
PROTECTING NETWORKED SYSTEMS FROM MALWARE THREATS

A Dissertation

by

SEUNG WON SHIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Guofei Gu
Co-Chair of Committee, Narasimha Reddy
Committee Members, Alex Sprintson

Shuguang Cui
Head of Department, Chanan Singh

August 2013

Major Subject: Computer Engineering

Copyright 2013 Seung Won Shin



ABSTRACT

Currently, networks and networked systems are essential media for us to com-

municate with other people, access resources, and share information. Reading (or

sending) emails, navigating web sites, and uploading pictures to social medias are

common behaviors using networks. Besides these, networks and networked systems

are used to store or access sensitive or private information. In addition, major eco-

nomic activities, such as buying food and selling used cars, can also be operated with

networks. Likewise, we live with networks and networked systems.

As network usages are increasing and popular, people face the problems of net-

work attacks. Attackers on the networks can steal people’s private information,

mislead people to pay money for fake products, and threaten people, who operate

online commercial sites, by bothering their services. There are much more diverse

types of network attacks that torture many people using networks, and the situation

is still serious.

The proposal in this dissertation starts from the following two research questions:

(i) what kind of network attack is prevalent and how we can investigate it and (ii) how

we can protect our networks and networked systems from these attacks. Therefore,

this dissertation spans two main areas to provide answers for each question.

First, we analyze the behaviors and characteristics of large-scale bot infected

hosts, and it provides us new findings of network malware and new insights that are

useful to detect (or defeat) recent network threats. To do this, we investigate the

characteristics of victims infected by recent popular botnet - Conficker, MegaD, and

Srizbi. In addition, we propose a method to detect these bots by correlating network

and host features.
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Second, we suggest new frameworks to make our networks secure based on the

new network technology of Software Defined Networking (SDN). Currently, SDN

technology is considered as a future major network trend, and it can dynamically

program networks as we want. Our suggested frameworks for SDN can be used to

devise network security applications easily, and we also provide an approach to make

SDN technology secure.
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1. INTRODUCTION

Currently, networks and networked systems are intertwined with our lives. A

student sends an email to deliver his report to a professor; a man shares his recent

photos with his parents, who live on different continents, through a social network

service; and a manager, who owns his e-commerce site, sells new basketball shoes

through the Internet. All of these activities can be observed easily around us, and

the networks and networked systems make our lives more productive and efficient.

As many devices that we use daily are connecting to network systems, we face new

threats that attack these systems. Attackers conduct different malicious operations

to steal money or just to show off their abilities. For example, an attacker may

reveal hosts that can be reached through a network and have certain vulnerabilities,

and can steal sensitive information, such as bank account numbers and confidential

documents, from the hosts. Moreover, an attacker can make web services fail in

handling requests from normal clients by sending a great number of fake network

packets to the services

Currently, such network attacks are major hurdles in building network environ-

ments that can make our lives better. If these attacks become more widespread and

common, people will hesitate to use network services. This will be a serious obstacle

in the development of networks in our lives.

Our research is motivated by this problem, and we ultimately intend to stop these

network attacks and make our networks more secure. To achieve this goal, we first

need to know about network attacks; thus, we must investigate how attackers operate,

infect hosts, and conduct malicious operations. By analyzing network attacks, we

can understand them, and this represents the starting point of research with the goal
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of defending our networks. However, it is very hard to survey all network threats

because they are so diverse. Therefore, in this research, we have decided to focus on

the analysis of some specific, serious network threats. Although this limits the scope

of the study, we believe that this can cover mainstream network threats and it can

help us reduce the effects of the most serious ones.

With the considerations mentioned above, we have selected bot malware as our

main target. Bot malware infects victim hosts, and it makes them be controlled by a

malware writer (we call this writer a bot-master). The bot-master controls infected

hosts to conduct different malicious operations. For example, a bot-master can

steal sensitive information from infected hosts, and he performs distributed denial of

service (DDoS) attacks to crash network services by controlling them. Even worse,

a bot-master can rent these infected hosts to another people who want to engage

in malicious operations. Renting bot-infected hosts can help a bot-master to make

money, and this is a great motivation to malware writers. Thus, recently, many

serious network threats have been initiated by bot-infected hosts controlled by a

bot-master.

Some previous studies have investigated bot malware, mostly focusing on analy-

sis of bot malware binaries, which is important work [91, 102]. However, since bots

have infected so many victims and have so much potential to damage the Internet,

they deserve much deeper study. By analyzing the state-of-the-art botnet, we can

gain more knowledge of current malware, for example, how it differs from previ-

ous generation malware and whether such differences represent future trends. Such

deeper investigations could also provide new insights into developing new detection

and defense mechanisms for current and future malware.

In this context, we first provide deep analysis on bot-infected victims in Chap-

ter I. In this chapter, we analyze infected victims by looking at recent popular bot
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malware - Conficker [96], Srizbi [95], and Megad [81], and we provide our findings

and new insights based on them. This chapter also compares the results of analysis

concerning each bot to provide more interesting results. We perform an in-depth

cross-analysis of different botnet types and show what similarities and differences

exist between them. Slightly contradictory to the hypothesis stated above, we report

that both types of botnets have a large portion of overlapped victims, and the overall

victim distributions in IPv4 space are quite similar. At the same time, they show

several distinct characteristics. To obtain a fine-grained understanding of these simi-

larities and differences, we further perform an in-depth set of large-scale passive and

active measurement studies from several perspectives, such as IP geographical loca-

tion, IP address population/density, network openness, and IP address dynamism.

The results reveal many interesting characteristics that could help explain the sim-

ilarities and differences between the two botnet infection types. More interestingly,

we demonstrate empirically that even if we only know some information about one

botnet (e.g., past botnet data), we can predict unknown victims of another botnet

(e.g., a future emerging botnet) with reasonably high accuracy, given that both bot-

nets use the same infection type (e.g., web-exploit). This sheds light on the promising

power of cross-analysis and cross-prediction.

Based on the results of the analysis, we devise a promising bot malware detection

system, and its prototype, called EFFORT, is presented in the second part (Chap-

ter II). This system detects bot malware by correlating the network- and host-level

characteristics of bot malware. Based on the intrinsic characteristics of bots, we

propose a multi-module approach to correlate information from different host- and

network-level elements, and design a multilayered architecture to efficiently coor-

dinate modules to perform heavy monitoring only when necessary. We implement

our proposed system and evaluated real-world benign and malicious programs run-
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ning on several different real-life office and home machines for several days. The

final results show that our system can detect all 15 real-world bots (e.g., Waledac,

Storm) with low false positives (less than 0.7%) and minimal overhead. We believe

that EFFORT raises the bar in the malware battle, and therefore this host-network

integrated design represents a timely effort in the right direction.

Understanding network threats and devising a malware detection system are both

important and necessary endeavors, which make many contributions when it comes

to removing network threats. However, they also have some limitations. We need to

keep investigating new network threats, and we should keep designing new defense

systems for new threats that emerge. Considering the relationships between attacker

and defender, this kind of approach may not be avoidable. Attackers keep developing

new attack methods, and defenders keep finding ways to defeat them. Is it possible

to stop this arms race, or at least reduce the burden of defenders?

It will be very hard to stop the progression of malware attacks and defense.

However, if we change our network environments with a focus on security, this can

help defenders to devise more effective and efficient systems to prevent attacks. This

is the second goal of this thesis; thus, we try to provide a new network architecture

that affords better security services than existing network environments.

Changing network architectures is not easy, and thus we need to identify an

efficient way do this. In this context, we find that software-defined networking (SDN)

is a good candidate technology, as it enables us to design new network environments

easily. SDN has quickly emerged as a new promising technology for future networks.

With the separation of the control plane from the data plane, thereby enabling

the easy addition of new, creative, powerful network functions/protocols, SDN has

attracted significant attention from both academia and industry. In academia, since

the publication of OpenFlow [62], which is a key component in realizing the SDN
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concept, many research ideas based on SDN/OpenFlow have been proposed [67]

[73] [87] [9] [38] [85] [15] [88]. In industry, SDN is widely considered to be the

new paradigm for future networks, and many companies are deploying or plan to

deploy such technology in order to strengthen their network architectures, reduce

operational costs, and enable new network applications/functions.

Likewise, SDN has potential as a future networking technology, and we have

decided to use it to design our new network architecture with an emphasis on secu-

rity. Thus, we introduce a new security application development framework called

FRESCO, which represents our first step in making networks more secure. The aim of

FRESCO is to address several key issues that can accelerate the composition of new

SDN-enabled security services. It exports a scripting API that enables security prac-

titioners to code security monitoring and threat detection logic as modular libraries.

These modular libraries represent the elementary processing units in FRESCO, and

may be shared and linked together to provide complex network defense applications.

FRESCO currently includes a library of 16 commonly reusable modules, which

we intend to expand over time. Ideally, more sophisticated security modules can

be built by connecting basic FRESCO modules. Each FRESCO module includes

five interfaces: (i) input, (ii) output, (iii) event, (iv) parameter, and (v) action.

By simply assigning values to each interface and connecting necessary modules, a

FRESCO developer can replicate a range of essential security functions, such as

firewalls, scan detectors, attack deflectors, or IDS detection logic.

FRESCO modules can also produce flow rules, and thus provide an efficient

means to implement security directives to counter threats that may be reported

by other FRESCO detection modules. Our FRESCO modules incorporate several

security functions ranging from simple address blocking to complex flow redirection

procedures (dynamic quarantine, or reflecting remote scanners into a honeynet, and
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so on). FRESCO also incorporates an API that allows existing DPI-based legacy

security tools (e.g., BotHunter [34]) to invoke FRESCO’s countermeasure modules.

Through this API, we can construct an efficient countermeasure application, which

monitors security alerts from a range of legacy IDS and anti-malware applications

and triggers the appropriate FRESCO response module to reprogram the data planes

of all switches in the SDN network.
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2. UNDERSTANDING BOT MALWARE

2.1 Introduction

Botnets have become serious threats to the Internet. They send huge amount

of spam emails and perform DDoS attacks on popular web servers [41]. To perform

these attacks more efficiently and effectively, botmasters, who control botnets, keep

trying to recruit new victims. In their infection trials, two methods are popular:

network scanning and web-exploit. These two methods are quite different from each

other. Figure 2.1 (a) shows a botnet using the network scanning method (randomly

or with some local preference) to find new victims who have the same network service

vulnerabilities. If successful, it will try to install malicious binaries on them. This

approach is active and does not require any user operations (user-independent). In

addition, it can be considered a server-side vulnerability exploitation, because it

depends on opened (vulnerable) network services. In this work, we define this type

of botnet infection as Type I.

(a) Type I infection of scanning botnets (b) Type II infection of web-exploit botnets

Figure 2.1: Infection approaches of scanning and web-exploit botnets.
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In the case of a botnet using the web-exploit method (Figure 2.1 (b)), it finds

new victims by sending spam emails (or other social messages) which include URL

links pointing to malicious sites. If the recipient clicks the URL link, malware could

exploit browser vulnerabilities and be installed on his host automatically (a.k.a drive-

by download attack). This approach highly depends on user interactions (i.e. the

user has to click/visit malicious URLs in order to be infected). Thus, we consider

this web-exploit type of botnet infection user-dependent and relatively passive. It

can also be regarded as a client-side infection, because its infection depends on client

behaviors and browser vulnerabilities. In this work, we define this type of botnet

infection as Type II.

Several previous studies have made attempts to understand the characteristics

of botnets, becuase of their serious threats [107, 94, 55, 14]. These studies provide

interesting observations and insights. However we find that most these studies focus

on one botnet or one type of botnets (i.e., focusing on analysis of multiple botnets

employing the same infection approach).

This tendency lets us invoke a question of ”why is it hard to find some stud-

ies which compare multiple botnets employing different infection methods from each

other, when we can infer that botnets using different infection approaches show quite

different characteristics?”. The main reason might be difficulty of collecting and

analyzing large-scale data of multiple botnets. To collect large-scale botnet data,

we have to set up a data collecting system and it requires a lot of servers, network

devices, and other related equipments (e.g., power supply). It is not s simple job

and costs too much. Even if we can set up the data collecting system and gather

enough data, analyzing the data is another problem, because it is very hard to find

meaningful information from the data.

The main goal of this work is to provide a large scale cross-analysis of multiple
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botnets, whose infection approaches are different from each other. In particular, we

intend to answer the following questions:

• Do these two types of botnets have different infection patterns, such as the

distribution of their victims? And how similar or different are they? From

the above description, it is reasonable to guess that they might have different

infection patterns given the fact that their infection vectors/methods are so

different. However, there is no prior work to confirm whether this hypothesis

is true or not.

• Why do these two types of botnets exhibit similar/different infection patterns?

If they have similarities, who are the common victims (that are extremely

vulnerable to both infection types)? If they have differences, why are some

victims more vulnerable to one infection type than the other one?

• What can we learn from cross-analysis? What new implications and insights

can we gain? How can they guide us towards new malware defense strate-

gies/techniques?

2.2 Data Collection and Term Definition

In this section, we provide information of data that we have analyzed and we

define several terms used in this work.

2.2.0.1 Data Collection

To understand the characteristics of different types of botnets, we have collected

data for three major botnets: Conficker, MegaD, and Srizbi. Conficker [96] is a

recent popular botnet known to have infected several million Internet machines. It

propagates automatically through network scanning. It first scans random networks

to find new victims and if it infects a host successfully, it scans neighbor networks
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of the host to find victims nearby [19]. Thus it is a representative example of Type

I botnets. The MegaD [81] and Srizbi [61] botnets are two recent botnets known

for sending large volume of spam since 2008. In particular, it is mentioned that

MegaD was responsible for sending about 32% of spam worldwide [81] and Srizbi

was responsible for sending more than half of all the spam in 2008 [72]. They are

representative examples of Type II botnets because they spread by drive-by-download

[81, 61] or pay-per-install methods [20].

The Conficker botnet data has been collected by setting up sinkholing servers

because Conficker uses domain-fluxing to generate C&C domain names for victims

to contact [96]. With the help of shadowserver.org, we have collected a large dataset

of Conficker infection including about 25 million victims [86]. The shadowserver.org

has set up several sinkhole servers and registered the domain names same as the

Conficker master servers to redirect queries of the Conficker bots to the sinkhole

servers. Then, the sinkhole servers capture the information of hosts contacting them

and the hosts can be considered as the Conficker infected victims.

Botnet Data Source Main Infection Vector # of Victims Collection Date

Conficker Sinkhole server [84] network scanning 24,912,492 Jan. 2010
MegaD Spam trap [8] drive-by-download or PPI 83,316 Aug. 2010
Srizbi Spam trap [8] drive-by-download 106,446 Aug. 2010

Table 2.1: Data summary of collected botnets.

The MegaD and Srizbi botnet data has been collected through the botlab project

[8], of which spam trap servers were used to gather information of hosts sending spam

emails. The detailed summary information regarding our collected data is presented

in Table 3.2. The botlab project captures spam emails from spam-trap servers and
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further investigates the spam emails through various methods such as crawling URLs

in the spam emails and DNS monitoring. From correlating the investigation results,

the botlab project finally reports which hosts are considered as infected by spam-

botnets such as MegaD and Srizbi.

2.2.0.2 Term Definition

Before we perform cross-analysis on the data, there are several important issues

to be addressed which can bias our result. The first thing is the dynamism of the

IP address of a host. Many ISPs use dynamic IP address re-assignment to manage

their assigned IP addresses efficiently [106]. This makes it hard to identify each host

correctly. This may cause some biases in measuring the population or characteristics

of the botnet [75]. Second, we are not likely to collect the complete data of certain

botnets but only parts of the data (e.g., MegaD and Srizbi), and this can also cause

some biases.

To account for these issues, instead of basing our analysis unit granularity on the

individual IP address level, we generalize our analysis to examine at the network/-

subnet level by grouping adjacent IP addresses. This will help mitigate the effect of

dynamism, because it is common that dynamic IP addresses of a host come from the

same address pool (subnet). Also, we believe that it is sufficient to examine subnets

because even if only one host in the network is infected, the neighbor hosts are likely

to be vulnerable or be infected soon [86].

In this work, we define our base unit for analyzing, i.e., “infected network”, as the

/24 subnet which has at least one malware infected host. Thus, if a sub-network is

infected by a Type I botnet, we call the subnet a Type I infected network and a similar

definition is also applicable to Type II infected networks. In addition, we define a

Common infected network as an infected network which has victims of both types of
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botnets. There may be some infected networks that are exclusively infected by either

Type I or Type II, which are defined as Type I EX or Type II EX infected networks,

respectively.

In our data set, we found 1,339,699 infected networks in the case of the Conficker

botnet, 71,896 for the MegaD botnet, and 77,934 for the Srizbi botnet. Thus, we have

data for around 1,339,699 infected networks for the Type I botnet and 137,902 infected

networks for the Type II botnet∗. From this we have identified 97,290 Common

infected networks.

2.3 Cross-Analysis of Botnet Victims

In this section, we provide detailed cross-analysis results of two types of botnets.

2.3.1 Point of Departure

We start our analysis with the following Hypothesis 1 that we proposed in Section

2.2.

Hypothesis 1. Since the two types of botnets have very different infection vec-

tors, they may exhibit different infection patterns (e.g., distributions of their infected

networks).

To verify this hypothesis, we measure how many infected networks are shared by

both types of botnets and how they are different from each other. The basic mea-

surement results are shown in Figure 2.2. Figure 2.2(a) shows the distribution for

infected networks of each type of botnet over the IP address spaces (Type I (Con-

ficker), II (MegaD and Srizbi), and Common infected networks). Interestingly, the

distributions of Type I and Type II botnets are very similar to each other. Specifi-

∗There are 11,928 infected networks in common between MegaD and Srizbi.
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(a) Infected network distributions (b) Infected network diagram

Figure 2.2: Infected network distributions and diagram.

cally, the IP address ranges of (77.* - 96.*), (109.* - 125.*), and (186.* - 222.*) are

highly infected by both types of botnets and their shared regions (Common) are also

distributed in the similar ranges.

To investigate how many infected networks are “really” shared between them, we

draw a diagram which represents the number of infected networks of each type of

botnet and networks that they share in common in Figure 2.2(b). There are 97,290

Common infected networks, 1,242,409 Type I EX networks, and 40,612 Type II EX

networks.

Contrary to our expectation, the two types of botnets are distributed over similar

IP address ranges and there are many Common infected networks between them.

However, this observation is only about the distribution over the IP address space

and it is very hard to find semantic meanings such as their physical locations from

this result. For instance, even though we know a /24 subnet 111.111.111/24 is an

infected network, we may not understand who are using the subnet and where the

subnet is located. More importantly, why is the subnet more likely to be infected
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by certain type (or both types) of botnets? In addition, the ranges are too broad to

comprehend clearly. We show range (77.* - 96.*) is highly infected, but that does

not mean that all IP addresses in the range are infected, we need more fine-grained

investigation. Besides that, we also find that there are some differences between

them (i.e., Type I EX and II EX infected networks are still significant) and they also

need to be understood, because they can show which ranges are more vulnerable to

which type of botnet. Only considering IP address ranges might not clearly show

these differences.

Thus, we are motivated to consider more viewpoints that provide us some under-

standable meanings with fine-grained level semantic information. We have selected

four interesting viewpoints (we call them categories): (i) geographical distribution of

infected networks, which lets us identify more (or less) vulnerable locations and their

correlation with certain types of infections, (ii) IP address population/density, which

helps us understand relationships between the number of assigned IP address to the

country and the number of infected networks of the country, (iii) remote accessibility

of networks, which shows us how open (and thus possibly prone to infection) the

networks are and whether there is a correlation with certain infection types, and

(iv) dynamism of IP addresses, which tells us whether vulnerable networks use more

dynamic IP addresses and the correlation with infection type. In each category, we

build a hypothesis based on some intuition and then we perform a large scale passive

or active measurement to verify the hypothesis and gain some insights.

Insight 1. Interestingly, the two types of botnets are distributed in similar IP

address ranges despite of their different infection types. In addition, the ranges are

continuous and it might imply that vulnerable networks are close to each other. More

fine-grained analysis over the ranges might help us find new results and insights.
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2.3.2 Geographical Distribution of Infected Networks

In our first test, we have observed that two types of botnets seem to have similar

distributions over the IP address space. Thus, we could infer that the distributions

of two different types of botnets over geographical locations are similar to each other.

