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ABSTRACT

In this dissertation, I explore energy and reliability in future NoC (Network-on-

Chip) interconnected CMPs(chip multiprocessors) as they have become a first-order

constraint in future CMP design.

In the first part, we target the root cause of network energy consumption through

techniques that reduce link and router-level switching activity. We specifically focus

on memory subsystem traffic, as it comprises the bulk of NoC load in a CMP. By

transmitting only the flits that contain words that we predicted would be useful using

a novel spatial locality predictor, our scheme seeks to reduce network activity. We

aim to further lower NoC energy consumption through microarchitectural mecha-

nisms that inhibit datapath switching activity caused by unused words in individual

flits. Using simulation-based performance studies and detailed energy models based

on synthesized router designs and different link wire types, we show that (a) the pre-

diction mechanism achieves very high accuracy, with an average rate of false-unused

prediction of just 2.5%; (b) the combined NoC energy savings enabled by the pre-

dictor and microarchitectural support are 36% on average and up to 57% in the best

case; and (c) there is no system performance penalty as a result of this technique.

In the second part, we present a method for dynamic voltage/frequency scaling of

networks-on-chip and last level caches in CMP designs, where the shared resources

form a single voltage/frequency domain. We develop a new technique for monitoring

and control and validate it by running PARSEC benchmarks through full system

simulations. These techniques reduce energy-delay product by 46% compared to a

state-of-the-art prior work.

In the third part, we develop critical path models for HCI- and NBTI-induced
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wear assuming stress caused under realistic workload conditions, and apply them onto

the interconnect microarchitecture. A key finding from this modeling is that, counter

to prevailing wisdom, wearout in the CMP on-chip interconnect is correlated with a

lack of load observed in the NoC routers, rather than high load. We then develop

a novel wearout-decelerating scheme in which routers under low load have their

wearout-sensitive components exercised without significantly impacting the router’s

cycle time, pipeline depth, area or power consumption. We subsequently show that

the proposed design yields a 13.8∼65× increase in CMP lifetime.
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Jiménez for the idea of the spatial locality prediction which became a significant part

of this work. I also really enjoyed the work with Prof. Hu and his students, Xi Chen

and Zheng Xu, which is essential in this work, as well.

I would also like to thank co-authors, Boris Grot, Pritha Ghoshal, David Kadjo,

Vassos Soteriou, and Arseniy Vitkovskiy. Also, I would like to thank the folks from
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1. INTRODUCTION

While process technology scaling continues to provide more transistors, the tran-

sistor performance and power gains that accompany process scaling have largely

ceased [39]. Chip-multiprocessor (CMP) designs achieve greater efficiency than tra-

ditional uniprocessors through concurrent parallel execution of multiple programs or

threads. Meanwhile, the size of on-chip cache has been increased to overcome the

memory wall caused by off-chip memory transactions. The on-chip cache, in general,

is shared by multiple cores and divided into multiple slices each of which resides at

each core. The increases in size and slice count of this shared cache result in the

increases of on-chip communication bandwidth and power consumption. Indeed, the

energy consumptions of on-chip communication fabrics and shared, last-level caches

(LLCs) have grown to occupy a significant portion of the overall chip power, as much

as 30% of total power in recent Intel’s single-chip cloud computer [36].

As the core count in chip-multiprocessor (CMP) systems increases, networks-

on-chip (NoCs) present a scalable alternative to traditional, bus-based designs for

interconnection between processor cores [21]. As in most current VLSI designs,

power efficiency has also become a first-order constraint in NoC design. In fact, it is

becoming increasingly difficult to ignore the power consumption of NoC. The energy

consumed by the NoC itself is as significant as 28% of the per-tile power in the Intel

Teraflop chip [35] and 36% of the total chip power in MIT RAW chip [78].

At the same time, with the continuous down-scaling of process technologies, reli-

ability has become an important concern in NoC design [26, 63, 9]. Deep sub-micron

CMOS process technology is marred by increasing susceptibility to wearout. Pro-

longed operational stress gives rise to accelerated wearout and failure, due to several

1



physical failure mechanisms, including Hot Carrier Injection (HCI) and Negative

Bias Temperature Instability (NBTI). Each failure mechanism correlates with dif-

ferent usage-based stresses, all of which can eventually generate permanent faults.

While the wearout of an individual core in many core CMPs may not necessarily

be catastrophic for the entire parallel-processing system, a single fault in the inter-

processor Network-on-Chip (NoC) fabric could render the entire chip useless, as it

could lead to protocol-level deadlocks, or even partition away vital components such

as the memory controller or other critical I/O.

1.1 Thesis Statement

In this dissertation I propose that microarchitectural techniques can be used

to address the twin problems of energy-efficiency and reliability in future process

technologies. This dissertation describes two designs to improve energy efficiency in

the NoCs and LLCs, and a solution to improve reliability of the NoCs.

It has been observed that cache lines fetched to level-1 caches are not fully utilized,

and merely 40% of words in the cache lines are actually referenced by processors. A

significant portion of NoC dynamic power is consumed by those unused words, which

turn out to be predictable. This dissertation proposes a novel spatial locality pre-

dictor which speculates those unused words, and a novel packet composition scheme

which encodes those words to eliminate bit transition along the NoC datapath.

This dissertation also explores a new Dynamic Voltage and Frequency Scaling

(DVFS) scheme to reduce NoC and LLC power consumption. It is necessary to choose

a metric on which to base a DVFS control. The metric should be controlled by the

frequency level that we adjust and it should reflect the overall system performance.

This dissertation proposes to use the throughput of uncore, which refers to NoC and

LLC together, as the metric of the DVFS policy for uncore system, and proves that
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such control results in improved energy efficiency compared to previous schemes.

It also addresses reliability issues in NoC design. Reliability of NoC becomes more

important as the current and future chip-multiprocessors rely on it more. The scaling

transistor size even accelerates the failure mechanisms, which will impact the critical

path of the routers. This dissertation discusses the cause of such failure mechanisms

in NoC and introduces a novel wear-resistant NoC router microarchitecture.

1.2 Dissertation Organization

This document is organized as follows. Chapter 2 introduces a novel energy

reduction technique for the NoCs and LLCs through spatial locality speculation.

Chapter 3 includes a new DVFS policy to achieve energy efficient NoCs and LLCs.

Chapter 4 describes a new design method for reliable NoCs which mitigates the

dominating failure mechanisms efficiently.
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2. ENERGY EFFICIENCY THROUGH SPATIAL LOCALITY PREDICTION∗

2.1 Introduction

In this work we present a novel technique to reduce energy consumption for CMP

core interconnect leveraging spatial locality speculation to identify unused cache

block words. In particular, we propose to predict which words in each cache block

fetch will be used and leverage that prediction to reduce dynamic energy consumption

in the NoC channels and routers through diminished switching activity.

2.1.1 Motivation

Current CMPs employ cache hierarchies of multiple levels prior to main mem-

ory [58, 3]. Caches organize data into blocks containing multiple contiguous words in

an effort to capture spatial locality and reduce the likelihood of subsequent misses.

Unfortunately, applications often do not fully utilize all the words fetched for a given

cache block, as recently noted by Pujara et al. [66].

Figure 2.1 shows the percentage of words utilized in the PARSEC multithreaded

benchmark suite [10]. On average, 61% of cache block words in the PARSEC suite

benchmarks will never be referenced and represent energy wasted in transference

through the memory hierarchy1. In this work, we focus on the waste associated with

traditional approaches to spatial locality, in particular the wasted energy and power

caused by large cache blocks containing unused data.

∗ c©2012 IEEE. Reprinted, with permission, from Hyungjun Kim, Boris Grot, Paul V Gratz,
Daniel Jimenez, NOCS Special Section: Spatial Locality Speculation to Reduce Energy in Chip-
Multiprocessor Networks-on-Chip, IEEE Transactions on Computers, 2012

1Versus 64-byte lines, 32-byte lines reduces unused words to 45%, however it increases AMAT
11% (See Section 2.5.3).
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Figure 2.1: Percentage of 64-byte block, cache words utilized per block in the PAR-
SEC multithreaded benchmarks.

2.1.2 CMP Interconnect

Networks-on-chip (NoCs) purport to be a scalable interconnect to meet the in-

creasing bandwidth demands of future CMPs [21]. NoCs must be carefully designed

to meet many constraints. Energy efficiency, in particular, is a challenge in future

NoCs as the energy consumed by the NoC itself is a significant fraction of the total

chip power [35, 78]. The NoC packet datapath, consisting of the link, crossbar and

FIFOs, consumes a significant portion of interconnect power, 55% of network power

in the Intel Teraflop chip [35].

Existing NoCs implement channels with relatively large link bit-widths (>=128

bits) [28, 29], a trend expected to continue as more wire density becomes available

in future process technologies. These high-bandwidth link wires reduce the latency

of cache block transmission by allowing more words to be transferred in each cycle,

minimizing serialization latency for large packets. In some cases, however, not all the

words in a flit are useful to the processor. In particular, unused cache block words

represent wasted power and energy. We propose to use spatial locality speculation

to leverage unused words of the block transfers between the lower and upper cache

levels to save energy.
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2.1.3 Proposed Technique

The goal of the proposed technique is to reduce dynamic energy in CMP intercon-

nect by leveraging spatial locality speculation on the expected used words in fetched

cache blocks in CMP processor memory systems.

The work makes the following contributions:

• A novel intra-cache-block spatial locality predictor, to identify words unlikely

to be used before the block is evicted.

• A static packet encoding technique which leverages spatial locality prediction

to reduce the network activity factor, and hence dynamic energy, in the NoC

routers and links. The static encoding requires no modification to the NoC and

minimal additions to the processor caches to achieve significant energy savings

with negligible performance overhead.

• A complementary dynamic packet encoding technique which facilitates addi-

tional energy savings in NoC links and routers via light-weight microarchitec-

tural enhancements.

In a 16-core CMP implemented in a 45-nm process technology, the proposed

technique achieves an average of ∼35% savings in total dynamic interconnect energy

at the cost of less than 1% increase in memory system latency.

The rest of this chapter is organized as follows: Section 4.7 discusses the related

work and background in caches, NoCs and power efficiency on-chip to provide the

intuition behind our power saving flit-encoding technique. Section 2.3 discusses our

proposed technique in detail, including the proposed spatial locality predictor and

the proposed packet encoding schemes. Section 4.6 and 2.5 present the experimental

setup and the results. Finally, we conclude in Section 4.8.
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2.2 Background and Related Work

2.2.1 Dynamic Power Consumption

When a bit is transmitted over interconnect wire or stored in an SRAM cell,

dynamic power is consumed as a result of a capacitive load being charged up and

also due to transient currents during the momentary short from Vdd to Gnd while

transistors are switching. Dynamic power is not consumed in the absence of switching

activity. Equation 2.1 shows the dynamic and short-circuit components of power

consumption in a CMOS circuit.

P = α · C · V 2 · f + t · α · V · Ishort · f (2.1)

In the equation, P is the power consumed, C is the switched capacitance, V is

the supplied voltage, and F is the clock frequency. α represents the activity factor,

which is the probability that the capacitive load C is charged in a given cycle. C, V,

and F are a function of technology and design parameters. In systems that support

dynamic voltage-frequency scaling (DVFS), V and F might be tunable at run time;

however, dynamic voltage and frequency adjustments typically cannot be done at a

fine spatial or temporal granularity [75]. In this work, we target the activity factor,

α, as it enables dynamic energy reduction at a very fine granularity.

2.2.2 NoC Power and Energy

Researchers have recently begun focusing on the energy and power in NoCs, which

have been shown to be significant contributors to overall chip power and energy

consumption [35, 78, 44, 6].

One effective way to reduce NoC power consumption is to reduce the amount of

data sent over the network. To that extent, recent work has focused on compression
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at the cache and network levels [23, 42] as an effective power-reduction technique.

In general, however, compression techniques have overheads in terms of latency for

compression and decompression. The technique we present is orthogonal to, and

could potentially be used in conjunction with, these loss-less compression techniques

to further reduce power. Our work seeks to reduce the amount of data transmitted

through identification and removal of useless words; traditional compression could

be used to more densely pack the remaining data.

Researchers have also proposed a variety of techniques to reduce interconnect

energy consumption through reduced voltage swing [83]. Schinkel et al. propose a

scheme which uses a capacitative transmitter to lower the signal swing to 125 mV

without the use of an additional low-voltage power supply [72]. In this work we

evaluate our prediction and packet encoding techniques for links composed of both

full-signal swing as well as low-signal swing wires.

NoC router microarchitectures for low power have also been explored to reduce

power in the transmission of data which is much smaller than a flit. Das et al.

propose a novel crossbar and arbiter design that supports concurrent transfers of

multiple flits on a single link to improve bandwidth utilization. [22].

Finally, static power consumption due to leakage currents is also a significant

contributor to total system power. However, researchers have shown that power-

gating techniques can be comprehensively applied at the NoC level and are highly

effective at reducing leakage power at periods of low network activity [32].

2.2.3 Spatial Locality and Cache Block Utilization

Spatial and temporal locality have been studied extensively since caches came into

wide use in the early 1980’s [33]. Several works in the 1990’s and early 2000’s focused

on indirectly improving spatial locality through compile and run-time program and
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data transformations which improve the utilization of cache lines [16, 15, 20, 19].

While these techniques are promising, they either require compiler transformations

or program changes and cannot be retrofitted onto existing code. Our proposed

approach relies on low-overhead hardware mechanisms and is completely transparent

to software.

Hardware techniques to minimize data transfer among caches and main memory

have also been explored in the literature. Sectored caches were proposed to reduce

the data transmitted for large cache block sizes while keeping overhead minimal [54].

With the sectored cache, only a portion of the block (a sector) is fetched, significantly

reducing both the miss time and the bus traffic. The proposed technique builds upon

this idea by speculatively fetching, not just the missing sector but sectors (words in

this case) which have predicted spatial locality with the miss.

Prefetching is a technique where cache lines expected to be used in the future are

fetched prior to their demand request, to improve performance by reducing misses.

This may come at the cost of more power spent in the interconnect between caches

when inaccurate prefetches lead to unused cache block fetches. Our technique is

complementary and can be used to compensate prefetch energy overhead by gating

unused words.

Pujara et al. examined the utilization of cache lines and showed that only 57%

of words are actually used by the processor and the usage pattern is quite pre-

dictable [66]. They leverage this information to lower power in the cache itself by

reducing the number of words read from the lower level cache and written to the

upper level cache. This mechanism is orthogonal and potentially complementary to

our technique, as we focus primarily on achieving lower energy consumption in the

interconnect. Yoon et al. proposed an architecture that adaptively chooses memory

system granularity based on spatial locality and error-tolerance tradeoffs [81]. While
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this work focuses on contention for off-chip memory bandwidth, our work targets

on-chip interconnect energy consumption by observing spatial locality. Qureshi et

al. suggested a method to pack the used words in a part of the cache after evict-

ing it from the normal cache, thus increasing performance and reducing misses [67].

Their work thus focuses on performance rather than energy-efficiency and targets

the effectiveness of the second-level cache.

Spatial locality prediction is similar to dead block prediction [50]. A dead block

predictor predicts whether a cache block will be used again before it is evicted. The

spatial locality predictor introduced in this work can be thought of as a similar device

at a finer granularity. The spatial locality predictor, however, takes into account

locality relative to the critical word offset, unlike dead block predictors. Chen et al.

predicted a spatial pattern using a pattern history table which can be referenced by

the pc appended with the critical offset [17]. The number of entries in the pattern

history table, as well as the number of indexes increase the memory requirement of

the technique. Unlike these schemes, our predictor uses a different mechanism for

managing prediction thresholds in the face of mispredictions. Kim et al. proposed

spatial locality speculation to reduce energy in the interconnect [47], we present here

an extended journal version of this earlier work.
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2.3 Description

Our goal is to save dynamic energy in the memory system interconnect by elim-

inating switching activity associated with unused words in cache blocks transferred

between the different levels of the on-chip cache hierarchy. To this end we developed

a simple, low complexity, spatial locality predictor, which identifies the words ex-

pected to be used in each cache block. A used word prediction is made on a L1 cache

miss, before generating a request to the L2. This prediction is used to generate the

response packet eliding the unused words with the proposed flit encoding schemes

described below.

