
OPTIMIZATION-BASED NETWORK ANALYSIS WITH

APPLICATIONS IN CLUSTERING AND DATA MINING

A Dissertation

by

SHAHRAM SHAHINPOUR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sergiy Butenko
Committee Members, Lewis Ntaimo

Luca Quadrifoglio
Kiavash Kianfar

Head of Department, César Malavé

August 2013

Major Subject: Industrial Engineering

Copyright 2013 Shahram Shahinpour

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/18599669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

In this research we develop theoretical foundations and efficient solution methods

for two classes of cluster-detection problems from optimization point of view. In

particular, the s-club model and the biclique model are considered due to various

application areas. An analytical review of the optimization problems is followed by

theoretical results and algorithmic solution methods developed in this research.

The maximum s-club problem has applications in graph-based data mining and

robust network design where high reachability is often considered a critical property.

Massive size of real-life instances makes it necessary to devise a scalable solution

method for practical purposes. Moreover, lack of heredity property in s-clubs im-

poses challenges in the design of optimization algorithms. Motivated by these prop-

erties, a sufficient condition for checking maximality, by inclusion, of a given s-club

is proposed. The sufficient condition can be employed in the design of optimization

algorithms to reduce the computational effort. A variable neighborhood search al-

gorithm is proposed for the maximum s-club problem to facilitate the solution of

large instances with reasonable computational effort. In addition, a hybrid exact

algorithm has been developed for the problem.

Inspired by wide usability of bipartite graphs in modeling and data mining, we

consider three classes of the maximum biclique problem. Specifically, the maximum

edge biclique, the maximum vertex biclique and the maximum balanced biclique

problems are considered. Asymptotic lower and upper bounds on the size of these

structures in uniform random graphs are developed. These bounds are insightful in

understanding the evolution and growth rate of bicliques in large-scale graphs. To

overcome the computational difficulty of solving large instances, a scale-reduction

ii

technique for the maximum vertex and maximum edge biclique problems, in general

graphs, is proposed. The procedure shrinks the underlying network, by confirming

and removing edges that cannot be in the optimal solution, thus enabling the exact

solution methods to solve large-scale sparse instances to optimality. Also, a com-

binatorial branch-and-bound algorithm is developed that best suits to solve dense

instances where scale-reduction method might be less effective. Proposed algorithms

are flexible and, with small modifications, can solve the weighted versions of the

problems.

iii

Dedicated to my wife

and

my parents

iv

ACKNOWLEDGEMENTS

I am grateful to many people for their help. First and foremost, I would like to

express my gratitude to my advisor, Dr. Sergiy Butenko, for his continuous support,

encouragement and especially insights and valuable comments. I sincerely thank

Dr. Jorge Leon for providing me the opportunity to teach laboratories and lectures

at Engineering Technology & Industrial Distribution Department. Teaching was a

wonderful experience for me and a big step towards professional development. I

would like to thank Dr. Catherine Yan, Dr. Lewis Ntaimo, Dr. Kiavash Kianfar,

and Dr. Luca Quadrifoglio for serving as members of my committee and for their

suggestions.

I thank all my colleagues in the research group and fellow students in the depart-

ment as well as the staff members in Industrial & Systems Engineering Department

and Engineering Technology & Industrial Distribution Department for providing

friendly environment from which my research has benefited.

I sincerely thank my wife, Shirin, and my parents for their love and support.

Without their encouragement and companionship I would have never been able to

accomplish this work.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . x

1. BACKGROUND AND ANALYTICAL REVIEW 1

1.1 Definitions and notations . 1
1.2 Distance-based clique relaxation models 6

1.2.1 Structural properties and computational complexity 8
1.2.2 Mathematical programming formulations 14
1.2.3 Polyhedral results . 22
1.2.4 Exact and heuristic algorithms 25

1.3 The biclique model . 29
1.3.1 Computational complexity . 30
1.3.2 Mathematical programming formulations and algorithms . . . 32

1.4 Applications and extensions . 36
1.4.1 s-clique and s-club . 36
1.4.2 Biclique . 39

1.5 Research objectives and concluding remarks 41

2. ALGORITHMS FOR THE MAXIMUM s-CLUB PROBLEM 43

2.1 Introduction . 43
2.2 Checking maximality of a s-club . 43

vi

2.2.1 Maximality test . 46
2.3 Description of the VNS method . 47

2.3.1 Background and the proposed method 47
2.3.2 Initial feasible solution . 50
2.3.3 Local improvement procedure 51
2.3.4 Neighborhood structures . 53

2.4 A hybrid exact algorithm . 56
2.5 Results of computational experiments 57
2.6 Conclusion . 66

3. ASYMPTOTIC RESULTS FOR BICLIQUE COMMUNITY DETECTION
PROBLEMS . 71

3.1 Introduction . 71
3.2 Asymptotic bounds on the biclique size in uniform random graphs . . 71

3.2.1 Maximum vertex biclique problem 71
3.2.2 Maximum balanced biclique problem 78
3.2.3 Maximum edge biclique problem 85

4. EXACT ALGORITHMS FOR THE MAXIMUM BICLIQUE PROBLEMS 87

4.1 Mathematical programming formulations 87
4.2 Scale-reduction algorithm . 90

4.2.1 Reduction technique and properties 90
4.2.2 Initial feasible solution . 96
4.2.3 Preprocessing and valid inequalities 98

4.3 Combinatorial branch-and-bound method 99
4.3.1 General framework . 99
4.3.2 Non-induced MVB . 102

4.4 Computational experiments . 104

5. CONTRIBUTIONS AND FUTURE RESEARCH 112

5.1 Contributions . 112
5.2 Future research . 114

vii

REFERENCES . 115

APPENDIX A. PROOF OF COMPLEXITY RESULT FOR ASYMPTOTIC
BOUNDS ON MAXIMUM BICLIQUE PROBLEMS 127

APPENDIX B. DETAILED RESULTS OF EXPERIMENTS FOR THE MAX-
IMUM s-CLUB PROBLEM . 129

viii

LIST OF FIGURES

FIGURE Page

1.1 A graph illustrating structural differences of 2-cliques and 2-clubs. . . 8

1.2 A graph with ωs(G) = 14 (a maximum 2-club is given by, e.g., C =
{5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21}) and ω2(Gs/2) = 16 (all ver-
tices excluding 2,4,6,8,10 form the maximum 2-club in G2), where s = 4. 13

1.3 Subgraph Gij illustrating the node cut set formulation. 19

2.1 Graph G (left) and the induced subgraphs G[N3(G,S, 1)] (middle)
and G[N3(G,S, 2)] (right) for S = {1, 2, 3, 9}. 44

2.2 A graph G = (V,E) with a maximal 2-club S = {1, 2, 3, 4, 5, 6, 7} such
that N2(G,S, p) = V for any p ≥ 1. 46

2.3 Graphical representation of 2-add move for 2-club. 52

2.4 Illustration of CPU time required for VNS and B&B to solve M2CP
and M3CP on DIMACS instances. 62

4.1 Graph G (left) and the induced subgraphs G[PL(E, 1)] (middle) and
G[PL(E, 2)] (right). 92

ix

LIST OF TABLES

TABLE Page

2.1 Computational results of solving the MsCP using VNS and B&B algorithms

for s=2 on DIMACS instances. 63

2.2 Computational results of solving the MsCP using VNS and B&B algorithms

for s=3 on DIMACS instances. 64

2.3 Average output s-club size, average optimality gap and average running

time for the VNS and B&B algorithms (d=0.0125). 65

2.4 Average output s-club size, average optimality gap and average running

time for the VNS and B&B algorithms (d=0.025). 66

2.5 Average output s-club size, average optimality gap and average running

time for the VNS and B&B algorithms (d=0.05). 67

2.6 Average output s-club size, average optimality gap and average running

time for the VNS and B&B algorithms (d=0.1). 68

2.7 Average output s-club size, average optimality gap and average running

time for the VNS and B&B algorithms (d=0.15). 68

2.8 Average output s-club size, average optimality gap and average running

time for the VNS and B&B algorithms (d=0.2). 69

2.9 Average output s-club size, average optimality gap and average running

time for the VNS and B&B algorithms (d=0.25). 69

2.10 Average output s-club size, average optimality gap and average running

time for the hybrid algorithm. 70

4.1 Computational results using scale-reduction algorithm for MVB on
instances from DIMACS Clustering challenge and SNAP dataset . . . 108

4.2 Computational results using pure B&B algorithm for MVB on in-
stances from DIMACS Clique challenge 109

4.3 Computational results using pure B&B algorithm for non-induced
MVB on instances from SNAP dataset and DIMACS Clique and Clus-
tering challenges . 110

x

4.4 Comparison between scale-reduction and pure B&B algorithms for
MVB . 111

4.5 Solution to MEB and MVB problems solved by pure B&B algorithm 111

B.1 Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.0125)130

B.2 Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.025)131

B.3 Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.05) 132

B.4 Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.1) 133

B.5 Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.15) 134

B.6 Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.2) 135

B.7 Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.25) 136

B.8 Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.0125)137

B.9 Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.025)138

B.10 Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.05) 139

B.11 Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.1) 140

B.12 Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.15) 141

B.13 Results of solving the MsCP using hybrid algorithm(s=2, d=0.15) 142

B.14 Results of solving the MsCP using hybrid algorithm(s=3, d=0.025, 0.05) . 143

xi

1. BACKGROUND AND ANALYTICAL REVIEW

1.1 Definitions and notations

Consider a simple undirected graph G = (V,E) with the set of vertices V and

the set of edges E corresponding to pairs of vertices. Two vertices v and v′ in G are

said to be adjacent or neighbors if (v, v′) ∈ E, in which case the edge (v, v′) is said to

be incident to v and v′. Let NG(v) = {v′ ∈ V : (v, v′) ∈ E} denote the neighborhood

of a vertex v in G, and let NG[v] = {v}∪NG(v) be the closed neighborhood of v. The

cardinality of the neighborhood, |NG(v)|, is called the degree of v in G and is denoted

by degG(v). Let δ(G) and ∆(G) denote the minimum and the maximum degree of

a vertex in G, respectively. We call a graph G′ = (V ′, E ′) a subgraph of G = (V,E)

if V ′ ⊆ V and E ′ ⊆ E. For a subset of vertices S ⊆ V , the subgraph induced by S,

G[S], is given by G[S] = (S,E∩ (S×S)), where “×” denotes the Cartesian product.

A path of length r between vertices v and v′ in G is a subgraph of G given by an al-

ternating sequence of distinct vertices and edges v ≡ v0, e0, v1, e1, . . . , vr−1, er−1, vr ≡

v′ such that ei = (vi, vi+1) ∈ E for all 1 ≤ i ≤ r − 1. A cycle of length r is defined

similarly, by assuming that v ≡ v′ in the definition of a path. If there is at least one

path between two vertices v and v′ in G, then we say that v and v′ are connected in

G. A graph is called connected if any pair of its vertices is connected. Otherwise, a

graph is called disconnected. The length of a shortest path between two connected

vertices v and v′ in G is called the distance between v and v′ in G and is denoted

by dG(v, v′). If v and v′ are not connected in G, then dG(v, v′) = ∞. The diameter

diam(G) of a graph G is given by the maximum distance between any pair of vertices

in G, i.e., diam(G) = maxv,v′∈V dG(v, v′).

The vertex connectivity κ(G) of G is the minimum number of vertices that need to

1

be deleted from G in order to obtain a disconnected or a trivial graph. The density

ρ(G) of G is given by ρ(G) = |E|/
(|V |

2

)
. A complete graph Kn on n vertices is a

graph that contains all possible edges, i.e, ρ(Kn) = 1. The complement Ḡ of G is

Ḡ = (V, Ē), where Ē is the complement of E, i.e., E ∩ Ē = ∅ and K|V | = (V,E ∪ Ē).

A clique C is a subset of vertices such that G[C] is a complete graph. An independent

set I is a subset of vertices such that G[I] has no edges. Clearly, S ⊆ V is a clique

in G if and only if S is an independent set in Ḡ. A clique (independent set) is

called maximal if it is not a subset of a larger clique (independent set). A maximum

clique (independent set) of G is a clique (independent set) of the largest size in G,

and the problem of finding a maximum clique (independent set) in a graph is called

the maximum clique (independent set) problem. The size of a maximum clique in G

is called the clique number of G and is denoted by ω(G). The size of a maximum

independent set in G is called the independence number of G and is denoted by α(G).

We have ω(G) = α(Ḡ).

Some of the well known clique relaxation models are defined next. We assume

that s and k are positive integer constants and λ, γ ∈ (0, 1] are real constants. Let

S ⊆ V. S is an s-plex if δ(G[S]) ≥ |S| − s. S is an s-defective clique if G[S] contains

at least
(|S|

2

)
−s edges. S is a k-core if δ(G[S]) ≥ k. S is a k-block if κ(G[S]) ≥ k. S is

a γ-quasi-clique if ρ(G[S]) ≥ γ. S is a (λ, γ)-quasi-clique if δ(G[S]) ≥ λ(|S| − 1) and

ρ(G[S]) ≥ γ. D ⊆ V is called a distance s-dominating set if for any v ∈ V \D there

exists v′ ∈ D such that dG(v, v′) ≤ s. Distance 1-dominating set is called simply a

dominating set.

In [84], the motivation behind some of the most popular clique relaxation models

was analyzed in a systematic fashion, and a set of simple rules for defining mean-

ingful clique relaxation structures was identified, yielding a methodical taxonomic

framework for clique relaxations. The framework is based on the observation that

2

the clique can be defined using alternative equivalent descriptions via other basic

graph concepts, such as distance, diameter, domination, degree, density, and connec-

tivity. The corresponding equivalent definitions are referred to as elementary clique

defining properties. Then, by applying some simple modifications to the elementary

clique defining properties, one can reproduce the known clique relaxation models, as

well as define new structures of potential practical interest. We will adhere to this

framework in defining the distance-based clique relaxations formally as follows.

First, note that a subset of vertices C is a clique in G if and only if dG(v, v′) =

1, for any v, v′ ∈ C or, equivalently, diam(G[C]) = 1. These equivalent clique

definitions constitute the elementary clique defining properties based on distance

and diameter, respectively. In both cases, we have an equivalent characterization of

a clique by setting a certain parameter (pairwise distance or diameter) to its minimum

possible value. We can define the corresponding clique relaxations by restricting the

violation of the respective elementary clique defining property, i.e., by allowing the

pairwise distance or diameter to be greater than 1, but no greater than a constant

positive integer s > 1. As a result, we obtain the following definitions.

Definition 1 (s-clique). Given a simple undirected graph G = (V,E) and a positive

integer constant s, a subset of vertices S ⊆ V is called an s-clique if dG(v, v′) ≤ s,

for any v, v′ ∈ S.

Definition 2 (s-club). Given a simple undirected graph G = (V,E) and a positive

integer constant s, a subset of vertices S ⊆ V is called an s-club if diam(G[S]) ≤ s.

An s-clique (s-club) is called maximal in G if it is not a subset of a larger s-clique

(s-club) in G, and maximum in G if there is no larger s-clique (s-club) in G. The

maximum s-clique (s-club) problem asks to find a maximum s-clique (s-club) in G.

The size of the largest s-clique in G is called the s-clique number and is denoted by

3

ω̃s(G). The size of the largest s-club in G is called the s-club number and is denoted

by ωs(G).

According to the taxonomy in [84], clique relaxations based on restricting the

violation of an elementary clique defining property can be standard or weak; abso-

lute or relative; and structural or statistical. For a standard relaxation, we require

the relaxed clique-defining property to hold in the induced subgraph, whereas the

corresponding weak relaxation requires the same property to be satisfied within the

original graph instead of the induced subgraph. Since s-clique is defined by restrict-

ing pairwise distances for its members in G, it is a weak relaxation, whereas s-club,

which restricts distances in the induced subgraph, is a standard relaxation. Both

s-clique and s-club are absolute relaxations, since the value of the constant s refers

to the absolute bound on the distance in G or G[S] and does not depend on the

size of S. However, their relative version could easily be introduced by replacing

the constant s in the definitions of s-clique and s-club with γ|S|, where γ ∈ (0, 1)

is a constant. Finally, both s-clique and s-club are structural clique relaxations and

their statistical counterparts could be defined by requiring that the average pairwise

distance between vertices for S in G or G[S] is at most s. It should be noted that, in

contrast to the structural relaxations, statistical relaxations generally impose little

in terms of the group structure.

Higher-order clique relaxation models, which relax more than one elementary

clique defining properties simultaneously, could also be defined using distance or

diameter restrictions in addition to other requirements. Since the graph-theoretic

notion of distance relies on paths, in addition to the simple higher order relaxations

that combine multiple properties in a straightforward fashion, s-clique and s-club

could also be involved in the so-called k-hereditary higher-order relaxations, with

k-connectivity embedded within their structure. Namely, k-hereditary s-club and

4

s-clique can be defined as follows. Given G = (V,E) and positive integers s and k,

S ⊆ V is called a k-hereditary s-club if diam(G[S \S ′]) ≤ s for any S ′ ⊂ S such that

|S ′| ≤ k. Similarly, S is a k-hereditary s-clique if dG(v, v′) ≤ s for all v, v′ ∈ S \ S ′

for any S ′ ⊂ S such that |S ′| ≤ k.

Next we introduce some graph classes for which the problems of interest have

been explored in the literature. Consider a graph G = (V,E). Given a cycle in G,

its chord is an edge between two vertices of the cycle that is not a part of the cycle.

A graph is called chordal if any cycle on at least 4 vertices has a chord. G is called a

k-partite graph if V can be partitioned into k non-overlapping independent sets. If

k = 2, a k-partite graph is bipartite. G is a split graph, if V = V1 ∪ V2, where V1 is a

clique and V2 is an independent set such that V1 ∩ V2 = ∅. G is an interval graph if

there exists a set of intervals I = {Iv : v ∈ V } on the real line such that Iv ∩ Iv′ 6= ∅

iff (v, v′) ∈ E.

While the variations of distance-based relaxations just defined may potentially

find interesting applications, we focus on the s-clique and s-club, referred to as

canonical clique relaxation models for distance and diameter respectively in [84]. In

addition, we consider biclique community detection problems with applications in

biclustering and genome research.

Definition 3 (Biclique). Given a simple undirected graph G = (V,E), an induced

biclique of G is a pair (X, Y) with X, Y ⊂ V , X ∩ Y = ∅ such that X and Y are

stable sets and if x ∈ X and y ∈ Y then (x, y) ∈ E.

In other words, an induced biclique of G is a complete bipartite subgraph of G.

Note that if G is a bipartite graph then any biclique in G is induced. In the above

definition, if at least one of X or Y is not required to be a stable set, then the pair

(X, Y) is called a non-induced biclique of G. A biclique in G is said to be maximal

5

if it is not a subset of a larger biclique in G and maximum in G if there is no larger

biclique in G. Note that in order for a bipartite graph to be a 2-club, it must be a

biclique.

The objective of this chapter is to provide an up-to-date survey of known results

concerning s-clique, s-club, biclique and the corresponding optimization problems,

as well as to identify related open questions to explore. The remainder of the chapter

is organized as follows. We start by introducing these models in sections 1.2, 1.3, and

discuss the basic structural properties and the complexity results of the associated

optimization problems in order to have a better understanding of the computational

challenges one has to overcome in order to solve the problems of interest. Integer

programming formulations proposed for the optimization problems and known poly-

hedral combinatorics associated with these formulations are reviewed. An overview

on the solution methods that have been proposed for these problems, along with a

brief review of the computational results is presented. Selected applications of the

problems of interest are discussed in Sec. 1.4 and the chapter concludes with the

objectives and open questions we aim to answer in this research.

1.2 Distance-based clique relaxation models

In 1949, Luce and Perry [69] introduced the clique concept to model the notion

of a cohesive subgroup in social network analysis. Since then, cliques and the as-

sociated maximum clique problem have become ubiquitous and have been studied

extensively in graph theory [37, 20, 21], theoretical computer science [46, 62] and op-

erations research [15, 27, 22] from different perspectives. In graph-theoretic terms, a

clique is a subset of vertices that are pairwise adjacent. The clique definition ensures

the perfect reachabiliy between the group’s entities, as they are directly linked to

each other. Moreover, it also ensures that a clique has the highest possible degree

6

of each vertex, the highest possible connectivity, and the largest possible number

of edges in the induced subgraph among all subsets of vertices of the same cardi-

nality. However, the ideal cohesiveness properties of a clique put limitations on its

applicability to situations where enforcing such properties is unnecessary or even

prohibitive. For example, in transportation and telecommunication networks easy

reachability between the members of a group (or a cluster) is of utmost importance,

whereas a large number of edges is either costly to construct and maintain or results

in operating inefficiencies, such as excessive interference.

To address particular practical aspects that cannot be suitably modeled by cliques,

numerous clique relaxation models have been introduced in the literature that en-

force certain elementary properties of cliques to be present, in a relaxed form, in

the model of a cluster. The long list of the proposed models includes the distance-

based clique relaxations called s-clique [68] and s-club [76], degree-based relaxations

called s-plex [94] and k-core [93], and an edge density-based model known as quasi-

clique [1] among many others. The focus of this chapter is on distance-based clique

relaxations, s-clique and s-club.

Originally proposed by Luce [68] in 1950, s-clique was the historically first clique

relaxation concept. This structure relaxes the requirement of having an edge (dis-

tance 1) between any pair of vertices from the group by allowing them to be at most

distance s apart, thus ensuring that they can communicate via a path of at most

s−1 intermediate vertices. Note that these intermediate vertices, while guaranteeing

the reachability in at most s hops between vertices from an s-clique, do not have

to be a part of the s-clique themselves, which may be considered a drawback from

the cohesiveness standpoint. This was first pointed out by Alba [4], who proposed a

definition of the so-called sociometric clique of diameter s, which was later refined by

Mokken [76] under the name of s-club. Any two members of an s-club are required

7

4 B. Balasundaram, S. Butenko and S. Trukhanov

�

�� ��

��

����

��

Figure 1. An example graph.

�

�� ��

��

����

��

��

	�

Figure 2. A graph with no 2-clans.

the diameter of the induced subgraph G(D) is at most n. To highlight
the differences between the three structures, we turn to the graph in
Figure 1. In this graph, the 2-cliques are given by C1 = {1, 2, 3, 4, 5}
and C2 = {1, 2, 4, 5, 6}. It is easy to see that C1 is not a 2-clan or 2-club,
since the diameter of induced subgraph G(C1) is 3. Since any n-clan is
an n-clique, the only 2-clan in this graph is given by C2. Lastly, the 2-
clubs of this graph are D1 = {1, 2, 3, 4}, D2 = {2, 3, 4, 5} and D3 = C2.
A study of relations between cliques, clans and clubs in a graph can be
found in (Mokken, 1979).

Even though the concepts just defined are used quite extensively in
social networks analysis and are even covered in standard textbooks
(see, e.g., (Wasserman and Faust, 1994)), their definitions have some
deficiencies from the mathematical viewpoint. One considerable draw-
back of the n-clan definition is that for some graphs an n-clan may not
exist. This point is illustrated in Figure 2, which shows a graph with
two 2-cliques {1, 2, 3, 4, 5, 6, 7} and {1, 2, 3, 5, 6, 7, 8}, neither of which
is a 2-clan.

bio_clubs_cliques_JOCO.tex; 22/04/2005; 16:05; p.4

Figure 1.1: A graph illustrating structural differences of 2-cliques and 2-clubs.

to be connected by a path of length at most s, where all intermediate vertices belong

to the s-club.

1.2.1 Structural properties and computational complexity

From the definitions, it is clear that an s-club is also an s-clique, however, the

converse is not true in general. Even though the s-clique and s-club models appear

to be very similar, there are some fundamental differences in their structural prop-

erties that have important implications for the associated optimization problems.

To highlight these differences, consider a simple example in Fig. 1.1 that originally

appeared in [4]. In the graph in this figure, a subset of vertices {1, 2, 3, 4, 5} is a

2-clique, but not a 2-club, since the distance between vertices 1 and 5 is 3 in the

induced subgraph. Moreover, {1, 2, 4} is a 2-clique and a 2-club, {1, 2, 4} ∪ {5} and

{1, 2, 4}∪ {6} are both 2-cliques but not 2-clubs, whereas {1, 2, 4}∪ {5, 6} is again a

2-clique and a 2-club. This shows the lack of any type of heredity for s-clubs, which

is formally defined as follows [84]. A graph property Π is called hereditary on induced

subgraphs, if for any graph G with property Π deleting any subset of vertices does

not produce a graph violating Π. A graph property Π is called weakly hereditary,

if for any graph G = (V,E) with property Π all subsets of V posses the property

Π in G. A graph property Π is said to be nontrivial if it is true for a single-vertex

graph and is not satisfied by every graph. A graph property is said to be interesting

if there are arbitrarily large graphs satisfying Π.

8

Unlike s-clubs, s-cliques posses weak heredity, which allows to reduce the problem

of finding an s-clique to the problem of finding a clique in an auxiliary power graph

defined as follows. Given a graph G = (V,E) , the sth power of G, denoted by Gs,

is given by Gs = (V,Es), where Es = {(v, v′) : 0 < dG(v, v′) ≤ s}. Then S ⊆ V is

an s-clique in G if and only if S is a clique in Gs. Heredity on induced subgraphs is

the core property implicitly exploited by some of the most successful combinatorial

algorithms for the maximum clique problem [28, 79], which can also be applied to

Gs in order to solve the maximum s-clique problem in G. Because of the presence

of weak heredity, s-clique has advantage over s-club in terms of applicability of the

variety of existing techniques available for the maximum clique problem to solving

the maximum s-clique problem. However, this comes at a price. The fact that

the s-clique is defined by restricting the distances in the original graph rather than

the induced subgraph leads to the possibility of absence of any cohesiveness in the

subgraph induced by an s-clique. For example, the subset of vertices {1, 3, 5} in the

graph on Fig. 1.1 is a 2-clique that induces an independent set, a structure that can

hardly be considered cohesive by any standards. In terms of cohesiveness, the worst-

case example of an s-club is a star graph, where one “central” vertex is adjacent

to all other vertices, which have no neighbors other than the central vertex. While

this structure appears to be quite fragile, as removing the central vertex makes it

an independent set, it is still more cohesive than the worst-case example of an s-

clique, which is an independent set to begin with. Since s-clique does not have to

be connected in general, it makes sense to consider a connected s-clique, which is an

s-clique that induces a connected subgraph.

Since s-clubs do not have any form of heredity defined above, the maximum

clique algorithms cannot be easily adapted for the maximum s-club problem. In

fact, the problem of finding a maximal s-club, which is very easy for clique and s-

9

clique, becomes challenging. Indeed, the problem of checking whether a given clique

(s-clique) is maximal reduces to checking whether there is a vertex from outside that

can be added to the clique (s-clique). However, the example above clearly shows that

this strategy will not work for s-clubs. In fact, Mahdavi and Balasundaram [80] have

recently shown that testing whether an s-club is maximal is NP-hard for any fixed

integer s ≥ 2. They have also identified sufficient conditions for every connected

2-clique to be a 2-club based on the concept of a partitionable cycle, which can

be defined as follows. Consider two nonadjacent vertices v and v′ in a cycle C

in G. Removing these two vertices breaks the cycle into two paths, P1(v, v′) and

P2(v, v′) with the vertex sets V1(v, v′) and V2(v, v′), respectively. If there exist v, v′

such that G[V1(v, v′)] = P1(v, v′) and G[V2(v, v′)] = P2(v, v′) then C is called a

partitionable cycle. If, in addition, |V1(v, v′)| 6= |V2(v, v′)| then the partitionable

cycle C is called asymmetric. Mahdavi and Balasundaram [80] have proved that

if no subset of 5 ≤ c ≤ 2s + 1 vertices induces an asymmetric partitionable cycle

in G, where s ≥ 2, then every connected s-clique is an s-club. This implies, in

particular, that in a bipartite graph every connected 2-clique is a 2-club, which

induces a complete bipartite subgraph. In cases where every connected s-clique

is an s-club, checking maximality of an s-club reduces to checking maximality of

a connected s-clique and hence is easy. Thus, discovering more of such cases is

an interesting future research direction, which will provide further insights towards

understanding the complexity of the problem.

The maximum clique problem is a classical NP-hard problem [46, 62], which

is also hard to approximate. Recall that for a maximization problem with an

optimal objective value given by opt(G) on an input graph G, an algorithm A

is called σ-approximation algorithm (or algorithm with approximation ratio σ) if

opt(G)/A(G) ≤ σ for every input graph G, where A(G) is the objective value out-

10

put by A when applied to G. It is known that the maximum clique size cannot

be approximated in polynomial time within a factor of n1−ε for any ε > 0 unless

P = NP [10, 11, 102]. Since clique is a special case of s-clique and s-club, where

s = 1, all these results apply to the versions of the maximum s-clique and maximum

s-club problems that allow for arbitrary (non-fixed, instance-dependent) s. However,

these results do not directly extend to the maximum s-clique and maximum s-club

problems for the fixed constant parameter s > 1, which is given as a part of the

problem definition rather than as an instance-dependent parameter. Therefore, in

recent years there has been a considerable amount of research towards characterizing

these problems in terms of their computational complexity in general and restricted

graph classes.

Bourjolly et al. [24] use a reduction from clique to show that the maximum s-

club problem is NP-hard for any fixed s. Balasundaram et al. [16] use an alternative

reduction from clique to prove that both the maximum s-clique and maximum s-

club problem are NP-hard, even if restricted to graphs of fixed diameter s+ 1. Note

that both problems are trivial when the graph’s diameter is bounded above by s,

therefore the transition in complexity is sudden.

Asahiro et al. [12] proved that for any ε > 0 and a fixed s ≥ 2 the maximum s-club

problem is NP -hard to approximate within a factor of n1/2−ε in general graphs, im-

proving on the hardness of n1/3−ε-approximation result of Marinček and Mohar [72].

They also designed a simple polynomial-time algorithm that approximates the max-

imum s-club within a factor of n1/2 for an even s, and within a factor of n2/3 for

an odd s. Given a graph G = (V,E), the algorithm finds a maximum degree vertex

in the power-bs/2c graph Gbs/2c = (V,Ebs/2c) and outputs its closed neighborhood

in Gbs/2c, which forms an s-club Cs of size ∆(Gbs/2c) + 1 in G. To establish the

approximation ratio, they consider two cases, ∆(G) ≥ n1/s and ∆(G) < n1/s. Then

11

in the first case we have:

ωs(G)

|Cs|
=

ωs(G)

∆(Gbs/2c) + 1
≤ ωs(G)

∆(G) + 1
< n1−1/s.

In the second case, noting that ωs(G) ≤ 1+∆(G)+∆(G)2+. . .+∆(G)s, the following

holds:

ωs(G)

|Cs|
≤ ∆(G)s +O(∆(G)s−1)

∆(G) + 1
= O(∆(G)s−1) = O(n1−1/s).

Thus, in both cases the approximation ratio of the algorithm is O(n1−1/s), which

becomes O(n1/2) for s = 2 and O(n2/3) for s = 3. To show that the algorithm is, in

fact O(n1/2)-approximate for any even s ≥ 4, observe that

ωs(G) ≤ ω2(Gs/2), (1.1)

while the output of the approximation algorithm applied to the maximum s-club

problem on G and to the maximum 2-club problem on Gs/2 is the same. Thus, the

approximation ratio of O(n1/2) holds for any even s.

It should be noted that [12] uses a stronger claim, ωs(G) = ω2(Gs/2) instead

of (1.1) in the proof of the approximation ratio. However, the equality does not hold

in general, i.e., we may have ωs(G) < ω2(Gs/2) as in the graph in Fig. 1.2. The proof

still holds using the inequality (1.1) instead.