From this intuition, we make the following hypothesis.

Hypothesis 2. Type I and Type II infected networks are mainly distributed over

similar countries.

(a) Common (b) Type I and I EX (c) Type II and II EX

Figure 2.3: Infected network distributions over the countries (x-axis for country code,
y-axis for percentage)

To verify this hypothesis, we investigate how each type of infected network is

distributed over countries. When we observe the overall distribution of each type of

botnet over the countries, we find that all Common, Type I, Type I EX, Type II, and

Type II EX infected networks spread all over the world (with the exception of Africa),

but there are some concentrated areas. To analyze the result in detail, we select the

top 16 countries of each case and show their distributions in Figure 2.3. Results are

sorted by the number of infected networks of the countries. Here, X-axis represents
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the country code and Y-axis represents the percentage of each infection type, e.g., if

there are 100 Common infected networks overall and 14 infected networks are located

in Turkey (its country code is TR†), the percentage of Turkey is 14%.

In Figure 2.3(a), Common infected networks are mainly distributed in Asia (e.g.,

Turkey, Korea, Russia, China, and India) with more than 35%. Figure 2.3(b) also

presents that Type I and I EX infected networks are mainly distributed over Asia.

The distributions of Type I EX infected networks are quite similar to that of Type I.

The distributions of Type II and II EX infected networks are shown in Figure 2.3(c).

Here we still observe more than 30% as being located in Asia.

From the observations, we find two interesting things. First, the set of countries

that are highly infected are not very different for each type of botnet (i.e., if some

countries are highly infected by Type I botnet, they are also likely to be infected by

Type II botnets). This implies that these countries are more prone to be infected

regardless of infection methods. Second, there are some countries that are highly

vulnerable to one type of botnet over the other. China is a good example of this.

China has a lot of Type I infected networks. However, it has relatively small portions

of Type II infected networks. We presume that most of the networks in China are

accessible from remote scanning botnets because Type I botnets usually use network

scanning techniques to find new victims. We will test this in section 2.3.4 and show

whether our presumption is correct.

Insight 2. There are some countries which are prone to be infected by both types

of botnets. However, some other countries are more likely to be infected by one type

†Each country code represents followings; AR Argentina, AU Australia, BR Brazil, CA Canada,
CL Chile, CN China, CO Colombia, DE Germany, ES Spain, FR France, GB Great Britain, IN
India, IT Italy, JP Japan, KR South Korea, MX Mexico, NL Netherlands, PE Peru, PL Poland, RO
Romania, RU Russian Federation, SE Sweden, TH Thailand, TR Turkey, TW Taiwan, US United
States, VN Vietnam
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of botnet. Management policies of networks (e.g., network access control) could affect

malware infection of the country.

2.3.3 IP Address Population

From the previous result, we know that the infected networks of each type of bot-

net are concentrated mainly within several countries but the infection rates between

them are different. Why is the infection rate between them different? Are there any

possible answers or clues that might explain this? To find out some clues, we first

focus on the number of IP addresses assigned to each country.

IP addresses are not assigned evenly over networks or locations [40] [43]. In terms

of the IPv4 address space, there are some IP address ranges which have not been

assigned to users but registered only for other purposes, e.g., (224.* - 239.*) is as-

signed for multicast addresses [40]. In addition, IP addresses have been assigned

differently over locations, e.g., more than 37% of IP addresses are assigned to the

United States, while Turkey only has less than 0.5% [43]. From this fact, we can

easily infer that countries that have more IP addresses could have more chances to

be infected by malware leading to Hypothesis 3. Here, we will use the term of IP

address population to represent the number of assigned IP addresses and we define

high IP address population country as the country ranked in the top 30 in terms of

the number of assigned IP addresses, and low IP address population country as the

country ranked below 30. All ranking information is based on [43].

Hypothesis 3. Countries with more IP addresses (high IP address population

countries) might contain more of both types of infected networks than low IP address

population countries.
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Figure 2.4: Infected network distribution versus IP address population (x-axis for
percentage of assigned IP addresses to a country, y-axis for percentage of infection
of each type of botnet in the country)

To verify this hypothesis, we compare the number of infected networks of each

type of botnet with the number of IP addresses assigned to each country. The

comparison results are shown in Figure 2.4. We can see that the number of infected

networks of the Type I, II, I EX, II EX botnets are relatively proportional to the

IP address population (i.e., the more IP addresses a country has, the more infected

networks it contains). However, in the case of Common infected networks, they

are NOT proportional to IP address population. On the contrary, they are mainly

distributed over some low IP address population countries.

Intuitively, countries with more IP addresses have more chances to be infected.

Thus, we can easily accept the results of Type I, II, I EX, II EX. However, why do

some high IP address population countries have less Common infected networks while

some low IP address population countries have more? There may be several possible
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reasons for this. For example, the security education/knowledge of people may play

a role. People may open some vulnerable services or click suspicious URLs without

serious consideration, if they do not have enough education/knowledge of security

in some countries. Another possible reason is in regards to network management. If

networks in a country are well managed and protected very carefully, it is harder for

malware to find chances to infect the networks. Thus, malware infection rate would

not be proportional to the number of IP addresses in the country.

The other interesting point is the percentage of infected networks over all net-

works of the country (e.g., if a country has 100 networks and if 10 networks among

them are infected, the percentage of infected networks of the country is 10%). We

have observed that high IP address population countries are likely to have more in-

fected networks. However, it does not mean that most (or a high percentage) of

networks in the country are infected. For example, even though the United States

has more number of Type II infected networks than other countries (except Turkey),

the infected networks may only cover small percentage of all networks in the United

States, because the country has around 38% of IP addresses of the world. This can

reveal some low IP address population countries whose networks are more vulnera-

ble (in terms of percentage) than other countries and they could be ignored if only

considering the absolute number of infected networks.

To investigate the percentage of infected networks of each country, we have

used the data from the IP2Location.com report [43]. In the report, we find that

2,505,141,392 IP addresses have been observed in the world. This may not cover all

observable IP addresses in the world. However we believe that it is close to the real

value. Their report also shows the percentage of IP addresses that each country has

out of all observed IP addresses.

We use this data to calculate the number of IP addresses assigned to each country.
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Then, we calculate the number of /24 sub-networks of each country by dividing the

number of IP addresses assigned to the country by 256. At this time, we make an

assumption that “IP addresses are assigned to each country with the minimum unit

size of /24 subnet” to make our calculation easy. And we calculate the ratio of

infected networks in each country with it and the number of infected /24 subnets.

This scenario can be formalized as follows.

• Θ = the number of all IP addresses in the world (i.e., 2,505,141,392)

• εj = the percentage of assigned IP addresses to the country j

• αj = the number of /24 subnets in country j

• γi = the number of infected networks of type i botnet (e.g., γ1 represent the

number of infected networks of Type I botnet)

• ηi = the percentage of infected networks of type i botnet in each country

Our goal is to calculate the value of η of each country, and this can be obtained

by the following formula (here j ∈ {1, 2, ..., 240}, and 240 denotes the number of

countries which have observable IP addresses).

• αj = Θ
256
∗ εj

• ηi = γi
αj
∗ 100, where i ∈ {1, 2}

The distribution of the values of η over some selected countries are shown in

Figure 2.5 2.7, and 2.7. This result is quite different from the previous result (in

Figure 2.3). In the case of Common (Figure 2.5), some top ranked countries in

Figure 2.3 show quite low η values. Russia, Korea, China, and the United States are

examples of this case, however Turkey still represents high η value. From the results,
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we can understand which countries are more vulnerable (i.e., high η value). Peru

is an interesting case. It has not been known as a country containing large number

of infected networks in our previous results. However large portions of its networks

in the country seem to be infected. Type I, I EX, II, and II EX also show similar

characteristics to the Common case and the results are shown in Figure 2.6 and 2.7.

Based on these results, we may focus on some vulnerable countries (e.g., Turkey

and Peru) to study infection trends of botnets. They may be good candidates for

monitoring in order to comprehend the infection trends of botnets.

Figure 2.5: Common case: η values of selected countries (x-axis for country code,
y-axis for η value)

Figure 2.6: Type I and EX case: η values of selected countries (x-axis for country
code, y-axis for η value)
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Figure 2.7: Type II and EX case: η values of selected countries (x-axis for country
code, y-axis for η value)

We try to reveal the reason why Turkey and Peru show high η values. From our

investigation, we find a possible reason. It can be caused by geopolitical reasons.

Some previous work pointed out that Turkey has been suffered from large cyber at-

tacks generated by its neighbor countries such as Russia [5]. This explanation is also

applicable to Peru, because it is surrounded by several countries that have a lot of

malware infected networks such as Brazil and Mexico.

Insight 3. To understand malware distributions, we might put our focus on not

only high IP address population countries with large number of infected networks, but

also some low IP address population countries where large portions of their networks

seem to be infected. Malware infection of these low IP address population countries

could be affected by geographical neighbors.

2.3.4 Remote Accessibility

Another category that we consider is the network openness or remote accessibil-

ity (i.e., whether a host can be directly accessed from remote hosts or not). As we

described in the previous section, one major infection vectors of the Type I botnet is

scanning remote hosts (or networks). Enterprise networks are usually protected by
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several perimeter defending systems such as firewalls, in an attempt to block mali-

cious threats from remote hosts. However, not all networks are protected as such and

if they are not protected, malware can infect internal unguarded hosts more easily.

From this intuition, we build the following hypothesis.

Hypothesis 4. Networks that are more open (more directly accessible from re-

mote hosts) might have more infected networks of Type I botnets than that of Type

II botnets.

We have tested the network accessibility by sending several Ping packets (i.e.,

testing ICMP reachability) to 5 randomly selected hosts in a network. If any of our

Ping queries is successful in selected hosts, we regard that the network is reachable

from remote hosts, otherwise we regard that the network is unreachable. This test

has been already used before to understand the network reachability by previous

work [12]. Note that this test may only show the lower bound of reachable networks,

because some perimeter defending systems (e.g., firewalls) block incoming ICMP

packets, or our randomly selected hosts may be not alive during testing. In this test,

we assume that each /24 subnet have the same network access control policy (i.e., if

one of the host in the same /24 subnet is accessible from the remote host, we consider

that all hosts in the same /24 subnet might also be accessible).

In our test, we can access 54.32% of Type I infected networks, which is more

than half. This indeed shows that Type I infected networks are more open (remote

accessible). It confirms our hypothesis, although we presume this ratio could be

higher for Type I. This could be probably explained by (a) our network reachability

test is only a low-bound estimation, and (b) more networks are aware of malware

scanning attacks and thus more (previously open) networks installed firewalls. In the
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case of the result for Type II, it shows 46.85% networks are accessible, which is much

less than Type I. This is probably because the infection vectors of Type II botnets do

not depend on remote accessibility.

The result of Common is interesting, because it shows more than 60% of net-

works are accessible. This implies that remote accessible networks are much more

vulnerable to malware attacks. It might be reasonable, because even though network

accessibility may not help Type II botnets infect hosts, at least it helps Type I botnets.

In addition, we measure the remote accessibility of networks of three countries:

Turkey, China and the United States. These countries show somewhat interesting

patterns (e.g., China has a lot of Type I infected networks, but has relatively small

number of Type II infected networks). In our measurement, we find that 64.09% of

networks in China are accessible from remote hosts. This corresponds with our pre-

vious prediction (i.e., networks in a country that has a lot of Type I infected networks

might be more accessible from remote hosts) in section 2.3.2. We discover that 51.8%

of networks are accessible in the case of Turkey and 40.92% of the United States.

This result seems to be reasonable, because these countries are more vulnerable to

Type II than Type I botnets.

Insight 4. Open (remote accessible) networks are more likely to be infected,

particularly by Type I infection. However, it does not mean that inaccessible networks

are much more secure, because malware (Type II infection) can still infect hosts in

protected networks by several smart attack methods such as social engineering.

2.3.5 Dynamism of IP Address

Previous work has shown that a lot of bots used dynamic IP addresses [106]. We

want to investigate whether the networks with more dynamic IP addresses are more
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vulnerable than those with static IP addresses for both types of botnet infections.

Hypothesis 5. Places (or networks) with more dynamic IP addresses are more

prone to be infected by both types of botnets.

To understand this, we have analyzed how many infected networks are using

dynamic IP addresses. For the analysis, we apply the technique of finding dynamic

IP addresses proposed by Cai et al. [12]. In their analysis, they used reverse DNS

PTR records of each host. They believed that the reverse PTR record can represent

the status of a host and if some keywords of a reverse PTR record represent dynamism

of IP address, the host is likely to use dynamic IP address. For instance, if a reverse

PTR record of a host A is dynamic-host.abcd.com, it is very likely for the host A to

use dynamic IP address, because its reverse PTR record has a keyword of dynamic-

host. Note that this test only shows the lower bound of dynamic networks due to

the limitation of reverse DNS lookup and selected keywords. Even though this test

can not show all networks using dynamic IP addresses, it could give us information

of which type of botnet has more dynamic IP addresses. Based on this idea, we use

the same keywords mentioned in [12] to find hosts (and finally networks) which are

likely to use dynamic IP addresses. If we find any host in a subnet using keywords

representing the dynamism, we simply consider that the subnet uses dynamic IP

addresses.

We have measured how many infected networks use dynamic IP addresses and

the results are summarized in Table 2.2. The results are quite interesting. In the

case of Type I, I EX, and II EX we find that around 50% of infected networks use

dynamic and other 50% of infected networks use static IP addresses. However, in

the case of Common and Type II, infected networks use more dynamic IP addresses
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Type Dynamic IP Static IP

Common 62% 38%
Type I 50.1% 49.9%
Type II 58.4% 41.6%
Type I EX 49.08% 50.92%
Type II EX 51.87% 48.13%

Table 2.2: Comparison of the percentage of dynamic or static IP addresses of each
type.

than static IP addresses.

The result of Common matches the previous result [106] which mentioned dy-

namic IP addresses are more vulnerable. However, the result of Type I does not

fully match the previous result, i.e., Type I botnet infection does not have noticeable

preference on networks with more dynamic addresses. This is actually reasonable

because Type I botnets locate a remote victim by scanning the IP address space

regardless whether the target address is dynamic or static. In the case of Type II

botnet infection, we do observe infection preference on networks with more dynamic

addresses. This is also reasonable because there are probably more home users in

these (dynamic) address space who have less security awareness and potentially more

vulnerable computers and web browsing patterns.

Insight 5. Networks with more dynamic IP addresses are more vulnerable to

malware attacks. This is more noticeable in the case of Type II botnet infection than

Type I.

2.4 Neighborhood Correlation of Botnet Victims

In this section, we provide a prediction approach based on our insights obtained

in the previous section.
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2.4.1 Watch Your Neighbors

Insight 1 in Section 2.3.1 points out that both types of botnets have heavily

uneven distributions of infected networks and there are several heavily (continuous)

infected areas in some part of the IPv4 space. This implies that infected networks

of both types of botnets might be close to each other, i.e., it is very likely for them

to be located in the same or similar physical locations and neighbor networks (e.g.,

belonging to the same /16 networks). This intuition has already been discussed

before and verified in some previous work for some Type I botnet [19] [55] [86]. An

interesting thing is that one of the previous work provides an approach of predicting

unknown victims based on the intuition and it predicts unknown victims with more

than 90% accuracy with only employing a simple method (e.g., K-Nearest Neighbor

classification) [86]. However, this work has only focused on the case of Type I botnets.

The reason for strong neighborhood (network) correlation of Type I botnets is

intuitive, because Type I botnets will very likely scan neighbor networks to recruit

new victims. Then, can we apply a similar prediction approach to Type II botnets?

At first glance, this might not be the case because Type II botnets have very different

infection vectors/types from Type I botnets. However, we have also shown in the

previous section that the distributions of both types of botnets are continuous and

seems to be close to each other (in Figure 2.2(a)). Thus, it is hard to immediately

draw a conclusion whether similar neighborhood correlation could be found in Type

II botnets or not. Next, we plan to empirically verify this myth.

The previous work [86] has used the K-Nearest Neighbor (KNN) classifier which

is a very popular machine learning algorithm and it uses neighbor information for

classification. We also apply the KNN algorithm and select the same features for

the KNN classifier used in [86]: /24 subnet address and physical location of infected
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networks.

To perform this experiment, we first prepare data for representing the class of

benign and malicious networks. At this time, the infected networks of Type II botnets

can be used to represent the malicious class. However, since we do not have data for

the benign class, we also collect many (at the same scale as malicious networks) clean

networks‡ to represent it. When we collect benign networks, we intentionally choose

those which are close to infected networks in terms of the IP address and physical

location, and they could be also neighbors of infected networks.

After the preparation, we divide each Type II botnet data (MegaD and Srizbi)

into two sets for training/testing. And then, we apply the KNN classifier to predict

unknown infected networks.

As shown in Table 2.3, the prediction results are quite interesting. Even though

the prediction accuracy is lower than the case of Type I botnet (i.e., [86] reported

around 93% of accuracy), our predictor for Type II botnet (in both MegaD and Srizbi

cases) shows more than 88% accuracy with some reasonably small number of false

positives.

Botnet K Prediction Accuracy False Positive Rate

MegaD
1 88.35% 7.35%
3 88.25% 7.36%
5 88.14% 7.54%

Srizbi
1 88.20% 6.23%
3 87.70% 6.04%
5 88.30% 5.77%

Table 2.3: Botnet prediction results.

‡We checked whether they are clean or not by looking up several DNS blacklists.
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The results imply that Type II botnets also have the similar characteristics as

Type I botnets (i.e., if a host is infected, its neighbors are also likely to be infected).

Then, why does this happen? It may be very hard to find concrete answers or clues

for this question (unlike the intuitive explanation for Type I infection).

From our investigations, we could provide a possible answer. It may be caused

by its infection media. As we described before, one promising infection method of

Type II botnets is drive-by-download, which typically uses spam emails containing

links to compromised web sites, to trick people into downloading malicious binaries.

Thus, the infection pattern of Type II botnet might highly depends on who receives

spam emails. We find articles describing how spammers harness email addresses [76]

[26], and they point out that collecting mailing lists is one of their main tasks. It is

likely for mailing lists to contain email addresses belonging to similar locations (e.g.,

same company and same university). It implies that spam emails are delivered to

people who are likely to be close to each other and thus victims infected by spam

emails might also be close to each other.

2.4.2 Cross-Bonet Prediction

We have shown that if a host is infected by a Type II botnet, its neighbor networks

are also likely to be infected by this Type II botnet. When we perform this test, we

treat data of MegaD and Srizbi separately. However we know that these two botnets

are very similar in terms of infection vectors. To confirm the similarity of their in-

fected networks, we calculate a manhattan distance between the distribution of the

two types of botnets. The manhattan distance between two items is the sum of all

feature value differences for each of the all features in the item, and it is frequently

used to denote whether two data distributions are similar or not (e.g., if a distance

between data distributions of A and B is smaller than between that of A and C, A
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and B are closer to each other than C). It can be formalized as the following equation

(assuming that there are two items/distributions of x and y, and they both have n

elements).

Manhattan Distance =
∑n
i=1 |xi − yi|

We use the probability distributions of infected networks of Conficker, MegaD,

Srizbi over IP address spaces to measure the manhattan distance and we find that the

manhattan distance between Conficker and MegaD is 1.1427, Conficker and Srizbi is

1.1604, and MegaD and Srizbi is 0.8404. From the results, we can easily see that

the distance between the Type I and Type II botnet distributions is larger than the

distance between the two type II botnets distributions. This result shows that the

distributions of infected networks with the same infection type are closer to each

other than that of different types of botnet (i.e., infected networks of botnets in the

same type show very similar distribution patterns).

This result gives us another insight that if two botnets share the same infection

vectors (i.e., they are of the same type), we might predict unknown infected networks

of one botnet (e.g., a future botnet) with the help of the information of the other

botnet (e.g., historic data). This insight can be verified with a similar test that

we have done before. We can perform a test by simply changing the training and

testing data set to cross botnets. In the previous test, we extract the training and

testing data from the same botnet. However in this case, we use data from botnet

A for training and data from botnet B for testing. For example, when we predict

(unknown) infected networks of the Srizbi botnet, we use data of the MegaD botnet

for training.