Figure 2.2: General CMP architecture

Figure 2.2 depicts the general, baseline architecture, representing a 16-node NoC-

connected CMP. A tile consists of a processor, a portion of the cache hierarchy and a

Network Interface Controller (NIC), and is bound to a router in the interconnection
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Figure 2.3: Prediction example for 4 words/block cache model

network. Each processor tile contains private L1 instruction and data caches. We

assume the L2 is organized as a shared S-NUCA cache [46], each tile containing one

bank of the L2. The chip integrates two memory controllers, accessed via the east

port of node 7 and west port of node 8. Caches have a 64-byte block size. The

NoC link width is 16 bytes, discounting flow-control overheads. Thus, cache-block-

bearing packets are five flits long, with one header flit and four data flits. Each data

flit contains four 32-bit words, as shown in Figure 2.5(b).

2.3.1 Spatial Locality Prediction

2.3.1.1 Prediction Overview

Our predictor leverages the history of use patterns within cache blocks brought

by a certain instruction has been accessed. The intuition behind our predictor is that

a given set of instructions may access multiple different memory address regions in a

similar manner. In fact, we have observed that patterns of spatial locality are highly
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correlated to the address of the instruction responsible for filling the cache (the fill

PC). The literature also shows that a small number of instructions cause the most

cache misses [2]. Moreover, a given sequence of memory instructions accesses the

same fields of data structures throughout memory [17]. Data structure instances,

are unfortunately not aligned to the cache block, this misalignment can be adjusted

by using the offset of the word which causes the cache miss (the critical word offset)

while accessing the prediction table as in [66].

2.3.1.2 Predictor Implementation

Our prediction table is composed of rows of four-bit saturating counters where

each counter corresponds to a word in the cache block. The table is accessed such

that the fill PC picks the row of the table, and then n consecutive counters starting

from the critical word offset are chosen where n is the number of words in a cache

block. (Thus, there are 2n - 1 counters per row to account for all possible n - 1

offsets.) These counters represent the history of word usage in cache blocks brought

by a certain memory instruction.

The value of the saturating counter relates to the probability that the correspond-

ing word is used. The lower the counter is, the higher confidence the word will not

be used. Initially, all counters are set to their max value, representing a prediction

where all words are used. As cache lines are evicted with unused words, counters

associated with those unused words are decremented while counters associated with

used words are incremented. If a given word counter is equal to or greater than a

fixed threshold (configured at design time), then the word is predicted to be used;

otherwise, it is predicted not used. We define used-vector as a bit vector which iden-

tifies the words predicted used by the predictor in the cache block to be filled. A

used-vector of 0xFFFF represents a prediction that all sixteen words will be used
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while a used-vector of 0xFF00 signifies that only the first eight words will be used.

Figure 2.3 shows the steps to the prediction. In this example, the number of

words in a block is assumed to be 4 and the threshold is 1, for simplicity. In the

figure a cache miss occurs on an instruction accessing the second word in a given

block (critical word offset = 1). The lower-order bits of the fill PC select a row in the

prediction table. Among the counters in the row, the selection window of 4 counters,

which initially includes the four rightmost counters, moves to the left by the number

of the critical word offset. Those selected counters are translated into a predicted

used-vector based on the threshold value. The used-vector, 1100, indicates that the

first and the second words in this block will be used.

The L1 cache keeps track of the actual used vector while the block is live, as

well as the lower-order bits of the fill PC, and the critical word offset. When the

block is evicted from the L1, the predictor is updated with the actual used vector;

if a word was used, then the corresponding counter is incremented; otherwise, it

is decremented. While updating, it finds the corresponding counters with the fill-

PC and the critical word offset as it does for prediction. In the event a word is

falsely predicted “unused”, the counters for the entire row are reset to 0xF to reduce

the likelihood of future mispredictions. This form of resetting have been shown

to improve confidence over up/down counters for branch predictors [40]; in initial

development of the predictor we found a considerable improvement in accuracy using

this technique as well. Resetting the counters allows the predictor to quickly react

in the event of destructive interference and/or new program phases.

2.3.1.3 Impact on Energy

We model a cache with 64B blocks and 4B words. Each row of the predictor

is composed of 31 four-bit saturating counters where all counters are initialized to
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0xF. The predictor table has 256 rows of 31 × 4 bits each, thus requiring ∼4KB of

storage. We note, although the “word” size here is 4B, this represents the prediction

granularity, it does not preclude use in a 64b (8B) word architecture.

In addition to the 4KB prediction table, our scheme requires extended metadata

in each cache tag. In L1, 16 bits (one per word) are necessary to determine which

words have been accessed so that we can update the predictor. 8 bits for fill-PC

and 4 bits for critical word offset are required to access the prediction table, as well.

We also replace the single valid bit with a vector of 16 bits in L1 and L2 caches.

Although, this metadata increases the power per access of the L1 and L2 caches by

0.35% and 0.72%, respectively, we also reduce the number of words read from the

lower level caches and written to the upper level cache by ∼30% and also the number

of words written back into the lower level cache by ∼40%. Altogether this results

an average ∼20% reduction in dynamic energy consumption per cache access. The

dynamic energy consumed by the prediction tables is discussed in Section 4.6.

Although not the focus of this work, leakage energy dissipation can be also op-

timized with the help of spatial locality speculation. Chen et al. achieved 41% of

leakage energy reduction with their proposed spatial locality predictor and a circuit

level selective sub-blocking technique [17]. We expect a better reduction could be

achieved with our technique (as our predictor accuracy is higher), we plan to explore

this in a future work on used word prediction for cache power reduction.

2.3.1.4 Impact on Performance

When an L1 cache miss is discovered, the predictor supplies a prediction to inform

flit composition. The prediction will take two cycles: one for the table access and

one for thresholding and shifting. The fastest approach would be to speculatively

assume that every cache access will result in a miss and begin the prediction simul-
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taneously with address translation; thus, the latency can be completely hidden. A

more energy efficient approach is to begin the prediction as soon as the tag mismatch

is discovered and simultaneously with victim selection in the L1 cache. While this

approach would add a cycle to the L1 miss time, no time would be added to the more

performance critical L1 hit time. The latter approach was used in our experiments.

If a word predicted unused actually is used, it is treated as a miss and all words ini-

tially predicted as unused are brought into the upper-level cache in order to correct

this misprediction. This performance impact of these extra misses is discussed in

Section 2.5.1.

On eviction of a L1 cache block, the used-vector and fill PC collected for that

block are used to update the predictor. This process is less latency sensitive than

prediction since the predictor does not need to be updated immediately to provide

good accuracy.

2.3.2 Packet Composition

Once we have predicted the application’s expected spatial locality to determine

the unused words in a missing cache block, we employ a flit encoding technique which

leverages unused words to reduce dynamic link and router energy in the interconnect

between the L1, directory, L2 cache banks and memory controllers. We propose two

complementary means to leverage spatial locality prediction to reduce α, the activity

factor, in the NoC, thereby directly reducing dynamic energy: 1) Remove flits from

NoC packets (flit-drop); 2) Keep unused interconnect wires at fixed polarity during

packet traversal (word-repeat). For example, if two flits must be transmitted and

all the words in the second flit are predicted unused, our flit-drop scheme would

discard the unused flit to reduce the number of flits transmitted over the wire. In

contrast, our word-repeat scheme would re-transmit the first flit, keeping the wires
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at fixed polarity to reduce gate switching. These encoding schemes are also used for

writeback packets to include dirty words only.

The packet compositioning may be implemented either “statically”, whereby

packet encoding occurs at packet generation time, or “dynamically”, in which the

unused words in each flit are gated within the router FIFOs, crossbars and links to

avoid causing bit transitions regardless of the flits which proceed or follow it. We

will first discuss the “static” packet compositioning techniques including flit-drop,

static-word-repeat and their combination. We then discuss the “dynamic” packet

composition techniques which allow greater reductions in activity factor, at the cost

of a small increase in logical complexity in the routers and a slight increase in link

bit-width.

2.3.2.1 Static Packet Composition

Figure 2.4 depicts the format of cache request and reply packet flits in our design.

A packet is composed either of a head flit and a number of body flits (when the packet

contains a cache block) or it consists of one atomic flit, as in the case of a request

packet or a coherence protocol message. The head/atomic flit contains a used-vector.

The head flit also contains source and destination node identifiers, and the physical

memory address of the cache block. The remaining bytes in the head/atomic flit are

unused. We assume a flow-control overhead of three bits, 1 bit for virtual channel

id (VC) and 2 bits for flit type (FT). As each of body/tail flit contains data of four

words (16 bytes), a flit is 16 bytes and 3 bits wide including flow control overheads.

Figure 2.5(a) depicts an example of read request (L1 fill). In this example, tile

#1 requests a block at address 0x00001200 which resides in the S-NUCA L2 cache

bank in tile #8. The used-vector is 1111 1100 0000 1010, indicating the words

word0 - word5, word12 and word14 are predicted used. The corresponding response
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(a) head/atomic

(b) body/tail

Figure 2.4: Flit format for static and dynamic encoding. (Shaded portion not present
in static encoding.)

packet must contain at least those words. Since the baseline architecture sends the

whole block as it is, the packet contains all of the words from word0 to word15, as

shown in figure 2.5(b).

Flit-drop: In the flit-drop technique, flits which are predicted to contain only

unused words are dropped from the packet and only those flits which contain one or

more used words are transmitted. The reduction in the number of flits per packet,

reduces the number of bit transitions over interconnect wires and therefore the energy

consumed. Latency due to packet serialization and NoC bandwidth will also be

reduced as well. Although a read request packet may have an arbitrary used-vector,

the response packet must contain all flits which have any words predicted used leading

to some lost opportunity for packets which have used and unused words intermingled

throughout.
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Figure 2.5(c) depicts the response packet to the request shown in Figure 2.5(a)

for the flit-drop scheme. The first body flit, containing word0 - word3, therefore must

be in the packet as all of these words are used. The second body flit, with word4 -

word7, also contains all valid words, despite the prediction word6 and word7 would

not be used. These extra words are overhead in the flit-drop scheme because they

are not predicted used but must be sent nevertheless. Although these words waste

dynamic power when the prediction is correct, they may reduce the miss-prediction

probability.

Static-word-repeat: The static-word-repeat scheme, reduces the activity factor of

flits containing unused words by repeating the contents in previous flit in the place

of unused words. Flits with fewer used words consume less power because there are

fewer bit transitions between flits. Words marked as “used” in the used-vector con-

tain real, valid data. Words marked as “unused” in the used-vector contain repeats

of the word in the same location in the previous flit. For instance, if word4x+1 is

predicted unused, the NIC places word4(x−1)+1 in its place. As the bit-lines repeat

the same bits, there are no transitions on those wires and no dynamic energy con-

sumption. A buffer retaining four words previously fetched by the NIC is placed

between the cache and the NIC and helps the NIC in repeating words. An extra

mux and logic gates are also necessary in the NIC to encode repeated words.

Figure 2.5(d) depicts the response packet for the request in Figure 2.5(a) using the

static-word-repeat scheme. In body1, word6 and word7 are unused and, thus, replaced

with word2 and word3 which are at the same location in the previous flit. All of the

words in body2 are repeated by the words in body1, thus it carries virtually nothing

but flow-control overhead. We also encode the unused header words, if possible.
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(a) Request

(b) Baseline Response

(c) Flit-Drop Response

(d) Word-Repeat Response

Figure 2.5: Read request and corresponding response packets (VC is not shown in
this figure.)

2.3.2.2 Dynamic Packet Composition

The effectiveness of static packet compositioning schemes is reduced in two commonly-

occurring scenarios: (a) when single-flit, atomic packets are being transmitted, and

(b) when flits from multiple packets are interleaved in the channel. In both cases,

repeated words in the flits cannot be statically leveraged to eliminate switching ac-

tivity in the corresponding parts of the datapath. In response, we propose dynamic

packet composition to reduce NoC switching activity by taking advantage of invalid
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words on a flit-by-flit basis. The difference between dynamic and static composition

schemes resides primarily in how word-repeat treats unused words. In static compo-

sition, the unused portion of a flit is statically set at packet injection by the NIC to

minimize inter-flit switching activity, requiring no changes to the router datapath.

In dynamic composition, portions of the router datapath are dynamically enabled

and disabled based on the validity of each word in the flit. In effect, an invalid word

causes the corresponding portion of the datapath to hold its previous value, creating

the illusion of word repeat.

To facilitate dynamic composition, the “used-vector” is distributed into each flit

as shown in Figure 2.4(b). As a result the link width must be widened by four bits

to accommodate the new “valid-word-vector”, where each bit indicates whether the

corresponding word in that flit is valid. As the figure shows, the head flit’s “valid-

word-vector” is always set to 1100 because the portion which corresponds to Word2

and Word3 of a body/tail flit are always unused.

Dynamic packet compositioning requires some modifications to a standard NoC

router to enable datapath gating in response to per-flit valid bits. Figure 2.6 depicts

the microarchitecture of our dynamic packet compositioning router. Assuming that

a whole cycle is required for a flit to traverse a link, latches are required on both

sides of each link. The additional logic required for link encoding is shaded in the

magnified output port. Plain D-flip-flops are replaced with enable-D-flip-flops to

force the repeat of the previous flit’s word when the “valid-word-vector” bit for that

word is set to zero, indicating that word is not used. Alternately, if the “valid-word-

vector” bit for the given word is one, the word is propagated onto the link in the

following cycle, as it would in the traditional NoC router. In cases where the link

traversal consumes less than a full cycle, this structure could be replaced with a

tristate buffer to similar effect.
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Figure 2.6: Dynamic packet compositioning router. (Shaded portion not present in
baseline router.)
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We further augment the router’s input FIFO buffers with per-word write enables

connected to the “valid-word-vector” as shown in Figure 2.6. In our design, the

read and write pointer control logic in the router’s input FIFOs remain unmodified;

however, the SRAM array storage used to hold the flits is broken into four banks,

each one word in width. The “valid-word-vector” bits would gate the valid write

enables going to each of word-wide banks, disabling writes associated with unused

words in incoming flits, and saving the energy associated with those word writes.

The combination of these techniques for dynamic packet composition will reduce the

power and energy consumption of the NoC links and router datapath proportional to

the reduction in activity factor due to the word-repeat and flit-drop of unused words.

As flit-drop and word-repeat are complementary, we will also examine their com-

bination in the evaluation section. One alternative technique we explored packs

together used words into a minimal size packet. Experimentally we found this ap-

proach produces latency and power benefits negligibly different from the combination

of flit-drop and word-repeat, while our technique requires less additional hardware in

packet composition, so these results are not presented. These encoding schemes also

are used for writebacks by marking clean words as unused.
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2.4 Evaluation

2.4.1 Baseline Architecture and Physical Implementation

Figure 2.2 depicts the baseline architecture, representing a 16-node NoC-connected

CMP. A tile consists of a processor, a portion of the cache hierarchy and a Network

Interface Controller (NIC), and is bound to a router in the interconnection network.

The baseline architecture employs a 4×4 2D mesh topology with X-Y routing and

wormhole flow control. Each router contains 2 VCs and each input buffer is four flits

deep. In our baseline configuration we assume the tiles are 36mm2 with 6mm-long

links between nodes. Our target technology is 45 nm.

