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ABSTRACT 

 

     In order to understand the complex fracture network that controls water movement in 

Sherrod Area of Spraberry Field in West Texas and to better manage the on-going 

waterflood performance, a field scale inter-well tracer test was implemented. This test 

presents the largest inter-well tracer test in naturally fractured reservoirs reported in the 

industry and includes the injection of 13 different tracers and sampling of 110 producers 

in an area covering 6533 acres.  

     Sherrod tracer test generated a total of 598 tracer responses from 51 out of the 110 

sampled producers. Tracer responses showed a wide range of velocities from 14 ft/day to 

ultra-high velocities exceeding 10,000 ft/day with same-day tracer breakthrough. Re-

injection of produced water has caused the tracers to be re-injected and added an 

additional challenge to diagnose and distinguish tracer responses affected by water 

recycling. Historical performance of the field showed simultaneous water breakthrough 

of a large number of wells covering entire Sherrod area. This research investigate 

analytical, numerical, and inversion modeling approaches in order to categorize, history 

match, and connect tracer responses with water-cut responses with the objective to 

construct multiple fracture realizations based entirely on water-cut and tracers‟ profiles. 

In addition, the research highlight best practices in the design of inter-well tracer tests in 

naturally fractured reservoirs through lessons learned from Sherrod Area.  

     The large number of tracer responses from Sherrod case presents a case of naturally 

fractured reservoir characterization entirely based on dynamic data. Results indicates 
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that tracer responses could be categorized based on statistical analysis of tracer 

recoveries of all pairs of injectors and producers with each category showing 

distinguishing behavior in tracers‟ movement and breakthrough time. In addition, it 

showed that tracer and water-cut responses in the field are dominantly controlled by the 

fracture system revealing minimum information about the matrix system. Numerical 

simulation studies showed limitation in dual porosity formulation/solvers to model tracer 

velocities exceeding 2200 ft/day. Inversion modeling using Gradzone Analysis showed 

that east and north-west of Sherrod have significantly lower pore volume compared to 

south-west.      
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1. INTRODUCTION 

   

1.1 Tracer Tests: Background & Applications  

     The successful implementation of tracer tests in the areas of petroleum reservoirs and 

groundwater fields over the years have made those types of tests very reliable tool for 

reservoir description and characterization.  Unlike pressure transient tests which  provide 

a low resolution description of the reservoir by averaging reservoir properties over the 

bulk drainage volume, tracer tests has the ability to capture small scale features making 

them suitable for a more detailed and a higher resolution reservoir description.   In 

secondary and enhanced oil recovery projects, the degree of success of economically 

recovering the remaining oil requires a robust understanding of fluid migration paths and 

recovery mechanism in the reservoir. Geophysical, geological, petrophysical, and PVT 

fluid studies are typically used to evaluate the feasibility of implementing a secondary or 

tertiary recovery project. Information about heterogeneity and dispersion characteristics 

of the reservoir from dynamic characterization tools such as well tests and inter-well 

tracer tests can redefine the evaluation results of such projects 
((1,2))

.  

     The majority of inter-well tracer tests have the main objective of assessing 

connectivity and direct communication between injectors and producers 
((3))

.  Other 

important objectives of inter-well tracer tests includes: identifying flow anisotropy in the 

reservoir 
((4,5))

, evaluating sweep efficiency 
((3,4,6,7,8)) 

,identifying flow barriers
((3,4))

, 

characterizing areal reservoir heterogeneity
((9))

, describing reservoir layering
((10,11,12,13))

, 

estimating fluid velocities, and determining offending injector(s) in case of channeling 
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((10,11,12,13))
. Once any or all of these objectives are met, the reservoir engineer will be 

able to design and implement more efficient sweep improvement strategies.   

 

1.2 Tracer Tests: Classification & Theory 

      A broad classification of tracers used in waterflood applications can put them into 

two categories: conservative tracers and partitioning tracers. The basis of such 

classification is based on the relative interaction of the tracer(s) with water and other 

phases present in the reservoir. Conservative tracers, also called „water tracers‟, move in 

the reservoir with a velocity equal to the water phase velocity and exhibit no interaction 

with any other fluids in the reservoir. Such tracers have found successful applications in 

characterizing fluid flow between wells. On the other hand, partitioning tracers found 

application in saturation determination due to their solubility in the water phase as well 

as the hydrocarbon phase present in the reservoir. This solubility of partitioning tracer in 

oil or gas phases present in the reservoir causes a delay or „retardation‟ in tracer 

propagation when compared to conservative tracer. This chromatographic delay serves 

as the fundamental basis in estimating hydrocarbon saturation present in the reservoir 

(Figure 1.1). 
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Figure 1.1: Example of partitioning and conservative tracer response 

 

 

     The conservative equation for a waterflood tracer concentration, C(x,t), can be 

written as :  

 
          ) )

  
      (        ) )      ) ………………………………………………………….(1)   

The above conservative equation is the general form for an ideal waterflood tracer. It 

assumes that tracers are non-adsorbing and it includes the effects of two phase mobility 

and tracer partitioning in the oil phase. In the ideal tracer flow equation shown above, Ko 

is the partitioning coefficient which represents the ratio of tracer concentration in the oil 

phase to tracer concentration in the water phase (Ko=0 for conservative tracers). The 

total velocity of the two phases is ut , C is the tracer concentration, Sw and So are fluid 

saturations in the reservoir,   is porosity, and  Fw and Fo are water-cut and oil-cut at the 
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wellbore, respectively.  On the right hand side of the equation, m(t) is the source term. 

In the case of a spike of tracer injected over a very short time interval, the source term 

become m(t) = MT / Vw (t) where MT is total mass of tracer produced and Vw is the 

associated water volume.  

     Expanding the conservative form and using stream-line time of flight coordinate 

gives: 

        )
  

  
         )

  

  
 

 

 
   ) …………………………………………..(2) 

which shows, in the case of both water and oil phases are flowing, the retardation factor 

will depend on ( Sw + KoSo ) / (Fw + KoFo). This will add a fair complexity to the 

interpretation and could be avoided by injecting the tracer in near residual oil saturation 

condition ( when Fw ≈ 1 and Fo ≈ 0). As mentioned earlier, the retardation of the 

partitioning tracer provide a critical and direct information of the average oil saturation 

in the tracer swept area. For test design, several issues must be addresssed like amount of 

tracer to be injected, injection locations, detectability, etc. Those issues are discussed in 

detail in later sections 
((14))

.     

 

1.3 Partitioning Tracers  

     For an ideal water tracer, the presence of an oil phase in the reservoir will have no 

impact on the tracer path or its velocity. The path and the velocity of the ideal water 

tracer will be identical to that of the injected water. Evaluation of the presence of the oil 

phase in the reservoir requires some sort of interaction between tracer and the oil phase. 

This is done with the introduction of a non-ideal tracer that can partition between the oil 
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and water phases. Typically, a set of partitioning tracers with different partitioning 

coefficients are injected into the reservoir. The difference in residence times between 

water tracers and partitioning tracers is used to estimate both the residual oil and the 

power volume swept by the tracer. 

     In principal, when water containing a pulse of tracer is injected into the reservoir, 

tracer molecules in the water phase will move with the velocity of water. Similarly, 

tracer molecules in the oil phase will move with the velocity of oil. In the case when oil 

saturation is at residual, tracer molecules will only move in the water phase causing the 

partitioning tracer to lag behind the waterfront. The extent of this delay is directly related 

to the time the tracer spend in the oil phase compared to the water phase. If this delay 

could be measured, then knowledge of the equilibrium distribution of tracer molecules 

between the two phases could be established, and residual oil saturation in the region 

contacted by water could be estimated.  

     To illustrate the mathematical formulation of the residual oil saturation estimation, let 

us suppose we injected, using water, two tracers simultaneously into the reservoir: 

Tracer A, a partitioning tracer and Tracer B an ideal water tracer. The number of 

molecules of tracer A in the oil phase at any given time, NA,oil , is given by the 

concentration of tracer A in the oil, CA,oil , times the volume of oil phase Vo. Similarly, 

number of tracer A molecules existing in the water phase, NA,water , is given by the 

product of concentration in water, CA,water , times the volume of water phase Vw. The 

ratio of tracer A molecules in oil phase to water phase, NA,oil / NA,water , is equal to the 

ratio of the mean residence time the average tracer molecule spend in the immobile 
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phase relative to the mobile phase, tA,oil / tA,water. This is called the delay factor, β, and 

can be expressed as follows: 

  
      

        
 

           

               
 

      

        
 ………………………………………………...(3) 

The ratio CA,oil / CA,water  is the partition coefficient of the tracer. It is a thermodynamic 

function which can be measured in the laboratory. This coefficient depends on 

temperature, salinity, concentration, etc. However, when tracer concentration approaches 

infinite dilution, the partition coefficient becomes independent of tracer concentration. 

Oil and water volumes in the above equations could be expressed in term of saturations 

leading to the following expression: 

    
   

     
 ……………………………………………………………………………(4) 

If tA is the residence time of the partitioning tracer and tw is the residence time for the 

water tracer, then, partitioning tracer tA  is delayed  by the factor β relative to the ideal 

water tracer. This delay is expressed as follows: 

         )     {    
   

     
} ………………………………………………….(5) 

Since the partitioning coefficient, Kd , is measured in laboratory, and tA and tw are 

obtained from the field test, the above expression can be solved for Sor 
((15))

:  

    
     

          
 

  

       
 …………………………………………………………...(6) 

     Applications of partitioning tracers in residual oil estimation have led to the 

development of two major field tests: Single Well Partitioning Tracer Test (SWPTT) and 

Partitioning Inter-well Tracer Tests (PITT) 
((2))

.    
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     The Single Well Partitioning Tracer Test (SWPTT) is used primarily to measure in-

situ oil saturation as the first step in enhanced oil recovery project initiation. Other 

applications include field assessment for bypassed oil or to measure effectiveness of 

EOR agents in single well pilot. The test is usually done when one phase is immobile 

and the other phase can flow to the wellbore. The immobile phase could be either 

residual oil or irreducible water depending on which stage in the life of the field the test 

was implemented.  

     This test with the objective to determine oil saturation involves two major steps: 

injection of water carrying a chemical tracer into the formation, and back production of 

water carrying a different tracer formed by the chemical reaction of the original tracer 

with formation water. In the first part of the test, the injected water is divided into two 

parts: early part which carries a small concentration of alkyl ester into the formation, and 

a late part which pushes the early injected volume away from the wellbore. Typically, a 

material balance tracer is used to tag the entire injected volume to distinguish it from the 

reservoir water being displaced. After injection is complete, the well will be shut in for a 

period of time to allow reaction of the ester with formation water to form a new in-situ 

tracer. Hydrolysis at reservoir temperature will break the ester into its basic components 

of alcohol and organic acid. The organic acid will be consumed entirely by the natural 

base components of the reservoir, and the alcohol will be the tracer that will create the 

elution curve and will allow residual oil saturation estimation when the well is put back 

on production.  



 

8 

 

 

     The Partitioning Inter-well Tracer Tests (PITT), in addition to the objectives of 

SWPTT, it allows assessment of heterogeneity, fluid migration paths, and swept 

volumes and saturations in a wide area of the field.  This is usually done by injecting 

both water and partitioning tracers in the same injector and observing the separation in 

the elution curves at the producing wells
((2))

.  

 

1.4 Tracer Tests: Analysis & Interpretation  

      The successful implementation of tracer tests in both petroleum fields and 

groundwater fields has led to a simultaneous development in interpretation techniques in 

both areas. The main drive for development of interpretation techniques in oil and gas 

fields was production optimization. For the groundwater fields, the main drive was to 

assess, design, and efficiently implement aquifer remediation actions for removal of 

contaminants from soil and fresh water.   

     When a pulse of injected tracer reaches the production well, the produced 

concentration will be a distributed tracer response curve. This is due to water movement 

in a distribution of flow paths and different flow rates within each path. A typical tracer 

response curve will show at least four distinctive landmarks as shown in Figure 1.2: 

breakthrough time, maximum concentration produced, variance of response, and mean 

of the distribution.       
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Figure 1.2: Example of a typical tracer response 

 

 

     The first response in the tracer elution curve, the breakthrough time, is usually not 

very well defined due to its dependency on sensitivity of measurements in the field and 

sampling frequency. Sweep efficiency is typically described in term of this landmark 

when it is plotted as a function of cumulative water injection rate. In a one dimensional 

homogenous system, breakthrough is a measure of the swept pore volume by injected 

water. In two or three dimensional heterogeneous system, breakthrough is interpreted 

differently.  It represents a measure of the swept volume by only the highest conductive 

path between injector and producer which is a function of heterogeneity and pattern 

geometry. A nearly instantaneous tracer breakthrough is an indication of fracturing 
((4))

. 

An early breakthrough with a sharp response is an indication of water channeling 
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through a high permeability thin stringer 
((3,4,16))

. A late breakthrough is an indication of 

poor communication or low transmissibility path between injector and producer 
((3,4))

.      

     The second and the third landmarks in the tracer elution curve are the peak 

concentration produced and its width. The peak concentration produced represents the 

mode of the distribution while its width is dependent on local variation in flow velocity 

and/or on longitudinal dispersion 
((14, 15))

.  

     The forth landmark is the mean of the distribution which represents the mean volume 

injected. This for the case when produced tracer concentration is plotted against 

cumulative volume injected. By definition, total swept pore volume is the sum of all 

paths followed by injected water between an injector and a given producer. Due to 

variability in properties of these paths, total swept volume is better measured by the 

mean of the distribution 
((15))

    

     Multiple peaks in a response can be extremely informative for reservoir description. 

However, it does not have a unique interpretation. In Abbaszadah work 
((11,17))

, he 

showed that multiple peaks have strong correlation with the minimum number of layers 

to match the tracer response. Also, if multiple peaks are observed to be close in location 

to each other, it is an indication of substantial interference between layers contributing to 

tracer flow. The observed location of each peak is assumed to correspond to the location 

of that peak from the individual layer response. This assumption showed to be valid by 

matching tracer responses with multiple peaks from synthetic and actual field inter-well 

tracer test done on Ranger Field.  
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     Datta-Gupta et. al. 
((14)) 

 showed that multiple peaks in a tracer response does not 

necessarily mean that the reservoir is composed of multiple non-communicating layers. 

The motive of finding a different way to interpret multiple peaks was the fact that the 

sum of the calculated thicknesses by Abbaszadeh approach did not sum to the total net 

pay. In fact, it is not uncommon to see reported sum of thicknesses that are less than 

25% of net pay. Based on these observations, Datta-Gupta et. al.  proposed that the 

reported ratios of sum of thicknesses to net pay should be thought of as a measure of 

sweep efficiency caused by a combination of low vertical sweep efficiency and a less 

than 100% areal sweep efficiency. Hence, the data should be analyzed in a more general 

way in term of correlated and uncorrelated heterogeneity. Following this approach, it 

was shown that Ranger field tracer data could be matched without the use of 

homogeneous non-communicating layers. The proposed reservoir model has areal 

variation in permeability as well as vertical communication between layers. The source 

of the multiple peaks for this case was the multiple continuous high permeability 

channels running through the reservoir. In conclusion of Data-Gupta et. al. proposed 

approach, it was shown that the results are consistent with Abbaszadeh analysis in the 

fact that the small computed net thicknesses in the earlier approach were actually a 

reflection of the permeability architecture in the field.           

     Analysis of tracer response data in both petroleum and groundwater applications 

could be classified into four main approaches: Analytical approaches, stochastic 

approaches, inversion modeling approaches, and direct history matching approaches.  
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1.4.1 Analytical Tracer Interpretation Techniques 

     Analytical methods have a wide range of applications from determining number of 

layers and their corresponding conductivity and porosity-thickness products to 

characterizing heterogeneity, estimating saturations, average sweep volumes, and 

dynamics of fluid flow.   

     From the petroleum industry side, Cooke 
((18))

 initiated and patented his approach of 

estimating fluid saturations in the reservoir by comparing breakthrough times of two 

types of tracers used in Partitioning Inter-well Tracer Test. Taking advantage of the poor 

quantitative definition of breakthrough time in Cooke‟s approach, Tang
((19))

 proposed an 

improvement in the method by utilizing landmarks in tracers‟ elution curves rather than 

breakthrough time. Comparison of production time of landmarks in elution curves such 

as peaks and valleys between water and partitioning tracer could be used to estimate 

reservoir oil saturation over the whole elution curve. One advantage of this improved 

method is its ability to provide a range of average oil saturations reflecting the variability 

of in-situ oil saturation encountered in the path of tracer migration from injectors to 

producers. 

     „Methods of Moments‟ with its roots from the chemical engineering side of the 

industry is very similar to Cooke‟s approach. It‟s used in the chemical process industry 

to analyze flow behavior in chemical reactors by injecting a pulse of tracer at the inlet of 

the system and then monitoring the response at the output. The tracer elution curve at the 

outlet is used to characterize flow in the reactor. Method of Moments (MOM) is also 

very commonly used in groundwater field applications to assess non-aqueous phase 
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liquid saturation. This method provides a direct and simple analysis of field tracer data 

by relying on average arrival time and mass balance. The theory of this method and its 

application in Sherrod Area in Spraberry field is discussed in detail in chapter 3.  

