelastic media, after 20 minutes (left side figures), and after 100 

days (right side figures) 
  

Figure B. 35 shows temperature distribution in thermoporoelastic media due to 

heat sink. As it can be seen by comparing this figure with Figure B. 24, temperature 

distribution is completely same in both thermoporoelastic and thermo-poroelastic media. 
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Figure B. 37 Induced X displacement (mm) distribution due to 1 mm normal 
displacement discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
 

Induced displacement in Z direction (see Figure B. 39) does not show sensible 

changes when time proceeds. This is due to the fact that normal DD is applied in Z 

direction and induced displacement affected the media from beginning and diffusion 

process does not have sensible effect on Z displacement. As it is expected XY surface is 
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symmetry plane and Z displacement increased near origin of coordinate which is the 

location of 1 mm Z direction displacement discontinuity. 

 

 

Figure B. 38 Induced Y displacement (mm) distribution due to 1 mm normal 
displacement discontinuity (At Z direction)  at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 39 Induced Z displacement (mm) distribution due to 1 mm normal 
displacement discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
 

Total stress components are shown in Figure B. 40 to Figure B. 45. Figure B. 40 

and Figure B. 43 shows XX and YY stress components. As one can see when time 

precedes these stress components will be more tensile. This is due to diffusion process 

that relaxes media after disseminating pressure and increases tensile stress in these 

directions. 
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Figure B. 40 Induced total normal XX stress (MPa) distribution due to 1 mm 
normal displacement discontinuity (At Z direction) at origin, after 20 minutes (left 

side figures), and after 100 days (right side figures) 
 

Shear stress components are shown in Figure B. 41, Figure B. 42, and Figure B. 

44. As it can be seen from these figures magnitude and extent of shear does not change 

during time and remain constant. This is because of the fact diffusion process does not 
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have any effect on shear stress components, and it only changes major stress components 

slightly and more importantly changes the pore pressure distribution. 

 

 

Figure B. 41 Induced shear XY stress (MPa) distribution due to 1 mm normal 
displacement discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 42 Induced shear XZ stress (MPa) distribution due to 1 mm normal 
displacement discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 43 Induced total normal YY stress (MPa) distribution due to 1 mm 
normal displacement discontinuity (At Z direction) at origin, after 20 minutes (left 

side figures), and after 100 days (right side figures) 
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Figure B. 44 Induced shear YZ stress (MPa) distribution due to 1 mm normal 
displacement discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
 

Induced ZZ stress (stress component in the direction of applied DD) is shown in 

Figure B. 45. It shows that magnitude and extent of ZZ stress does not change when time 

proceeds. It is consistent with induced Z displacement field that does not change during 

time. The figure shows that total stress component during diffusion process does not 

experience sensible change. 
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Figure B. 45 Induced total normal ZZ stress (MPa) distribution due to 1 mm 
normal displacement discontinuity (At Z direction) at origin, after 20 minutes (left 

side figures), and after 100 days (right side figures) 
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and as a consequence effective stress has minimum value and the system can 

experienced instabilities. 

 

 

Figure B. 46 Induced pore pressure (MPa) distribution due to 1 mm normal 
displacement discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Moreover, it can be observed that induced Y displacement is zero in all three major cross 

sections, and it is believed that if some points near to the disturbance location exist, 

induced Y displacement would be visible.  

  

 

Figure B. 48 Induced X displacement (mm) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 49 Induced Y displacement (mm) distribution due to 1 mm shear 
displacement discontinuity (At X direction)  at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 50 Induced Z displacement (mm) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
 

Induced XX stress is shown in Figure B. 51. It can be seen that 1 mm shear slip 

cause tensile and compression stress up to 2.5 MPa. This amount of stress might be 

enough to destabilize existing weakening features like natural fractures. 
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Figure B. 51 Induced total normal XX stress (MPa) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
 

Induced shear stresses are shown in Figure B. 52, Figure B. 53, and Figure B. 55. 

It can be seen from these figures and previous ones that magnitude of induced shear and 

normal stresses on different location is considerable and proves the claim that if we 

ignored the effect of shear slip on fractures, it would deviates results from physics based 

case. 
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Figure B. 52 Induced shear XY stress (MPa) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 53 Induced shear XZ stress (MPa) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 54 Induced total normal YY stress (MPa) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 55 Induced shear YZ stress (MPa) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 56 Induced total normal ZZ stress (MPa) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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pore pressure value is small in all time and it can be said that shear DD does not have 

considerable effect on pore pressure distribution. 