Processor Tiles: Each 36mm2 tile contains an in-order processor core similar to

an Intel Atom Z510 (26mm2) [38], a 512KB L2 cache slice (4mm2), two 32KB L1

caches (0.65mm2 each) and an interconnect router (0.078mm2). The remaining area

is devoted to a directory cache and a NIC. Our system is composed of 16 tiles and

results in 576mm2, approximately the size of an IBM Power7 die [43]. We used

CACTI 6.0 [59] to estimate cache parameters.

The L1 caches are two-way set-associative with a 2 cycle access latency. The L2

banks are 8-way set-associative with a 15-cycle access time. The 16 L2 banks spread

across the chip comprise an 8-MB S-NUCA L2 [46]. Cache lines in both L1 and L2

caches are 64B wide (16 four-byte words), except where otherwise noted. Each node

also contains a slice of the directory cache, interleaved the same as the L2. Its latency

is 2 cycles. The number of entries in each directory cache is equal to the number of

sets in an L2 bank. We assume the latency of the main memory is 100 cycles. The

MESI protocol is used by the directory to maintain cache coherence. The predictor’s

performance is examined with the threshold value of 1 unless stated otherwise. The

NoC link width is assumed to be 128 bits wide, discounting flow-control overheads.
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NoC Link Wires: NoC links require repeaters to improve delay in the presence of

the growing wire RC delays due to diminishing interconnect dimensions [39]. These

repeaters are major sources of channel power and area overhead. Equally problematic

is their disruptive effect on floorplanning, as large swaths of space must be allocated

for each repeater stage. Our analysis shows that a single, energy-optimized 6 mm

link in 45 nm technology requires 13 repeater stages and dissipates over 42 mW of

power for 128 bits of data at 1 Ghz.

In this work, we consider both full-swing repeated interconnects (full-swing links)

and an alternative design that lowers the voltage swing to reduce link power con-

sumption (low-swing links). We adopt a scheme by Schinkel et al. [72] which uses

a capacitative transmitter to lower the signal swing to 125 mV without the use of

an additional low-voltage power supply. The scheme requires differential wires, dou-

bling the NoC wire requirements. Our analysis shows a 3.5× energy reduction with

low swing links. However, low-swing links are not as static-word-repeat friendly as

much as full-swing links are. There is link energy dissipation on low-swing links, even

when a bit repeats the bit ahead because of leakage currents and high sense amp

power consumption on the receiver side. Thus, the repeated unused-words consume

∼ 18% of what used-words do. The dynamic encoding technique fully shuts down

those portions of link by power gating all components with the “valid-word-vector”

bits.

Router Implementation: We synthesized both the baseline router and our dy-

namic encoding router on a TSMC 45nm library to an operating frequency of 1Ghz.

Table 2.1 shows the area and power of the different router designs. Note that the

baseline router and the one used in static encoding scheme are identical. The ta-

ble shows the average power consumed under PARSEC traffic, simulated with the

methodology described in Section 2.4.2. The dynamic power for each benchmark is
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Table 2.1: Area and Power

baseline static dynamic

Area (mm2) 0.073 0.078

Static Power (mW) 0.71 0.74

Router with full-swing link

Dynamic Power (mW) 1.73 1.28 0.92

Total Power (mW) 2.45 1.99 1.67

Router with low-swing link

Dynamic Power (mW) 0.62 0.46 0.33

Total Power (mW) 1.34 1.18 1.08

computed by dividing the total dynamic energy consumption by the execution time,

then by the number of routers. Summarizing the data, a router design supporting

the proposed dynamic composition technique requires ∼7% more area, while reduc-

ing dynamic power by 46% under the loads examined over the baseline at the cost

of 4.3% more leakage power.

Table 2.2 shows the dynamic energy consumed by a flit with a given number

of words encoded as used, traversing a router and a link, with respect to the three

flit composition schemes: baseline(base), static(sta) and dynamic(dyn) encoding.

In baseline, a flit always consumes energy as if it carries four used words. In static

encoding, as the number of used words decreases, flits consume less energy on routers

and full-swing links. Static-encoding reduces NoC energy by minimizing the number

of transitions on the wires in the links and in the routers’ crossbars. Dynamic-

encoding further reduces router energy by gating flit buffer accesses. The four-bit,

valid-word-vector in each flit controls the write enable signals of each word buffer,

disabling writes associated with unused words. Similarly, it also gates low-swing

links, shutting down the transceiver pair on wires associated with the unused words.

CACTI 6.0 [59] was used to measure the energy consumption due to accessing the
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Table 2.2: Per-Flit Dynamic Energy (pJ)
Router Full Swing Link Low Swing Link

n base sta dyn base sta dyn base sta dyn

0

3.58

0.73 0.34

43.10

0.99 2.30

12.31

0.35 0.66
1 1.31 1.01 11.52 12.83 3.34 3.67
2 1.90 2.01 22.04 23.36 6.33 6.67
3 2.77 2.79 32.57 33.89 9.32 9.68
4 3.58 3.65 43.10 44.41 12.31 12.69

n: number of used words

predictor; which is 10.9 pJ per access.

2.4.2 Simulation Methodology

We used the M5 full system simulator to generate CMP cache block utilization

traces for multi-threaded applications [12]. Details of the system configuration are

presented in section 2.4.1. Our workload consists of the PARSEC shared-memory

multi-processor benchmarks [10], cross-compiled using the methodology described

by Gebhart et. al [27]. All applications in the suite currently supported by M5

were used. Traces were taken from the “region of interest.” Each trace contains

up to a billion memory operations; fewer if the end of the application was reached.

Cycle accurate timing estimation was performed using the Netrace, memory system

dependence tracking methodology [34].

The total network energy consumption for each benchmark is measured by sum-

ming the energy of all L1 and L2 cache fill and spill and coherence packets as they

traverse routers and links in the network. In effect, Table 2.2 is consulted whenever

a flit with a certain number of used words traverses a router and a link. Note that

even for the same flit, the used word number may vary according to the encoding

scheme in use. For example, for an atomic flit, n = 4 in static encoding while n = 2

in dynamic. The predictor’s energy is also added whenever the predictor is accessed.

27



(a) full-signal swing link

(b) low-signal swing link

Figure 2.7: Dynamic energy breakdown

2.4.3 Energy Consumption

Figure 2.7 shows the breakdown of dynamic energy consumption. For each bench-

mark, we conducted energy simulations for three configurations, each represented by

one stacked bar for that benchmark: 1) baseline - baseline, 2) s-combo - static-word-
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repeat and flit-drop combined, and 3) d-combo - dynamic-word-repeat and flit-drop

combined. We also show the average energy consumption with pure flit-drop (flit-

drop), static-word-repeat (s-wr) and dynamic-word-repeat (d-wr). The bars are

normalized against the energy consumed by baseline. Each bar is subdivided into

up to four components. The first bar shows the “read” energy, energy consumed by

cache fills and the second bar, “write”, by writebacks. The third bar, “coh”, shows

the energy due to the cache coherence packets and the fourth bar, “pred” shows

the energy consumed by predictors. The figure shows data for both full-swing and

low-swing links.

In the baseline configuration we see that, on average, read communication con-

sumes the most dynamic energy with ∼59% of the total. Coherence traffic consumes

the second most with ∼28% of the total energy followed by write communication

with ∼13% of the total energy. This breakdown follows the intuition that reads are

more frequent than writes. Thus, techniques which only focus on writebacks will

miss much potential gain. It is also interesting to note that cache coherence traffic

shows a very significant contribution to overall cache interconnect energy. Similarly,

work which does not consider atomic packets may miss significant gain.

The figure also shows that among the flit encoding schemes, d-combo shows the

greatest improvement with ∼36% dynamic energy savings on average when full-

signal swing link is used. If low-signal swing links are used, it becomes ∼34%. The

pure dynamic-word-repeat (d-wr) is the second best resulting in additional ∼1%

energy consumption. This implies that dropping flits only with flow control bits

does not significantly contribute to energy reduction when dynamic- word-repeat is

used. However, combining flit-drop is still beneficial to reduce latency. The com-

bined static encoding (s-combo) provides an energy savings of only ∼17% and ∼15%

of baseline, under full-swing and low-swing links, respectively. This indicates the
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Figure 2.8: Dynamic energy breakdown for reads

significant gains that dynamic encoding provides, primarily in the cache coherence

traffic which is predominately made up of single flit packets. We find the predictor

merely contributes 1.5% of the total energy when full-signal swing link is used, and

4.1% when low-signal swing link is used.

Table 2.1 shows the average power with either type of links. It reveals that

despite the increased static power, the dynamic encoding scheme still outperforms

the baseline and the static encoding as well, regardless of link type.

In the following sections we will examine each of the traffic types in detail to gain

a deeper understanding of the performance of our proposed technique. As full-swing

link and low-swing link show similar trends, only graphs for full-swing links will be

shown hereafter.
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2.4.3.1 Read Energy Discussion

Figure 2.8 shows the breakdown of dynamic energy consumption for reads. Each

bar is subdivided into five components and also normalized against baseline. The

first bar “l2” depicts the energy consumed by L2 cache fills and spills. Although the

prediction actually occurs on L1 cache misses, the encoding schemes are also used

for the transactions between the L2 and memory controller, based upon used-vector

generated on the L1 cache miss the lead to the L2 miss.

The second bar shows the “used” energy, energy consumed by the words which

will be referenced by the program, hence “used” bars are nearly equal, with the

exception of a slight increase in energy due to router overheads in the dynamic

scheme. The third bar, “unused”, shows the energy consumed to bring in words

which will not be referenced prior to eviction. This also includes the energy consumed

by words which result from false-positive predictions, i.e. an incorrect prediction

that the word will be used. The fourth bar, “overhead”, shows the energy for NoC

packet overheads, including header information and flow control bits. The fifth bar,

“extra”, shows the energy consumed by the packet overhead due extra cache line

fills to correct “false-negative” mispredictions. Our goal is to remove, as much as

possible, the dynamic datapath energy consumed by unused words denoted by unused

and, where possible, the packet overheads in overhead, while minimizing redundant

misses due to mispredictions in extra. Unused words consume an average of 33% of

total dynamic datapath energy, and up to 53% of total dynamic datapath energy in

case of blackscholes (shown as Black in the graphs.)

The d-combo scheme, on average, reduces total dynamic datapath energy by

∼32%. Our prediction mechanism combined with the encoding schemes approxi-

mately halves the “unused” portion, on average. In case of Black where the predictor
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performs the best, the speculation mechanism removes 90% of the “unused” portion

resulting in a 66% energy savings for cache fills when combined dynamic encoding is

used. The extra transmission due to mispredictions, shown as “extra” in the stack,

contributes less than 1% of energy consumption for cache fills.

2.4.3.2 Coherence Energy Discussion

In the simulated system coherence is maintained via the MESI protocol. Co-

herence protocol messages and responses represent a significant fraction of the net-

work traffic. Those protocol messages are composed primarily of single-flit packets,

and contribute ∼28% of total network energy consumption. Figure 2.9 shows the

breakdown of dynamic energy consumption for coherence packets. Although these

single-flit packets contain ∼50% unused data, as discussed in Section 2.3.2.1, static-

encoding can not be used to reduce their energy dissipation. Dynamic-encoding,

however, reduce it by up to 45.5%.

Figure 2.9: Dynamic energy breakdown for coherent packets
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2.4.3.3 Write Energy Discussion

Figure 2.7 shows that writebacks consume an average of 13% of total dynamic

energy. Upon dirty line writeback, we find that, on average, 40% of the words in the

block are clean, and those words contribute 23% of the total energy consumed by

writebacks.

Figure 2.10 shows the dynamic energy breakdown caused by writebacks. The

first bar, “dirty”, shows the energy consumed by the dirty words in cache lines.

The second bar “overhead” shows the energy consumed by NoC packet overheads.

The third bar, “clean”, includes the link energy consumed by sending clean words

in writeback packets. Our goal is to remove the portion of the energy consumption

associated with transmitting “clean” words. On average, the s-combo scheme reduces

the energy consumption due to writebacks by 29%. Further savings are achieved by

d-combo. It encodes not only body/tail flits but also head flits of the writeback

packets resulting in a 40% savings. When full swing links are used, it is possible

to remove all of energy dissipation due to clean words with the static flit-encoding

scheme. However, when static word repeat is used with low swing links, although

clean words are encoded to repeat the words in the flit ahead, those words cause

energy dissipation due to leakage currents and high sense amp power consumption

on the receiver side.
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Figure 2.10: Dynamic energy breakdown for writes
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2.5 Analysis

In this section we analyze the performance impact of the proposed energy reduc-

tion technique, explore predictor training and compare against a 32-byte cache line

baseline design.

2.5.1 Performance

The performance impact of the proposed technique is governed by two divergent

effects. First, the scheme should improve performance because flit-drop reduces the

number of flits injected into the network. Decreased flit count improves performance

through less serialization latency, and reduced congestion due to lower load. Second,

offsetting the benefit from flit-drop, incorrectly predicting a word unused can lead

to more misses, increasing network load and average memory access time (AMAT).

To quantify the impact of the proposed technique, Figure 2.11 shows the reduction

in flits injected into the network for each benchmark, the reduction in individual

packet latency, and the AMAT for each benchmark, all normalized against baseline.

Each value number is normalized against baseline. As the figure shows, although flit

count and individual packet latency decrease significantly, AMAT is essentially flat

across the benchmarks. In this section we examine the relationship between network

performance and system performance.

2.5.1.1 Network Performance

As shown in Figure 2.11, the flit count is reduced by 12% on average. Optimally,

the flit count reduction should be directly proportional to the block utilization. From

Figures 2.1, 2.7 and 2.11, we see that Blackscholes, which has the lowest block

utilization, and the greatest portion of read energy consumption, has the greatest

reduction flits across the PARSEC benchmarks. Alternately, Bodytrack, which also
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Figure 2.11: Flit count, packet latency and AMAT normalized against baseline.

shows one of the lowest block utilizations, removes merely 1.8% the injected flits.

This is because flit count reduction is related not only to block utilization, but also

prediction accuracy, proportion of single flit packets, and the used-unused pattern

within the packet. In Bodytrack, flit reduction is low because single-flit coherent

packets make up a larger portion of the injected packets, and the predictor is less

accurate than for Blackscholes.

Lowered flit count should be correlated with reduced packet latency. Figure 2.11

shows normalized packet latency. On average, the network latency is reduced by∼6%

as the number of flits has decreased. In Blackscholes, with greatest reduction in flit

count, the packet latency is reduced by 9%, showing one of the best network per-

formance improvements across the PARSEC benchmarks. Alternately, Bodytrack’s

network performance is improved by only 1%. Interestingly, flit count reduction and
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Figure 2.12: Packet latency breakdown

network latency are not always strictly proportional to each other; X264, counter-

intuitively shows a greater improvement in packet latency than its reduction in flit

count, warranting further analysis.

Flit-drop improves network performance not only by reducing the serialization

latency but also by avoiding network congestion. Figure 2.12 shows the breakdown of

average packet latency. Each bar consists of two components; 1) zero load shows the

packet latency due to static hop count and serialization latencies, 2) congestion shows

the latencies due to the resource conflicts. Although each component contributes 67%

and 33% of the average latency, respectively, the greater impact of reduced flit count

lies in congestion. This effect is illustrated by X264 which has the second greatest

congestion latency, as a result a relatively small reduction in flits translates into a

greater reduction in packet latency. The overall average packet latency has been

reduced by 5.7%.
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2.5.1.2 Overall System Performance Discussion

Figure 2.13: AMAT graph

As a proxy for overall system performance we examine the technique’s impact on

average memory access time (AMAT). Despite an improvement in packet latency,

Figure 2.11 shows that AMAT is unchanged on average, with some benchmarks

showing a slight improvement, while others showing a slight degradation. To explore

this counter-intuitive result we examine how AMAT relates to packet latency and

L1 miss rate. AMAT in this work and it can be estimated by Equation 2.2.