The cross-prediction results are quite surprising. As denoted in Table 2.4, this
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Botnet K Prediction Accuracy False Positive Rate

MegaD(train), Srizbi(test)
1 87.80% 7.41%
3 86.75% 7.49%
5 86.45% 7.69%

Srizbi(train), MegaD(test)
1 84.09% 6.53%
3 83.89% 6.31%
5 83.65% 5.09%

Table 2.4: Botnet cross-prediction results.

approach can predict unknown infected networks of the other botnet with more than

83% accuracy. This prediction accuracy is slightly less than what we observed pre-

viously. We believe that these results show us that even if we have no knowledge

of some botnets (e.g., a future emerging botnet), if we have some information of a

botnet whose infection vector is very similar to them§, we may be able to predict

unknown infected networks. To show a realistic example of application of the neigh-

borhood correlation, let us first assume that a network administrator knows historic

infected networks by Srizbi botnets. Then, he gets to know that the MegaD botnet

starts spreading but he does not have any information of which networks are and

will be infected. In this case, he can use the information of Srizbi botnet information

(e.g., victim distribution). Based on the physical location and IP address of victims

of Srizbi, he can predict future victim networks that will possibly be infected by

MegaD with a reasonably high probability.

2.5 Limitations and Discussions

Like any measurement/analysis work, our empirical study has some limitations

or biases. Even though we have collected a large amount of Conficker botnet data,

§Note that this is a very reasonable assumption because fundamental infection types of botnets
are very limited and do not change frequently.
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we have a relatively smaller amount of data for the MegaD and Srizbi botnets.

This might cause some bias in our measurement results and subsequent analysis. In

addition, the dynamism of IP addresses may lead to some over-estimation from the

collected data. To reduce some of the side effects, we generalize our analysis over a

network consisting of several adjacent IP addresses (i.e., measuring/analyzing over

/24 subnets instead of each individual host).

To discover interesting insights, we leverage some previous work. For example, we

use previous work to obtain how dynamic IP addresses are distributed over countries,

but the information is not complete, i.e., it does not cover all countries. However,

the provided information may help to uncover interesting cases (e.g., countries which

are highly infected by botnets), hence the information is still useful.

When we perform the test to find networks with dynamic IP addresses through

looking up reverse DNS PTR records of hosts in the networks, we may not collect

reverse PTR records from all hosts because registration of a reverse PTR record

is not always necessary. However previous work already verified the feasibility of

such kind of test [12], lending credibility to these results (at least providing a good

low-bound estimation).

2.6 Related Work

There are several studies of measurement or analysis of the Type I botnet victims.

CAIDA provides basic information about the victim distribution of the Conficker

botnet in terms of their IP address space and physical location [14]. In [55], Krish-

nan et al. conducted an experiment to detect infected hosts by Conficker. Weaver

[103] built a probabilistic model to understand how the Conficker botnet spreads via

network scanning. These studies provided useful and interesting analysis of the Con-

ficker botnet. Shin et al. provided a large scale empirical analysis of the Conficker

32



botnet and presented how victims are distributed [86]. However, our work is differ-

ent from them in that we perform cross-analysis of different botnets and propose an

early warning approach based on cross-prediction. Even though [86] observed neigh-

bor correlation in Conficker, this work differs in that we empirically verified similar

neighborhood correlation in Type II botnets. In addition, we have proposed and ver-

ified cross-botnet prediction techniques to predict unknown victims of one botnet

from the information of the other botnet if they have similar infection vectors.

Measurement studies of the Type II botnet were also conducted. In [61], Mori

et al. performed a large scale empirical study of the Srizbi botnet. John et al. set

up a spam trap server to capture botnets sending spam emails [46]. This work also

showed the distribution of victims in terms of their IP addresses. Even though these

studies provided detailed analysis of some Type II botnet(s), they still differ from our

work in that they concentrate on a single (or one type of) specific botnet.

Some interesting studies from the analysis of Type II botnets have been also

proposed. In [20], Cho et al. analyzed the MegaD botnet and showed how it works.

Caballero et al. provided an interesting technique to infiltrate the MegaD botnet

and performed an analysis of its protocol [11].

Cai et al. measured how IP addresses are distributed over the world through

several interesting sampling techniques [12]. Our work leverages some of its results

but is different from their work in the main purpose.

2.7 Summary of this Chapter

In this chapter, we have collected a large amount of real-world botnet data

and performed cross-analysis between different types of botnets to reveal the dif-

ferences/similarities between them. Our large scale cross-comparison analysis re-

sults allow us to discover interesting findings and gain profound insights into botnet
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victims. Our results show fine-grained infection information and nature of botnet

victims. They show some interesting relationships between geopolitical issues and

malware infection, which might be the first work shedding light on this correlation.

This study can guide us to design better botnet prediction or defense systems.
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3. DETECTING BOT MALWARE∗

3.1 Introduction

In the previous chapter, we show the analysis results of bot infected hosts and

some new insights based on our findings. These analysis results and insights can guide

us to devise a new bot malware detection system, and in this chapter, we describe

an approach of detecting bot malware based on our experiences and knowledge from

our previous research (in Chapter 2). Before talking about the detection system, we

briefly survey the existing bot malware detection systems to understand their weak

and strong points.

To eradicate the threats posed by bot malware, a lot of research has been proposed

so far, and they fall into two main categories: (i) network-level detection and (ii)

host-level detection. Network-level detection approaches focus on network behaviors

of bots/botnets. They typically concentrate on finding common patterns of network

flows between bots and their botmasters (a.k.a C&C channels) [34, 32, 35]. Host-

level detection approaches investigate bot runtime behaviors mainly using system

call monitoring and/or data taint analysis [53, 92].

Both approaches have their own advantages and disadvantages in detecting bots.

Network-level detection approaches can detect different types of bots without impos-

ing overhead to the hosts, because they mainly monitor network traffic. However,

their limitations appear when they need to detect a bot communicating through en-

crypted messages or with evasion attempts [93]. Host-level detection approaches, on

the contrary, analyze suspicious runtime program behaviors in the host, so that they

∗Reprinted with permission from “EFFORT: A new hostnetwork cooperated framework for ef-
ficient and effective bot malware detection” by Seungwon Shin, Zhaoyan Xu, Guofei Gu, 2013.
Computer Networks, Copyright [2013] by Elsevier.
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can detect a bot even if it uses an encrypted communication channel. However, they

typically suffer from performance overhead because they need to monitor all invoked

system calls [53] at realtime and/or taint memory locations touched by the program

for information flow taint analysis [92].

After surveying both approaches, we have the following questions: (i) Is it possible

to design solutions consisting of strengths from both approaches? (ii) What kinds of

features/heuristics of each approach are helpful to build an effective system? and (iii)

Given these features, how do we combine them in an efficient way? If we can answer

questions of (ii) and (iii), then we could build a system that potentially answers the

first question.

We start with thoroughly examining prevalent bots to deeply understand their

intrinsic characteristics that they have regardless of their various implementations,

operations, and C&C communications. Knowledge obtained when we perform the

research described in the previous chapter, we observe the following invariants that

hold true for almost all bots. First, they are automated programs that are non-

human driven at the host side. Second, in order to be flexible and robust for C&C

purposes and detection evasion, they heavily use DNS tricks for rallying. For exam-

ple, they use dynamic DNS service, fast-flux service networks [39], or even domain

fluxing [91]. And again their DNS queries are non-human driven unlike most normal

programs. Third, in order to be useful, bots have to heavily access system resources.

For example, they will attempt to read/steal information in file systems, change

critical registry entries, or create new files/sockets. Finally, if we treat a networked

program as a communication information processing unit, most normal client pro-

grams (e.g., browsers) are intent to gain information. However, bot programs tend

to be more information leaking/losing oriented for most of their malicious activities

(and they tend to minimize incoming communication to minimize possible detection
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probabilities).

Observing the characteristics described above gives us new insights to detect

bot malware more effectively and robustly. For each characteristic observed, we

further investigate possible features or heuristics that contribute to effective and

efficient detection. Naturally, we need to collect, combine, and correlate essential

information at both host and network level. In particular, one unique feature of our

approach is the tight combination/correlation of both host and network information.

For example, we correlate network communications to corresponding programs at

host level. Thus, different from all existing network-based approaches with basic

analysis unit at per-host (IP) level, our granularity of network analysis can attribute

to more fine-grained per-process level. This itself provides many advantages such as

more accurate source attribution, and potentially more accurate detection results

because it avoids the possible ambiguity and unwanted aggregation/mixing of traffic

from all local programs.

To be more exact, at host level, we provide lightweight human-process-network

correlation analysis. We correlate human-computer interaction with each program,

and record correlated clues between network connections and running programs.

Further more, we can monitor system resource exposure patterns of suspicious pro-

cesses (e.g., those have non-human driven network communications). Our intuition

is that the exposure surface of system resources, such as files, registries, and network

sockets, is different between benign programs and bots.

At network level, we extract several different types of features. First, we build

a reputation engine to characterize a process’ reputation through examining “who

you are” and “whom you are talking to”. Our intuition is that the reputation of a

process could possibly be decided by the reputation of its social contact surface, i.e.,

reputations of communicated remote servers/hosts. This is intuitively sound because
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bot malware will communicate with “bad” server/host while good software tends to

communicate with “good” ones. Although a pre-established host reputation database

(or blacklist) is helpful, we do not require it as prior knowledge. Instead, we can use

anomaly-based features from DNS registration information. More importantly, we

want leverage community-based knowledge and intelligence by using public search

engines to locate information about certain communicated targets and then infer

their reputation. The interesting use of Google search engine was initially proposed

in [97] with great success for traffic measurement. We differentiate ourselves from it

in our different goal (for security purpose) and different use of features. Finally, we

also analyze network information trading rate for any process to infer how likely the

networked program is information gaining oriented or information leaking/outgoing

oriented.

In short, this chapter makes the following contributions.

• We propose a new host-network cooperated framework for bot malware detec-

tion with correlative and coordinated analysis. This design demonstrates an

important step from current state-of-the-art toward both effective and efficient

botnet detection.

• We implement EFFORT, a prototype system containing several novel modules

(e.g. process reputation analysis and system resource exposure analysis) to

cover bot invariants at both host and network levels. We investigate multiple

heuristics and features in these modules and we believe that they can capture

many of bots’ intrinsic characteristics.

• We evaluate our system on real-world data collected on several real-life lab/of-

fice and home machines for several days. Our results show that we can detect

all 30 malicious operations from 15 tested bots with no false positives and the
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overhead of our modules is negligible in our evaluation.

3.2 System Design

Figure 3.1: EFFORT design architecture, (M1 is for human-process-network correla-
tion analysis module, M2 for system resource exposure analysis module, M3 for process
reputation analysis module, M4 for network information trading analysis module, and
M5 for correlation engine)

Our system consists of five modules to cover previously mentioned bot character-

istics: (i) a human-process-network correlation analysis module, which analyzes the

interaction and correlation between human activity, process, and network connec-

tion, i.e., to know whether it is a human-driven network connection or bot-driven;

(ii) a process reputation analysis module, which characterizes reputation of a process

from the process itself (who you are) and its social contact surface (the commu-

nicated targets, i.e., whom you are talking to); (iii) a network information trading

analysis module, which monitors incoming/outgoing network traffic in order to in-

fer the information gain/loss without heavy load; (iv) a system resource exposure
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analysis module, which examines the system resource access patterns of a suspicious

process in detail; and (v) a correlation engine, which collects all analysis results and

correlates them to make a final decision whether the process is a malicious bot or

not.

Every module except for the correlation analyzer has a similar architecture. They

mainly consist of three elements; (i) sensor, which monitors network or process ac-

tivity, (ii) model generator, which creates a model of process or network behavior,

and (iii) detector, which decides whether each new action of a process or network is

anomalous or not. The overall architecture is shown in Figure 3.1 and each item in

Figure 3.1 will be explained in the following section.

3.2.1 Human-Process-Network Correlation Analysis

Since most running processes are benign, it is relatively inefficient to monitor all

of them in fine-grained detail (e.g., monitor system call level activities) all the time

to detect bots. If we can filter out all or most of the benign programs, we will not

waste our resource/time in meaningless investigation. Our human-process-network

correlation analysis module is designed to do this, i.e., sifting benign programs out.

This is based on an intrinsic characteristic of bot malware, i.e., bots are automated

programs that run without user interaction/notice, while most normal programs need

some human interactions.

Human-Process Interactions Monitoring: Keyboard and mouse are the

basic components that link human and the computer. If someone wants to send an

email using an email client program, he will type an email address and contents by

keyboard and click the send button through the mouse. Based on this intuition, we

monitor keyboard and mouse events of the host to understand which program has

human activity/interaction. To do this, our event sensor hooks Windows system calls
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related to keyboard and mouse events, and also determines which program generates

those events.

However, if a bot knows about our policy, it might imitate human behaviors and

create virtual events to confuse our sensor. To resolve this problem, our sensor also

checks whether the events come from actual physical devices or not. If the events

are resulted from physical devices connected via PS2 or USB interface, it trusts

them; otherwise it regards them as suspicious. Note that in current implementation,

we trust operating system and we believe it provides true information, a common

assumption widely used in this line of work. Of course, some malware (e.g., rootkit)

may infect operation system and deliver fake information. This issue could be solved

by using Hypervisor or TPM, as we discuss in Section 3.7.

Process-Network Interactions Monitoring: A connection sensor records

outgoing network connections from processes in a host. In particular, it cares about

one special network connection, DNS query. As briefly discussed before, botnets

heavily rely on using DNS for flexible, efficient, and evasive C&C rallying. They can

use fast-flux service networks [39] to frequently change the IP addresses associated

with one domain name, or even use domain fluxing [91] to frequently change domain

names. By monitoring these DNS queries, we can obtain valuable information later

in detection analysis, e.g., we can determine if they are human driven or not, and

furthermore we can even detect if there is fast-flux in use.

Interaction Model Generation and Automatic Connection Detection

: Combining information from the event sensor and the connection sensor, an

interaction model generator creates a model to describe which process has which

network correlations so that later we can link any given network flow to a specific

program/process in the host. The model simply uses time difference between the

time when a process issues a DNS query and the time when a process produces a
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mouse/keyboard event. We think that if the time difference is very small, the event

and the query can be considered as continuous operations and therefore human is

issuing the query. More formally, a DNS query time of a process can be defined as a

variable d and a recent keyboard/mouse event time of the process can be defined as

a variable e. Then we can create a model as following (if we assume that there are

n processes in the host).

if ε > di − ei > 0, a DNS query of the process pi is human-driven, otherwise

bot-driven, where i is an integer ∈ {1, 2, ..., n} and ε is a threshold

However, in practice, this intuitive model may not work for all DNS queries

(but work well for IP address case). The reason is because some operating systems

provide helper functions of relaying a DNS query for other processes, e.g., Windows

uses the svchost.exe process for this purpose. Thus, with the above approach, we

will frequently find that DNS queries are sent from the svchost.exe instead of the

original program. To address this issue, we maintain a returned IP address(es) from

a DNS query (sent by helper processes), and observe successive outgoing network

connections to wait for the actual (original) program to connect to the returned IP

address(es)†.

This problem can be simply addressed by modifying the above model. If a DNS

query is issued by a helper process (the query time d), we will wait until we find a

process which contacts returned IP address(es) and apply the recent event time e of

the process.

†At this time, we do not need to monitor all network connections, we only monitor first packet
of each connection.
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3.2.2 Detecting Malicious Processes

With the help of the previous module, we can filter out benign programs and

only focus on some suspicious processes. However, there might be still some benign

programs that send automatic DNS queries. For instance, googleupdate.exe will au-

tomatically contact servers [30] to check update status [29]. We should differentiate

those benign processes from malicious processes using other features.

To do this, we perform a set of independent and parallel checks. First, we check

the reputation of the process and its social contact surface (the reputation of targets it

has communicated with). Second, we investigate the system resource access patterns

of the process. Third, we observe network information trading of the process. We

detail our design of these three modules as follows.

3.2.2.1 Process Reputation Analysis Module

A quick intuitive observation is that we could determine the reputation of a

process by not just looking at “who you are”, but also referring to “whom you are

talking to”. A bot malware will automatically contact some “bad” servers/peers in

order to be useful or controlled. Benign programs are relatively unlikely to connect

to “bad” targets automatically. Thus the problem of determining the reputation

of a process could be inferred by contacting social surfaces of the process and it

can be approximately reduced to the accumulation of “bad” communication targets

(domains). In the context of domain names, then we need to determine the reputation

of a domain name.

Domain Information Collection: We collect reputation information of the

domain by employing three types of sensors. First, we employ a whois sensor to

detect some anomaly features in its registration information, such as domain creation

date. Second, we use a blacklist sensor to investigate its previous records in well-
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known blacklists (e.g., SpamHaus [90], Google Safe Browsing [1]), which give us

relatively clear clues whether the domain has a history of malicious activity. Finally,

since blacklists might not be complete, we apply a search engine sensor to get another

heuristic which can leverage community-based knowledge and intelligence, i.e., ask a

search engine to infer the reputation of given domain name (IP address could work

too). It is motivated by the googling idea in [97].

At this time, we do not need to monitor all domains, since there are a lot of

domains which can be considered benign (e.g., google.com, bing.com and yahoo.com).

Thus, we can maintain a list of benign sites and our sensors do not need to check

connections to those domains for efficiency.

Data Normalization: Before applying collected data to a model creation, we

express it numerically and normalize it.

In terms of a domain registration information, we consider the following heuris-

tics: (i) whether the domain registration date is very recent (a lot of phishing and

botnet C&C domains fall into this type), (ii) whether the domain expiration date

is very soon (malicious domains typically come and go quickly and they do not reg-

ister for a long time), (iii) number of registrars (typically very small for malicious

domains). We simply use numeral values to represent each feature as shown in Table

3.1.

In the case of the blacklist, it is very obvious that if a domain can be found in

blacklists, it is suspicious. We give “0” if it is in blacklists, otherwise “1”.

To leverage community knowledge by using search engines like Google, we con-

sider the following simple heuristics: (i) whether the domain name is well-indexed

(thus returning many results), (ii) in the top returned web page results, whether the

domain name and the process name are frequently used in a malicious context, e.g.,

they are surrounded by malicious keywords such as bot, botnet, malware, DDoS,
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attack, spam, identity theft, privacy leak, command and control (C&C). Again we

use numeric values to represent these heuristics as shown in Table 3.1. Typically,

contents of returned search results include three different types of information: (i)

the title, (ii) the URL, and (iii) the relevant snippet of the returned web page. We

treat each type as different features, and we assign “1” if returned contents (title,

URL, and summary) include the queried domain name. We inspect the returned

results to see whether there are any malicious keywords or not. If there are any, we

give “0” for its value.

Feature Numerical Values

Domain Creation Date Current Date - Creation Date

Domain Expiration Date Expiration Date - Creation Date

Number of Registration Number of Registration

Blacklist if NOT in any blacklist it is 1, otherwise 0

Web Search Engine Results
(title, URL, summary, mali-
cious keywords)

The title, URL, and summary are 1 if we find
the domain/process name in each item, oth-
erwise 0. The malicious keyword is 1 if we
can not find any malicious keywords from the
returned pages, otherwise 0

Table 3.1: Numerical value of the selected features of domain reputation analysis
module.

The features related to returned results by a search engine and blacklist are al-

ready normalized, i.e., their values are between “0” and “1”. However, features of

domain registration can be varied dynamically. To make their values range between

“0” and “1”, we employ a gaussian normalization approach. It regards a distribu-

tion of data as gaussian function and maps every data point into the probability of

gaussian function.

Process Reputation Model Creation: Now, we have normalized values of
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the features, then all that remains is to build a model based on them. We employ a

Support Vector Machine (SVM) classifier [21] for the process reputation model. The

SVM classifier maps training examples into feature spaces and finds (a) hyperplane(s)

which can best separate training examples into each class.

Here we briefly talk about the SVM classifier.