In addition to the above results, Asahiro et al. [12] proved that for any ε > 0

the maximum s-club problem is NP-hard to approximate within a factor of n1/3−ε

for chordal and split graphs with even s, for bipartite graphs with s ≥ 3, and for

k-partite graphs (k ≥ 3) with s ≥ 2. On the other hand, the problem can be

solved in polynomial time for chordal and split graphs with odd s, as well as for

trees and interval graphs [12, 90]. Unlike the maximum s-club problem with s ≥ 3,

12

17

13

1

2

3 9

8

7

4

5 6

10

14

16 18

21

19

11

12

15
20

0

Figure 1.2: A graph with ωs(G) = 14 (a maximum 2-club is given by, e.g., C =
{5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21}) and ω2(Gs/2) = 16 (all vertices excluding
2,4,6,8,10 form the maximum 2-club in G2), where s = 4.

the maximum 2-club problem can be solved in O(n5) on bipartite graphs [90]. In

addition, the maximum 2-club can be approximated within a factor of n1/3 for split

graphs.

In several recent papers, the maximum s-club problem was approached from the

parameterized complexity perspective [56, 57, 91, 30]. In this framework, one consid-

ers a parameter k (such as the size of a structure sought) in addition to the traditional

input size n [40]. A parameterized problem is fixed-parameter tractable if there exists

an algorithm (referred to as an fpt-algorithm) that solves the parameterized problem

in time f(k) · nO(1), where f is a computable (typically exponential) function that

depends only on the parameter k.

It is known that deciding if a given graph contains a clique of size k is W[1]-

complete [31], meaning that an fpt-algorithm is unlikely to exist. In contrast, Chang

et al. [30] have shown that the problem of deciding if a given graph contains an

s-club of size k is fixed-parameter tractable for s > 1. The proof is as follows. Let

G = (V,E) be the given graph. If Gbsc has a vertex v such that |NGbs/2c [v]| ≥ k

13

then NGbs/2c [v] is an s-club of size at least k in G. Otherwise, |NGbs/2c [v]| < k for

any v ∈ V , and it can be shown that |NGs [v]| < k2 when s is even and |NGs [v]| < k3

when s is odd [30]. Since any s-club C is a subset of NGs [v] for any v ∈ C, in order

to check whether G has an s-club of size k it suffices to check all k-element subsets of

NGs [v] for each v ∈ V . There are at most
(
k3

k

)
n such subsets, and checking whether

a k-element vertex set forms an s-club can be done in k3 time. Thus, the overall run

time is O(k3(k+1)n).

Schäfer et al. [91] have shown that the maximum s-club problem is fixed-parameter

tractable not only with the solution size k used as the parameter, but also when pa-

rameterized by the so-called dual parameter d = |V |−k. The algorithm they propose

for this case runs in O(2dnm), where m is the number of edges in the graph. These

ideas are extended to develop a practical algorithm for 2-club in [56], as will be

discussed in more detail in Sec. 1.2.4. In addition, Hartung et al. [56] analyzed pa-

rameterized complexity of s-club with other parameters, such as the size of a vertex

cover, feedback edge set size, size of a cluster editing set, and treewidth of the graph.

1.2.2 Mathematical programming formulations

In this section, mathematical programming formulations for the maximum s-

clique and maximum s-club problems are presented. The maximum clique problem

is one of the well studied problems in discrete optimization, with a number of known

integer, as well as continuous non-convex formulations [22]. Similar formulations can

be applied to the maximum s-clique problem on a graph G by reducing it to the

maximum clique problem on the sth power of G, Gs = (V,Es), constructed from the

original graph as mentioned above. Let Es denote the complement set of edges in

Gs, i.e., Es = {(i, j) : i, j ∈ V, i < j, dG(i, j) > s}. Then the following formulation of

the maximum clique problem written for the power-s graph Gs can be used for the

14

maximum s-clique problem on G:

Maximize (max)
∑
i∈V

xi (1.2)

subject to (s. t.): xi + xj ≤ 1 ∀(i, j) ∈ Es (1.3)

xi ∈ {0, 1} ∀i ∈ V. (1.4)

The first mathematical program for computing the s-club number of a graph

was proposed in [24]; see also [16]. In the following, we explain this general integer

programming model first and then describe special cases for s=2,3 that are of highest

practical interest and have received more attention in the literature. For S ⊆ V the

vector x ∈ {0, 1}n such that xi = 1 if and only if i ∈ S is called the characteristic

vector of S. In the general model (1.5)- (1.8) below, which is often referred to as

chain formulation, the vector of decision variables x is the characteristic vector of

the s-club sought. For every pair of vertices i, j ∈ V , let P s
ij be the set of all paths

of length at most s between i and j in G. We will denote by P the set of all such

paths in G, i.e., P = ∪i,j∈V P s
ij. Let VP be the set of vertices included in a path P .

Also let yP be the auxiliary binary variable associated with every path P ∈ P. If

this variable is equal to 1 in a feasible solution, this implies that all the vertices in

the path P are included in the corresponding s-club. Then the following finds the

15

maximum cardinality s-club in G:

max
∑
i∈V

xi (1.5)

s. t.: xi + xj ≤ 1 +
∑
P∈P s

ij

yP ∀(i, j) /∈ E (1.6)

yP ≤ xi ∀P ∈ P, ∀i ∈ VP (1.7)

xi, yP ∈ {0, 1} ∀i ∈ V, ∀P ∈ P. (1.8)

In this formulation, constraint (1.6) ensures that two vertices i and j such that

dG(i, j) > s cannot both belong to the same s-club (in this case P s
ij = ∅ and the

constraint becomes xi + xj ≤ 1). It also guarantees that if two nonadjacent vertices

are included in the s-club sought, then there must be at least one path of length at

most s such that all the vertices from this path are also included in the s-club. In

addition, constraint (1.7) forces yP to be 0 whenever a vertex from P is not included

in the s-club. For s = 2 the above chain formulation becomes:

max
∑
i∈V

xi (1.9)

s. t.: xi + xj ≤ 1 +
∑

k∈NG(i)∩NG(j)

xk ∀(i, j) /∈ E (1.10)

xi ∈ {0, 1} ∀i ∈ V. (1.11)

This model ensures that any two nonadjacent vertices that are in the same 2-club

must have at least one common neighbor inside the 2-club.

Considering the number of possible distinct paths of length at most s between

every pair of vertices, the chain formulation may have an excessive number of vari-

ables when s >2. In general, we may have |P s
ij| = O(ns−1) for every pair of vertices,

16

so |P| = O(ns+1). Therefore, this model does not scale well when s increases, and

even solving small instances using this formulation is challenging when s ≥ 3 [99].

To formulate the maximum 3-club problem using a smaller number of variables,

the neighborhood formulation (1.13)- (1.16) was proposed in [6] that has |V | + |E|

variables. Note that a pair of nonadjacent vertices i and j in G can be a part of the

same 3-club S only if they have a common neighbor k in S or there are two adjacent

vertices {p, q} ∈ S such that p ∈ NG(i) and q ∈ NG(j). The first condition holds

if and only if dG[S](i, j) = 2. If the first condition does not hold and the second

condition holds then p ∈ {NG(i) \NG(j)} and q ∈ {NG(j) \NG(i)}. Let Eij denote

the set of edges that connect such intermediate nodes for i and j:

Eij = {(p, q) ∈ E : p ∈ {NG(i) \NG(j)}, q ∈ {NG(j) \NG(i)}} ∀i, j : dG(i, j) = 3.

(1.12)

Now associate a binary variable xi with each vertex i ∈ V and a binary variable zij

with each edge (i, j) ∈ E. Then the maximum 3-club problem in G = (V,E) can be

formulated using the following binary program:

max
∑
i∈V

xi (1.13)

s. t.: xi + xj ≤ 1 +
∑

k∈NG(i)∩NG(j)

xk +
∑

(p,q)∈Eij

zpq ∀(i, j) /∈ E (1.14)

zij ≤ xi, zij ≤ xj, zij ≥ xi + xj − 1 ∀(i, j) ∈ E (1.15)

xi, zij ∈ {0, 1} ∀i ∈ V, ∀(i, j) ∈ E. (1.16)

Neighborhood constraints (1.14) ensure that two nonadjacent vertices i and j cannot

be both in the solution unless their common neighbor is in the solution or a pair of

their neighbors p and q, linked by an edge, are in the solution. The constraints

17

in (1.15) guarantee that an edge (i, j) is used if and only if both its endpoints belong

to the solution. The neighborhood formulation has |V |+ |E| variables and |V |
2−|V |
2

+

2|E| constraints.

Almeida and Carvalho [6] also proposed another formulation for the maximum

3-club problem that is based on identifying minimal node cut sets for every pair of

vertices with dG(i, j) = 3. Consider a pair of nonadjacent vertices i, j ∈ G and let Eij

be defined as in (1.12). Recall that Eij is the set of inner edges of chains with length

3 connecting i and j with no common neighbors. Let Vij represent the set of vertices

incident to edges from Eij. We associate with i and j a subgraph Gij = (V ′ij, E
′
ij)

where V ′ij = Vij ∪{i, j} and E ′ij = Eij ∪{(i, v) ∈ E : v ∈ Vij}∪ {(j, v) ∈ E : v ∈ Vij}.

Figure 1.3 is an example of a subgraph Gij in which Eij = {(1, 2), (1, 5), (3, 4)},

Vij = {1, 2, 3, 4, 5} and E ′ij = {(1, 2), (1, 5), (3, 4), (i, 1), (i, 3), (2, j), (4, j), (5, j)}. Let

Sij be an i-j node cut set and define SMij to be the set of all minimal Sij. For our

example in the figure, SMij = {{1, 3}, {1, 4}, {2, 3, 5}, {2, 4, 5}}. These sets separate i

and j in Gij, therefore, to include nodes i and j with dG(i, j) = 3 in the same 3-club

S, it is necessary to include a node of each set Sij ∈ SMij . Thus, the node cut set

formulation (1.17)- (1.19) for the maximum 3-club problem can be stated as follows:

max
∑
i∈V

xi (1.17)

s. t.: xi + xj ≤ 1 +
∑

k∈NG(i)∩NG(j)

xk +
∑
s∈Sij

xs ∀(i, j) /∈ E, Sij ∈ SMij (1.18)

xi ∈ {0, 1} ∀i ∈ V. (1.19)

In this formulation, inequalities (1.18) are the node cut set constraints described

above. The formulation has |V | variables, but potentially exponential number of

constraints. Note that constraints associated with non-minimal cut sets are domi-

18

3 4

j

2

i

1

5

Figure 1.3: Subgraph Gij illustrating the node cut set formulation.

nated by constraints (1.18) and are not necessary.

Next we present an integer programming formulation for the maximum s-club

problem recently proposed by Veremyev and Boginski [99]. We first discuss the

formulation for s = 2 and then extend it to the higher s values. Let V = {1, . . . , n}

and let A = [aij]
n
i,j=1 be the adjacency matrix of G = (V,E). Then the characteristic

vector x of a 2-club S must satisfy the following nonlinear constraint:

aij +
∑
k∈V

aikakjxk ≥ xixj ∀i, j ∈ V. (1.20)

Linearizing this constraint, we formulate the maximum 2-club problem as follows:

max
∑
i∈V

xi (1.21)

s. t.: aij +
n∑
k=1

aikakjxk ≥ xi + xj − 1 ∀i, j ∈ V (1.22)

xi ∈ {0, 1} ∀i ∈ V. (1.23)

19

The above formulation can be simplified as follows:

max
∑
i∈V

xi (1.24)

s. t.:
∑

k∈NG(i)∩NG(j)

xk ≥ xi + xj − 1 ∀(i, j) /∈ E (1.25)

xi ∈ {0, 1} ∀i ∈ V. (1.26)

Similarly, the characteristic vector x of a 3-club must satisfy the following nonlinear

constraints:

n∑
k=1

aikakjxk +
n∑
k=1

n∑
m=1

aikakmamjxkxm ≥ xixj ∀(i, j) /∈ E. (1.27)

Letting wij = xixj for all i, j ∈ V and linearizing the constraints, we obtain the

following formulation for the maximum 3-club problem:

max
n∑
i=1

xi (1.28)

s. t.:
n∑
k=1

aikakjxk +
n∑
k=1

n∑
m=1

aikakmamjwkm ≥ xi + xj − 1 ∀(i, j) /∈ E (1.29)

wij ≤ xi, wij ≤ xj, wij ≥ xi + xj − 1 ∀i, j ∈ V (1.30)

xi, wij ∈ {0, 1} ∀i, j ∈ V. (1.31)

This formulation contains O(n2) binary variables and O(n2) constraints. Simi-

larly, one can develop the model and linearize it using the standard approaches for

the general case of the maximum s-club problem. However, the resulting formulation

will have O(ns−1) variables. Veremyev and Boginski [99] exploit the special structure

20

of s-club and propose an efficient linearization technique that reduces the number of

variables substantially. We discuss their compact binary formulation next.

Consider a subset of vertices S and its characteristic vector x. Let v
(l)
ij , (i, j =

1, . . . , n; l = 2, . . . , s) be a binary variable taking the value 1 if there exists at least

one path of length l from i to j in G[S] and 0 otherwise. Note that for l = 2 we have

v
(2)
ij = min{xixj

∑n
k=1 aikakjxk, 1}, which can be linearized using the following set of

constraints:
v

(2)
ij ≤ xi, v

(2)
ij ≤ xj

v
(2)
ij ≤

n∑
k=1

aikakjxk, v
(2)
ij ≥

1

n

(
n∑
k=1

aikakjxk

)
+ (xi + xj − 2).

Other variables for higher values of l = 3, . . . , s can be found recursively using v
(l)
ij =

min{xi
∑n

k=1 v
(l−1)
kj aik, 1} and linearized by applying the following set of inequalities:

v

(l)
ij ≤ xi, v

(l)
ij ≤

n∑
k=1

aikv
(l−1)
kj

v
(l)
ij ≥

1

n

(
n∑
k=1

aikv
(l−1)
kj

)
+ (xi − 1).

Therefore the maximum s-club problem can be formulated as the following binary

21

linear program:

max
n∑
i=1

xi (1.32)

s. t.:

k∑
l=2

v
(l)
ij ≥ xi + xj − 1 ∀(i, j) /∈ E (1.33)

v
(2)
ij ≤ xi, v

(2)
ij ≤ xj, v

(2)
ij ≤

n∑
k=1

aikakjxk ∀i, j ∈ V, i < j (1.34)

v
(2)
ij ≥

1

n

(
n∑
k=1

aikakjxk

)
+ (xi + xj − 2) ∀i, j ∈ V, i < j (1.35)

v
(l)
ij ≤ xi, v

(l)
ij ≤

n∑
k=1

aikv
(l−1)
kj ∀i, j ∈ V, i < j, l = 3, . . . , s (1.36)

v
(l)
ij ≥

1

n

(
n∑
k=1

aikv
(l−1)
kj

)
+ (xi − 1) ∀i, j ∈ V, i < j, l = 3, . . . , s (1.37)

xi, v
(l)
ij ∈ {0, 1} ∀i, j ∈ V, i < j, l = 2, . . . , s. (1.38)

The above model is the most compact known formulation for the maximum s-club

problem with O(sn2) variables and constraints. For more information about compact

formulation and its properties, we refer the reader to [99].

1.2.3 Polyhedral results

Due to the structure of the problem and its dependence on the value of parameter

s, most of the research in this area has been focused on the 2-club polytope and,

partially, 3-club polytope and not on the s-club polytope in general. In this section,

we review the polyhedral results available for the 2-club polytope.

Consider a nontrivial simple undirected connected graph G = (V,E). A subset

of vertices I ⊆ V is a 2-independent set in G if dG(i, j) > 2 ∀i, j ∈ I. Let M1

be the edge-vertex incidence matrix of the complement graph Ḡ. The rows of M1

22

correspond to edges (i, j) ∈ Ē and the columns correspond to vertices i ∈ V . The

entries in the row corresponding to an edge (i, j) are 1 in columns i and j and are 0

otherwise. Let M2 be the matrix representing the common neighborhood of i, j for

every (i, j) ∈ Ē. The rows of M2 correspond to edges (i, j) ∈ Ē and the columns

correspond to vertices i ∈ V . The entries in the row corresponding to an edge (i, j)

are 1 in columns k ∈ NG(i) ∩ NG(j) and are 0 otherwise. Let A = M1 −M2, then

the maximum 2-club problem formulation (1.9)-(1.11) can be written as [16]:

ω̄2(G) = max{1Tx : Ax ≤ 1, x ∈ {0, 1}|V |},

where 1 is the vector of all ones of appropriate dimension and ω̄2(G) is the 2-club

number of G. Let Q be the set of feasible binary vectors defined as Q = {x ∈

{0, 1}|V | : Ax ≤ 1}, then the 2-club polytope P2C is given by the convex hull of Q:

P2C = conv(Q). The following results were established in [16].

1. dim(P2C) = |V |.

2. xi ≥ 0 induces a facet of P2C for every i ∈ V .

3. For any i ∈ V , xi ≤ 1 induces a facet of P2C if and only if dG(i, j) ≤ 2 ∀j ∈ V .

4. Let I be a maximal 2-independent set in G. Then
∑

i∈I xi ≤ 1 induces a facet

of P2C .

Note that each neighborhood constraint is associated with two vertices v and v′

such that dG(v, v′) = 2. For any node i ∈ V \{v, v′} such that min{dG(i, v), dG(i, v′)} >

2, the inequality xv +xv′ +xi−
∑

j∈{NG(v)∩NG(v′)} xj ≤ 1 is valid for P2C because nei-

ther v nor v′ can be included in a 2-club that includes node i, and to include nodes v

and v′, at least one of their common neighbors must also be included in the 2-club.

23

This inequality is a lifted version of the neighborhood constraint (1.10). Carvalho

and Almeida [29] used this observation to establish the following valid inequality for

P2C : ∑
i∈I∪{v,v′}

xi −
∑

j∈NG(v)∩NG(v′)

xj ≤ 1, (1.39)

where I ⊆ V \ {v, v′} is such that I ∪ {v} and I ∪ {v′} are 2-independent sets in G.

They also extended this result to triples of vertices as follows. Let v, v′, v′′ be given.

For a vertex j denote by aj = (|NG(j) ∩ {v, v′, v′′}| − 1)+, where a+ = max{a, 0},

i.e., aj = 2 if j neighbors all three vertices; aj = 1 if j neighbors two of the three

vertices; and aj = 0, otherwise. Let R = {v, v′, v′′} be an independent set in G. Let

I ⊆ V \ {v, v′, v′′} be such that I ∪ {v}, I ∪ {v′} and I ∪ {v′′} are 2-independent sets

in G. Then the inequality

∑
i∈I∪{v,v′,v′′}

xi −
∑
j∈V

(|NG(j) ∩ {v, v′, v′′}| − 1)+xj ≤ 1 (1.40)

is valid for P2C .

More recently, Mahdavi [71] developed a family of valid inequalities that subsume

both (1.39) and (1.40).

Theorem 1 ([71]). Let I be an independent set in G. Then the inequality

∑
i∈I

xi −
∑
j∈V \I

(|NG(j) ∩ I| − 1)+xj ≤ 1 (1.41)

is valid for P2C. If, in addition, I is a distance 2-dominating set, i.e., I is an

independent distance 2-dominating set (I2DS), then this inequality defines a facet

for P2C referred to as I2DS facet.

Mahdavi [71] also proved that given a noninteger feasible point x̃ in P2C deciding

24

whether this point violates an I2DS inequality is NP-complete, i.e., the I2DS inequal-

ities separation problem is NP-complete. On a positive note, I2DS inequalities are

sufficient to derive the complete description of the 2-club polytope of trees. See [71]

for a more detailed discussion on the 2-club polytope.

As for the maximum 3-club problem, Almeida and Carvalho [6] developed some

non-trivial valid inequalities based on ideas similar to those used to develop (1.39)

and (1.40) above. An interesting future research question is whether the valid in-

equalities they developed for 3-club can be generalized to develop a class of facets

similar to I2DS above.

1.2.4 Exact and heuristic algorithms

The correspondence between the maximum clique and maximum s-clique prob-

lems implies that the heuristic and exact algorithms for maximum clique problem

can be applied to the sth power of the graph to solve the maximum s-clique problem.

In such cases the performance of these algorithms may be poor as the edge density is

higher in Gs. Unlike the maximum clique problem, the maximum s-clique problem

has not been the subject of extensive research and we are not aware of any compu-

tational results for this problem to date. This may be due to the above-mentioned

correspondence between the two problems which facilitates the use of proposed al-

gorithms for clique detection to solve the later case. Therefore, in this section our

focus will primarily be on the existing algorithms for the maximum s-club problem.

Due to computational intractability of the maximum s-club problem, heuristics

become the method of choice for solving the maximum s-club problem in practice.

Several construction heuristics have been proposed in the literature. In 2000, Bour-

jolly et. al [23] proposed three simple heuristic algorithms for the maximum s-club

problem called DROP, CONSTELLATION and s-CLIQUE-DROP. Among these,

25

DROP, which runs in O(|V |3|E|) time, was reported to produce the best result in

terms of solution quality specially in graphs with higher density. DROP works as

follows: we start with the whole graph G and at each iteration the vertex i with most

infeasibility is deleted where infeasibility is defined as the number qi of vertices of G

whose shortest distance to i has a length of at least s+1. If there is a tie, a vertex

of minimum degree is then selected for elimination and the graph is updated. The

procedure continues until no infeasible vertex can be found. CONSTELLATION is

based on identifying the largest star graph in the first step. In the next iteration the

vertex having the largest number of neighbors in the remaining graph is selected and

added to the s-club provided that the total number of iterations does not exceed s-1.

CONSTELLATION runs in O(s(|V | + |E|)) time and was reported to perform well

solving the maximum 2-club problem on low density graphs. The third algorithm,

s-CLIQUE-DROP, proceeds by identifying the largest s-clique in G and removing

all vertices not belonging to s-clique from G along with their incident edges. Then

DROP is called to find a feasible solution. To obtain the largest s-clique, the max-

imum clique problem is solved on Gs using one of the existing algorithms. Another

simple heuristic, named IDROP, was recently proposed in [30].

The first exact algorithm for the maximum s-club problem was proposed by Bour-

jolly et al. [24]. The proposed branch-and-bound (B&B) algorithm employs DROP

heuristic to direct its branching process. For the bounding process, algorithm relies

on the solutions to the maximum stable set problem solved on an auxiliary graph.

Two branches are generated at the root node of the search tree that correspond to

removing or keeping the vertex selected by a single iteration of DROP. The algorithm

first explores the branch that removes the vertex. The process is then recursively

applied until a terminal node is reached, yielding a depth first search. Note that

deciding to remove or keep a vertex during the branching process may increase the

26

shortest chains length and this affects the whole subtree rooted at the node in which

this decision has been made. As a result, a pair of vertices in the current solution at

some node of the subtree may appear too far away from each other. This leads to

an infeasible solution and thus the corresponding branch is pruned. For the upper

bounding procedure, let G′ = (V ′, E ′) be the graph induced by the current solution

at a given node of the B&B tree and let H = (V ′, F) be an auxiliary graph associated

with G′, where there is an edge between any two vertices in H only if the shortest

path connecting these two vertices in G′ has length greater than s. Obviously, if

there is an edge between two vertices in H, they cannot both belong to the same

s-club in G′. Therefore the largest independent set in H provides an upper bound

on the size of the largest s-club in G′. In their computational results, authors report

the average solution size and CPU time for s=2,3,4 on randomly generated instances

with different edge densities. Instances were generated using the method proposed

in [49].

Recently, Chang et al. [30] have shown that the B&B algorithm of Bourjolly et

al. [24] runs in O(1.62n) time and proposed a variation of this algorithm that uses

IDROP procedure to find the initial feasible solution and computes the s-coloring

number of the graph associated with each node of the B&B tree to obtain an upper

bound on the size of the s-club for that node. Observe that the chromatic number

χ(G) of G is the minimum number of colors required to color the vertices of G

properly, i.e., so that no two neighbors are assigned the same color and the s-coloring

number of G is the minimum number of colors required to color all vertices such that

no two vertices of distance at most s are assigned the same color. Note that the

s-coloring number of G provides an upper bound on the s-club number of G and one

can compute the chromatic number χ(Gs) of the sth power graph Gs to obtain the s-

coloring number of G. The authors report the results of computational experiments

27

with a set of randomly generated instances, Erdös collaboration networks [52, 17], and

some benchmark graphs from the second DIMACS implementation challenge [38].

More recently Mahdavi and Balasundaram [80] proposed another B&B algorithm

to compute the s-club number of a graph. Their algorithm employs two methods for

computing a lower bound. The first method selects the larger of the two solutions

found using DROP and CONSTELLATION heuristics, and the second method is

a bounded enumeration-based technique. This lower-bounding scheme proceeds by

finding an initial s-club S followed by a bounded search that enumerates s-clubs

containing S. The idea behind this bounded search is to improve the initial solution

in a reasonable amount of time. The best solution found by these two methods

initializes the incumbent. Two methods are used to derive an upper bound for the

B&B algorithm. The first one, proposed independently of [30], is based on obtaining

the s-coloring number of graph associated with every node in the B&B tree. To

obtain this upper bound a combination of greedy heuristic and DSATUR heuristic,

proposed in [25], is used. The second method computes the maximum s-clique to

serve as an upper bound for the s-club number of a given graph G. To obtain this

upper bound the algorithm proposed by [79] is employed to find the maximum clique

on sth power graph Gs. For branching, a vertex dichotomy is used, where a vertex

is selected and fixed to be included or deleted from the solution. To traverse the

search tree, best bound search (BBS) strategy has been considered. Authors report

extensive computational results, for s=2,3, using four different combinations of lower-

bounding and upper-bounding techniques on a set of randomly generated instances

of order n=50, 100, 150 and 200 with seven different densities ranging from 0.0125

up to 0.25. They report on the effectiveness of the bounding techniques used in the

B&B algorithm and their relation with the topological structure of the randomly

generated instances.

28

Veremyev and Boginski [99] solved the maximum s-club problem for s = 2, . . . , 7,

using the compact formulation (1.32)-(1.38) on a set of randomly generated instances

of order n=100, 200, 300 with different edge densities. For every combination 10 in-

stances are generated and the average maximum s-club size, average CPU time and

the average tightness for each group of problem instances have been reported. The

advantage of the compact formulation is that it contains a reasonable number of

entities that grows linearly as s increases, thus providing an opportunity to solve

the problem for higher values of s. Computational results show that the compact

formulation is rather tight and the relative gap between the exact and the LP re-

laxation objective values decreases for larger values of s. The results of experiments

with IP-based approaches for s = 2, 3 have also been reported in [6, 29].

Hartung et al. [56] used their theoretical findings concerning parameterized al-

gorithms for 2-clubs based on the dual parameter d = |V | − k to develop a B&B

strategy in conjunction with a kernelization proposed in [91]. The results of ex-

periments with the proposed algorithm for the maximum 2-club problem that they

report are very encouraging. In particular, their implementation significantly out-

performs other known exact approaches on small to medium-size random graphs and

large-scale real-life networks from the tenth DIMACS implementation challenge [39].

1.3 The biclique model

Networks provide a convenient modeling tool for representation and analysis of

the interaction between elements of a complex system. Biological networks are ex-

amples of such systems. In protein-protein interaction networks, proteins are repre-

sented as vertices and physical interaction between two proteins is represented by an

edge [43, 61, 96]. In genome research, the relationship between genes and diseases, or

other experimental conditions like treatments, can be modeled using graphs in which

29

genes and diseases are represented by vertices and edges represent a significant re-

lationship between a gene and a disease [70, 78]. Biclique community detection

has attracted a lot of attention in recent years due to its various applications in

automata and language theory, biology and genome research, clustering and data

mining, artificial intelligence and graph compression [2, 9, 32, 34, 64, 67, 70, 89].

These applications are motivated by different variants of the biclique community

detection problems in the literature which will be defined next.

The maximum edge biclique problem (MEB) is concerned with finding the max-

imum edge cardinality biclique in G. MEB is a special case of the maximum edge

weight biclique problem (MEWB) and has been applied successfully for bicluster-

ing and formal concept analysis [44, 70, 78]. The maximum vertex biclique problem

(MVB) is to find the maximum vertex cardinality biclique in G and is a special case

of the maximum vertex weight biclique problem (MVWB). A biclique is said to be

balanced if the two bipartitions have the same cardinality. The maximum balanced

biclique problem (MBB) is to find the maximum vertex cardinality biclique that is

balanced. Next we review the known results about the complexity of these problems.

1.3.1 Computational complexity

From the definition, it is obvious that every biclique is a 2-club but the converse

is not true. Bicliques preserve heredity property which allows the design of effective

combinatorial algorithms. One such method has been proposed in Chap. 4.

To discuss the complexity for variants of the maximum biclique problem we con-

sider two graph classes, the general simple graphs and bipartite graphs. Peeters [85]

proved that the maximum edge biclique problem is NP-complete in bipartite and gen-

eral graphs using a reduction from CLIQUE problem. Nussbaum et al. [78] proved

the polynomial solvability of the problem in convex bipartite and biconvex graphs.

30

Under some plausible assumptions, MEB is hard to approximate within a factor of

O(nε) [8, 41, 42]. The weighted version of the problem (MEWB) was shown to be

NP-hard in [34] and hard to approximate [97]. Hochbaum [58] considered a related

problem in which the objective is to remove the minimum number of edges or ver-

tices such that the remaining graph is a biclique. For the edge deletion version of the

problem and based on the solution from LP-relaxation, a 2-approximation algorithm

for bipartite and general graphs is proposed, and for the node deletion version in gen-

eral graphs a 2-approximation algorithm is provided. Independently, Haemers [53]

developed an upper bound on the size of maximum edge biclique using eigenvalues

of the matrix representation of the underlying graph.

The maximum vertex biclique problem and its weighted version (MVWB) are

polynomial time solvable in bipartite graphs [34, 46] and NP-complete in general

simple graphs. The following result from Yannakakis [101] can be used to determine

the computational complexity for a class of optimization problems in graph theory.

Given a graph property Π, the maximum Π problem is to find the largest order

induced subgraph that does not violate property Π. Yannakakis proved a general

complexity result for such properties Π that can be stated as follows.

Theorem 2 ([101]). The maximum Π problem for nontrivial, interesting graph prop-

erties that are hereditary on induced subgraphs is NP-hard.

Observe that the complete bipartite subgraph is an example of Π with nontrivial,

interesting and hereditary properties. Therefore finding the largest induced subgraph

that is biclique, MVB, is NP-complete. Using the above theorem, the same conclusion

can be drawn for the optimization problems of finding edgeless, planar, complete,

perfect and bipartite subgraphs. Also note that the MVB is a special case of the

MVWB, implying that the latter is also NP-complete in general graphs. As another

31

special case, the maximum balanced biclique problem has been proved to be NP-

complete [46].

1.3.2 Mathematical programming formulations and algorithms

In this section we review some of the mathematical formulations and algorithms

proposed for variants of the maximum biclique problem. Our focus here is mainly

on algorithms that employ mathematical programming formulations of the MBP

variants in the solution procedure. Consider a bipartite graph B = (V1 ∪V2, E) with

a weight wv associated with each vertex. The following formulation was proposed

for the maximum vertex weight biclique problem in bipartite graphs [34] where xv is

the binary variable with value one if vertex v is in the biclique and zero otherwise.

Maximize
∑
u∈V1

wuxu +
∑
v∈V2

wvxv (1.42)

s. t.: xu + xv ≤ 1 u ∈ V1, v ∈ V2, (u, v) /∈ E (1.43)

xv ∈ {0, 1} ∀v ∈ V1 ∪ V2. (1.44)

Note that the constraint set matrix of the above binary program is node-edge

incidence matrix of a bipartite graph and is unimodular. Therefore the solution to

the LP-relaxation of the problem is integer. As a result, MVWB is polynomially

solvable in bipartite graphs. The same result holds for MVB in bipartite graphs.