AMAT = Latency(L1) + (1−HitRate(L1))× Latency(L2+) (2.2)

In this equation, Latency(L1) is the constant L1 latency for the system, andHitRate(L1)

is the hit rate of L1 accesses which varies by benchmark locality and is effected by

false unused-word predictions. Latency(L2+) is the latency of memory accesses
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served by L2 and beyond, which is also known as L1 miss latency. It is a function of

the constant L2 cache access time, L2 miss rate, network latency and the constant

memory access time. Assuming Latency(L2+) is fixed, AMAT is a linear function

of HitRate(L1). Figure 2.13 visualizes AMAT as f(r) where r is L1 hit rate.

In Figure 2.13, let f1(r) be the AMAT characteristic for a benchmark, where T1

is the L1 latency and T2 is L1 latency plus L1 miss latency. Say, with the baseline

scheme, the L1 hit rate is r0 and AMAT becomes f1(r0). If our prediction mechanism

drops the L1 hit rate to r1 and that does not change L1 miss latency, the AMAT

becomes f1(r1). In such a case, f1(r1) − f1(r0) represents the performance loss due

to mispredictions. However, thanks to our packet composition technique, L1 miss

latency, in general, is lower than that of baseline cases. Thus, its AMAT characteristic

function should be redrawn as f2(r) and the AMAT at r1 is f2(r1). If f2(r1) < f1(r0)

as in this example, the difference, f1(r0) − f2(r1) denotes the performance benefit

from our prediction technique.

In this example, we can also see that as long as the predictor drops the L1 hit

rate no lower than r2, performance improvement is expected. We define safe range

as the range of L1 hit rate where our prediction scheme shows equal or better AMAT

than the baseline design. In this particular example, the safe range is [r2, r0]. To

generalize, safe range, ∆r, is calculated as below:

∆r =
∆T

To −∆T
(1− ro) (2.3)

where To and ro are the original L1 miss latency and L1 hit rate, respectively, and

∆T the reduced amount of L1 miss latency. The wider safe range we have, the better

chance that we achieve the performance improvement.

Figure 2.14(a) shows the average L1 miss latency for each benchmark. The bars

marked as base show the L1 miss latency for the baseline design, while pred shows
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the latency for the proposed scheme. In every case, a reduction in L1 miss latency

is observed. This reduction is closely related to the reduction in the interconnect

network latency shown in Figure 2.12. Although the packet latency in the figure is

normalized, the L1 miss latency shows the similar trend to that; the more reduction

in the network latency we have, the more reduction in L1 miss latency. According

to Equation 2.3, the wider safe range, and, in turn, no performance degradation, is

expected for benchmarks with a lower base and a bigger gap between base and pred.

However, the safe range is still up to L1 hit rate.

Figure 2.14(b) shows the original L1 hit rate (”l1 hit base”) the new L1 hit rate

(”l1 hit pred”) and the changed average memory access time (”norm lat”). On

average, L1 hit rate is decreased by 0.15%. Blackscholes (“Black”) has the third

greatest improvement in L1 miss latency, the lowest L1 miss latency and the second

lowest L1 hit rate, it results in the greatest overall performance improvement of 4.2%.

By contrast, “X264”, while having the greatest L1 miss latency improvement, also

has one of the highest L1 miss latency, and the highest L1 hit rate, therefore achieves

the worst overall system performance. Although “Canneal” shows the worst impact

on L1 hit rate, due to its low original L1 hit rate, the reduced L1 hit rate is still in

its safe range, thus, no performance penalty for mispredictions is shown.
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(a) L1 Miss Latency

(b) L1 Hit Rate

Figure 2.14: Overall system performance
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Figure 2.15: Breakdown of predictions outcomes

2.5.2 Predictor Tuning

As with many speculative techniques, our scheme incurs a performance penalty

when mis-speculation occurs. In this case, the penalty manifests as increased L1D

misses. As Figure 2.14(b) shows, L1D hit rates are barely impacted by our technique.

One possible interpretation of this data is that our predictor is overly conservative,

and that energy gain could be achieved by more aggressively tuning our predictor,

in this section we explore predictor tuning to this end.

Our prediction model requires a threshold value to be configured at design time.

As described in Section 2.3.1.1, the threshold determines whether a certain word will

be used or not according to its usage history counter. If the counter value is less

than the threshold, the word is predicted to be unused. The smaller threshold value,

the more biased the predictor towards predicting a word will be used. Thus, the

threshold value tunes the trade-off between energy consumption and memory access

time.

Figure 2.15 shows the prediction outcomes with respect to various threshold val-

ues (numbers along the bottom) for each of the benchmarks examined. Each bar
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is broken into components to show average number of words in a cache line with

the following characteristics. The bars marked true pos show the fraction of true

positives: words predicted used and actually used. The bars marked true neg show

the portion of true negatives: words predicted unused and actually not used. The

words in this category are the source of the energy reduction in our design. These

two categories form the portion of the words that the predictor correctly speculates

their spatial localities. The bars marked false pos show the fraction of false positives:

words predicted used but actually unused. The words in this category do not cause

any miss penalty but represent a lost opportunity for energy reduction. Finally, the

bars marked false neg show the portion of false negatives: words predicted unused

but actually used. These words result in additional memory system packets, po-

tentially increasing both energy and latency. The threshold value “0” in this figure

represents the baseline configuration, where all words are assumed used. In general,

as the threshold value increases, the portions of true neg and false neg increase while

true pos and false pos decrease. This implies that the higher threshold chosen, the

lower energy consumption (due to true neg predictions) but also the higher the la-

tency(due to false neg predictions). We also note that even with the most aggressive

threshold setting, a significant number of false pos predictions remain, despite sig-

nificant increases in false neg predictions, implying that headroom for improvement

via a more accurate prediction mechanism exists.

Figure 2.16 depicts the normalized energy consumption and normalized average

memory access time (AMAT) for threshold values from 1 to 15. For this experi-

ment, we use low swing links, a similar trend of energy consumption and AMAT

was found for full swing links. Figure 2.16(a) shows a modest downward trend in

energy consumption as the threshold value increases, with the greatest increase be-

tween thresholds of 8 and 12. This is the expected outcome of growing true neg
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with higher threshold values in Figure 2.15. In some benchmarks, such as “Black”,

“Fluid” and “X264”, there is slight increase at the highest threshold value. The main

reason for this increase is the energy required to service increased L1D misses, which

overcome the benefit of transmitting fewer words in the initial request.

Figure 2.16(b) shows the normalized AMAT with varying threshold. In general,

the latency shows a modest upward trend as the threshold grows. The higher the

threshold, the more words are speculated as unused by the predictor, leading to

increased L1 miss rates and degrading the overall memory system latency. Though

this trend becomes dramatic for a threshold of 15, increasing AMAT by up to 23%

for one application; we find that thresholds of less than 4 have a minimal negative

impact on AMAT.

Given our goal was to decrease energy with a minimal impact on performance, we

use the Energy ×Delay2 metric as a figure of merit for our design. Experimentally

we determined that Energy ×Delay2 is approximately equal across the thresholds

between 1 and 8, however, it considerably increases beyond the threshold 12. This

result validates our choice a threshold value of 1 in our experiments. We find the

performance impact with this bias is negligible. On average, with this threshold,

the additional latency of each operation is ∼0.6%. These results show that further

energy savings could be achieved through improved predictor accuracy, which we

leave to future work.
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(a) Normalized Energy Consumption

(b) Normalized Average Memory Access Time (AMAT)

Figure 2.16: Normalized energy and AMAT for different threshold values
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2.5.3 Case Study: Comparison with Smaller Lines

Näıvely, one might conclude that the low cache block utilization shown in Fig-

ure 2.1 could be an indication that cache line size is in-fact too long, and that

utilization could be improved by implementing a smaller cache line size. To explore

this concern we examine our technique versus a 32-byte cache lines baseline.

Figure 2.17 shows results for three different configurations; 1) the baseline design

with 64-byte cache lines (64 base), 2) a baseline design with 32-byte lines (32 base)

keeping the cache size and associativity the same as 64 base, and 3) 64-byte lines with

our prediction and dynamic packet composition technique (64 pred). Figure 2.17(a)

shows the arithmetic average of block utilization for each configuration across the

PARSEC benchmarks. Figure 2.17(b) shows the geometric mean of AMAT and

Figure 2.17(c) depicts the geometric mean of total energy consumption. These figures

show, 32-byte lines have better utilization than the 64-byte baseline. Compared

with 64 base, however, only a marginal energy reduction is achieved at the cost of

considerable performance loss. The smaller cache block size results in the increased

L1 misses, and thereby, increased latency of memory accessing operations. 64 pred,

shows even greater block utilization than 32 base while maintaining the performance

of 64 pred and consuming much less energy than the rest. Hence, the proposed

technique is a better design choice than shrinking cache lines to reduce power.
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(a) Block Utilization (b) AMAT (c) Energy

Figure 2.17: Comparison to a smaller cache line
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2.6 Conclusions

In this work, we introduce a simple, yet powerful mechanism using spatial locality

speculation to identify unused cache block words. We also propose a set of static

and dynamic methods of packet composition, leveraging spatial locality speculation

to reduce energy consumption in CMP interconnect. These techniques combine to

reduce the dynamic energy of the NoC datapath through a reduction in the number

of bit transitions, reducing α the activity factor of the network.

Our results show that with only simple static packet encoding, requiring no

change to typical NoC routers and very little overhead in the cache hierarchy, we

achieve an average of 17% reduction in the dynamic energy of the network if full-

signal swing links are used. Our dynamic compositioning technique, requiring a small

amount of logic overhead in the routers, enables deeper energy savings of 36% and

34%, for full-swing and low-swing links respectively.
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3. ENERGY EFFICIENCY THROUGH DVFS

3.1 Introduction

With the scaling transistors, modern chip-multi processors (CMPs) are designed

to accommodate bigger and bigger on-chip last-level cache (LLC). This design de-

cision is in the effort to circumvent the off-chip memory bottleneck. The growing

LLC in turn requires an increase of on-chip communication bandwidth. Although

Networks-on-chip (NoC) are recognized as a scalable approach to addressing the

increasing demand for on-chip communication bandwidth, its power consumption

must be carefully examined. Indeed, the energy consumptions of on-chip communi-

cation fabrics and shared, last-level caches (LLCs) have grown to occupy a significant

portion of the overall chip power, as much as 30% of total power in recent Intel’s

single-chip cloud computer [36].

The energy efficiency of NoC and LLC can be improved by Dynamic Voltage

and Frequency Scaling (DVFS). DVFS has been widely used to reduce the energy

consumption of a system when it is underloaded with the rationale that power should

be provided based on dynamic requirement rather than a constant level. DVFS has

been intensively studied not only for individual microprocessor cores but also for

NoCs [74, 53, 77, 62, 30, 57, 68, 14, 18]. Much of this prior work, however, assumes a

core-centric voltage/frequency (V/F) domain partitioning where the shared resources

(NoC and/or LLC) are divided and allocated to the core-based partitions according

to physical proximity. Although such a configuration allows a huge freedom in V/F

controlling, it results in the large inter-domain interface overhead. In addition, since

these shared resources are to be utilized as a whole, with cache line interleaving

which equalizes the traffic amount and the cache accesses on each tile, per-slice V/F
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tunings makes little sense.

In this work, we assume that the entire NoC and LLC are on a single V/F

domain such that the inter-domain overhead is largely prevented, and there is a

unified policy over the whole shared resources. In the literature, a few studies have

addressed DVFS for such scenario. Liang et al. propose a rule-based control scheme

based on the network load [53]. Chen et al. propose a PI controller based on average

memory access time (AMAT) [18]. Although both works demonstrate the energy

savings from DVFS, they have two critical problems to overcome. First, the metrics

based on which the controllers in those previous works decide on V/F levels may not

be optimal. Second, both studies do not estimate the impact on the overall system

performance with realistic workload.

The contributions of this study are two folds. We, first, introduce a new control

scheme which controls V/F level based on the throughput of the LLC. We, then,

evaluate the energy consumption and the overall system performance using a full

system simulation with PARSEC [10] benchmarks. Our experimental results show

that this new control scheme achieves better energy delay product than the previous

work [18].
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3.2 Preliminaries

3.2.1 Problem Description

Figure 3.1 illustrates our architectural assumptions. The entire chip is composed

of an array of tiles where each tile includes a processor core and private caches. Each

tile has a router which allows the corresponding tile to communicate with other tiles

forming 2D mesh NoC. Each tile also has a slice of the shared LLC partitioned and

distributed uniformly based on address. We refer the NoC and the LLC together

as the uncore system in this study. Each tile has its own V/F (voltage/frequency)

domain and the entire uncore works at a single V/F domain. NI in the figure denotes

Network Interface which is the interface between a tile and the uncore.
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Figure 3.1: A multicore processor design where the uncore (NoC+LLC) forms a
single V/F domain.
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The problem we attempt to solve is formulated as follows:

Uncore Dynamic Voltage and Frequency Scaling: within a set time window, find

the voltage/frequency level for the uncore such that the uncore energy consumption

is minimized while the chip performance, in terms of total application runtime, has

minimal impact.

Please note that the problem formulation in this study is different from previous

works in NoC DVFS, which merely take care of the performance of NoC itself, not

considering its utility to the entire system. In contrast, this study has the more

challenging goal of optimizing uncore energy consumption considering the entire

system performance. The uncore energy we try to minimize includes both dynamic

and leakage energy of which models are well-known.

3.2.2 Previous Work

Liang and Jantsch propose a DVFS controller that controls network voltage and

frequency such that the network operates just below the saturation point [53]. The

controller increases (decreases) network V/F level by one step if the traffic volume

is significantly greater (less) than the saturation point at each control interval. The

metric used in this controller is the number of flits in the network and the saturation

point is heuristically chosen. This technique overlook the fact that network load has

not only temporal variance but also spatial variance which have significant impact

on the network performance. In addition, network load does not always matter.

For instance, many store operations may result in large network load but they are

not critical to the overall system performance. The controller they use may not be

spontaneous enough for bursty traffic as it only changes one step V/F level in each

control interval.

In [18], Chen et al. introduce a PI controller based on AMAT (average memory
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access time). AMAT is formulated as the average turn around time of load operations,

hence it includes the effects of the private caches, NoC, LLC and off-chip memory

reflecting network load and contention inherently. Therefore, it captures a wider

system effects than the network oriented metric in Liang and Jantsch’s approach [53].

The AMAT, however, fails to separate the LLC and NoC utility to the core from the

effects of the off-chip memory. Thus, programs which frequently miss in the LLC,

causing off-chip memory accesses, will lead to high AMAT values, and, in turn, high

LLC and NoC frequencies, despite the low LLC utility in this case. Furthermore,

when programs include few memory operations, which fall into private cache misses

resulting in high AMAT values, the controller loses the opportunity of energy savings

by operating the network at unnecessarily high V/F levels. As the saturation point

in [53], the reference point for the PI controller is also empirically chosen via offline

simulations. The fixed reference point makes the controller less adaptive to various

range of applications. Moreover, neither work provides performance results from

full-system simulation to validate their approach.
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3.3 Throughput-Driven DVFS

To overcome the downsides of the previous work, we propose to use a throughput

metric with which a naturally dynamic reference is enabled for the DVFS PI control

and more aggressive energy saving is achieved. Throughput, RU,Out, is the amount

of data processed by the uncore per unit time, or the rate of data flowing out of

the uncore to cores. Injection rate RU,In, on the other hand, is defined as the cores’

requested data rate. In the long run, outside of saturation, the throughput should

generally follow the injection rate.
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Figure 3.2: Throughput vs. uncore frequency.