 

 

Figure B. 57 Induced pore pressure (MPa) distribution due to 1 mm shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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about effects of larger traction discontinuity area or larger traction discontinuity 

magnitude, presented effects should multiplied by surface area and discontinuity 

magnitude. 

 

 

Figure B. 59 Induced X displacement (mm) distribution due to 1 MPa normal 
traction discontinuity (At Z direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 60 Induced Y displacement (mm) distribution due to 1 MPa normal 
traction discontinuity (At Z direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 61 Induced Z displacement (mm) distribution due to 1 MPa normal 
traction discontinuity (At Z direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
 

Induced stress fields due to 1 MPa traction discontinuity is shown in Figure B. 62 

to Figure B. 67. It is obvious from the figures that magnitude of induced stress changes 

by small amount (presented effects magnified by area of discontinuity and discontinuity 

magnitude) and it might apply some instability near disturbance location.  
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Figure B. 62 Induced total normal XX stress (MPa) distribution due to 1 MPa 
normal traction discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
 

XX and YY components of induced stresses are shown in Figure B. 62 and 

Figure B. 65, respectively. It is obvious from the figures that XX and YY stresses 

change from tensile to compression and their magnitude does not change when time 

proceeds. Figures show that diffusion process does not have considerable effect on 

induced stress field. 

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xx

0.025
0

-0.025

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xx

0

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xx

0.025
0

-0.025

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xx

0

-0.02

-0.01
-0.005

0.005
0.01

-0.035

-0.015

-0.01-0.01

0 0
0.005

0.01
0.03

0.04

-0.02-0.01

-0.005

0

0.005

0.01

0.02

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xx

0.045
0

-0.045

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xx

0.045
0

-0.045

0

0

-0.005

0.04

-0.04-0.035

-0.01

0.005

0.005

-0.02

0

-0.01

0



 

306 

 

 

Figure B. 63 Induced shear XY stress (MPa) distribution due to 1 MPa normal 
traction discontinuity (At Z direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 64 Induced shear XZ stress (MPa) distribution due to 1 MPa normal 
traction discontinuity (At Z direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
 

Shear stresses are shown in Figure B. 63, Figure B. 64, and Figure B. 66. As well 

as other stress components, induced shear stress has small magnitude. However if it is 

magnified by discontinuity area or discontinuity magnitude, it would be considerable 

and changes status of weakening planes in the reservoir. 

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xz

0

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xz

0.025
0

-0.025

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xz

0.02
-0.06

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xz

0

X

-10

-5

0

5

10Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xz

0.025
0

-0.025

-0.015

-0.005

0

0.005
0.01

-0.015

-0.005

0.005

0.02

0.06

0.04
-0.04

0

0.02

0.04

0.06

-0.06

0.06

0

-0.06-0.06

0.06

X

-10

-5

0

5

10
Y

-10
-5

0
5

10

Z

-10

-5

0

5

10

X
Y

Z

 xz

0.02
-0.06



 

308 

 

 

Figure B. 65 Induced total normal YY stress (MPa) distribution due to 1 MPa 
normal traction discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 66 Induced shear YZ stress (MPa) distribution due to 1 MPa normal 
traction discontinuity (At Z direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 67 Induced total normal ZZ stress (MPa) distribution due to 1 MPa 
normal traction discontinuity (At Z direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
 

Comparison of ZZ component of induced stress with other components shows 
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direction) and induces maximum amount of stress in the stated direction. 

Induced pore pressure (Figure B. 68) is less than 0.01 MPa initially and 
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As it is expected positive pore pressure is always located in front of applied 

traction discontinuity and negative is located behind of it. 

 

 

Figure B. 68 Induced pore pressure (MPa) distribution due to 1 MPa normal 
traction discontinuity (At Z direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 70 Induced X displacement (mm) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 71 Induced Y displacement (mm) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 72 Induced Z displacement (mm) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
 

Induced stress field is shown through Figure B. 73 to Figure B. 78. As can be 

seen from the figures, magnitude of induced stress does not change by time. However 

extent of induced stress is growing and affects bigger area. This is due to diffusion 

process.  
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Figure B. 73 Induced total normal XX stress (MPa) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 74 Induced shear XY stress (MPa) distribution due to 1 MPa shear 
displacement discontinuity (At X direction) at origin, after 20 minutes (left side 

figures), and after 100 days (right side figures) 
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Figure B. 75 Induced shear XZ stress (MPa) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 76 Induced total normal YY stress (MPa) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 77 Induced shear YZ stress (MPa) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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Figure B. 78 Induced total normal ZZ stress (MPa) distribution due to 1 MPa shear 
traction discontinuity (At X direction) at origin, after 20 minutes (left side figures), 

and after 100 days (right side figures) 
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stress is in the applied force direction, which in this case is in X direction. Furthermore, 

induced pore pressure is very small and completely removed after 100 days.  