Next we introduce a class of integer programs with an interesting property. Inte-

ger programs with up to three variables per inequality, called IP2, were considered

in [58, 59]. There is no limitation in the number of times two of these variables can

appear in other constraints but the third one may appear only once. As an example

32

consider inequalities of type

aixji − bixki ≤ ci + dizi i = 1, ...,m (1.45)

in which all variables are binary, and the only limitation is that zi can appear only

once. It is assumed that all the constraint coefficients may take arbitrary rational

values except di’s that need to be integer.

Definition 4. An inequality of type (1.45) is monotone if ai, bi ≥ 0 and di = 1.

Theorem 3 ([59]). An IP2 problem on monotone constraints is solvable in integers

in the time required to solve a minimum cut, or maximum flow, problem on a graph

with O(n) nodes and O(m) edges.

The above property has been used to design efficient algorithm for non-induced

MVWB in general graphs [58]. In non-induced version, bipartitions are not required

to be independent sets. In this formulation, the assumption is that the biclique

contains two adjacent vertices s and t each in one bipartition to avoid having an

empty bipartition. Therefore the formulation is given for each possible choice of

33

such edge.

Maximize
∑
j∈V

wjy
(1)
j +

∑
j∈V

wjy
(2)
j (1.46)

s. t.: 1− xj ≥ 2y
(1)
j ∀j ∈ V (1.47)

1 + xj ≥ 2y
(2)
j ∀j ∈ V (1.48)

xi − xj ≤ 1 ∀(i, j) /∈ E (1.49)

xj − xi ≤ 1 ∀(i, j) /∈ E (1.50)

xs = 1, xt = −1 (1.51)

xj ∈ {−1, 0, 1}, y(1)
j , y

(2)
j ∈ {0, 1} ∀j ∈ V. (1.52)

The variables xj are associated with the vertices and can have three possible

states. If vertex j belongs to either of the bipartitions, variable xj will take values 1

or -1 depending on which side of the bipartition it belongs to and, otherwise, zero.

Binary variable y
(1)
j will take value 1 if xj = −1 and zero otherwise. Likewise y

(2)
j

is equal to 1 only if xj = 1. Therefore the binary variables determine the contri-

bution of a vertex to the objective function. Using the arguments defined earlier,

Hochbaum [58] showed that the above formulation is monotone and is thus solvable

in integers in O(mT (n,
(
n
2

)
−m)) where n and m are the number of nodes and edges in

G, respectively. An alternative formulation, node deletion version, is also provided.

This model minimizes the total weight of vertices that should be removed such that

the remaining subgraph induces a non-induced biclique. Formulation is given for

each possible choice of an edge relying on the fact that the optimal biclique contains

at least one edge (s, t) ∈ E and its incident vertices. The alternative formulation

provides the basis for the proposed approximation algorithm. The method proceeds

with solving the formulation for each edge (s, t) ∈ E and selecting the solution with

34

the smallest objective function. Note that for each edge in G, the IP formulation,

or the network model, must be set up and solved once but the monotonicity of the

formulation allows the use of network flow algorithms, as noted in Theorem 3, and

having an integer solution.

For the induced version of the problem, induced MVWB, a node deletion model

is proposed. The objective is to minimize the total weight of the vertices that should

be removed such that the remaining subset of vertices in G forms an induced biclique.

A binary variable xj is equal to 1 only if vertex j is deleted and zero otherwise. The

common neighborhood of vertices s and t is defined as NG(s, t) = NG(s) ∩ NG(t),

whereas N
′
G(s) = NG(s) \NG(s, t), N

′
G(t) = NG(t) \NG(s, t), and V (s, t) = N

′
G(s) ∪

N
′
G(t). A bipartite graph is formed based on N(s), N(t) for all (s, t) ∈ E and since

each bipartition must be an independent set, all vertices in N(s, t) must be removed

from the graph. We have the following formulation:

Minimize
∑
j∈Vs,t

wjxj (1.53)

s. t.: xi + xj ≥ 1 ∀(i, j) /∈ E, i ∈ N ′G(t), j ∈ N ′G(s) (1.54)

xi + xj ≥ 1 ∀(i, j) ∈ E, i, j ∈ N ′G(t) (1.55)

xi + xj ≥ 1 ∀(i, j) ∈ E, i, j ∈ N ′G(s) (1.56)

xj ∈ {0, 1} ∀j ∈ Vs,t (1.57)

The first constraint ensures that if there is any missing edge in the bipartition, at

least one of its two end points cannot be in the solution. The other two constraints

make sure that vertices in each bipartition form an independent set. In the current

format, the above formulation is not monotone but it is equivalent to the vertex cover

on a graph including edges induced by N
′
G(s) and N

′
G(t) and the complement of the

35

edge set in the bipartition. Therefore it is enough to solve m vertex cover problems,

which is 2-approximable in polynomial time, and select the one with minimum ob-

jective function. Using the same techniques, approximation algorithms are provided

for the maximum edge biclique problem [58].

In addition to approximation algorithms, other methods have been proposed for

biclique community detection ranging from enumeration of all maximal bicliques of

a graph to exact exponential time methods and mining quasi-bicliques [5, 19, 48, 58,

67]. Liu et al. [67] propose a divide-and-conquer approach for finding large maximal

bicliques. Their algorithm uses the size constraints on both sides of the biclique to

iteratively prune the search space, mainly the non-maximal and duplicate bicliques.

Authors report brief computational experiments using instances from second DI-

MACS challenge and compare the results with other algorithms. Alexe et al. [5]

propose a consensus algorithm for finding all maximal bicliques of a graph. This

method starts with a collection C of bicliques that cover the edge set of a given

graph G and proceeds with a sequence of transformations, named absorption and

consensus adjunction, to find maximal bicliques. The algorithm stops when no more

transformation on C is possible.

1.4 Applications and extensions

1.4.1 s-clique and s-club

The introduction of the concepts of s-clique and s-club was originally motivated

by applications in social networks analysis, where these distance-based clique re-

laxations are used to model cohesive subgroups [4, 76]. A social network can be

formalized by a simple undirected graph G = (V,E). The vertex set V can represent

people, or actors, in a social network and the mutual relationships between pairs of

actors can be naturally modeled using edges. For example, in a collaboration network

36

the edges could represent collaborations between researchers. For mathematicians

and computational geometers [52, 17] such collaboration networks are used to deter-

mine the collaborative distance between researchers which was first popularized by

the concept of Erdös numbers [51].

Studying cohesive or “tightly knit” subgroups, which describe groups of actors

that tend to share certain features of interest [92, 100], finds applications in different

branches of sociology, including epidemiology of sexually transmitted diseases [86],

organizational management [36], and crime detection/prevention and terrorist net-

work analysis [88, 87, 18] among many others. For example, in [73], s-cliques and

s-clubs are used to analyze 9/11 terrorist network.

Even though the distance-based clique relaxation structures may not be charac-

terized by a very high overall degree of interaction between their members that is

typical for some other models, the low distances between all group members make

them appropriate models of cohesive subgroups in situations where easy reachability

is most crucial. This is the case, in particular, when one deals with various types of

flows in the network, such as flows of information, spread of diseases, or transporta-

tion of commodities. It is therefore not surprising that s-cliques and s-clubs appear

naturally in many real-life complex systems, including biological and social systems,

as well as telecommunication, transportation, and energy infrastructure systems.

In social networks, the proliferation of low-diameter structures manifests itself in

catch-phrases “small world phenomenon” and “six degrees of separation” that made

their way to the mainstream popular culture. A low diameter is a key characteristic

of many other massive-scale complex networks that tend to have power-law degree

distribution, or the so-called scale-free property [77]. Such networks typically have a

small number of high-degree nodes, which are most likely to be “central vertices” in

the largest s-clubs. In biology, it has been observed that groups of proteins where in-

37

teractions occur via a central protein often represent similar biological processes [14].

This phenomenon makes computing 2-clubs, especially those that induce star graphs,

particularly interesting [16, 82].

In transportation, hub-and-spoke model is the most popular network architecture

used by major airlines [3, 60]. One of the main advantages of this model is that it

is optimal in the sense that it ensures a 2-hop reachability while using the minimum

possible total number of direct connections. Under this model, most of the flights are

routed through several hub airports. This provides passengers a convenient access

(via hubs) to numerous destinations that would not be able to support many direct

connections, as well as allows to facilitate a wide variety of services, thus attracting

more customers.

Another application is in computer and communication networks security [35]. A

bot is a malicious program carrying out tasks for other programs or users and a botnet

is a network of bots. Botnets are usually controlled by members of organized crime

groups, called botmasters, for many different purposes. Almost all computers can

host malicious programs that belong to a particular botnet and only a few of them

might be immune to becoming a host. Distribution of spam and Distributed Denial-

of-Service Attacks (DDoS) are among the malicious tasks performed by botnets.

Naturally, the botmaster would like to maximize the effect of attack, damage, to the

network and is therefore interested in selecting the densest subnetwork to initiate

the attack. Identifying the densest subnetwork would help the botmaster to pick the

minimum number of nodes to attack. This strategy leads to the greatest possible

damage to the network and, at the same time, minimizes the chance of detection and

regulation. Therefore to protect the network and minimize the damage and, at the

same time, reduce the cost of taking defensive steps, it is essential to locate cohesive

subgraphs and nodes through which such malicious programs can propagate all over

38

the network very quickly.

In internet research, 2-clubs have been used for clustering web sites to facilitate

text mining in hyper-linked documents [74], as well as search and retrieval of topically

related information [98]. In wireless networks, small-diameter dominating sets, or

the so-called dominating s-clubs offer an attractive alternative to usual connected

dominating sets as a tool to model virtual backbones used for routing [26, 63]. Since

wireless networks are often modeled using geometric graphs known as unit disk and

unit ball graphs, studying the distance-based relaxations restricted to such graphs is

of special interest. It is well-known that a maximum clique in unit disk graphs can be

found in polynomial time [15, 33]. However, the complexity of maximum 2-clique and

2-club problems restricted to unit disk graphs remains open. A 0.5-approximation

algorithm for the maximum 2-clique problem in unit-disk graphs that is based on

geometric arguments is given in [83].

1.4.2 Biclique

Many of the real world interactions between classes of entities form a bipartite

graph in nature [66]. Scientific collaboration networks, where authors and papers

are the two partitions, song-listener or movie-recommendation networks that connect

users to movies that have been watched are examples from social network analysis.

Word-document graphs, where documents can be webpages, emails or dictionary

entries and gene-disease relationships are examples of information and biological

networks. Therefore bicliques provide a convenient method for modeling and analysis

in such networks.

Among many application areas, biologists and genetic researchers have used these

models in phylogenetic dataset mining. The evolutionary relationships between vari-

ety of species or entities that are considered to have a common ancestor is represented

39

using phylogenetic trees. Accuracy of these reconstructed phylogenetic trees is crucial

and phylogeneticists extract large multigene data sets from gene sequence databases

to determine whether there are at least k genes sampled from a pre-determined num-

ber of species. Therefore the problem reduces to finding bicliques with minimum

number of vertices in each bipartition representing genes and species. Enumerating

all maximal bicliques that satisfy the size constraints leads to discovery of complete

and accurate phylogenetic trees [89].

DNA microarray data, often presented as a two-dimensional matrix, is used to

study the interaction between genes and conditions in biology. Rows of the matrix

correspond to genes or clones and columns correspond to test conditions that can be

samples, diseases or treatments, etc. Entries then represent the expression level of a

given gene i measured under a certain condition j. It is of interest to understand the

relationship between subsets of genes and subsets of conditions as it directly captures

the essence of biological processes at the cell and molecular level. This includes

finding a subset of conditions with same effect on the expression level of a subset of

genes or finding a group of genes that are up(down)-regulated in a systematic way

under a subset of conditions. Biclustering techniques have become popular in data

analysis and bioinformatics due to the fact that simple clustering methods can only

provide one dimensional analysis and cannot capture the interrelationship between

two or more entities. DNA microarray data can be modeled using a bipartite graph

where genes and conditions are represented as vertices in the two partitions, and if

there is significant increase or decrease in the expression level of a gene with respect

to a specific condition, the two vertices are connected with an edge. In this graph

a bicluster corresponds to a biclique and search for a maximum edge biclique is

equivalent to finding a maximum bicluster [32].

Bicliques have been widely used in web community discovery, manufacturing

40

planning, language theory and formal concept analysis [34, 64, 67, 70]. Recently,

bicliques were used to model and solve a marketing problem named product bundling.

This marketing strategy is mainly considered for consumer retail products and is

reportedly helpful in lowering the supply chain costs by directly delivering the goods

from producer to the retail store. The concept is to sell two or more different products

in a single package. Therefore given the demand, the objective is to select an optimal

set of k product bundles that maximizes the total number of products sold [2].

1.5 Research objectives and concluding remarks

This chapter presented an up-to-date survey of the literature on some of the

cluster-detection models and the corresponding optimization problems. Applications

in large-scale social, information and telecommunication, biological, and transporta-

tion networks, where easy accessibility between the system’s entities is of utmost

importance, stimulated a significant activity in studying distance-based clique re-

laxation models, s-clique and s-club. Due to its stronger cohesiveness properties

and non-hereditary nature, which results in interesting research challenges, the max-

imum s-club problem has attracted much more attention. The lack of results for

the maximum s-clique problem can also be explained by the fact that this problem

is equivalent to the maximum clique problem in the corresponding power-s graph,

and the maximum clique problem has been studied extensively in the last several

decades. While solving the maximum s-clique problem by reducing it to the max-

imum clique problem is, perhaps, most natural and straightforward approach, it is

not clear whether it is most effective. The power-s graph Gs typically has a much

higher edge density than the original graph G, and the maximum clique problem is

known to be particularly difficult to solve on dense graphs in practice. Moreover,

clique is W[1]-hard, and, given that s-club is fixed-parameter tractable for s > 1,

41

reducing s-clique to clique does not appear to be appealing from the parameter-

ized complexity viewpoint. Therefore, investigating the maximum s-clique problem

from alternative perspectives may be of interest. In this research we are specifically

interested to answer the following questions on the s-club model:

• Given the non-heredity property of the s-clubs, develop an scalable algorithm

that can provide a good solution in a reasonable computational time for the

large-scale instances of the MsCP problem regardless of the density of the input

graph.

• Develop a hybrid solution method to investigate the effect of high quality start-

ing solution on the performance of the exact algorithms for MsCP.

Algorithms provided for solving variations of the maximum biclique problem are

mainly heuristic and do not guarantee optimality of the solution. Also considering

the size of the underlying network in the application areas, scalability of the solution

method is important. Therefore this research attempts to find the answer to the

following questions on the biclique community detection:

• Characterizing the structure of the optimal solution for the variations of the

maximum biclique problem in uniform random graphs and providing an ana-

lytical comparision between the size of these structures in large-scale networks

• Design and implementation of algorithms for solving large-scale instances of

the maximum biclique problem in general graphs

Answers to these questions will provide better insights in the analysis of biological

networks and their interactions. Moreover it facilitates the solution to clustering and

biclustering problems arising in different applications.

42

2. ALGORITHMS FOR THE MAXIMUM s-CLUB PROBLEM1

2.1 Introduction

Let G = (V,E) be a simple undirected graph, where V = {1, . . . , n} is the vertex

set, and E ⊆ {(i, j) : i, j ∈ V } is the edge set. Unlike cliques, s-clubs do not posses

heredity, meaning that a subset of a s-club may not be a s-club [76]. In other words,

s-clubs are not closed under set inclusion. This property of s-clubs exacerbates the

development of exact and heuristic algorithms for MsCP and leads to intractability

of testing the maximality of s-clubs [80], which is in contrast to trivial verifiability

of maximal cliques.

In this chapter, we propose a method to test the maximality of a given s-club. In

addition, we develop a new construction heuristic based on s-neighborhood of a given

initial solution, which proves to be very effective for sparse graphs. Several combina-

torial neighborhood structures are introduced for MsCP and a VNS metaheuristic is

proposed that utilizes the suggested neighborhood structures. The developed VNS

approach is then incorporated into a branch-and-bound framework proposed by [80]

to obtain a hybrid exact algorithm for MsCP.

2.2 Checking maximality of a s-club

Due to the NP-hardness of checking whether an s-club is maximal, developing suf-

ficient conditions for an s-club to be maximal is of importance for designing effective

algorithmic procedures for the maximum s-club problem.

Let G = (V,E) be a simple undirected graph. Let N(i) and N [i] denote the

neighborhood and closed neighborhood of a vertex i respectively as defined in chapter 1.

1Parts of this chapter are reprinted with permission from S. Shahinpour and S. Butenko: Algo-
rithms for the maximum k-club problem in graphs. Journal of Combinatorial Optimization, 2012,
DOI:10.1007/s10878-012-9473-z c©Springer.

43

5 4

3

2

6

1

11 10

8 7

12 9

5 4

3

2 1

8 7

9

4

3

2 1

8 7

9

Figure 2.1: Graph G (left) and the induced subgraphs G[N3(G,S, 1)] (middle) and
G[N3(G,S, 2)] (right) for S = {1, 2, 3, 9}.

For a given positive integer s, the s-neighborhood N s
G(i) of a given vertex i ∈ V is the

set of vertices having a distance of at most s from i in G, N s
G(i) = {j : dG(i, j) ≤ s}.

Note that since dG(i, i) = 0, we have i ∈ N s
G(i) for any s ≥ 1 and N1

G(i) = N [i].

Similarly, we can define the s-neighborhood N s
G(S) of a given subset of vertices S

as follows: N s
G(S) =

⋂
i∈S N

s
G(i). For a s-club S and a positive integer p, denote by

N s(G,S, p) the following recursively defined set:

N s(G,S, p) =

N s
G(S), if p = 1,

N s(G[N s(G,S, p− 1)], S, 1), if p ≥ 2.

Then, according to the above definition, for p ≥ 1, N s(G,S, p) is the s-neighborhood

of S in G[N s(G,S, p − 1)]. Figure 2.1 illustrates the definition for s=3 on a 12-

vertex graph G with S = {1, 2, 3, 9}. According to the definition, N3(G,S, 1) =

{1, 2, 3, 4, 5, 7, 8, 9} and N3(G,S, 2) = N3(G[N3(G,S, 1)], S, 1) = {1, 2, 3, 4, 7, 8, 9}.

Moreover, for any p ≥ 2 the 3-neighborhood of S is the same in the induced subgraph

G[N3(G,S, 2)], thus, N3(G,S, p) = {1, 2, 3, 4, 7, 8, 9}.

The following lemma describes some basic properties of N s(G,S, p) and explains

why this structure may be useful for designing algorithms for computing a maximal

s-club in a graph.

44

Lemma 1. The following properties hold.

1. If S ⊆ S∗ ⊆ V then we have N s(G[S], S, p) ⊆ N s(G[S∗], S, p) ⊆ N s(G,S, p)

for any p ≥ 1.

2. If S is a s-club then we have S = N s(G[S], S, p) ⊆ N s(G,S, p+1) ⊆ N s(G,S, p)

for any p ≥ 1.

3. Let S be a s-club that is not maximal. Then for any maximal s-club S∗ con-

taining S we have: S∗ ⊆ N s(G,S, p) for any p ≥ 1.

Proof. The first property follows from the observation that for any i, j ∈ S, if S ⊆

S∗ ⊆ V then we have dG[S](i, j) ≥ dG[S∗](i, j) ≥ dG(i, j). The second property can be

easily established using induction and definition of N s(G,S, p). To prove the third

property, note that since S∗ is a s-club containing S, we have: S∗ = N s(G[S∗], S, p) ⊆

N s(G,S, p) for any p ≥ 1.

Based on the third property in the above lemma, local search algorithms for

the MsCP can concentrate on searching the set N s(G,S, p), which may significantly

reduce the search space, especially in low-density graphs. The following property

provides a sufficient condition for maximality of a s-club that will later be used in

the local search phase of the proposed VNS algorithm.

Theorem 4. Given a s-club S, if there exists a positive integer p such that

N s(G,S, p) = S

then S is a maximal s-club.

Proof. The proof follows from Lemma 1. Indeed, if we assume that N s(G,S, p) = S

holds but S is not a maximal s-club, then there exists a maximal s-club S∗ containing

45

1

2 3

4

5

7

6

8 9

11 12

13 10

Figure 2.2: A graph G = (V,E) with a maximal 2-club S = {1, 2, 3, 4, 5, 6, 7} such
that N2(G,S, p) = V for any p ≥ 1.

S, and, according to the third property of Lemma 1, S ⊂ S∗ ⊆ N s(G,S, p) for any

p ≥ 1. This contradicts to the condition that there exists a number p for which

N s(G,S, p) = S and the proof is complete.

Note that Theorem 4 only provides a sufficient condition for s-club maximality

and the reverse statement is not necessarily true. In other words, maximality of a

s-club S does not imply the existence of p such that N s(G,S, p) = S. For example,

consider the graph G = (V,E) shown in Fig. 2.2. In this graph, the subset of vertices

S = {1, 2, 3, 4, 5, 6, 7} is a maximal 2-club, however, for any p > 1, N2(G,S, p) =

N2(G,S, 1) = V ⊃ S. Note that V is not a 2-club since, for example, the distance

between vertices 8 and 11 is 3.

2.2.1 Maximality test

Recall that not only computing a maximum s-club is NP-hard, but even finding

a maximal s-club is a computationally intractable problem. Therefore, guaranteeing

a maximal s-club in the output is a reasonably ambitious goal for a metaheuristic

approach. To verify whether a given s-club is maximal, we will use the result from

Theorem 4 as follows. Given a s-club S, we compute N s(G,S, p) starting with p=1

46

and keep increasing p until we reach the point where N s(G,S, p) = N s(G,S, p− 1).

If for such value of p we have N s(G,S, p) = S, then the subgraph induced by S is a

maximal s-club and cannot be improved to a larger s-club containing S.

2.3 Description of the VNS method

2.3.1 Background and the proposed method

A general combinatorial optimization problem can be defined by the set S of its

feasible solutions, an objective function f(s) used to compute the value of each feasi-

ble solution s ∈ S, and a minimization or maximization objective. Due to the compu-

tational intractability of many combinatorial optimization problems, (meta)heuristic

methods are often used in practice, most of which are based on some type of lo-

cal search. Local search methods typically rely on a certain neighborhood structure

N , which, given a feasible solution s ∈ S defines a set N (s) ⊆ S of its neighbors.

Such combinatorial neighborhood structures arising in design of heuristic approaches

should not be confused with vertex neighborhoods in graphs discussed above. The

difference in these concepts is sufficient for the reader to easily figure out which type

of neighborhood is meant each time the term is used in the remainder of this chapter.

Variable neighborhood search (VNS) is a metaheuristic framework developed

by [75] (see also [54]) for solving hard combinatorial optimization problems. VNS

explores the solution space through a systematic change of neighborhood structures.

The procedure is based on the fact that a local optimum for one neighborhood struc-

ture is not necessarily a local optimum for another neighborhood structure. Hence,

to avoid being trapped in a poor-quality local optimum, the VNS explores multi-

ple neighborhood structures in a systematic fashion. Different variations of VNS

have been successfully applied to diverse combinatorial optimization problems. For

example, [13] applied VNS to the graph coloring problem and [55] used VNS to

47

solve the maximum clique problem. Other problems successfully approached using

VNS include location [45], routing [65], sequencing [47] and container loading [81]

problems.

Let us denote by Nk, k = 1, ..., kmax, a finite set of predefined neighborhood

structures, where Nk(s) is the set of solutions in the kth neighborhood of a given

solution s. Note that the standard local search heuristics use only one neighborhood

structure, i.e., kmax = 1. The basic VNS consists of the following steps.

1. Initialization. Find an initial solution s; choose a stopping condition; set k = 1.

2. Main loop. Repeat the following sequence until the stopping condition is met.

2.a Shaking. Generate a point s′ at random from the kth neighborhood of

s (s′ ∈ Nk(s)).

2.b Local search. Apply some local search method starting with s′ to obtain

a local optimum s′′.

2.c Move or not. If s′′ is better than the incumbent s, set s = s′′, and continue

the search with N1 (i.e., set k = 1); otherwise, set k = k mod kmax + 1.

The stopping condition for VNS may be, for example, maximum CPU time al-

lowed, maximum number of iterations, or maximum number of iterations between

two improvements. Observe that a solution s′ generated in step 2.a is obtained by

randomly choosing it in the kth neighborhood. This helps to avoid cycling that may

occur if any deterministic rule was used. Since a local optimum with respect to some

neighborhood is not necessarily a local optimum with respect to another, change of

neighborhoods can be performed during the local search phase. This local search is

then called variable neighborhood descent (VND). It is also possible to use a simple

48

descent method or a more powerful technique such as tabu search or simulated an-

nealing [50] within this framework. The above basic VNS can be viewed as a descent

algorithm since we update incumbent only if the local optimum s′′ obtained in step

2.b is better than s. It is also possible to derive other variants of the VNS without

much additional effort. For example, it can be transformed into a descent-ascent

method if in step 2.c a solution s′′ could be accepted to substitute for the incumbent

s with some probability even if it is worse than the incumbent. In step 2.a, it is

also possible to choose the best solution s′ as a result of applying several neighbor-

hood structures to s selected at random. In some applications, the local search step

is dropped to save time, resulting in the so-called reduced VNS. In another varia-

tion called variable neighborhood decomposition search (VNDS), VNS is applied to a

partial set of variables at each iteration.

To solve the MsCP, a variation of VND is adopted as the local search procedure

of choice in step 2.b of the VNS framework. The proposed method is summarized in

Alg. 1, which also contains pointers to specific sections of the chapter providing more

detail on the particular steps. Given the set of neighborhood structures and initial

solution X, the local search proceeds with generating a neighboring solution Xi using

the kth neighborhood structure starting from k = 1. In the next step, maximality

of this neighbor solution is checked using the method described in Sec. 2.2.1. If

this solution is not maximal, Local-Improvement procedure is executed to improve

the solution if possible, as described in Sec. 2.3.3. If the solution thus obtained

is better than the initial solution X, the initial solution is updated and the local

search starts over again with k = 1. On the other hand, if no improvement is

possible after complete search of the kth neighborhood, the algorithm explores the

next neighborhood structure by setting k = k + 1. The above procedure continues

until no improvement in the solution is observed in one complete iteration of VND.

49

Algorithm 1 Steps of the basic VND.

1: Initialization: Select the set of neighborhood structures N ′k, k = 1, ..., k
′

max and let X be the
initial solution

2: repeat
3: Set k← 1;
4: repeat
5: procedure Neighborhood-Exploration(k,X)
6: Set X

′ ← X;
7: for i← 1 to |N ′k(X)| do
8: generate a neighbor Xi using kth neighborhood structure; B see Sec. 2.3.4
9: Maximality-Test(Xi); B see Sec. 2.2.1

10: if Xi is not maximal then
11: Local-Improvement(Xi); B see Sec. 2.3.3
12: end if
13: if |X ′ | < |Xi| then
14: Set X

′ ← Xi;
15: end if
16: end for
17: end procedure
18: if |X| < |X ′ | then
19: Set X ← X

′
and k ← 1;

20: else
21: Set k ← k + 1;
22: end if
23: until k = k

′

max

24: until no improvement is obtained
25: return the best solution X found;

2.3.2 Initial feasible solution

To obtain an initial solution, we employ three algorithms in the construction

phase. The first two are called CONSTELLATION and DROP and were developed

by [23]. The third one, which we call EXPAND, is based on vertex expansion. The

best initial solution provides a lower bound, which we will refer to as LB-1. This

solution is selected to start the VNS iterations. The first step of CONSTELLATION

procedure consists of identifying the vertex of highest degree, including this vertex

together with its neighbors in the s-club S being constructed. The next step consists

of s − 2 recursive iterations, in each of which a vertex from S having the largest

number of neighbors in V \ S is selected, and all its neighbors are added to the

50

Algorithm 2 EXPAND algorithm for construction phase.

1: Initialization: Sort vertices based on non-increasing order of their degree in G ; C∗ = ∅;
2: for i← 1 to |V | do
3: Ci ← Ns

G(N [i]);
4: if |Ci| > |C∗| then
5: Ci ←DROP(Ci);
6: if |Ci| > |C∗| then
7: C∗ ← Ci;
8: end if
9: end if

10: end for
11: return C∗;

s-club S. In DROP construction, we start with the whole graph G and at each

iteration a vertex i with the highest infeasibility is deleted and the graph is updated.

The infeasibility of a vertex i is defined as the number of vertices in G whose distance

to i is at least s+ 1. If there is a tie, a vertex with minimum degree is then selected

for elimination, with further ties broken at random. The procedure continues until

no infeasible vertex can be found.

The proposed EXPAND construction proceeds by taking the closed neighborhood

of each vertex, computing its s-neighborhood and applying the DROP procedure to

ensure feasibility. Note that the closed neighborhood of a vertex provides a 2-club,

which is used to obtain the s-neighborhood in our algorithm for s ≥ 2. The steps of

EXPAND are outlined in Alg. 2. Note that the vertices are sorted based on a non-

increasing order of their degrees in the initialization step. This is done to increase the

chance of obtaining larger s-clubs in the initial steps of EXPAND. At each iteration

i, the number of vertices in Ci = N s
G(N [i]) is compared against the cardinality of the

best s-club C∗ found so far, and DROP is carried out only if |N s
G(N [i])| > |C∗|.

2.3.3 Local improvement procedure

Before we describe the proposed neighborhood structures, we first discuss the

basic local improvement procedures that are natural to use in the neighborhood

51

definitions. We refer to these procedures as 1-add move and 2-add move, respectively,

as they attempt to add one or two new vertices to the existing solution. The 1-add

and 2-add moves applied in sequence constitute the local improvement procedure

described next.

Let Cs(G) denote the set of all s-clubs in G and let S ∈ Cs(G) be a given s-

club. Denote by A1 a subset of vertices outside of S, each of which forms a s-club

together with S, i.e., A1 = {u ∈ N s
G(S) \ S : S ∪ {u} ∈ Cs(G)}. Set A1 contains the

vertices that can be used to perform a 1-add move. Furthermore, let A2 be a subset

of edges whose endpoints are not in S ∪ A1, but form a s-club together with S, i.e.,

A2 = {(u, v) ∈ E : u, v ∈ N s
G(S) \ (S ∪ A1) and S ∪ {u, v} ∈ Cs(G)}. A2 consists of

pairs of vertices that can be used for a 2-add move. The definition of A2 is motivated

by the lack of the heredity property in s-clubs and is illustrated for s=2 in Fig. 2.3,

where S = {1, 2, 3} is a 2-club and (4, 5) ∈ A2. In this case, both vertices 4 and 5

can be added to S simultaneously and we obtain a 2-club, while adding only one of

these vertices will result in an infeasible solution. Similarly, it may be necessary to

2 4

6

5

1

3

2 4

6

5

1

3

2 4

6

5

1

3

Figure 2.3: Graphical representation of 2-add move for 2-club.

add p ≥ 3 vertices at a time to maintain the feasibility of the solution, while adding

any other subset of these vertices would result in an infeasible solution. Thus, we

can define a p-add move to address this issue. However, for p ≥ 3 the p-add move

becomes inefficient due to the combinatorial nature of computing the possible moves.

In our implementation of the 1-add procedure, the vertices in A1 are sorted based

on non-increasing order of their degree in S since adding vertices in this order is

52

likely to result in larger s-clubs early on. After the first vertex from A1 is added,

the sets S, N s
G(S) and A1 are updated and the procedure continues recursively until

A1 = ∅. While computing A1 at each iteration of the 1-add procedure, for every

vertex vi ∈ N s
G(S) \ S we maintain a list T (vi) of all vertices in S whose distance

from vi is at least s+ 1. This list is later used for 2-add move to facilitate computing

the set A2 of candidate vertex pairs. Then two new vertices corresponding to an

edge in A2 are introduced to the solution at the same time without violating the

feasibility, the set A2 is updated, and the 2-add procedure continues recursively until

A2 is empty.