The goal of this controller is to operate uncore at the minimum V/F level while

ensuring the throughput satisfy the injection rate. Figure 3.2 depicts the throughputs
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for various injection rates with respect to varying uncore frequency. As the uncore

frequency increases, we observe that the throughput increases asymptotically to the

given injection rate. In a transient period, e.g., control interval i, if the uncore

frequency is not high enough, the throughput RU,Out,i can be different from data

injection rate RU,In,i of the same interval. We have then a PI controller with state

(output) variable RU,Out and reference point RU,In, which is dynamically decided

during operations. Intuitively, such controller ensures that RU,Out becomes RU,In,

and it possibly saves energy by setting the uncore V/F to a lower level than the

maximum level. The reference point is dynamically decided during online operation.

This approach overcomes the difficulty of reference point selection in PI controllers

seen in prior work [18].

Finding the optimal uncore V/F level here, however, is not trivial when the

uncore V/F level is higher than necessary. For example, in Figure 3.2, where the given

injection rate is 0.4 and the current normalized uncore frequency is 0.9, the controller

must reduce the frequency to 0.4 to save energy. In such a case, unfortunately, the

error (RU,In−RU,Out) becomes zero and the PI controller will not change the uncore

V/F level. To avoid this, we magnify RU,Out by a very small percentage δ, e.g., 1%,

resulting in a slightly negative value of the error. By doing so, the controller moves

the V/F level down to the saturation point for the given injection rate without

significantly hurting the throughput. A similar approach has been used in [53]

where the saturation point is statically defined for a certain synthetic workload. In

our work, on the other hand, the controller dynamically finds the saturation point

for any realistic traffic pattern.

The proposed controller requires care to evaluate the injection rate RU,In, espe-

cially when the program phase changes to increase RU,In. Typically, a core stalls after

issuing a number of requests yet to be served. The maximum value of outstanding
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requests is determined by the capacity of its MSHR (Miss Status Handling Register)

for out-of-order processors, or it is 1 in case of in-order processors. At this point, the

core has to wait till a request is served by the uncore, and then it will resume inject-

ing further requests. If there are a sizable number of such stalled cores, the overall

injection rate does not grow enough to increase the uncore frequency, although each

core actually starts generating more requests than before. To address this issue, the

number of stalled cores and the duration of waiting are considered. If the number of

cycles when there are more than N cores waiting their uncore requests is M , and the

size of control interval is P , the effective injection rate, which is also the reference

request rate for the controller, is estimated by Rref,i = RU,In,i · (1 + M
P

) where i is the

index of control interval. Then, the overall error function for the throughput-driven

controller is:

ei = RU,In,i · (1 +
M

P
)−RU,Out,i · (1 + δ) (3.1)

where δ is a small number, e.g., 1%. The value of N affects the behavior of the

controller as the other controller tuning parameters. One can use a greater value of

N to achieve more energy savings but at the higher performance cost. The value of

N is set to 3 in our experiment for the best energy-performance trade off.
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3.4 Evaluations

3.4.1 Experiment Setup

We use Gem5 [11] full system simulator with PARSEC shared-memory multi-

processor benchmarks [10]. The baseline architecture in this experiment is a 16-tile

chip multiprocessor with a 2-level cache hierarchy. Each core is assumed to be an

in-order Alpha like processor. Table 3.1 summarizes our experimental configura-

tions and parameters. For each benchmark, the application is run in full-system

mode; the results are obtained based upon statistics from the region of interest

(ROI), which is the parallel part of the application. Gem5 “Ruby” memory system

(L1-LLC+directory) and “Garnet” network simulator are used for all results. The

control interval for the uncore DVFS is 50K core clock cycles. According to our

experience and existing literature, such interval size allows sufficient time for the

uncore V/F change to settle, and is sufficiently small to capture fine-grain program

phase behavior. Both dynamic and leakage power are considered in the experiment.

We use ORION 2.0 [44] and CACTI 6.0 [59] based on 65nm technology for the power

models of NoC and LLC, respectively. The overall performance is evaluated as the

execution time for the ROI of each application.

3.4.2 Experiment Results

We compare the energy efficiency of the AMAT based PI controller (“AMAT”)

proposed by Chen et al. [18] and the proposed throughput based controller (“Through-

put”) where the values are normalized to those of “baseline.”

Figure 3.3 shows the energy efficiency in terms of energy-delay product (EDP)

for different methods. “Throughput” achieves the lowest EDP among the techniques

for every application in the PARSEC suite proving itself as the most energy efficient

method. It improves EDP of “AMAT” by 46% approximately achieving 2× energy
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Table 3.1: Simulation Setup

Parameter Values

Core Frequency 1GHz
#processing cores 16

L1 data cache 2-way 256Kb, 2 core cycle latency

L2 cache (LLC)
16-way, 2MB/bank, 32MB/total,

10 uncore cycle latency
Directory cache MESI, 4 uncore cycle latency

NoC
4× 4 2D mesh,

X-Y DOR, 4 flits depth/VC

Voltage/Frequency
10 levels, voltage: 1V–2V,
frequency: 250MHz–1GHz

V/F transition 100 core cycles per step
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Figure 3.3: Energy delay product

efficiency, and 4× compared to “baseline.” The graph also shows that “Throughput”

even works where “AMAT” fails. In case of canneal, “AMAT” does not improve the

energy efficiency. It may be the case where the most of memory operations result in

off-chip memory access or the accesses to LLC is not so critical that the increased

LLC delay does not affect the overall chip performance.

We found that the energy efficiency improvement is achieved by further energy

savings rather than improved performance. Figure 3.4 and 3.5 depict, the normalized

energy consumption and normalized program run time, respectively. In general,
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Figure 3.4: Energy consumption
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Figure 3.5: Execution time

“Throughput” reduce the energy consumptions to ∼50% of “AMAT.” However, this

aggressive energy saving results in 7.5% increase in execution time on average while

“AMAT” only increases it by 2.5%.
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3.5 Conclusions

In this study, we explore DVFS for NoC and LLC in CMP design. We propose

a new metric and reference point for the PI controller overcoming the shortcomings

of the previous work. We achieve more aggressive energy reductions at the cost of

some increased execution time compared to the previous technique. The proposed

technique is evaluated on benchmark widely used in architecture research using full-

system simulation.
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4. WEAR-OUT AND LIFETIME IN FUTURE CHIP MULTIPROCESSORS

4.1 Introduction

The continuous aggressive miniaturization of CMOS feature sizes and the result-

ing increase in transistor density has recently sparked the multicore era. Architects

have harnessed this increasing supply of transistors, resulting in the design of parallel

systems, including Chip Multi-Processors (CMPs) [36]. In these systems, the on-chip

interconnect, typically organized as a Network-on-Chip (NoC) [21], plays a vital role

in enabling communication among the various on-chip computational, memory and

peripheral components, as illustrated in Figure 4.1. Unfortunately, deep sub-micron

CMOS process technology is marred by increasing susceptibility to wearout [39], dra-

matically shortening the useful lifespan of such on-chip parallel systems. As we will

illustrate, wearout does not effect all components equally, wear of the cores can often

be managed, while wear of the NoC interconnect can be catastrophic. Furthermore,

we will show that wear in the NoC is highly dependent upon the operational stresses

caused by real CMP workloads. In this work, we develop techniques to proactively

maintain the CMP NoC in the face of workload-dependent wear, and hence improve

the overall functional lifetime of the CMP as a whole.

Two key operational stress-induced wear mechanisms in current and future CMOS

technology are Hot Carrier Injection (HCI) and Negative Bias Temperature Insta-

bility (NBTI) [61]. Both HCI and NBTI lead to a shift of the transistor’s threshold

voltage, eventually leading to switching delay and critical path degradation [41].

Though these effects do not result in circuit opens or shorts, over time they can

cause critical path timing violations. Given equivalent supply voltage and tempera-

ture, HCI and NBTI degradation is primarily dependent upon the time transistors
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Figure 4.1: A 64-core CMP interconnected with an 8×8 2D mesh NoC. Components
marked with a black × illustrate wearout failure. The failure scenarios are as fol-
lows: (1) failure of cores; (2) peripheral device disconnected from the system due to
link failure; (3) network segmentation resulting in a disconnected sub-network; (4)
individual link failure.

have been operating under stress. These types of stresses are primarily data- and

usage-dependent, in terms of the activity factor (i.e. the fraction of cycles in which

a transistor switches) and duty cycle (i.e. the percentage of time the gate’s voltage

is held at a constant zero), respectively, of the gates in typical CMOS logic circuits.

Prior work notes, individual core wearout and failure need not be catastrophic

to the functionality of many-core CMPs due to the inherent core redundancy that

a CMP implies [45, 13, 76, 65, 52, 37]. With increasing numbers of cores, a pro-

portionally smaller portion of the overall system’s required throughput is dependent

upon each individual core. Thus, as illustrated in the component failure scenario (1)

of Figure 4.1, failure caused by wearout of some cores need not result in full-system

failure. Instead the system could suffer some performance loss while preserving cor-
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rect functionality, assuming core-level error detection and appropriate OS support is

available [13, 76, 65, 52, 37].

For the NoC interconnecting the cores, however, the assumption of redundancy-

based wear resilience breaks down, as illustrated in component failure scenarios (2),

(3) and (4) of Figure 4.1. In the same figure, scenario (2) illustrates the case where a

wearout-induced link failure has made it impossible to access a key I/O peripheral,

while in scenario (3) link and router wearout has partitioned away a large fraction

of the network, making all cores and I/O components inaccessible to the rest of the

system. In both cases, wearout is catastrophic, in that the system will likely be

rendered unusable due to these failures, unlike the core wearout in scenario (1) dis-

cussed earlier. Even scenario (4), in which a single link is broken due to wear-induced

failure, might lead to a communication protocol-induced deadlock(s), or subnetwork

isolation, if the network is not provisioned to address wear-induced failures.

Prior work has proposed various fault-tolerant routing algorithms and fault-

insensitive router and link designs in an attempt to manage faults as they oc-

cur [84, 73, 25, 9, 8, 24], however, network isolation and key resource partitioning

cannot be fully resolved using only such reactive techniques. Ideally, one would prefer

to develop proactive mechanisms to extend the healthy status of the system without

failure, rather than react to the faults once they occur. Such proactive mechanisms

could be coupled to the reactive mechanisms, in the hopes that the latter would be

required less frequently as faults in the system would occur less frequently.

In this work we present such a proactive technique, designed to decelerate the

effects of aging in the NoC of a CMP. Based upon detailed HCI and NBTI transistor-

level aging models, we develop a novel, critical path-based model to characterize the

effects of aging related wear. Based upon this model we analyze the NoC router

microarchitecture to find the paths most susceptible to wearout. Using real workloads

63



from the PARSEC benchmark suite [10], we characterize various wearout mechanisms

that map onto those paths. Finally, we develop a wearout-resistant router micro-

architecture which prolongs circuit lifetime through targeted mitigation techniques

with negligible influence on the router’s timing, pipeline, CMOS area requirements,

and power consumption. This proposed technique yields a 13.8×-65× increase in

CMP lifetime.

This paper provides the following contributions:

• Generalized, path-based, microarchitecture-level (rather than device-level) HCI

and NBTI wearout-induction models.

• Characterization of NoC router and link wearout due to HCI and NBTI under

realistic workloads from the PARSEC benchmark suite [10].

• A novel wear-resistant router microarchitecture which dramatically improves

interconnect lifetime, and hence full-system survivability in the presence of

both HCI- and NBTI-wearout mechanisms.

This paper is organized as follows. In Section 4.2 examines existing transistor-

level models for HCI- and NBTI-induced wear. Next, in Section 4.3 examines the

sensitivity of the router’s critical path to wear by analyzing the activity and duty

cycle of its critical path, and thereafter characterize the router’s wear caused by the

behavior of real application workloads. From these wearout models, in Section 4.4

we then develop a circuit path delay model for workload stress-induced wear. In

Section 4.5 we propose a novel router microarchitecture to improve the lifetime of

NoC routers under realistic workloads, while Section 4.6 evaluates the proposed

design. Finally Section 4.7 presents prior related work, while Section 4.8 concludes.
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4.2 Background

Prior research shows that the two dominant CMOS transistor physical failure

mechanisms are Negative Bias Temperature Instability (NBTI) and Hot-Carrier In-

jection (HCI) [60]. Under both failure mechanisms charge becomes trapped in or

near the gate oxide resulting in a slow increase the threshold voltage of transistors

(Vth). This in turn causes the delay in transistor state switching to expand.

In traditional synchronous circuit CMOS designs, the clock frequency of a given

design is determined by the circuit path which exhibits the longest latency between

its end latches, within a given system design. This critical path comprises a number

of chain-connected gates between these end latches. HCI- and NBTI-induced aging

progresses gradually in extending the delay of each gate found in this chain, slowing

down the entire critical path. In modern CMOS designs, due to this age-induced

slow-down, and other causes, such as process variation [48], designs are given timing

guard-bands so as to guarantee their intended functionality for a certain duration of

time [4]. Once the aggregate increase in delay along a timing-critical path exceeds

this guard-band, due to the aggregation of increasing delays occurring in individual

gates along this path, the functionality of the system is no longer assured. The

moment at which this timing violation first occurs defines the system’s useful life

span.

In this section, we first describe the impact of these aging mechanisms upon Vth

using transistor-level analytical models. We then examine a number of specific NoC

router critical paths which are most susceptible to these aging effects, since they are

the critical paths which determine and impact a system’s maximum clocking rate.
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4.2.1 Failure Mechanisms

Design rules and operating conditions are precisely chosen to ensure correct prod-

uct functional operation over its intended lifetime [51]. To obtain a given level of

performance, when utilizing an integrated circuit, under various design constraints, it

becomes imperative to create and analyze the reliability model of the digital system

under consideration and design.

As previously discussed, the HCI and the NBTI mechanisms do not induce

failures, rather shift parameters over time under circuit operational stresses. The

Reaction-Diffusion (R-D) model uses the threshold voltage Vth shift as a proxy of

NBTI and HCI stress [80]. The threshold voltage shift causes transistor delay degra-

dation according to the alpha power law [71]:

dg ∝
Vdd

µ(Vdd − Vth)α
(4.1)

where µ ∝ T−1.5 and α = 1.3.

Lifetime can be defined as the time until an important material of a component

or device parameter degrades beyond the point at which the device or circuit can

function properly in its originally intended application. For a single gate, when ∆Vth

reaches some level (in practice, it is usually 10% [80]) the transistor is considered to

be over-aged. For the multi-gate path, the cumulative transistor delay shift increases

faster than a single gate’s worst-case delay degradation. Therefore, a total gate delay

shift over the entire path, when its value reaches or exceeds the 10% threshold mark,

can serve as a lifetime period indicator.

Figure 4.2 shows a typical CMOS inverter, indicating the failure mechanisms

associated with each type of transistor: HCI affects both the nMOSFET and pMOS-

FET transistors, while NBTI affects only the pMOSFET transistor (note that PBTI
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Figure 4.2: CMOS inverter

is the complement of NBTI and affects nMOSFET transistors only, however, its ef-

fect is generally considered to be much smaller than that of NBTI). The following

subsections present a device parameter degradation model that captures the HCI

and NBTI wearout effects.

4.2.1.1 Hot Carrier Injection (HCI)

Hot Carrier Injection (HCI) is a wear-out mechanism which occurs when carriers

flow along the channel in MOSFET transistors and gain sufficient kinetic energy to be

injected into the gate oxide resulting in a charge trap and interface state generation.

This leads to a gradual transistor parameter shifting, including switching frequency

degradation, rather than causing an immediate failure event [41].