     Deans 
((20))

 dedicated his work to explain and model the differences observed in 

Single Well Partitioning Tracer Test (SWPTT) preformed on carbonate reservoirs 

compared to sandstone reservoirs. Consistent anomalies in tracer response in carbonate 

reservoirs include: poor tracer recovery, extreme dilution of tracer, long tails on tracer 

elution profile, abnormal low recovery of material balance tracer and high reactive 

tracers concentration at the very early back production of the well. Dean linked these 

anomalies to the complex pore geometry existing in carbonate reservoir and built 

analytical models that successfully matched several tracer tests. His analytical model 

was based on combining theory of tracer movement with Backley-Leverette for two-

phase flow in a two-pore space type system.   

     Abbaszadeh
((11,17))

 used exact expressions for homogenous single-layer pattern 

breakthrough curves derived from streamtube functions and hyper elliptic integrals and 

proposed a non-linear optimization techniques that will perform de-convolution of the 

tracer elution curve to estimate important properties such as permeability and porosity-

thickness product for individual contributing layers. In Abbaszadeh work, he showed 

that pattern breakthrough curves (water-cut versus pore volume injected) for different 

repeated flooding patterns could be normalized into one single curve by using a 

dimensionless correlating parameter. Taking advantage of this normalization procedure, 

it is claimed that his inversion algorithm is applicable on any repeating pattern. 
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Important assumptions in his work include: piston-like displacement, mobility ratio of 

one, patterns are balanced, negligible molecular diffusion and transverse dispersion, no 

cross flow between layers, and every layer is homogeneous covering whole field area. In 

his approach, concentration of peaks are proportional to layers‟ flow capacitance 

(permeability x thickness x width) while layer pore volume scale breakthrough time.            

Applying his approach on a field example, he showed that the number of peaks observed 

in a tracer response correlates very well with the minimum number of layers required to 

capture the tracer profile. Also, he showed that when permeability-thickness product 

from pressure transient test is used in de-convolution of tracer test data, it provides a 

high resolution picture of the heterogeneity and layering in the reservoir.                       

 

1.4.2 Stochastic Tracer Interpretation Techniques 

     James et al 
((21,22))

 developed a stochastic approach that treats hydraulic conductivity 

and non-aqueous phase liquids (NAPL) in groundwater reservoirs as spatially correlated 

random fields.  This method utilizes co-krigging algorithm and a non-linear Gauss-

Newton search technique to minimize the difference between observed and simulated 

tracer data in a least-square sense. One limitation of this approach is the requirement of a 

prior knowledge and a cross-covariance model which could be difficult to determine.   

 

1.4.3 Inversion Modeling and Direct History Matching Approaches 

     Tremendous increase in computational speed and efficiency of reservoir simulators 

has reduced the time and effort required to design and perform a complete numerical 
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analysis of the tracer data. Several commercial and non-commercial simulators have the 

capability of simulating radioactive, chemical and water tracers with different gridding 

schemes.  

     The classical approach of history matching where reservoir parameters and 

saturations are manually adjusted to fit the simulated response to observed data have 

shown limitations for fields with large number of wells. The main limitation of direct 

history matching approach is the time required to obtain a reasonable and acceptable full 

field match. This limitation was the main drive for researchers to investigate inversion 

modeling and assisted history matching techniques. 

     Classical inversion modeling techniques dedicated toward improving the tracer 

profile match by automated history matching and finite-difference simulators did not 

show wide applications. The main reason behind their limited applications is the 

computational intensity required for fine scale full field models which make those 

approaches hardly feasible. For example, gradient-based inversion methods, with its 

compatibility with finite difference simulators, rely on computation of sensitivity 

coefficients to perform optimization. In many cases, computation of sensitivities requires 

excessive computational time compared to solving the fluid flow equations which 

severely limit their applications. On the other hand, gradient-free optimization 

techniques such as genetic algorithm and simulated annealing showed very slow 

convergence due to random perturbation algorithm within them and this prevented them 

from being widely used.      
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     Vasco et. al. 
((23))

 showed that streamline simulation is a very efficient computation 

approach to solve the inverse problem. Such computational efficiency is a result of the 

possibility to derive analytical equation for sensitivities along streamlines. Yoon et. 

al.
((24))

 showed that streamline-based inversion method worked successfully in matching 

PITT data and estimating non-aqueous phase liquids saturation for a synthetic and a field 

case. Also, Illiasov et. al. 
((25))

 applied this method on Ranger field to match PITT test 

results and estimate oil saturation.      

 

1.5 Inter-well Tracer Tests Design  

     Major design aspects of inter-well tracer tests include: selection of tracers types, 

strategic injection locations, volumes of tracers to inject, sampling producers and 

sampling frequencies. Inter-well tracers tests are becoming more popular in 

understanding water movement in naturally fractured reservoirs and in the evaluation of 

enhance oil recovery projects candidates. However, there is lack of comprehensive 

discussion in the literature on how optimize efficiency and design of these tests.   

 

1.5.1 Selection of Tracers Types 

     Careful selection of the tracer type is a critical step in the success of any inter-well 

tracer test project.  An ideal water test tracer must meet several requirements: it must 

accurately track the path and the velocity of the water, its identification and 

measurement in produced water must be easily done in small quantities, it must be 

compatible with the reservoir to ensure no delay, loss or change in chemical form by 
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bacterial activity, adsorption, reversible or irreversible ion exchange or other chemical 

interactions with reservoir rock surface ((15)). In addition, the selected tracers must be 

environmentally friendly and economically feasible for field applications ((1)). Thus, 

tracers selected for the project must undergo detailed laboratory analysis to evaluate 

tracer ability to meet the above requirements.  

 

1.5.2 Strategic Tracer Injection Locations  

     Strategic injection locations usually include injectors nearby areas of high producing 

water cut or in areas where water movement is very difficult to understand due to 

presence of complex fracture networks or suspected conductive or non-conductive faults. 

For projects where multiple or large number of injectors exist, it is very important to 

avoid ambiguity in the analysis of the results by avoiding using the same tracer in 

adjacent injectors.  

  

1.5.3 Volume of Tracer to Inject 

     Methodology of injected tracer volume design has not been addressed in many of the 

field cases reported in the literature. In most cases, the amount of tracer injected is 

determined by analogy from previous tests with similar reservoir types or testing 

conditions 
((1))

. Brigham and Smith 
((26))

, assuming unit mobility and non-communicating 

layers developed a mathematical model to determine the minimum tracer volume to 

inject in a developed five spot pattern. Mclntyre et. al. 
((16))

 based on the work of 

Abbaszadeh and Brigham which includes effects of tracer dispersion, diffusion, dilution 
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and partitioning, developed dimensionless tracer elution curves and used those to 

determine the minimum amount of tracer required for a given test. Apparently, those 

models are not used in field application and experience plays the major role in 

determining the volume of tracer to inject.         

 

1.5.4 Sampling Schedules        

     Design of sampling schedules for producers is very important to optimize cost of 

analysis and to capture tracer breakthrough time and main landmarks of elution curve. 

Wagner 
((4))

 proposed that the design of sampling schedules should be based on expected 

breakthrough time, distance between injectors and producers, and well rates involved. 

He also highlighted the importance of early sampling within few days of tracer injection 

to avoid missing fracture or channeling response. Field examples in the literature shows 

sampling frequency ranging from daily to every 60 days 
((3,8,9,16))

. Heisler 
((27))

 proposed a 

variable interval sampling frequency with high frequency during early stages until 

breakthrough occur, then sampling frequency gradually decrease until enough data is 

taken.      
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1.6 Research Objectives  

 Evaluate inter-well tracer tests as a tool to characterize heterogeneity, 

connectivity, and sweep efficiency in naturally fractured reservoirs. 

 Purpose a work flow to analyze tracers‟ response in naturally fractured reservoirs 

using integrated approach. 

 Evaluate capabilities of different commercial and non-commercial reservoir 

simulators in handling tracer flow in naturally fractured reservoirs. 

 Propose guidelines to optimize design of tracer tests to reduce cost and maximize 

information obtained.  
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2. BACKGROUND OF SPRABERRY FIELD  

 

2.1 Naturally Fractured Reservoirs 

     It has been estimated that 30% of world oil production comes from naturally 

fractured reservoirs. According to Nelson 
((28))

, fractures could be defined as “naturally 

occurring macroscopic planar discontinuities in rock due to deformation or physical 

digenesis”. Fractured reservoirs could be categorized to four types, as shown in Table 

2.1: 

Reservoir 

 Type 

Definition Examples 

Type I Fractures provide both flow and storage.  

No matrix contribution 

Amal, Libya ; PC Fields, 

Kansas 

Type II Fractures provide permeability. 

Matrix provide storage  

Spraberry Trend Area, 

Texas ; Agha Jari, Iran 

Type III Both fracture and matrix contribute to flow 

and storage  

Kirkuk, Iraq; Ghawar, 

Saudi Arabia 

Type IV Fractures only create anisotropy without 

any contribution to flow or storage.  

Beaver Creek, Alaska ; 

Pineview, Utah 

Table 2.1: Types of Fractured Reservoirs 

 

     Storage system of any reservoir can usually be divided into two parts: Primary 

porosity and secondary porosity. Primary porosity is controlled by deposition processes 
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and lithification. Typical primary porosities are the void space systems in sandstones and 

oolitic limestones. Secondary porosity is created during post-lithification processes such 

as fracturing, dolomitizataion, recrystallization, jointing, and solution. Typical secondary 

porosities are fractures, fissures, vugs and joints.  

Complexity of naturally fractured reservoirs makes them very challenging projects to 

develop for both geologists and engineers. Poor knowledge of these reservoirs has 

resulted in millions of barrels of oil left unrecovered. Research in reservoir engineering, 

geo-mechanics, and geology was directed toward naturally fractured reservoirs in order 

to understand depletion mechanism and improve recovery 
((29,30))

. 

 

2.2 Background of Spraberry Trend Area 

     The Spraberry Trend Area in West Texas was considered to be the largest oil field in 

the world at the time of its discovery in 1949 with 8-10 billion barrels of original oil in 

place 
((31))

. Spraberry is composed of naturally fractured, low permeability siltstone 

which make it problematic for both primary production and waterflooding 
((32))

. Based on 

primary recovery, its original recovery factor was projected to be less than 10% 
((33, 34))

 . 

This low anticipated recovery was the main drive to initiate waterflooding projects in 

several areas of Spraberry in late 1950s. Unexpectedly, waterflooding projects in 

Spraberry showed very limited success where areas subjected to more than 40 years of 

waterflooding showed less than 15% oil recovery 
((32))

. Reasons for the low waterflood 

recovery are still poorly understood. Several hypotheses were developed to explain the 

wide-scale poor performance waterflooding. Those include: low matrix permeability and 
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extensive fracturing, incorrect well pattern alignment, fracture mineralization, lack of 

pattern confinement and injection well density, low effective permeability to oil, and 

stress-sensitive fracture conductivity 
((35,36))

.      

  

2.3 Geology of Spraberry Field  

     The Spraberry formation consists of basin plane deposits and submarine fans with a 

complex stratigraphy comprised of sandstone, siltstone, shale, and limestone 

interbedding. Deposition of Spraberry formation dates back to Permian age in Midland 

Basin, a geological province of the Permian Basin. Well logs and core analysis showed 

the reservoir to be composed of both low porosity and low permeability matrix. Matrix 

permeabilities were in the order of 0.05 md or less with matrix porosities of 6-14%. 

Effective permeability from dynamic measures such as pressure transient tests or 

advanced declined analysis showed values in the range of 1-200 md. Such higher 

permeability values are believed to be the result of fracture contribution. Spraberry 

formation is subdivided into three main intervals: Lower Spraberry, Middle Spraberry, 

and Upper Spraberry. Their average depth intervals are about 7,200, 7,400 and 8,000 

feet, respectively. These intervals were further subdivided to different units as shown in 

Figure 2.1. Only two units of Upper Spraberry, 1U and 5U sands, where identified as 

reservoir rocks capable of contributing significantly to production.     
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Figure 2.1: Division of Spraberry Formation in the central trend area. 
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2.4 Spraberry Field Fracture System 

     Although Spraberry field was discovered 64 years ago in 1949 and it has a long 

production history, the nature of the fracture system in this field is still not completely 

understood.  Difficulties in constructing a fracture model starts from the inability to 

directly sample the fractures to scaling their effect and modeling their implications. 

Moreover, integration of dynamic data is even more challenging in fractured reservoirs 

when compared to conventional ones. This is due to the fact that fractures act as 

„highways‟ that can dominate reservoir performance.   

     In an attempt to improve the understanding of Spraberry fracture network 

characteristics and its interaction with the supporting matrix framework, several dynamic 

tests and static studies were made. Those include outcrop studies, fracture logs, 

horizontal and vertical cores, interference tests, buildup tests, fall-off tests, step rate 

tests, inter-well tracers, salt tracers, production tests, profile logging, and discrete 

fracture modeling.  

     The abundance of dynamic data and geological static data and the different 

information that could be inferred from them highlight the need to integrate all of these 

data together to build a representative fracture model. Such data integration is critical to 

maximize recovery and to fully understand production profiles and the nature of the 

Spraberry fracture system.  

     In an attempt to build a composite fracture model by integration of all of the dynamic 

and static data together, Baker et. al. 
((34))

, proposed that Spraberry Trend Area could be 

described as a heterogeneous triple component system: First component is the long and 
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well-connected fractures, second is the shorter and partially-connected fractures, and 

third component is the low permeability matrix. A schematic of the triple component 

fracture system is shown in Figure 2.2 

 

 

 

Figure 2.2: Schematic diagram of Spraberry fracture system. 

 

 

     The first component of Spraberry Trend Area are the stress sensitive, well connected 

fracture clusters that extends greater than 1000 feet in length and have unknown fracture 
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spacing. This system of very long fractures controls fluid flow in the reservoir and 

dictate which areas receive the injected fluids first. It was also observed that for any 

short term transport test with less than 1 month, this component completely dominate the 

response. Although these long fractures are important in early stages of reservoir 

development, their flow contribution is only less than 5% during the entire well‟s 

productive life.  

     The second component of Spraberry Trend Area is the secondary, short and partially 

connected fracture network. These fracture clusters have inter-fracture spacing of 2 to 4 

feet range.  

     The long term production response of Spraberry field is controlled by fracture sets 

from both components and their cross-flow with matrix. With continuous water 

injection, water will distribute initially along the long fractures but with time water will 

invade more of the partially connected fracture system. Production profiles and 

waterflooding performance are strongly controlled by imbibition rate, average fracture 

spacing and matrix permeability 
((34))

.         

        

2.5 Vertical and Horizontal Cores 

     Both vertical and horizontal cores were taken from different areas in Spraberry field 

to better understand the complex fracture system. Vertical core data showed vertical 

fractures with NE-SW and East-West orientation. It also indicated that fracture heights 

in the range of one to four feet and they usually do not extend through shale barriers 

existing between Upper Spraberry productive sand units 1U and 5U. Lateral cores were 
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also taken from each of Spraberry productive sand units. The first lateral core was a 400 

feet horizontal core taken from the two main pay sections in O‟Daniel Unit, Well# 28 in 

Midland County, Texas. It showed a clear distinction of three fracture sets trending 

NNE, NE, and ENE. Each fracture set has its own distinct pattern and characteristics in 

term of mineralization, spacing, distribution of strikes, surface characteristics, and 

correlation to lithology. Hence, it is very likely that each of these fracture set has 

originated from a separate stress event. Summary of characteristics of each fracture set is 

shown in Table 2.2 
((37,38))

. 

     For the first set of fractures trending NE, the entire sampled population with a total of 

46 observed fractures is contained within the 1U sand unit and none of them extend to 

shale layers. The fracture spacing for this set have a wide range from 0.73 to 5.75 foot 

with an average spacing of 3.17 foot. The distribution of spacing in Figure 2.3 shows a 

fair number of both widely and closely spaced fractures. It also shows that this fracture 

set has more evenly distributed fracture spacing compared to the other two sets, or 

compared to what is typical of regional fractures.  In term of mineralization, only the NE 

fracture set shows obvious mineralization. The barite mineralization varies in extent 

from completely filling fractures with less than a millimeter wide aperture to a complete 

absence along hairline cracks in the intact rock. Majority of NE fractures contain some 

mineralization with 75% average percentage of filling. Presence of rosettes, local crystal 

faces and patches of barite indicate that these partially mineralized fractures offer open 

permeability and porosity pathways at reservoir depth. The total range of strikes for NE 

set is from 20-45 degrees with an average of 32 degree.  
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     For the second set of fractures trending NNE, the entire sampled population of 28 

fractures exist within the 5U sand and, similar to NE fracture set, none of them extend to 

shale layers. The fracture spacing for this set has a narrower range from 0.05 to 4.50 foot 

with significantly smaller average spacing of 1.62 foot. The distribution of spacing in 

Figure 2.3 shows a log-normal pattern typical of regional fractures. Typical regional 

fractures have large population of closely spaced fractures and fewer widely spaced 

fractures.   In term of mineralization, none of NNE fracture set shows mineralization 

even in intervals where they occur in conjunction with mineralized NE fractures. NNE 

fractures appear as hairline cracks in intact core surfaces and this suggest significant 

conductivity under in situ conditions. The total range of strikes for NNE set is from 35-

50 degrees with an average of 43 degree.    