To start with the simplest case, we assume that there are two classes and they

can be separated by a linear function. More formally, given training examples xi

and a classifier yi, if we assume that those two classes are denoted as 1 and −1 (i.e.

yi ∈ {−1, 1}), the training examples which lie on the hyperplane satisfy the following

equation.

w · x+ b = 0, where w is a normal vector and b/||w|| is a perpendicular distance

from the hyperplane to the origin.

From the above equation, we can find the hyperplanes which separate the data

with maximal margin by minimizing ||w|| under the constrains of yi(xi ·w+b)−1 ≥ 0.

To solve this equation, we will apply a Lagrangian formulation, and then we will have

a primal form - Lp - of the Lagrangian [10]. It is described as the following equations.

Lp ≡
1

2
||w||2 −

∑
αiyi(xi · w + b) +

∑
αi (3.1)

, where αi is a Lagrangian multiplier and αi ≥ 0.

Now, we have to minimize Lp with respect w and b, and it gives us two conditions

of w =
∑
αiyixi and

∑
αiyi = 0. In addition, we can substitute these conditions into

Lp, since they are equality in the dual formulation. Thus, we can get dual form - Ld

- of the Lagrangian like the following equation.
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Ld =
∑

αi −
1

2

∑
αiαjyiyjxi · xj (3.2)

Finally, we can get our SVM classifier through maximizing Ld. If we can not

separate the data by a linear function, we have to extend the original set of training

examples xi into a high dimensional feature space with the mapping function Φ(x).

Suppose that training examples xi ∈ Rd are mapped into the euclidean space H by

a mapping function Φ : Rd → H, we can find a function K such that K(xi, xj) =

Φ(xi) · Φ(xj) (a.k.a. ”kernel function”). We can replace the inner-product of the

mapping function by the kernel function and solve the problem with similar approach

of the linearly separable case.

In this model, we consider that the normalized features, which are mentioned

above, are training examples. In addition, we define that there are two classes -

benign and malicious - in this model, thus the normalized features will represent one

of the two classes.

Finally, we will find (a) hyperplane(s) which can best separate training examples

into each class. Then, we can obtain a SVM classifier for the process reputation

model.

Anomalous Process Reputation Detection: After creating a model of pro-

cess reputation, we apply contacting domains of testing processes to the model. It

is very frequent that a process contacts several different domains during a certain

period. Thus, we apply all contacting domains to the model, and determine whether

(a) “bad” domain(s) (i.e. classified as a malicious domain) exists or not. If there

is (are), we consider the process reputation as bad (malicious), otherwise it is good

(benign). More formally, if a process visits m different domains during T seconds,

the detection result is represented as following (We define that yi is for a classifier,
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+1 for a “benign class”, and −1 for a “malicious class”).

If there is any domain di satisfying yi(di) = −1 in the contacting domains of a

process, the process is malicious (where i ∈ {1, 2, ..,m}).

3.2.2.2 System Resource Exposure Analysis

If a bot infects a host, it usually tries to do something useful for its master (to

make profit), e.g., stealing information, sending spam, and launching DDoS attacks

[42]. Common characteristics of these operations are that they will consume system

resources - memory, cpu and network - of the host, read/modify some system files

or registries, and/or steal sensitive information of the owner [57]. If we can monitor

how system resources (e.g., files, registries and network sockets) are exposed to this

process (and to what degree), we could infer these anomaly access patterns.

System Resource Exposure Patterns Monitoring: A system resource

exposure sensor monitors resource access activities of a process, which is considered

to issue an automatic outgoing connection, and stores this information. It mainly

observes how the process access files, registries, and network sockets.

System Resource Exposure Model Creation: To build this model, we use

the following heuristics: (i) typically normal processes rarely access files in other

user’s folders and system directories, (ii) typically normal processes do not modify

critical registries (with a few exceptions), and (iii) typically normal processes do not

create a large number of sockets in a short time period. These heuristics are not

perfect, i.e., some normal processes might have some of these patterns. Our goal

of this module is not to have zero false positive, instead, we want to detect most

of these system-resource-consuming malware (since for a botmaster, the purpose of

controlling a bot-infected machine is to turn the machine into his resource for profit).
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Thus, we think our heuristics are reasonable.

More specifically, these heuristics can be represented as following events Yi of a

process:

• Y1, access files in other user’s folders

• Y2, access files in system folders

• Y3, modify critical registries

• Y4, create a new process

• Y5, create network sockets more than threshold θ

At this time, most events are very clear to understand, however the event Y5

needs a clearer definition to avoid confusion. We employ a time window, whose size

is w seconds, for event Y5, and we measure the number of network socket creations

(defined as m) during the time window. Then, we calculate the unit number of

network socket creations by dividing m by w. We will use this unit value when we

measure the event Y5 (i.e. the event that unit value is larger than σ).

To build a system resource exposure model, we also employ a SVM classifier.

However, this model is different from the previous model of a process reputation. In

the case of the process reputation model, we have two classes (benign and malicious),

since we could easily obtain both classes of information (i.e. benign domains from

contacting domains of normal users and malicious domains from several third parties,

such as [60]). Here we mostly have one side of information - benign processes. To

get ground truth information of the system resource usages of malware is tricky,

some malware may refuse running or behave normally. In addition, they may behave

differently, when they are not in control by a bot-master. Thus, even though we

obtain the information of malware, it may not represent its behavior clearly. To
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address this issue, we only use the processes of known typical (benign) programs.

Hence, in this model we consider that we may have only one class of data.

The One-Class SVM (OCSVM) has been proposed to create a model with only

one side of information [80]. In this work, we use OCSVM to build the system

resource exposure model. The OCSVM maps training examples into a feature space

and finds a hyperplane which can best separate training examples from the origin.

For instance, given training examples xi, if we assume that there are two planes

denoted as “+” and “-” across an origin, the OCSVM will assign all known examples

xi into an one of the planes (i.e. “+” plane or “-” plane).

Similar to generic multi-class SVM classifier, the OCSVM needs to find a hyper-

plane with maximal geometric margin and it is described as solving the Lagrangian

equations of (1) and (2) in the above section (more details about the OCSVM can

be found in [80]). In this model, we will find a hyperplane to assign all benign ex-

amples (i.e. the Yi features of the benign processes) into the “+” plane and anomaly

examples into the “-” plane.

In this model, we will find a hyperplane to assign all benign examples (i.e. the

Yi features of the benign processes) into the “+” plane and anomaly examples into

the “-” plane.

Anomalous System Resource Exposure Detection: After creating the

model of the system resource exposure, we apply system resource exposure patterns

of new processes to the model. If a value of the mapped result of testing data is

assigned to “-” plane, we regard the process as anomalous, otherwise it is normal.

3.2.2.3 Network Information Trading Analysis

Typically, most programs will act as clients rather than servers, and most pro-

grams will try to gather information rather than distribute information. That is, if
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we treat a program as a communication information processing unit, normal client

programs are more likely to be an information gaining process. However, a bot will

behave differently. Usually, the data that a bot receives is a command from a bot-

master, therefore the amount of the data may be small (to minimize the chance of

being detected), however the data, which a bot typically sends, will be relatively

large as it performs malicious operations in the network. Information theft, DDoS

attack, and massive spam sending are good examples.

Lightweight Network Traffic Monitoring: To observe network information

trades, a network sensor captures network packets between a process and a contacting

domain and stores them. An important thing in here is that this sensor monitors

network traffic generated by a process not by a host. It could give us more fine-

grained observations of network information trading. Our sensor is very simple and

lightweight, since it does not need to analyze payload contents and it is not affected

by encryption used by bots.

In addition, we monitor the host level network connections to obtain aggregated-

view of network information trading. At this time, the sensor only measures the

number of outgoing connection trials (i.e. TCP SYN packets and first UDP packets).

We believe that this aggregated view gives us a good clue to find DDoS, network

scan, or massive spam mail sending.

Network Information Model Creation: We use a simple method to model

the network information trade rate, i.e., the ratio of incoming and outgoing pack-

ets/bytes exchanged between a process and a remote site in a certain period. We

define the number of incoming and outgoing packets as θ1 and θ2, and the number

of incoming and outgoing bytes as δ1 and δ2. Thus, each ratio can be represented as

θ1
θ2

and δ2
δ2

.

To observe an aggregated-view, we employ a time window wi for each host i. We
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measure how many network connection trials happen in the time window.

Anomalous Network Information Trading Detection: In the case of

the fine-grained view, if one or both of the predefined ratio values of a process is

(are) smaller than some threshold γ1 (for packet) and γ2 (for bytes), we consider the

process anomalous, otherwise normal. Also, we consider the network behavior of the

host is anomalous, if a host creates network connection trials more than a threshold

τ .

3.2.2.4 Correlation Engine

After each module makes its own decision, the correlation engine will combine

these results and make a final decision using a weighted voting system. At this time,

we should determine the weights of the decision of each module.

We can also employ a SVM classification technique to let us know which element

(i.e. decision result of the module) is more important (i.e. should have more weight).

To apply the SVM technique, we need training examples of both sides - malicious

and benign. However, here is also same issue with the system resource exposure model

creation mentioned in Section 3.2.2.2. It would be relatively difficult to collect the

information of the malicious side. Thus, we decide to employ OCSVM to determine

the weight. The way how to determine the weights is same as the method explained

in Section 3.2.2.2.

3.3 System Implementation

In this section, we will explain how we implement each module.

3.3.1 Host-Level Modules Implementation

Our human-process-network correlation analysis module captures the mouse and

keyboard events using Windows system functions. Basically, Windows provides func-
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tions to capture the events from external devices [66]. Using these APIs, we imple-

mented the event sensor which identifies which process generates the events. We also

added the function to store captured information (prcess, event time) to the Shared

Memory area.

To capture the outgoing DNS queries, TCP SYN, and UDP packets, we used the

WinPcap library [104]. It provides functions to collect raw level network packets

on the Windows OS, with little overhead. Moreover, connection sensor does not

monitor all network packets, but monitor only DNS, TCP SYN and UDP packets.

It also reduces the overhead, since those packets comprises a small portion of the all

network packets.

Whenever there are network events we should capture, our module also identifies

which process produces them and verifies whether the process is related to the human

actions or not. However, if a process uses a helper process for a DNS query, we could

not directly use it sometimes. To address this problem, we check the process which

produces the DNS query automatically and if it is a helper process (e.g., svchost.exe),

the module waits a DNS reply which contains a IP address of the domain. Then, if

there is an automatic connection from a process to that IP address after a DNS query,

the module sees that the process issues a DNS query. We use GetExtendedTcpTable

and GetExtendedUdpTable functions to recognize which process creates the connec-

tions. If we see the TCP or UDP connection, we will call these functions to identify

which process acquires the source port number of the connection.

We implemented the system resource exposure analysis module based on Easy-

Hook [24]. EasyHook is a successor and enhanced version of Detours [22], and it

provides an interface letting us perform Windows API hooking. The hooking ability

allows us to observe how a process works and which system calls are invoked by the

process. We selected 28 system calls to understand the exposure patterns of the
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process. The selected system calls are related to the access of the system resources,

such as files, registries, network sockets, and creation of a process. In addition, we

employ TinySVM library [56] to create the system resource exposure model.

3.3.2 Network-Level Modules Implementation

To gather network features, the process reputation analysis module should utilize

multiple network services such as, whois services, blacklist identification services, and

web searching services. Whenever the module receives a suspicious process and its

contacting domains, it sends a query to multiple network services to gather network

features. Also, we use TinySVM library [56] to create the process reputation model.

For a network information trading analysis module, we build a function to capture

network packets using pcap library.

3.3.3 Correlation Engine Implementation

We have implemented the correlation engine as an independent process and it

will wait for a message from each detection module, and finally decides whether the

process is malicious or not. We also use TinySVM library [56] for the correlation

engine.

3.4 Benign Data Collection and Detection Model Training

In this section, we will show how we collect real world benign data and how we

train detection models based on collected data.

3.4.1 Data Collection and Usage

We have installed our modules into six different real-life hosts which are used in

the office or home and collected the information of process activities and network

behaviors for several days. The collection has been done in working hours on business

days. We carefully examine to make sure that there are no malicious programs
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(especially bot) in the hosts, thus we consider that the collected data can be used

for benign examples. The summary of the data set is represented in Table 3.2.

As shown in the Table 3.2, during the data collection, 86 programs have initiated

85,462 connection trials in total and each host initiated from 37 to 331 connections

per hour. In addition, we have collected the system call traces of 78 running pro-

cesses. Since collecting system call traces can make a system slow, we do not collect

system call traces all the time, we randomly select current working processes in each

time interval (mainly business hours) and record their system call traces.

We have split the whole data set into two parts based on time-line; (i) first 70%

for training our models - SET-1 and (ii) later 30% for testing of false positives -

SET-2. SET-1 contains 62 processes and 84,614 connections and SET-2 has 16

processes and 848 connections. In this Section, we only use SET-1 for training and

verifying our detection models. We will use SET-2 in Section 3.5.3 for false positive

testing.

Host Usage Programs Network Connection
Trials

Collection Time

1 Office 7 252 3 hours

2 Office 16 7,859 69 hours

3 Office 19 5,740 147 hours

4 Office 9 5,098 139 hours

5 Home 27 55,586 168 hours

6 Home 8 10,927 83 hours

Table 3.2: Data set summary. (Programs represent the number of programs related
to network connection trials)
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3.4.2 Automatic Connection Analysis

The human-process-network correlation analysis module detects 18,144 automatic

connections out of 84,614 connections in total and they are 21.44% of all network

connections. When we detect automatic connections, we set the threshold ε of the

human-process-network correlation analysis module to 1 second.

We investigate which process generates automatic connections, and we observe

that most automatic connections are issued by Windows system processes or web

browser processes. The svchost.exe, spoolsv.exe, and taskeng.exe are the Windows

system processes handling network or printing services and they generate 37.73% of

automatic connection trials. In the case of the web browsers, the iexplore.exe, which

is an instance of the Internet Explorer browser, and chrome.exe, which is an instance

of the Google Chrome browser, are the main sources, and they produce 29.48% of

automatic connection trials.

Next, we examine why they generate large number of automatic connection trials.

The automatic connections from the Windows network service processes are mainly

for sharing resources such as network printer and sharing folders. In the case of

the browser processes, they mainly contact well-known web sites or trustworthy web

mail sites, such as Google, Yahoo, Google mail (Gmail) and university mail sites to

check updated information. Interestingly, they also contact on-line advertisement

sites such as AdSide [2] very frequently.

Besides this, there are some other processes producing automatic connections

frequently. The vmnat.exe, which is an instance of VMWare virtual machine [99],

relays network requests issued by its guest OS, and most requests are generated by

browsers in the guest OS. The devenv.exe is a process of Visual Studio 2010 program

whose main purpose is developing Windows application programs, but it contacts
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Microsoft Developer web sites very frequently. The ExpressService.exe is a process

of a network storage application program, and it frequently contacts storage hosting

sites.

After surveying, we think that we could ignore some automatic connections con-

tacting explicitly benign remote hosts. In the case of the Windows system processes,

we can ignore automatic connections heading to local networks, since it is nearly

impossible that a bot-master runs a server in the local network. In addition, we may

ignore automatic connections visiting trustworthy web sites such as Google, Yahoo,

and Gmail.

Based on this idea, we create a whitelist of domain names to reduce unnecessary

costs of our system. If an automatic connection tries to contact domains in the

whitelist, we consider it benign. To reduce the effect of the whitelist, we only main-

tain 10 well-known web sites. It has 5 search engine web sites, 3 web mail sites, 1

university site and 1 multimedia site. All sites except for 1 university site are ranked

in the top 400 by Alexa [6].

By removing connections to local networks and web sites in the whitelist, we

finally have 5,309 automatic connections to 131 different domains, which is 6.27% of

all network connection trials.

3.4.3 Process Reputation Model

From the collected data, we find that these processes have contacted 7,202 differ-

ent domains. In order to create the process reputation model, we extracted features,

which are listed in Table 3.1, from these domains. At this time, we consider that all

collected domains are benign, hence we will use them to represent the benign class.

We also need malicious domains to represent the malicious class. For the malicious

class, we have collected recent 150 malicious domains from [60], and also extracted
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features.

Using collected features, we train a SVM classifier for the model. When we train

the SVM classifier, we use a RBF (radial basis function) and polynomial as the kernel

function.

We validate the model to comprehend how it works. To do this, we first divide

our collections of benign and malicious data into training and testing set. Then, we

create a model by applying training set and evaluate the model by applying testing

set. We change the rate of training and testing data set to evaluate our model more

clearly.

Figure 3.2 presents a detection rate and a false positive rate of the process rep-

utation model. As shown in Figure 3.2, our model can detect both malicious and

benign domains around 99% of rates with very low false positive rates (sometimes

0% of false positive).

(a) detection (b) false positive

Figure 3.2: Process reputation model - detection rate and false positive rate

From this result, we decide that we use the RBF function for the kernel function
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for our process reputation model, since it shows around 99% detection rate and has

very low false positive rates.

3.4.4 System Resource Exposure Model

We analyzed system resource exposure patterns of normal (benign) processes

to create the system resource exposure model. Here, we will only use information

of benign processes and employ a OCSVM classifier to build the model. To do

this, we use 62 collected benign processes information. The representative benign

processes are the instances of browsers (Chrome, Firefox, and Internet Explorer),

mp3 playing programs (Winamp, Gom Player), and p2p client program (Emule).

We have extracted each feature defined in Section 3.2.2.2 from them.

Like the approach mentioned in the process reputation model creation, we also

divide our data set into training and testing set. The training set is used to build

an OCSVM classifier and the testing set is applied to evaluate the obtained OCSVM

classifier. We use a RBF function for a kernel function.

We measure a detection rate and a false positive rate of the system resource

exposure model and present results in Figure 3.3. When we use more than 80% of

the collected data for a training, our system resource exposure model can classify all

the testing data without any error. Thus, our classifier has no false positive in this

case.

3.4.5 Network Information Trading Model

We analyzed the network flow patterns and verified that most benign programs

act as clients not as servers. We measure the ratio between incoming packets (or

bytes) and outgoing packets (bytes).

When investigating our data set, we found 92.6% of flows get more packets from

the remote host. In the case of bytes, only 81.87% of the connections grab more byte
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(a) detection (b) false positive

Figure 3.3: System resource exposure model - detection rate and false positive rate

from the remote host. The processes, which send more data to remote servers, are

applications of updating data and browsers. We tried to understand why they send

more information to remote servers, however unfortunately, we could not reveal the

reason behind this, since we do not capture payload contents (because of privacy

issues). However, we can infer the reason from their main purpose, we think that

they may send current status of applications for update.

We can apply the ratio of the incoming and outgoing packets to discriminate a

malicious process from a benign process. It is very obvious that if a bot delivers its

own information to a master, the ratio can detect them easily.

We investigate the number of network connection trials of a host. To do this,

we find what is the maximum network connection trials of a host in a certain time

window. We set 10 seconds for a time window and investigate our data set. We

find that 21 connection trials (in 10 seconds) are the maximum number. Based on

this result, we can set the threshold τ , in this experiment we will use 42 (double the

experimental result) for the threshold τ .
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3.4.6 Correlation Engine

To calculate weights for the correlation engine, we select 27 benign processes,

which produce automatic connections frequently. Most of them are processes of

browser, multimedia application, and p2p client programs. We collect their detection

results which are performed by our detection modules. Then, we train a OCSVM

classifier using the collected results and determine the weights.

3.5 Evaluation

In this section, we will provide the results of evaluating the EFFORT system. In

order to present the effectiveness clearly, we test each individual module and show

how our system finally combine results of each module and make a final decision. In

addition, we measure the performance of each module to determine the efficiency of

our system.

3.5.1 Test Environment and Data Set for Botnet Detection

We build an isolated virtual environment to run our test. The environment

consists of three virutal machines which individually served as an infected host,

a controller and a monitor machine. All of them install Windows XP SP3 operating

system with basic software installed, such as Internet Explorer browser and Microsoft

Messenger.

The virtual network environment consists of three virtual machines which indi-

vidually served as an infected host, a controller, and a monitor machine, respectively.

At the infected host, we create independent snapshot for each individual malware

instance to ensure no cross-infection between different malware. Our host-based

modules are also installed to collect data we need. At the monitor machine, we in-

stall a fake DNS server to redirect all the DNS queries. At the controller side, we
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install various malware controllers we could find to manipulate the infected machine.