 

 

Figure B. 79 Induced pore pressure (MPa) distribution due to 1 MPa shear traction 
discontinuity (At X direction) at origin, after 20 minutes (left side figures), and 

after 100 days (right side figures) 
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Stress components ij  in global Cartesian coordinates are transformed into new 

Cartesian coordinates, influenced ( d
ij ) or influencing ( g

ij ) coordinates, according to 

the tensor transformation rule: 

 new
ij im jn mna a   

where ija  is shown in Figure C. 1. Expanding indicial notations and simplifying terms 

using the symmetry of the stress tensor, gives the following relations: 

2 2 2
11 11 11 12 22 13 33 11 12 12 11 13 13 12 13 23

2 2 2
22 21 11 22 22 23 33 21 22 12 21 23 13 22 23 23

2 2 2
33 31 11 32 22 33 33 31 32 12 31 33 13 32 33 23

12 11

2 2 2

2 2 2

2 2 2

      

      

      



     

     

     



new

new

new

new

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a a  
   

 
   

21 11 12 22 22 13 23 33 11 22 12 21 12

12 23 13 22 23 11 23 13 21 13

23 21 31 11 22 32 22 23 33 33 21 32 22 31 12

22 33 23 32 23 21 33 23 31 13

13 11 31 11 12 32 22 13 33 33

   

 

    

 

   

    

  

     

  

   

new

new

a a a a a a a a

a a a a a a a a

a a a a a a a a a a

a a a a a a a a

a a a a a a  
   

11 32 12 31 12

12 33 13 32 23 11 33 13 31 13



 

 

  

a a a a

a a a a a a a a

 

Note that in numerical procedure to calculate stress components, it is essential to 

convert stress tensor from local coordinate of influencing element to local coordinate of 

influenced element. 
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APPENDIX D  

SPECIAL ALGORITHM FOR SINGULAR INTEGRALS 

It can be observed from fundamental solution forms (Appendix A) that when it is 

tried to calculate effects of an elements on itself, the integrand reaches an infinite value 

at influencing point ( 0.0R ). Usually, the singular integral is defined by removing a 

small circle including the influencing point, and then taking the limit as the circle radius 

disappears. However in this appendix, proposed numerical method by [93, 94] for strong 

and hyper singular integral evaluation is reviewed. Strong or hyper singular integral 

occurs during numerical integration of generated stress fundamental solution due to 

fictitious stress or displacement discontinuity, respectively.  

Generally during integration of thermoporoelastic fundamental solutions over an 

element, three types of singularities occur; weak, strong and hyper singularity. Weak 

singularity has a form of  1


 R d , where   is a region that includes the condition that

0.0R . Weak singularity will be solved with increasing number of gauss points near 

singular point [86, 87]. The fundamental solution for induced pore pressure due to 

continuous point source has following form: 

    1

4
sc

pp erfc
R


 

  

If R  goes to zero, consequently  p  goes to zero and complementary error 

function will have a unit value. Therefore, induced pore pressure will have following 

form near singular point: 
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   1

4
sc

p
R 

  

As it can be seen, kernel has 1 R  singularity. Weak singularity can be eliminated 

by mapping from Cartesian coordinates to polar coordinates or can be captured by 

increasing number of gauss points [86, 87]. 

Strong singularity can have any form of    2 21 ,
 

   iR d r R d
 
 

         2 22 2 2, ,
  

      i i j i jr R d r r R d r r R d  where i and j can have value 

of 1 or 2. As like as weak singularity, strong singularity needs special treatment to 

evaluate. Strong singularity occurs when one tries to find an influence of an element on 

displacement or stress distribution of itself. So, influencing element and influenced 

element local coordinate system would be same and at influencing point R goes to zero. 