The result of the local improvement procedure, which consists in applying the

2-add moves on top of the 1-add procedure, is a s-club S that cannot be further

increased by adding any one or two vertices at a time. Next we discuss the proposed

neighborhood structures that can be divided into four different groups. Several other

variations of these neighborhood structures were considered in preliminary numerical

experiments and are not discussed here due to their inferior performance.

2.3.4 Neighborhood structures

This subsection discusses the proposed neighborhood structures. They can be

viewed as variations of the exchange neighborhoods commonly used in combinatorial

optimization, which, essentially, modify the current solution by removing some of

its elements (e.g., vertices) and adding other elements that are not included in the

current solution.

N1: DROP-based neighborhood

Given a s-club S, we compute N s
G(S) and consider the graph induced by this

s-neighborhood. Then sequentially remove the most infeasible vertex, where the

infeasibility is measured as described in Sec. 2.3.2, until a new feasible solution is

53

obtained.

N2: Adding a new vertex to the current solution

For a new vertex i to be added to a given s-club S, i must belong to the s-

neighborhood N s
G(S) of S. Therefore, one of the vertices in N s

G(S) \ S, say v, is

selected at random and added to S. There are two possibilities at this point. If

the subgraph induced by S ∪ {v} is still a s-club, we obtain a neighbor of S that

we denote by N v
2 (S), otherwise, if S ∪ {v} is not a s-club, it needs to be refined in

order to obtain a feasible s-club, i.e., some vertices have to be removed in order for

v to be added. While computing the feasibility of the subgraph induced by S ∪ {v},

we keep track of the vertices whose distance from v is at least s + 1. These are

the vertices that need to be removed. We start by removing a vertex that has the

minimum number of neighbors in S first. Next, the pairwise distances in G[S ∪ {v}]

are computed, and, like in the DROP procedure, a vertex that is different from v and

has the maximum infeasibility is removed. The procedure outputs a feasible solution

containing v. We will denote this feasible solution by N v
2 (S). Then, given a s-club

S, its neighborhood N2 can be defined as N2(S) = {N v
2 (S) : v ∈ N s

G(S) \ S}.

Note that in the N2 neighborhood we are essentially looking for a s-club in S ∪

{v} with the additional constraint that the s-club must contain v. Based on our

computational experiments, this neighborhood structure changes the size of a given

s-club drastically in sparse graphs, while for dense graphs this change is usually

moderate or small. The idea behind using this neighborhood is that introducing a

new vertex to the current solution helps to diversify the search.

N3: Removing a vertex from the solution

In this neighborhood structure, vertices in S are sorted in a certain order v1, v2, . . . , vnS
,

where nS be the number of vertices in S. We build nS neighbors of the solution S as

54

follows. To form the ith neighbor, i = 1, . . . , nS, vertex vi is temporarily eliminated

from the graph until the corresponding neighbor is constructed. It is obvious that we

need to check the feasibility of the remaining set. In case it is infeasible, a feasible

solution is extracted from the remaining set using DROP. Given the resulting feasible

solution, we apply the local improvement procedure described in Sec. 2.3.3 to check

if any new vertices can be added to improve the solution.

We considered the following five different strategies for ordering vertices in S:

1. Non-decreasing order of vertex degrees in the subgraph induced by S;

2. Non-decreasing order of vertex degrees in the subgraph induced by V \ S;

3. Non-decreasing order of the cardinality of s-neighborhoods N s
G(v), v ∈ S;

4. Non-decreasing order of cardinality of the sets

{u ∈ N s
G(S) \ S : dG[S∪{v}](u, v) ≤ s}, v ∈ S,

which characterize the reachability of v from the vertices in the s-neighborhood

of S.

5. Random ordering.

N4: Removing a group of vertices from the solution

This neighborhood structure is similar to the previous one, but instead of re-

moving only one vertex, a group of vertices is removed to form a neighbor of S. In

this case, the number of neighbors of a given s-club S may not be the same as the

cardinality of S. We sort vertices in S in either non-increasing order of their degrees

in the subgraph induced by V \ S or non-decreasing order v1, v2, . . . , vnS
of their

55

degrees in the subgraph induced by S. For each i = 1, . . . nS we remove a subset Si

of vertices in S, where Si is determined using one of the following rules:

1. Si = N [vi] ∩ S;

2. Si = {v ∈ S : |N(v) ∩ S| = |N(vi) ∩ S|};

3. Si = {vi, vj} ⊂ S, where (vj, vi) /∈ E and j > i;

4. Si = {vi, vj} ⊂ S, where j > i.

2.4 A hybrid exact algorithm

Inspired by a promising performance of the proposed VNS method, we develop an

exact algorithm for the MsCP incorporating the VNS into a combinatorial branch-

and-bound algorithm (B&B) proposed by [80]. Recall from section 2.3.2 that LB-1

refers to the lower bound used to initialize the VNS algorithm. The B&B algorithm

employs two lower bounding schemes. The first one, which will be denoted by LB-2

considers the best solution among DROP and CONSTELLATION heuristics, both

originally proposed by [23], to identify an initial feasible solution and initializes

the incumbent. The second scheme considers the best solution among DROP and

CONSTELLATION heuristics followed by a bounded enumeration to possibly grow

the cardinality of the starting solution. We will denote by LB-3 the lower bound

corresponding to this initial solution.

Two methods are used to derive an upper bound for the B&B algorithm. The first

one is based on the fact that the chromatic number χ(Gs) of the sth power graph Gs

provides an upper bound on the s-club number of G. Given a graph G = (V,E), the

sth power graph Gs = (V,Es) is a graph defined by the set of vertices V and the set

56

of edges Es = {(i, j) : i, j ∈ V ; dG(i, j) ≤ s}. The chromatic number χ(G) of G is the

minimum number of colors required to color the vertices of G properly, i.e., so that

no two neighbors are assigned the same color. To obtain this upper bound, which

will be denoted by UB-1, a combination of greedy heuristic and DSATUR heuristic,

proposed by [25], is used. The second method computes the maximum s-clique to

serve as an upper bound for the s-club number of a given graph G. To obtain this

upper bound the algorithm proposed by [79] is employed to find the maximum clique

on sth power graph Gs. We will denote by UB-2 the upper bound corresponding to

this method. For branching, a vertex dichotomy is used, where a vertex is selected

and fixed to be included or deleted from the solution. To traverse the search tree,

best bound search (BBS) strategy has been considered. For more details on the B&B

algorithm please refer to [80].

The idea behind the proposed hybrid algorithm is to use the solution obtained

from VNS as a starting solution for B&B algorithm. This is due to the fact that the

quality of the solution obtained from the VNS algorithm is in most cases higher than

the lower bounding techniques used to initiate the B&B algorithm. Therefore, the

hybrid algorithm employs VNS to obtain a good initial solution, denoted by LB-4,

that is considered as incumbent to start the branch and bound search.

2.5 Results of computational experiments

The developed algorithms were implemented in C++ and all numerical experi-

ments were conducted on Dell workstation with Intel 3.00 GHz quad-core processor

and 8.00 GB RAM. To diversify the experiments and fully explore the potential of

the proposed algorithms, two different set of instances were considered. The first set

includes some of the test instances from the tenth DIMACS implementation chal-

lenge [39] in order to test the algorithms on some large-scale real networks. Instances

57

in the second set were generated randomly using the algorithm introduced by [49],

which is a generalization of the classical uniform random graph generator and is

controlled by two density parameters a and b (0 ≤ a ≤ b ≤ 1). The expected edge

density of instances produced using this method is equal to (a+ b)/2, and the vertex

degree variance increases with the increase in b − a. For this set of instances the

experiments for MsCP with s=2 and 3 were performed on graphs with n=50, 100,

150 and 200 vertices with edge densities d=0.0125, 0.025, 0.05, 0.1, 0.15, 0.2, and

0.25, respectively. Among these, according to [23, 24], the edge densities 0.15 and

0.025 were observed to produce the hardest instances for their respective s values.

For each size and density considered, we generated 10 sample graphs with a = b = d

(we refer to this case as having the minimum vertex degree variance (VDV)) and 10

samples with a = 0, b = 2d (referred to as the maximum VDV cases). The first ten

instances in each category are those with the minimum VDV and the second ten are

instances with the maximum VDV. For the VND algorithm used within the VNS

framework, a set of five neighborhood structures among those proposed in Sec. 2.3.4

have been used, i.e., k
′
max = 5. The choice of these neighborhoods is based on their

effectiveness measured by examining different sets of neighborhoods in the initial

experiments and observing the improvement in the objective function after a specific

amount of time. These neighborhoods are the first three structures defined for N3

and the last two structures defined for N4. Note that the neighborhoods not used

in the local search step are not necessarily ineffective in all cases attempted in the

experiments. Although some of them had reasonably good performance in terms of

the solution quality, the computational time required for exploring those neighbor-

hoods was rather high. In particular a truncated version of N4 neighborhood has

been used for instances with higher densities in order to reduce the search space. For

the VNS framework, all of the proposed neighborhood structures, except for four

58

of them, have been used. These neighborhoods were excluded due to their inferior

performance with respect to either solution quality or computational time require-

ments, and include the last two structures defined for N3 and the first two structures

for N4. The running time limit for all three algorithms was set to 3600 seconds and

results are compared. For the VNS algorithm the time limit was enforced by keeping

track of the elapsed time after each call to the local search algorithm, VND, which

for some instances exceeded the time limit mainly because of the time needed to

finish the neighborhood search using all corresponding neighborhood structures. For

the B&B algorithm in [80], the elapsed time is monitored after processing each B&B

tree node to enforce the one-hour time limit. For some of the larger instances from

DIMACS the time required to process a tree node was significant and as a result

the CPU time exceeded the time limit by a large margin. For the hybrid algorithm,

the time limit considered for the lower bounding technique was set to 1200 seconds,

although in many cases the time required for the VNS was only a fraction of this

amount. Only those DIMACS instances that were not solved to optimality and for

which VNS obtained a better solution than the B&B algorithm were attempted using

the hybrid method. On the remaining DIMACS instances, the hybrid algorithm was

not able to obtain any improvement over the lower bound obtained using VNS or to

prove optimality of of the best s-clubs found. Likewise, for the randomly generated

instances the hybrid algorithm was used to solve some of the harder instances in the

sense that the B&B algorithm was not able to solve them to optimality in one-hour

time limit or required a rather high computational time. Therefore, for s=2 we con-

sidered moderate size instances of density 0.15 to solve using the hybrid algorithm,

and for s=3 instances with density 0.025 and 0.05 were attempted.

Tables 2.1-2.2 show the best objective value, optimality gap and the running

time for DIMACS instances solved by VNS and B&B algorithms. The optimality

59

gap for B&B is computed as 100×(upper bound-best solution size)/(upper bound).

For s=2, most of the small to medium size instances were solved to optimality using

both methods in the given time limit. In two of the larger instances the B&B

algorithm could not reach any feasible solution mainly because the time required

for the construction procedure was greater than the time limit and the process was

terminated. In these two cases even extending the time limit beyond three hours

was not enough to obtain a feasible solution using B&B. In seven other cases the

optimality of the solution could not be verified. Among these, in one instance the

size of the solution found by VNS was larger. Although the running time grows for

both methods with increase in size of the instances, the growth rate is much slower

for the VNS algorithm. Figure 2.4 illustrates this by comparing the CPU time for

the two methods obtained by removing the time limit restriction in order to solve

the large instances to optimality. Note that except for two cases, all other instances

shown in the figure were solved before the time limit by VNS. For s=3 both methods

solve the small instances and the running time grows with the size and density of the

problems. There are six instances for which the B&B returned a feasible solution

and then the execution was terminated beyond the time limit. This was a result

of significant time needed to process a tree node and as a result no optimality gap

could be reported. In four cases the solution obtained by VNS is better, and in three

instances the B&B algorithm did not return any solution. The same figure illustrates

the CPU time only for instances that were solved by VNS within the time limit and

by relaxing this requirement for B&B in order to solve M3CP to optimality. Except

for one case, all other DIMACS instances are non-trivial for both s=2 and s=3, and

solving M3CP appears to be harder than solving M2CP for both methods.

Tables 2.3-2.10 show the average best objective value, optimality gap and the

CPU time obtained from solving MsCP using randomly generated instances, while

60

detailed numerical results for VNS heuristic, the B&B and the proposed hybrid

algorithm are reported in Tables B.1–B.14. The average optimality gap for the VNS

algorithm is calculated based on those instances for which the optimal solution was

obtained using the B&B algorithm within one hour. Only the first five instances of

minimum VDV and the first five instances of maximum VDV are reported. Recall

that there are four different possible combinations to set up the B&B algorithm,

considering two methods for each of the lower and upper bounding techniques as

mentioned before. For each particular density and size, the best result among all four

combinations of the B&B has been compared with VNS in the tables in appendix.

In these tables, LB∗ denotes the lower bound (LB-2 or LB-3) associated with the

best among the four solutions obtained for the corresponding instance. Here the

best solution is the one with the smallest CPU time, if the instance was solved to

optimality; otherwise, it is the solution with the best objective obtained within the

one-hour limit. For some particular n, s and d values, e.g., the randomly generated

instances with higher order and higher density, the MsCP was a trivial problem

since the diameter of the instances were less than the value considered for s. These

are mainly instances of density 0.15, 0.2 and 0.25 for the M3CP and their detailed

numerical results are not included in the appendix.

For s=2 and densities d =0.0125, 0.025 and 0.05 the VNS algorithm finds an

optimal solution in all cases. For small size instances the time required by VNS is

reasonably close to that of B&B and for instances of moderate size VNS outperforms

B&B on average. For instances with density d =0.1, VNS obtains optimal solutions

except for instances of size n = 200, for which the optimality gap could not be closed

when solved by B&B method. Also in all instances tried, except those of size 50, VNS

requires considerably smaller amount of computational time. The rate of increase of

the CPU time as a function of instance size is also smaller for VNS than for the exact

61

Figure 2.4: Illustration of CPU time required for VNS and B&B to solve M2CP and
M3CP on DIMACS instances.

algorithm. For instances of density 0.15, which are reportedly the hardest ones in

the literature, the VNS algorithm finds better solutions for moderate-size instances

than the B&B algorithm and for higher densities the VNS algorithm obtains optimal

or near optimal solutions. For d=0.2, there are some instances on which B&B has a

better performance, but in some other cases VNS generates better solutions. In the

case of d=0.25, the running time of the exact algorithm is better than that of VNS

mainly because of the use of the upper bound based on the maximum clique on sth

power graph Gs, which appears to be quite tight and helps reducing the search tree

for dense instances. Among instances that have not been solved to optimality, those

with the maximum VDV seem to be harder for the VNS algorithm, as the average

optimality gap is larger in these cases. Using hybrid algorithm for instances with

density d=0.15, the average solution size increases for graphs of order n =100, 150

and 200 compared to the B&B method. This is mostly because of using VNS as a

lower bounding technique, which has a better performance than the heuristics used

in B&B. For some instances of size n = 100, the effect of using a better lower bound

appears in reducing the computing time compared to the B&B case. In all other

instances of higher order, except for two cases that have been solved to optimality

62

Table 2.1: Computational results of solving the MsCP using VNS and B&B algorithms
for s=2 on DIMACS instances.

Instance n m VNS B&B
s-club CPU s-club Gap CPU
size (sec) size (%) (sec)

karate 34 78 18 1.108 18 0 0.484
dolphins 62 159 13 1.544 13 0 14.711
polbooks 105 441 28 12.324 28 0 10.904
adjnoun 112 425 50 70.37 50 0 20.857
football 115 613 16 5.71 16 0 120.884
jazz 198 2742 103 2012.92 103 0 1824.829
celegansneural 297 2148 286 4100 286 0 4589.566
celegans-metabolic 453 2025 238 3603.615 238 0 3598.077
email 1133 5451 72 273.983 72 0 4821.446
polblogs 1490 16715 352 3872.459 352 76.37 4295.725
netscience 1589 2742 35 70.45 35 0 215.576
add20 2395 7462 124 1957.428 124 94.82 4489.353
data 2851 15093 18 260.785 18 21.73 5440.516
uk 4824 6837 5 392.106 4 50 3975.644
power 4941 6594 20 480.024 20 0 3731.988
add32 4960 9462 32 567.45 32 0 5694.063
hep-th 8361 15751 51 1825.316 51 99.39 9403.884
whitaker3 9800 28989 9 2320.6 9 35.71 12631.52
crack 10240 30380 10 2452.326 10 99.9 3924.711
PGPgiantcompo 10680 24316 206 5183.705 - - >3600
cs4 22499 43858 5 11371.81 - - >3600

by all methods, the hybrid algorithm was not able to close the optimality gap within

the time limit, although the difference between the size of the lower bound for the two

algorithms is significant in some cases. This suggests that the use of a better lower

bounding technique speeds up the branch-and-bound process but is not sufficient to

close the optimality gap even for moderate size problems.

For s=3, in all instances tried with density d =0.0125 the VNS algorithm obtained

the optimal solution in a time competitive to that of the exact B&B algorithm.

For instances of density 0.025, VNS exhibited similar performance, except for some

63

Table 2.2: Computational results of solving the MsCP using VNS and B&B algorithms
for s=3 on DIMACS instances.

Instance n m VNS B&B
s-club CPU s-club Gap CPU
size (sec) size (%) (sec)

karate 34 78 25 3.572 25 0 1.123
dolphins 62 159 29 5.808 29 0 29.858
polbooks 105 441 53 58.773 53 0 183
adjnoun 112 425 82 505.05 82 0 313.711
football 115 613 58 192.729 58 0 2280.202
jazz 198 2742 174 4223.505 174 0 1053.395
celegansneural 297 2148 297 0 297 0 0
celegans-metabolic 453 2025 371 3657.981 371 18.1 3698.452
email 1133 5451 215 3605.378 201 - >3600
polblogs 1490 16715 352 3608.22 - - >3600
netscience 1589 2742 54 110.073 54 0 441.289
add20 2395 7462 671 3659.34 671 - >3600
data 2851 15093 32 1919.02 28 99 3717.729
uk 4824 6837 8 5746.64 8 38.46 5386.57
power 4941 6594 30 1167.6 30 0 7056.33
add32 4960 9462 96 1450.16 99 - >3600
hep-th 8361 15751 120 3799.29 120 - >3600
whitaker3 9800 28989 15 3563.2 13 - >3600
crack 10240 30380 17 3497.75 15 - >3600
PGPgiantcompo 10680 24316 273 9301.1 - - >3600
cs4 22499 43858 9 7522.83 - - >3600

instances of size 200 for which there was a minor optimality gap. The time needed to

solve the problem increased slightly as a function of the instance size, but the amount

of increase is moderate. This can be attributed to the use of s-neighborhood function

for finding the initial solution, as well as during the local search, which results in a

significant reduction of the search space, especially in low-density graphs. Another

observation is that the average computational time increases with density and reaches

its peak for d=0.05 and then declines for higher densities. This can be explained by

the fact that the sparse problems are easier to solve and in many cases are composed

64

Table 2.3: Average output s-club size, average optimality gap and average running time
for the VNS and B&B algorithms (d=0.0125).

s n VDV VNS B&B
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 50 min 3.7 0 0.09 3.7 0 0.07
max 4.3 0 0.09 4.3 0 0.06

100 min 6.1 0 0.28 6.1 0 0.29
max 5.9 0 0.29 5.9 0 0.28

150 min 6.9 0 0.62 6.9 0 0.74
max 8.3 0 0.67 8.3 0 0.76

200 min 8.2 0 1.15 8.2 0 1.14
max 9.2 0 1.21 9.2 0 1.20

3 50 min 4.6 0 0.05 4.6 0 0.08
max 4.4 0 0.05 4.4 0 0.06

100 min 8.4 0 0.34 8.4 0 0.34
max 7.9 0 0.28 7.9 0 0.31

150 min 11.7 0 1.19 11.7 0 14.66
max 12 0 1.25 12 0 1.13

200 min 13.6 0 3.94 13.6 0 51.29
max 14.8 0 3.77 14.8 0 175.38

of separate connected components, whereas for higher densities many of the instances

are trivial for s=3. For all considered instances of density 0.05, the VNS algorithm

performed well. Specifically, for the moderate-size instances in this category, VNS

generated better solutions. For all higher densities VNS found optimal solution in

most cases.

Using hybrid algorithm, problem instances with density d=0.025 and 0.05 were

attempted. In the former case, all instances were solved to optimality requiring less

computational time compared to the B&B algorithm. In the latter case, d=0.05, for

instances of order n = 100 the computation time decreased and for n = 150 only two

instances were solved, and in all other cases the optimality gap could not be closed.

Likewise, for n = 200 two of the maximum VDV instances were solved to optimality,

and in all other cases the optimality gap could not be closed, although the average

65

Table 2.4: Average output s-club size, average optimality gap and average running time
for the VNS and B&B algorithms (d=0.025).

s n VDV VNS B&B
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 50 min 4.9 0 0.14 4.9 0 0.07
max 5.2 0 0.16 5.2 0 0.07

100 min 8.8 0 0.65 8.8 0 0.34
max 10.1 0 0.69 10.1 0 0.36

150 min 11 0 1.4 11 0 1.08
max 11.8 0 1.52 11.8 0 1.19

200 min 12.7 0 2.64 12.7 0 2.97
max 14.3 0 2.94 14.3 0 3.08

3 50 min 6.6 0 0.1 6.6 0 0.08
max 7.8 0 0.13 7.8 0 0.1

100 min 14.6 0 1.55 14.6 0 19.2
max 15.8 0 2.03 15.8 0 22.08

150 min 20.5 0 7.16 20.5 0 252.03
max 22.9 0 9.36 22.9 0 277

200 min 25.3 0.34 31.58 25.4 0 1007.4
max 31.6 0.87 44.2 31.9 0 1106.97

optimality gap was decreased.

2.6 Conclusion

In this chapter, a sufficient condition for maximality of a given s-club is developed

and is used in the design of a variable neighborhood search heuristic to increase the

effectiveness of the local search step. For the construction phase, we proposed a new

algorithm that is very effective, especially for sparse graphs. Several methods have

been proposed to create neighborhood solutions, which is another challenging issue

for this problem that can be attributed to its nonhereditary nature. The emphasis

has been placed on the simplicity and effectiveness of the neighborhood structures

developed. The computational experiments show that the proposed VNS method is

competitive with other algorithms that are available for MsCP to this date, especially

on instances with modest density and high order that are reported to be the hardest

66

Table 2.5: Average output s-club size, average optimality gap and average running time
for the VNS and B&B algorithms (d=0.05).

s n VDV VNS B&B
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 50 min 6.7 0 0.3 6.7 0 0.1
max 7.4 0 0.31 7.4 0 0.1

100 min 11.6 0 1.65 11.6 0 1.02
max 12.7 0 1.71 12.7 0 1.05

150 min 16.8 0 4.62 16.8 0 5.38
max 19.5 0 6.05 19.5 0 5.66

200 min 20.7 0 9.89 20.7 0 21.33
max 23.4 0 12.62 23.4 0 51.33

3 50 min 11.1 0 0.45 11.1 0 2.44
max 12 0 0.45 12 0 1.76

100 min 27.7 1.02 19.57 28 0 222.16
max 30.9 1.27 25.61 31.3 0 235.37

150 min 47.6 - 310.81 41.3 34.75 3608.88
max 65 - 405.26 60.6 17.74 3439.31

200 min 97 - 2053.37 89.7 33.1 3650.25
max 126.3 - 2269.47 118.7 13.93 3520.72

in the literature. Moreover, it can be used to enhance exact branch-and-bound

algorithms. From the practical point of view, it would be of interest to develop more

neighborhood structures for this problem and apply them in a metaheuristic and

hybrid algorithms. Specifically a scale-reduction algorithm would be very helpful in

increasing the potential of the existing algorithms to solve the large sparse networks.

Another possible direction of future research is to perform a polyhedral study of this

problem and develop facets and valid inequalities that can be applied in a branch-

and-cut algorithm to solve MsCP.

67

Table 2.6: Average output s-club size, average optimality gap and average running time
for the VNS and B&B algorithms (d=0.1).

s n VDV VNS B&B
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 50 min 11 0 2.93 11 0 1.36
max 11.6 0 3.6 11.6 0 2.48

100 min 18.9 0 13.95 18.9 0 127.57
max 22 0.43 20.16 22.1 0 151.85

150 min 26.8 0 50.16 26.8 0 2252.09
max 31.7 - 66.63 31.7 2.03 2297.13

200 min 33.6 - 155.45 33.6 41.96 3614.62
max 39.1 - 212.75 39.1 33.7 3616.16

3 50 min 30 0.78 13.9 30.2 0 15.47
max 32 0 9.8 32 0 9.91

100 min 94 0 16.59 94 0 78.55
max 93 0.21 22.03 93.2 0 58.06

150 min 149.9 0 8.01 149.9 0 4.76
max 148.2 0 74.89 148.2 0 43.42

200 min 200 0 0 200 0 0
max 199.7 0 58.57 199.7 0 37.06

Table 2.7: Average output s-club size, average optimality gap and average running time
for the VNS and B&B algorithms (d=0.15).

s n VDV VNS B&B
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 50 min 15.3 1.13 23.59 15.5 0 11.31
max 16 2.00 22.44 16.3 0 11.07

100 min 28.5 - 214.3 28.2 6.27 2710.33
max 38.9 4.55 501.17 40.7 0 1689.09

150 min 46.2 - 1582.43 37.7 51.18 3618.04
max 79.9 - 3209.95 75.1 12.44 3444.55

200 min 79.2 - 3770.21 58.5 57.02 3639.17
max 131.9 - 3919.40 126.2 8.88 3523.3

3 50 min 47.4 0 1.01 47.4 0 2.71
max 43.6 0 0.95 43.6 0 1.69

100 min 100 0 0 100 0 0
max 99.7 0 1.7 99.7 0 4.05

150 min 150 0 0 150 0 0
max 150 0 0 150 0 0

200 min 200 0 0 200 0 0
max 200 0 0 200 0 0

68

Table 2.8: Average output s-club size, average optimality gap and average running time
for the VNS and B&B algorithms (d=0.2).

s n VDV VNS B&B
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 50 min 23.2 1.29 51.48 23.5 0 20.17
max 23.8 1.13 57.76 24.1 0 15.74

100 min 66.5 - 91.87 69.5 3.31 1776.39
max 71.1 2.05 68.15 72.5 0 416.59

150 min 135.3 - 368.73 136.1 0.6 1381.29
max 122.8 - 223.02 123.5 0.09 1013.28

200 min 195.2 0.15 769.94 195.5 0 1063.19
max 177.9 - 961.32 177.6 0.46 2358.11

3 50 min 50 0 0 50 0 0
max 48.3 0 0.78 48.3 0 1.62

100 min 100 0 0 100 0 0
max 100 0 0 100 0 0

150 min 150 0 0 150 0 0
max 150 0 0 150 0 0

200 min 200 0 0 200 0 0
max 200 0 0 200 0 0

Table 2.9: Average output s-club size, average optimality gap and average running time
for the VNS and B&B algorithms (d=0.25).

s n VDV VNS B&B
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 50 min 33.5 3.29 38.39 34.6 0 28.57
max 34.3 0.97 29.09 34.6 0 11.03

100 min 95.8 0.1 125.93 95.9 0 96.74
max 88.1 0.12 105.82 88.2 0 138.8

150 min 149.4 0 86.15 149.4 0 99.53
max 143.7 0.07 222.98 143.8 0 342.84

200 min 200 0 0 200 0 0
max 196.4 0 578.65 196.4 0 131.16

3 50 min 50 0 0 50 0 0
max 50 0 0 50 0 0

100 min 100 0 0 100 0 0
max 100 0 0 100 0 0

150 min 150 0 0 150 0 0
max 150 0 0 150 0 0

200 min 200 0 0 200 0 0
max 200 0 0 200 0 0

69

Table 2.10: Average output s-club size, average optimality gap and average running time
for the hybrid algorithm.

s d n min VDV max VDV
s-club Gap CPU s-club Gap CPU
size (%) (sec) size (%) (sec)

2 0.15 100 29.4 3.9 2646.53 40.7 0 1320.1
150 46.7 40.95 3600.8 79.5 8.02 3461.48
200 78.8 43.14 3586.09 131.3 6.32 3582.31

3 0.025 100 14.6 0 1.96 15.8 0 18.12
150 20.5 0 194.82 22.9 0 212.36
200 25.4 0 816.62 31.9 0 883.87

0.05 100 28 0 173.1 31.3 0 197.89
150 47.6 23.54 3595.85 65.3 9.91 3332.801
200 97 27.4 3607.805 126.3 8.37 3498.733

70

3. ASYMPTOTIC RESULTS FOR BICLIQUE COMMUNITY

DETECTION PROBLEMS

3.1 Introduction

In this chapter, three classes of the maximum biclique problem are considered.

Inspired by techniques introduced in [7, 34], we study the asymptotic behavior of

biclique structures in large-scale uniform random graphs (URGs). Specifically, we de-

velop asymptotic lower and upper bounds on the value of a solution to the maximum

vertex biclique, maximum balanced biclique and maximum edge biclique problems

in URGs. We also extend the results to the non-induced versions of these problems.

Bounds are insightful in the analysis of the structure of the optimal solution in large-

scale real networks. These asymptotic bounds provide knowlede about the evolution

and growth rate of the biclique communities as the underlying network evolves and

provides a method to predict the future behavior of these structures in a dynamic

environment such as biological networks.

3.2 Asymptotic bounds on the biclique size in uniform random graphs

3.2.1 Maximum vertex biclique problem

The following result characterizes the maximum vertex biclique in URGs.

Theorem 5. Let G(n, p) be a uniform random graph on n vertices, where p ∈ [0, 1]

is the probability of having an edge between any two vertices. If the maximum vertex

biclique in this graph has size l1 + l2 where l1 and l2 are the sizes of bipartitions, then

l1 + l2 ∈
[

log n

log 1
1−p

,
16 log n

log 1
1−p

]

71

asymptotically almost surely.

Proof. First we prove the result for the upper bound. It is enough to show that the

probability of having a biclique of size larger than 16 logn

log 1
1−p

is very small. Let Zl1+l2 be

the random variable representing the number of bicliques of size l1 + l2 in G, where

l1 and l2 are positive integers. Note that Pr(Zl1+l2 ≥ 1) ≤ E[Zl1+l2] and we have:

Pr(Zl1+l2 ≥ 1) ≤ E[Zl1+l2] =

(
n

l1

)(
n− l1
l2

)
pl1l2(1− p)(l1

2)+(l2
2)

≤
(
n

l1

)(
n− l1
l2

)
(1− p)(l1

2)+(l2
2).

Observe that if l1 + l2 ≥ 3 then
l21 + l22 − (l1 + l2)

2
≥ (

l1 + l2
4

)2 is always

true. (Note that this bound is tight since for l1 + l2 ≥ 2 the relationship would not

hold when l1 = l2 = 1 and if l1 = 2 and l2 = 0 or vice versa the induced subgraph is

an independent set instead of a biclique) Therefore,

E[Zl1+l2] ≤
(
n

l1

)(
n− l1
l2

)
(1− p)(l1

2)+(l2
2) ≤

(
n

l1

)(
n− l1
l2

)
(1− p)(

l1+l2
4

)2

≤ (
nl1

l1!
)(

(n− l1)l2

l2!
)(1− p)(

l1+l2
4

)2 ≤ (
nl1

l1!
)(
nl2

l2!
)(1− p)(

l1+l2
4

)2 .