We intend to reconstruct realistic attack scenarios that a botmaster sends commands

to his zombie army.

We have used 15 botnets for evaluation and they are summarized in Table 3.3.

Since we just have binary samples of most botnets except three (B1, B2, and B5),

we install and simply run them. Among them, 3 botnets (B1, B2, and B5) use IRC

protocol, 2 botnets (B4 and B10) use HTTP protocol, 2 botnets (B3 and B4) use P2P

protocols, and other 9 botnets use customized protocols. In addition, three botnets

(B3, B4, and B7) use encrypted protocols to evade network-level detection. In terms

of their actively spreading time in the wild (i.e. when they infect victims highly),

it varied from 2003 (B7) to recent (B4). Since these collected botnets can cover

diverse cases (e.g. from old one to currently working one, different types of protocols

including encryption, and various kinds of malware functionalities), we believe that

they can verify our system’s effectiveness and efficiency well.

3.5.2 Botnet Detection Results

We begin our evaluation with the test of the human-process-network correlation

analysis module and it is followed by the results of other modules.

3.5.2.1 Detection Results of Automatic Connections

First, we test whether a bot infected host really generates automatic connections

to remote servers and use the human-process-network correlation analysis module to

detect them. To test this, we installed each bot in a host and leave it without any

intervention. After a while, we find that all installed bots issue automatic connections

to remote servers to be controlled. All of the automatic connections are reported by

our human-process-network correlation analysis module and the detected information

is delivered to other modules - process reputation analysis module, system exposure
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ID Name Protocol Sample Functionalities

B1 PhatBot IRC Steal Key, Spam Mail Send, Network
Scan

B2 JarBot IRC Kill Process, Steal Key

B3 peacomm P2P ∗ Other

B4 Waledac HTTP, P2P ∗ Other

B5 PhaBot.α5 IRC Other

B6 Flux Custom Operate/Modify File, Kill Process,
Capture Desktop/Screen,

B7 nuclearRat Custom ∗ Download Update

B8 BiFrost Custom Operate File, Kill Process, Capture
Screen, Steal Key

B9 Cone Custom Operate file

B10 Http-Pentest HTTP Operate File, Kill Process, Capture
Screen

B11 Lizard Custom Capture Screen, DDoS

B12 PanBot Custom Flooding

B13 Penumbra Custom Operate File, Create Shell

B14 SeedTrojan Custom Download Update

B15 TBBot Custom Capture Screen, Create Shell

Table 3.3: Botnets for evaluation (Custom denotes a botnet uses its own protocol
and ∗ represents the protocol is encrypted).

analysis module, and network information trading analysis module.

3.5.2.2 Detection Results of the Process Reputation Model

The process reputation analysis module will receive domain names which a process

contacts. Then, the module analyzes the reputation of contacted domains. Since a

bot contacts multiple domains in a short time, we analyzed all contacting domains.

If the module finds any malicious domain from the contacted domains, it considers

the process malicious.

The detection results are shown in Table 3.4. As shown in the Table, the process

reputation analysis module detects 12 bots and misses 3 bots (B2, B3, and B4).

We investigate why our module missed them. In the case of B2 (peacomm) and
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ID Contacting
Domains

Detected Do-
mains

ID Contacting
Domains

Detected Do-
mains

B1 1 1 B9 2 2

B2 1 - B10 1 1

B3 2 - B11 1 1

B4 1 - B12 1 1

B5 6 2 B13 2 2

B6 3 2 B14 1 1

B7 2 1 B15 1 1

B8 3 2 -

Table 3.4: Detection results of automatic connections

B3 (Waledac), both bots only contacted the remote server using direct IP addresses

instead of domain names. Of course, we can also apply the IP addresses to our mod-

ule. However, unfortunately, their contacting targets are either private IP addresses

(192.168.X.X) or some hosts for which we could not get any useful information from

the third parties.

B4 (JarBot) contacts a regular IRC-server and the server has been operated for

several years and we could not find any malicious keyword from search results.

3.5.2.3 Detection Results of the System Resource Exposure Model

Receiving the information of an automatic connection trial from the human-

process-network correlation analysis module, the system exposure analysis module

began examining the target process.

When we tested the functionality of each malware listed in Table 3.3, we found

that the system exposure analysis module detects most of the malicious operations.

The detection results are summarized in Table 3.5.

It only misses 2 malicious operations of “B6 (Flux)”, the first operation is to

operate file which moves/creates a file in the host, and the second operation is to
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Function B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

Operate
file

N S S,N S,N S,N

Modify
file

S

Kill pro-
cess

S,N S S S,N

Capture
Desktop

S,N

Capture
screen

N S,N S,N S,N S

DDoS S,N
Flooding S,N
Create
Shell

S,N S,N

Download
update

S S

Steal key S,N S,N S,N
Spam
Mail
Send

S,N

Network
Scan

S,N

Other
Opera-
tion

S,N S,N S

Table 3.5: Detection results of the System Resource Exposure and Network Infor-
mation Trading Module (shaded cells represent functionalities provided by malware.
Each “S” and “N” denotes each system resource exposure analysis and network in-
formation trading analysis module detect the functionalities, respectively).

capture screen which captures current screen.

When we analyze their resource exposure patterns, we find that their operations

are very similar to normal programs. In the case of operate file, malware just creates

a file under its permission and reports its success to remote server. In the capture

screen case, malware captures the current screen, saves its local folder, and delivers

captured screen information to a remote server. Both operations (in the point of host

view) are very similar to resource exposure patterns of normal applications - creates

a file and saves it in its local folder. However, we believe that these operations will be

detected by the network information trading analysis module, since they distribute

more information to the outside. We will show this result later.
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3.5.2.4 Detection Results of the Network Information Model

After notifying an automatic connection, the network information trading anal-

ysis module captures network traffic between a process (not a host) that issued an

automatic connection and a remote server. If a process sends more packet/bytes

than receives packets/bytes, our module considers it anomalous.

As listed in Table 3.5, the network trading information analysis module detects

most malicious operations. It misses 7 malicious operations related to download

updates and file modification or operation. In the case of the download updates, an

infected host gains more data, so that our module can not detect an anomaly. In

addition, sometimes a bot-master server sends commands frequently to an infected

host, but does not require an answer. In this case, a bot also obtains more data.

In terms of the aggregated-view, our module detects all massive outgoing con-

nection trials, such as DDoS and flooding.

3.5.2.5 Corrleated Detection Results

If the process-reputation analysis, system exposure analysis and network infor-

mation trading analysis modules determine their decisions, these decision results are

delivered to the correlation engine. Based on delivered results, the correlation engine

makes a final decision for a process.

When we test malicious operations, the correlation engine can detect all malicious

operations and the results are shown in Table 3.6. As we discussed before, even

though a module misses an anomaly of an attack, other modules will complement it,

thus our combined results can detect all attacks.
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Functionality B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

Operate file C C C C C
Modify file C
Kill process C C C C
Capture Desktop C
Capture screen C C C C C
DDoS C
Flooding C
Create Shell C C
Download update C C
Steal key C C C
Spam Mail Send C
Network Scan C
Other Operation C C C

Table 3.6: Detection results of Correlation Engine (shaded cells represent functional-
ities provided by malware. ”C” denotes that correlation engine detects the attack).

3.5.3 False Positive Test Results of Benign Programs

In order to determine whether our modules misjudge benign processes as mali-

cious or not, we have tested 16 benign processes in SET-2, which is reserved for

false positive test in Section 3.4. They are general Windows applications programs

such as browsers, network management programs, office programs and multimedia

programs. Even if there are some programs, which produce automatic connections

frequently, in this test set, we add 8 more processes in the data set in order to validate

our modules more clearly. The added programs are browsers (Internet Exploere and

Chrome), p2p client (Emule) and multi-media application (Gom Player). Finally, we

have 24 processes.

When we tested 24 processes, 16 processes (8 from SET-2 and 8 from added

ones) produced automatic connections and all of these connections were detected by

the human-process-network correlation analysis module.

The 16 processes contacted 106 different domains automatically, and the domains

were examined by the process reputation analysis module, and our module decided

that all domains were benign so that it finally determined that the reputations of

processes are good.
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In addition, the system exposure analysis module investigated these 16 processes

in detail, and decided that they were all benign. In detail, we found that some of

them touched Windows system folders (specifically, browsers and a network storage

program), however we could not observe any process that accesses critical registries

or creates a lot of network sockets.

In the case of the network information trading analysis module, it detects 6 pro-

cesses as anomalous and they are all browsers. Unfortunately, since we do not have

packet payloads (because of privacy issues), we can not understand why it happens

clearly. However, we presume that they send current status of web applications (in

the host) to remote servers.

Even though one of our modules considers some connection trials anomalous,

the correlation analyzer makes the right decision for all cases (i.e. all are benign).

Since the correlation analyzer combines classification information from three different

modules and makes a decision, even if one module makes a wrong decision, it can be

complemented by other modules.

3.5.4 Performance

We have measured the overhead of each module to verify the efficiency of the

proposed system. In this measurement, we want to show how our modules affect the

system and other applications.

To do this, we used two metrics in measuring the overhead; memory usage and

program delay. The memory usage presents how our modules consume the resources

of memory and the program delay represents how our modules make other programs

slow when our modules are running. To measure the program delay, we selected

three types of test programs, Internet Explorer which produces network connections

frequently, Calculator which mainly uses CPU, and Notepad which produces some
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disk operations. We compared the running time of these programs between when

our modules are running and not‡. In the case of the Internet Explorer, we simply

visit one web site and close. We just divide some numbers using Calculator and read

a file and save it to other file using Notepad.

We will start performance measurements for the human-process-network correla-

tion analysis and system exposure analysis modules, since they are installed into a

host and affect the performance of the host directly.

Overhead of Human-Process-Network Correlation Analysis Module:

At first, we have measured the overhead of the human-process-network correlation

analysis module. As shown in Table 3.7, the overhead of this module is 1.35% at

maximum and even 0% (i.e. our module does not affect some programs at all). In

addition, this module only consumes 1.81 MB of memory. Thus, we believe that the

overhead of this module is nearly ignorable.

Item w/o module with module overhead (%)

Internet Explorer 177 (ms) 179.4 (ms) 1.35%

Notepad 4,206 (ms) 4,218 (ms) 0.29%

Calculator 26 (ms) 26 (ms) 0%

Table 3.7: Overhead of human-process-network correlation analysis module.

Overhead of System Exposure Analysis Module: In addition, we have

measured the overhead of the system exposure analysis module. This module will

show relatively high overhead. Since it has to monitor a lot of system calls which are

frequently called by a process, it is very hard to reduce the overhead of this module.

‡When we performed this test, we run a test program 5 times and found the average value
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When we measure the overhead, we observe that it consumes 9.18 MB of memory

and produces overhead around 6% at maximum and 1 % at minimum, as presented

in Table 3.8.

The overhead seems to be not so high and even very low in a case. In addition, our

module does not need to monitor processes all the time. The system exposure analysis

module only investigates a process when the process issues automatic connections to

untrustable remote sites. As we discussed in Section 3.4, the automatic connections

to untrustable sites happen very rarely, at most 8 - 9 connections/hour in our dataset.

Hence, we also consider that the overhead from this module is low.

Item w/o module with module overhead (%)

Internet Explorer 177 (ms) 185.1 (ms) 4.51%

Notepad 4,206 (ms) 4,463 (ms) 6.12%

Calculator 26 (ms) 26.3 (ms) 1.15%

Table 3.8: Overhead of system exposure analysis module.

Overhead of Other Modules: Unlike human-process-network correlation and

system exposure modules, the other modules of the process reputation analysis mod-

ule, the network information trading analysis module, and the correlation analyzer

exists in the other host(s) and they mainly observe network traffic or third party

information. Thus they do not affect the performance of the host directly.

3.5.5 Summary of Evaluation Results

We will summarize the evaluation results of our system by showing how our

system is effective and efficient. In terms of the effectiveness, we evaluate that our

system detects all malicious operations from the various kinds of botnets without any
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false positive. Even if botnets employ encrypted messages for their C& C channels

to evade detection, our system can detect them with the help of combined results

from each module. In terms of the efficiency, we evaluate that our system does not

put high overhead on the hosts. Thus, we believe that our system can be used as a

real-time monitoring/detecting system.

3.6 Related Work

There are several approaches to detect bots at the network level. Karasaridis et

al., proposed an approach of detecting bots based on network traffic pattern analysis

[49]. In [108], the authors proposed a system detecting malware (also bots) through

aggregating network flows. Gu et al., proposed several promising approaches which

detect bots through network behavior correlated analysis [34, 32, 35]. Our work is

different from the above work, since we design several new network level sensors and

we consider host level features as well. The host-network cooperation allows us to

detect malware more effectively.

Detecting bots in the host level is also popular due to its effectiveness. In [11, 92],

the authors tainted all memories and resources touched by a process to determine

whether it was malicious or not. In [53], Kolbitsch et al., provided an way of detect-

ing malware through examining the system call sequences/graphs. Although they

detected malware accurately, they could cause high overhead in the host. Our work

designs several new host level sensors without analyzing all running processes all the

time, only investigating the process when necessity.

In [57], Lanzi et al., provided an approach of detecting malware at the host by

investigating the access patterns of the process. Our work differs from [57], since

we use different features in host level (e.g., network socket creation) and detection

models. Moreover, our work analyzes the binary only when necessary, and it can
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significantly reduce the overhead.

There is also an approach to detect bots combining information obtained from

both of the host and network level [110]. This work uses network sensors to trigger

host analysis, thus it suffers from the same limitations of network-based detection

approaches. If a bot can evade the network level monitoring, it evades their detection

system. Our work differs from their work in that we use different features/models

and our coordination is triggered from host level features.

In [97], Trestian et al., uses the Google search engine to comprehend the network

traffic, and our approach of identifying reputation of a process also employs search

engines. Our work differs in its main goal (for security) and detection models. Also,

while they only use IP address for their query, we use the process and domain name

as well.

3.7 Limitations

Like many detection systems, our system is not perfect. In current implementa-

tion, we do not consider the protection of our host modules yet. In addition, some

kernel malware like rootkit could fool our host modules such as faking human-driven

events as OS level. This problem can be solved by employing hardware/TPM [37]

or hypervisor-based introspection techniques [28, 45], which is our future work.

Our reputation module mainly assumes that bots will use DNS to contact their

master. However not all bots may use DNS, some bots use IP address directly. Our

reputation model is easily to be extended to handle IP address as well.

3.8 Summary of this Chapter

It is a very challenging problem to detect bots effectively and efficiently. In this

work, we studied various kinds of features in the network and the host level and

chose promising features that enable to detect bots effectively. Then, we proposed
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a novel detection approach with correlative and coordinated analysis of each feature

to detect bots efficiently. In our evaluation on real world data, we show that our

features are feasible to detect bots effectively, and verify our system can detect bots

accurately without any false positive.
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4. SECURING FUTURE NETWORK ENVIRONMENTS

4.1 Introduction

In this chapter, we present how we design a future network architecture with

security. It is not easy to redesign a whole network architecture at initial stage, but

we can provide a new framework for security on a possible network technology that

is considered as a future network. This chapter suggests a possible solution that we

can make a future network secure, and it contains several possible example cases for

security applications.

To design a new secure network architecture, we employ the technology of Soft-

ware Defined Networking (SDN). SDN enabled networks distinguish themselves from

legacy network infrastructures by dramatically rethinking the relationship between

the data and control planes of the network device. SDN embraces the paradigm

of highly programmable switch infrastructures [62], enabling software to compute

an optimal flow routing decision on demand. For modern networks, which must

increasingly deal with host virtualization and dynamic application migration, SDN

may offer the agility needed to handle dynamic network orchestration beyond that

which traditional networks can achieve.

For an SDN enabled switch, the data plane is made programmable, where flows

are dynamically specified within a flow table. The flow table contains a set of flow

rules, which specify how the data plane should process all active network flows. In

short, the control plane provides the basic instructions that govern how to forward,

modify, or drop each packet that traverses the SDN enabled switch. The switch’s

control plane is simplified to support a protocol (e.g., OpenFlow protocol), which

allows the switch to communicate statistics and new flow requests to an external
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control plane (e.g., controller in OpenFlow). In return, it receives flow rules that

extend its flow table ruleset.

The control plane is situated above a set of SDN enabled switches, often on

lower-cost commodity hardware. It is the coordination point for the network’s flow

rule production logic, providing necessary flow rule updates to the switch, either in

response to new flow requests or to reprogram the switch when conditions change. As

a controller may communicate with multiple SDN enabled switches simultaneously,

it can distribute a set of coordinated flow rules across the switches to direct routing

or optimize tunneling in a way that may dramatically improve the efficiency of traffic

flows. The controller also provides an API to enable one to develop SDN applications,

which implement the logic needed to formulate new flow rules. It is this application

layer that is our central focus.

From a network security perspective, SDN technology offers researchers with an

unprecedented singular point of control over the network flow routing decisions across

the data planes of all OF-enabled network components. Using SDN technology, an

SDN security app can implement much more complex logic than simplifying halting

or forwarding a flow. Such applications can incorporate stateful flow rule production

logic to implement complex quarantine procedures, or malicious connection migration

functions that can redirect malicious network flows in ways not easily perceived by the

flow participants. Flow-based security detection algorithms can also be redesigned

as SDN security apps, but implemented much more concisely and deployed more

efficiently, as we illustrate in examples within this chapter.

We introduce a new security application development framework called FRESCO.

FRESCO is intended to address several key issues that can accelerate the composition

of new SDN enabled security services. FRESCO exports a scripting API that en-

ables security practitioners to code security monitoring and threat detection logic as
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modular libraries. These modular libraries represent the elementary processing units

in FRESCO, and may be shared and linked together to provide complex network

defense applications.

FRESCO currently includes a library of 16 commonly reusable modules, which

we intend to expand over time. Ideally, more sophisticated security modules can

be built by connecting basic FRESCO modules. Each FRESCO module includes

five interfaces: (i) input, (ii) output, (iii) event, (iv) parameter, and (v) action.

By simply assigning values to each interface and connecting necessary modules, a

FRESCO developer can replicate a range of essential security functions, such as

firewalls, scan detectors, attack deflectors, or IDS detection logic.

FRESCO modules can also produce flow rules, and thus provide an efficient means

to implement security directives to counter threats that may be reported by other

FRESCO detection modules. Our FRESCO modules incorporate several security

functions ranging from simple address blocking to complex flow redirection proce-

dures (dynamic quarantine, or reflecting remote scanners into a honeynet, and so on).

FRESCO also incorporates an API that allows existing DPI-based legacy security

tools (e.g., BotHunter [34]) to invoke FRESCO’s countermeasure modules. Through

this API, we can construct an efficient countermeasure application, which monitors

security alerts from a range of legacy IDS and anti-malware applications and trig-

gers the appropriate FRESCO response module to reprogram the data planes of all

switches in the OpenFlow network.

Contributions. In summary, our primary contribution is the introduction of

FRESCO, which simplifies the development and deployment of complex security

services for SDN networks. To this end, we describe

• FRESCO: a new application development framework to assist researchers in
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prototyping new composable security services in SDN enabled networks. FRESCO

scripts can be defined in a manner agnostic to SDN control plane implementa-

tion or switch hardware (an important feature given the rapid evolution of the

protocol standard).

• A collection of SDN security mitigation directives (FRESCO modules) and

APIs to enable legacy applications to trigger these modules. Using FRESCO,

security projects could integrate alarms from legacy network security DPI-

based applications as inputs to FRESCO detection scripts or as triggers that

invoke FRESCO response scripts that generate new flow rules.

• Several exemplar security applications demonstrate both threat detection and

mitigation in a SDN network, including scan detectors [48, 82, 47] and Bot-

Miner [33]. We further show that existing security applications can be easily

created with the use of FRESCO. For example, our FRESCO implementations

demonstrate over 90% reduction in lines of code when compared to standard

implementations and recently published another SDN implementations [63].

• A performance evaluation of FRESCO, which shows promise in developing

SDN security services that introduce minimal overhead for use in live network

environments.