A substrate current-based (Isub) model is commonly used to estimate the effect

of HCI. Prior work shows that transistor threshold voltage shifts due to HCI under
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Figure 4.3: HCI and NBTI stress time windows for a CMOS inverter: (a) higher
switching activity, lower duty cycle; (b) lower switching activity, higher duty cycle.

DC stress is

∆Vth HCI |DC = A(Isub)
mtnstress, (4.2)

where A is the material-dependent parameter, tstress is the stress time, and n and m

are technology-related exponents [51, 41].

According to the alpha power law 4.1, the delay of a transistor depends linearly

on threshold voltage for small shifts, so the gate delay shift can be expressed as

∆dg HCI |DC = Â(Isub)
mtnstress, (4.3)

where Â is a fitting constant.

The lifetime of a device exposed by a direct HCI effect is [41]:

TTFHCI |DC = AHCI (Isub)
−N exp

(
EaHCI
kT

)
, (4.4)
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where EHCI is the apparent activation energy, Isub is the substrate current under

stress at VG = VD, T is the run-time temperature, k is the Boltzmann’s constant, N

is the technology-related exponent, and AHCI is a fitting constant.

HCI stresses the device only during dynamic transitions when current flows

through the device. Figure 4.3 shows voltage waveforms of a standard CMOS in-

verter. The pMOSFET transistor suffers HCI stress when the output of the inverter

is pulling-up and C0 is charging up (see Figure 4.2). The nMOSFET transistor ex-

periences HCI degradation during the reverse dynamic stage, when the output of

the inverter is discharged to the ground (low-voltage level) [51]. Thus, each of the

CMOS transistors experiences degradation only during half of a switching period,

and hence the relation between HCI stress time tHCIstress and run-time t can be derived

as:

tHCI stress = dgfαt, (4.5)

where dg is the transition delay, α is the switching activity, and f is the clock

frequency.

Since HCI stress occurs during the device turn-on and turn-off periods, the impact

of HCI under AC stress can be extracted from 4.3 and 4.4 using 4.5:

∆dg HCI |AC = A(Isub)
m(dgfαt)

n, (4.6)

And finally, the last equation is transformed into relation for HCI lifetime:

TTFHCI(T, α)|AC = AHCI
1

dgfα
(Isub)

−N exp
(
EaHCI
kT

)
. (4.7)

This relation shows that the lifetime of a transistor due to HCI is inversely related

to the switching activity α of the gate input. Hence, frequent switching, such as those
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shown in Figure 4.3-(a), not only increase the dynamic power consumption, but also

speed-up the aging effect, whereas a gate with less frequently occurring transitions,

as shown in Figure 4.3-(b), will experience lighter HCI-induced aging.

4.2.1.2 Negative Bias Temperature Instability (NBTI)

Negative Bias Temperature Instability (NBTI) is a wear-out effect that influences

pMOSFET transistors as long as they operate in inversion (i.e. a ’0’ voltage on the

input of an inverter, as shown in Figure 4.2). Thus the data-dependent stress caused

by NBTI is very different from that of HCI, which is under stress during voltage

level switching. NBTI changes the pMOSFET transistor parameters over time. In

particular, it leads to an increase in the threshold voltage (Vth), as well as a reduction

in the drive current due to charge carrier mobility degradation. As with HCI, NBTI

does not result in complete circuit failure, but rather in circuit speed degradation.

JEDEC reports that process technology scaling will lead to a larger NBTI-induced

threshold voltage in pMOSFET transistors [41]. It has been reported, unlike for

HCI, some degree of recovery from NBTI degradation can occur in the event that a

relaxation period occurs after the stress period [41, 51, 80].

Although NBTI models under DC stress are widely discussed in the literature [41,

51], they are not suitable for architectural-level modeling. The AC stress condition

is more realistic model of high-frequency CMOS operation, therefore we employ the

approximated long-term NBTI model developed by Lu et al. [55] which provides a

theoretical upper bound estimation of the NBTI effect in terms of time

∆Vth NBTI = A

(
β

1− β

)n
tnexp

(
−nEaNBTI

kT

)
, (4.8)

where EaNBTI is the apparent activation energy, T is the run-time temperature, t is

the operating time, k is the Boltzmann’s constant, n is the time exponent, and A is
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the fitting constant [55].

According to the alpha power law 4.1, the first-order gate delay can be approxi-

mated as a linear function of the threshold voltage. Hence, the gate delay shift can

be expressed as:

∆dg NBTI = Â

(
β

1− β

)n
tnexp

(
−nEaNBTI

kT

)
. (4.9)

The lifetime of a single transistor under AC stress can be derived from 4.9 as

follows:

TTFNBTI =

[
ANBTI

(
1− β
β

)n
exp

(
nEaNBTI
kT

)]1/n
. (4.10)

Thus, lifetime degradation due to NBTI depends on the duty cycle of the input

signal. Transistors which experience a smaller duty cycle, such as the duty cycle

shown in Figure 4.3-(a) in comparison to the duty cycle shown in Figure 4.3-(b),

experience a slower degradation rate.

4.2.1.3 HCI and NBTI failure mechanism analysis

It may first appear that a technique which improves device lifetime by decreasing

NBTI must come at the cost of a comparable degradation caused by HCI-related wear

(and vice-versa). We note, however, that the activity factor α is not the inverse of

duty cycle β; when β is large, it is possible to make a substantial change to β without

proportionally impacting α. Furthermore, because of the 1
(1−β) term in Equations 4.8

and 4.9, large β’s tend to have a disproportionate impact on aging-related slow-down.

Even a small improvement in the value of β can therefore have a substantial positive

effect on the overall device lifetime (especially when β is relatively large).
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4.2.2 Router Microarchitecture

The canonical NoC virtual channel router was proposed by Peh and Dally [64].

Its block diagram is shown in Figure 4.4(a). The major building blocks of this

NoC router are input channels, a crossbar (switch), and the control logic which

includes the switch and virtual channel allocators. When used in a 2-D Mesh NoC

architecture, typically five input and output channels (p) are used to connect its

four immediate neighbors at the cardinal points, and its local processing element.

An input channel is composed of a given number of virtual channels (VCs), each of

which includes registers to keep track of their statuses, and buffers to store flits (flow-

control units, a logical fixed-segment of a packet). The routing units also accesses

the flits found in the input channel, and determine the next-hop direction packets

should take, in the east, west, north or south directions. The VC allocator assigns a

free virtual channel in a downstream router to a head flit, the first flit of a packet.

If the head flit successfully obtains a VC, it competes with any other flits destined

for the same output port during the switch allocation. The body and tail flits in the

same packet skip the routing and VC allocation stage, and directly proceed to the

switch allocation stage. Once the switch allocation is done, then a flit traverses the

crossbar.

Our baseline router performs both VC and switch allocation during the same cycle

by speculatively allowing a packet to compete for the switch while it is yet competing

for the VC at the downstream router [64]. Figure 4.4(b) shows the baseline router

pipeline. Flit decoding and routing computation are done in Stage 1. The combined

VC and switch (SW) allocation is done in Stage 2. In Stage 3, flits traverse the

crossbar.

Since NBTI and HCI decelerate transistors, the damage from the circuit aging
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(a) Router Block Diagram

(b) Router Pipeline Stages

Figure 4.4: Baseline router

first takes place where timing is most critical. To determine the critical path of

the baseline router, we adapted our baseline RTL from the publicly available router

RTL model designed by Becker [7]. This RTL model was synthesized using Synopsys

Design Compiler and mapped to TSMC 45 nm standard cell library to a 1GHz

frequency. All critical paths with slack less than 10% of the clock frequency were

gathered using Synopsys Design Vision and analyzed off-line.
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The results of this analysis are highlighted in Figure 4.4(b). We found that all

timing critical paths (i.e. those within 10% of the 1GHz clock frequency), pass

through the VC and switch (SW) allocator. These results correspond well with prior

research [64]. The utilization of the allocators is closely related to the incoming rate,

or the number of flits traveling through this router per cycle, because the allocators

are enabled by the input channel which sends the request signal to the allocators

when it has flits to forward. As the critical path is initiated by the request signal,

the wire activity along the path is dependent upon how often the request signal is

set, which in turn is determined by the workload’s utilization of that router. We

therefore expect that the stress time for HCI and NBTI, which is closely related to

the activity factor and the duty cycle of the wire, thereby should be also closely

correlated to the utilization of the router. In the next Section, we perform an in-

depth study on the impact of typical CMP workloads on the router’s critical path in

terms of activity factor and duty cycle.
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4.3 Router Wear Characterization

To examine the sensitivity of the router’s critical path to HCI and NBTI wear, we

first analyze the activity of wires residing in the baseline router under synthetic work-

loads. The router has 5 physical channels, 4 virtual channels per physical channel,

and a 4 flit-deep buffer per virtual channel. Oblivious minimal XY routing is used.

The network is designed to transfer 64-byte memory blocks where the link-width be-

tween adjacent routers is 128 bits, discounting any flow-control signals. Hence, if a

packet includes such data it is composed of 5 flits (1 head flit for routing information

and meta-data, and 4 data flits), otherwise, it is composed of only 1 head flit. The

workload is generated by controlling the number of flits per cycle injected to this

router while the portion of 1-flit and 5-flit packets are maintained to be 50-50%. As

described in Section 4.2.2, the critical paths from the post-synthesis router model

with 10% or less slack relative to the 1GHz clock frequency assumed, were examined.

In particular, information about the activity factor and duty cycle of all wire nodes

along each critical path under these workloads was retained for analysis.

4.3.1 Activity Factor

HCI is proportional to the activity factor of the interconnect NoC wires, such

that a higher activity factor results to an accelerated (higher) aging rate (refer to

Section 4.2.1.1). Figure 4.5(a) shows the histogram of activity factors of the wires

on the critical paths of an NoC router with respect to varying incoming rates. The

first observation we make is that the nodes have a quite low activity factor, where

the vast majority is switching at less than 10% of the time (activity factor of 0.1).

Intuitively, the higher incoming rate should cause a correspondingly higher ac-

tivity factor. This implies that a router running for applications that inject network

traffic more frequently ends up aging at a faster rate. Hence, it is desirable to reduce
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Figure 4.5: Sensitivity to the activity factor.

(or keep low) the incoming rate so as to improve a router’s longevity. Interestingly,

however, the activity factor does not appear to be very sensitive to the incoming rate,

in that it does not increase as much as the incoming rate increases. For instance,

even at the very high incoming rate of 1.0 flits/cycle, the activity factors of most of

the wires remain at a relatively low value and only 7.7% of wires have an activity

factor greater than 0.1.

We observed in our preliminary study that applications differed in their data

value payloads that they produce, due to differing bit-level data biases in their cache

blocks. One might expect that the content of the data traversing the network might

also affect the activity of routers since the NoC is mainly used to transfer these

cache blocks. Figure 4.5(b) shows the histogram of activity factor with various data

contents (percentage of zeros in each data-flit vector) at a fixed incoming rate of

0.10 flits/cycle, to examine the router’s critical path activity factor sensitivity to

data content. The data is modeled to include 0%, 50% and 100% of “0” bits in the
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512-bit payload cache lines. As the figure shows, we find that the data content does

not affect the activity factor of the wires along the router’s critical path (all lines are

almost perfectly overlaid). While the transferred data may bias the activity factor

on other data path components, such as buffers and the crossbar, it does not appear

to have much impact on the allocators that make up the primary critical path of the

router.

4.3.2 Duty Cycle

NBTI is highly sensitive to the duty cycle of gates (see Section 4.2.1.2). Fig-

ure 4.6(a) depicts the histogram wires along the critical path with a given duty cycle

for different incoming rates, in terms of flits per cycle. In the figure, the width of

each bin is 0.05; hence bin[0] shows the percentage of gates with duty cycle in the

range of [0, 0.05) and so on. In general, significant portions of gates fall into the

bins of the duty cycles of near 0, 0.5 or near 1.0, regardless of the incoming rate.

As the incoming rate grows, the bins at the two ends of the spectrum fall while the

central part moves up, indicating that an increasing incoming rate causes less skew

in the duty cycle towards these extremes. Despite this change, we found that the

average duty cycle hardly changes, retaining a duty cycle of approximately 0.5 for all

incoming rates. According to the netlist derived from the synthesized router, there

are many inverters along these paths. Thus the duty cycles of the two wires, the

input and the output of the inverter, β and 1− β respectively.

Figure 4.6(b) and 4.6(c) magnify the two ends of the upper figure. To improve

observability in the figure we use a narrower bin width of 0.001. With the increased

resolution we note that higher incoming rates have a great impact on duty cycle at

the extremes, pulling down the percentage of wires along the critical path with the

highest and lows duty cycle from ∼35% to near 0%.
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Although the incoming rate does not affect the average duty cycle, it actually

causes notable differences in the NBTI impact on the gate delay. As shown in

Equation 4.9, there is a non-linear relation between duty cycle and gate delay such

that the gate delay shoots up as the duty cycle gets closer to 1.0. Hence, for example,

having two gates in a given path with the same duty cycle of 0.5 it is better than

having two gates with duty cycle of 0.0 and 1.0, respectively,in terms of the path-

cumulative impact of NBTI upon gate delay. The delay increase due to NBTI from

a single gate under a duty cycle of 1.0 alone will greatly exceed the sum of the delay

increases from the two gates with duty cycle of 0.5 each. In this light, it is better to

have a higher incoming rate and have more gates with duty cycles closer to 0.5, than

to have a lower incoming rate and gates that have duty cycles closer to 1.0; although

it is notably counterintuitive that wear-out occurs when routers are under-utilized.

Based upon these observations we will next develop a multi-gate delay model in

Section 4.4.

4.3.3 Workload Characterization

Having identified that the per-router incoming rate to be a critical workload char-

acteristic that correlates with wear, we now examine the router-to-router incoming

rate variance in realistic workloads. In this study, we use the PARSEC benchmark

suite [10] as our workload, as these benchmarks mimic a range of representative next-

generation large shared-memory multi-threaded programs for CMPs. The diversity

of the PARSEC benchmarks makes them especially useful for this study, as they

span a diverse range of emerging applications with varying on-chip communication

spatio-temporal characteristics. Specifically, with the PARSEC benchmarks one ob-

serves different and varying behaviors in the NoC’s packet (or flit) incoming rate, as

will be outlined next in detail.
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Figure 4.6: Histogram of duty cycle w.r.t incoming rate

The realistic workloads are generated from the gem5 simulator [11] emulating a

64-core system executing multithreaded programs in the PARSEC v2.1 [10] suite.

Table 4.1 shows the details of the system setup used in our simulations. We first

generate NoC traffic for each application for its region of interest (ROI), which rep-

resents the parallel portion of the application. We then count the number of flits

traversing through each router to compute incoming rate to the router. Note that

we use the term incoming rate here as the number of flits injected to a particular
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router, per unit time, rather than the number of flits generated and injected to the

network as a whole. This includes the number of flits generated by the router’s local

processing element and the flits going through or headed for the router. In our ex-

periments, we concentrated on capturing the incoming characteristics at each router,

rather than capturing the inter-tile communication. The reason for concentrating on

the incoming rate temporal characteristics is that the wire activity on the critical

path is highly related to the frequency of flit arrival.

Figure 4.7 depicts the average number of flits injected into a router, captured by

the solid bars, according to the aforementioned experimental setup, per unit time

for each PARSEC benchmark. The incoming rate at routers, on average, is 0.02

flits per cycle (AVG). It varies across the programs under examination ranging from

0.003 (x264) to 0.05 (canneal). The average incoming rate also varies within the

same application based on the cartesian location of the router, and the variance is

captured by the dark line over each bar. The bottom of the line shows the incoming
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rate of the router which handles the least traffic amount among the routers in the

network (min incoming rate), and the top of the bar denotes the incoming rate of

the busiest router (max incoming rate). Hence, the per-router incoming rate under

PARSEC workload actually varies between .0005 (min of x264) and .085 (max of

canneal). In the graph, “AVG” shows the arithmetic means of the average incoming

rate (the bar) and the min and max incoming rates (the line) across the entire range

of benchmarks. “ALL” shows those three incoming rates when the system runs all

the benchmarks, one at a time, sequentially.