Note that the third inequality above is possible using Stirling’s formula. Now

assuming l1 + l2 >
16 log n

log 1
1−p

is true we have:

(1− p)(
l1+l2

4
)2 = [(1− p)l1+l2]

l1+l2
16 ≤ [(1− p)

16 logn

log 1
1−p]

l1+l2
16 = [(1− p)log1−p n

−16

]
l1+l2
16

= [n−16]
l1+l2
16 = n−(l1+l2).

Hence the expected number of bicliques of size l1 + l2 is bounded above by the

72

following expression:

E[Zl1+l2] ≤ (
nl1+l2

l1!l2!
)(1− p)(

l1+l2
4

)2 ≤ (
nl1+l2

l1!l2!
)n−(l1+l2) = (

1

l1!l2!
) −→ 0 (as n→∞).

This clearly shows that there cannot be a biclique of size larger than
16 log n

log 1
1−p

and

that if l1 + l2 >
16 log n

log 1
1−p

then l1!l2!→∞ as n→∞.

To prove the case for the lower bound, let Z1+l2 be the random variable repre-

senting the number of bicliques of size 1+ l2 in G, where there are one and l2 vertices

in each of the bipartitions, respectively, l2 being a positive integer. Clearly the set

of all bicliques of size 1 + l2 is a subset of the set of all bicliques of size l1 + l2 which

results into the following:

Pr(Zl1+l2 ≥ 1) ≥ Pr(Z1+l2 ≥ 1)⇒ Pr(Zl1+l2 = 0) ≤ Pr(Z1+l2 = 0).

Let a = 1 + l2 for convenience. Therefore it is enough to show that Pr(Za =

0|a =
log n

log 1
1−p

) is very small for a sufficiently large n. We use the second moment

method based on the following relation: Pr(Za = 0) ≤ V ar(Za)

E(Za)2
. Let XL1,L2 be an

indicator variable which assumes value 1, if the nodes in L1 ⊂ V and L2 ⊂ V form

73

a biclique, and zero otherwise, where |L1| = 1 and |L2| = l2.

E(Z2
a) = E

(∑
L1,L2

XL1,L2

)
·

∑
Ĺ1,Ĺ2

XĹ1,Ĺ2

 =
∑
L1,L2

∑
Ĺ1,Ĺ2

E[XL1,L2 ·XĹ1,Ĺ2
]

=
∑
L1,L2

∑
Ĺ1,Ĺ2

Pr[XL1,L2 = 1, XĹ1,Ĺ2
= 1]

=
∑
L1,L2

∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL1,L2 = 1] · Pr[XL1,L2 = 1]

Since all of the bicliques of type (L1, L2) look alike, we can fix (L1, L2) as (L̃1, L̃2).

Note that here we do not need to take into account the different combinations of L1

and L2 sets cardinalities that form a biclique of size (l1 + l2) because we only consider

the bicliques of type (1, l2) in which the left bipartition is assumed to have a fixed

size of one.

E(Z2
a) =

∑
L1,L2

∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1] · Pr[XL1,L2 = 1]

=
∑
L1,L2

Pr[XL1,L2 = 1] ·
∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1]

=
∑
L1,L2

Pr[XL1,L2 = 1] ·
1∑
i=0

l2∑
j=0

∑
|Ĺ1∩L̃1|=i
|Ĺ2∩L̃2|=j

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1]

=
∑
L1,L2

Pr[XL1,L2 = 1]·

1∑
i=0

l2∑
j=0

(
1

i

)(
n− 1− l2

1− i

)(
l2
j

)(
n− 1− l2 − (1− i)

l2 − j

)
pl2−ij(1− p)(l2

2)−(j
2).

Let ∆ =
∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1] and observe E(Za) =
∑
L1,L2

Pr[XL1,L2 =

74

1], then E(Z2
a) = E(Za) ·∆ and Pr(Za = 0) ≤ ∆

E(Za)
− 1.

∆

E(Za)
=

1∑
i=0

l2∑
j=0

(
1

i

)(
n− 1− l2

1− i

)(
l2
j

)(
n− 1− l2 − (1− i)

l2 − j

)
pl2−ij(1− p)(l2

2)−(j
2)

(
n
1

)(
n−1
l2

)
pl2(1− p)(l2

2)
.

Let Tij =

(
1
i

)(
n−1−l2

1−i

)(
l2
j

)(
n−1−l2−(1−i)

l2−j

)
p−ij(1− p)−(j

2)(
n
1

)(
n−1
l2

) , then:

∆

E(Za)
=

1∑
i=0

l2∑
j=0

Tij.

In order to prove the case for lower bound we need to show:

∆

E(Za)
= 1 +O(n

−3
2).

Consider the first few terms of the above summation:

T00 =

(
1
0

)(
n−1−l2

1

)(
l2
0

)(
n−l2−2

l2

)(
n
1

)(
n−1
l2

) =
(n− l2 − 1)!(n− l2 − 1)!

n!(n− 2l2 − 2)!

=
(n− l2 − 1)(n− l2 − 2) · · · (n− 2l2 − 1)(n− 2l2 − 2)!(n− l2 − 1)!

n(n− 1)(n− 2) · · · (n− l2)(n− l2 − 1)!(n− 2l2 − 2)!

=

[
(1− l2 + 1

n
)(1− l2 + 1

n− 1
)(1− l2 + 1

n− 2
) · · · (1− l2 + 1

n− l2
)

]
=

[
1− (l2 + 1)2

n
+O(n

−3
2)

]
(see appendix A);

T10 =

(
1
1

)(
n−1−l2

0

)(
l2
0

)(
n−1−l2

l2

)(
n
1

)(
n−1
l2

) =
1

n
·
(
n−1−l2

l2

)(
n−1
l2

) =
1

n− 2l2 − 1
T00;

T01 =

(
1
0

)(
n−1−l2

1

)(
l2
1

)(
n−l2−2
l2−1

)(
n
1

)(
n−1
l2

) =

(
n−1−l2

1

)(
n
1

)(
n−1
l2

) · l2(n− l2 − 2)!

(l2 − 1)!(n− 2l2 − 1)!
=

l22
n− 2l2 − 1

T00.

75

Adding up the first three terms results into the following:

T00 + T10 + T01 = T00(1 +
1

n− 2l2 − 1
+

l22
n− 2l2 − 1

)

=

[
1− (l2 + 1)2

n
+O(n

−3
2)

](
1 +

(l2 + 1)2 − 2l2
n− 2l2 − 1

)
= 1 +O(n

−3
2) for l2 + 1 =

log n

log 1
1−p

.

To complete the proof we need to show that the remaining part of the summation

is also small. For this we bound the remaining terms Tij in terms of T02.

Tij
T02

=

(
1
i

)(
n−1−l2

1−i

)(
l2
j

)(
n−l2+i−2
l2−j

)
p−ij(1− p)−(j

2)(
1
0

)(
n−1−l2

1

)(
l2
2

)(
n−l2−2
l2−2

)
(1− p)−1

=
2!(n− 2l2)![(l2 − 2)!]2

i![(1− i)!]2(n− 2l2 + i+ j − 2)!j![(l2 − j)!]2pij(1− p)(
j
2)−1

=
2![(l2 − 2)(l2 − 3) · · · (l2 − j + 1)]2

j!(n− 2l2 + i+ j − 2)(n− 2l2 + i+ j − 3) · · · (n− 2l2 + 1)pij(1− p)(j
2)−1

≤ 2!(l22)j−2

j!(n− 2l2)i(n− 2l2)j−2pij(1− p)(j
2)−1

.

The third equality is possible because i![(1 − i)!]2 = 1 for i ∈ {0, 1}. Note

that T03
T02

= (l2−2)2

3(n−2l2+1)(1−p)2 ≤ 1 for sufficiently large values of n. Similarly T12
T02

=

1
(n−2l2+1)p2

≤ 1 for sufficiently large n. Likewise T11
T02

= 2(1−p)
(l2−1)2p

≤ 1 provided that

l2 ≥ 1 + [2(1
p
− 1)]

1
2 . It is easy to check that if a = logn

log 1
1−p

, where a = l2 + 1, the

above condition on l2 will always be satisfied for any fixed value of p ∈ (0, 1) and

sufficiently large n. For all other values of i ∈ {0, 1} and j ∈ [2, l2] we get
Tij
T02
≤ 1

76

for sufficiently large n. Moreover we have:

T02 =

(
1
0

)(
n−l2−1

1

)(
l2
2

)(
n−l2−2
l2−2

)(
n
1

)(
n−1
l2

)
(1− p) =

[l2(l2 − 1)]2[(n− l2 − 1)!]2

2!n!(n− 2l2)!

=
[l2(l2 − 1)]2(n− l2 − 1)(n− l2 − 2) · · · (n− 2l2 + 1)

2!n(n− 1) · · · (n− l2)

≤ [l2(l2 − 1)]2[(n− l2 − 1)]l2−1

2![(n− l2)]l2+1

=
[l2(l2 − 1)]2

2
·
[
(1− 1

n− l2
)

]l2−1

· 1

(n− l2)2
−→ 0 (n→∞).

Therefore:

1∑
i=0

l2∑
j=2

Tij + T11 ≤
1∑
i=0

l2∑
j=2

T02 + T02 → 0 (as n→∞ for a =
log n

log 1
1−p

)

and we have the following:

∆

E(Za)
=

1∑
i=0

l2∑
j=0

Tij = T00 + T01 + T10 +
1∑
i=0

l2∑
j=2

Tij + T11 = 1 +O(n
−3
2).

Hence,

Pr(Za = 0) = Pr(Z1+l2 = 0) ≤ O(n
−3
2)⇒ Pr(Zl1+l2 = 0) ≤ O(n

−3
2),

which completes the proof.

The above theorem shows that the size of maximum vertex bicliques in large-

scale networks is of order O(log n) implying slow growth rate on the size of these

structures as the underlying network grows.

77

3.2.2 Maximum balanced biclique problem

The next result establishes asymptotic bounds on the size of maximum balanced

bicliques in URGs. In the following, we adopt the convention to use a×a to represent

a balanced biclique of vertex cardinality 2a.

Theorem 6. Let G(n, p) be a uniform random graph on n vertices, where p ∈ [0, 1]

is the probability of having an edge between any two vertices, and let a(n) =
log n

log 1
1−p

.

If the maximum balanced biclique in this graph has size a× a, then

a ∈ [a(n), 4a(n)]

asymptotically almost surely.

Proof. First we prove the result for the upper bound. It is enough to show that the

probability of having a balanced biclique of size larger than 4a(n) × 4a(n) is very

small. Let Za be the random variable representing the number of bicliques of size

a× a in G. Note that Pr(Za ≥ 1) ≤ E[Za] and we have:

Pr(Za ≥ 1) ≤ E[Za] =

(
n

a

)(
n− a
a

)
pa

2

(1− p)2(a
2)

≤
(
n

a

)(
n− a
a

)
(1− p)2(a

2) =

(
n

a

)(
n− a
a

)
(1− p)a(a−1).

Observe that for a ≥ 2 we have a(a−1) ≥ a2

2
, which is easy to check by factoring

a from both sides. Also note that we can assume a ≥ 2 without loss of generality

78

since a = 1 is a trivial case as every edge is a balanced biclique of size two. Therefore,

E[Za] ≤
(
n

a

)(
n− a
a

)
(1− p)a(a−1) ≤

(
n

a

)(
n− a
a

)
(1− p)a2

2

≤ (
na

a!
)(

(n− a)a

a!
)(1− p)a2

2 ≤ (
na

a!
)(
na

a!
)(1− p)a2

2 .

Note that the third inequality above is possible using Stirling’s formula. Now

assuming a > 4a(n) is true we have:

(1− p)a2

2 = [(1− p)a]a2 ≤ [(1− p)
4 logn

log 1
1−p]

a
2 = [(1− p)log1−p n

−4

]
a
2

= [n−4]
a
2 = n−2a.

Hence, the expected number of balanced bicliques of size a× a is bounded above

by the following expression:

Pr(Za ≥ 1) ≤ E[Za] ≤
n2a

(a!)2
(1− p)a2

2 ≤ n2a

(a!)2
n−2a = (

1

a!
)2 −→ 0 (as n→∞).

The above relation clearly shows that if a > 4a(n), the expected number of bal-

anced bicliques and thus the probability of having at least one such biclique is very

small for sufficiently large values of n and proves the claim for upper bound.

To prove the case for lower bound, we need to show that there is a balanced

biclique of size a(n) × a(n) in G with high probability. Therefore it is enough to

show that Pr(Za = 0|a = a(n)) is very small for a sufficiently large n. We use the

second moment method based on the following relation: Pr(Za = 0) ≤ V ar(Za)

E(Za)2
.

Let XL1,L2 be an indicator variable which assumes value 1, if the nodes in L1 ⊂ V

79

and L2 ⊂ V \L1 form a balanced biclique and zero otherwise, where |L1| = |L2| = a.

E(Z2
a) = E

(∑
L1,L2

XL1,L2

)
·

∑
Ĺ1,Ĺ2

XĹ1,Ĺ2

 =
∑
L1,L2

∑
Ĺ1,Ĺ2

E[XL1,L2 ·XĹ1,Ĺ2
]

=
∑
L1,L2

∑
Ĺ1,Ĺ2

Pr[XL1,L2 = 1, XĹ1,Ĺ2
= 1]

=
∑
L1,L2

∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL1,L2 = 1] · Pr[XL1,L2 = 1].

Since all of the bicliques of type (L1, L2) look alike, we can fix (L1, L2) as (L̃1, L̃2).

This is due to the fact that the probability of all such randomly selected subsets of

vertices L1 and L2 to form a biclique is the same. The key issue here is that the size

of the bipartitions is fixed and equal, by definition of the balanced biclique, which

rules out the combinatorics when considering this fixation. Therefore:

E(Z2
a) =

∑
L1,L2

∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1] · Pr[XL1,L2 = 1]

=
∑
L1,L2

Pr[XL1,L2 = 1] ·
∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1]

=
∑
L1,L2

Pr[XL1,L2 = 1] ·
a∑
i=0

a∑
j=0

∑
|Ĺ1∩L̃1|=i
|Ĺ2∩L̃2|=j

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1]

=
∑
L1,L2

Pr[XL1,L2 = 1]·

a∑
i=0

a∑
j=0

(
a

i

)(
n− a− a
a− i

)(
a

j

)(
n− a− a− (a− i)

a− j

)
pa

2−ij(1− p)2(a
2)−(i

2)−(j
2).

Let ∆ =
∑
Ĺ1,Ĺ2

Pr[XĹ1,Ĺ2
= 1|XL̃1,L̃2

= 1] and observe E(Za) =
∑
L1,L2

Pr[XL1,L2 = 1]

then we have E(Z2
a) = E(Za) ·∆ and as a result Pr(Za = 0) ≤ ∆

E(Za)
− 1.

80

∆

E(Za)
=

a∑
i=0

a∑
j=0

(
a

i

)(
n− a− a
a− i

)(
a

j

)(
n− a− a− (a− i)

a− j

)
pa

2−ij(1− p)2(a
2)−(i

2)−(j
2)

(
n
a

)(
n−a
a

)
pa2(1− p)2(a

2)
.

Let Tij =

(
a
i

)(
n−a−a
a−i

)(
a
j

)(
n−a−a−(a−i)

a−j

)
p−ij(1− p)−(i

2)−(j
2)(

n
a

)(
n−a
a

) , then:

∆

E(Za)
=

a∑
i=0

a∑
j=0

Tij.

In order to prove the case for lower bound we need to show

∆

E(Za)
= 1 +O(n

−3
2).

Consider the first few terms of the above summation:

T00 =

(
a
0

)(
n−2a
a

)(
a
0

)(
n−3a
a

)(
n
a

)(
n−a
a

) =

(
n−2a
a

)(
n−3a
a

)(
n
a

)(
n−a
a

) =
(n− 2a)!(n− 2a)!

n!(n− 4a)!

=
(n− 2a)(n− 2a− 1)(n− 2a− 2) · · · (n− 4a+ 2)(n− 4a+ 1)(n− 4a)!(n− 2a)!

n(n− 1)(n− 2) · · · (n− 2a+ 2)(n− 2a+ 1)(n− 2a)!(n− 4a)!

=

[
(1− 2a

n
)(1− 2a

n− 1
) · · · (1− 2a

n− (2a− 2)
)(1− 2a

n− (2a− 1)
)

]
=

[
1− (2a)2

n
+O(n

−3
2)

]
(see appendix A);

T10 =

(
a
1

)(
n−2a
a−1

)(
a
0

)(
n−3a+1

a

)(
n
a

)(
n−a
a

) =
a2

n− 4a+ 1
T00.

The second equality above follows because
(
n−2a
a−1

)
= a

n−3a+1

(
n−2a
a

)
and

(
n−3a+1

a

)
=

n−3a+1
n−4a+1

(
n−3a
a

)
. Similarly

(
n−3a
a−1

)
= a

n−4a+1

(
n−3a
a

)
and therefore

81

T01 =

(
a
0

)(
n−2a
a

)(
a
1

)(
n−3a
a−1

)(
n
a

)(
n−a
a

) =
a2

n− 4a+ 1
T00.

Adding up the first three terms results into the following:

T00 + T10 + T01 = T00(1 +
2a2

n− 4a+ 1
) =

[
1− (2a)2

n
+O(n

−3
2)

](
1 +

2a2

n− 4a+ 1

)
= 1 +O(n

−3
2) for a =

log n

log 1
1−p

and sufficiently large n.

To complete the proof we need to show that the remaining part of the summation

is small. For this we bound the remaining terms Tij in terms of T11.

Tij
T11

=

(
a
i

)(
n−2a
a−i

)(
a
j

)(
n−3a+i
a−j

)
p−ij(1− p)−(i

2)−(j
2)(

a
1

)(
n−2a
a−1

)(
a
1

)(
n−3a+1
a−1

)
p−1

=
(n− 4a+ 2)![(a− 1)!]2[(a− 1)!]2p−ij+1(1− p)−(i

2)−(j
2)

i!j!(n− 4a+ i+ j)![(a− i)!]2[(a− j)!]2

≤
(

a2

n− 4a
(1− p)− i

2

)i−1

p
−ij+1

2

(
a2

n− 4a
(1− p)− j

2

)j−1

p
−ij+1

2 .

First note that T12
T11

= T21
T11

= (a−1)2

2(n−4a+3)p(1−p) ≤ 1 for sufficiently large n. Also, for

i ≥ 2, we have −(i− 1)j ≤ −ij+1
2

and if j ≥ 2, then −(j − 1)i ≤ −ij+1
2

is true. Thus,

Tij
T11

≤
(

a2

n− 4a
p−j(1− p)− i

2

)i−1(
a2

n− 4a
p−i(1− p)− j

2

)j−1

.

Based on the above inequality for any value of a = a∗(n) = (1−ε) logn

log 1
1−p

, 0 < ε < 1,

we obtain
Tij
T11
≤ 1 when n is sufficiently large for all terms in which i ≥ 2 and j ≥ 2

82

as well as the terms in which i ≥ 0 and j ≥ 2 and vice versa. Moreover we have:

T11 =

(
a
1

)(
n−2a
a−1

)(
a
1

)(
n−3a+1
a−1

)(
n
a

)(
n−a
a

)
p

≤
(
a
1

)(
n−2a
a−1

)(
a
1

)(
n−2a
a−1

)(
n−a
a

)(
n−a
a

)
p

≤
a4

(n−3a+1)2

(
n−2a
a

)2(
n−a
a

)2
p

→ 0 (as n→∞).

For the same choice of a = a∗(n) = (1−ε) logn

log 1
1−p

. Therefore,

a∑
i=1

a∑
j=1

Tij +
a∑
j=2

T0j +
a∑
i=2

Ti0 ≤

a∑
i=1

a∑
j=1

T11 +
a∑
j=2

T11 +
a∑
i=2

T11 → 0 (as n→∞ for a = a∗(n)),

Hence,

∆

E(Za)
=

a∑
i=0

a∑
j=0

Tij = 1 +O(n
−3
2) =⇒ Pr(Za = 0) ≤ O(n

−3
2),

which completes the proof.

Theorem 6 indicates the growth rate of the largest balanced biclique with respect

to the size of the underlying network in URGs. The evolution is a logarithmic

function of the network size which is not a rapid growth. Also comparing the upper

bounds obtained in Theorems 5 and 6, the cardinality of the maximum vertex biclique

can be twice as large as that of the maximum balanced biclique inG which is expected

due to a more restrictive nature of the balanced bicliques.

Using the result obtained in the above theorem, we can improve the lower bound

for the maximum vertex biclique problem derived independently in Theorem 5. Note

83

that the cardinality of the maximum vertex biclique is at least as large as the car-

dinality of the maximum balanced biclique in any arbitrary graph G. Therefore the

cardinality of the maximum vertex biclique in uniform random graph G(n, p), repre-

sented by l1 + l2, is bounded from below by 2 logn

log 1
1−p

, which is tighter than the previous

lower bound.

Theorem 7. Let G(n, p) be a uniform random graph on n vertices, where p ∈ [0, 1]

is the probability of having an edge between any two vertices and let a(n) =
log n

log 1
p

.

If the maximum balanced non-induced biclique in this graph has size a× a, then a is

bounded above by 2a(n) asymptotically almost surely.

Proof. We show that the probability of having a balanced non-induced biclique of

size larger than 2a(n)× 2a(n) is very small. We define Za to be the random variable

representing the number of bicliques of size a × a in G. Using known inequality

Pr(Za ≥ 1) ≤ E[Za] we have:

Pr(Za ≥ 1) ≤ E[Za] =

(
n

a

)(
n− a
a

)
pa

2 ≤
(
n

a

)(
n

a

)
pa

2 ≤ na

a!

na

a!
pa

2

,

where the last inequality follows from Stirling’s formula. Assuming a > 2a(n) we

have:

pa
2

= [pa]a ≤ [p
2 logn

log 1
p]a = [plogp n

−2

]a = [n−2]a = n−2a.

Hence, the expected number of balanced non-induced bicliques of size a × a is

bounded above by the following expression:

Pr(Za ≥ 1) ≤ E[Za] ≤
n2a

(a!)2
pa

2 ≤ n2a

(a!)2
n−2a = (

1

a!
)2 −→ 0 (as n→∞),

84

The above relation clearly shows that if a > 2a(n), the expected number of

balanced non-induced bicliques and thus the probability of having at least one such

biclique is very small for sufficiently large values of n and proves the claim for upper

bound.

Corollary 1. Let G(n, p) be a uniform random graph on n vertices, where p ∈ [0, 1]

is the probability of having an edge between any two vertices and let a(n) =
log n

log 1
p

. If

the maximum non-induced biclique in this graph has size l1 + l2 where l1 and l2 are

the sizes of bipartitions, then l1 + l2 is bounded below by 2a(n) asymptotically almost

surely.

Proof. The upper bound obtained for the maximum balanced non-induced biclique,

Theorem 7, serves as a lower bound for the maximum non-induced biclique problem

since the cardinality of the maximum non-induced biclique is at least equal to the

cardinality of the maximum balanced non-induced biclique in G.

3.2.3 Maximum edge biclique problem

Using the inherent relationship between maximum biclique problems and the

result of the previous theorems, we develop the asymptotic bounds for the maximum

edge biclique problem in URGs.

Theorem 8. Let G(n, p) be a uniform random graph on n vertices, where p ∈ [0, 1]

is the probability of having an edge between any two vertices. If the maximum edge

biclique in this graph has size e(n), then

e(n) ∈

(log n

log 1
1−p

)2

,

(
8 log n

log 1
1−p

)2

asymptotically almost surely.

85

Proof. We prove the claim using the results of two previous Theorems. First note

that the maximum balanced biclique is a restricted version of the maximum vertex

biclique and would not necessarily provide an upper bound on the size of maximum

edge biclique for any given graph G. However, the result on the maximum vertex

biclique can be used to develop an upper bound. Recall that in Theorem 5, it was

shown that the size of maximum vertex biclique in random graphs is bounded above

by
16 log n

log 1
1−p

. It is easy to check that the number of edges will be maximized if these

vertices are equally devided between the two bipartitions which results in

(
8 log n

log 1
1−p

)2

edges for the biclique, thus proving the claim for the upper bound.

For the lower bound, observe that the number of edges in a maximum balanced

biclique in G provides a lower bound on the maximum edge biclique of G. Recall that

in Theorem 6, we proved that in a random graph the size of each bipartition in the

maximum balanced biclique is bounded below by
log n

log 1
1−p

. Therefore the maximum

edge biclique cannot be of size less than

(
log n

log 1
1−p

)2

, which proves the claim for

lower bound.

Therefore the growth rate for the maximum edge biclique is at most of order

O((log n)2). Although these variations of the maximum biclique problem seem to

be similar, the bounds reveal interesting relationships. For example comparing the

results of Theorems 6 and 8 it can be easily seen that in URG’s the size of the maxi-

mum edge biclique, 64

(
logn

log 1
1−p

)2

, may be significantly larger than the cardinality of

edges in a maximum balanced biclique, 16

(
logn

log 1
1−p

)2

, which may not be so obvious

in the first place.

86

4. EXACT ALGORITHMS FOR THE MAXIMUM BICLIQUE

PROBLEMS

In this chapter we propose two exact methods for solving two variants of the

maximum biclique problem. Given a simple undirected graph G = (V,E), the max-

imum vertex biclique, MVB, and the maximum edge biclique, MEB, problems are

concerned with finding the maximum vertex cardinality and maximum edge cardi-

nality induced bicliques in G respectively. The MEB is NP-complete in general and

bipartite graphs and the MVB is NP-complete in general graphs. A complete re-

view of the computational complexity and solution methods is given in Chapter 1.

Many of the proposed methods lack the ability of providing an exact solution and

are not suitable for practical large-scale problems. In this chapter we propose two

exact solution methods, namely a novel scale-reduction algorithm and a combinato-

rial branch-and-bound algorithm, for solving these classes of the maximum biclique

problem. The scale-reduction algorithm recursively identifies and removes the edges

that cannot be included in the optimal solution and the final residual graph, which

is not further reducible, serves as a new instance of the problem to be solved. On the

other hand the branch-and-bound algorithm takes advantage of the heredity property

of bicliques to explore the search space for local and global optimum. Computational

experiments are provided to compare the performance of these methods. Next we

propose the mathematical programming formulations which will be used after the

scale-reduction procedure to find the optimal solution.

4.1 Mathematical programming formulations

In this section, we provide mathematical formulations for the maximum vertex

and maximum edge biclique problems in a simple general graph G = (V,E). Let xij

87

be the binary decision variable taking value one if vertex i ∈ I = {1, ..., n} belongs

to either of the two bipartitions J = {1, 2} and zero otherwise. Then a binary 0-1

formulation for the maximum vertex biclique is as follows:

Maximize
n∑
i=1

2∑
j=1

xij (4.1)

s.t: ∑
j∈J

xij ≤ 1 ∀i ∈ I (4.2)

∑
i∈I

xij ≥ 1 ∀j ∈ J (4.3)

xij + xkj ≤ 1 ∀(i, k) ∈ E,∀j ∈ J (4.4)

xij1 + xkj2 ≤ 1 ∀(i, k) /∈ E,∀{j1, j2} ∈ J, j1 6= j2 (4.5)

xij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (4.6)

In the above formulation the first constraint makes sure that each vertex will only

belong to at most one partition. Second constraint rules out solutions with empty

bipartitions as they result in having an independent set. Third constraint implies that

vertices incident to an edge cannot belong to the same bipartition. Fourth constraint

ensures that if there is no edge between two vertices, they cannot belong to different

bipartitions. Considering an instance with |V | = n vertices and |E| = m edges,

the above formulation has 2n variables and n2 + 2 constraints, excluding the binary

requirements. Next, we propose a mathematical formulation for the maximum edge

biclique problem. As in the previous model, let xij be the binary decision variable

taking value one if vertex i ∈ I = {1, ..., n} belongs to either of the two bipartitions

J = {1, 2} and zero otherwise. Also let zik be the binary variable with value one if

88

edge (i, k) is included in the solution and zero otherwise.

Maximize
∑

(i,k)∈E

zik (4.7)

s.t: ∑
j∈J

xij ≤ 1 ∀i ∈ I (4.8)

∑
i∈I

xij ≥ 1 ∀j ∈ J (4.9)

xij + xkj ≤ 1 ∀(i, k) ∈ E,∀j ∈ J (4.10)

xij1 + xkj2 ≤ 1 ∀(i, k) /∈ E,∀{j1, j2} ∈ J, j1 6= j2 (4.11)

zik ≤
∑
j∈J

xij ∀(i, k) ∈ E, k > i = 1, ..., n (4.12)

zik ≤
∑
j∈J

xkj ∀(i, k) ∈ E, k > i = 1, ..., n (4.13)

xij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (4.14)

zik ∈ {0, 1}, ∀(i, k) ∈ E, k > i = 1, ..., n (4.15)

In the above model constraints (4.8)- (4.11) are the same as (4.2)- (4.5) in the

previous model. Constraints (4.12) and (4.13) together ensure that an edge is in the

solution only if its incident vertices are selected to be in the solution. In fact (4.12),

and likewise (4.13), is an aggregated version of zik ≤ xi1 and zik ≤ xi2. This is possible

since at most one of xi1 and xi2 can be nonzero. Also note that the integrality of zik

can be relaxed due to the fact that these variables are bounded by xij variables and

the objective function is maximization. Considering an instance with |V | = n vertices

and |E| = m edges, the above formulation has 2n + m variables and n2 + 2m + 2

constraints, in addition to the binary requirements.

Due to a considerably large number of constraints, solving these mathematical

89

programs directly using commercial solvers is not always possible, especially for

practical applications in biology and gene research, where instances are massive.

In the next section we propose a scale-reduction method that is effective for solving

large-scale instances.

4.2 Scale-reduction algorithm

4.2.1 Reduction technique and properties

We first explore some structural properties of the bicliques which will be used

later in developing the algorithms. The properties and algorithms developed in this

section are for the maximum vertex biclique problem and can be extended for the

maximum edge biclique problem. Let G = (V,E) be a simple undirected graph and

B = (V ′1 ∪V ′2 , E ′) be a subgraph of G induced by a biclique with bipartitions V ′1 and

V ′2 and E ′(B) = {(i, j) ∈ E : i ∈ V ′1 , j ∈ V ′2}. Let L = |V ′1 ∪ V ′2 | be a known lower

bound on the size of MVB of G. The following facts about bicliques can be accepted

without proof:

1. Bicliques posses heredity property, meaning that a subset of a biclique is a

biclique.

2. Every biclique is a 2-club. Given a pre-determined lower bound L on the size

of MVB of G, this property can be used to rule out vertices i ∈ V for which

|N2
G(i)| < L.

3. Let B be a subgraph of G induced by a biclique defined as above. Consider any

given edge (i, j) ∈ E ′ where i ∈ V ′1 and j ∈ V ′2 . Obviously αB[N(i)] = |V ′2 | and

likewise αB[N(j)] = |V ′1 | yielding the following:

αB[N(i)] + αB[N(j)] = |V ′1 ∪ V ′2 |.

90

Consider a graph G and a subgraph B induced by a biclique of size L in G as

defined above. For a subset of edges H ∈ E, the corresponding edge-induced subgraph

G[H] of G is given by G[H] = (V (H), H), where V (H) = {s ∈ V : ∃(i, j) ∈ H, s =

i ∨ s = j}. Define the following operator function for (u, v) ∈ H:

PLG(H, (u, v)) =

(u, v), if αG[NG[H](u)\NG(v)] + αG[NG[H](v)\NG(u)] ≥ L,

∅, otherwise .

The operator function determines whether an edge (u, v) induces two independent

set partitions of total size at least L in subgraphs induced by {NG[H](u)\NG(v)} and

{NG[H](v) \NG(u)} in G. Similarly we can define this operation for a graph G[H] as

follows:

PLG(H) =
⋃

(u,v)∈H

PLG(H, (u, v)).