     For the third set of fractures trending ENE, the 28 observed fractures are not confined 

to either the 1U sand unit or the 5U sand unit. In fact, this is the only fracture set 

observed to be present in the black shale facies overlying both the 1U and 5U sand units. 

However, this fracture set is not present in any core taken from black shale facies below 

either reservoir.  The fracture spacing for this set has a range from 0.04 to 13.00 foot 

with an average spacing of 3.79 foot. The distribution of spacing in Figure 2.3 shows 

irregular scatter and the widest range among other sets. It also shows that majority of 

samples have fracture spacing of 5 foot and below. The ENE fracture set appears to be 

very similar to the NNE in term of hairline size cracks with no mineralization. However, 

surfaces of ENE fractures tend to be planar and smooth compared to anastomosed or 
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enechelon NNE fractures.  The total range of strikes for NE set is from 50-85 degrees 

with an average of 70 degree.  

  

 

Fracture 

Set 

Minimum 

Spacing, ft 

Average 

Spacing, ft 

Maximum 

Spacing, ft 

Average 

Strike, deg 

Total Range of 

Strikes, deg 

NE 0.05 1.62 4.50 32 20-45 

NNE 0.73 3.17 5.75 43 35-50 

ENE 0.04 3.79 13.00 70 50-85 

Table 2.2: Fracture properties by set. 

 

 

 

Figure 2.3: Distribution of spacing for the three fracture sets in Spraberry Field. 
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     Recent horizontal cores acquired in 2012 through wells 3049 and 1019 Giddings Area 

of Spraberry showed another three fracture sets trending NE-SW, NW-SE, and E-W. Out 

of 53 fractures observed in well # 3049 horizontal cores, 50 were oriented NE-SW, 2 

were oriented NW-SE, and only a single fracture oriented E-W. NE-SW fracture set are 

expected to dominate reservoir flow as original width of these fractures have been 

retained by an average of 44%  as open void space despite the common calcite 

mineralization. There average spacing is less than three feet. The NW-SE and E-W 

fracture sets are not well developed but they are expected to offer permeability 

enhancement over matrix in the direction normal to NE-SW fractures. 

     When horizontal core samples from wells 3049 and 1019 were compared, significant 

but subtle differences in fracture populations were indicated. Both horizontal cores 

showed the closely spaced NE-SW fracture set to be dominant (Figure 2.4). In addition, 

both cores captured the widely spaced and rare E-W fracture set. On the other hand, 

comparing NE-SW fracture set from each core shows differences in fracture population 

indicating that they have different mechanical origin. The NE-SW fractures in well 3049 

are extension fractures with more uniform dips, average 33% remnant porosity, and 

consistent confinement in the sandy/silty facies while the NE-SW fractures in well 1019 

are normal shear fractures with steep but inclined dips, average 44% remnant porosity, 

and noticeable but limited presence in shaly intervals. Moreover, the E-W fracture set is 

mineralized in well 3049 core while in well 1019 it is not. The rare, irregular NW-SE 

fracture set observed in well 3049 core does not exist in well 1019 core 
((39))

.  
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Figure 2.4: NE-SW fracture sets observed on Well 3049 (left) and Well 1019 (right). 

 

 

2.6 Outcrops and Well Studies 

     Geological data from a deviated well in The Humble Unit Midkiff  in Figure 2.5 

confirmed that fractures are contained within the productive sand units and none exist at 

the shale. This is due to the ductility of shales compared to brittle sands. Shale content in 

many reservoir control fracture intensity as increased shale content in sands causes the 

rock be more ductile. 

     Outcrop studies on analogous reservoir provided information about fractures length, 

orientation, and their stress sensitivity. In addition, it showed large variation in fractures‟ 

characteristics. Outcrops showed that most fractures are short and less than 30 foot in 

length. Fracture maps, fracture images, and average fracture lengths for these outcrops 

are shown in Figures 2.6 and 2.7 
((34))

.  
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Figure 2.5: Humble deviated well showing fracture behavior and pattern. 

 

 

 

Figure 2.6: Fracture length frequency of Delaware outcrop data, West Texas 
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Figure 2.7: Fracture map of the Delaware outcrop data, West Texas. 

 

 

2.7 Tracer Tests & Water Breakthrough Data 

     Since the start of waterflood projects in Spraberry field in 1951, numerous injection 

and production data is available for many Spraberry Units. Breakthrough behavior of 

injected water indicate N-E fracture trend with N50
o
E average in Humble Water Flood 

and N42
o
E average in Atlantic Water Flood. Gas injection test in Pembrook Area 

showed N48
o
E.   

     Inter-well tracer test preformed in late 2000 in O‟Daniel Unit using 6 tracers injected 

through 6 injectors also confirmed the NE-SW communication paths along with an East-

West trend. Salt-water tracers were also used in O‟Daniel Unit and confirmed the NE-
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SW trend and showed a very weak communication in the north-west direction. 

Radioactive gas tracer in Pembrook Area showed a fracture orientation of  N53
o
E 

((34))
. 

             

2.8 Pressure Tests and Advanced Decline Analysis 

     Early pressure build up tests prior to 1960 showed high effective permeability values 

in the range of 2-200 md. At that time, reservoir pressure was near original 
((40))

. Later in 

the 1960s in Midkiff Unit, multi-well interference tests were run at a variable water 

injection rate. Test results showed that fractures are stress sensitive with strong trends in 

NE-SW, East-West, and NNE-SW directions. A key observation from this multi-well 

test is that tests with higher injection rates consistently showed higher values of 

permeability.  Baker et. al.
((34))

 analyzed ten single-well pressure falloff and buildup tests 

using both single porosity and dual porosity models. All of these wells were stimulated 

and hydraulically fractured and the tests confirmed the linear flow and the negative 

skins. Analysis of these tests confirmed the stress sensitive nature of fractures where 

buildup tests showed low permeability values (<1 md) and falloff tests showed much 

higher permeability vlues (>1 md) 
((40))

.  The higher permeability values measured for 

falloff tests is believed to be a result of the higher reservoir pressure around injectors. 

Mini-frac and step rate tests showed that hydraulic fracturing occurs at low pressures 

close to hydrostatic pressure gradient.  

     Advance decline analysis showed effective permeability to oil in range of 0.4 to 0.9 

md. This enhancement to the measured core permeability of less than 0.05md is believed 

to be because of the presence of the short and partially continuous fracture set mentioned 
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earlier. Decline analysis also showed that the effective average fracture spacing to be of 

3.1 feet 
((41,42))

. The value of average effective fracture spacing agrees well with spacing 

obtained from horizontal cores described earlier.   

   

2.9 Production Logging and Temperature Logs  

     Available production logging tests (PLTs) for three injectors in O‟Daniel Unit show 

that injected water is uniformly distributed within 1U and 5U sands 
((37))

. A sample PLT 

for one of the injectors is shown in Figure 2.8 below. Although core samples show that 

fractures do not cross shale boundaries, temperature logs gives indication that this is 

likely to happen in some areas. The temperature log in Figure 2.8 shows low temperature 

above 5U sand unit confirming the presence of cooler injected water. As this well was 

not hydraulically fractured, it is very likely that the injected water is flowing through 

fractures crossing shale boundaries 
((34))

.  
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Figure 2.8: Injection Profile Log on Well 45 in O‟Danial Area, Spraberry. 

 

 

2.10 Initial Water Saturation 

     A careful evaluation of initial water saturation is made based on cores from 46 wells 

acquired before 1954. A plot of initial water saturation versus air permeability is 

presented in Figure 2.9. The figure shows no core with initial water saturation below 

20%. In addition, the low permeability region exhibit more scatter in saturation data 

compared to the high permeability region. An approximation of the average water 

saturation could be presented by the following equation: 

 Swi = 0.20 + 0.12 e
-0.60 ( K – 0.1 )

    

Where k is the air permeability in milidarcies and Swi is the initial water saturation.  
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Figure 2.9: Initial water saturation in Spraberry sandstone. 

 

 

     Using the above correlation for initial water saturation determination and laboratory 

measurements of cores‟ permeability, an evaluation of macroscopic displacement 

efficiency (Edm) of Spraberry cores subjected to waterflooding is made and summarized 

in Table 2.3  

 

 

Year Core Permeability, md Swi, % Edm, % of OOIP Well Cored 

1963 0.4-1.3 32-40 10-16 Tippett  #5 

1974 0.3-0.5 35-45 20 Parish #7 

1987 0.3-1.0 35-55 17-21 Judkins A#5 

1990 0.6-1.2 31-52 15-26 Pembrook #9407 

1995 0.2-1.6 20-50 12-28 E.T.O‟Daniel #37 

Table 2.3: Estimated macroscopic displacement efficiency  in Spraberry cores. 
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2.11 Rock Wettability by Imbibition Experiments 

The interaction between reservoir rock, crude oil, and formation water is very 

important to be understood and evaluated. Thus, water and oil imbibition experiments 

using Spraberry reservoir rock, Spraberry oil and synthetic reservoir brine were made. 

Based on spontaneous water and oil imbibition tests done on cores taken from Spraberry 

Shackelford 1-38A, wettability of Spraberry field was found to be weakly water-wet 

with mixed wetting behavior. The Amott wettability index to water for these cores was 

found to be in the range of 0.5 to 0.7. The macroscopic displacement efficiency during 

spontaneous water imbibition ranges from 40% to 70% based on core permeability.   

The effect of core cleaning and aging on wettability and displacement efficiency was 

investigated. Some cores were cleaned with chloroform to establish a wetting condition 

similar to reservoir condition before running imbibition tests. On the other hand, 10 core 

plugs were assumed to be clean and were not treated with chloroform. Oil recovery 

curves for some of the cleaned cores and the un-cleaned core plugs are presented in 

Figures 2.10 and 2.11, respectively. Final oil recovery due to imbibition varies from 15-

70% for cleaned cores and 10-40% for un-cleaned cores. Rock properties and imbibition 

results for cleaned and un-cleaned cores are summarized in Tables 2.4 and 2.5.    
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Figure 2.10: Oil recovery from cleaned Spraberry cores during water imbibition. 

 

 

 

Figure 2.11: Oil recovery from untreated Spraberry cores during brine imbibition 
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Test 

No. 

Before Cleaning After Cleaning toil Rim Iw 

  (%) kw (md) Swi (%)  (%) kw (md) Swi (%) (days) (OOIP) - 

SP-11 10.0 0.11 - 13.2 0.31 38 6 0.71 0.76 

SP-21 10.8 0.10 - 14.4 0.35 36 15 0.45 0.64 

SP-22 5.0 0.03 - 10.1 0.25 42 49 0.42 0.49 

SP-24 4.1 0.03 - 11.6 0.36 38 1 0.79 0.75 

SP-27 6.8 0.04 - 10.6 0.29 39 30 0.57 0.66 

SP-28 2.9 0.02 - 7.8 0.09 53 90 0.29 0.35 

SP-33 11.8 0.21 13.9 13.9 0.41 35 60 0.47 0.55 

SP-1 10.0 0.28 21.3 12.0 0.34 37 21 0.50 0.55 

Table 2.4: Rock properties for cores used in Figure 2.10 

 

 

Test 

No. 

  

(%) 

ka 

(md) 

kw 

(md) 

ko 

(md) 

Swi 

(%) 

w 

(g/cc) 

o 

(g/cc) 

w 

(cp) 

o 

(cp) 

Rim 

(%) 

SP-1 10.0 0.43 0.28 0.09 13.9 1.09 0.86 1.16 38 41 

SP-2 10.0 0.45 0.22 0.10 18.4 1.09 0.87 1.18 38 38 

SP-3 9.8 0.44 0.23 0.14 21.3 1.08 0.87 1.17 41 22 

SP-4 10.0 0.49 0.14 0.06 14.3 1.08 0.87 1.17 40 27 

SP-5 10.7 0.49 0.27 0.09 15.3 1.08 0.87 1.18 35 40 

SP-6 9.8 0.43 0.22 0.06 17.2 1.08 0.87 1.18 >11 25 

SP-7 10.4 0.34 0.20 0.08 22.0 1.08 0.75 1.18 >10 - 

SP-10 12.8 0.36 0.15 0.05 26.5 1.08 0.87 1.18 21 24 

Table 2.5: Rock and fluid properties for cores used in Figure 2.11 
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     Figures 2.10 and 2.11 showed that cleaning cores with chloroform caused significant 

improvement to rate of water imbibition and hence, to the final oil recovery. Table 2.4 

shows that chloroform cleaning caused porosity and permeability to increase, hence 

increasing cores‟ water saturation. This suggests that chloroform cleaning will change 

the wettability of the rock causing cores to be more water wet. This is supported by the 

improvement in average Amott wettability index to water (Iw) from 0.5 to 0.6 after 

waterflooding the core. A plot of final oil recovery versus core permeability to brine is 

shown in Figure 2.12 

 

 

 

Figure 2.12: Effect of core permeability to water on final oil recovery 
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2.12 Water-oil Capillary Pressure Determination 

     Estimation of water-oil capillary pressure in Upper Spraberry productive sand units 

1U and 5U was made by the utilization of Leverett J-function on previously measured 

mercury injection capillary pressure data. Capillary pressure measurements by mercury 

injection were done on 9 cores from Spraberry Shackelford # 1-38A and 5 cores from 

Spraberry Judkins A#5. Figures 2.13 and 2.14 show capillary pressure curves for the 9 

Shackelford cores and the 5 Judkins cores after conversion to Leverett J-function, 

respectively. Since the 7 complete curves shown in Figures 2.13 and 2.14 appear to be 

similar, the average J-function of the seven cores could be used to estimate the water-oil 

capillary pressure of the system. The average J-function curve is shown in Figure 2.15. 

Water-oil capillary pressure curve for a 0.5 md and 10% porosity Spraberry core is 

shown in Figure 2.16 and was estimated by assuming water-oil interfacial tension of 42 

mN/m and a contact angle of 45 degrees. Imbibition capillary pressure for the 0.5md 

Spraberry core is also shown in Figure 2.16 and was estimated by subtracting a pressure 

of 15 psia from the estimated drainage capillary pressure in order for the curve to 

intersect water saturation axis at a point corresponding to Amott wettability index to 

water of 0.55 as determined by imbibition tests. Other capillary pressure measurements 

on different areas of Spraberry field were made using static equilibrium methods, 

centrifuge method, and mercury injection
 ((43))

. Drainage and imbibition capillary 

pressure curves from those measurements are shown in Figures 2.17 and 2.18. It is seen 

from Figures 2.17 and 2.18 that capillary pressure curves using centrifuge method is 

significantly higher than that obtained from static equilibrium method. In addition, those 
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figures show that static capillary pressure curve from static equilibrium is close to the 

mercury injection data when a contact angel of 50 degrees is assumed. 

 

  

 

Figure 2.13: Capillary pressure curves converted to J-function for 9 Shackelford, Spraberry cores  
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Figure 2.14: Capillary pressure curves converted to J-function for 5 Judkins, Spraberry cores 

 

  

 

Figure 2.15: J-function calculated from mercury injection capillary pressure data 
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Figure 2.16: Estimated water-oil capillary pressure in Spraberry sand.   

 

 

 

Figure 2.17: Drainage capillary pressure curves for Spraberry cores  
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Figure 2.18: Imbibition capillary pressure curves for Spraberry cores 
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3. INTER-WELL TRACER TEST IN SHERROD AREA OF SPRABERRY FIELD 

 

3.1 Sherrod Production History & Tracer Project Description 

     Sherrod Area of Spraberry Field was first put on production in July 1951. The field 

oil production was dry for about 22 years until the first water breakthrough occurred in 

January 1973. Early water production data shows complex water-cut behavior indicating 

the presence of a complex fracture system. Example of such water-cut behavior is shown 

in Figure 3.1.  Water injection in the field started in January 1983 after around 32 years 

of primary depletion with one power water injector. Additional injector was introduced 

in 1990 and three more were introduced in late 2001 / early 2002. Field performance 

plots from July 1951 until March 2012 are shown in Figures 3.2 through 3.4. Well by 

well production and injection histories are shown in Appendix A. It must be noted that 

production history prior to January 1970 must be handled with precaution as different 

wells shows exactly the same monthly average allocated rates.   

In 2010, a decision was made to develop a large area of Spraberry using 11 inverted 

9-spot patterns. In order to effectively manage the pattern water flood area as well as the 

area outside the pattern, 13 non-reactive water tracers were injected through 13 injectors 

and 110 producers were water sampled. Objectives of Sherrod inter-well tracer test are 

to understand complex water movement in the reservoir, to assess injector-producer 

connectivity, and to understand sweep and fracture system heterogeneity.  The tracer test 

lasted for 114 days from start of tracer injection in April 25, 2011 until last water sample 

were analyzed in August 17, 2011. Tracer breakthrough was observed from the same day 
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of tracer injection, and a total of 598 tracer elution curve were detected from 51 out of 

the 110 sampled wells. Tracer test design is discussed in more detail in next section.  

 

 

 
 

Figure 3.1: Example of early complex water-cut behavior 
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Figure 3.2: Field oil and water production rates and field water-cut with time. 