As an example of strong singularity, one can look at Fundamental solution for 

first component of stress tensor ( 11 ) due to unit fictitious force in “1” direction (F1). It 

has following format: 

         3 3

11 1 1 1 1 12

1 1
1 2 3 2 3

8 1 1

  
  

                     

Fc u
p p p

u

r r D r E r F r
R

 

Like as weak singularity case, it could show that when R goes to zero, 

subsequently  p  goes to zero and error function can be approximated by its Tailor 

expansion: 

 
2 4 6 8 10 122

( ) 1 ...
3 10 42 216 1320 9360

      

 

        
 

erf  
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If Taylor expansion of error function is considered in side of , ,p p pD E F  

definitions, it would be seen that all of these time dependent functions in case of self-

influence calculation, disappear and go to zero. Hence near singular point, 11  due to 

fictitious force in “1” direction can be rewritten in following format: 

         3

11 1 12

1 1
1 2 3

8 1
 

 
      

Fc
r r

R  

As it can be seen from preceding relation, stress has combination of strong 

singularity modes and should be treated specially to accurately calculate its value.  

Strong singularity can be considered as a special case of hyper singularity. In 

following section, a numerical algorithm to evaluate any probable hyper singular integral 

is described. During method description, some changes that is essential to apply to the 

method to estimate strong singular integral is pointed out.  

Hyper singular integrals might have following forms during numerical 

integration:       23 3 31 , ,
  

     i j iR d r r R d r R d  where i and j can be 1 or 2.  

To evaluate an integral in the  region which includes singular point, special procedure 

was proposed by [86, 87]. The method is based on Taylor expansion of all terms inside 

of integral near singular point.  

In general, each integral consist of singular kernel and Jacobian determinant. To 

describe the method, initially different terms in the kernel were expanded around 

singular point and then Jacobian determinant is expanded. Then the expansions are 

combined to have series expansions of all terms inside of integral. 
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Let’s assume that  1 2 3, , x x xx is an influenced point global coordinates in an 

element and  1 2 3, , y y yy  is an influencing point global coordinates in same element. 

Corresponding local coordinates of points within mapped element are  1 2, ,0 ξ  and

 1 2, ,0 η  (note that element are planar and third component of coordinates is zero). 

By employing a Taylor expansion of  x y
 
around singular point, following relation 

will be obtained: 

   

      

1 1 2 2
1 2

2 22 2 2
1 1 2 2

1 1 2 22 2
1 1 2 2

...
2 2

   
 

   
   

   

  
      

   
    

     
     

i i
i i

i i i

x x
x y

x x x

ξ=η ξ=η

ξ=η ξ=η ξ=η

 

Second bracket in the preceding relation is needed only for hyper singular 

integral evaluation. For strong singular integral evaluation, Taylor expansion until first 

bracket is sufficient. 

For strong or hyper singularity evaluation, quadrilateral element is mapped into a 

unit square with 8 nodes. Location of node 5 to 8 is in the middle of each side of an 

element (see Figure D. 1). Singularity happens at the origin of mapped element (

 0,0η ) and it is necessary to have more gauss point near the point. So mapped 

element is divided by four triangles as showed in Figure D. 2 and the integral is 

evaluated at each triangle and then the sum of each triangle share will be the total value 

of integral. 
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where i can be 1,2 or 3, and  A  and  B are simple trigonometric functions of  as: 

 

       
0.5 0.53 3

1 1

1 20, 0 0, 0

2 2 22 2

2 2
1 1 2 20, 0 0, 0

,

cos sin ,

cos sin
cos sin

2 2

   

   

   

 
 

  
   

 

   

   

             
   

  
  

   
   

   
     

 i i
k k

i i
i

i i i
i

A A B B

x x
A

x x x
B

 

In addition to Taylor expansion of  x y  term, it is necessary to expand1 R  

and 31 R . Therefore, based on former relations and introduced polar coordinates, 

following relations can be derived: 

 

 2
2

3 3 3 2 5

1 1
1

31 1 1

 


  

     
 

    
 

k k

k k

A B
O

R A A

A B
O

R A A

 

By considering former relation of  i ix y  and1 R , it can be derived that: 

  2
, 3

        
 

i i i i k k
i i

x y A B A B
r A O

R A A A
 

In side of expanded relations, Taylor expansion of Jacobian determinant is 

necessary. By using introduced polar coordinates, Jacobian determinant can be expanded 

as: 

       2 2
0 1

1 2

cos sin     
 

 

  
       

   