The result of this operation is a subset of edges in H that satisfy the operator

function condition. For a given lower bound L and a positive integer n, denote by

PL(E, n) the following recursively defined set:

PL(E, n) =

PLG(E), if n = 1,

PL(PL(E, n− 1), 1), if n ≥ 2.

According to the above definition, for n ≥ 1, PL(E, n) is a subset of E satisfy-

ing the condition defined for the operator function above and inducing a subgraph

G[PL(E, n)] of G. Figure 4.1 illustrates the definition on a 8-vertex graph G with a

known biclique B having a vertex set V ′1 ∪ V ′2 = {{u,w} ∪ {v, x}} that is considered

as a lower bound L = |V ′1 ∪ V ′2 | = 4 on the size of MVB in G. Consider an edge

91

x

u

w

v

c b

a

d

x

u

w

v

c b

d

x

u

w

v

c b

d

Figure 4.1: Graph G (left) and the induced subgraphs G[PL(E, 1)] (middle) and
G[PL(E, 2)] (right).

(a, w) and check PL(E, n) for n = 1. Observe that G[NG(a)\NG(w)] = ({w}, ∅) and

αG[NG(a)\NG(w)] = 1. Likewise G[NG(w)\NG(a)] = ({a, x}, ∅) and αG[NG(w)\NG(a)] = 2.

As a result,

αG[NG(a)\NG(w)] + αG[NG(w)\NG(a)] = 3 < L = 4.

Therefore (a, w) does not satisfy the condition and can be removed, i.e. PLG(E, (a, w)) =

∅. Also for the edge (v, u), G[NG(v) \ NG(u)] = ({a, w, u}, (a, w)) and G[NG(u) \

NG(v)] = ({x, v, c, d}, ∅) resulting in αG[NG(v)\NG(u)] + αG[NG(u)\NG(v)] = 6 > L = 4

and PLG(E, (v, u)) = (v, u). Obviously all edges for which PLG(E, ·) = ∅ should be

removed at once when every possible edge in G has been investigated. Based on

the definition, PL(E, 1) = {(u, b), (u, c), (u, d), (u, v), (u, x), (v, b), (v, w), (w, x)} and

PL(E, 2) = PL(PL(E, 1), 1) = {(u, b), (u, c), (u, d), (u, v), (u, x), (v, w), (w, x)} for

which the edge-induced subgraphs have been shown in Fig 4.1. Moreover, for any n ≥

2 the result of applying the recursive function on edge-induced subgraph G[PL(E, 2)]

remains the same, thus, PL(E, n) = {(u, b), (u, c), (u, d), (u, v), (u, x), (v, w), (w, x)}.

Next we discuss properties of the recursive function which will be used to develop

and validate the scale-reduction algorithm.

Lemma 2. Let B = (V ′1 ∪V ′2 , E ′) and B∗ = (V ∗1 ∪V ∗2 , E∗) be bicliques in G = (V,E)

with |B| = L, |B∗| = L∗ and L ≤ L∗. Then for any integer n ≥ 1 the following

relations hold.

92

1. PL(E, n+ 1) ⊆ PL(E, n);

2. PL
∗
(E, n) ⊆ PL(E, n);

3. PL
∗
(E, n+ 1) ⊆ PL(E, n).

Proof. The first inclusion results from the fact that PL(E, n+1) = PL(PL(E, n), n+

1) and the definition of the operator function. We show the second claim by con-

tradiction. Assume there exists an edge (i, j) ∈ PL∗(E, n) that is not in PL(E, n).

Then by definition of the operator function we have the following:

L∗ ≤ αG[NG[H](i)\NG(j)] + αG[NG[H](j)\NG(i)] < L,

resulting in L∗ < L, which contradicts our assumption. Therefore the claim is proved.

The third statement can easily be established using the results in parts 1 and 2 as

follows:

PL
∗
(E, n+ 1) ⊆ PL(E, n+ 1) ⊆ PL(E, n),

which completes the proof.

Based on the second property in the above lemma, a good quality lower bound

solution is crucial to begin the scale-reduction phase and is more likely to produce a

better reduction. It also affects the number of iterations and improves the compu-

tational effort.

Theorem 9. Consider a simple undirected graph G = (V,E) and let B∗ = (V ∗1 ∪

V ∗2 , E
∗) ⊆ G be the subgraph induced by the maximum vertex biclique. Let B =

(V ′1 ∪ V ′2 , E ′) ⊂ G be another biclique of size L = |V ′1 ∪ V ′2 | that is not maximum.

Then there exists a positive integer n such that:

93

1. PL(E, n) = PL(E, n− 1);

2. E∗ ⊆ PL(E, n).

Proof. We show the first property by contradiction. Assume there is no positive

integer n for which the above relation holds. Therefore ∀n ≥ 1 we have PL(E, n) ⊂

PL(E, n−1) and there exists one such n, say t, for which PL(E, t) = ∅ ⊂ PL(E, t−1).

This is a contradiction. Note that there exists a known biclique B and using property

3 of bicliques and the definition of the operator function for all (u, v) ∈ E ′ ⊆ E we

have:

αG[NG[E′](u)\NG(v)] + αG[NG[E′](v)\NG(u)] = αB[N(u)] + αB[N(v)] = L.

Hence, there are at least |E ′| edges that remain in G[PL(E, n)] for any n ≥ 1. This

proves the claim.

To show the second part observe that E∗ = PL
∗
(E∗, n) ⊆ PL

∗
(E, n) ⊆ PL(E, n),

in which the first equality is the direct result of the third property of bicliques and

the other two relations follow from E∗ ⊆ E and Lemma 2.

Note that Theorem 9 states that, given a graph G and a known lower bound L, the

successive application of the recursive function on G and its subgraphs terminates

after finite number of iterations and the resulting residual graph is a subgraph of

G that contains the optimal solution of the original instance, namely the MVB

of G. This result provides the basis for the scale-reduction algorithm that aims

to remove edges whose elimination does not change the structure of the optimal

solution. The scale-reduction algorithm proceeds with checking the operator function

condition and keeping track of edges that are eligible for elimination. All such edges

are removed and the edge list is updated before proceeding to the next iteration.

94

Algorithm 3 Reduction procedure.

1: Input: G = (V,E), L : a lower bound on the size of MVB
2: Set E′ ← E
3: repeat
4: Set E∗ ← E′

5: Set E′ ← ∅
6: for all (u, v) ∈ E∗ do
7: E′ = E′ ∪ {PLG (E∗, (u, v))} B see Sec. 4.2.1
8: end for
9: if |E′| = |E∗| then

10: return E∗;
11: end if
12: until |E′| < |E∗|

The algorithm terminates when no further reduction is possible. The steps of the

reduction algorithm are illustrated in Alg. 3. This may significantly reduce the size of

the graph especially in low-density instances making it more affordable for the exact

methods to solve large-scale instances to optimality. To compute the independence

numbers used to check the operator function condition, a well-known [79] algorithm

for the maximum clique problem has been used, which can easily be adopted to solve

the maximum independent set problem.

The mathematical programming formulation for the maximum biclique problem

has a nonconvex feasible region. A general solution approach for such problems is

the branch-and-bound method which is computationally demanding for large scale

instances, thus making it necessary to use hybrid methods. We propose a hybrid

exact algorithm for MVB that attempts to shrink the feasible region of a given

instance, using scale-reduction technique, and solves the reduced problem either

using the mathematical formulation or a combinatorial optimization approaches.

The overall structure of the proposed hybrid exact algorithm consists of the following

steps.

95

1. Find lower bound. Use a heuristic algorithm to obtain a lower bound on the

optimal solution.

2. Apply scale-reduction. Given the lower bound solution, apply the scale-reduction

technique iteratively until no further reduction is possible.

3. Preprocess. Update the residual graph and add valid inequalities.

4. Solve using exact method. Solve the MVB on residual graph using an exact

method.

The procedure starts with finding a lower bound solution using a heuristic algo-

rithm described in section 4.2.2. Given this lower bound, the scale-reduction algo-

rithm recursively checks and removes those edges that cannot be part of the optimal

solution. Then the residual graph is extracted and if possible, valid inequalities

are added to the binary program which is derived from the updated residual graph.

Lastly, this binary program is solved using a standard method in the literature. Al-

ternatively, combinatorial branch-and-bound methods can be used to solve MVB

after the scale-reduction step. One such algorithm has been proposed in section 4.3.

4.2.2 Initial feasible solution

The scale-reduction algorithm employs a lower bound, namely L, on the size of

MVB to initiate the reduction process. To obtain a lower bound we propose a greedy

algorithm, GBICLIQUE, that aims at finding large star graphs based on the closed

neighborhood of each vertex. These structures are highly unbalanced bicliques and

provide a lower bound on the optimal solution. The steps of the greedy algorithm

are outlined in Alg. 4.

The vertices in G are sorted based on non-increasing order of their degree in

the initialization step and the subgraph induced by the closed neighborhood of each

96

Algorithm 4 Construction phase algorithm: GBICLIQUE

1: Initialization: Sort vertices based on non-increasing order of their degree in G; L ← 0;
2: for i← 1 to |V | do
3: if |N [i]| > L then
4: Xi = Xi ∪ {i};
5: Sort vertices in Ni based on increasing order of their degree in G[N [i]];
6: for all j ∈ N(i) do
7: if |NG[N [i]](j)| = 1 then
8: Xi = Xi ∪ {j};
9: N(i) = N(i) \ {j};

10: end if
11: end for
12: while |N(i)| > 0 do
13: p← the least degree vertex in N(i);
14: if p /∈ N(k) (∀k ∈ {Xi \ {i}}) then
15: Xi = Xi ∪ {p};
16: N(i) = N(i) \N(p);
17: end if
18: N(i) = N(i) \ {p};
19: end while
20: if |Xi| > L then
21: L ← |Xi|;
22: end if
23: end if
24: end for
25: return L;

vertex i ∈ G is then considered. This vertex and all its neighbors that have degree one

in G[N [i]] are added to the solution, represented by Xi. The neighborhood list, N(i),

is updated and the algorithm proceeds with the next vertex in the neighborhood, say

p, having the minimum degree in G[N [i]]. If vertex p is not adjacent to any of the

neighbors of i in the current partial solution, it is added to the solution and removed

from N(i) along with all its neighbors. Otherwise only vertex p is removed and the

next vertex in N(i) is considered. The above procedure continues until N(i) gets

empty and incumbent, L, is updated if |Xi| > L. At each iteration i, the number

of vertices in N [i] is compared against the cardinality of the incumbent solution and

the algorithm proceeds with that vertex only if |N [i]| > L.

97

4.2.3 Preprocessing and valid inequalities

Termination of the scale-reduction algorithm results into a residual graph that

contains two types of vertices. The first group, having degree zero, have lost all their

incident edges during the scale-reduction and thus can be removed from the residual

graph. The second group of vertices have positive degree although some of their

incident edges might have been removed. Obviously, for this set of vertices all the

removed edges should be added back to the residual graph before solving the MVB

using an exact method. Although this might seem as a drawback, the fact that this

edge cannot be part of the optimal solution, confirmed by scale-reduction algorithm,

can be used to develop a tighter relaxation for the binary program.

Proposition 1. Consider a graph G = (V,E) and an edge (i, k) that has been

removed from G during the scale-reduction algorithm. Assume that both vertices i

and k have positive degrees in the residual graph G′ at the end of the scale-reduction

phase. Let P (G′) be the convex hull of the vectors x satisfying constraints (4.2)- (4.6).

Then the following inequality is valid for P (G′)

xi1 + xi2 + xk1 + xk2 ≤ 1 (4.16)

Proof. During the scale-reduction phase, it has been confirmed that edge (i, k) is not

included in the optimal solution. Therefore at most one of the two vertices i and

k can belong to the solution and since each vertex can only be in one bipartition,

it implies that xi1 + xi2 + xk1 + xk2 ≤ 1. Note that any arbitrary feasible solution

x ∈ P (G′) including at most one of i and j satisfies (4.16). Therefore (4.16) is valid

for P (G′).

In the preprocessing step and after removing all vertices with degree zero from

98

G′, for all edges whose incident vertices satisfy the conditions of Proposition 1, valid

inequality (4.16) is generated and added to the binary program.

4.3 Combinatorial branch-and-bound method

Network topology is an important factor in the effectiveness of an algorithm. In

some applications where the underlying network is bipartite or a dense general simple

graph, the scale-reduction approach may not be effective. Solving the maximum

edge biclique problem on bipartite graphs is one example and needs to be addressed

using other solution approaches. In the following section we propose a combinatorial

branch-and-bound algorithm for solving the maximum vertex biclique and maximum

edge biclique problems, MVB and MEB, as well as their weighted versions. We also

give an extension for solving the non-induced version of MVB. The general framework

of algorithm has been adapted from the idea behind the method for solving the

maximum clique problem in [28, 79]. We propose the algorithm in its general form

for the maximum vertex weighted biclique problem. Obviously, setting all the weights

to unit would solve for MVB.

4.3.1 General framework

Consider a graph G = (V,E), a weight functionW that assigns a positive weight

w to each v ∈ V . The proposed branch-and-bound algorithm (B&B), illustrated in

Alg. 5, solves the maximum vertex weight biclique problem. The algorithm proceeds

with a simple list ordering of vertices V = {v1, v2, ..., vn} and at iteration i considers

a partial ordered set of vertices Si = {vi, vi+1, ..., vn} to construct the candidate set

C. Since every biclique is a 2-club, only the two-neighborhood of vertex vi in a

subgraph induced by Si, namely N2
G[Si]

(vi), will be included in the candidate set.

Then vertex vi will be placed in the current partial solution set, P , and IsBiclique

procedure is called. Two pruning conditions have been designed in this procedure.

99

First, if sum of weights of the vertices remaining in the current candidate set C,

and total weight of vertices in P is less than that of the best solution found so far,

continuing this branch any further would not improve the solution and it is pruned.

Second, assume that in the current branch vertex vj ∈ C is being investigated and

let c(j) be the largest vertex weight biclique found when the algorithm was searching

set C developed based on N2
G[Sj](vj) at some previous iteration. If the value of this

solution, c(j), plus the total weight of the vertices in P is less than the current best

solution, this branch is pruned. If these two pruning conditions are not satisfied,

vj is added to the current partial solution set and removed from the candidate set.

Then, candidate set is updated to make sure all the remaining vertices form a feasible

solution with the ones already in the partial solution and the procedure IsBiclique

recalls itself with the updated inputs. This recursive procedure is terminated when

the candidate set is empty and the incumbent is updated only if a better solution is

found. Then algorithm continues in the next iteration with Si−1 to generate the new

candidate set.

Two important issues need to be addressed. First, at iteration i, the order in

which vertices in the candidate set are investigated in IsBiclique procedure is impor-

tant. All direct neighbors of vertex vi should be considered prior to its distance-two

neighbors in C. This prevents a premature pruning in the initial steps and improves

the solution size. Second, to update the candidate set in Alg. 5, Biclique verification

procedure is called, which takes a partial solution set P ′ and a vertex v as input. All

vertices in P ′ that share an edge with v are placed in set L and the others, including

v, belong to set R. The next step involves checking each of the sets R and L for

being an independent set and if this condition is satisfied, a complete set of edges

must exist between vertices in two sets. In case of success, vertex v will be a member

of the updated candidate set. This procedure, Alg. 6, has a quadratic running time

100

Algorithm 5 Maximum vertex weight biclique algorithm

1: procedure MaxBiclique(G)
2: Order(V)
3: max=0
4: for i := n downto 1 do
5: C := {v ∈ Si \ {vi} : v ∈ N2

G[Si]
(vi)}

6: IsBiclique(C, {vi})
7: c(i) := max
8: end for
9: return max ;

10: procedure IsBiclique(C,P)
11: if C = ∅ then
12: if w(P) > max then
13: max := w(P)
14: end if
15: return
16: end if
17: while C 6= ∅ do
18: if w(C) + w(P) < max then
19: return
20: end if
21: j := min{k : vk ∈ C}
22: if c(j) + w(P) < max then
23: return
24: end if
25: C := C \ {vj}
26: P ′ := P ∪ {vj}
27: C ′ := {v ∈ C : Biclique(v, P ′)}
28: IsBiclique(C ′, P ′)
29: end while

complexity which is a function of |P ′|.

To improve the performance of the algorithm, the partial solution set P ′, at itera-

tion i, is divided into two lists R and L that are maintained and updated throughout

the iteration while recursive calls to IsBiclique are being executed. A vertex v is

admitted to the solution set, feasibility check, if it shares an edge with all the ver-

tices in one of these lists and no edge with vertices in the other one. Note that

this is when the pruning conditions are not satisfied and therefore the algorithm de-

cides to continue that branch further down by admitting v to the solution provided

that the solution remains feasible. At any point during the iteration if a branch is

101

Algorithm 6 Biclique verification

1: Initialization:R← ∅, L← ∅
2: procedure Biclique(v, P ′)
3: R← R ∪ {v}
4: for s ∈ P ′ do
5: if (s, v)∈ E(G) then
6: L← L ∪ {s}
7: else
8: R← R ∪ {s}
9: end if

10: end for
11: if |L| = 0 then
12: return 0;
13: end if
14: for u, s ∈ R do
15: if (u, s)∈ E(G) then
16: return 0;
17: end if
18: end for
19: for u, s ∈ L do
20: if (u, s)∈ E(G) then
21: return 0;
22: end if
23: end for
24: for u ∈ R, s ∈ L do
25: if (u, s)/∈ E(G) then
26: return 0;
27: end if
28: end for
29: return 1;

pruned, these lists that contain the partial solution are updated based on the level

of B&B tree at which pruning condition has been satisfied. This method increases

the overall efficiency of the B&B algorithm by eliminating the need for unnecessary

computations of the candidate set at every call to Biclique procedure.

4.3.2 Non-induced MVB

The B&B algorithm can be modified to solve the maximum vertex non-induced

biclique (MVNB) problem. Note that for the non-induced case the two bipartitions

are not necessarily an independent set, requiring a change in the verification pro-

cedure as illustrated in Alg. 7. The procedure starts with placing vertex v and all

102

Algorithm 7 Non-induced biclique verification

1: Initialization:R← ∅
2: procedure Non-induced Biclique(v, P ′)
3: R← R ∪ {v}
4: for s ∈ P ′ do
5: if (s, v)/∈ E(G) then
6: R← R ∪ {s}
7: end if
8: end for
9: P ′ ← P ′ \R

10: repeat
11: bool← false
12: for s ∈ P ′ do
13: for u ∈ R do
14: if (s, u)/∈ E(G) then
15: R← R ∪ {s}
16: P ′ ← P ′ \ {s}
17: bool← true
18: break
19: end if
20: end for
21: if bool then
22: break
23: end if
24: end for
25: until bool
26: if |P ′| = 0 then
27: return 0;
28: end if
29: return 1;

vertices in P ′ that are not adjacent to v in partition R and removing them from

P ′. Next, all the remaining vertices in P ′ are checked to be adjacent with current

vertices in R. If at least one edge is missing between vertex s ∈ P ′ and vertices in

R, then s cannot belong to P ′ and will be placed in R. Set P ′ is updated and the

above procedure is continued until no additional vertex can be added to R or |P ′|=0.

Then, if |P ′| > 0 the algorithm returns success with sets R and P ′ being the two

partitions of the non-induced biclique. As in the previous case, the algorithm has

been designed to solve the weighted version which is a more general case.

103

4.4 Computational experiments

The purpose of these experiments is to evaluate the performance of the proposed

methods in terms of the solution quality and computational effort. In addition, for

the scale-reduction algorithm we are specifically interested in observing the ability of

the algorithm in reducing the size of the instances and the time required for that. All

of the proposed algorithms were implemented in C++. To solve the mathematical

model derived from the residual graph in the scale-reduction algorithm, IBM ILOG

CPLEX OPTIMIZER 12.1 R© has been employed and default settings were used for

preprocessing, branching strategies and cutting planes. The numerical experiments

were conducted on Dell workstation with Intel 2.4 GHz dual quad-core Xeon E5620

processor and 12.00 GB RAM. Three different sets of instances were considered. The

first set includes some of the test instances from Stanford Large Network Dataset

Collection, SNAP, and contains both directed and undirected real life instances [95]

from collaboration networks, peer-to-peer file sharing and route networks. For our

purpose, some of the directed instances have been converted to undirected instances

and used in the experiments. The second and third group of test instances are from

the second and tenth DIMACS implementation challenges [38, 39]. Computational

experiments are reported in Tables 4.1-4.5. All cases in which the optimal solution

was found, are shown in bold.

Table 4.1 shows the results for the scale-reduction algorithm on instances from

SNAP and DIMACS clustering challenge. In addition to the instance size and lower

bound solution cardinality, the size of the residual graph G′ = (V ′, E ′) after scale-

reduction and the time required for reduction, SR-CPU, are illustrated. The last two

columns represent the solution size and total CPU time required to solve the problem

including the scale-reduction phase. In all cases that the solution size is reported, it

104

represents the optimal solution to the problem and only for one instance the solution

size is not reported due to the huge size of the residual graph that resulted in reaching

the memory limit when loading the mathematical model. This indicates that MIP

solvers cannot be used to tackle these large-scale instances directly. Although we

did not consider a time limit, in 27 cases out of 37 instances solved to optimality,

the solution was obtained in less than an hour. Comparing the size of the original

and residual graphs in each of the test cases, the proposed scale-reduction technique

is successful in shrinking the instance size by specifying and eliminating those edges

that cannot belong to the optimal solution of the problem. Although for this class of

algorithms the magnitude of reduction and the required computational time depend

on the size and density of the graph, it seems that topology of instance is another

important factor. Based on our numerical experiments, those instances that have one

or multiple large star subgraphs, or structures that are close to stars where numerous

branches emanate from few central vertices with some edges between vertices in

different branches, are harder to reduce and need more computational effort. This is

due to the fact that vertices incident to many of the edges in these subgraphs induce

independent sets of large cardinality. Also the central vertices in such subgraphs

have large neighborhoods and appear in many of the subproblems solved to obtain

the independence number, resulting an increase in the computational time.

Results for the branch-and-bound algorithm tested on instances from well-known

DIMACS clique challenge are illustrated in Table 4.2. These graphs have densities

in the range [0.5, 0.99] and vary in their size from 28 to 3000 vertices and up to 4.6

million edges. The time limit of 9 hours is considered and the best solution found

is reported. A total of 40 instances tried in this category, from which all but 7 were

solved to optimality. Among these, 31 instances were solved in less than an hour. For

those instances not solved to optimality by the time limit, the best solution found

105

and level at which the algorithm was terminated have been reported. Level, indicates

the number of vertices, in the list ordering, whose distance-two neighborhood was

investigated, according to the procedure explained in section 4.3.1, before the time

limit. As an example, instance keller5 was terminated at level 340 which implies

that by the time limit, distance-two neighborhood of all vertices within the range 1

to 340 were considered and the best solution, 30, was obtained. Experiments show

that the performance of the B&B algorithm is in direct relation with the density of

an instance. Instances with high density are easier to solve and obviously the size

of MVB is small in such cases due to the fact that the size of independent sets in

dense graphs is rather small. Therefore the pruning conditions in the B&B algorithm

are satisfied with higher frequency, due to the structural requirements of bicliques,

resulting into a better running time for dense instances. Moreover, the optimal

solution size decreases as density increases which can be observed by comparing

p-hat300 and p-hat500 family of instances.

Because of the structural properties of non-induced bicliques, the proposed scale-

reduction technique is not applicable for solving the maximum vertex non-induced

biclique. Therefore experiments for MVNB were conducted using the branch-and-

bound algorithm, Sec. 4.3.2, considering a one hour time limit and the results are

reported in Table 4.3. First note that the MVNB problem is a generalization of

the maximum vertex biclique and the maximum clique (MC) problems and the opti-

mal solution to these problems is a lower bound on the size of the optimal solution

for MVNB. Based on our experiments, the optimal solution size for MVNB is sig-

nificantly larger than that of MVB and MC problems. This can be verified using

Tables 4.1-4.3 and also with the clique number of the DIMACS instances used in

the experiments available in [38]. Second, in all instances tried the time required to

solve MVNB is significantly higher than the MVB. This is a result of more struc-

106

tural freedom inside the bipartitions for non-induced bicliques as compared to the

bicliques and has a direct impact on the size and frequency of non-induced bicliques

found at each iteration of the algorithm. As a result, the pruning conditions and the

non-induced biclique verification procedure are influenced, leading to an increase in

the CPU time. Interestingly, results suggest that the optimal solution size and the

computational effort for solving the problem have direct relation with the density of

an instance, which is the opposite of what was observed earlier for the MVB problem.

Table 4.4 is a comparision between the two proposed algorithms on relatively

sparse instances. For each instance, the scale-reduction algorithm was permitted to

run without any time limit until an optimal solution is obtained and the time limit

considered for the branch-and-bound method is at least as long as the time required

by the scale-reduction to solve the instance. The result shows that the scale-reduction

algorithm is superior to the B&B method in almost all cases tried. Also note that

scale-reduction technique is more effective for large low-density networks while the

B&B method is suitable for dense graphs which can be inferred using Tables 4.1, 4.2

and 4.4.

Table 4.5 represents the solution to MEB and MVB solved using B&B algo-

rithm. In addition to optimal solution and CPU time, the cardinality of each bi-

partition at optimum is reported. For some instances like brock200-3, san200-0.9-2

and hamming10-2 the optimal solution to MEB and MVB are the same that also

serves as the solution to MBB which is easy to infer. These are mostly dense in-

stances from DIMACS. On the other hand, large sparse networks like email and all

other instances afterwards tend to have highly unbalanced bicliques that serve as the

solution to MVB and MEB.

107

Table 4.1: Computational results using scale-reduction algorithm for MVB on in-
stances from DIMACS Clustering challenge and SNAP dataset

Graph |V| |E| LB |V′| |E′| SR-CPU(s) Soln Total-CPU(s)

jazz 198 2742 18 85 704 1.21 20 2.16
email 1133 5451 34 35 35 1.31 34 1.74
netscience 1589 2742 16 26 42 0.20 16 0.53
add20 2395 7462 30 68 186 891.48 30 892.14
data 2851 15093 8 41 99 4.06 8 5.72
as19971108 3015 5347 540 584 765 2025.4 540 2263.73
add32 4960 9462 16 66 108 0.998 17 5.66
CA-GrQC 5241 14484 29 35 41 1.7 29 2.12
as19991204 6296 12830 1294 1407 2234 3529.44 1294 7139.04
p2p-Gnutella08 6301 20777 88 88 87 4.41 88 6.19
as20000102 6474 12572 1338 1454 2430 1475.89 1340 5127.27
p2p-Gnutella09 8114 26013 98 98 97 4.11 98 6.31
hep-th 8361 15751 22 81 151 2.94 23 4.41
p2p-Gnutella06 8717 31525 104 113 121 2.46 104 4.94
p2p-Gnutella05 8846 31839 87 88 88 3.60 87 4.85
CA-HepTH 9877 25973 32 43 59 7.41 32 7.83
PGPgiantcompo 10680 24316 105 114 122 4551.9 105 4555.21
p2p-Gnutella04 10876 39994 97 100 102 3.07 97 5.72
oregon1-010519 11050 22723 2203 2384 4289 1550.44 2207 16920.5
oregon1-010526 11173 23408 2199 2385 4308 1719.27 2203 14454.2
oregon2-010526 11460 16365 2230 2428 4676 1982.54 2234 19477.9
CA-HepPh 12006 118489 50 186 1600 28511.1 50 28520.4
cond-mat 16726 47594 41 149 419 5904.39 41 5912.61
p2p-Gnutella25 22687 54705 64 66 67 9.43 64 10.64
as-22july06 22963 48436 2243 2387 4125 2746.9 2245 17060.6
Ca-condmat 23133 93439 77 2024 13840 81753 - -
p2p-Gnutella24 26518 65369 304 356 426 1052.04 304 1090.12
p2p-Gnutella30 36682 88328 54 54 53 20.18 54 21.34
Email-enron 36692 183831 1276 1384 1831 54601.4 1276 57089.1
p2p-Gnutella31 62586 147892 90 95 100 56.63 90 60.06
delaunay-n14 16384 49122 9 26 39 12.55 9 13.06
delaunay-n16 65536 196575 9 18 34 137.81 9 141.69
delaunay-n17 131072 393176 9 67 123 402.26 10 421.09
delaunay-n18 262144 786396 11 65 123 890.08 12 964.44
delaunay-n19 524288 1572823 11 54 92 3145.98 11 3459.2
delaunay-n20 1048576 3145686 12 24 45 6997.9 13 8320.37
delaunay-n21 2097152 6291408 12 48 67 26658.3 13 33631.8

108

Table 4.2: Computational results using pure B&B algorithm for MVB on instances
from DIMACS Clique challenge

Graph |V| |E| density Soln CPU(s) Level

johnson8-2-4 28 210 0.55 7 0.00 -
johnson8-4-4 70 1855 0.77 10 0.17 -
johnson16-2-4 120 5460 0.76 15 21.70 -
johnson32-2-4 496 107880 0.88 ≥24 32400 282
keller4 171 9435 0.65 19 52.64 -
keller5 776 225990 0.75 ≥ 30 32400 340
brock200-1 200 14834 0.75 11 14.16 -
brock200-2 200 9876 0.5 12 19.58 -
brock200-3 200 12048 0.6 12 23.96 -
brock400-1 400 59723 0.75 13 526.35 -
brock800-1 800 207505 0.65 15 40647 -
hamming6-2 64 1824 0.9 4 0.05 -
hamming6-4 64 704 0.35 14 0.08 -
hamming8-2 256 31616 0.97 4 1.00 -
hamming8-4 256 20864 0.64 32 9419.15 -
hamming10-2 1024 518656 0.99 4 97.1 -
hamming10-4 1024 434176 0.83 ≥34 32400 306
c-fat200-1 200 1534 0.07 3 0.16 -
c-fat200-5 200 8473 0.42 3 0.33 -
c-fat500-1 500 4459 0.035 3 0.31 -
c-fat500-5 500 23191 0.19 3 0.98 -
c-fat500-10 500 46627 0.37 3 5.44 -
p-hat300-1 300 10933 0.24 25 270.81 -
p-hat300-3 300 33390 0.75 13 108.84 -
p-hat500-1 500 31569 0.25 33 35449.60 -
p-hat500-3 500 93800 0.75 13 1614.63 -
p-hat700-1 700 60999 0.25 ≥33 32400 502
p-hat700-2 700 121728 0.5 ≥32 32400 505
p-hat700-3 700 183010 0.75 14 10068.76 -
p-hat1000-3 1000 371746 0.75 ≥14 32400 851
p-hat1500-3 1500 847244 0.75 ≥14 32400 866
san200-0.7-1 200 13930 0.7 15 7.52 -
san200-0.7-2 200 13930 0.7 24 6.29 -
san200-0.9-1 200 17910 0.9 8 1.51 -
san200-0.9-2 200 17910 0.9 8 1.78 -
san400-0.5-1 400 39900 0.5 62 40.17 -
san400-0.7-1 400 55860 0.7 20 274.19 -
san400-0.9-1 400 71820 0.9 10 35.16 -
sanr400-0.5 400 39984 0.5 14 1016.43 -
sanr400-0.7 400 55869 0.7 14 766.69 -

109

Table 4.3: Computational results using pure B&B algorithm for non-induced MVB
on instances from SNAP dataset and DIMACS Clique and Clustering challenges