 

 

  

 
 

Figure 3.3: Field oil and water cumulative production  
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Figure 3.4: Field water injection performance versus time 

 

 

3.2 Tracer Injection Design 

     In Sherrod inter-well tracer test, a decision was made to use non-reactive water 

tracers over chemical and radioactive tracers to tag 13 out of the 15 active water 

injectors. Injection and water sampling locations are shown in Figure 3.5 below. Tracer 

volumes used, injection durations and injection rates used for mixing tracer with water 

are shown in Table 3.1 below. 
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Figure 3.5: Tracer sampling & injection locations 

 

 

 

Table 3.1: Tracer injection concentrations & schedules 
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3.3 Effect of Water Recycling on Tracer Test Results  

     In Sherrod Area, the produced water from all wells flow through surface pipelines to 

Sherrod Battery Injection Unit where water is being re-injected. The re-injection of 

produced water has also caused the tracers to be re-injected and to impact the results of 

the tracer test. Measurement of tracers‟ concentration at Sherrod Battery Unit before re-

injecting the produced water was made and reported as part of the test. Tracer data was 

provided in two versions: First version in Appendix B shows tracer response data as 

measured without applying any correction. Second version in Appendix C shows tracer 

response data after applying corrections for water recycling. Basis for correcting tracer 

data is unexplained.          

 

3.4 Pressure Data 

     Available pressure data are extremely limited covering one point in time for a few 

number of wells. Due to the singularity nature of pressure data, they were not used in the 

history match process. A summary of available pressure data are summarized in Table 

3.2. Pressure measurement reports are shown in Appendix D.  
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Table 3.2: Summary of available pressure data in Sherrod Area 

 

  

3.5 PVT Data 

     Five oil samples are available from five different areas in Spraberry Field: Fasken #1-

8, Midkiff A#23, RW Clark #1, Shackleford #1, and SHER M7. Solution gas-oil ratio, 

oil formation volume factor, and viscosity are shown in Figures 3.6 through 3.8. 

Compositional Analysis for Fasken, Midkiff, and Shackleford samples is shown in 

Figure 3.9. Separator tests results were provided in Table 3.3 to correct PVT properties 

from lab condition to actual separator condition. 
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Figure 3.6: Solution gas-oil ratio versus pressure 

 

 

 

Figure 3.7: Oil formation volume factor versus pressure 
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Figure 3.8: Oil viscosity versus pressure 

 

 

 

Figure 3.9: Fluid compositional analysis for three Spraberry PVT samples 
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Table 3.3: Separator Test for two Spraberry fluid samples 

 

 

3.6 Structural, Petrophysical, and Geological Model 

     Spraberry Field structure tends to be flat over vast distances. Thus, Sherrod Area is 

assumed to be a linear reservoir with a top depth of 6930 feet as shown in Sherrod 1012 

injection profile. No structural, petro-physical or geological model available for Sherrod 

Area at the time of study. Thus, the reservoir characterization part will be entirely based 

on tracer, oil rates and water-cut response of wells. 

      

3.7 Pressure Transient Tests 

     A falloff test was performed on Sherrod 1202w and this represent the only pressure 

transient test available in Sherrod Area. The pressure and pressure derivative were 

matched with a dual porosity model with high horizontal anisotropy. The pressure 

matches as well as key findings from the tests are shown in Figure 3.10 and Table 3.4 

below. 

Well No. Sampling Differential Expansion PVT Test Results Multi-Stage Separation (Flash) Results 1st Stage Ratios

Date Pb,psig Rs scf/stb Bob rb/stb API Viscosity cp

PVTCo@Psat

,1/psi Rs scf/stb Bo rb/stb API Pres, psig Temp °F

Rsflash/Rsdi

ff

Boflash/Bod

iff

L. Shackleford #1 15-Sep-51 1825 648 1.367 37.8 0.800 11.37E-06 562 1.2963 36.00 120 75 0.867 0.948

579 1.3042 36.00 80 76 0.894 0.954

596 1.3250 36.00 40 76 0.920 0.969

607 1.3360 36.00 30 75 0.937 0.977

695 1.4096 36.00 0 75 1.073 1.031

Fasken #1-18 11-Jun-51 1920 735 1.423 37.7 0.680 11.46E-06 558 1.325 37.00 200 74 0.759 0.931

641 1.372 37.00 40 76 0.872 0.964

691 1.404 37.00 20 76 0.940 0.987

764 1.458 37.00 0 76 1.039 1.025

Spraberry PVT Separator Corrections
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Figure 3.10: Pressure transient test match using PSS dual porosity model 

 

 

 

Table 3.4: Results and model used to match pressure transient test 

 

 

3.8 PLTs  

     The two injection profile logs ran on Sherrod 1012W present the only two available 

profile logs in Sherrod Area. Injection profile logs ran in January 2011 and January 2012 

are shown in Figure 3.11. Both profile logs shows almost a uniform distribution of 
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injected water through perforations at 1U and 5U sand units. First PLT in 2011 showed a 

uniform distribution of injected water across perforations of the two sand units. This 

indicates no clear distinction in reservoir properties effecting injectivity. Second PLT in 

2012 indicated that sand unit 1U receives 62% of injected water compared to 27% for 

sand unit 5U. The remaining 10.6% , as indicated by temperature log, flows downward 

indicating channel flow. 

 

  

 

Figure 3.11: „Sherrod 1202‟ 2011 (on left) and 2012 (on right) injection profiles 
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4. ANALYTICAL TRACER INTERPRETATION TECHNIQUES 

 

4.1 Analytical Interpretation Techniques  

     Analytical tracer interpretation techniques are any type of interpretation that does not 

require building and running numerical simulation models. This includes analyzing 

tracers responses using Method of Moments (MOM), searching for data patterns in 

tracer or water-cut responses, analyzing distributions of tracer recovered, tracer 

velocities, and tracer breakthroughs, assessing layering from multiple tracer peaks, 

mapping observations, and making links between tracers‟ responses and wells‟ or field 

performance.  

   

4.2 Theory of Method of Moments  

     The Method of Moments (MOM) originated from the chemical processing industry to 

analyze non-ideal flow in chemical reactor. In a similar manner to the petroleum 

industry, a tracer is injected at the inlet of the system either as a pulse (delta function) or 

as a continuous injection (step function), and the tracer response is monitored at the 

output as a cumulative function of time. The distribution of the tracer curve produced at 

the outlet is used to analyze flow through the reactor. 

     The Method of Moments approach is applicable to tracer flow in porous media as 

long as the injected water passes a pore volume only once. In this approach, the analysis 

is done by relating two moments of the tracer response curve: the mean residence time 
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(first moment), and the variance of tracer response curve (second moment). The first 

moment of the distribution represents the average injected volume and is given by: 

  
∫    )     

 
 

∫    )  
 
 

 
∑    )      

 

∑    )   
 

 …………………………………………………………(5) 

the integral is approximated by a summation due to the discrete nature of production 

data. In order to evaluate the summation to its upper limit of infinity, the complete tracer 

profile is needed. In almost all of tracer tests, the test is terminated before tracer 

concentration drops to zero. Thus, there is always a need to extrapolate the tracer elution 

curve to infinity. Experience shows that majority of tracer elution curves, after a certain 

time, follow an exponential decline. As proposed by Dean 
((44))

, the tail of the response 

curve could be fitted by an exponential equation: 

     
 (

    
 

)
…………………………………………………………………………(6) 

where “a” is the reciprocal of the slope of the line, Ce is the concentration at which the 

exponential decline start, and Ve is the corresponding cumulative injection after tracer 

injection. Integrals of equation 5 can be evaluated over two time periods: pre-

exponential decline and post-exponential decline. Substituting the exponential model for 

the late period gives the following equation:  

  
∫    )       ∫    )     

 
  

  
 

∫    )     ∫    )    
 
  

  
 

 
∑    )              )

  
 

∑    )      
  
 

 ………………………………..(7) 

The above equation provides an estimate of the average swept pore volume. It must be 

highlighted that the water injected will not be completely confined within the planned 

flood pattern. As a result, the tracer response will not be fully recovered. Another factor 

effecting tracer recovery is the excessive dilution of tracers travelling long distances 
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between injectors and producers. The amount of tracer escaping the flood pattern is 

directly related to the amount of injected water escaping the flood pattern. In another 

word, if “M” is the total amount of tracer injected, mip is the total amount of tracer 

recovered, then fraction “f” gives both the fraction of tracer produced and the fraction of 

water injected produced.  

  
   

 
 …………………………………………………………………………………(8)        

From this key relation, the fraction of average swept pore volume that can be attributed 

to a production well “i” can be obtained by combining equations 7 and 8. This is called 

the net swept pore volume which is given by: 

          
   

  
   ……………………………………………………………………(9) 
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∑    )       
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 ………………………………(10) 

Subscripts used in Equation 10 indicate which cumulative volume “V” should be used to 

evaluate net swept pore volume. Subscript “prod” indicate that the term in parenthesis 

should be evaluated using cumulative production data while subscript “inj” indicate that 

the term in parenthesis should be evaluated using cumulative injection data.   

 

4.3 Moment Analysis on Sherrod Area of Spraberry Field 

     By the end of Sherrod inter-well tracer test, a total of 598 tracer elution curves were 

detected from 51 out of the 110 sampled wells. Net swept volume calculation using 

moment analysis requires three basic entries: produced concentration, water production 

and injection rates during tracer production. This is done for each injector-producer pair 
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where tracer production is detected. Due to the large number of tracer elution curves 

produced during the inter-well tracer test, one sample calculation for one injector-

producer pair is shown in Table 4.1 below and the rest is documented in Appendix E.  

 

 

 

Table 4.1: Method of Moments sample calculation for „Sherrod 1012–Sherrod 1208‟ 

 

 

     In Table 4.1, “qw” is water production rate measured in stb/d , “dt” is cumulative time 

in days after the tracer was injected, “V,prod” is the cumulative water produced in stock 

tank barrels after the tracer was injected, “C” is the produced tracer concentration in part 

per trillion, “V,prod” is the volume water produced in one time interval, “iw” is the 



 

63 

 

 

water injection rate in stb/d, “V,inj” is the cumulative water injected after the tracer was 

introduced, and “V,inj” is the volume of water injected in one time interval.  

     Extrapolation of tracer elution curve assuming exponential decay is shown in Figure 

4.1 below. The value of “a” is obtained from equation 11 below.  

 
 ⁄  

    
  
 

)

    
 …..………………………………………………………………….........(11) 

 

  

 

Figure 4.1: Extrapolation of tracer response using exponential decay  

 

 

The results of all net swept volume calculations are summarized in Table 4.2    
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Table 4.2: Summary of net swept volumes calculations 

 

 

To make results of net swept volumes more meaningful, all volumes were normalized by 

dividing by maximum value. Table 4.3 shows normalized swept volume calculations.  

1814 1202 1818 2112 2409 1904 2114 2325 2118 1012 701 1301 1405

IWT-1900 IWT-2400 IWT-1100 IWT-1700 IWT-1200 IWT-2200 IWT-2500 IWT-1000 IWT-1600 IWT-2100 IWT-2000 IWT-1400 IWT-1300

Ruby 18 17502 17757 18477 18707 18077 20872 14920 7994 13405 14742 10925 21195 19255

Ruby 19 28826 27015 26218 26345 25715 0 25258 11142 22655 22573 0 0 23731

Sherrod 711 22224 24028 24019 25432 24044 0 14253 11691 23344 22141 6570 25544 22864

Sherrod 1003 13833 14181 15274 17928 14747 15033 9811 6834 14680 12957 8257 20467 13139

Sherrod 1004 27868 29902 27240 29652 29064 0 25050 14669 30018 25899 0 29525 27908

Sherrod 1205 18767 19392 19962 20514 19005 21578 14328 9270 18755 17006 11492 14651 18318

Sherrod 1206 31921 28870 30855 38049 34228 0 31153 20359 38068 28947 0 42172 35756

Sherrod 1207 16470 15391 18360 19243 17526 16579 8297 7585 16259 14781 8929 21826 15016

Sherrod 1208 23484 22626 23997 27354 24995 22153 20293 13296 26260 23132 19971 31691 25467

Sherrod 1302 20627 21425 21641 22209 21284 21592 16227 10341 21326 19609 0 18334 20141

Sherrod 1310 0 15510 0 0 21770 0 20808 12857 32354 23641 0 25831 22962

Sherrod 1402 29472 22584 27945 31470 29884 28497 26934 16403 31638 30277 0 37308 31587

Sherrod 1403 40013 29359 35551 47620 40257 30360 37833 21241 41914 38932 24810 51578 40291

Sherrod 1404 18624 16126 19205 18213 18065 16697 12161 8973 18560 14906 9109 22972 15442

Sherrod 1506 23671 24050 23295 24242 24108 0 18661 11515 23851 22415 0 17894 18454

Sherrod 1511 0 0 0 0 0 0 0 17521 0 39072 0 0 34249

Sherrod 1512 16666 16316 16599 15867 15697 18988 14817 8526 17116 12812 8778 21024 12913

Sherrod 1513 0 35499 0 0 41497 0 36151 20231 42274 36134 0 32902 28680

Sherrod 1804 14368 17546 19283 20680 18792 13355 12128 9153 18732 15045 8732 21799 18178

Sherrod 1807 22431 19978 20576 22121 20214 21592 14949 9861 19852 15766 0 26633 20589

Sherrod 1809 14662 16890 20828 22531 19799 17748 8472 8718 19448 16008 9629 23909 18010

Sherrod 1810 30673 20059 18365 23156 21034 10158 20582 8466 25303 26757 5448 17842 24203

Sherrod 1811 0 0 0 0 0 0 0 0 0 20655 0 0 0

Sherrod 1812 22583 28850 26911 32605 29129 19237 24425 16472 31188 28423 0 36408 30546

Sherrod 1815 20899 22111 24726 29511 24920 25118 21001 14317 27023 24781 24014 33349 28234

Sherrod 1817 16131 16022 13416 17690 15182 15997 10764 7383 15185 13381 8954 19544 13922

Sherrod 1819 18395 18990 27109 27383 26174 18885 21804 10425 26144 21658 9561 28529 25551

Sherrod 1902 18789 16533 18741 19983 20046 13814 15748 10622 19810 18774 0 22254 17419

Sherrod 1903 31080 31321 31228 32609 32544 21363 26880 16524 33917 31705 0 0 27539

Sherrod 2001 28211 22582 27083 27351 28367 0 23753 18704 30508 28450 0 39062 29652

Sherrod 2002 19438 25979 13246 6844 25571 16507 16910 3069 26217 24648 0 0 26524

Sherrod 2101 20574 20803 20680 20384 20398 21578 16904 9937 20511 17872 0 24494 16244

Sherrod 2110 31735 30599 24000 35041 32550 23354 32072 19069 35480 34213 0 38489 36809

Sherrod 2111 13315 12308 15540 11717 14075 10973 8611 6659 13759 12282 7756 18291 11303

Sherrod 2113 19031 20045 22066 22697 20673 17578 11880 9358 15418 17105 9392 23422 16698

Sherrod 2115 29309 27005 20815 32710 29078 29010 28843 17866 31688 29574 0 38057 32676

Sherrod 2116 34914 33776 31070 30098 34375 21978 30922 19737 37772 35275 24926 44451 35991

Sherrod 2117 20183 20547 17758 18582 21984 17780 14563 9752 20265 17706 12016 22740 19011

Sherrod 2309 20231 21243 21735 20908 15080 21091 19004 9590 21689 17783 9951 24539 18087

Sherrod 2313 35987 35322 32948 46203 34960 0 28314 17707 39024 36571 0 0 41279

Sherrod 2314 33279 31977 24974 22741 32826 0 37313 15860 35759 35908 0 42223 36874

Sherrod 2315 16243 17097 13681 19785 18282 19280 10570 6689 18203 14283 9429 23620 17032

Sherrod 2317 31701 30344 25332 34635 31986 31560 30616 21288 33449 33733 0 39189 35353

Sherrod 2319 17824 18160 17658 19358 15343 17022 12590 7394 18384 15527 9067 22377 16166

Sherrod 2320 22003 22259 22597 22574 18510 0 17333 10695 22731 19934 0 28836 18788

Sherrod 2324 0 0 30881 0 0 0 0 15820 0 39072 0 0 0

Sherrod 2326 31366 34716 31538 33847 33029 22618 24494 15355 34118 33631 11866 32852 33102

Sherrod 2411 32878 23846 36484 41532 20292 31560 36691 23631 40525 40091 24922 48210 46220

Sherrod 2415 28609 29272 27525 31882 31211 3690 28394 14085 33628 32479 0 38279 33143

Sherrod 2416 32968 29121 31950 32791 31188 0 29725 17595 27123 31332 0 42374 33601

Sherrod 2417 19776 19848 20460 20547 16168 19765 18324 9177 21195 16681 11852 23821 16012

Sherrod 2423 25216 26435 25429 25417 19058 20450 14151 11499 24837 22867 0 29302 23984
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Table 4.3: Summary of normalized swept volumes 

 