4.2 Term Definition

Note that in this chapter, we use OpenFlow [62] network environment for our SDN

testbed, and we use the terms of both OpenFlow and SDN when we talk about SDN

technology. OpenFlow is the most common technology for SDN, and many projects

and products in both of academia and industry are implemented with OpenFlow.
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Thus, we believe that it is acceptable to use OpenFlow in developing our framework

for SDN.

In addition, we use the term of controller to denote the control plane and the term

of OpenFlow/SDN enabled switch for the data plane supporting SDN technology.

The term of controller is commonly used in OpenFlow specification, and it is widely

used term. The term of application is used to denote a network application running

on the control plane, and it denotes a software program that tries to control network

flows with the help of SDN technology. Sometimes, we use OF instead of OpenFlow,

and it is the short form of OpenFlow.

4.3 Motivation

Our intent is to design an application framework that enables the modular design

of complex SDN enabled network security services, which can be built from smaller

sharable libraries of security functions. Before presenting FRESCO’s design, we first

review some of the challenges that motivate the features of our framework.

4.3.1 The Policy Enforcement Challenge

The first challenge, which we call the policy enforcement challenge, stems from

the fact that SDN provides no inherent mechanisms to reconcile rule conflicts as

competing SDN applications assert new rules into a switch. For example, a set

of rules designed to quarantine an internal compute server might subsequently be

overridden by a load balancing application that may determine that the quarantined

host is now the least loaded server. One needs a mechanism to ensure that flow rules

produced by a security application will take precedence over those produced from

non-security aware applications. SDN also incorporate a packet alteration functions

(i.e., the set action), specifiable within its flow rule format. This feature enables

virtual tunnels between hosts, such that a virtual tunnel can be used to circumvent a
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flow rule that was inserted to prevent two hosts from establishing a connection [74].

To address this challenge, we have designed and implemented a security enforce-

ment kernel (SEK), which is integrated directly into the control plane upon which

FRESCO operates. In [74], we present the design of our SEK, along with a prototype

implementation called FortNOX, which we integrated into the open-source NOX [36]

controller. FortNOX offers several important features upon which FRESCO relies to

ensure that flow rules derived from security service are prioritized and enforced over

competing flow rules produced by non-security-critical applications:

• Rule source identification: the SEK introduces a trust model that allows

FRESCO applications to digitally sign each candidate flow rule, thus enabling

the SEK to determine if a candidate flow rule was produced by a FRESCO

security module, an SDN application, or by a network administrator.

• Rule conflict detection: To detect conflicts between a candidate rule set and

the set of rules currently active in the switch. The SEK incorporate an inline

rule conflict analysis algorithm called alias set rule reduction, which detects

flow rule conflicts, including those that arise through set actions that are used

to produce virtual tunnels.

• Conflict resolution: When a conflict arises, the SEK applies a hierarchical

authority model that enables a candidate rule to override (replace) an existing

flow rule when the digital signature of the rule source is deemed to possess

more authority than the source whose rule is in conflict.

4.3.2 The Information Deficiency Challenge

The control planes in SDN do not uniformly capture and store TCP session

information, among other key state tracking data, which is often required to de-
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velop security functionality (e.g., TCP connection status, IP reputation). We call

this an information deficiency challenge. The FRESCO architecture incorporates

a database module (FRESCO-DB) that simplifies storage and management of ses-

sion state shared across applications. FRESCO also exports a high-level API in the

FRESCO language that abstracts away complexities relating to switch management

and specific controller implementations. This abstraction is a critical feature to en-

able module sharing across SDN network instances that may vary in the control

plane

Figure 4.1: High-level overview of the FRESCO architecture.

4.3.3 The Security Service Composition Challenge

The FRESCO framework incorporates a modular and composable design archi-

tecture, inspired by the Click router architecture [52], which fosters rapid and col-

laborative development of applications through module composition. For example,

a security module design to recognize certain traffic patterns that may represent

a threat should be easily linkable to a variety of potential threat mitigation mod-

80



ules that, when triggered by the detection module, produce appropriate flow rule

responses. FRESCO incorporates a scripting language that enables the linking of

modules through data sharing and event triggering. Another important challenge is

the need to provide an API that can facilitate flow rule production decisions using

information produced from legacy DPI-based security applications (such as IDS or

anti-malware applications).

4.3.4 The Threat Response Translation Challenge

The SDN technology enables the controlling software layer to communicate flow

handling instructions to the data plane. However, while network security technolo-

gies do indeed produce threat alerts applicable to responses for individual flows,

these technologies also have a need to express more complex (even stateful) security

response directives that may span many flow rules, or even address network-wide

attack scenarios. We call this the threat response translation challenge.

For example, one may wish to define a notion of host quarantine, in which all flows

from an infected internal machine are blocked, with the exception that the machine’s

web traffic should be redirected to a web server that returns quarantine notification

pages to the machine’s user. One might also wish to define redirection directives

that will silently redirect flows from a detected hostile external entity away from

an internal production network and into a honeynet for analysis. One might even

want to produce a network-wide response to shun malicious traffic, or alternatively,

incorporate high-priority flow rules to ensure that emergency administrative flows

succeed during a DOS attack.

Such security directives may require a complex set of flow rule production logic,

which is also ideally sharable as a countermeasure library that could be coupled with

many different detection algorithms.
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4.4 FRESCO Design

The FRESCO framework consists of an application layer (which provides an

interpreter and APIs to support composable application development) and a security

enforcement kernel (SEK, which enforces the policy actions from developed security

applications), as illustrated in Figure 4.1. Both components are integrated into NOX,

an open-source OpenFlow controller.

FRESCO’s application layer is implemented using NOX python modules, which

are extended through FRESCO’s APIs to provide two key developer functions:

(i) a FRESCO Development Environment [DE], and (ii) a Resource Controller

[RC], which provides FRESCO application developers with OpenFlow switch- and

controller-agnostic access to network flow events and statistics.

Developers use the FRESCO script language to instantiate and define the inter-

actions between the NOX python security modules (we present FRESCO’s scripting

language in Section 4.5.3). These scripts invoke FRESCO-internal modules, which

are instantiated to form a security application that is driven by the input specified

via the FRESCO scripts (e.g., TCP session and network state information) and ac-

cessed via FRESCO’s DE database API. These instantiated modules are triggered

(executed) by FRESCO DE as the triggering input events are received. FRESCO

modules may also produce new flow rules, such as in response to a perceived secu-

rity threat, which are then processed by the controller’s security enforcement kernel

[SEK] (Section 4.6).

4.5 FRESCO Application Layer

The basic operating unit in the FRESCO framework is called a module. A mod-

ule is the most important element of FRESCO. All security functions running on

FRESCO are realized through an assemblage of modules. Modules are defined as
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Python objects that include five interface types: (i) input, (ii) output, (iii) parame-

ter, (iv) action, and (v) event. As their names imply, input and output represent the

interfaces that receive and transmit values for the module. A parameter is used to

define the module’s configuration or initialization values. A module can also define

an action to implement a specific operation on network packets or flows. An event

is used to notify a module when it is time to perform an action.

A module is implemented as an event-driven processing function. A security

function can be realized by a single module or may be composed into a directed

graph of processing to implement more complex security services. For example, if a

user desires to build a naive port comparator application whose function is to drop

all HTTP packets, this function can be realized by combining two modules. The first

module has input, output, parameter, and event. The input of the first module is the

destination port value of a packet, its parameter is the integer value 80, an event is

triggered whenever a new flow arrives, and output is the result of comparing the input

destination port value and parameter value 80. We pass the output results of the first

module as input of the second module and we assign drop and forward actions to the

second module. In addition, the second module performs its function whenever it is

pushed as an input. Hence, the event of this module is set to be push. A module

diagram and modules representing this example scenario are shown in Figure 4.2.

An action is an operation to handle network packets (or flows). The actions

provided by FRESCO derive from the actions supported by the NOX OpenFlow

controller. The OpenFlow standard specifies three required actions, which should

be supported by all OpenFlow network switches, and four optional actions, which

might be supported by OpenFlow network switches [69]. OpenFlow requires support

for three basic actions: (i) drop, which drops a packet, (ii) output, which forwards a

packet to a defined port (in this work, we sometimes use the term forward to denote
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Figure 4.2: Illustration of FRESCO module design (left: model diagram; right: naive
port comparator application)

the output action), and (iii) group, which processes a packet through the specified

group. As these actions must be supported by all OpenFlow network switches,

FRESCO also exports them to higher-level applications.

One optional action of interest is the set action, which enables the switch to

rewrite a matching packet’s header fields (e.g., the source IP, destination port) to

enable such features as flow path redirection. Because one of the primary goals of

FRESCO is to simplify development of security functions, FRESCO handles possible

issues related to the set action by breaking the set action into three more specific

actions: redirect, mirror, and quarantine. Through the redirect action, an appli-

cation can redirect network packets to a host without explicitly maintaining state

and dealing with address translation. FRESCO offloads session management tasks

from applications and automatically changes the source and destination IP address

to handle redirects. The mirror action copies an incoming packet and forwards it to

a mirror port for further analysis. The functionality may be used to send a packet

to a feature or other packet analysis systems. The quarantine action isolates a flow

from the network. Quarantine does not mean dropping a particular flow, but rather,

FRESCO attaches a tag to each packet to denote a suspicious (or malicious) packet.

If a packet has the tag, then this packet can traverse only to allowed hosts (viz., a
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FRESCO script can fishbowl an infected host into an isolated network using packet

tags).

4.5.1 FRESCO Development Environment

The FRESCO development environment (DE) provides security researchers with

useful information and tools to synthesize security controls. To realize this goal,

we design the FRESCO DE with two considerations. First, this environment must

export an API that allows the developer to detect threats and assert flow constraints

while abstracting the NOX implementation and OF protocol complexities. Second,

the component must relieve applications from the need to perform redundant data

collection and management tasks that are common across network security appli-

cations. The FRESCO development environment provides four main functions: (i)

script-to-module translation, (ii) database management, (iii) event management,

and (iv) instance execution.

Script translation: This function automatically translates FRESCO scripts

to modules, and creates instances from modules, thus abstracting the implementa-

tion complexities of producing OF controller extensions. It is also responsible for

validating the registration of modules. Registration is performed via a registration

API, which enables an authorized administrator to generate a FRESCO application

ID and an encryption key pair. The developer embeds the registered application

ID into the FRESCO script, and then encrypts the script with the supplied private

key. The naming convention of FRESCO applications incorporates the application

ID, which is then used by FRESCO to associate the appropriate public key with

the application. In addition to registering modules, the module manager coordinates

how modules are connected to each other and delivers input and event values to each

module.
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Database management: The DB manager collects various kinds of network

and switch state information, and provides an interface for an instance to use the

information. It provides its own storage mechanism that we call the FRESCO-

DataBase (F-DB), which enables one to share state information across modules. For

example, if an instance wants to monitor the number of transferred packets by an

OpenFlow enabled switch, it can simply request the F-DB for this information. In

addition, this database can be used to temporarily store an instance.

Event management: The event manager notifies an instance about the oc-

currence of predefined events. It checks whether the registered events are triggered,

and if so delivers these events to an instance. FRESCO supports many different

kinds of events, including flow arrivals, denied connections, and session resets. In

addition, the event manager exposes an API that enables event reporting from legacy

DPI-based security applications, such as Snort [89] or BotHunter [34]. The security

community has developed a rich set of network-based threat monitoring services, and

the event manager’s API enables one to tigger instances that incorporate flow rule

response logic. ∗

Instance execution: This function loads the created instances into memory

to be run over the FRESCO framework. During load time, FRESCO decrypts the

application using the associated public key, and confirms that the ID embedded in

the script corresponds to the appropriate public key. The application then operates

with the authority granted to this application ID at registration time.

4.5.2 FRESCO Resource Controller

The FRESCO resource controller monitors OpenFlow network switches and keeps

track of their status. A flow rule that is distributed from a FRESCO application is

∗The example case for this scenario is shown in section 4.7.
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inserted into a flow table in an OpenFlow switch. Because the flow table has a limit

on the number of entries it can hold, it is possible that a flow rule from a FRESCO

application cannot be inserted into the flow table. However, because flow rules from

a FRESCO application deal with security policy enforcement, such flow rules require

immediate installation into the flow table of an OpenFlow network switch. Thus,

FRESCO may forcibly evict some old or stale flow rules, both FRESCO and non-

FRESCO, from the switch flow table to make space for new flow rules. This operation

is done by the resource controller. Garbage collecting inactive FRESCO rules does

not compromise the network security policy: if a prohibited flow is re-attempted

later, the FRESCO SEK will prevent other OF applications from performing the

flow setup.

Variable Explanation Possible Values

instance name (#input)(#output) denotes an instance name
(should be unique)

(#input) and (#output) denote the
number of inputs and outputs

type: [module] denotes a module for this in-
stance

[module] names an existing module

input: a1,a2,... denotes input items for a mod-
ule

an may be set of flows, packets or inte-
ger values

output: b1, b2,... denotes output items for a
module

bn may be set of flows, packets or inte-
ger values

parameter: c1,c2,... denotes configuration values of
a module

cn may be real numbers or strings

event: d1,d2,... denotes events delivered to a
module

dn may be any predefined string

action : condition ? action,... denotes set of conditions and
actions performed in the mod-
ule

condition follows the same syntax of
if condition of python language; ac-
tion may be one of the following
strings (DROP, FORWARD, REDI-
RECT, MIRROR, QUARANTINE)

{ } denotes the module start ({)
and end (})

-

Table 4.1: Key variables in the FRESCO scripting language

The resource controller performs two main functions. The first function, which

we call the switch monitor, periodically collects switch status information, such as
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port_comparator (1)(1) {

type:Comparator

event:INCOMING_FLOW

input:destination_port

output:comparison_result

parameter:80

/* no actions are defined */

action: -

}

do_action (1)(0) {

type:ActionHandler

event:PUSH

input:comparison_result

output: - /* no outputs are defined */

parameter: - /* no parameters are defined */

/* if input equals to 1, drop, otherwise, forward */

action:comparator_result == 1 ? DROP : FORWARD

}

Figure 4.3: FRESCO script with two connecting modules used to build the naive
port comparator

the number of empty flow entries, and stores the collected information in the switch

status table. The second component, i.e., the garbage collection, checks the switch

status table to monitor whether the flow table in an OpenFlow switch is nearing

capacity. If the availability of a flow table becomes lower than a threshold value (θ),

the garbage collector identifies and evicts the least active flow, using least frequently

used (LFU) as FRESCO’s default policy.

4.5.3 FRESCO Script Language

To simplify development of security applications, FRESCO provides its own script

language to assist developers in composing security functions from elementary mod-

ules. The textual language, modeled after the Click language [52], requires the

definition of six different variables per instance of modular element: (i) type, (ii)

input, (iii) output, (iv) parameter, (v) action, and (vi) event.

To configure modules through a FRESCO script, developers must first create an

instance of a module, and this instance information is defined in type variable. For

example, to use a function that performs a specific action, a developer can create

an instance of the ActionHandler module (denoted as type:ActionHandler within a

FRESCO script).

Developers can specify a script’s input and output, and register events for it
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to process by defining the script’s input, output, parameter, and event variables.

Multiple value sets for these variables (e.g., specifying two data inputs to input)

may be defined by using a comma as the field separator.

Defining an instance is very similar to defining a function in C or C++. A module

starts with the module name, two variables for representing the number of inputs

and outputs, and left braces (i.e., { ). The numbers of inputs and outputs are used

to sanity check the script during module translation. Like C or C++ functions, a

module definition ends with a right brace (i.e., } ).

The action variable represents actions that a module will perform based on some

conditions, where the conditions are determined by one of the input items. There

may be multiple conditions in the action, which are separated by semicolons. We

summarize these variables in Table 4.1, and Figure 4.3 shows example scripts of

the port comparator application shown in Figure 4.2 (right) with two connecting

modules.

FRESCO Script Execution: We use a simple running example, shown in

Figures 4.3 and 4.4, to illustrate the execution of a FRESCO script. First, an ad-

ministrator composes a FRESCO script (shown in Figure 4.3) (1), and loads it into

FRESCO (2). Next, when Host A sends a packet to port 80 of Host B through

an OpenFlow switch, as illustrated in Figure 4.4 (3), this packet delivery event is

reported to the FRESCO DE (4). The FRESCO DE creates instances from modules

defined in the FRESCO script (i.e., port comparator instance from comparator mod-

ule and do action instance from ActionHandler module) and dynamically loads them.

The FRESCO DE runs each instance (5, 6), and when it receives an action from the

do action module (i.e., drop) (7), it translates this action into flow rules, which can

be understood by an OpenFlow switch. Finally, these flow rules are installed into

the switch through the FRESCO SEK (8).
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Figure 4.4: Operational illustration of running FRESCO script (case of the FRESCO
script shown in Figure 4.3)

4.6 FRESCO Security Enforcement Kernel

Security applications developed in FRESCO scripts can enforce diverse security

policies, such as DROP, REDIRECT, QUARANTINE, to react to network threats

by simply setting an action variable, as listed in Table 4.1. These high-level secu-

rity policies can help developers focus on implementing security applications, and

these policies will be automatically translated into flow rules for OpenFlow enabled

switches by FRESCO DE (e.g., the REDIRECT action will be translated into three

flow rules). Thus, developers do not need to care about network-level flow rules.

However, when FRESCO DE enforces translated flow rules to switches, it will

face a new challenge, which stems from the fact that OpenFlow provides no inherent

mechanisms to reconcile rule conflicts as competing OpenFlow applications assert

new rules into a switch. For example, a set of rules designed to quarantine an inter-

nal computing server (i.e., the QUARANTINE action in a FRESCO script) might
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subsequently be overridden by a load-balancing application that may determine that

the quarantined host is now the least-loaded server. One needs a mechanism to

ensure that flow rules produced by a security application will take precedence over

those produced from non-security-aware applications. OpenFlow also incorporates a

packet alteration functions (i.e., the set action), specifiable within its flow rule for-

mat. This feature enables virtual tunnels between hosts, such that a virtual tunnel

can be used to circumvent a flow rule that was inserted to prevent two hosts from

establishing a connection.

To address this issue, FRESCO incorporates a security enforcement kernel (SEK),

which is integrated directly into the OpenFlow controller upon which FRESCO op-

erates. A more complete discussion of FRESCO SEK is provided in a published

workshop paper [74]. FRESCO SEK offers several important features upon which

FRESCO relies to ensure that flow rules derived from security services are prioritized

and enforced over competing flow rules produced by non-security-critical applica-

tions:

• Rule source identification: The SEK introduces a trust model that allows

FRESCO applications to digitally sign each candidate flow rule, thus enabling

the SEK to determine if a candidate flow rule was produced by a FRESCO

security module, by an OpenFlow application, or by a network administrator.

• Rule conflict detection: To detect conflicts between a candidate rule set and

the set of rules currently active in the switch, the SEK incorporates an inline

rule conflict analysis algorithm called alias set rule reduction, which detects

flow rule conflicts, including those that arise through set actions that are used

to produce virtual tunnels. Since this is not the main focus of this chapter,

we include a relatively more detailed description of our rule conflict detection
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algorithm in the following subsections.

• Conflict resolution: When a conflict arises, the SEK applies a hierarchical

authority model that enables a candidate rule to override (replace) an existing

flow rule when the digital signature of the rule source is deemed to possess

more authority than the source whose rule is in conflict.

4.6.1 FRESCO Security Enforcement Kernel Implementation

It is possible that the flow rules created by non-security-related SDN applications

conflict with the flow constraints distributed by FRESCO applications. A conflict

arises when one or more flow rules would allow a flow from one end point to another

that is specifically prohibited by a flow constraint rule produced by a FRESCO

application. To manage FRESCO flow constraints and perform conflict evaluation,

we introduce the FRESCO SEK as an embedded NOX extension. Since we use NOX

for our SEK implementation, we use OpenFlow protocol and OpenFlow applications

for testing its implementation.