Graph |V| |E| density Soln CPU(s) Level

jazz 198 2742 0.14 93 117.06 -
email 1133 5451 0.008 72 3.42 -
netscience 1589 2742 0.002 35 0.59 -
add20 2395 7462 0.002 124 75.46 -
data 2851 15093 0.003 18 1.95 -
as19971108 3015 5347 0.001 537 3600 2379
add32 4960 9462 0.0007 32 1.97 -
CA-GrQC 5241 14484 0.001 79 4.2 -
p2p-Gnutella08 6301 20777 0.001 97 17.66 -
p2p-Gnutella09 8114 26013 0.0007 100 15.58 -
hep-th 8361 15751 0.0004 51 3.65 -
p2p-Gnutella06 8717 31525 0.0008 67 3600 7491
CA-HepTH 9877 25973 0.0005 65 12.82 -
johnson8-2-4 28 210 0.55 16 0.19 -
johnson8-4-4 70 1855 0.77 54 1144.4 -
keller4 171 9435 0.65 68 3600 86
brock200-1 200 14834 0.75 58 3600 73
brock200-2 200 9876 0.5 58 3600 101
brock200-3 200 12048 0.6 60 3600 86
hamming6-2 64 1824 0.9 58 97.41 -
hamming6-4 64 704 0.35 23 0.87 -
hamming8-2 256 31616 0.97 106 3600 111
c-fat200-1 200 1534 0.07 18 0.62 -
c-fat200-2 200 3235 0.16 35 75.11 -
c-fat200-5 200 8473 0.42 50 3600 114
c-fat500-1 500 4459 0.035 21 3.04 -
c-fat500-2 500 9139 0.073 39 795.67 -
c-fat500-5 500 23191 0.19 48 3600 243
p-hat300-1 300 10933 0.24 64 3600 173
p-hat300-2 300 21928 0.5 63 3600 87
san200-0.7-1 200 13930 0.7 58 3600 78
san200-0.7-2 200 13930 0.7 72 3600 86
san200-0.9-1 200 17910 0.9 127 3600 132
san200-0.9-2 200 17910 0.9 99 3600 104
san200-0.9-3 200 17910 0.9 96 3600 100
sanr200-0.7 200 13868 0.7 58 3600 76
sanr200-0.9 200 17868 0.9 86 3600 91

110

Table 4.4: Comparison between scale-reduction and pure B&B algorithms for MVB

Graph |V| |E| SR B&B
Soln CPU(s) Soln CPU(s) Level

jazz 198 2742 20 2.16 20 168.73 -
email 1133 5451 34 1.74 34 38.59 -
add20 2395 7462 30 892.14 23 3600 877
data 2851 15093 8 5.72 8 1.06 -
add32 4960 9462 17 5.66 17 1.78 -
as19971108 3015 5347 540 2263.73 96 3600 758
CA-GrQC 5241 14484 29 2.12 29 12.63 -
as19991204 6296 12830 1294 7139.04 94 9041 844
hep-th 8361 15751 23 4.41 23 50.36 -
as20000102 6474 12572 1340 5127.27 87 5197.37 115
CA-HepTH 9877 25973 32 7.83 32 1099.61 -
PGPgiantcompo 10680 24316 105 4555.21 34 8194.64 3832
oregon1-010519 11050 22723 2207 16920.5 109 18954.21 880
oregon1-010526 11173 23408 2203 14454.2 105 24275.55 888
oregon2-010526 11460 16365 2234 19477.9 103 25862.29 901
cond-mat 16726 47594 41 5912.61 39 7015.77 13726

Table 4.5: Solution to MEB and MVB problems solved by pure B&B algorithm

Graph MEB MVB
Soln Bipartitions CPU(s) Soln Bipartitions CPU(s)

football 8 (4,2) 0.03 8 (7,1) 0.05
brock200-2 42 (7,6) 14.71 13 (7,6) 42.7
brock200-3 36 (6,6) 27.33 12 (5,7) 55.33
san200-0.9-2 16 (4,4) 1.9 8 (4,4) 2.89
san200-0.9-3 25 (5,5) 1.08 10 (5,5) 3.18
p-hat300-1 33 (11,3) 55.35 25 (24,1) 595.14
p-hat300-2 44 (11,4) 152.32 24 (23,1) 539.31
p-hat300-3 42 (7,6) 166.25 13 (7,6) 296.1
sanr400-0.5 49 (7,7) 1718.52 14 (9,5) 4615.83
hamming10-2 4 (2,2) 134.27 4 (2,2) 119.45
email 33 (33,1) 32.28 34 (33,1) 67.17
netscience 15 (15,1) 0.41 16 (15,1) 0.77
data 7 (7,1) 0.67 8 (7,1) 0.68
add32 15 (15,1) 1.34 16 (15,1) 1.78
CA-GrQC 28 (28,1) 6.88 29 (28,1) 12.63
hep-th 22 (22,1) 89.43 23 (22,1) 50.36

111

5. CONTRIBUTIONS AND FUTURE RESEARCH

This dissertation focuses on two cluster-detection models from theoretical and

algorithmic perspectives. First, the s-clubs that are ideal models for detecting low-

diameter clusters are investigated. Graph-based data mining and robust network

design serve as two application areas for s-club models. Second, biclique structures

and their variations with applications in biclustering, marketing and ranking systems

are studied. This chapter summarizes our contribution and provides future research

directions.

5.1 Contributions

In Chapter 1, an analytical review of distance-based clique relaxations and the

biclique models is provided to identify possible research areas in graph-based cluster-

detection models. This research answers some of the open questions posed from

theoretical and algorithmic point of view:

1. The s-clubs are nonheredity in nature and as a direct result, s-club maximal-

ity testing is an intractable problem. We developed a sufficient condition for

checking maximality, by inclusion, of the s-clubs. The proposed sufficient con-

dition can be employed in the design of algorithms for the maximum s-club

problem.

2. Scalability is important in providing solution to the practical applications of

the maximum s-club problem. A variable neighborhood search algorithm is

proposed and implemented to enable the solution for large-scale instances of

the problem. In addition to incorporating the sufficient condition for checking

maximality, a new construction phase heuristic, multiple neighborhood struc-

112

tures and a local improvement procedure using k-add moves are embedded in

the design of VNS algorithm.

3. A hybrid exact algorithm for the maximum s-club problem has been proposed

to investigate the effect of initial starting solution, obtained using VNS, on

the performance of an existing combinatorial branch-and-bound method. Ex-

tensive computational experiments for VNS and the hybrid algorithms and

comparison to other existing methods are reported.

4. Asymptotic lower and upper bounds are established for three classes of the

maximum biclique problem on uniform random graphs. These bounds are

insightful in understanding the structure and size of the bicliques in large net-

works. Bounds also give clear indication about the evolution of biclique struc-

tures in underlying graphs especially protein interaction and gene networks.

For example, it was observed that the solution to the maximum edge biclique

problem is of order O((log n)2) implying the relatively slow growth rate of MEB

with respect to the size of the containing network.

5. A scale-reduction algorithm is proposed for solving two important classes of the

maximum biclique problem, MVB and MEB, in large-scale sparse networks.

This algorithm enables the exact solution to these problems for practical appli-

cations where the underlying network is large and commercial solvers cannot

be used directly.

6. A combinatorial branch-and-bound algorithm is developed for solving different

variations of the maximum biclique problem. This algorithm is suitable for at-

tempting dense instances of the problem where scale-reduction approaches are

less effective due to homogeneous nature of vertex degrees. The algorithm has

113

been implemented for MVB and MEB and can be easily modified to solve the

weighted versions of these problems. Computational experiments and analyti-

cal results have been reported for both scale-reduction and branch-and-bound

methods.

5.2 Future research

For distance-based clique-relaxations, an interesting research question is to inves-

tigate the complexity of maximum 2-clique and 2-club problems in unit disk graphs.

It is also interesting to identify graph classes in which every connected s-clique is an

s-club. In such cases checking maximality of an s-club reduces to checking maximal-

ity of a connected s-clique and is easy. Performing a polyhedral study and developing

generalized valid inequalities for s-club polytope is another research direction in this

area. It would also be helpful to employ such valid inequalities in a branch-and-cut

algorithm and compare the effectivness of the algorithm with other existing methods.

Many real-life networks are in fact power-law graphs. It is insightful to de-

velop asymptotic bounds for variants of the maximum biclique problem in such net-

works. Another research direction is to develop algorithms and asymptotic bounds

for the maximum quasi-biclique problem with application in finding interacting pro-

tein group pairs in protein interaction networks. The maximum edge biclique packing

problem has been considered recently and is used to model product bundling problem

in marketing. The scale-reduction and the combinatorial branch-and-bound methods

proposed in this research can be adopted in a decomposition algorithm proposed for

the maximum edge biclique packing problem.

114

REFERENCES

[1] J. Abello, M.G.C. Resende, and S. Sudarsky. Massive quasi-clique detection.

In S. Rajsbaum, editor, LATIN 2002: Theoretical Informatics, pages 598–612,

London, 2002. Springer-Verlag.

[2] V. Acuña, C.E. Ferreira, A.S. Freire, and E. Moreno. Solving the maximum

edge biclique packing problem on unbalanced bipartite graphs. Discrete Applied

Mathematics, 2011.

[3] N. Adler. Competition in a deregulated air transportation market. European

Journal of Operational Research, 129:337–345, 2001.

[4] R.D. Alba. A graph-theoretic definition of a sociometric clique. Journal of

Mathematical Sociology, 3:113–126, 1973.

[5] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B. Simeone.

Consensus algorithms for the generation of all maximal bicliques. Discrete

Applied Mathematics, 145(1):11–21, 2004.

[6] M.T. Almeida and F.D. Carvalho. Integer models and upper bounds for the

3-club problem. Networks, 60:155–166, 2012.

[7] N. Alon and J. H. Spencer. The Probabilistic Method, 3rd ed. John Wiley, New

Jersey, 2008.

[8] C. Ambühl, M. Mastrolilli, and O. Svensson. Inapproximability results for

maximum edge biclique, minimum linear arrangement, and sparsest cut. SIAM

J. Comput, 2011.

115

[9] J. Amilhastre, M.C. Vilarem, and P. Janssen. Complexity of minimum biclique

cover and minimum biclique decomposition for bipartite domino-free graphs.

Discrete Applied Mathematics, 86:125–144, 1998.

[10] S. Arora, C. Lund, R. Motwani, and M. Szegedy. Proof verification and hard-

ness of approximation problems. Journal of the ACM, 45:501–555, 1998.

[11] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization

of NP. Journal of the ACM, 45(1):70–122, 1998.

[12] Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum diameter-

bounded subgraphs. In Proceedings of the 9th Latin American conference on

Theoretical Informatics (LATIN’10), pages 615–626. Springer, 2010.

[13] C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for

graph coloring. European Journal of Operational Research, 151:379–388, 2003.

[14] J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant. Gaining confidence

in high-throughput protein interaction networks. Nature Biotechnology, 22:78–

85, 2004.

[15] B. Balasundaram and S. Butenko. Graph domination, coloring and cliques in

telecommunications. In M. G. C. Resende and P. M. Pardalos, editors, Hand-

book of Optimization in Telecommunications, pages 865–890. Spinger Science

+ Business Media, New York, 2006.

[16] B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for ana-

lyzing biological networks. Journal of Combinatorial Optimization, 10:23–39,

2005.

116

[17] V. Batagelj. Networks/Pajek Graph Files, 2005. http://vlado.fmf.uni-

lj.si/pub/networks/pajek/data/gphs.htm. Accessed February 2013.

[18] N. Berry, T. Ko, T. Moy, J. Smrcka, J. Turnley, and B. Wu. Emergent clique

formation in terrorist recruitment. The AAAI-04 Workshop on Agent Orga-

nizations: Theory and Practice, July 25, 2004, San Jose, California, 2004.

Online: http://www.cs.uu.nl/ virginia/aotp/papers.htm.

[19] D. Binkele-Raible, H. Fernau, S. Gaspers, and M. Liedloff. Exact exponential-

time algorithms for finding bicliques. Information Processing Letters,

111(2):64–67, 2010.

[20] B. Bollobás. Extremal Graph Theory. Academic Press, New York, 1978.

[21] B. Bollobás. Random Graphs. Academic Press, New York, 1985.

[22] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique

problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial

Optimization, pages 1–74, Dordrecht, The Netherlands, 1999. Kluwer Academic

Publishers.

[23] J.-M. Bourjolly, G. Laporte, and G. Pesant. Heuristics for finding k-clubs in

an undirected graph. Computers & Operations Research, 27:559–569, 2000.

[24] J.-M. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maxi-

mum k-club problem in an undirected graph. European Journal Of Operational

Research, 138:21–28, 2002.

[25] D. Brélaz. New methods to color the vertices of a graph. Communications of

the ACM, 22(4):251–256, 1979.

117

[26] A. Buchanan, J. S. Sung, S. Butenko, V. Boginski, and E. Pasiliao. On con-

nected dominating sets of restricted diameter. Working paper, 2012.

[27] S. Butenko and W. Wilhelm. Clique-detection models in computational bio-

chemistry and genomics. European Journal of Operational Research, 173:1–17,

2006.

[28] R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique

problem. Operations Research Letters, 9:375–382, 1990.

[29] F. D. Carvalho and M. T. Almeida. Upper bounds and heuristics for the 2-club

problem. European Journal of Operational Research, 210(3):489 – 494, 2011.

[30] M.S. Chang, L.J. Hung, C.R. Lin, and P.C. Su. Finding large k-clubs in

undirected graphs. In Proc. 28th Workshop on Combinatorial Mathematics

and Computation Theory. 2011.

[31] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower

bounds via parameterized complexity. Journal of Computer and System Sci-

ences, 72:1346–1367, 2006.

[32] Y. Cheng and G.M. Church. Biclustering of expression data. In Proceedings of

the 8th International Conference on Intelligent Systems for Molecular Biology,

pages 93–100, 2000.

[33] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete

Mathematics, 86:165–177, 1990.

[34] M. Dawande, P. Keskinocak, J. Swaminathan, and S. Tayur. On bipartite and

multipartite clique problems. Journal of Algorithms, 41:388–403, 2001.

118

[35] A. Dekker, H. Pérez-Rosés, G. Pineda-Villavicencio, and Watters P. The max-

imum degree & diameter-bounded subgraph and its applications. Journal of

Mathematical Modelling and Algorithms, 11:249–268, 2012.

[36] A. H. Dekker. Social network analysis in military headquarters using CAVA-

LIER. In Proceedings of Fifth International Command and Control Research

and Technology Symposium, pages 24–26, Canberra, Australia, 2000.

[37] R. Diestel. Graph Theory. Springer-Verlag, Berlin, 1997.

[38] Dimacs. Cliques, Coloring, and Satisfiability: Second Dimacs Implementation

Challenge, 1992. http://dimacs.rutgers.edu/Challenges/. Accessed November

2012.

[39] Dimacs. Graph Partitioning and Graph Clustering: Tenth Dimacs Implemen-

tation Challenge, 2012. http://cc.gatech.edu/dimacs10/. Accessed November

2012.

[40] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[41] U. Feige. Relations between average case complexity and approximation com-

plexity (extended abstract). In Proceedings of the 34th Annual ACM Sympo-

sium on Theory of Computing, pages 534–543, 2002.

[42] U. Feige and S. Kogan. Hardness of approximation of the balanced complete

bipartite subgraph problem. Technical report, 2004.

[43] J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari. Modular decompo-

sition of protein-protein interaction networks. Genome Biology, 5(8):R57.1–

R57.12, 2004.

119

[44] B. Ganter and R. Wille. Formale Begriffsanalyse-Mathematische Grundlagen.

Springer-Verlag, New York, 1996.

[45] F. Garćıa-López, B. Melián-Batista, J.A. Moreno-Pérez, and J.M. Moreno-

Vega. The parallel variable neighborhood search for the p-median problem.

Journal of Heuristics, 8:375–388, 2002.

[46] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness. W.H. Freeman and Company, New York, 1979.

[47] H. Gavranovic. Local search and suffix tree for car-sequencing problem with

colors. European Journal of Operational Research, 191(3):972–980, 2008.

[48] A. Gély, L. Nourine, and B. Sadi. Enumeration aspects of maximal cliques and

bicliques. Discrete Applied Mathematics, 157(7):1447–1459, 2009.

[49] M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique problem

using a tabu search approach. Annals of Operations Research, 41:385–403,

1993.

[50] F.W. Glover and G.A. Kochenberger, editors. Handbook of Metaheuristics.

Kluwer Academic Publishers, Boston, MA, 2003.

[51] C. Goffman. And what is your Erdös number? American Mathematical

Monthly, 76:791, 1969.

[52] J. Grossman, P. Ion, and R. De Castro. The Erdös Number Project.

http://web.archive.org/web/20080207010024/, 1995. Accessed February 2013.

[53] W. H. Haemers. Bicliques and eigenvalues. Journal of Combinatorial Theory,

Series B, 82(1):56 – 66, 2001.

120

[54] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and

applications. European Journal of Operational Research, 130:449–467, 2001.

[55] P. Hansen, N. Mladenović, and D. Uroševic. Variable neighborhood search for

the maximum clique. Discrete Applied Mathematics, 145:117–125, 2004.

[56] S. Hartung, C. Komusiewicz, and A. Nichterlein. Parameterized algorith-

mics and computational experiments for finding 2-clubs. In D. Thilikos and

G. Woeginger, editors, Parameterized and Exact Computation, volume 7535 of

Lecture Notes in Computer Science, pages 231–241. Springer, 2012.

[57] S. Hartung, C. Komusiewicz, and A. Nichterlein. On structural parameteriza-

tions for the 2-club problem. In Proceedings of the 39th International Confer-

ence on Current Trends in Theory and Practice of Computer Science (SOF-

SEM ’13), volume 7741 of Lecture Notes in Computer Science, pages 233–243.

Springer, 2013.

[58] D. S. Hochbaum. Approximating clique and biclique problems. Journal of

Algorithms, 29:174–200, 1998.

[59] D. S. Hochbaum. Solving integer programs over monotone inequalities in three

variables: A framework for half integrality and good approximations. European

Journal of Operational Research, 140(2):291– 321, 2002.

[60] P. Jaillet, G. Song, and G. Yu. Airline network design and hub location prob-

lems. Location Science, 4:195–212, 1996.

[61] H. Jeong, S. Mason, A.L. Barabási, and Z. N. Oltvai. Lethality and certainty

in protein networks. Nature, 411:41–42, 2001.

121

[62] R.M. Karp. Reducibility among combinatorial problems. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.

Plenum, New York, 1972.

[63] D. Kim, Y. Wu, Y. Li, F. Zou, and D.-Z. Du. Constructing minimum con-

nected dominating sets with bounded diameters in wireless networks. IEEE

Transactions on Parallel and Distributed Systems, 20(2):147–157, 2009.

[64] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for

emerging cyber-communities. In Proceedings of the 8th international conference

on World Wide Web, pages 1481–1493, 1999.

[65] J. Kytöjoki, T. Nuortio, O. Bräysy, and M. Gendreau. An efficient variable

neighborhood search heuristic for very large scale vehicle routing problems.

Comput. Oper. Res., 34:2743–2757, 2007.

[66] S. Lehmann, M. Schwartz, and L. K. Hansen. Biclique communities. Physical

Review E, 78(1):016108, 2008.

[67] G. Liu, K. Sim, and J. Li. Efficient mining of large maximal bicliques. In Data

Warehousing and Knowledge Discovery, volume 4081 of LNCS, pages 437–448.

Springer-Verlag, 2006.

[68] R.D. Luce. Connectivity and generalized cliques in sociometric group structure.

Psychometrika, 15:169–190, 1950.

[69] R.D. Luce and A.D. Perry. A method of matrix analysis of group structure.

Psychometrika, 14:95–116, 1949.

122

[70] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data

analysis: A survey, 2004. IEEE/ACM Transactions on Computational Biology

and Bioinformatics.

[71] F. Mahdavi Pajouh. Polyhedral Combinatorics, Complexity & Algorithms for

k-Clubs in Graphs. PhD thesis, Oklahoma State University, July 2012.

[72] J. Marinček and B. Mohar. On approximating the maximum diameter ratio of

graphs. Discrete Mathematics, 244:323–330, 2002.

[73] N. Memon, K. C. Kristoffersen, D. L. Hicks, and H. L. Larsen. Detecting

critical regions in covert networks: A case study of 9/11 terrorists network. In

The Second International Conference on Availability, Reliability and Security,

pages 861–870, 2007.

[74] J. Miao and D. Berleant. From paragraph networks to document networks. In

Proceedings of the International Conference on Information Technology: Cod-

ing and Computing (ITCC 2004), volume 1, pages 295–302, 2004.

[75] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and

Operations Research, 24(11):1097–1100, 1997.

[76] R.J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13:161–173,

1979.

[77] M. Newman. The structure and function of complex networks. SIAM Review,

45:167–256, 2003.

[78] D. Nussbaum, S. Pu, J. Sack, T. Uno, and H. Zarrabi-Zadeh. Finding maximum

edge bicliques in convex bipartite graphs. Algorithmica, 64:311–325, 2012.

123

[79] P. R. J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete

Applied Mathematics, 120:197–207, 2002.

[80] F. Mahdavi Pajouh and B. Balasundaram. On inclusionwise maximal and

maximum cardinality k-clubs in graphs. Discrete Optimization, 9(2):84–97,

2012.

[81] F. Parreño, R. Alvarez-Valdes, J. Oliveira, and J. Tamarit. Neighborhood

structures for the container loading problem: a VNS implementation. Journal

of Heuristics, 16:1–22, 2010.

[82] S. Pasupuleti. Detection of protein complexes in protein interaction networks

using n-clubs. In Proceedings of the 6th European Conference on Evolutionary

Computation, Machine Learning and Data Mining in Bioinformatics, volume

4973 of Lecture Notes in Computer Science, pages 153–164. Springer, 2008.

[83] J. Pattillo, Y. Wang, and S. Butenko. On distance-based clique relaxations in

unit disk graphs. Working paper, 2012.

[84] J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in

network analysis. European Journal of Operational Research, In press, doi:

10.1016/j.ejor.2012.10.021, 2012.

[85] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete

Applied Mathematics, 131:651–654, 2003.

[86] R. B. Rothenberg, J. J. Potterat, and D. E. Woodhouse. Personal risk taking

and the spread of disease: Beyond core groups. Journal of Infectious Diseases,

174 (Supp. 2):S144–S149, 1996.

124

[87] M. Sageman. Understanding Terrorist Networks. University of Pennsylvania

Press, Philadelphia, PA, 2004.

[88] R. J. Sampson and B. W. Groves. Community structure and crime: Testing

social-disorganization theory. American Journal of Sociology, 94:774–802, 1989.

[89] M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, and S. Langley.

Obtaining maximal concatenated phylogenetic data sets from large sequence

databases. Molecular Biology and Evolution, 20(7):1036–1042, 2003.

[90] A. Schäfer. Exact algorithms for s-club finding and related problems. Master’s

thesis, Institut für Informatik, Friedrich-Schiller-Universität Jena, 2009.

[91] A. Schäfer, C. Komusiewicz, H. Moser, and R. Niedermeier. Parameterized

computational complexity of finding small-diameter subgraphs. Optimization

Letters, 6:883–891, 2012.

[92] J. Scott. Social Network Analysis: A Handbook. Sage Publications, London, 2

edition, 2000.

[93] S. B. Seidman. Network structure and minimum degree. Social Networks,

5:269–287, 1983.

[94] S. B. Seidman and B. L. Foster. A graph theoretic generalization of the clique

concept. Journal of Mathematical Sociology, 6:139–154, 1978.

[95] SNAP. Stanford Large Network Dataset Collection, 2012.

http://snap.stanford.edu/data/. Accessed November 2012.

[96] V. Spirin and L. A. Mirny. Protein complexes and functional modules

in molecular networks. Proceedings of the National Academy of Sciences,

100(21):12123–12128, 2003.

125

[97] J. Tan. Inapproximability of maximum weighted edge biclique and its ap-

plications. In Proceedings of the 5th international conference on theory and

application of models of computation, pages 282–293. Springer-Verlag, 2008.

[98] L. Terveen, W. Hill, and B. Amento. Constructing, organizing, and visualizing

collections of topically related web resources. ACM Transactions on Computer-

Human Interaction, 6:67–94, 1999.

[99] A. Veremyev and V. Boginski. Identifying large robust network clusters via

new compact formulations of maximum k-club problems. European Journal of

Operational Research, 218(2):316–326, 2012.

[100] S. Wasserman and K. Faust. Social Network Analysis. Cambridge University

Press, New York, 1994.

[101] M. Yannakakis. Node and edge-deletion NP-complete problems. In Proceedings

of the tenth annual ACM symposium on Theory of computing, pages 253–264,

New York, NY, USA, 1978. ACM.

[102] D. Zuckerman. Linear degree extractors and the inapproximability of max

clique and chromatic number. Theory of Computing, 3:103–128, 2007.

126

APPENDIX A

PROOF OF COMPLEXITY RESULT FOR ASYMPTOTIC BOUNDS

ON MAXIMUM BICLIQUE PROBLEMS

We show the correctness of the following relation used in the proof of Theorem 5.

Note that the same argument can be used to show the relation used in the proof of

Theorem 5. We prove the following equality:

[
(1− l2 + 1

n
)(1− l2 + 1

n− 1
)(1− l2 + 1

n− 2
) · · · (1− l2 + 1

n− l2
)

]
=

[
1− (l2 + 1)2

n
+ O(n

−3
2)

]
.

Expanding the left side we get,

[
(1− l2 + 1

n
)(1− l2 + 1

n− 1
)(1− l2 + 1

n− 2
) · · · (1− l2 + 1

n− l2
)

]
=[

1− l2 + 1

n
− l2 + 1

n− 1
− l2 + 1

n− 2
− · · · − l2 + 1

n− l2

]
+[

(l2 + 1)2

n(n− 1)
+

(l2 + 1)2

n(n− 2)
+ · · ·+ (l2 + 1)2

n(n− l2)
+

(l2 + 1)2

(n− 1)(n− 2)
+

(l2 + 1)2

(n− 1)(n− 3)
+ · · ·+ (l2 + 1)2

(n− 1)(n− l2)

]
+[

(l2 + 1)2

(n− 2)(n− 3)
+

(l2 + 1)2

(n− 2)(n− 4)
+ · · ·+ (l2 + 1)2

(n− 2)(n− l2)
+

(l2 + 1)2

(n− 3)(n− 4)
+ · · ·+ (l2 + 1)2

(n− 3)(n− l2)
+ · · ·

]
+[

− (l2 + 1)3

n(n− 1)(n− 2)
− (l2 + 1)3

n(n− 1)(n− 3)
− · · · − (l2 + 1)3

n(n− 1)(n− l2)

]
+[

− (l2 + 1)3

(n− 1)(n− 2)(n− 3)
− · · · − (l2 + 1)3

(n− 1)(n− 2)(n− l2)

]
+[

− (l2 + 1)3

(n− 2)(n− 3)(n− 4)
− · · · − (l2 + 1)3

(n− 2)(n− 3)(n− l2)
− · · ·

]
+[

(l2 + 1)4

n(n− 1)(n− 2)(n− 3)
+ · · ·+ (l2 + 1)4

n(n− 1)(n− 2)(n− l2)
+ · · ·

]
+ · · ·

127

The first bracket in the above extended form can be written as follows:

[
1− l2 + 1

n
− l2 + 1

n− 1
− l2 + 1

n− 2
− · · · − l2 + 1

n− l2

]
= 1−

l2∑
i=0

l2 + 1

n− i
= 1− l2 + 1

n

l2∑
i=0

n

n− i
=

1− l2 + 1

n

l2∑
i=0

(1 +
i

n− i
) = 1− l2 + 1

n
(l2 + 1 +

l2∑
i=0

i

n− i
) = 1− (l2 + 1)2

n
− l2 + 1

n

l2∑
i=0

i

n− i
=

1− (l2 + 1)2

n
−O(n−2).

Note that in the first part of Theorem 4 we proved that l1+l2 is bounded above by

16 log n

log 1
1−p

which implies that l2 is also bounded by the same value and we can deduce

that l2 = O(n
1
2). The next two brackets contain terms that are of order O(n−2)

with respect to n and all other remaining terms are of order −O(n−3), O(n−4),

−O(n−5) · · · , respectively. Also note that the number of terms with order O(n−2)

is larger than the number of terms with order −O(n−3) and in general the number

of terms reduces as order of n in the denominators increases. This implies that the

terms in the third and fourth brackets are dominant over all others and proves our

claim that

[
(1− l2 + 1

n
)(1− l2 + 1

n− 1
)(1− l2 + 1

n− 2
) · · · (1− l2 + 1

n− l2
)

]
=

[
1− (l2 + 1)2

n
+ O(n

−3
2)

]
.