1814 1202 1818 2112 2409 1904 2114 2325 2118 1012 701 1301 1405

IWT-1900 IWT-2400 IWT-1100 IWT-1700 IWT-1200 IWT-2200 IWT-2500 IWT-1000 IWT-1600 IWT-2100 IWT-2000 IWT-1400 IWT-1300

Ruby 18 0.3 0.3 0.4 0.4 0.4 0.4 0.3 0.2 0.3 0.3 0.2 0.4 0.4

Ruby 19 0.6 0.5 0.5 0.5 0.5 0.0 0.5 0.2 0.4 0.4 0.0 0.0 0.5

Sherrod 711 0.4 0.5 0.5 0.5 0.5 0.0 0.3 0.2 0.5 0.4 0.1 0.5 0.4

Sherrod 1003 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.3 0.3 0.2 0.4 0.3

Sherrod 1004 0.5 0.6 0.5 0.6 0.6 0.0 0.5 0.3 0.6 0.5 0.0 0.6 0.5

Sherrod 1205 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.4 0.3 0.2 0.3 0.4

Sherrod 1206 0.6 0.6 0.6 0.7 0.7 0.0 0.6 0.4 0.7 0.6 0.0 0.8 0.7

Sherrod 1207 0.3 0.3 0.4 0.4 0.3 0.3 0.2 0.1 0.3 0.3 0.2 0.4 0.3

Sherrod 1208 0.5 0.4 0.5 0.5 0.5 0.4 0.4 0.3 0.5 0.4 0.4 0.6 0.5

Sherrod 1302 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.4 0.4 0.0 0.4 0.4

Sherrod 1310 0.0 0.3 0.0 0.0 0.4 0.0 0.4 0.2 0.6 0.5 0.0 0.5 0.4

Sherrod 1402 0.6 0.4 0.5 0.6 0.6 0.6 0.5 0.3 0.6 0.6 0.0 0.7 0.6

Sherrod 1403 0.8 0.6 0.7 0.9 0.8 0.6 0.7 0.4 0.8 0.8 0.5 1.0 0.8

Sherrod 1404 0.4 0.3 0.4 0.4 0.4 0.3 0.2 0.2 0.4 0.3 0.2 0.4 0.3

Sherrod 1506 0.5 0.5 0.5 0.5 0.5 0.0 0.4 0.2 0.5 0.4 0.0 0.3 0.4

Sherrod 1511 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.7

Sherrod 1512 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.2 0.3 0.2 0.2 0.4 0.3

Sherrod 1513 0.0 0.7 0.0 0.0 0.8 0.0 0.7 0.4 0.8 0.7 0.0 0.6 0.6

Sherrod 1804 0.3 0.3 0.4 0.4 0.4 0.3 0.2 0.2 0.4 0.3 0.2 0.4 0.4

Sherrod 1807 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.4 0.3 0.0 0.5 0.4

Sherrod 1809 0.3 0.3 0.4 0.4 0.4 0.3 0.2 0.2 0.4 0.3 0.2 0.5 0.3

Sherrod 1810 0.6 0.4 0.4 0.4 0.4 0.2 0.4 0.2 0.5 0.5 0.1 0.3 0.5

Sherrod 1811 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0

Sherrod 1812 0.4 0.6 0.5 0.6 0.6 0.4 0.5 0.3 0.6 0.6 0.0 0.7 0.6

Sherrod 1815 0.4 0.4 0.5 0.6 0.5 0.5 0.4 0.3 0.5 0.5 0.5 0.6 0.5

Sherrod 1817 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.3 0.3 0.2 0.4 0.3

Sherrod 1819 0.4 0.4 0.5 0.5 0.5 0.4 0.4 0.2 0.5 0.4 0.2 0.6 0.5

Sherrod 1902 0.4 0.3 0.4 0.4 0.4 0.3 0.3 0.2 0.4 0.4 0.0 0.4 0.3

Sherrod 1903 0.6 0.6 0.6 0.6 0.6 0.4 0.5 0.3 0.7 0.6 0.0 0.0 0.5

Sherrod 2001 0.5 0.4 0.5 0.5 0.5 0.0 0.5 0.4 0.6 0.6 0.0 0.8 0.6

Sherrod 2002 0.4 0.5 0.3 0.1 0.5 0.3 0.3 0.1 0.5 0.5 0.0 0.0 0.5

Sherrod 2101 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.4 0.3 0.0 0.5 0.3

Sherrod 2110 0.6 0.6 0.5 0.7 0.6 0.5 0.6 0.4 0.7 0.7 0.0 0.7 0.7

Sherrod 2111 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.1 0.3 0.2 0.2 0.4 0.2

Sherrod 2113 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.2 0.3 0.3 0.2 0.5 0.3

Sherrod 2115 0.6 0.5 0.4 0.6 0.6 0.6 0.6 0.3 0.6 0.6 0.0 0.7 0.6

Sherrod 2116 0.7 0.7 0.6 0.6 0.7 0.4 0.6 0.4 0.7 0.7 0.5 0.9 0.7

Sherrod 2117 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.2 0.4 0.3 0.2 0.4 0.4

Sherrod 2309 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.2 0.4 0.3 0.2 0.5 0.4

Sherrod 2313 0.7 0.7 0.6 0.9 0.7 0.0 0.5 0.3 0.8 0.7 0.0 0.0 0.8

Sherrod 2314 0.6 0.6 0.5 0.4 0.6 0.0 0.7 0.3 0.7 0.7 0.0 0.8 0.7

Sherrod 2315 0.3 0.3 0.3 0.4 0.4 0.4 0.2 0.1 0.4 0.3 0.2 0.5 0.3

Sherrod 2317 0.6 0.6 0.5 0.7 0.6 0.6 0.6 0.4 0.6 0.7 0.0 0.8 0.7

Sherrod 2319 0.3 0.4 0.3 0.4 0.3 0.3 0.2 0.1 0.4 0.3 0.2 0.4 0.3

Sherrod 2320 0.4 0.4 0.4 0.4 0.4 0.0 0.3 0.2 0.4 0.4 0.0 0.6 0.4

Sherrod 2324 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0

Sherrod 2326 0.6 0.7 0.6 0.7 0.6 0.4 0.5 0.3 0.7 0.7 0.2 0.6 0.6

Sherrod 2411 0.6 0.5 0.7 0.8 0.4 0.6 0.7 0.5 0.8 0.8 0.5 0.9 0.9

Sherrod 2415 0.6 0.6 0.5 0.6 0.6 0.1 0.6 0.3 0.7 0.6 0.0 0.7 0.6

Sherrod 2416 0.6 0.6 0.6 0.6 0.6 0.0 0.6 0.3 0.5 0.6 0.0 0.8 0.7

Sherrod 2417 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.2 0.4 0.3 0.2 0.5 0.3

Sherrod 2423 0.5 0.5 0.5 0.5 0.4 0.4 0.3 0.2 0.5 0.4 0.0 0.6 0.5
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     Figure 4.2 shows distribution of average water injection rate of the 13 tagged 

injectors during tracer test.  Figures 4.3 through 4.16 show distribution of normalized net 

volume swept for field wide and individual injectors. Figure 4.17 shows a cross plot of 

tracer recovery in percentage versus normalized net swept volumes. Mapping the 

magnitude and direction of normalized sweep could provide an important link between 

locations of high or poor swept volumes. Table 4.3 above show magnitudes of 

normalized net swept volumes for the 13 tagged injector. The five different colors used 

in the table are used to map these values as shown in Figures 4.18 through 4.30. Results 

are discussed in more details in next section. 

 

 

 

Figure 4.2: Distribution of tagged wells‟ injection rates in Sherrod Area  
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Figure 4.3: Distribution of normalized net swept volumes (full field) 

 

 

 

Figure 4.4: Distribution of normalized net swept volumes (Sherrod 1405)  
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Figure 4.5: Distribution of normalized net swept volumes (Sherrod 1301) 

 

 

 

Figure 4.6: Distribution of normalized net swept volumes (Sherrod 701) 
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Figure 4.7: Distribution of normalized net swept volumes (Sherrod 1012) 

 

 

 

Figure 4.8: Distribution of normalized net swept volumes (Sherrod 2118) 



 

70 

 

 

 

Figure 4.9: Distribution of normalized net swept volumes (Sherrod 2325) 

 

 

 

Figure 4.10: Distribution of normalized net swept volumes (Sherrod 2114) 
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Figure 4.11: Distribution of normalized net swept volumes (Sherrod 1904) 

 

 

 

Figure 4.12: Distribution of normalized net swept volumes (Sherrod 2409)  
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Figure 4.13: Distribution of normalized net swept volumes (Sherrod 2112)  

 

 

 

Figure 4.14: Distribution of normalized net swept volumes (Sherrod 1818) 
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Figure 4.15: Distribution of normalized net swept volumes (Sherrod 1202)  

 

 

 

Figure 4.16: Distribution of normalized net swept volumes (Sherrod 1814)  
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Figure 4.17: Cross plot of tracer recovery (%) versus normalized swept volume.  

 

 

 

Figure 4.18: Normalized swept volume map for Sherrod 701 
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Figure 4.19: Normalized swept volume map for „Sherrod 1301‟ 

 

 

 

Figure 4.20: Normalized swept volume map for „Sherrod 1012‟ 
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Figure 4.21: Normalized swept volume map for „Sherrod 1202‟ 

 

 

 

Figure 4.22: Normalized swept volume map for „Sherrod 1405‟ 
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Figure 4.23: Normalized swept volume map for „Sherrod 2114‟ 

 

 

 

Figure 4.24: Normalized swept volume map for „Sherrod 1904‟ 
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Figure 4.25: Normalized swept volume map for „Sherrod 1814‟ 

 

 

Figure 4.26: Normalized swept volume map for Sherrod „1818‟ 
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Figure 4.27: Normalized swept volume map for „Sherrod 2112‟ 

 

 

Figure 4.28: Normalized swept volume map for „Sherrod 2118‟ 
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Figure 4.29: Normalized swept volume map for „Sherrod 2325‟ 

 

 

 

Figure 4.30: Normalized swept volume map for „Sherrod 2409‟ 
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4.4 Moment Analysis: Interpretation & Limitation  

     The full field distribution of normalized net swept volume appears to be very close to 

a normal distribution. This is most likely a reflection of the distribution of fracture 

properties in the tracer area which are the main drive of the sweep. Well by well 

distributions of normalized swept volumes show the most frequent swept volume in the 

range of 0.3 to 0.7 of maximum. Only exceptions are wells Sherrod 701 and 2325 which 

have their maximum frequency of normalized swept volumes in the range from 0 to 0.2. 

This could be explained by one of the following: either these two wells are in poor 

communication with the sampled producers, or it is due to the relatively low injection 

rate of these two wells compared to all other injectors. Normalized swept volume was 

plotted against tracer recovery in Figure 4.17 and indicated no direct relation.  

     Normalized swept volumes of 0.7 and higher are observed only in few wells and 

constitute the upper-low frequency interval of the global swept volume distribution. 

Wells showing such high normalized swept volumes indicate locations where injected 

water is recovered relatively higher than other locations in the tracer test area. Mapping 

these observations give indication of directions of maximum sweep or major features 

controlling water movement in the field. Maps shown in Figures 4.18 through 4.30 

highlight producers that exhibited low, moderate and high normalized net swept volumes 

for every tagged injector. If all maps were overlain, this will highlight important flow 

features in the pattern injection area. Connecting wells with high swept volumes 

(normalized swept volumes  0.50) consistently show four major flow features oriented 

N76
o
E. These major flow features shown in Figures 4.31 through 4.50 were detected by 
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10 out of the 13 tagged injectors. For these 10 injectors to be widely spaced covering 

large area of the field and consistently detecting these four flow features, it is an 

indication that these four features governs water movement in the tracer test area. 

Honoring high swept volumes from Method of Moments, two fracture realizations could 

exist explaining the inter-connectivity between these four flow features and the 10 

tagged injectors. Figures 4.31 through 4.40 show a very likely fracture realization where 

a NE-SW fracture system connects injectors with these four major flow features. Figures 

4.41 through 4.50 show a less likely fracture realization where a NW-SE fracture system 

connects injectors with these main features. 

      

    

 

Figure 4.31: „Sherrod 1301‟ connectivity with major flow features (green lines) through NE-SW fractures  
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Figure 4.32: „Sherrod 1012‟ connectivity with major flow features (green lines) through NE-SW fractures 

 

 

 

Figure 4.33: „Sherrod 1202‟ connectivity with major flow features (green lines) through NE-SW fractures 
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Figure 4.34: „Sherrod 1405‟ connectivity with major flow features (green lines) through NE-SW fractures 

 

 

 

Figure 4.35: „Sherrod 2114‟ connectivity with major flow features (green lines) through NE-SW fractures 
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Figure 4.36: „Sherrod 1814‟ connectivity with major flow features (green lines) through NE-SW fractures 

 

 

  

Figure 4.37: „Sherrod 1818‟ connectivity with major flow features (green lines) through NE-SW fractures 
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Figure 4.38: „Sherrod 2112‟ connectivity with major flow features (green lines) through NE-SW fractures 

 

 

 

Figure 4.39: „Sherrod 2118‟ connectivity with major flow features (green lines) through NE-SW fractures 



 

87 

 

 

 

Figure 4.40: „Sherrod 2409‟ connectivity with major flow features (green lines) through NE-SW fractures  

 

 

  

Figure 4.41: „Sherrod 1301‟ connectivity with major flow features (green lines) through NW-SE fractures 
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Figure 4.42: „Sherrod 1012‟ connectivity with major flow features (green lines) through NW-SE fractures 

 

 

 

Figure 4.43: „Sherrod 1202‟ connectivity with major flow features (green lines) through NW-SE fractures 
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Figure 4.44: „Sherrod 1405‟ connectivity with major flow features (green lines) through NW-SE fractures 

 

 

 

Figure 4.45: „Sherrod 2114‟ connectivity with major flow features (green lines) through NW-SE fractures 
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Figure 4.46: „Sherrod 1814‟ connectivity with major flow features (green lines) through NW-SE fractures 

 

 

 

Figure 4.47: „Sherrod 1818‟ connectivity with major flow features (green lines) through NW-SE fractures 
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Figure 4.48: „Sherrod 2112‟ connectivity with major flow features (green lines) through NW-SE fractures 

 

 

 

Figure 4.49: „Sherrod 2118‟ connectivity with major flow features (green lines) through NW-SE fractures 
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Figure 4.50: „Sherrod 2409‟ connectivity with major flow features (green lines) through NW-SE fractures 

 

 

     Several severe limitations in method of moment analysis do exist. First, it is purely 

volumetric. As a result, important details in a tracer response such as tracer recovery, 

velocity, multiple peaks, or anomalies in breakthrough time are not captured.  Second, it 

assumes that tracer response will exhibit exponential decline at the end of test. Due to 

large number of tracers showing peaking trend rather than decaying trend, a decision 

was made not to extrapolate tracer data to assure consistency when comparing and 

normalizing all results. Third, Method of Moments has a strong bias toward higher 

values of injection rates. For example, injectors showing relatively low swept volume 

could give a false indication of poor communication (e.g. Sherrod 2325). While in 
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reality, the relatively low swept volumes could be just a result of using a relatively lower 

injection rate. Thus, an attempt to analyze mass percentage of tracer recovered rather 

than swept volumes will be investigated in the next section.     

 

4.5 Tracers Recovery : Statistical Analysis & Categorizing Responses  

     The fraction of tracer recovered at a given producer equals the fraction of injected 

water being produced at that producer. This key relation is an important tool to analyze 

wells‟ water production performance to assess the fraction of water produced due to 

direct communication by the surrounding tagged injectors and the fraction of water 

produced due to reservoir water saturation higher than irreducible. The following 

expressions were used to calculate mass of tracer recovered and its relation to injected 

water produced: 

                   )  

                         ) 
    

      
 

     

    
 

  

      
 

      

    
     ………...(12) 

                   )

                  )
                                     ………………(13) 

     A summary of total tracer recovered for each of the 13 tracer is shown in Figure 4.51. 

The overall tracer recovery is poor with none of the 13 tracers exceeding 10% recovery. 

Such low tracers‟ recoveries are not expected in a reservoir where highly conductive 

fractures are believed to be the main drive for the high water-cut observed in the field. 

Two possible explanations exist for such tracers recoveries: First, tagged injected water 

flow outside the pattern injection area. Second, tracer responses are excessively diluted 

and do not represent actual water contributed by pattern injectors. True reason will be 
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investigated in later sections.  Table 4.4 show total tracer recovered at each producer. 