J J
J J O J J O

ξ η ξ η

ξ η  

where; 
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1 2 1 2

2 2 2 2

2 2
1 1 2 1 1 2 1 2 1 1 2

2 2 2 2

2 2
2 1 2 2 1 2 1 2 2 1 2

   

          

          

   
  

   

        
   

          

        
   

          

x y y x
J

J x y x y y x y x

J x y x y y x y x

J

 

To be able to evaluate 1 J  and 2 J , it is necessary to calculate second 

order derivative of x and y , and consequently second order shape functions. The main 

reason that four points added to a mapped element is to have second order shape 

functions (see Figure D. 2). To evaluate Taylor expansion of Jacobian determinant, 

following matrices are defined: 

 

3 5 6 7 81 2 4

1 1 1 1 1 1 1 1

3 5 6 7 81 2 4

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 22 2
7 81 2

2 2 2 2
1 1 1 1

. . . .

       

       

   

       
         

       
         
 

  
 

  
   



N N N N NN N N

N N N N NN N N

x x x x x x x x

y y y y y y y y

N NN N

Der

Coord

Der - 2nd
2 22 2

7 81 2

1 2 1 2 1 2 1 2

2 22 2
7 81 2

2 2 2 2
2 2 2 2

. . . .

. . . .

       

   

 
 
 
   
 
        
    

     

N NN N

N NN N

 

 

where 1N  to 8N  are as follows: 



 

332 

 

 

   
   
   
   
  
  
  
  

1 1 2 1 2

2 1 2 1 2

3 1 2 1 2

4 1 2 1 2

2
5 1 2

2
6 1 2

2
7 1 2

2
8 1 2

0.25 1 1 1

0.25 1 1 1

0.25 1 1 1

0.25 1 1 1

0.50 1 1

0.50 1 1

0.50 1 1

0.50 1 1

N

N

N

N

N

N

N

N

   

   

   

   

 

 

 

 

     

    

    

     

  

  

  

  

 

Based on preceding relations, Jacobian and second derivative of geometric 

variables can be defined as follows: 

   1 1

2 2

 

 

  
    
  

   

T

x y

x y
J Der Coord  

   

2 2

2 2
1 1

2 2

1 2 1 2
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T

x y

x y

x y

Der - 2nd Coord  

Currently, 1,  J J  and 2 J can be defined and then 0J  and 1J  would be 

evaluated. Now, with referring to 3
,1 , iR r  and J  Taylor expansions, any combination 

of hyper singular integral kernel, can be expressed as a series expansion with respect to 

  in the following form: 

        2 1
2

, 1
 

 
 
   

F F
F O  
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Then the final form of integral can be written as follows: 
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tn
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tn

tn

tn

tn

tn

I F d d

F F
F d d

F F d

 

where       41 ,       k kA A B A . All integrations involved in preceding 

equation are regular and can be evaluated directly by standard numerical methods. In 

presented formulation subscript " "tn  is number of triangles that is shown in Figure D. 2 

and  1 2
ˆ, ,    are geometric parameters that are shown in Figure D. 2. With the help of 

distinctive procedure that is summarized here and completely presented in [86, 87], a 

hyper singular integral with following form is expanded and evaluated as an example: 
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ˆ4
,1

3
1 0

  



  


    
  

  
tn

tntn

r
I d d

R
J  

By employing preceding Taylor expansion relations of 3
,1, 1 ,r R J , the 

following formulas are established: 

 
     

   

2
, 0 1

0 1 3
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i i i
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3 2
3 3 2

3 23 5

2
0 1

0

1
1 2

1 1

31
,

0.0,0.0

cos sin

k k

S S
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R

A B
S S
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Now, by substituting these relations into integration core, the outcome will be: 
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3

3 2 2 2
0 1 0 13 2

3 2 2
0 0 0 1 1 02

2 0 0 3 0 1 1 03 0 0
2

2 3 0 0

1 2
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x

i i

i i i

i i ii

i

r
F J

R

S S
O d d O J J O

S S
O d J d J d J O

S d J S d J d JS d J
O

F S d J

F S             0 0 3 0 1 1 0        i i id J S d J d J

 

By using the presented formulation the hyper singular integral can be treated as a 

usual Gauss integral and it can be evaluated numerically. Strong singularity evaluation is 

same as above, except the degree of singularity which is one degree less and as a 

consequence each term inside of integration core will be expanded one degree fewer 

than above. 

 