128

APPENDIX B

DETAILED RESULTS OF EXPERIMENTS FOR THE MAXIMUM

s-CLUB PROBLEM

129

Table B.1: Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.0125)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 2 2 0.094 2 2 0 0.063
Graph-50-2 5 5 0.109 5 5 0 0.078
Graph-50-3 5 5 0.093 5 5 0 0.078
Graph-50-4 3 3 0.094 3 3 0 0.078
Graph-50-5 3 3 0.093 3 3 0 0.078
Graph-50-6 5 5 0.109 5 5 0 0.078
Graph-50-7 5 5 0.11 5 5 0 0.062
Graph-50-8 5 5 0.109 5 5 0 0.063
Graph-50-9 5 5 0.109 5 5 0 0.063
Graph-50-10 4 4 0.093 4 4 0 0.062

Graph-100-1 6 6 0.281 6 6 0 0.265
Graph-100-2 6 6 0.265 6 6 0 0.281
Graph-100-3 6 6 0.343 6 6 0 0.265
Graph-100-4 7 7 0.297 7 7 0 0.296
Graph-100-5 7 7 0.28 7 7 0 0.297
Graph-100-6 6 6 0.28 6 6 0 0.28
Graph-100-7 6 6 0.281 6 6 0 0.281
Graph-100-8 6 6 0.281 6 6 0 0.281
Graph-100-9 5 5 0.219 5 5 0 0.281
Graph-100-10 5 5 0.234 5 5 0 0.28

Graph-150-1 7 7 0.748 7 7 0 0.592
Graph-150-2 8 8 0.64 8 8 0 0.765
Graph-150-3 8 8 0.64 8 8 0 0.765
Graph-150-4 6 6 0.562 6 6 0 0.717
Graph-150-5 6 6 0.562 6 6 0 0.733
Graph-150-6 10 10 0.811 10 10 0 0.764
Graph-150-7 10 10 0.811 10 10 0 0.749
Graph-150-8 8 8 0.624 8 8 0 0.78
Graph-150-9 8 8 0.624 8 8 0 0.78
Graph-150-10 8 8 0.624 8 8 0 0.78

Graph-200-1 9 9 1.139 9 9 0 1.263
Graph-200-2 9 9 1.139 9 9 0 1.076
Graph-200-3 8 8 1.154 8 8 0 1.202
Graph-200-4 8 8 1.123 8 8 0 1.123
Graph-200-5 8 8 1.123 8 8 0 1.124
Graph-200-6 8 8 1.155 8 8 0 1.077
Graph-200-7 13 13 1.436 13 13 0 1.124
Graph-200-8 9 9 1.31 9 9 0 1.092
Graph-200-9 9 9 1.311 9 9 0 1.108
Graph-200-10 9 9 1.03 9 9 0 0.983

130

Table B.2: Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.025)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 5 5 0.14 5 5 0 0.078
Graph-50-2 6 6 0.249 6 6 0 0.078
Graph-50-3 5 5 0.125 5 5 0 0.062
Graph-50-4 5 5 0.14 5 5 0 0.062
Graph-50-5 4 4 0.11 4 4 0 0.063
Graph-50-6 6 6 0.25 6 6 0 0.093
Graph-50-7 6 6 0.265 6 6 0 0.093
Graph-50-8 5 5 0.14 5 5 0 0.063
Graph-50-9 5 5 0.14 5 5 0 0.078
Graph-50-10 5 5 0.141 5 5 0 0.078

Graph-100-1 7 7 0.468 7 7 0 0.328
Graph-100-2 10 10 0.608 10 10 0 0.343
Graph-100-3 7 7 0.437 7 7 0 0.328
Graph-100-4 9 9 0.718 9 9 0 0.422
Graph-100-5 9 9 0.562 9 9 0 0.327
Graph-100-6 10 10 0.687 10 10 0 0.327
Graph-100-7 10 10 0.686 10 10 0 0.328
Graph-100-8 10 10 0.671 10 10 0 0.359
Graph-100-9 10 10 0.67 10 10 0 0.359
Graph-100-10 10 10 0.671 10 10 0 0.359

Graph-150-1 12 12 1.466 12 12 0 1.201
Graph-150-2 9 9 1.216 9 9 0 1.014
Graph-150-3 11 11 1.498 11 11 0 1.092
Graph-150-4 11 11 1.482 11 11 0 1.092
Graph-150-5 11 11 1.716 11 11 0 1.326
Graph-150-6 11 11 1.42 11 11 0 1.419
Graph-150-7 11 11 1.42 11 11 0 1.42
Graph-150-8 12 12 1.653 12 12 0 1.155
Graph-150-9 12 12 1.794 12 12 0 1.248
Graph-150-10 12 12 1.794 12 12 0 1.263

Graph-200-1 13 13 2.854 13 13 0 3.214
Graph-200-2 14 14 2.621 14 14 0 3.042
Graph-200-3 13 13 2.387 13 13 0 2.808
Graph-200-4 11 11 2.293 11 11 0 2.543
Graph-200-5 14 14 3.12 14 14 0 3.214
Graph-200-6 15 15 3.105 15 15 0 3.12
Graph-200-7 15 15 3.65 15 15 0 3.837
Graph-200-8 15 15 3.136 15 15 0 2.761
Graph-200-9 13 13 2.855 13 13 0 3.213
Graph-200-10 15 15 2.964 15 15 0 2.871

131

Table B.3: Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.05)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 6 6 0.249 6 6 0 0.109
Graph-50-2 7 7 0.312 7 7 0 0.109
Graph-50-3 6 6 0.312 6 6 0 0.093
Graph-50-4 8 8 0.297 8 8 0 0.078
Graph-50-5 6 6 0.218 6 6 0 0.094
Graph-50-6 7 7 0.218 7 7 0 0.109
Graph-50-7 7 7 0.219 7 7 0 0.109
Graph-50-8 6 6 0.203 6 6 0 0.093
Graph-50-9 6 6 0.202 6 6 0 0.078
Graph-50-10 6 6 0.202 6 6 0 0.078

Graph-100-1 14 14 2.262 14 14 0 1.482
Graph-100-2 13 13 1.841 13 13 0 0.998
Graph-100-3 11 11 1.7 11 11 0 1.045
Graph-100-4 11 11 1.56 11 11 0 1.014
Graph-100-5 11 11 1.575 11 11 0 0.999
Graph-100-6 13 13 1.435 13 13 0 1.108
Graph-100-7 13 13 1.435 13 13 0 1.123
Graph-100-8 13 13 2.418 13 13 0 1.092
Graph-100-9 12 12 1.529 12 12 0 1.077
Graph-100-10 12 12 1.544 12 12 0 1.077

Graph-150-1 17 17 5.117 17 17 0 5.554
Graph-150-2 16 16 3.791 16 16 0 5.834
Graph-150-3 17 17 4.134 17 17 0 4.259
Graph-150-4 18 18 5.99 18 18 0 4.851
Graph-150-5 16 16 4.244 16 16 0 5.132
Graph-150-6 21 21 5.663 21 21 0 4.134
Graph-150-7 16 16 5.023 16 16 0 6.942
Graph-150-8 18 18 5.07 18 18 0 5.179
Graph-150-9 20 20 7.207 20 20 0 6.911
Graph-150-10 22 22 8.361 22 22 0 6.177

Graph-200-1 20 20 8.19 20 20 0 17.394
Graph-200-2 21 21 11.902 21 21 0 18.392
Graph-200-3 19 19 9.813 19 19 0 24.118
Graph-200-4 22 22 10.374 22 22 0 24.648
Graph-200-5 20 20 9.438 20 20 0 27.019
Graph-200-6 21 21 8.486 21 21 0 22.589
Graph-200-7 20 20 10.046 20 20 0 26.13
Graph-200-8 22 22 11.655 22 22 0 30.311
Graph-200-9 27 27 14.021 27 27 0 15.428
Graph-200-10 21 21 9.969 21 21 0 22.527

132

Table B.4: Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.1)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 9 9 2.231 9 9 0 0.312
Graph-50-2 11 11 3.292 11 11 0 10.296
Graph-50-3 12 12 3.713 12 12 0 0.343
Graph-50-4 13 13 3.962 13 13 0 0.468
Graph-50-5 11 11 3.026 11 11 0 0.483
Graph-50-6 12 12 3.588 12 12 0 10.857
Graph-50-7 12 12 3.619 12 12 0 11.107
Graph-50-8 10 10 2.449 10 10 0 0.265
Graph-50-9 10 10 2.449 10 10 0 0.266
Graph-50-10 10 10 2.45 10 10 0 0.265

Graph-100-1 18 18 14.892 18 18 0 166.96
Graph-100-2 20 20 13.307 20 20 0 113.89
Graph-100-3 15 15 9.843 15 15 0 118.67
Graph-100-4 19 19 14.446 19 19 0 119.22
Graph-100-5 19 19 12.277 19 19 0 108.37
Graph-100-6 26 26 17.254 26 26 0 113.42
Graph-100-7 20 20 22.808 20 20 0 223.074
Graph-100-8 20 20 15.116 20 20 0 127.73
Graph-100-9 22 22 16.676 22 22 0 137.53
Graph-100-10 22 22 35.662 22 23 0 239.77

Graph-150-1 24 24 43.539 24 24 0 2613.967
Graph-150-2 29 29 48.048 29 29 0 1376.435
Graph-150-3 27 27 55.271 27 27 0 3165.567
Graph-150-4 26 26 43.462 26 26 0 2116.218
Graph-150-5 26 26 49.109 26 26 0 2013.024
Graph-150-6 30 30 55.287 30 30 0 1458.163
Graph-150-7 29 29 73.647 29 29 12.12 3600.199
Graph-150-8 33 33 74.459 33 33 0 2114.892
Graph-150-9 37 37 71.152 37 37 0 517.296
Graph-150-10 29 29 58.687 29 29 0 2704.166

Graph-200-1 33 33 157.278 33 33 43.1 3601.462
Graph-200-2 31 31 134.952 31 31 44.64 3601.073
Graph-200-3 35 35 136.22 35 35 38.6 3618.498
Graph-200-4 31 31 142.396 31 31 41.51 3622.179
Graph-200-5 36 36 154.923 36 36 41.94 3617.281
Graph-200-6 39 39 398.78 39 39 42.65 3630.51
Graph-200-7 45 45 245.653 45 45 30.77 3625.72
Graph-200-8 35 35 236.854 35 35 45.31 3620.511
Graph-200-9 40 40 161.772 40 40 25.93 3623.248
Graph-200-10 37 37 176.139 37 37 28.85 3610.636

133

Table B.5: Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.15)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 15 16 11.076 16 16 0 11.919
Graph-50-2 13 15 10.654 15 16 0 10.671
Graph-50-3 9 15 8.439 15 15 0 8.923
Graph-50-4 10 13 8.471 13 13 0 8.221
Graph-50-5 12 15 13.338 15 15 0 9.672
Graph-50-6 17 18 75.319 18 18 0 9.469
Graph-50-7 14 14 8.424 14 14 0 10.468
Graph-50-8 14 14 8.393 14 14 0 10.873
Graph-50-9 14 14 8.393 14 14 0 11.014
Graph-50-10 25 26 66.893 26 26 0 20.873

Graph-100-1 24 26 103.29 25 30 0 2398.392
Graph-100-2 18 24 220.63 23 25 0 1916.104
Graph-100-3 23 30 194.28 26 30 0 831.282
Graph-100-4 28 28 119.71 26 28 0 3600.118
Graph-100-5 19 24 88.11 23 26 0 2570.422
Graph-100-6 34 41 544.973 34 43 0 3418.552
Graph-100-7 38 43 809.65 38 43 0 2404.615
Graph-100-8 33 39 839.72 35 46 0 3025.386
Graph-100-9 38 48 1179.396 39 48 0 1243.476
Graph-100-10 32 34 175.164 33 35 0 1003.407

Graph-150-1 29 40 992.737 39 39 50.63 3620.379
Graph-150-2 26 43 1929.423 34 34 56.41 3624.623
Graph-150-3 38 46 3009.129 36 36 52.63 3618.92
Graph-150-4 24 40 736.892 34 34 54.05 3618.451
Graph-150-5 34 55 1561.173 44 44 43.59 3602.633
Graph-150-6 93 93 3600.823 93 93 0 1882.92
Graph-150-7 72 82 4054.29 75 75 15.73 3610.495
Graph-150-8 45 49 561.631 43 43 27.12 3611.868
Graph-150-9 72 75 3432.234 72 72 11.11 3607.687
Graph-150-10 88 91 3571.682 89 89 4.3 3654.051

Graph-200-1 44 70 3878.301 52 52 60.9 3682.424
Graph-200-2 52 78 3839.554 50 50 64.29 3683.23
Graph-200-3 80 88 4183.047 71 71 47.79 3605.31
Graph-200-4 87 101 3669.486 87 87 35.56 3667.71
Graph-200-5 42 55 3601.057 45 45 63.41 3643.58
Graph-200-6 97 101 3600.729 97 97 15.65 3672.48
Graph-200-7 154 157 4099.889 154 154 3.14 3710.07
Graph-200-8 118 124 4070.715 118 118 9.23 3642.55
Graph-200-9 147 147 3924.059 147 147 0.00 2353.25
Graph-200-10 110 123 3979.932 110 110 17.29 3669.3

134

Table B.6: Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.2)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 18 19 22.198 18 19 0 15.381
Graph-50-2 20 21 44.32 20 22 0 15.585
Graph-50-3 24 26 50.56 25 26 0 26.005
Graph-50-4 26 26 55.443 26 26 0 24.352
Graph-50-5 20 22 33.228 22 22 0 26.005
Graph-50-6 24 26 54.568 24 26 0 13.774
Graph-50-7 24 26 54.444 24 26 0 15.054
Graph-50-8 24 25 51.464 25 26 0 29.141
Graph-50-9 23 24 65.692 23 24 0 13.65
Graph-50-10 23 24 65.333 23 24 0 13.572

Graph-100-1 58 59 63.648 59 68 0 1014.562
Graph-100-2 42 45 65.067 49 49 18.33 3605.667
Graph-100-3 78 79 139.573 80 82 0 306.554
Graph-100-4 75 75 73.133 75 75 0 253.863
Graph-100-5 68 69 74.241 69 70 0 3495.815
Graph-100-6 76 76 80.293 76 77 0 172.726
Graph-100-7 68 68 66.69 68 70 0 729.458
Graph-100-8 69 70 69.888 70 71 0 329.216
Graph-100-9 67 68 66.206 67 69 0 1022.31
Graph-100-10 77 77 83.772 77 77 0 203.699

Graph-150-1 133 135 443.884 133 139 0 490.561
Graph-150-2 125 132 382.184 126 126 5.97 3600.41
Graph-150-3 135 136 408.829 136 138 0 515.708
Graph-150-4 131 131 214.141 131 133 0 1844.509
Graph-150-5 137 139 345.15 137 139 0 570.539
Graph-150-6 120 120 201.022 120 120 0 651.461
Graph-150-7 125 126 190.508 125 126 0 916.084
Graph-150-8 127 127 228.317 127 127 0 447.567
Graph-150-9 123 123 239.148 123 123 0 566.003
Graph-150-10 114 114 163.144 114 114 0.87 3607.679

Graph-200-1 197 197 859.764 197 197 0 1026.526
Graph-200-2 192 192 796.099 192 192 0 1038.243
Graph-200-3 195 195 916.406 195 195 0 1033.516
Graph-200-4 197 197 995.158 197 197 0 1030.505
Graph-200-5 193 193 582.8 193 194 0 1190.967
Graph-200-6 190 190 1179.672 190 190 0 1196.988
Graph-200-7 188 189 1359.509 189 189 0 1049.1
Graph-200-8 172 173 851.823 172 172 0.58 3615.206
Graph-200-9 186 187 1044.732 186 187 0 1460.118
Graph-200-10 165 167 656.323 166 167 0.60 3715.873

135

Table B.7: Results of solving the MsCP using VNS and B&B algorithms(s=2, d=0.25)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 27 30 26.52 27 32 0 43.633
Graph-50-2 35 36 29.655 35 36 0 15.709
Graph-50-3 42 42 81.978 42 42 0 9.282
Graph-50-4 32 32 19.251 32 32 0 21.965
Graph-50-5 26 28 30.155 26 30 0 44.148
Graph-50-6 37 37 33.244 37 37 0 4.446
Graph-50-7 25 28 16.614 25 29 0 15.475
Graph-50-8 30 31 20.389 30 31 0 14.18
Graph-50-9 30 31 20.374 30 31 0 14.165
Graph-50-10 29 29 16.879 29 29 0 16.333

Graph-100-1 95 95 96.205 95 96 0 101.01
Graph-100-2 91 94 170.336 91 94 0 112.788
Graph-100-3 95 97 190.039 95 97 0 96.782
Graph-100-4 96 97 110.011 96 97 0 90.386
Graph-100-5 97 97 111.228 97 97 0 68.874
Graph-100-6 83 84 125.466 83 85 0 135.455
Graph-100-7 89 89 94.66 89 89 0 69.311
Graph-100-8 82 83 127.202 82 83 0 284.325
Graph-100-9 88 88 90.184 88 88 0 68.141
Graph-100-10 97 97 93.943 97 97 0 69.186

Graph-150-1 150 150 0 150 150 0 0
Graph-150-2 150 150 0 150 150 0 0
Graph-150-3 150 150 0 150 150 0 0
Graph-150-4 150 150 0 150 150 0 0
Graph-150-5 150 150 0 150 150 0 0
Graph-150-6 142 142 208.322 142 143 0 403.322
Graph-150-7 142 142 188.442 142 142 0 336.663
Graph-150-8 145 145 298.587 145 145 0 337.007
Graph-150-9 145 145 176.085 145 145 0 336.352
Graph-150-10 145 145 300.019 145 145 0 335.946

Graph-200-1 200 200 0 200 200 0 0
Graph-200-2 200 200 0 200 200 0 0
Graph-200-3 200 200 0 200 200 0 0
Graph-200-4 200 200 0 200 200 0 0
Graph-200-5 200 200 0 200 200 0 0
Graph-200-6 197 197 489.43 197 197 0 110.87
Graph-200-7 194 194 847.44 194 194 0 343.077
Graph-200-8 200 200 0 200 200 0 0
Graph-200-9 196 196 718.69 196 196 0 131.494
Graph-200-10 197 197 472.33 197 197 0 111.603

136

Table B.8: Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.0125)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 2 2 0.046 2 2 0 0.078
Graph-50-2 5 5 0.055 5 5 0 0.078
Graph-50-3 5 5 0.055 5 5 0 0.094
Graph-50-4 4 4 0.069 4 4 0 0.078
Graph-50-5 4 4 0.068 4 4 0 0.078
Graph-50-6 5 5 0.051 5 5 0 0.078
Graph-50-7 5 5 0.051 5 5 0 0.062
Graph-50-8 5 5 0.051 5 5 0 0.063
Graph-50-9 5 5 0.051 5 5 0 0.063
Graph-50-10 4 4 0.048 4 4 0 0.062

Graph-100-1 10 10 0.269 10 10 0 0.327
Graph-100-2 8 8 0.356 8 8 0 0.328
Graph-100-3 9 9 0.405 9 9 0 0.375
Graph-100-4 9 9 0.303 9 9 0 0.344
Graph-100-5 9 9 0.301 9 9 0 0.343
Graph-100-6 8 8 0.249 8 8 0 0.28
Graph-100-7 8 8 0.248 8 8 0 0.296
Graph-100-8 8 8 0.248 8 8 0 0.297
Graph-100-9 7 7 0.181 7 7 0 0.281
Graph-100-10 7 7 0.18 7 7 0 0.281

Graph-150-1 13 13 1.622 13 13 0 1.388
Graph-150-2 11 11 1.034 11 11 0 1.014
Graph-150-3 11 11 1.027 11 11 0 0.998
Graph-150-4 12 12 0.84 12 12 0 0.858
Graph-150-5 12 12 0.842 12 12 0 0.842
Graph-150-6 14 14 0.984 14 14 0 1.108
Graph-150-7 14 14 0.985 14 14 0 1.108
Graph-150-8 12 12 1.454 12 12 0 1.201
Graph-150-9 12 12 1.463 12 12 0 1.202
Graph-150-10 12 12 1.461 12 12 0 1.201

Graph-200-1 14 14 3.271 14 14 0 3.307
Graph-200-2 14 14 3.272 14 14 0 3.307
Graph-200-3 14 14 4.978 13 14 0 282.284
Graph-200-4 14 14 4.221 14 14 0 3.4
Graph-200-5 14 14 4.168 14 14 0 3.401
Graph-200-6 15 15 3.947 15 15 0 293.515
Graph-200-7 19 19 3.495 19 19 0 315.091
Graph-200-8 14 14 4.93 13 14 0 271.91
Graph-200-9 14 14 4.93 13 14 0 266.971
Graph-200-10 12 12 3.525 12 12 0 2.606

137

Table B.9: Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.025)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 7 7 0.109 7 7 0 0.093
Graph-50-2 9 9 0.219 9 9 0 0.14
Graph-50-3 7 7 0.062 7 7 0 0.062
Graph-50-4 7 7 0.062 7 7 0 0.063
Graph-50-5 5 5 0.078 5 5 0 0.078
Graph-50-6 11 11 0.25 11 11 0 0.171
Graph-50-7 11 11 0.265 11 11 0 0.172
Graph-50-8 7 7 0.11 7 7 0 0.093
Graph-50-9 7 7 0.109 7 7 0 0.078
Graph-50-10 7 7 0.109 7 7 0 0.094

Graph-100-1 11 11 1.311 10 11 0 38.36
Graph-100-2 16 16 1.357 16 16 0 1.451
Graph-100-3 12 12 1.466 9 12 0 41.059
Graph-100-4 17 17 2.23 17 17 0 2.293
Graph-100-5 14 14 1.341 14 14 0 1.248
Graph-100-6 16 16 1.388 16 16 0 1.497
Graph-100-7 16 16 1.372 16 16 0 1.498
Graph-100-8 15 15 2.215 15 15 0 70.512
Graph-100-9 15 15 2.2 15 15 0 69.764
Graph-100-10 15 15 2.231 15 15 0 67.002

Graph-150-1 22 22 9.859 18 22 0 286.166
Graph-150-2 17 17 6.773 14 17 0 210.256
Graph-150-3 21 21 7.279 19 21 0 252.61
Graph-150-4 21 21 7.189 19 21 0 242.518
Graph-150-5 23 23 10.168 19 23 0 310.784
Graph-150-6 21 21 13.361 16 21 0 388.284
Graph-150-7 21 21 13.505 16 21 0 389.345
Graph-150-8 22 22 10.698 20 22 0 284.778
Graph-150-9 29 29 9.658 27 29 0 186.093
Graph-150-10 29 29 9.68 27 29 0 177.887

Graph-200-1 28 28 36.737 27 28 0 1046.121
Graph-200-2 29 29 36.364 25 29 0 1071.58
Graph-200-3 23 23 27.753 22 23 0 932.74
Graph-200-4 21 21 21.479 20 21 0 741.858
Graph-200-5 28 28 36.832 27 29 0 1071.642
Graph-200-6 31 32 44.647 30 32 0 1074.107
Graph-200-7 34 36 71.791 38 38 0 1272.385
Graph-200-8 31 31 36.925 28 31 0 978.853
Graph-200-9 29 29 43.821 23 29 0 1444.906
Graph-200-10 26 28 40.997 25 29 0 1048.382

138

Table B.10: Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.05)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 10 10 0.513 9 10 0 4.867
Graph-50-2 11 11 0.47 11 11 0 4.914
Graph-50-3 10 10 0.47 9 10 0 3.495
Graph-50-4 11 11 0.351 11 11 0 0.218
Graph-50-5 9 9 0.282 9 9 0 0.187
Graph-50-6 12 12 0.409 12 12 0 0.265
Graph-50-7 12 12 0.411 12 12 0 0.281
Graph-50-8 10 10 0.249 10 10 0 0.172
Graph-50-9 10 10 0.25 10 10 0 0.171
Graph-50-10 10 10 0.25 10 10 0 0.172

Graph-100-1 33 33 40.219 31 33 0 525.785
Graph-100-2 32 32 20.851 33 33 0 153.848
Graph-100-3 27 27 18.152 27 27 0 146.438
Graph-100-4 27 27 15.668 23 27 0 176.265
Graph-100-5 27 27 15.824 23 27 0 177.295
Graph-100-6 33 33 27.448 33 33 0 197.341
Graph-100-7 33 33 27.545 33 33 0 204.799
Graph-100-8 31 31 30.56 31 32 0 235.639
Graph-100-9 29 29 28.261 27 29 0 353.109
Graph-100-10 29 29 28.019 27 29 0 359.27

Graph-150-1 52 53 377.021 55 55 21.43 3608.639
Graph-150-2 45 50 329.893 50 50 20.63 3611.316
Graph-150-3 42 43 228.087 42 42 23.64 3605.425
Graph-150-4 41 48 368.877 34 34 51.43 3606.882
Graph-150-5 47 53 314.324 50 50 23.08 3613.397
Graph-150-6 69 69 303.342 60 69 0.00 2258.417
Graph-150-7 57 57 373.9 54 54 21.74 3619.574
Graph-150-8 52 58 322.967 51 51 25 3606.392
Graph-150-9 79 80 616.2 71 71 19.32 3600.199
Graph-150-10 67 72 510.775 69 69 13.75 3623.785

Graph-200-1 72 77 2072.716 73 73 42.97 3660.759
Graph-200-2 66 74 1987.643 49 49 60.48 3669.635
Graph-200-3 95 101 2065.05 82 82 40.58 3629.964
Graph-200-4 121 122 2054.738 123 123 13.38 3660.306
Graph-200-5 98 107 2047.859 98 98 27.41 3628.435
Graph-200-6 88 95 1641.525 90 90 18.92 3652.459
Graph-200-7 100 107 2024.412 85 85 30.89 3605.062
Graph-200-8 118 131 3405.085 114 114 19.15 3684.766
Graph-200-9 113 115 1944.281 106 106 17.19 3648.092
Graph-200-10 97 99 2181.707 97 97 23.02 3660.634

139

Table B.11: Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.1)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 21 21 6.88 19 22 0 20.952
Graph-50-2 38 38 29.125 34 38 0 22.106
Graph-50-3 29 29 11.309 29 29 0 10.593
Graph-50-4 35 35 16.785 35 35 0 14.102
Graph-50-5 32 33 20.03 32 33 0 15.99
Graph-50-6 41 41 16.392 41 41 0 8.424
Graph-50-7 41 41 16.367 41 41 0 8.518
Graph-50-8 26 26 4.034 26 26 0 12.168
Graph-50-9 26 26 4.047 26 26 0 11.935
Graph-50-10 26 26 4.03 26 26 0 12.792

Graph-100-1 99 99 4.83 99 99 0 12.091
Graph-100-2 94 94 16.24 94 94 0 15.632
Graph-100-3 94 94 15.382 94 94 0 173.85
Graph-100-4 95 95 17.55 95 95 0 15.351
Graph-100-5 92 92 16.614 92 92 0 17.176
Graph-100-6 92 92 21.184 92 92 0 17.691
Graph-100-7 93 93 22.416 93 93 0 19.781
Graph-100-8 93 93 20.247 93 93 0 18.253
Graph-100-9 93 93 21.466 93 93 0 18.065
Graph-100-10 92 92 27.502 92 92 0 229.308

Graph-150-1 150 150 0 150 150 0 0
Graph-150-2 150 150 0 150 150 0 0
Graph-150-3 150 150 0 150 150 0 0
Graph-150-4 150 150 0 150 150 0 0
Graph-150-5 150 150 0 150 150 0 0
Graph-150-6 146 146 82.539 146 146 0 52.695
Graph-150-7 147 147 96.969 147 147 0 51.774
Graph-150-8 149 149 8.63 149 149 0 47.984
Graph-150-9 148 148 79.452 148 148 0 47.674
Graph-150-10 150 150 0 150 150 0 0

Graph-200-1 200 200 0 200 200 0 0
Graph-200-2 200 200 0 200 200 0 0
Graph-200-3 200 200 0 200 200 0 0
Graph-200-4 200 200 0 200 200 0 0
Graph-200-5 200 200 0 200 200 0 0
Graph-200-6 200 200 0 200 200 0 0
Graph-200-7 200 200 0 200 200 0 0
Graph-200-8 199 199 21.69 199 199 0 127.422
Graph-200-9 199 199 23.057 199 199 0 121.823
Graph-200-10 200 200 0 200 200 0 0

140

Table B.12: Results of solving the MsCP using VNS and B&B algorithms(s=3, d=0.15)

Instance VNS B&B
LB-1 s-club CPU LB∗ s-club Gap CPU

size (sec) size (%) (sec)

Graph-50-1 49 49 1.077 49 49 0 1.514
Graph-50-2 46 46 1.201 46 46 0 1.919
Graph-50-3 48 48 1.107 48 48 0 1.638
Graph-50-4 44 45 1.014 44 45 0 9.159
Graph-50-5 48 48 1.014 48 48 0 1.7
Graph-50-6 43 43 1.061 43 43 0 1.872
Graph-50-7 43 43 0.952 43 43 0 1.514
Graph-50-8 43 43 0.952 43 43 0 1.514
Graph-50-9 43 43 0.936 43 43 0 1.498
Graph-50-10 50 50 0 50 50 0 0

Graph-100-1 100 100 0 100 100 0 0
Graph-100-2 100 100 0 100 100 0 0
Graph-100-3 100 100 0 100 100 0 0
Graph-100-4 100 100 0 100 100 0 0
Graph-100-5 100 100 0 100 100 0 0
Graph-100-6 99 99 5.92 99 99 0 13.839
Graph-100-7 100 100 0 100 100 0 0
Graph-100-8 100 100 0 100 100 0 0
Graph-100-9 100 100 0 100 100 0 0
Graph-100-10 99 99 5.76 99 99 0 13.449

Graph-150-1 150 150 0 150 150 0 0
Graph-150-2 150 150 0 150 150 0 0
Graph-150-3 150 150 0 150 150 0 0
Graph-150-4 150 150 0 150 150 0 0
Graph-150-5 150 150 0 150 150 0 0
Graph-150-6 150 150 0 150 150 0 0
Graph-150-7 150 150 0 150 150 0 0
Graph-150-8 150 150 0 150 150 0 0
Graph-150-9 150 150 0 150 150 0 0
Graph-150-10 150 150 0 150 150 0 0

Graph-200-1 200 200 0 200 200 0 0
Graph-200-2 200 200 0 200 200 0 0
Graph-200-3 200 200 0 200 200 0 0
Graph-200-4 200 200 0 200 200 0 0
Graph-200-5 200 200 0 200 200 0 0
Graph-200-6 200 200 0 200 200 0 0
Graph-200-7 200 200 0 200 200 0 0
Graph-200-8 200 200 0 200 200 0 0
Graph-200-9 200 200 0 200 200 0 0
Graph-200-10 200 200 0 200 200 0 0

141

Table B.13: Results of solving the MsCP using hybrid algorithm(s=2, d=0.15)

Instance Hybrid
LB-4 s-club size Gap (%) CPU (sec)

Graph-100-1 26 30 0 2225.15
Graph-100-2 23 25 0 1955.17
Graph-100-3 26 30 0 888.42
Graph-100-4 28 28 0 2815.3
Graph-100-5 23 26 0 2623.78
Graph-100-6 41 43 0 2263.01
Graph-100-7 43 43 0 946.17
Graph-100-8 43 46 0 2382.44
Graph-100-9 46 48 0 1208.29
Graph-100-10 34 35 0 1013.28

Graph-150-1 39 39 51.85 3584.47
Graph-150-2 41 41 48.75 3589.15
Graph-150-3 46 46 40.26 3609.77
Graph-150-4 45 45 40.79 3596.47
Graph-150-5 52 52 35 3598.95
Graph-150-6 93 93 0 2229.05
Graph-150-7 80 80 11.11 3599.93
Graph-150-8 49 49 18.33 3598.37
Graph-150-9 75 75 7.41 3614.8
Graph-150-10 91 91 3.19 3599.27

Graph-200-1 59 59 56.3 3556.32
Graph-200-2 78 78 44.68 3577.35
Graph-200-3 87 87 37.41 3564.67
Graph-200-4 101 101 26.28 3616.7
Graph-200-5 48 48 61.6 3602.94
Graph-200-6 101 101 13.68 3624.53
Graph-200-7 157 157 1.88 3604.6
Graph-200-8 124 124 6.77 3594.3
Graph-200-9 147 147 0 3444.36
Graph-200-10 120 120 10.45 3602.7

142

Table B.14: Results of solving the MsCP using hybrid algorithm(s=3, d=0.025, 0.05)

Instance d=0.025 d=0.05
LB-4 s-club Gap CPU LB-4 s-club Gap CPU

size (%) (sec) size (%) (sec)

Graph-100-1 11 11 0 1.52 33 33 0 378.34
Graph-100-2 16 16 0 1.74 32 33 0 165.69
Graph-100-3 12 12 0 1.90 27 27 0 148.70
Graph-100-4 17 17 0 2.82 27 27 0 128.79
Graph-100-5 14 14 0 1.66 27 27 0 130.64
Graph-100-6 16 16 0 1.73 33 33 0 196.5
Graph-100-7 16 16 0 1.70 33 33 0 199.56
Graph-100-8 15 15 0 56.20 31 32 0 218.94
Graph-100-9 15 15 0 54.46 29 29 0 262.36
Graph-100-10 15 15 0 53.33 29 29 0 257.41

Graph-150-1 22 22 0 219.39 53 53 23.19 3600.293
Graph-150-2 17 17 0 170.24 50 50 19.35 3605.634
Graph-150-3 21 21 0 185.45 43 43 20.37 3607.645
Graph-150-4 21 21 0 181.23 48 48 29.41 3613.699
Graph-150-5 23 23 0 234.1 53 53 17.19 3600.679
Graph-150-6 21 21 0 283.51 69 69 0 1530.063
Graph-150-7 21 21 0 278.81 57 57 16.18 3554.371
Graph-150-8 22 22 0 211.58 58 58 13.43 3605.501
Graph-150-9 29 29 0 141.25 80 80 8.05 3607.561
Graph-150-10 29 29 0 146.34 72 72 7.69 3602.87

Graph-200-1 28 28 0 859.98 77 77 39.84 3621.68
Graph-200-2 29 29 0 864.59 74 74 40.32 3609.823
Graph-200-3 23 23 0 765.88 101 101 26.81 3607.112
Graph-200-4 21 21 0 620.55 122 122 14.08 3602.481
Graph-200-5 28 29 0 890.37 107 107 20.15 3591.639
Graph-200-6 32 32 0 853.6 95 95 15.18 3604.171
Graph-200-7 36 38 0 1322.53 107 107 12.3 3602.751
Graph-200-8 31 31 0 831.01 131 131 7.09 3609.511
Graph-200-9 29 29 0 934.565 115 115 10.16 3609.152
Graph-200-10 28 29 0 837.539 99 99 20.8 3600.769

143