Colors used in the table will be explained later when mapping these observations. To 

make Table 4.4 more meaningful and easy to interpret, the frequencies of tracer 

recoveries are summarized in Table 4.5 and plotted as a distribution in Figure 4.52. The 

global distribution of tracer recoveries, Figure 4.52, shows that majority of tracer 

responses in Sherrod inter-well tracer test exhibit less than 0.01% tracer recovery (52.2% 

of tracer responses).  If a tracer response between a pair of injector and producer exhibit 

0.01% tracer recovery, this mean that only 0.01% of the water injected will appear as 

produced water. Tracer responses with such low recoveries provide minimum 

information about water movement in the field and can be treated as noise. This will be 

illustrated quantitatively in section 4.6. The next three intervals in the global distribution 

of tracer recoveries cover tracer recoveries from 0.01% to 0.1%. Although tracer 

recovery still low and expected to provide insignificant information about water 

movement, it is showing a different frequency trend compared to tracers with < 0.01% 

recovery. Comparing the three intervals with each other in Table 4.5 suggests that these 

three intervals could be combined into one category based on repetitive frequencies and 

similarities in number of observations (e.g. tracers IWT-1900, IWT-1200, IWT-2100). In 

a similar manner, tracer recoveries between 0.1-0.5% as well as tracer recoveries higher 

than 0.5% could be combined into two additional categories. Although the last two 

categories still show low tracer recoveries, they are expected to be containing the 

maximum useful information about water movement in Sherrod Area. Each one of the 

tracer recovery category is given a unique color to be used in mapping and these colors 
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are the one used in Tables 4.4 and 4.5 and Figure 4.52.   In summary, by using frequency 

tables and global distribution of tracer recoveries, tracer responses can be categorized 

into four categories:  responses with less than 0.01% recovery, responses with 0.01%-

0.1% tracer recovery, responses with 0.1-0.5%  tracer recovery, and responses with 

higher than 0.5% tracer recovery. 

 

 

 

Figure 4.51: Recoveries of the 13 injected tracers 
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   Table 4.4: Tracer recoveries at each producer 

 

 

1814 1202 1818 2112 2409 1904 2114 2325 2118 1012 701 1301 1405

IWT-1900 IWT-2400 IWT-1100 IWT-1700 IWT-1200 IWT-2200 IWT-2500 IWT-1000 IWT-1600 IWT-2100 IWT-2000 IWT-1400 IWT-1300

Ruby 18 0.082 0.134 0.027 0.024 0.071 0.002 0.105 0.106 2.864 0.303 0.001 0.032 0.130

Ruby 19 0.002 0.006 0.001 0.001 0.004 0.000 0.006 0.009 0.453 0.026 0.000 0.000 0.009

Sherrod 711 0.007 0.018 0.003 0.003 0.009 0.000 0.019 0.020 0.011 0.063 0.623 0.002 0.030

Sherrod 1003 0.256 0.340 0.076 0.061 0.196 0.017 0.354 0.229 0.221 2.184 0.010 0.119 0.324

Sherrod 1004 0.002 0.003 0.001 0.001 0.002 0.000 0.004 0.003 0.002 0.120 0.000 0.001 0.005

Sherrod 1205 0.034 0.059 0.010 0.010 0.031 0.000 0.063 0.044 0.037 0.143 0.000 2.291 0.060

Sherrod 1206 0.003 0.005 0.001 0.001 0.003 0.000 0.005 0.005 0.004 0.429 0.000 0.005 0.009

Sherrod 1207 0.143 1.705 0.047 0.041 0.121 0.007 0.267 0.171 0.142 0.912 0.004 0.071 0.224

Sherrod 1208 0.027 0.040 0.008 0.006 0.021 0.001 0.041 0.030 0.025 1.078 0.001 0.016 0.044

Sherrod 1302 0.035 0.069 0.012 0.012 0.035 0.000 0.066 0.055 0.046 0.175 0.000 2.631 0.090

Sherrod 1310 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.006 0.000

Sherrod 1402 0.011 0.764 0.005 0.004 0.011 0.000 0.023 0.019 0.014 0.054 0.000 0.005 0.027

Sherrod 1403 0.001 0.126 0.000 0.000 0.001 0.000 0.002 0.003 0.001 0.007 0.000 0.000 0.015

Sherrod 1404 0.046 0.895 0.016 0.016 0.049 0.001 0.086 0.061 0.050 0.190 0.001 0.019 1.541

Sherrod 1506 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.004 0.000 0.000 0.173

Sherrod 1511 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013

Sherrod 1512 0.085 0.126 0.026 0.026 0.080 0.003 0.140 0.095 0.088 0.281 0.002 0.034 2.452

Sherrod 1513 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.007 0.001

Sherrod 1804 0.936 0.116 0.021 0.017 0.056 0.815 0.120 0.080 0.069 0.268 0.002 0.027 0.117

Sherrod 1807 0.004 0.004 0.001 0.001 0.002 0.000 0.005 0.003 0.003 0.195 0.000 0.001 0.004

Sherrod 1809 0.847 0.135 0.028 0.022 0.066 0.006 0.135 0.089 0.082 0.249 0.004 0.046 0.128

Sherrod 1810 0.029 0.003 0.001 0.000 0.002 0.000 0.003 0.029 0.002 0.007 0.000 0.001 0.005

Sherrod 1811 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Sherrod 1812 0.344 0.089 0.003 0.002 0.006 0.004 0.014 0.012 0.009 0.036 0.000 0.003 0.018

Sherrod 1815 0.259 0.012 0.003 0.002 0.006 0.001 0.012 0.008 0.007 0.023 0.000 0.005 0.012

Sherrod 1817 0.033 0.060 0.922 0.008 0.041 0.001 0.072 0.046 0.043 0.132 0.000 0.011 0.058

Sherrod 1819 0.369 0.072 0.012 0.009 0.029 0.003 0.053 0.037 0.027 0.095 0.002 0.019 0.048

Sherrod 1902 0.001 0.066 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.000 0.000 0.001

Sherrod 1903 0.000 0.002 0.000 0.000 0.001 0.003 0.002 0.003 0.002 0.009 0.000 0.000 0.229

Sherrod 2001 0.010 0.025 0.004 0.005 0.012 0.000 0.687 0.022 0.017 0.064 0.000 0.004 0.030

Sherrod 2002 0.000 0.001 0.000 0.001 0.000 0.004 0.023 0.008 0.001 0.003 0.000 0.000 0.001

Sherrod 2101 0.005 0.011 0.002 0.002 0.007 0.000 0.011 0.011 0.008 0.030 0.000 0.002 0.490

Sherrod 2110 0.002 0.004 0.155 0.001 0.002 0.009 0.011 0.004 0.003 0.011 0.000 0.001 0.005

Sherrod 2111 0.139 0.215 0.045 0.054 0.118 0.529 1.404 0.143 0.128 0.364 0.005 0.076 0.172

Sherrod 2113 0.086 0.133 0.031 0.028 0.078 0.004 0.131 0.112 1.698 0.290 0.002 0.045 0.153

Sherrod 2115 0.004 0.007 0.321 0.001 0.004 0.000 0.011 0.006 0.004 0.018 0.000 0.002 0.008

Sherrod 2116 0.005 0.014 0.003 0.617 0.009 0.101 0.320 0.023 0.013 0.062 0.000 0.002 0.035

Sherrod 2117 0.018 0.033 0.316 0.700 0.015 0.000 0.036 0.026 0.024 0.078 0.000 0.007 0.037

Sherrod 2309 0.009 0.013 0.003 0.002 0.176 0.000 0.015 0.009 0.010 0.027 0.000 0.004 0.012

Sherrod 2313 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.113 0.001 0.002 0.000 0.000 0.001

Sherrod 2314 0.003 0.007 0.065 0.252 0.004 0.000 0.007 0.220 0.005 0.018 0.000 0.001 0.010

Sherrod 2315 0.022 0.023 0.009 0.004 0.013 0.001 0.026 0.272 0.016 0.049 0.000 0.006 0.023

Sherrod 2317 0.004 0.009 0.245 0.001 0.006 0.000 0.009 0.061 0.007 0.023 0.000 0.002 0.011

Sherrod 2319 0.057 0.095 0.025 0.018 0.714 0.002 0.107 0.676 0.062 0.217 0.001 0.025 0.107

Sherrod 2320 0.001 0.003 0.001 0.001 0.095 0.000 0.003 0.003 0.002 0.008 0.000 0.000 0.004

Sherrod 2324 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000

Sherrod 2326 0.003 0.004 0.002 0.001 0.003 0.000 0.004 0.032 0.004 0.006 0.000 0.002 0.003

Sherrod 2411 0.001 0.002 0.001 0.000 0.018 0.000 0.002 0.002 0.001 0.004 0.000 0.001 0.002

Sherrod 2415 0.003 0.005 0.002 0.222 0.003 0.000 0.006 0.261 0.004 0.015 0.000 0.001 0.009

Sherrod 2416 0.003 0.008 0.003 0.002 0.005 0.000 0.008 0.010 0.432 0.028 0.000 0.001 0.012

Sherrod 2417 0.013 0.022 0.004 0.004 0.312 0.000 0.023 0.017 0.017 0.047 0.000 0.005 0.022

Sherrod 2423 0.005 0.010 0.002 0.002 0.252 0.000 0.011 0.010 0.007 0.025 0.000 0.002 0.014



 

97 

 

 

 

   Table 4.5: Frequencies of Recoveries for all Tracers Responses 

 

 

 

   Figure 4.52: Distribution of recoveries from all tracers‟ responses 

 

 

 

 

Injector Number 1814 1202 1818 2112 2409 1904 2114 2325 2118 1012 701 1301 1405 Total

Mass of Tracer 

Recovered (%)
IWT-1900 IWT-2400 IWT-1100 IWT-1700 IWT-1200 IWT-2200 IWT-2500 IWT-1000 IWT-1600 IWT-2100 IWT-2000 IWT-1400 IWT-1300

<0.01 25 21 29 32 25 33 19 19 24 15 23 30 17 312

[0.01-0.025) 4 7 6 6 6 1 11 9 9 6 1 5 10 81

[0.025-0.05) 6 3 6 3 5 0 3 7 5 8 0 5 7 58

[0.05-0.1) 4 7 2 2 6 0 5 6 4 6 0 2 3 47

[0.1-0.25) 2 7 2 1 4 1 6 7 3 8 0 1 9 51

[0.25-0.5) 4 1 2 1 2 0 3 2 2 6 0 0 2 25

[0.5-1.0) 2 2 1 2 1 2 1 1 0 1 1 0 0 14

[1.0-2.0) 0 1 0 0 0 0 1 0 1 1 0 0 1 5

2.0+ 0 0 0 0 0 0 0 0 1 1 0 2 1 5
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4.6        Linking Tracers Recovery To Wells’ Water Rate Performance  

     To illustrate quantitatively the significance of tracers in explaining wells‟ water 

performance, one inverted nine spot pattern is taken as a case study (Figure 4.53). 

Enclosed in this pattern area one of the unique tracer responses where the pair Sherrod 

1012- Sherrod1003 showed the highest tracer concentration produced in Sherrod inter-

well tracer test.  

     In this case study, water production from each one of the producers within this 

inverted nine spot pattern is decomposed into two components: tagged water rate and 

untagged water rate. The tagged water rate is the water being contributed by all of the 

tracer-tagged injectors and is calculated by simply multiplying tracer recovery at each 

producer with injection rate of the contributing injector. The untagged water rate is the 

water rate of the well after removing the water flowing from tagged injectors. This is 

used to analyze the significance of tracers in explaining wells water production. In 

general, for a pair of wells producer “P” and injector “I”, the fraction of water injected at 

well “I” which appear as water production rate at well “P” is given by : 

                         )   
   

  
⁄             ) ……………………………………….(14) 

where qw is water rate in stb/d , “mip / Mi” is fraction of tracer recovered at producer “P”, 

and iw is water injection rate of injector “I”. It must be highlighted that the fraction of 

tracer recovered is highly affected by extrapolating the tracer response assuming 

exponential decay. Thus, consistency and precaution must be considered while 

evaluating tracer recovery. Moreover, tracer recovery is a strong function of distribution 

of fluxes in the reservoir which changes whenever the distribution of injected water 
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changes. Here it is assumed to be constant because there is no significant variation of 

injection rates during tracer injection period. Figures 4.54 through 4.61 show location of 

each producer in the pattern, its decomposed water rate, and contributing injectors. A 

sample calculation for producer “Sherrod 1207” is shown in Table 4.6. Calculations for 

the remaining 7 producers are shown in Appendix F. 

  

 

 

Figure 4.53: Pattern used as a case study in linking tracer recovery with wells water performance 
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Figure 4.54: Sherrod 1011, contributing injectors, and water rate decomposition. 

 

 

 

Figure 4.55: Sherrod 1902, contributing injectors, and water rate decomposition. 
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Figure 4.56: Sherrod 1208, contributing injectors, and water rate decomposition. 

 

 

 

Figure 4.57: Sherrod 1807, contributing injectors, and water rate decomposition 
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Figure 4.58: Sherrod 1004, contributing injectors, and water rate decomposition 

 

 

 

Figure 4.59: Sherrod 1812, contributing injectors, and water rate decomposition 
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Figure 4.60: Sherrod 1003, contributing injectors, and water rate decomposition 

 

 

 

Figure 4.61: Sherrod 1207, contributing injectors, and water rate decomposition 
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Table 4.6: Sample water rate decomposition calculation for „Sherrod 1207‟ 

 

  

     A total of 77 tracer responses were obtained from 7 out of the 8 producers in the 

inverted nine spot understudy. Tracer responses in this pattern are in the range of 0.001-

2.1% which covers the four tracer recovery categories defined earlier in section 4.5.  

     Producers located on a NW-SE trend with respect to the pattern injector showed no 

tracer response for case of „Sherrod 1011‟ and weak tracer responses for case of 

„Sherrod 1902‟ (Figures 4.54 and 4.55). This is believed to be due to the absence of a 

NW-SE fracture system within this pattern. As a result of the weak tracer responses, 

tagged water rate in “Sherrod 1902” is only 1% on average of the actual water rate. 

Thus, for these two wells, none of the tagged injectors explains the source of water being 

produced and the actual water rate almost matches the untagged water rate.  

     In a similar manner, producers located on a N-S trend with respect to the pattern 

injector showed mainly weak tracer responses. Only one exception exists where 

Date Daily Oil Daily Wtr qw(1814) qw(1202) qw(1818) qw(2112) qw(2409) qw(1904) qw(2114) qw(2325) qw(2118) qw(1012) qw(1405) qw(701) qw(1301) qw(tagged) qw(untagged)

01-Apr-10 0.32 11.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.56 0.57 10.58

01-May-10 27.30 132.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.42 0.42 131.94

01-Jun-10 30.25 91.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.24 0.25 91.59

01-Jul-10 19.21 47.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.31 47.66

01-Aug-10 23.06 47.96 0.20 2.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.19 3.50 44.45

01-Sep-10 16.52 39.09 0.44 5.12 0.08 0.07 0.21 0.02 0.30 0.18 0.21 2.65 0.69 0.00 0.20 10.17 28.92

01-Oct-10 16.44 49.78 0.43 5.60 0.16 0.12 0.40 0.01 0.67 0.38 0.42 2.54 0.73 0.00 0.22 11.68 38.09

01-Nov-10 15.30 63.69 0.41 5.49 0.15 0.12 0.38 0.02 0.61 0.28 0.41 2.45 0.46 0.00 0.21 10.99 52.70

01-Dec-10 6.47 29.88 0.46 5.72 0.14 0.13 0.39 0.02 0.64 0.48 0.35 2.64 0.69 0.00 0.24 11.91 17.97

01-Jan-11 16.81 38.02 0.48 6.34 0.15 0.14 0.40 0.02 0.96 0.35 0.51 3.23 0.82 0.00 0.26 13.65 24.37

01-Feb-11 14.79 59.92 0.43 5.72 0.15 0.13 0.38 0.02 0.83 0.28 0.47 2.92 0.76 0.00 0.23 12.31 47.61

01-Mar-11 12.20 75.09 0.48 6.07 0.16 0.14 0.42 0.02 0.86 0.23 0.50 3.21 0.79 0.00 0.25 13.15 61.94

01-Apr-11 5.39 93.03 0.47 5.97 0.16 0.14 0.41 0.02 0.83 0.24 0.51 3.21 0.80 0.00 0.25 13.01 80.02

01-May-11 2.69 100.01 0.49 5.94 0.16 0.14 0.42 0.02 0.93 0.33 0.50 3.15 0.79 0.00 0.25 13.11 86.90

01-Jun-11 1.78 106.44 0.46 5.96 0.14 0.14 0.42 0.02 0.94 0.32 0.50 3.20 0.79 0.00 0.25 13.12 93.32

01-Jul-11 3.29 120.21 0.47 6.02 0.15 0.14 0.42 0.02 0.65 0.29 0.50 3.21 0.81 0.00 0.25 12.93 107.29

01-Aug-11 4.73 127.85 0.39 5.76 0.13 0.13 0.38 0.02 0.95 0.24 0.49 3.13 0.78 0.00 0.24 12.66 115.19

01-Sep-11 6.36 99.18 0.38 5.15 0.13 0.13 0.35 0.02 0.94 0.35 0.50 3.53 0.79 0.00 0.25 12.54 86.64

01-Oct-11 6.51 88.52 0.34 6.18 0.11 0.13 0.33 0.01 0.89 0.42 0.45 3.29 0.81 0.00 0.25 13.21 75.31

01-Nov-11 4.96 72.10 0.34 5.39 0.12 0.13 0.44 0.02 0.85 0.39 0.54 3.05 0.64 0.00 0.24 12.15 59.95

01-Dec-11 4.70 69.36 0.45 4.44 0.15 0.09 0.42 0.02 0.82 0.31 0.52 1.41 0.71 0.00 0.22 9.57 59.79

01-Jan-12 4.36 52.78 0.48 5.42 0.16 0.13 0.36 0.02 0.83 0.24 0.42 1.97 0.71 0.00 0.20 10.94 41.84

01-Feb-12 8.84 154.96 0.46 5.31 0.14 0.12 0.34 0.02 0.86 0.53 0.39 2.10 0.77 0.00 0.26 11.31 143.65

01-Mar-12 11.39 143.65 0.46 4.92 0.14 0.12 0.30 0.02 0.87 0.48 0.39 1.93 0.76 0.00 0.25 10.65 132.99

Sherrod 1207
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producer „Sherrod 1004” showed a moderate recovery tracer response in the range of 

“0.1-0.5%”. This exception reflects the existence but rarity of N-S fracture trend which 

connects injector “Sherrod 1012” to “Sherrod 1004”. It should be noted that producer 

„Sherrod 1812‟ show a moderate tracer show through its connection with an injector 

outside the pattern through a NE-SW fracture. As a result of low tracer recovery, 

“Sherrod 1004” and “Sherrod 1812” show a small separation between actual and 

untagged water rates. On average, tagged water at these producers is 3.3-3.6% of actual 

water rate.  