In general, the average incoming rate is quite low, at 0.02 flits per cycle. Hence,

HCI-induced aging is not expected to contribute significantly to gate delay under these

workloads. Alternately, as discussed previously, a low incoming rate causes NBTI-

induced aging. Thus, routers running PARSEC workloads are exposed to accelerated

NBTI-induced aging due to their light traffic. Furthermore, there is an observable

high variance in their spatially distributed network flit incoming rates, such that

some routers executing the ferret and x264 workloads experience even less than a

0.001 flits per cycle incoming rate. We therefore, focus on the NBTI aging in the

remainder of this paper.
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4.4 Path Delay

In Section 4.2.1, we examined existing formula characterizing the wear-induced

transistor gate delay. While these equations accurately model the incremental break-

down of individual gates, we observe that a single gate is only one component of an

entire critical path. In this subsection, we derive formula for lifetime comparison

between two systems that operate under the same conditions , focusing on the ob-

servable microarchitectural-level. There are a number of delay models which take

into consideration the aging effect in transistor or gate level, but few in architectural

level. Ultimately, to calculate the point at which gate delay compromises timing

along a particular path, one must examine the cumulative delta delay along that

path. Here, we propose a method of lifetime computation along a path between

latches, given the duty cycle of each gate along that path.

Figure 4.8: An example circuit path with multiple gates

We assume that a number of sequentially-placed gates in a serial chain comprise

a circuit path as shown in Figure 4.8. Along the path, the delay increase due to the

i-th gate with duty cycle βi at time t can be simplified as:

∆di(βi, t) = ψ × tn ×
(

βi
1− βi

)n
(4.11)

where the constant ψ includes all other terms in Equation 4.9 under the assumption
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that those will remain constant under the same condition. The sum of delay increase

along a path with N gates at time t is computed as:

∆d(t) =
N−1∑
i=0

∆di(βi, t) = ψ × tn ×
N−1∑
i=0

(
βi

1− βi

)n
(4.12)

A system is reliable as long as the ∆d(t) of the critical paths is smaller than

the guard-band. Hence, we define the lifetime, Tlifetime, such that ∆d(Tlifetime) <

guardband. The acceleration factor (AF ) is defined as the ratio between the lifetime

of the system under consideration, Tlifetime(x), and a reference system, Tlifetime(ref):

AF (x) =
Tlifetime(x)

Tlifetime(ref)
=


M−1∑
j=0

(
βj

1− βj

)n
N−1∑
i=0

(
βi

1− βi

)n


1/n

(4.13)

where βi is the duty cycle of the i-th gate on the critical path of the system under

consideration, and βj is the duty cycle of the j-th gate on the critical path of the

reference system. In this equation, it is assumed that the number of gates on the

critical path of the two systems are N and M , respectively.
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4.5 Aging-Preventing Router Microarchitecture

4.5.1 Exercise Logic

The aging process is incoming rate-dependent along the critical path, as Sec-

tion 4.3 outlined. The gate delay increases and the timing constraints are violated

along the critical path first. A low incoming rate causes a biased duty cycle in the

wire along the path and accelerates NBTI. Thus, the router needs work in the form

of incoming packets to improve its longevity. However, increasing the incoming rate

artificially yields other problems such as increased power consumption and acceler-

ation of the HCI effect. Hence, the duty cycle must be improved without increasing

the activity factor significantly. We now propose a method by which to exercise the

critical path, compromising HCI in favor of NBTI, as the latter is more important.

The goal of the proposed mechanism is (1) to improve the duty cycle by allowing

the circuits to operate at a greater portion of their time in the “1” state, without

affecting the actual data values being transferred, (2) to not change the state of the

router, (3) to not worsen the critical path timing, and (4) to not significantly increase

the activity factor which would compromise the entire goals of the mechanism by

increasing the effects of HCI.

Figure 4.9 illustrates the critical path of a baseline router, along with our proposed

modifications to reduce the wear-out effects of NBTI. The gates and wires in the

lighter color (red) are our additions to the baseline router. The critical paths in

an NoC router, as stated in Section 4.2.2, lie within the Virtual Channel (VC) and

crossbar allocation stages handled by the router allocator. Each VC sends a one bit

“Request” signal to the allocator to reserve a VC at the downstream router, and/or

to bid for switch bandwidth at the crossbar so that the crossbar can be traversed by

competing flits. There are p physical channels each of which has v virtual channels,
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Figure 4.9: Exercise logic placed onto the critical path so as to improve the duty
cycle.

hence, there are p × v of such control bits in total. Each “Request” signal has to

be sent with a p bit-width “Route” signal giving the allocator the information as

to where the corresponding flit is headed for, i.e. to which VC at a physical port

downstream. Hence, there are p× v × p bits for the “Route” signal.

The input signals to the allocator are biased so as contain more logical “0”s than

logical “1”s, not only because the incoming rate is low, but also because only a couple

of bits out of a greater number of bits of input signals will be set while handling a

flit. If the flit arrival rate is r (flits/cycle) then the probability that a bit of the input

signal will be set is also r. Since a flit in the router sets only one bit out of p × v

“Request” bits, the probability of any wire being at logic “1” becomes r
p×v . Since

the duty cycle is defined as the probability of a wire being “0”, it becomes, in this

case, 1 − r
p×v . For instance, if there are 5 physical channels and 4 virtual channels,

the duty cycle on this signal at the incoming rate of 0.01 flits/cycle becomes 0.9995

which will cause the NBTI effect shoot up. The lower incoming rate and the wider

input signal combined, will result in a greater duty cycle. Hence, this is even worse

in case of the “Route” signal which is composed of p× v× p bits. Hence, these input
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signals modified to improve the duty cycle along the critical path in the allocator.

We propose to balance the duty cycles of these biased signals by injecting random

data into the allocator. Figure 4.9 depicts how the proposed “exercise logic” works

for the “Request” signal. First, the “exercise mode” is activated when there is no

request from the input channels to the allocator. Then, the “Request” signal is

replaced with a random vector which is generated by a random number generator

(“Random Gen”) in the same figure. This random vector changes the duty cycle of

the allocator input and of the wires along the paths through the allocator as well.

Hence, it is more ideal to set the duty cycle at the input at a value of 50% instead of

setting it at 0%, as there are inverters along the paths which will have the inverted

duty cycle of the input. We utilize this additional logic for other inputs as well, such

as the “Route” signals.

This additionally inserted circuit should not affect the router functionality. Hence,

the “exercise mode” is enabled only when there is no packet in the input channels.

Also, the random output from the allocator should not propagate to the next pipeline

stages, such as the crossbar traversal stage. The states of the input virtual channels,

similarly, should not be updated with the false output produced. Thus, the flip-fops

(or latches) between the allocator and the logic gates in the next stage, are also

disabled when “exercise mode” is turned on.

In the effort to minimize the impact upon the timing, and hence the clock rate, the

random number generator and all other mode selection logic are placed off the critical

path. We merely add a MUX (multiplexer) along the critical paths. A timing report

of the synthesized proposed router micro-architecture acknowledges that the delay

increase is negligible. It is so small that it will be absorbed by the chip’s guardband.

As the circuit is used for a longer period and gets older, the additional circuit slows

down the aging process, and in turn, the slows the rate of delay increase along the
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critical path. Therefore, adding this circuit is actually beneficial to timing/clocking

in the long-term.

We explore two efficient mechanisms to implement the “Random Gen” compo-

nent. First as a serial-update, parallel-read LFSR (Linear Feedback Shift Register)1

and second as a set of pre-defined vectors, randomly generated at design time. The

LFSR is composed of a 128-bit register, and we use the first 20 bits for the “Request”

signal and the following 100 bits for the “Route” signal. The taps of the LFSR are

placed at 0, 2, 27 and 99th registers such that it has the maximal length period.

When “Random Gen” is implemented as a pre-defined set of random vectors, we

generate a number of 120-bit random vectors and store them in a small ROM within

the router. The quantity of random vectors is decided at design time and we tested

a range of such numbers at 1, 2, 4, 8, 16, 32, 64 and 128 entries. This number

has the implication on the circuit’s energy consumption and lifetime which will be

discussed later. In either case, the “exercise logic” adjusts the duty cycle by giving

the allocator a series of random inputs, and this will increase the activity factor. In

order to attenuate this side effect, the “Random Gen” changes its output vector once

every pre-defined period of time. The length of this period is decided at design-time.

We tested a range of such periods at 8, 32 and 128 clock cycles. These various values

each has a different implication on the circuit’s energy consumption and lifetime (see

Section 4.6).

4.5.2 Other Approaches

In the earlier stage of this work, we also tried a couple of different approaches.

As the NBTI effect is accelerated by a lack of load, we tried to solve this problem by

1Note, this is not a traditional implementation of an LFSR; a typical serial-read LFSR was found
to consume too much energy to be practical for a random vector of this size. The trade-off being
the extra iterations required to achieve pseudo-random data.
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inserting artificial packets into the network to increase its load. However, this leads

to other problems. First, it will significantly increase the network power consumption

as we need substantially high incoming rate to each router. In addition, the increased

incoming rate results in the increased activity factor, which accelerates the HCI aging.

Second, distributing such artificial traffic is not trivial. Each router experiences

different amount of traffic based on its location in the network. Some of the routers

may already have enough traffic amount to avoid the NBTI effect while the other need

more traffic. It is necessary and difficult to monitor the incoming rate of each router

and to develop a routing algorithm, which steers the artificial packets to routers with

low traffic load while preventing deadlocks. We also tried to solve the same problem

with a gate-level solution. The NBTI aging is accelerated when a wire stays at logical

“0” for a long time and, unfortunately, the input wires of the allocator are stuck at 0

most of the time because of the lack of load. Hence, one may come up with switching

the meanings of “0” and “1” for the allocator logic in order to prevent those wires

from staying at “0”. However, we found that inverters are inserted to drive enough

power along the paths when the logic is actually synthesized. Hence, forcing the

input wires to stay at “1” eventually makes intermediate wires to be at “0”.

4.5.3 NBTI Hardening

The proposed “exercise logic” can be deployed in general circuit designs. If the

timing critical paths of the circuits are not frequently utilized resulting in extremely

biased duty cycles on the wires, the “exercise logic” can be easily inserted for those

paths to balance the duty cycle and mitigate the NBTI aging with its negligible

overhead in terms of both performance and power consumption.
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4.6 Evaluation

In this section we first examine the experimental setup. This is followed by a

detailed exploration of the benefits and costs of our proposed technique.

4.6.1 Experiment Setup

The evaluated router, adapted from RTL code made publicly available by Becker [7]

contains 3-pipeline stages. The detailed parameters of the router are listed in Ta-

ble 4.1. Its RTL code was modified to include the “exercise mode” described in

Section 4.5. It is synthesized using Synopsys Design Compiler and mapped to a

TSMC 45nm standard cell library, achieving a clock frequency of 1GHz. We note

that the added exercise circuit is largely off the critical path, with the exception

of one additional, 2-input mux, thus, router synthesis produced the same clock fre-

quency as the baseline router of 1GHz, although a small increase in the number of

paths within 10% of the clock period was seen. The critical paths were extracted us-

ing Synopsys Design Vision. All paths within 10% slack versus the 1GHz clock cycle

were retained and analyzed. The wire activity (activity factor and duty cycle) along

the paths are extracted with Synopsys VCS. The power consumption is evaluated

Table 4.1: System Setup

Cores 64 on-chip, in-order, Alpha ISA

L1 Cache 32KB instruction/32KB data, 4-way,
64B lines, 3 cycle access time
MESI coherent protocol

L2 Cache 64 bank fully shared S-NUCA, 16 MB,
64B lines, 8 way associative,
8 cycle bank access time

Memory 150 cycle access time, 8 on-chip memory
controllers

Network 8x8 Mesh, X-Y routing,
4 VC/port, packet length: 1 flit or 5 flits,
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Figure 4.10: Normalized lifetime (acceleration factor) for router under a given syn-
thetic incoming rate from 0.001 flits/cycle to .05 flits/cycle.

using Prime Time.

The router is evaluated under both synthetic and realistic workloads. The re-

alistic workloads are captured as traces from the gem5 simulator [11] emulating a

64-core system executing multithreaded programs from the PARSEC v2.1 [10] suite.

Table 4.1 summarizes the system configuration. Through offline analysis of these

packet traces, we compute incoming rate of each router in 8× 8 mesh network’s in-

dividually under X-Y DOR routing. The per-router min, max and average incoming

rates for each application were calculated. These rates are then applied to the syn-

thesized router to extract the activity of the wires. For both synthetic and realistic

workloads, we execute the post-synthesis router model for 100,000 cycles to measure

the wire activity.

4.6.2 Experiment Results

4.6.2.1 Aging under synthetic workloads

We first examine the potential gain in lifetime of the router with the proposed

technique versus the baseline router for a range of arbitrary incoming rates. We also
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compare the two kinds of “Random Gen” implementations. As previously discussed,

the per-router incoming rate under PARSEC workloads tends to vary between .0005

(min of x264) to .085 (max of canneal). Figure 4.10 shows the normalized lifetime

(i.e. acceleration factor, Equation 4.13) against a reference of the baseline router

at the same incoming rate. As explained in Section 4.4, acceleration factor gives

the lifetime of the system under consideration which is normalized to the lifetime of

the reference system. In the graph, “baseline” means the normalized lifetime of the

baseline router, which is always 1, while “128 ENT” and “LFSR” mean the cases

when the “Random Gen” is implemented with 128 pre-defined random vectors and

with the LFSR, respectively, and the number in the parenthesis shows the updating

frequency.

The lifetime extension improves dramatically for the routers with lower incom-

ing rate. The lower incoming rate causes the more bias in duty cycles, hence, the

more room for the improvement. The “Random Gen” with the pre-defined random

vectors (“128 ENT”) consistently outperforms the LFSR across the incoming rate.

In addition, it is not sensitive to the updating frequency while the lifetime with

the LFSR varies with varying updating period. The exercise logic with 128 random

vectors achieves its greatest relative lifetime improvement of 33.3× at the incoming

rate of 0.001 flit/cycle with any random number changing period. We note that

for even smaller incoming rates the improvement will grow rapidly as discussed in

Section 4.2.1.

On the other hand, the exercise logic with 8 cycle LFSR, “LFSR (8)”, achieves

its greatest relative lifetime improvement of 15.4× at the incoming rate of 0.001

flit/cycle. Despite its diverse random vectors, “LFSR” does not work better than the

“128 ENT” schemes, which only have a limited set of random vectors. We observe

that using the LFSR does not generate well-balanced random 120-bit vectors as
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using the pre-defined random vectors does. Although it balances the duty cycle of

individual wires over time, it does not always produce a 120-bit string with 60 bits of

“1” and 60 bits of “0”. This spatial distribution matters since, for example, a 120-bit

vector, which is mostly composed of “0”s, may not balance the duty cycle of wires

through the allocator merely losing the opportunity of the lifetime improvement.

“LFSR (32)” generates more diverse range of random vectors than “LFSR (128)”

because it updates the value 4 times frequently than the other. However, it results in

the worse lifetime improvement as it, we suspect, merely generates more bit strings,

which do not improve the lifetime of the circuit. Theoretically, the same random

number inputs at any generation rate should give the same duty cycle on the wires

in the long term. Hence, we expect that the differences among those three will be

removed when the experiments run for longer time.