Two main components of OpenFlow rules are match conditions and actions. The

former specifies packet header fields that must match for the rule’s associated actions

to trigger. The FRESCO SEK maintains the set of active constraint rules produced

by registered FRESCO modules. Constraint rules inserted into the FRESCO SEK

security constraints table are considered active, and must be explicitly deactivated by

a registered FRESCO module. Because non-FRESCO applications can publish flow

rules that potentially violate FRESCO’s network security policy, The FRESCO SEK

employs two protection mechanisms to prevent such violations. The first mechanism

is rule prioritization, in which flow rules produced by FRESCO applications are pub-

lished to the switch using the highest rule priority. This immediately overrides any

active flow rules in the switch’s flow table that may contradict FRESCO’s security
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policy. Second, the FRESCO SEK applies a conflict detection algorithm between

each new flow rule and the security constraints table, rejecting the new flow rule if

a conflict is detected. Conflict detection is performed in two passes: alias set rule

reduction, and then rule set conflict evaluation.

A conflict can also happen between security constraints enforced by different

FRESCO applications. In this case, the FRESCO SEK can still detect conflicts but

it needs to determine which constraint should be enforced. By default, FRESCO

SEK keeps the first enforced constraint (i.e., ignore following conflicted constraint),

but it is easy to be configured by the administrators to apply other approaches (e.g.,

keep the last enforced constraint, or based on some priority settings).

4.6.1.1 Alias Set Rule Reduction

To detect conflicts between a candidate rule set and FRESCO’s constraint rule

sets, the source and destination IP addresses, their ports, and wild card members † for

each rule in a rule set are used to derive rules with alias sets representing IP addresses

and ports. The initial alias sets contain the first rule’s IP addresses, network masks,

and ports (where 0 [zero] represents any port). If the rule’s action causes a field

substitution via a set action, the resultant value is added to the appropriate alias set.

These sets are then compared to the next rule’s alias sets. If there is an intersection

between both the source and address sets, the union of the respective sets is used as

the subsequent rule’s alias sets. For example, given the FRESCO rule,

a→ b drop packet (4.1)

its source alias set is (a), while its destination alias set is (b). The derived rule is

†For OpenFlow 1.1, the examined members include the source and destination network mask
fields (for OpenFlow 1.0 these are implicitly defined by the wildcard field).
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(a)→ (b) drop packet (4.2)

For the candidate (evasion) rule set,

1 a→ c set (a⇒ a’)

2 a’→ c set (c⇒ b)

3 a’→ b forward packet

(4.3)

the intermediate alias sets are

1 a→ c set (a⇒ a’) (a, a’) (c)

2 a’→ c set (c⇒ b) (a, a’) (c, b)

3 a’→ b forward packet (a, a’) (c, b) forward packet

(4.4)

and the derived rule is

(a, a’)⇒ (c, b) forward packet (4.5)

4.6.1.2 Rule Set Conflict Evaluation

The FRESCO SEK first performs alias set rule reduction on the candidate rule set.

These validity checks are then performed between each derived FRESCO constraint

rule cRule and each derived flow rule fRule, as follows:

1. Skip any cRule/fRule pair with mismatched prototypes.

2. Skip any cRule/fRule pair whose actions are both either forward or drop packet.

3. If cRule’s alias sets intersect those of fRule’s, declare a conflict.

Thus, given the example security constraint table in Equation 4.2 and the can-

didate rule set in Equation 4.5, assuming that both rules are TCP protocol, the
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first candidate rule passes the first two checks. However, for the third check, be-

cause the intersection of the source and destination alias sets results in (a) and (b),

respectively, the candidate rule is declared to be in conflict.

As a practical consideration, because OpenFlow rules permit both wildcard field

matches and IP address network masks, determining alias set intersection involves

more than simple membership equality checks. To accommodate this, we define

comparison operators that determine if a field specification is (i) more encompassing

(“wider”), (ii) more specific (“narrower”), (iii) equal, or (iv) unequal. Thus, an

intersection occurs when the pairwise comparisons between all fields of a candidate

rule are wider than, equal to, or narrower than that of the corresponding fields of

the constraint table rule.

For a formalization of the above, we first define some terms: (i) Si is the ith entry

of security constraints, (ii) Fi is the ith entry of flow rules, (iii) SCi,j is the jth item

of the ith entry of the condition part of the security constraint, (iv) SAi is the ith

entry of the action part of the security constraint, (v) FCi,j is the jth item of the

ith condition part of a flow rule from non-FRESCO applications, and (vi) FAi is the

ith action part of the flow rule. At this time, both SCi,j and FCi,j are sets whose

elements are one of the specific value or some ranges and j ∈ {1, 2, ..., 14}. Rule

contradiction is then formalized using the following notation:

if there is any Si, satisfying SCi,j ∩ FCi,j 6= � and

SAi 6= FAi, for all j, thenFi is conflicted with Si

(4.6)

Finally, upon an update to the security constraints table, rule set conflict res-

olution is performed against all flow rules currently active within the switch. If a

conflict is detected in which the switch rule is found to be wider than the FRESCO

rule, SEK initiates a request to the switch to flush the resident rule.
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4.6.2 Extending FRESCO Security Enforcement Kernel with Formal Method

We propose a provably correct and automatic method for verifying that a given

non-bypass property holds with respect to a set of flow rules committed by an Open-

Flow controller. Non-bypassability is a basic security property, which is enforced by

most firewalls and switches. This property stipulates that packets or flows satisfying

specified conditions must adhere to a predefined action, such as forward or drop.

Since flow tables of switches in OpenFlow environments can include a large number

of prioritized flow entries, manual verification of the non-bypass property on large

flow tables across switches is challenging. Furthermore, given the dynamic nature

of flow tables, the heterogeneity of vendor implementation in flow table ordering

and management, and complex flow rule constructs such as set operations that can

alter packet content, even automated security evaluation systems are challenged by

OpenFlow. Here, we address this challenge of verifying the compliance of a flow rule

set against an invariant security policy. We call this kernel FRESCO SEK-FM.

4.6.2.1 Non-Bypass Security Property Violations

FRESCO SEK-FM addresses the problem of verifying that the current state of

flow rules inserted in a switch’s flow table(s) remain consistent with the current

network security policy. We decompose the network security policy into a set of

assertions, which we refer to as Non-bypass properties. Intuitively, a Non-bypass

property is commonly observable in modern networks as the flow deny and allow

rule, which are statically defined to restrict or enable flows throughout and across

the network. A Non-bypass property specifies whether a certain packet/flow matching

a set of conditions should be dropped or forwarded to its destination (we formalize

this notion in Section 4.6.2.3).

For the purpose of verifying a non-bypass property across an OF-network, it is
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Condition
Flow Field 1 Field 2 Field 3 Field 4 Action
Table Src IP Src Port Dst IP Dst port Set

1 5 [0,19] 6 [0,19] { (drop) }

1 5 [0,19] [7,8] [0,19]
{ (set field1 10),

(goto 2) }
1 6 [0,19] [6,8] [0,19] { (forward) }

2 [10,12] [0,19] [0,12] [0,19]
{ (set field3 6),

(forward) }

Table 4.2: Example OpenFlow rule set used to illustrate coverage and modify viola-
tions

necessary to verify all flow tables within the OF-network. Table 4.2 is a simple

instance of our proposed flow rule set model with no overlaps. For simplicity, we de-

note IP addresses as non-negative integers and provide a formal definition of our OF

flow rule set in Section 4.6.2.3. Each entry of the flow rule set consists of conditions

over defined fields and a set of actions. We assume that if a given packet matches

all conditions of multiple entries, any set of actions corresponding to the matching

entry may be performed.

FRESCO SEK-FM addresses two types of violations of the non-bypass security

property that may be present in an OF flow rule set instance. For the first type of

violation, we assume that Table 4.2 is evaluated against the following non-bypass

property: every packet that goes from source IP [5,6] to destination IP 6 must be

dropped. However, an OF switch using Table 4.2 will forward any packet that has 6

for both the source and destination IP address because of the third entry in the first

flow table. That is, the final action for every packet satisfying the conditions of a

given non-bypass property is inconsistent with the action of the property (and thus

some packets can bypass the constraints). We call this kind of misconfiguration a

coverage violation.

The second type of violation arises due to the set command in an OF flow table.
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In this example, we define another non-bypass property such that every packet which

goes from source IP address 5 to destination IP address 6 must be dropped. However,

an adversary may tunnel the packet through a series of one or more intermediate

receivers such that the transmission chain originates from IP address 5 and ends

at destination IP address 6, which is a violation of the non-bypass property. For

example, when an adversary sends a malicious packet p whose source and destination

IP addresses are 5 and 7 respectively, the packet p is changed into p′ that goes from

source IP 10 to destination IP 6. Then, the packet p′ is forwarded to another switch

or the host whose IP address is 6 by the first rule of flow table 2. Thus, packet

p′ which originates from source IP 5 finally arrives at destination IP 6, which is a

clear violation of the specified property. We call this type of violation a modify

violation.

4.6.2.2 SMT Solving in Yices

Yices is a Satisfiability Modulo Theories (SMT) solver, developed at SRI. The core

of Yices implements an efficient SAT solver based on the Davis-Putnam-Logemann-

Loveland (DPLL) algorithm [23]. Yices is provided with an input file modeling given

first order logic. If a given model is satisfiable, i.e., there exists at least one instance

satisfying all model constraints, Yices outputs such a satisfying example. Otherwise,

Yices reports the model to be unsatisfiable. We leverage the soundness of Yices and

its ability to efficiently find satisfying examples, to verify flow rule sets.

4.6.2.3 Non-bypass Property Representation

A non-bypass security property asserts a feature within a given flow rule set.

Formally, a non-bypass security property is a form of first order logic consisting of

universal quantifier, conditions and an action. An action can be forward or drop.

The conditions part of a non-bypass security property is a conjunction of boolean
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expressions over flow rule set fields. The maximum number of fields is up to 15 [70].

The condition for each field is encoded with a boolean expression specifying a range

of non-negative integers because every field consists of a number of bits whose length

varies from 3 to 64.

To assert non-bypass properties within a flow rule set against coverage and mod-

ify violations, FRESCO SEK-FM uses two forms of non-bypass security properties,

respectively. The formal representation of a non-bypass property denoting that a

flow rule set is free from coverage violations is as follows:

Non-bypass propertyc = ∀p(
n∧

j=1

Cj(p)→ a), a ∈ {forward, drop}

Cj(p) = Fj(p) ∈ [iLowj , iHighj ], Fj(p) = j th field of p

This property denotes that if an initial packet, before modification by an OF-

switch, matches the conditions then its final result must be consistent with the

action of the property.

The formal representation of a non-bypass property proving that a flow rule set

has no modify violation is as follows:

Non-bypass propertym = ∀(p, p′)(
2∧

j=1

Cj(p)

n∧
k=3

Ck(p′)→ a),

a ∈ {forward, drop}

(p, p′) = a pair of initial packet p and its final packet p′

F1(p) = source IP field of packet p, F2(p) = source port field of packet p

This property dictates that if the initial packet p before modification by an OF-

switch matches the source IP and port conditions and its final packet p′ matches

the remaining conditions of the property then, the final result for packet p must be

consistent with the action specified by the property.

99



We assume that the administrator of an OF network has a priori knowledge of

what non-bypass properties must be enforced within the network. FRESCO SEK-

FM checks whether the specified non-bypass properties hold for the rule evaluation

sequence imposed by the switch.

4.7 Working Examples

We show two case studies by creating real working security applications written

in FRESCO script.

4.7.1 Implementing Reflector Net

FRESCO’s power stems from its ability to use OpenFlow to effectively reprogram

the underlying network infrastructure to defend the network against an emerging

threat. To illustrate this notion, consider a FRESCO application that allows OF

network operators to redirect malicious scanners to a third-party remote honeypot.

Using FRESCO script, we compose two modules that first detect an active malicious

scanner, and then reprogram the switch data plane to redirect all the scanner’s flow

into a remote honeynet. We refer to our composed security service as a threat re-

flector net, which effectively turns the address space of any OpenFlow network that

deploys this service into a contact surface for a remote high-interaction honeypot.

The incentive for an operator to use such a service is that the forensic evidence col-

lected by the honeypot can be shared back for the purpose of refining the operator’s

local FRESCO-based firewall.

First, we create and configure a simple threshold-based scan detector instance.

Since FRESCO already provides a “ScanDetector” module, we can instantiate an

instance from this module for selecting malicious external targets. For this example,

let us assume that our scan analysis is triggered by an external entity producing large

numbers of failed TCP connections. Thus, we establish TCP CONNECTION FAIL,

100



which is captured in FRESCO’s native DB service, as an input trigger event for our

scan detection, which outputs a scan detection event when a threshold number of

failed connections is observed.

Our FRESCO script instantiates the scan detection module using four key script

variables: (i) input, (ii) output, (iii) parameter, and (iv) action. The input for this

instance is a source IP address for a flow that causes TCP CONNECTION FAIL

event. The parameter will determine a threshold value for a scan detection algo-

rithm, and here, we set this value as 5 (i.e., if a source IP generates five failed TCP

connections, we regard it as a scan attacker). The output is a source IP address

and a scan detection result (noted as scan result), which are delivered to the second

instance as input variables. The action variable is not defined here, as the logic

required to formulate and insert flow rules to incorporate duplex redirection is mod-

ularized into a second flow redirection instance. The FRESCO script for our flow

redirection instance is shown in Figure 4.5 (left).

We configure a redirector instance to redirect flows from the malicious scanner

to a honeynet (or forward benign flows). This function is an instance of FRESCO’s

“ActionHandler” module. This instance uses a PUSH event, which triggers the in-

stance each time “find scan” is outputted from the scan detection instance Finally,

we need to define an action to redirect flows produced by scan attackers. Thus, we

set the action variable of this instance as “scan result == 1 ? REDIRECT : FOR-

WARD”, which indicates that if the input variable of scan result equals 1 (denoting

the scanner) this instance redirects all flows related to the source IP address. The

FRESCO script for this instance is shown in Figure 4.5 (right).

We test this script in an OpenFlow simulation environment with Mininet [64],

which is commonly used to emulate OpenFlow networks, to show its real operation.

In this test, we created three hosts (scanner, target host, and honeynet) and an

101



find_scan (1)(2){

type:ScanDetector

event:TCP_CONNECTION_FAIL

input:source_IP

output:source_IP, scan_result

parameter:5

/* no actions are defined */

action: -

}

do_redirect (2)(0){

type:ActionHandler

event:PUSH

input:source_IP, scan_result

output: -

parameter: -

/* if scan_result equals 1, redirect,

otherwise, forward */

action: scan_result == 1 ?

REDIRECT : FORWARD

}

Figure 4.5: FRESCO script with two connecting modules used to build a reflector
net

OpenFlow enabled switch. All three hosts are connected to the switch and able to

initiate flows to each another.

As illustrated in Figure 4.6, the malicious scanner (10.0.0.2) tries to scan the host

(10.0.0.4) using Nmap tool [68]. The scan packets are delivered through an Open-

Flow switch (1), where the switch then forwards the flow statistics to a FRESCO

application (i.e., find scan instance) through a controller. The find scan instance

determines that these packets are scan-related, and it sends the detection result to

the do redirect instance to instantiate flow rules to redirect these packets to our

honeynet (10.0.0.3) (2). At this time, the network configuration of the honeypot is

different from the original scanned machine (10.0.0.4), which opens network port 445

while the honeypot opens network port 444. Then, the honeypot returns packets to

the scanner as if it is the original target (3). Finally, the scanner receives packet

responses from the honeypot (4), unaware that all of its flows are now redirected to

and from the honeynet.

4.7.2 Cooperating with a Legacy Security Application

FRESCO provides an interface, which receives messages from legacy security
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Figure 4.6: Operational illustration of a FRESCO reflector net application
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applications, such as Snort [89] and BotHunter [34]. Usually, we use these network

security applications to monitor our networks, often using DPI-based techniques

to identify malicious traffic content or by simply monitoring flow patterns. Using

FRESCO, alerts produced from such network security monitors can be integrated

into the flow rule production logic of OF-enabled networks. To do this, we employ

FRESCO actions (e.g., drop and redirect) as responses against network attacks.

One might consider reimplementing classic network security applications directly

as OpenFlow applications. However, such efforts are both costly in engineering time

and subject to limitations in the availability of data provided by the OF controller.

Also, OpenFlow does not export full packet content over its APIs, so DPI-based

security services must be implemented as external applications. To reduce the inte-

gration burden, FRESCO provides a function of receiving messages from third-party

security applications, and we can simply design response strategies based on the

messages through FRESCO script.

A message from a third-party security application will be delivered to a mod-

ule as a type of event - MESSAGE LEGACY, and the format of a message is of

two kinds: (i) FRESCO type and (ii) other standardized formats such as the intru-

sion detection message exchange format (IDMEF) [78]. If we use FRESCO type,

it is notified in the event as a keyword of FRESCO, and it can be represented

as MESSAGE LEGACY:FRESCO. If we use IDMEF, it can be shown as MES-

SAGE LEGACY:IDMEF.

In the scenario, shown in Figure 4.7, an attacker sends a bot binary (1) to the host

C, and BotHunter responds by producing an infection profile (2). Then, BotHunter

reports this information (i.e., the Victim IP and forensic confidence score for the

infection) to a security application written in FRESCO script (3). If the profile’s

forensic score achieves a threshold value, the application imposes a quarantine action
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on the victim IP. The quarantine module uses the FRESCO SEK to enforce a series

of flow rules that implement the quarantine action SEK (4, 5). Finally, if an infected

host (the host C) sends another malicious data to other hosts, such as host A or host

B (6), it is automatically blocked by the switch.

Figure 4.7: Operational illustration of a FRESCO actuator cooperating with BotH-
unter

To implement this function, we simply reconfigure the “do quarantine” instance

(or create another instance) used in the above example scenario for this case. This

time, we instantiate the instance with four alternate variables: (i) event, (ii) in-

put, (iii) parameter, and (iv) condition part of action. When BotHunter forwards

its infection alarm using the FRESCO API, we set the event variable as MES-

SAGE LEGACY:FRESCO. The input variables passed to this module include the

victim ip (reported as infected by BotHunter), and the infection confidence score,

which represents the degree of forensic evidence recorded within the infection profile.

We also specify a parameter for the confidence threshold, and trigger the QUAR-
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ANTINE action when the confidence score exceeds the confidence threshold. The

FRESCO script for this instance is shown in Figure 4.8.

do_quarantine (2)(0){

type:ActionHandler

event:MESSAGE_LEGACY:FRESCO

input:victim_ip,confidence_score

output: -

parameter:confidence_threshold

/* redirect all flows from source IP */

action:confidence_score > confidence_threshold

? QUARANTINE(victim_ip)

}

Figure 4.8: FRESCO script for invoking host quarantine for BotHunter

4.8 Implementation

We have developed a prototype implementation of the FRESCO architecture.

The FRESCO Application Layer prototype is implemented in Python and runs as

an OpenFlow application on NOX. The prototype operates on NOX version 0.5.0

using the OpenFlow 1.1.0 protocol, and is implemented in approximately 3,000 lines

of Python. FRESCO modules are implemented as independent Python objects, and

inputs and parameters of a module are input variables to the Python object. The

return values of a Python object are considered as output values of a module.

A sample implementation of the FRESCO Comparator module, used in Figure

4.2 (right), is presented in Figure 4.9. All modules in FRESCO start with the

function of module start, and this function has two arguments: (i) input dic, which

is a dictionary data structure containing F-DB, event, and input values, and (ii)

param list, which is a list structure storing user-defined parameter values. All

variables starting with ”FR ” are FRESCO native variables. The developer fills in
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additional specialized logic at the bottom of the module (lines 13-18).