     Producers “Sherrod 1807” and “Sherrod 1208” in Figures 4.56 and 4.57 showed 

moderate to high tracer recoveries reflecting the existence of a NE-SW trend which 

connects the producers with the injector inside the pattern. Injectors outside the pattern 

show weak communication with these two producers. The well with high tracer 

recovery, “Sherrod 1208”,  shows tagged water rate of 6.4% of actual water rate on 

average compared to 5.6% for the well with moderate tracer recovery, “Sherrod 1807” .  

     Producers “Sherrod 1003” and “Sherrod 1207” which are located on an E-W trend 

with respect to the injector inside the pattern reflect more the complexity of the water 

movement in the reservoir (Figures 4.60 and 4.61). Along the E-W fracture system, 9 out 

of the 12 tagged injectors outside the pattern shows significantly higher water 

contribution and moderate recovery tracer responses. This reflects a complex fracture 

network where far injectors as well as nearby injectors have a direct impact on pattern 

performance. Tagged water rates are in the range of 13.4-14% on average of the actual 
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water rate. The nature of this fracture network will be investigated in more depth when 

tracers from all other producers are mapped in section 4.8.  

     In summary, the inverted nine spot pattern studied in this section highlights several 

aspects of the tracer test area. First, tracer recovery is poor rising a question of where the 

injected water is going. Second, water-cuts are high raising a question about the source 

of the water produced. Third, for a field where water injection rates are in the range of 

120-390 bbl/day, tracer recoveries of < 0.1% reflects infinitesimally small water 

movement of a fraction of a barrel. Modeling this scale of volumes is irrelevant and does 

not fit the purpose of this study. Thus, these tracer responses which belong to the lower 

two tracer recovery categories will not be mapped or simulated and more focus will be 

put on tracer recoveries of “0.1-0.5%” and “0.5%+”. Forth, preferential path for tracers 

in Sherrod area is in the NE-SW and E-W direction reflecting major fracture system 

carrying water in this direction. Tracer movement through a N-S or NW-SE direction 

does exist but it is rare. Fifth, producers located on the E-W fracture set reflect more the 

complexity of the global fracture network as far injectors as well as nearby injectors 

contribute more significantly to wells‟ performance by showing higher tracer responses.   

 

4.7 Characteristics of Tracers Responses  

     In this section, breakthrough times, tracer velocities, as well as general characteristics 

of tracer response curves such as number of peaks observed in a response is studied. 

Breakthrough times were studied independently of velocities because they capture some 

trends in data that might not be clear from velocity interpretation alone (e.g. intermittent 



 

107 

 

 

tracer production and probability of tracer response being affected by dilution). 

Characteristic of tracers‟ responses is studied by tracer recovery category as well as from 

a global point of view. 

 

4.7.1 Tracers’ Velocities 

     A histogram of all tracer velocities obtained during Sherrod inter-well tracer test is 

shown in Figure 4.62. This histogram also includes producers that did not show any 

tracer response and those are represented as zero velocity tracers. 

 

 

 

Figure 4.62: Histogram of global tracers velocities 
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     The distribution of tracer velocities covers a wide range from zero velocities to ultra-

high velocities of 13,288 ft/day with majority of observations lying in the lower 

velocities interval. Three trends could be observed from the global velocity distribution: 

First trend is from 0 to 600 ft/day which covers 63% of responses. Second trend is 

between 600 to 5000 ft/day which covers 35% of responses and the third trend covers 

the remaining range between 5000 to 13,288 ft/day. The three trends are highlighted in 

figure 4.63 below. This most likely reflects three fracture sets controlling water 

movement in the reservoir each with different average conductivity. 

 

 

 

        Figure 4.63: Three trends observed in distribution of tracers velocities 
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     In an attempt to investigate the relation between tracers‟ velocities with their 

recovery, distributions of tracer velocities by recovery category is shown in Figures 4.64 

through 4.67.  

 

 

 

Figure 4.64: Distribution of tracers‟ velocities (tracer recovery < 0.01%) 



 

110 

 

 

 

Figure 4.65: Distribution of tracers‟ velocities (tracer recovery 0.01-0.1%) 

 

 

 

Figure 4.66: Distribution of tracers‟ velocities (tracer recovery 0.1-0.5%) 
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Figure 4.67: Distribution of tracers‟ velocities (tracer recovery > 0.5%) 

 

 

     The distribution of tracers velocities for the lowest tracer recovery group in Figure 

4.64 show a smooth declining trend covering a wide range of velocities between 0 to 

7,000 ft/day. This distribution is very close to the exponential distribution. The wide 

range and the distribution of velocities most probably reflect that these tracers are 

flowing through fractures with a wide range of conductivity and pore volumes.  

     For responses with tracer recoveries between 0.01-0.1%, the distribution of tracers 

velocities shown in Figure 4.65 also covers a wide range of velocities but the shape 

shows different type of distribution. The shape of velocity distribution is very close to 

bimodal normal distribution and this most probably reflect that tracers are flowing 
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through two types of fracture systems each with a different mean pore volume and 

conductivity. 

     For tracer recoveries between 0.1-0.5%, distribution of tracers velocities shown in 

Figure 4.66 reflect a wide range similar to the earlier ones with velocities between 100 to 

14,000 ft / day. However, the shape of the distribution is different than the previous ones 

and it shows a distribution very close to a tri-modal normal distribution. The three 

normal distributions most probably reflect three sets of fracture systems each with 

different mean connectivity and fracture pore volume.  

     For the tracer recoveries higher than 0.5% in Figure 4.67, due to severe limitation of 

sampling, it is hard to link the histogram with any type of distribution.  

     In summary, distribution of tracer velocities reflects two important points:  First, as 

higher tracer amount is recovered, a higher resolution picture is obtained about the 

systems of fractures transmitting the injected water in the reservoir. Second, distribution 

of velocities is a good tool in the construction of the geological model to estimate 

number of fracture populations as well as their mean pore volume and connectivity.  

    

4.7.2 Tracers’ Breakthrough Time 

     The global distribution of tracer breakthrough time is shown in Figure 4.68. It shows 

that majority of tracer responses were obtained in the first two weeks of the project (64% 

of tracer responses). In addition, it shows a consistent discontinuity starting from the 

third week of the test and continues in a cyclic manner showing almost a bi-weekly 

trend. This could indicate one of two things: First interpretation, the late tracer responses 



 

113 

 

 

appearing in cyclic manner could be a result of water recycling. In this case, these tracers 

do not reflect a reservoir response and should be ignored. Second interpretation, these 

late responses could be a result of less conductive fracture systems and the gap reflect a 

large difference in conductivity between these sets of fracture. In this case, the late 

tracers should be considered in fracture characterization. This issue could be investigated 

by analyzing breakthrough time for each tracer recovery group. Distributions of 

breakthrough times for each tracer recovery group are shown in Figures 4.69 through 

4.72. 

 

       

 

Figure 4.68: Distribution of tracers‟ breakthrough time 
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     For tracer responses with less than 0.01% tracer recovery, the distribution of tracer 

breakthrough times shown in Figure 4.69 capture the cyclic trend observed in the global 

breakthrough distribution discussed earlier. Significant numbers of tracer responses were 

obtained in the first two weeks covering 38% of the low recovery tracer responses. The 

bi-weekly cyclic trend starts after the second week where peaks at fourth, sixth, and 

eighth week of test providing 21%, 11%, and 8% of total responses under “<0.01%” 

tracer recovery. The nature of these decline peaks and the systematic gaps between them 

strongly support that majority of tracer responses belonging to this tracer recovery group 

are highly affected by water recycling.    

     For tracer responses with 0.01-0.1% tracer recovery, the distribution of tracer 

breakthrough times shown in Figure 4.70 is different than the earlier group. The cyclic 

peaks of tracers breakthrough is significantly reduced and is diminishing. This indicates 

the higher the tracer recovered the less the response is affected by water recycling. 

Similar to the previous group, majority of breakthroughs occurs in the first two weeks of 

the tracer test (88.8% of responses). The remaining responses are produced in from the 

third to the 12
th

 week of the test.  

     Distributions of breakthrough time for tracer responses with 0.1-0.5% as well as 

0.5%+ tracer recoveries are shown in Figures 4.71 and 4.72. Both distributions show that 

the cyclic behavior of tracers‟ breakthrough has completely diminished and all tracer 

responses occur in the first and second week of the test. Hence, the relation between 

cyclic tracer breakthroughs and water recycling is confirmed.  
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     In summary, the global distribution of tracer breakthroughs shows majority of tracer 

responses appearing within the first two weeks of the tracer test (64% of responses). By 

the end of the second week of the test, tracers‟ breakthroughs exhibit a cyclic behavior 

peaking bi-weekly. Such cyclic behavior strongly correlates with tracer recovery, 

indicating that these cyclic peaks of breakthrough are associated with water recycling. 

As a result, for fracture characterization, only tracers obtained during the first two weeks 

of the test should be used as late tracer responses do not reflect a reservoir response and 

hence should be ignored.                         

 

   

 

Figure 4.69: Distribution of tracers‟ breakthrough time (tracer recovery < 0.01%) 
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Figure 4.70: Distribution of tracers‟ breakthrough time (tracer breakthrough 0.01-0.1%) 

 

 

 

Figure 4.71: Distribution of tracers‟ breakthrough time (tracer recovery 0.1-0.5%) 
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Figure 4.72: Distribution of tracers‟ breakthrough time (tracer recovery > 0.5%) 

 

 

4.7.3 Tracer Responses with Multiple Peaks 

     Multiple peaks in a tracer response reflect the degree of layering in the reservoir 

system. To evaluate how many layers are needed to explain tagged water movement in 

Sherrod Area of Spraberry Field, the number of peaks for all early tracer responses 

occurring during the first two weeks of the tracer test is evaluated and shown in Table 

4.7 below.  

     Global analysis of the 377 tracer responses obtained in the first two weeks of the test 

shows 87.3%, or 329 responses exhibiting a single peak. This indicates that the 

movement of tagged water from a given injector to a given producer could be explained 
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using a single layer model. Dual peak tracer responses are rare and observed only in 

11.4% of the early responses (43 out of 377 responses). A dual peak tracer response 

indicate that the movement of tagged water from a given injector to a given producer 

could be explained using a two layer model. Triple peak responses are rarer than dual 

peak responses. Only 5 out of the 377 early tracer responses, or 1.3% of the early 

responses, showed a triple peak tracer response. In general, the number of peaks explains 

the number of layers needed to explain tagged water movement between an injector and 

a producer. Examples of single peak, dual peak, and triple peak tracer responses are 

shown in Figures 4.73 through 4.75. 

     An attempt to link number of peaks in a tracer response with its tracer recovery is 

shown in Table 4.8. Table 4.8 shows that tracer responses with less than 0.01% tracer 

recoveries do not exhibit multiple peaks. On the other hand, for tracer responses with 

0.01-0.1% tracer recoveries, 9 out of 158 tracer responses exhibit dual peak but no 

response with triple peaks. Tracer responses with 0.1-0.5% and 0.5%+ tracer recoveries 

show larger number of dual peaks and triple peaks responses indicating that the higher 

the tracer recovery of a tracer response, the more information the response carry about 

the characteristics of the path followed. 

     In summary, majority of tracer responses show single peak tracer response (87.3% of 

total early responses). Thus, movement of tagged water from a given injector to a given 

producer could be explained most of the time using a single layer model. Dual peaks and 

triple peaks tracer responses present only 11.4% and 1.3% of total early responses, 

respectively. These less frequent responses could be explained by two and three layers 
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models. Number of peaks in a tracer response shows a strong correlation with tracer 

recovery indicating that as tracer recovery increase, the higher resolution the tracer 

response provide about the layering of the system 

 

.              

 

Table 4.7: Frequency of number of peaks in tracers‟ responses 

 

 

 

Table 4.8: Peaking in tracers responses per tracer recovery category 
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Figure 4.73: Examples of Single Peak Tracer Response 

 

 

 

Figure 4.74: Examples of Dual Peak Tracer Response 
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Figure 4.75: Examples of triple peak tracer response 

 

 

4.8 Mapping Tracer Recoveries 

     In order to understand tracer movement through different fracture systems in the 

field, tracer shows are mapped for every injector. Each tracer show was given one out of 

four color codes to indicate magnitude of tracer recovery at each producer. Figures 4.76 

through 4.92 show most likely fracture realizations built by linking moderate tracer 

shows and by linking high tracer shows for each injector. Creating an independent 

fracture system based on tracer recovery category is done because high tracer recoveries 

consistently show simple near wellbore water movement. On the other hand, moderate 
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tracer recoveries consistently show more complex water movement covering larger areas 

of the field. 

     Tracer injected through Sherrod 701 show poor overall tracer recovery as indicated in 

Figure 4.76. This could be justified by the location of the injector which is drilled 

outside the pattern injection area. The only high tracer show is observed at Sherrod 711 

which indicates the presence of an E-W fracture connecting the two wells.  Similarly for 

the tracer injected through Sherrod 1301 which exist in the north-east side of the pattern 

injection area, the only high tracer shows observed at wells adjacent to the injector in the 

E-W direction (Figure 4.77). 

     Tracers injected through the first line of pattern injectors (Sherrod 1012, Sherrod 

1202, and Sherrod 1405) show two types of tracer movement: First, simple tracer 

movement in the vicinity of the wellbore in the E-W and NE-SW direction indicated by 

high tracer recoveries. Second, tracer movement in a complex fracture system where 

nearby producers as well as far producers show stronger communication with pattern 

injector. This type of tracer movement is indicated by moderate tracer recoveries and it 

reflects multiple fracture orientations. It is important to mention that one producer 

outside the pattern injection area show strong connection with these three injectors 

which supports that injected water is flowing outside Sherrod Area (Figures 4.78-4.83).  

     Second line of injectors which includes Sherrod 2114, Sherrod 1904, and Sherrod 

1814 exhibit both similarities and differences in tracers‟ movement compared to the first 

line of injectors. For example, tracer injected through Sherrod 2114 show the two types 

of tracer movement indicated. On the other hand, Sherrod 1904 show only simple tracer 
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movement in the E-W direction. Sherrod 1914 shows only moderate tracer recoveries all 

enclosed in a small area around the injector (Figures 4.84-4.87).  

     Third line of injectors which includes Sherrod 2118, Sherrod 2112, and Sherrod 1818 

shows very similar tracer movement to the second line of injectors. For example, tracer 

injected through Sherrod 2118 which exist in the east side of the tracer study area show 

very similar tracer behavior compared to Sherrod 2114 in the second line of injectors. 

Sherrod 2112 show similar tracer movement behavior compared to Sherrod 1914 in the 

second line of injectors. Sherrod 1818 show similar tracer movement behavior compared 

to Sherrod 1814 in the second line of injectors (Figures 4.88-4.90). 

     The last line of injectors in the south of the tracer study area includes two injectors: 

Sherrod 2409 and Sherrod 2325. Both of these injectors show strong communication 

with wells outside pattern injection area. In addition, tracers movement in both of the 

two injectors indicate the presence of a wide range of fracture orientation extending for 

long distances from injectors (Figures 4.91-4.92). 

     In summary, mapping tracer recoveries highlight two types of tracers‟ movement in 

the reservoir: simple tracer movement and complex tracer movement. The simple tracer 

movement is indicated by high tracer recoveries and is limited to the vicinity of the 

injector‟s wellbore in the E-W and NE-SW directions. The complex tracer movement is 

indicated by moderate tracer recoveries and it highlights that injected water flow outside 

the pattern injection area. In addition, it highlights the complex inter-connectivity 

between majority of pattern injectors with near and far producers in the pattern injection 

area. Fracture realizations from high and moderate tracer shows for all injectors are 
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integrated in Figures 4.93 through 4.94 to visualize the global fracture network in the 

field.                        