Figure 4.11 illustrates the normalized lifetime when “Random Gen” is imple-

mented with varying number of pre-defined random vectors. We test a range of such

numbers at 1, 2, 4, 8, 16, 32, 64 and 128 entries. Here, we update the random

number every 128 cycles. As the lifetime difference is observed more clearly at low

incoming rate, we test it under relatively low incoming rates such as 0.001 flit/cycle
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Figure 4.12: Relative lifetime expectation

and 0.002 flit/cycle. Again, the lifetime is normalized to the baseline case under

the same incoming rate. In general, the lifetime increases as the number of entries

increases. It is shown that only 16 entries are various enough to balance the duty

cycle of the wires through the allocator. This implies that implementing the ran-

dom vector generator using pre-defined vectors does not require extensive additional

logics. We will discuss its hardware cost later.

4.6.2.2 Lifetime under PARSEC workloads

Figure 4.13 depicts the normalized lifetime of the network using the proposed

technique under the PARSEC workload. The lifetime of the network is estimated by

computing the acceleration factor of the router with the minimum incoming rate in

the network as it is the most susceptible to the aging effect. The reference system

is the baseline router getting the same incoming rate. For each benchmark, we

evaluate the normalized lifetime of the exercise logic using the two different random

data generation schemes, which are “16 ENT (128)” and “LFSR (8)”. We choose

“16 ENT (128)” among the pre-defined random vector schemes because it gives the

best lifetime with the minimum impact on activity factor, power consumption and

area. On the other hand, we use “LFSR (8)” instead of “LFSR (32)” or “LFSR

(128)” despite its overhead because in the long term they will result in the similar
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lifetime extension. The “16 ENT (128)” performs better than the other setting for

realistic workloads. It achieves average of about 22× improvement in the network

lifetime which can be directly translated into the entire CMP lifetime improvement.

The proposed technique performs better when incoming rate is low. As shown in

Figure 4.7, “ferret” and “x264” are the applications with the two lowest incoming

rates in the PARSEC suite. For those applications, the “16 ENT (128)” achieves 53×

and 65× lifetime extension, respectively 2. Even when the average incoming rate is as

high as 0.05 flit/cycle (“canneal”) it still achieves the normalized lifetime of 13.8 due

to the extreme spread in per-router incoming rates from minimal to maximum seen

in that application. The LFSR scheme achieves about half of the lifetime increase

achieved by the pre-defined random vectors.
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Figure 4.13: Normalized lifetime of the network using the proposed technique under
realistic workload

The bars designated as “ALL” denote a case in which the system executes each of

the applications sequentially one at a time. In this case, the improvement becomes ∼
2It is noted that 65× is greater than the normalized lifetime gain shown in Figure 4.10; this is

because the minimum incoming rate of this application is smaller than the minimum value of 0.001
flits/cycle depicted in Figure 4.10.
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28×. We found that the execution time for “ferret” and “x264” are the longest among

the applications, and hence the incoming rate is dominated by those two applications

when the suite is executed in such a way. Although the lifetime improvement achieved

by “LFSR (8)” is less than what is achieved by “16 ENT (128)”, it is also as high as

14×, on average.

4.6.2.3 Per-router relative lifetime under PARSEC workloads

To estimate the relative lifetime of the router across the PARSEC applications,

we compute the acceleration factor of the routers under all PARSEC workloads using

a baseline router with 0.02 flits per cycle incoming rate as the reference system. This

incoming rate is chosen because it is observed as the average per-router incoming rate

across all the PARSEC applications. In Figure 4.12 each bar denotes the lifetime of

the routers at the average incoming rate of each program. The line over each bar

displays the router lifetimes under min and max incoming rates of each application.

The bars marked by “baseline” show the relative lifetime of the baseline router across

the PARSEC suite. As the lifetime, in this graph, is normalized to that of a baseline

router at the average incoming rate of all PARSEC benchmarks (0.002 flit/cycle),

the “baseline” for “AVG” becomes 1. The lifetime is in inverse proportion to the

incoming rate of the program due to the NBTI effect. Hence, routers using “x264”

live a shorter time, and routers running “canneal” live a relatively longer time; the

latter lives 7.5× longer than the former. The proposed technique performs better

at low incoming rates making the lifetime ratio between those two applications to

be about 1.5 when either of the two techniques is used. As discussed earlier, the

proposed technique levels the lifetime at different workloads. It also reduces the

lifetime variance within the network under the same workload. This lifetime variance

mainly stems from the variance in spatially distributed network flit incoming rates.
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Figure 4.14: Activity factor versus injection rate under various bit-width router
models

For example, in case of “swaptions”, originally, the difference between min and max

was found to be 2.5 in relative lifetime; after using the “LFSR (8)” it settees to a 1.4

relative lifetime. Again, it is desirable to equalize the lifetime of the routers within

the network as the lifetime of network is decided by the router which stops to operate

first.

4.6.2.4 Activity factor

One potential downside of this technique is that it could increase the activity

factor along the critical path resulting to potential HCI-induced aging problems.

Figure 4.14 shows the average activity factor along the critical paths at various flit

incoming rates for different router models. For the “baseline” router, the activity

factor is linearly proportional to the incoming rate as the incoming flits are the only

stimuli to the allocator. In case of modified routers, the activity factor also increases

as the incoming rate grows but it increases more rapidly than the “baseline” case

because of the exercise logic. The growth of activity factor with respect to the

incoming rate is more rapid at low incoming rates, as the exercise logic has more

opportunity to become active. As the incoming rate increases and the exercise logic
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Figure 4.15: Router power consumption under various bit-width router models

misses opportunities to generate a new random vector, the increase in the activity

factor slows down. Interestingly, the slope, in case of “LFSR (8)” goes on a plateau

where the increase of the activity factor from the increased incoming rate and the

decrease of activity factor from losing the chance to activate the exercise logic cancel

out each other. As the exercise logic updates the random vector more frequently,

the activity factor also increases. Hence, the “LFSR (8)” has higher activity factors

than the “16 ENT (128)”. Another interesting observation is that the higher activity

factor does not necessarily promise the better duty cycle. Although “LFSR (8)”

changes the random bit vector more frequently, “16 ENT (128)” balances the duty

cycle better even with the slower updating frequency. Although the exercise logic

increases the activity factor in general, we can minimize it by increasing the updating

period to be even longer than 128 cycles without sacrificing the lifetime gain.

4.6.2.5 Power analysis

The increased activity factor leads to additional power consumption. The extra

logic, however, only exercises the allocator logic which merely takes 1.3% of the total

power. Our power analysis using PrimeTime indicates that the proposed technique
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increases total power by less than 1%. Figure 4.15 shows the power consumption with

respect to varying incoming rate for the different router models. The router power

consumption increases as the incoming rate increases, however, it does not increase

as much as the incoming rate does. For example, when the incoming rate increases

from 0.001 flits per cycle to 0.05 flits per cycle (50×), the power consumption merely

increases by 3.2%. We observed that the power consumption is dominated by the

clock distribution, which makes the power consumption less sensitive to any other

activity. Hence, even “LFSR (8)” merely increases the power consumption of the al-

locator alone by 7% despite the relatively significant increase in activity factor shown

in Figure 4.14. “16 ENT (128)” does not affect the activity factor of the allocator as

much as “LFSR (8)” resulting in 0.3% increase of the allocator power consumption.

The increase of the power consumption mostly comes from the additional logic gates

which increase the area by less than 1% of the area of original router.
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4.7 Related Work

Aging models for transistors have been extensively studied since technology crossed

the submicron border, which inherently made the CMOS manufacturing process

vulnerable to run-time faults. NBTI and HCI are dominant wearout effects and

have thus been more intensively studied [61]. Conventionally, aging effects are stud-

ied under DC stress conditions where it is easier to measure transistor parame-

ters [41, 51, 56]. However, AC stress conditions are more realistic for high-frequency

long-term CMOS operation; hence works such as those of [45, 79, 61] discuss such

long-term models, while other works introduce the relationship between DC and AC

stress conditions [80].

The newly emerging devices, such as multi-gate field effect transistors MuFETs

and FinFETs [5, 70] at 22 nm process technology and below, have gradually become

an object for aging effects exploration. Wang et al. [80] make an attempt towards

presenting a unified aging model for the effects of both HCI and NBTI. They derive

models for double- and triple-gate FinFETs, for each of these aging effects, that

capture specific FinFET geometrical aspects.

Unfortunately, the vast majority of the reported models lack important details,

such as values for various constants, measurement conditions, detailed explanation

of parameters, etc., so it becomes fairly challenging to employ the existing proposed

frameworks in the context of microarchitecture, and reproduce further models that

will lead to meaningful aging effect calculations, and thereafter important device or

components wearout models and conclusions.

PBTI (positive voltage temperature instability) affects NMOS transistors, as

well. It occurs when a positive voltage is applied to the gate of NMOS, and the

physics behind NBTI on PMOS transistors and PBTI on NMOS ones are basically
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the same. It has been widely believed that PBTI degradation in NMOS transistors

is practically negligible when compared to NBTI in PMOS transistors [69]. However,

state-of-the-art experiments [82] have shown that PBTI can dominate under certain

circumstances. Although we focus on NBTI, the proposed technique still mitigates

the PBTI effect as it eliminates the duty cycle imbalance, which accelerates PBTI.

Various techniques have been proposed so as to mitigate the aging effect in pro-

cessor core architectures. Among those proposed mechanisms, Gunadi et al. [31]

suggested the Colt duty cycle equalizer which balances duty cycle by alternating true

and one’s complement data representations. Abella et al. [1] introduced the Pene-

lope NBTI-aware processor architecture where they discuss a number of techniques

to combat NBTI, including a mechanism which writes special values in memory

cells in order to keep the duty cycle at an ideal 50%. Next, Kumar et al. [49] pro-

posed periodic cache flipping so as to provide periods of relaxation for the influenced

pMOSFET allowing dynamic recovery of threshold voltage. The aforementioned

three works bear similarities to the “exercise logic” proposed in this paper, in the

context that these techniques periodically insert inverted or random values to balance

duty cycle. However none of the three has dealt with NoC router micro-architectures,

which as we discuss are critical to the system’s survivability.

Although our approach is similar to the approaches in the aforementioned pre-

vious works, here we actually handle a different problem. In the previous works,

the researchers focused on the duty cycle bias on the data paths, while we mainly

balance the uneven duty cycles along the control paths. In fact, the sources of the

uneven duty cycle are different. In the previous works, it is dominant in biased data

contents, while in our work it is more evident during the proved extremely low ac-

tivity seen in NoC routers (see Section 4.3). Although the proposed “exercise logic”

is also able to resolve the aging problems due to the skewed data content along the
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data path of the NoC routers, we utilize it only for the timing critical paths where

the NBTI impact occurs in its most critical form or impact.

Aging has been also examined in the NoC domain. Bhardwaj et al. [9, 8] propose

routing algorithms to mitigate multiple aging mechanisms. They also point out that

NBTI plays a major role in NoC router aging, and their routing techniques balance

the traffic load across the network to level-out the aging rates among the routers. The

approach is reasonable, in that they force the network traffic detour through routers

of low utilization which, on the contrary, accelerates NBTI-caused aging. However,

they use these routing techniques for the opposite reason. The routing algorithms

are actually designed to reduce the workload onto the routers which exhibit high

utilization, which as we show here are not actually the routers likely to exhibit the

most stress-related aging. Fu et al. [26] propose a similar technique to ours, in that

it inserts special values to idle arbiters to mitigate NBTI. However, they propose this

technique to make arbiters less frequently utilized so as to give these routers a chance

to recover from the effects of NBTI, which is actually not necessary applicable to

frequently utilized circuits. In these previous studies, it is assumed that the NBTI

stress time is proportional to the router utilization, however, on the contrary, we

prove that this is not the actual case. Through detailed, gate-level analysis, not

found in earlier works, we demonstrated that the duty cycle becomes more skewed

when the NoC router is actually under-utilized and not when it is high- or over-

utilized.
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4.8 Conclusions

Prolonged operational stress gives rise to accelerated wearout and failure, due

to HCI and NBTI. Each failure mechanism correlates with different usage-based

stresses, all of which can eventually generate permanent faults. While the wearout

of an individual core in many core CMPs may not necessarily be catastrophic for

the entire parallel-processing system, a single fault in the inter-processor Network-

on-Chip (NoC) fabric could render the entire chip useless. In this paper, we have de-

veloped critical path models for HCI- and NBTI-induced wear due to stresses caused

by realistic workloads, and apply them onto the interconnect microarchitecture. A

key finding from this modeling being that, counter to prevailing wisdom, wearout in

the CMP on-chip interconnect is correlated with lack of load observed in the NoC

routers, rather than high load. We then develop a novel wearout-decelerating scheme

in which routers under low load have their wearout-sensitive components exercised,

without significantly impacting cycle time, pipeline depth, area or power consump-

tion of the overall router. We subsequently show that the proposed design yields a

13.8×-65× increase in CMP lifetime.
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5. CONCLUSIONS

Moore’s Law scaling is continuing to yield even higher transistor density with each

succeeding process generation, leading to today’s multi-core Chip Multi-Processors

with tens or even hundreds of interconnected cores or tiles. In such systems, the

interconnect, typically organized as a Network-on-Chip, plays a vital role enabling

communication among the on-chip components. However, the power consumption

of NoC has become a growing concern as the complexity of NoC increases and the

power consumption of the individual transistor stops to scale unlike the feature size.

In addition, deep sub-micron CMOS process technology is marred by increasing

susceptibility to wearout shortening the useful lifespan of such systems. Hence,

energy efficiency and reliability must be first considered while designing such on-

chip systems. In this dissertation, I have proposed two energy saving techniques to

improve the energy efficiency of NoC and LLC. I have also examined the cause of

wearout in NoC and introduced a novel wear-decelerating router microarchitecture

overcoming the aging effects.

It was observed that there has been energy waste due to transference of unused

cache-line words, and I proposed a energy saving router microarchitecture leveraging

those unused words. It was observed that only 40% of words in fetched cache lines

are actually used, and 60% of words consume energy being transferred over the

interconnect for nothing. The pattern of used and unused words in cache lines was

predictable as a certain fields of data structures are repeatedly used within program

iterations. A spatial locality predictor which speculates the unused words in cache

lines and a new packet encoding scheme are proposed to encode those unused words

such that they do not cause any bit transition along the interconnect data-path.
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Using this technique, an average of 35% dynamic energy reduction has been achieved

at negligible performance loss.

I also conducted an experiment with a new DVFS policy to reduce uncore energy

consumption. DVFS has been introduced to reduce energy consumption when sys-

tem is under-loaded. It has been widely studied and used in processor core design.

However, employing DVFS in uncore design introduces new challenges. It is neces-

sary to find a metric which is controllable by configuring uncore V/F level, and has

direct impact on the overall system performance. AMAT has been used as it has

some sensitivity to the V/F level of uncore and some impact on the overall system

performance to some extent. However, it is hard to define the reference point in

terms of AMAT. I proposed to use throughput of uncore as the metric as it is de-

pendent upon the V/F level of uncore and also it affects the overall performance. It

has been examined that such throughput based control scheme results in improved

energy efficiency compared to the AMAT based control.

I also addressed reliability issues in CMP design in this dissertation. With the

continuous down-scaling of process technologies, reliability has become an important

concern in current and future CMOS logic circuit design. Wear of NoC has more

critical impact on the lifetime of CMP than wear of core does because even a single

failure of a link or a router can incapacitate the entire system. The key contribution

of this work is the discovery of the relation between wearout and workload observed

in the NoC routers. Counter to the prevailing wisdom, wear-out in NoC is accelerated

when routers are under-utilized rather than highly- or over-utilized. A novel anti-

aging router microarchitecture to overcome the failure mechanisms is also introduced

in this work.
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