1 def module_start(input_dic , param_list ):

2 # initialize FRESCO native inputs

3 FR_FDB = input_dic[’FR_FDB ’]

4 FR_event = in_dic[’FR_event ’]

5 FR_input = input_dic[’FR_input ’]

6
7 # initialize FRESCO variables

8 FR_ret_dic = {}

9 FR_ret_dic[’output ’] = []

10 FR_ret_dic[’action ’] = None

11
12 # start - user defined logic

13 if param_list [0] == FR_input [0]:

14 output = 1

15 else:

16 output = 0

17
18 FR_ret_dic[’output ’]. append(output)

19 # end - user defined logic

20
21 return FR_ret_dic

Figure 4.9: FRESCO comparator module

The FRESCO SEK is implemented as a native C++ extension of the NOX source

code in approximately 1160 lines of C++ code. We modified the send openflow command

function, whose main operation is to send OpenFlow commands to network switches,

to capture flow rules from all OpenFlow applications. FRESCO SEK intercepts flow

rules in the function and stores them into the security constraints table if the rules

are from FRESCO applications (i.e., flow rules produced through the FRESCO path

are considered trusted flow rules and are preserved as active network security con-

straints). If a flow rule is from a non-FRESCO application, FRESCO SEK evaluates

the rule to determine if a conflict exists within its security constraints table. The

match algorithm is specifically optimized to perform the least-expensive comparisons
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first. If there are conflicts, an error message is returned to the OF application. Oth-

erwise, the rule is forwarded to the network switches. We implement and evaluate

the security constraint table using the in-memory database opportunistic best-fit

comparison algorithm, which reports an ability to execute queries in near-constant

lookup time.

4.9 System Evaluation

We now evaluate the FRESCO framework with respect to its ease of use, flexi-

bility, and security constraints preservation. To evaluate components in FRESCO,

we employ mininet [64], which provides a rapid prototyping environment for the

emulation of OpenFlow network switches. Using mininet, we have emulated one

OpenFlow network switch, three hosts connected to the switch, and one host to op-

erate our NOX controller. We perform flow generation by selecting one or two hosts

to initiate TCP or UDP connections. The remaining host is employed as a medium

interaction server, which responds to client application setup requests. We hosted

our evaluation environment on an Intel i3 CPU with 4 GB of memory. In addition,

we conduct live performance evaluations of the FRESCO SEK using an HP ProCurve

6600 OF-enabled switch in a test network laboratory.

4.9.1 Evaluating Modularity and Composability

For the evaluation, we begin with the basic problem of identifying entities per-

forming flow patterns indicative of malicious network scanning, and compare schemes

of implementing network scanning attacks with and without the use of FRESCO.

While network scanning is a well-studied problem in the network security realm,

it offers an opportunity to examine the efficiency of entity tracking using FRESCO.

Many well-established algorithms for scan detection exist [48, 47, 82]. However,

under OpenFlow, the potential for FRESCO to dynamically manipulate the switch’s
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data path in reaction to malicious scans is a natural objective. This scenario also

lets us examine how simple modules can be composed to perform data collection,

evaluation, and response.

1. FRESCO Scan Deflector Service. Figure 4.10 illustrates how FRESCO

modules and their connections can be linked together to implement a malicious scan

deflector for OpenFlow environments. This scan detection function consists of the

three modules described above. First, we have a module for looking up a blacklist.

This module checks a blacklist table to learn whether or not an input source IP is

listed. If the table contains the source IP, the module notifies its presence to the

second module. Based on the input value, the second module performs threshold-

based scan detection or it drops a packet. If it does not drop the packet, it notifies

the detection result to the third module. In addition, this second module receives

a parameter value that will be used to determine the threshold. Finally, the third

module performs two actions based on input. If the input is 1, the module redirects

a packet. If the input is 0, it forwards a packet. Implementing the three modules

required 205 lines of Python code and 24 lines of FRESCO script (this script is shown

in Figure 4.11).

Figure 4.10: FRESCO composition of a scan deflector
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1 blacklist_check (1)(1){

2 type:TableLookup

3 event:TCP_CONNECTION_FAIL,

TCP_CONNECTION_SUCCESS

4 input:source_IP

5 output:blacklist_out

6 parameter:-

7 action:-

8 }

1 find_scan (1)(1){

2 type:ScanDetector

3 event:PUSH

4 input:blacklist_out

5 output:scan_out

6 parameter:-

7 action:blacklist_out == 1

?DROP

8 }

1 do_action (1)(0){

2 type:ActionHandler

3 event:PUSH

4 input:scan_out

5 output:-

6 parameter:-

7 action:scan_out == 1

?REDIRECT:FORWARD

8 }

Figure 4.11: FRESCO script for a scan detector

2. FRESCO BotMiner Service. To illustrate a more complex flow analysis

module using FRESCO, we have implemented a FRESCO version of the BotMiner

[33] application. Note that our goal here is not faithful, “bug-compatible” adherence

to the full BotMiner protocol described in [33], but rather to demonstrate feasibility

and to capture the essence of its implementation through FRESCO, in a manner

that is slightly simplified for readability.

Figure 4.12: FRESCO composition of the BotMiner service
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BotMiner detects bots through network-level flow analysis. We have implemented

the essentials of its detection functionality using five modules as shown in Figure 4.12.

BotMiner assumes that hosts infected with the same botnet exhibit similar patterns

at the network level, and these patterns are different from benign hosts. To find

similar patterns between bots, BotMiner clusters botnet activity in two dimensions

(C-plane and A-plane). The C-plane clustering approach is used to detect hosts that

resemble each other in terms of (packets per second) and bps (bytes per second). The

A-plane clustering identifies hosts that produce similar network anomalies. In this

implementation, we use the scan detector module to find network anomalies. Finally,

if we find two clusters, we perform co-clustering to find common hosts that exist in

both dimensions and label them as bots. BotMiner was implemented in 312 lines of

python code and 40 lines of FRESCO script (the script for BotMiner is presented in

Figure 4.13).

1 table_check (1)(2){

2 type:TableLookup

3 event:TCP_CONNECTION_FAIL,

TCP_CONNECTION_SUCCESS

4 input:source_IP

5 output:table_out,source_IP

6 parameter:-

7 action:-

8 }

1 a_cluster (2)(1){

2 type:A-PlaneCluster

3 event:PUSH

4 input:table_out,source_IP

5 output:a_cls_out

6 parameter:-

7 action:-

8 }

-

1 c_cluster (0)(1){

2 type:C-PlaneCluster

3 event:TCP_CONNECTION_FAIL,

TCP_CONNECTION_SUCCESS

4 input:-

5 output:c_cls_out

6 parameter:-

7 action:-

8 }

1 cr_cluster (2)(2){

2 type:CrossCluster

3 event:PUSH

4 input:a_cls_out,c_cls_out

5 output:cross_out,ip_list

6 parameter:-

7 action:-

8 }

-

1 do_action (2)(0){

2 type:ActionHandler

3 event:PUSH

4 input:cross_out,ip_list

5 output:-

6 parameter:-

7 action:cross_out == 1

?DROP(ip_list):FORWARD

8 }

Figure 4.13: FRESCO scripts illustrating composition of the BotMiner service

3. FRESCO P2P Plotter Service. We have implemented a FRESCO-based

P2P malware detection service, similarly implemented to capture the concept of
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the algorithm, but simplified for the purpose of readability. Motivated by Yen’s

work [109], we have implemented the P2P malware detection algorithm, referred to

as P2P Plotter, using FRESCO. The P2P Plotter asserts that P2P malware has

two interesting characteristics, which are quite different from normal P2P client

programs. First, P2P malware usually operates at lower volumes of network flow

interactions than what is typically observed in benign P2P protocols. Second, P2P

malware typically interacts with a peer population that has a lower churn rate (i.e.,

the connection duration time of P2P plotters is longer than that of normal P2P

clients). The algorithm operates by performing co-clustering, to find common hosts

that exhibit both characteristics (i.e., low volume and low churn rate).

Figure 4.14: FRESCO composition of the P2P plotter
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We have implemented this essential functionality of the P2P Plotter algorithm as

a 4-module FRESCO script, which is shown in Figure 4.14. This involved 227 lines of

Python code and 32 lines of FRESCO script. The script for the P2P Plotter is illus-

trated in Figure 4.15. The reuse of modules (i.e., CrossCluster and ActionHandler,

from the BotMiner service implementation is noteworthy, highlighting the reuse po-

tential of FRESCO modules.

1 low_volume_peer (0)(1){

2 type:VolumeDetector

3 event:INCOMING_FLOW

4 input:-

5 output:volume_out

6 parameter:-

7 action:-

8 }

1 low_churn_peer (0)(1){

2 type:ChurnDetector

3 event:INCOMING_FLOW

4 input:-

5 output:churn_out

6 parameter:-

7 action:-

8 }

1 cr_cluster (2)(2){

2 type:CrossCluster

3 event:PUSH

4 input:volume_out,churn_out

5 output:cross_out,ip_list

6 parameter:-

7 action:-

8 }

1 do_action (2)(0){

2 type:ActionHandler

3 event:PUSH

4 input:cross_out,ip_list

5 output:-

6 parameter:-

7 action:cross_out == 1 ? DROP(ip_list):FORWARD

8 }

Figure 4.15: FRESCO scripts illustrating composition of the P2P plotter

4.9.2 Comparing FRESCO Applications with Non-FRESCO Detectors

Network anomaly detection approaches, e.g., TRW [48], have been well-studied

and are commonly used as a complement to signature-based detection systems in tra-

ditional networks. While these approaches may be instantiated as software programs

or in hardware devices, the common practice is to implement them as stand-alone

software programs. (We envision that the FRESCO development environment may

be similarly used for rapid prototyping and evaluation of certain anomaly detection

algorithms in OpenFlow networks.)
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To highlight the advantages of FRESCO, we first choose an open-source network

anomaly detection system and then replicate identical functionality using FRESCO.

Specifically, we compare FRESCO with a recently published work [63], where the au-

thors implemented popular network anomaly detection algorithms such as TRW-CB

[79] and Rate Limit [98] as applications running on an OpenFlow network controller.

We re-implement the same algorithms (i.e., TRW-CB and Rate Limit) using existing

FRESCO modules and the FRESCO scripting language. We provide a comparison in

Table 4.3, in terms of the number of lines of source code, to demonstrate the utility

of the FRESCO development environment.

As summarized in Table 4.3, prior work [63] makes the case that its OpenFlow

application implementation is slightly simpler than the standard implementation

(i.e., the source code for the OpenFlow implementation is roughly 70% to 80% the

length of the standard implementation). Using FRESCO, we are able to realize

similar functionality with an order of magnitude fewer lines of code. That is, we

have implemented the identical TRW-CB function with 66 lines of code (58 lines of

Python and 8 lines of FRESCO script) and the rate limiting function with 69 lines

of code (61 lines of Python and 8 lines of FRESCO script). These two examples

represent 6% to 7% of the length of their standard implementations, and less than

9% of the recently published OpenFlow implementation.

Implementation
Algorithms Standard OpenFlow application FRESCO

TRW-CB 1,060 741 66 (58 + 8)
Rate Limit 991 814 69 (61 + 8)

Table 4.3: Source code length for standard, OpenFlow and FRESCO implementa-
tions of the TRW-CB and Rate-Limit anomaly detection algorithms
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4.9.3 Measuring and Evaluating FRESCO Overhead

FRESCO Application Layer Overhead. We compare the flow setup time

of NOX flow generation with five other FRESCO applications and summarize the

results in Table 4.4. To measure this, we capture packets between NOX and the

OpenFlow switch, and measure the round trip required to submit the flow and receive

a corresponding flow constraint. We observe that FRESCO applications require

additional setup time in the range of 0.5 milliseconds to 10.9 milliseconds.‡

NOX Simple Flow
Tracker

Simple Scan
Detector

Threshold Scan
Detector

BotMiner
Detector

P2P
Plotter

Time
(ms)

0.823 1.374 2.461 7.196 15.421 11.775

Table 4.4: Flow setup time comparison of NOX with five FRESCO applications

Resource Controller Overhead. The resource controller component monitors

switch status frequently and removes old flow rules to reclaim space for new flow

rules, which will be enforced by FRESCO applications. This job is performed by

FRESCO’s garbage collector, a subcomponent of the resource controller, which we

test under the following scenario. First, we let non-FRESCO applications enforce

4,000 flow rules to an OpenFlow network switch. In this case, we assume that the

maximum size of the flow table in the switch is 4,000, and we set the threshold

value(θ) for garbage collection as 0.75 (i.e., if the capacity of a flow table in a switch

is ≤ 75%, we run the garbage collector). Our test results, shown in Figure 4.16,

demonstrate that the garbage collector correctly implements its flow eviction policy.

‡These setup times were measured on mininet, which is an emulated environment running on a
virtual machine. If we use a more powerful host for the controller, which is the common case in an
OpenFlow network, this setup time will be reduced significantly.
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Figure 4.16: Operation of FRESCO garbage collector

4.10 Related Work

The OpenFlow standard has as its roots on a rich body of work on control-flow

separation and clean-slate design of the Internet (e.g., [17], [31]). SANE [18] and

Ethane [17] propose new architectures for securing enterprise networks. The SANE

[18] protection layer proposes a fork-lift (clean-slate) approach for upgrading enter-

prise network security that introduces a centralized server, i.e., domain controller,

to authenticate all elements in the network and grant access to services in the form

of capabilities that are enforced at each switch. Ethane [17] is a more practical and

backwards-compatible instantiation of SANE that requires no modification to end

hosts. Both studies may be considered as catalysts for the emergence of OpenFlow

and software-defined networking.

FRESCO is built over the foundations laid by these studies and shares a common

objective with these systems in that it seeks to improve enterprise security using

programmable network elements. However, FRESCO emphasizes composable secu-

rity, and applications that it enables are much more sophisticated than simple access
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control policies. In addition, the FRESCO SEK focuses on providing continued en-

forcement of potentially conflicting flow constraints imposed by FRESCO and other

OF applications. Thus, we consider our work as greatly complementary to existing

studies such as SANE and Ethane.

FRESCO’s focus is on the development of a holistic platform for specifying and

developing OF security applications and enforcement of security constraints gener-

ated by these applications. Prior work has addressed a part of this problem, i.e.,

development of new languages for specifying security policies. Nettle [100] is a new

language for managing OF switches that is based on functional reactive programming.

Frenetic [27] and Procera [101] provide declarative query language frameworks for

managing distributed OF switches, describing high-level packet-forwarding and spec-

ifying network policies. The OpenSAFE system provides a language framework for

enabling redirection of traffic to network monitoring devices [7]. In contrast to these

languages, the FRESCO development environment is specialized to serve the needs of

security applications. Specifically, FRESCO applications issue high-level security di-

rectives (e.g., REDIRECT, QUARANTINE, MIRROR), which are then translated into

OF-specific commands by the script-to-module translator. In addition, FRESCO ap-

plications require aggregate session and flow state information as well as directives

for asynchronous delivery of switch state information that is unavailable in standard

OF environments. Applications such as Random Host Mutation [44] are additional

motivating examples of candidate OF security applications whose development may

be accelerated using FRESCO.

The FRESCO security enforcement kernel is informed by prior research focused

on testing or verifying firewall and network device configuration [83, 25, 58, 59, 4, 105,

3], e.g., using Firewall Decision Diagrams (FDDs) [58] or test case generators [83,

25]. These studies do not deal with dynamic networks. More recently, header space
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analysis was proposed, which is a generic framework to express various network

misconfigurations and policy violations [50]. While HSA can in theory deal with

dynamic networks, the FRESCO SEK differs in that it is specialized to deal with

specific policy violations by OF applications, rule conflict detection, and dynamic

flow tunneling. Veriflow proposes to slice the OF network into equivalence classes to

efficiently check for invariant property violations [51]. The alias set rule reduction

algorithm used by FRESCO SEK is complementary to this approach.

We build our system on NOX, which is an open-source OF controller [36]. How-

ever, our methodology could be extended to other architectures like Beacon [71], Mae-

stro [13], and DevoFlow [65]. FlowVisor is a platform-independent OF controller that

uses network slicing to separate logical network planes, allowing multiple researchers

to run experiments safely and independently in the same production OpenFlow net-

work [85]. Our work differs from FlowVisor in several ways. First, FlowVisor cares

primarily about non-interference across different logical planes (slices) but does not

instantiate network security constraints within a slice. It is possible that an OF

application uses packet modification functions resulting in flow rules that are ap-

plied across multiple network switches within the same slice. In such cases, we need

a security enforcement kernel to resolve conflicts as described in Section 4.6. Sec-

ond, although FlowVisor improves security by separating the OF network into logical

planes, it does not provide analogous capabilities to FRESCO for building additional

security applications.

The need for better policy validation and enforcement mechanisms has been

touched on by prior and concurrent research efforts. NICE provides a model-checking

framework that uses symbolic execution for automating the testing of OpenFlow ap-

plications [16]. The Resonance architecture enables dynamic access control and mon-

itoring in SDN environments [67]. The FlowChecker system encodes OpenFlow flow
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tables into Binary Decision Diagrams (BDD) and uses model checking [3] to verify se-

curity properties. However, the evaluation of FlowChecker does not consider handling

of set action commands, which we consider to be a significant distinguisher for Open-

Flow networks. More recently, researchers have proposed developing language ab-

stractions to guarantee consistency of flow updates in software-defined networks [77].

In contrast, our complementary work on the FRESCO security enforcement kernel

is focused on detection of rule update conflicts and security policy violations. The

Onix platform [54] provides a generalized API for managing a distributed control

plane in Software Defined Networks. The techniques and the strategies developed in

Onix for managing a distributed network information base are complementary and

can be integrated into FRESCO.

4.11 Summary of this Chapter

Despite the recent success of SDN, developing and deploying complex SDN secu-

rity services remains a significant challenge. We present FRESCO, a new application

development framework specifically designed to address this problem. We introduce

the FRESCO architecture and its integration with the NOX OpenFlow controller,

and present several illustrative security applications written in the FRESCO scripting

language. To empower FRESCO applications with the ability to produce enforceable

flow constraints that can defend the network as threats are detected, we present the

FRESCO security enforcement kernel. Our evaluations demonstrate that FRESCO

introduces minimal overhead and that it enables rapid creation of popular security

functions with significantly (over 90%) fewer lines of code. We believe that FRESCO

offers a powerful new framework for prototyping and delivering innovative security

applications into the rapidly evolving world of software-defined networks. We plan

to release all developed code as open source software to the SDN community.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we present several techniques to protect our networks. First, we

analyze the infection trends of recent bot malware samples, and we provide several

new findings and insights based on the analysis results. For example, in this re-

search, we first propose a way of comparing multiple different botnet malware, and

it discovers many new things that have not shown before. In addition, we suggest

an way of predicting malware infection just based on known infection trends. This

approach is pretty simple, but it is promising in estimating which network is infected

by bot malware. We believe that our findings, insights, and the prediction method

help security researchers devise more intelligent malware defending systems.

Second, we design a bot malware detection system, and it can effectively detect

bot malware without adding serious overhead to our systems. This system first sifts

out benign processes, and it just focuses on some suspicious processes. After sifting

out, it uses several techniques to investigate the suspicious processes more to know

whether they are malicious or not. In our evaluation, we find that this system can

detect 15 well-known bot malware clearly, and it has very low false-positive rates.

Moreover, our test indicates that our system causes very little overhead (less than

2%) to each host, and it addresses the problem of existing host-based bot malware

detection systems.

Above two techniques are useful to defend our network from bot malware. How-

ever, there are much more diverse network threats, and we want to defend our net-

works from these threats. To achieve this, we try to design a new framework to

make our networks more secure. Since it is hard to change the architecture of exist-

ing networks, we have decided to use a new technology that can be used for a future
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network. We employ the Software Defined Networking (SDN) technology that is

considered as a key technology for future networks, and we realize our ideas with

this technology. In this context, we create a new security frame work for, and it is

FRESCO. With FRESCO, security researchers and network administrators can eas-

ily create intelligent security applications, and they can make their networks more

secure.

We will continue our research to make our networks more secure and to protect

them from advanced network threats. We will analyze more recent and diverse bot

malware samples and their infection trends to investigate their characteristics. Since

malware writers will keep developing new malware to attack our networks, we also

need to keep monitoring our networks to find new malware. Finding new malware

samples in the early stage is really important, because it will reduce the effect of

malware infection.

We will extend the EFFORT system to make this system more efficient and effec-

tive. We will consider more network and host level features to make detection more

effective. For example, EFFORT system currently investigates around 20 systems

calls to check whether a suspicious process conducts malicious operations or not. We

will add more systems calls (but not too much) for investigation, and they will help

EFFORT more malicious operations.

We will build more intelligent security applications for FRESCO. For example,

we will create some network anomaly detection applications running on FRESCO.

In addition, we will improve the performance of FRESCO, and it will promote the

usage of FRESCO applications in real networks.
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