 

 

 

        Figure 4.76: Fracture realization from „Sherrod 701‟ high tracer shows 
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Figure 4.77: Fracture realization from „Sherrod 1301‟ high & moderate tracer shows 

 

 

 

Figure 4.78: Fracture realization from „Sherrod 1012‟ high tracer shows 
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Figure 4.79: Fracture realization from „Sherrod 1012‟ moderate tracer shows  

 

 

 

Figure 4.80: Fracture realization from „Sherrod 1202‟ high tracer shows 
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Figure 4.81: Fracture realization from „Sherrod 1202‟ moderate tracer shows 

 

 

 

Figure 4.82: Fracture realization from „Sherrod 1405‟ high tracer shows 
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Figure 4.83: Fracture realization from „Sherrod 1405‟ moderate tracer shows 

 

 

 

Figure 4.84: Fracture realization from „Sherrod 2114‟ high tracer shows 
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Figure 4.85: Fracture realization from „Sherrod 2114‟ moderate tracer shows  

 

 

 

Figure 4.86: Fracture realization from „Sherrod 1904‟ high tracer shows 
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Figure 4.87: Fracture realization from „Sherrod 1814‟ moderate tracer shows 

 

 

 

Figure 4.88: Fracture realization from „Sherrod 1818‟ moderate tracer shows 
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Figure 4.89: Fracture realization from „Sherrod 2112‟ moderate tracer shows 

 

 

 

Figure 4.90: Fracture realization from „Sherrod 2118‟ high & moderate tracer shows 
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Figure 4.91: Fracture realization from „Sherrod 2325‟ moderate tracer shows 

 

 

 

Figure 4.92: Fracture realization from „Sherrod 2409‟ high & moderate tracer shows 
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Figure 4.93: Global fracture network by integrating high tracer shows 

 

 

 

Figure 4.94: Global fracture network by integrating moderate tracer shows 

 



 

134 

 

 

4.9 Field Production Performance 

     Sherrod Area of Spraberry Field shown in Figure 4.95 was first put on production in 

July 1951. Field performance plots in Figures 4.96 and 4.97 show that field oil 

production was dry for about 22 years until six wells exhibited simultaneous water 

breakthrough in January 1973. Early water production data shows complex water-cut 

behavior indicating the presence of a complex fracture network. Examples of such 

water-cut behavior are shown in Figures 4.98 and 4.99. After around 32 years of primary 

depletion, water injection in the field started in January 1983 with only one power water 

injector. One additional injector was introduced in 1990 and three more were introduced 

in late 2001 / early 2002. After adding the last three injectors, 44 wells exhibited 

simultaneous water breakthrough in 2002 with majority of wells showing high water-

cuts in the range 70-85% water-cut. This unique phenomena of simultaneous water 

breakthrough of a large number of wells covering large area of the field indicates the 

complex inter-connectivity between injectors and producers despite the vast distances 

between them. Field water injection and water production performance are shown in 

Figures 4.100 and 4.101.  The figures show that field water production is closely 

following field water injection which indicates a poor overall waterflood performance. A 

list of early injectors and a map of their locations is shown in Figure 4.102.   

     In 2010, a decision was made to develop a large area of Sherrod using 11 inverted 9-

spot patterns. This was done by converting 5 producers and drilling 6 new injectors. A 

list of the new injectors and a map of their locations is shown in Figure 4.103 below. 

Producers drilled in early 2010 showed high initial water-cuts in the range of 80-90% 
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indicating pre-production water invasion in the area. The recently added injectors show 

either insignificant or adverse impact on oil rates and water-cuts of the recent 2010 

wells. Figure 4.104 show an example where oil rates and water-cuts of a well, Sherrod 

1011, appear to be unaffected by the active pattern injector next to it. Figure 4.105 show 

an example of a well, Sherrod 2111, where the pattern injector have caused the well to 

die by increasing water-cut to above 99%. The normalized injection rate appearing in the 

figure is obtained by dividing pattern injection rate by maximum value. Poor 

performance of recent 2010 injectors was the main reason for the design and execution 

of Sherrod inter-well tracer test. Main objectives of the inter-well tracer test are to 

understand the reasons of poor performance of 2010 injectors. In addition, the test is 

used to check for communication between injectors outside the pattern area with 

producers inside the pattern area. 

     In summary, analysis of field production performance highlights several aspects of 

this field. First, field water production is closely following the field water injection 

indicating a poor waterflooding performance. Second, the three injectors added in late 

2001 and early 2002 caused large number of wells to simultaneously breakthrough. 

These wells cover almost entire Sherrod Area and no dry production observed in Sherrod 

from that point forward. Third, recent inverted 9-spot patterns introduced in 2010 show 

high initial water-cuts and poor injection performance raising questions about source of 

water produced and injected water movement. Forth, precaution should be taken while 

dealing with early field production data. One reason is because production data prior to 

January 1970 shows exactly the same monthly average allocated rates. This highlight the 
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inaccurate rate allocation practices during this period. Second reason is because old 

maps of Sherrod Area indicate the presence of 9 abandoned injectors with no 

information about their history. These wells are shown in Figure 4.106 and believed to 

be the main cause of simultaneous water breakthrough of 6 wells in 1973.  

 

 

 

Figure 4.95: Boundary of the full field model used in this study 
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Figure 4.96: Field oil and water production rates and field water-cut with time. 

 

 

 
 

Figure 4.97: Field oil and water cumulative production 
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Figure 4.98: Example (1) of early complex water-cut behavior  

    

 

 
 

Figure 4.99: Example (2) of early complex water-cut behavior   
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Figure 4.100: Field water production and injection rates  

  

 

 

 

Figure 4.101: Field cumulative water production and injection Rate   
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Figure 4.102: Available early injection data  (locations highlighted in red) 

 

 

 

Figure 4.103: Late injection data (locations highlighted in blue) 
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Figure 4.104: Performance plot of a 2010 producer with normalized injection rate 

 

 

 

Figure 4.105: Performance plot of a 2010 producer with normalized injection rate 
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Figure 4.106: Abandoned injection with no injection history 

 

 

4.10 A Highlight on Sherrod Dry Production History 

     The purpose of this section is to highlight and map simultaneous water breakthrough 

of dry producers observed throughout the history of the field. Simultaneous 

breakthrough of a group of wells after a field event is a very important observation that 

will help to assess connectivity between wells. In addition, small simulation sector 

models for these groups of wells and their offending injector(s) could be created and 

analyzed using inversion modeling or manual history matching. A summary of dry 

producers with their water breakthrough year is summarized in Table 4.9.  
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Table 4.9: Summary of dry wells showing water breakthrough 

 

 

4.10.1 Simultaneous Water Breakthrough of Dry Wells in 1973 

     Six wells with dry production exhibited simultaneous water breakthrough in 1973. A 

list of the 6 wells‟ names and their date of breakthrough is shown in Table 4.10 below. 

Water-cut of these wells exhibit high degree of fluctuation while oil rates are very stable. 

Example of such water-cut behavior is shown in Figure 4.107 below. This abnormal 

water-cut behavior indicates that water is flowing to these wells through fractures. In 

addition, locations of these wells on a NE-SW trend indicate the presence of a major 

fracture trend governing early water movement in this direction. Figure 4.108 shows 

wells‟ locations and the most likely fracture realization that connects the observations.  

     These simultaneous early water breakthroughs without any active injection system 

during the 1970s support the hypothesis of the presence of an external water source 

feeding Sherrod Area. Modeling external water source is highly uncertain due to 

uncertainty in water entry location, uncertainty in start of injection, and uncertainty of 



 

144 

 

 

effective injection rate. Uncertainty could be reduced by utilizing wells‟ water 

production rates and water-cut anomalies. However, since old maps of Sherrod Area 

indicate the presence of 9 abandoned injectors with no information about their injection 

history, it is very likely that this missing very early injection data is responsible for these 

breakthroughs.  As a result, these breakthroughs cannot be modeled due to the absence 

of needed injection data.   

 

 

 

Table 4.10: Well list for 1973 simultaneous water breakthrough 
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Figure 4.107: Example of water-cut behavior for a well exhibited water breakthrough in 1973  

 

 

 

Figure 4.108: Fracture realization from 1973 simultaneous water breakthrough 
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4.10.2 Simultaneous Water Breakthrough of Dry Wells in 2002 

     Forty four wells with dry production exhibited simultaneous water breakthrough in 

2002. This abnormal simultaneous water breakthrough occurred directly after the 

introduction of three injectors in late 2001 – early 2002. A list of the 44 wells‟ names 

and their breakthrough dates are shown in Table 4.11 below. Water-cut of these wells 

exhibit abnormal increase from 0 to 70-85% in one month for majority of wells. 

Example of such water-cut behavior is shown in Figure 4.109 below. This global 

breakthrough and sudden increase in water-cut indicates that these wells are 

interconnected through a complex fracture network. Figure 4.110 show the sparse 

locations of the 44 wells along with the three injectors introduced shortly before the 

breakthrough. Breakthroughs cover almost the entire field area giving a strong indication 

that water is moving almost areally through a high permeability streak. Another support 

for the areal movement of water is, with the exception of two wells, no well showed dry 

production in Sherrod after the 2002 water breakthrough. 

     In order to investigate the direct connection between the three injectors introduced in 

late 2001 – early 2002 and the field-wide simultaneous water breakthrough in 2002, 

water production rates of individual wells are summed and compared against different 

combination of active wells injection rates in the period between 2002 to 2009 year end. 

Table 4.12 show active injectors during 2002 water breakthroughs and their injection 

period.  

     A comparison between the sum of water production rates from the 44 producers and 

total water injection rate from the four active injectors is shown in Figure 4.111. Several 
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key observations could be made from the figure: First, group water breakthrough occur 7 

months after start of injection of the 4 injectors. Second, average water production rate 

of 1,000 stb/day appear to be significantly lower than total injection rate of the four 

injectors. Third, there are similarities in rate fluctuation between the two but those are 

not clear due to the large gap between the curves. Thus, the comparison will be done on 

a smaller scale by using individual or smaller combinations of active injection rates. 

Forth, field water injection was shut-in between December 2004 and July 2005. Group 

water production continues to be high and appear to be unaffected by field injection 

shut-in. During this shut-in period, water-cut of individual producers show three types of 

trends: wells showed increase in water-cut, wells showed decrease in water-cut, and 

wells showed no change in water-cut. Figures 4.112 through 4.114 show examples of the 

three water-cut trends. A decrease in wells‟ water-cut is expected as the four active 

injectors were shut-in. However, an increase in water-cut of significant number of 

producers cannot be explained without the presence of an external water source feeding 

Sherrod Area. If such external water source does exist and it is affecting Sherrod Area 

producers, this will create problems in future management of Sherrod Area.                     

     A comparison between individual wells injection rates with the group water 

production rate is shown in Figures 4.115 through 4.121.  Figure 4.115 shows that group 

water production follows precisely Sherrod 1301 injection rate between July 2006 and 

December 2007. In addition, Figure 4.116 shows that group water production also follow 

precisely Sherrod 701 injection rate for the same period. This is because both injectors 

have same injection rates during the same period. On the other hand, Figure 4.117 shows 
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that early shut-in of Sherrod 507 injection have no impact on group water production 

rate. Thus, it should not be used as part of any comparison. Moreover, Figure 4.118 

shows that Sherrod 301 was also shut-in for a two short periods of time between 

November 2003 – August 2004 and December 2004 – July 2005. These two shut-in 

periods did not show apparent impact on the group water production rate making 

Sherrod 301 less likely to contribute significantly to the group water production. 

However, late group water production rate matches injection rate of Sherrod 301. This 

indicates that injector‟s contribution to water production might changes with changes in 

fluxes caused by shutting some producers or changing the distribution of water injected 

in the area.  

     Comparing different combinations of wells injection rates with the group water 

production rate in Figures 4.119 through 4.121 show that more sections of the group 

water production curves could be matched. This indicate that the contribution of each 

injector to field water production changes with time as a result of changes in flux 

directions in the field when adding new wells, shutting old wells, or modifying rates of 

active injectors and producers. 

     In summary, analysis of water production rate of the group of wells that exhibited 

simultaneous water breakthrough in 2002 shows two key findings: First, two out of four 

active injectors during 2002 are responsible for majority of the group water production 

rate. This is evidenced by the match obtained between group water production rate and 

different combination of wells injection rates. Second, field injection shut-in period 

between December 2004 and July 2005 highlights water influx to Sherrod Area from an 
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external water source. This is evidenced by the abnormal increase in water-cut of several 

producers during the field injection shut-in period.              

 

 

 

Table 4.11: Well list for 2002 simultaneous water breakthrough  
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Figure 4.109: Example performance plot for a 2002 breakthrough well   

 

 

 

Figure 4.110: Water breakthroughs in 2002 highlighted on the full field model   
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Table 4.12: Active injectors during the field-wide water breakthrough in 2002  

 

  

 

Figure 4.111: Total active injection rate with 2002 wells group production rates     
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Figure 4.112: Example of water-cut increase during field injection shut-in 

    

 

 

Figure 4.113: Example of water-cut decrease during field injection shut-in    
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Figure 4.114: Example of no change in water-cut during field injection shut-in 

    

 

 

Figure 4.115: „Sherrod 1301‟ injection rate with 2002 wells group production rates    
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Figure 4.116: „Sherrod 701‟ injection rate with 2002 wells group production rates   

 

   

 

Figure 4.117: „Sherrod 507‟ injection rate with 2002 wells group production rates    
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Figure 4.118: „Sherrod 301‟ injection rate with 2002 wells group production rates  

 

 

 

Figure 4.119: Multi-well injection rate with 2002 wells group production rates  
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Figure 4.120: Multi-well injection rate with 2002 wells group production rates 

 

 

  

Figure 4.121: Multi-well injection rate with 2002 wells group production rates 
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4.11 Water-cut Signatures  

     Water production in oil or gas reservoirs could be explained by one of two 

phenomena: increase in matrix\fracture water saturation, or water conning. While water-

cut driven by water conning could be controlled by reducing oil rate, water-cut driven by 

high water saturation in the rock shows only increasing trend and is unaffected by 

changes in oil rate. A large number of producers in Sherrod Area exhibit abnormal 

water-cut behavior. Examples of abnormal water-cut behavior includes declining water-

cut with time, high fluctuation in water-cut during stable oil production period, wells 

showing 100% water-cut for a limited period of time. Examples of wells showing 

declining water-cut trends and their locations are shown in Figures 4.122 and 4.123 

below.  Examples for the other two types of water-cut behavior are shown in Figures 

4.124 and 4.125. Small fluctuations in water-cut could be attributed to measurement 

error usually associated with water rate allocation. However, large fluctuation in water-

cut or a declining water-cut cannot be explained in term of reservoir saturation. The only 

explanation for these water-cut behaviors is the direct communication of producers with 

active injectors through a facture system. In this case, fluctuations or a sharp decline in 

water-cut reflect changes in injection rate of the offending injector. Thus, these water-

cuts provide another support for the presence of external water source feeding these 

wells as those wells show no or very weak communication with Sherrod injectors as 

shown by tracer recoveries. 

     Another water-cut signature to be highlighted is the similarity that exists between 

water-cut responses for different producers located on the same tracer path. Three 
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examples are shown in Figures 4.126 through 4.128 for producers located along N-E, 

and E-W fracture directions. These similarities are useful to group wells in any future 

history matching study.    

  

 

 

Figure 4.122: Example wells showing declining water-cut trend 
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Figure 4.123: Locations of wells showing declining water-cut 

 

 

 

Figure 4.124: Examples of wells showing highly fluctuating water-cuts 
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Figure 4.125: Examples of wells showing 100% water-cut for a short period 

 

 

 

Figure 4.126: Wells showing similarities in water-cut along tracer path (example1) 
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Figure 4.127: Wells showing similarities in water-cut along tracer path (example 2) 

 

 

 

Figure 4.128: Wells showing similarities in water-cut along tracer path (example 3) 
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4.12 Summary of Analytical Interpretation Techniques 

     The findings from analytical interpretation techniques could be summarized as 

follows: 

1. Maximum sweep directions obtained from Methods of Moments 

indicate the presence of four major flow features inter-connected with 

10 out of the 13 tagged injectors. These flow features are oriented 

N76
o
E and governs majority of water movement in the field.  

2. No correlation exists between tracer recovery and net swept volumes 

from Methods of moments. 

3. Poor overall tracer recovery with no tracer out of the 13 injected tracer 

recovered by more than 9% recovery. 

4. Tracer responses could be categorized into four groups based on the 

distribution of tracer recovery at all producers. 

5. For a field where wells injection rates are in the range of 100-400 stb/d,   

tracer responses with less than 0.1% recovery explains water 

movement of less than 1 bbl / day and thus should be ignored. 

6. Producers located on the E-W fracture trend reflect more the 

complexity of the fracture network where far injectors as well as 

nearby injectors contribute significantly to producers. 

7. Studying characteristics of tracer responses based on tracer recovery 

highlight several aspects of tracer responses 

a. No correlation between tracer velocity and tracer recovery 
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b. Tracer responses with less than 0.01% recovery is highly effected by 

water recycling. As tracer recovery of the tracer response increase, the 

water recycling effect decrease.  

c. Number of peaks in a tracer response correlates strongly with tracer 

recovery. This indicates that a higher recovery tracer response 

captures more the layering between a pair of injector and producer.  

8. Sherrod Area of Spraberry Field exhibit very poor waterflood 

performance. This is evidenced by field water production which 

follows precisely the field water injection rate.   

9. Sherrod Area of Spraberry Field receives water influx from an external 

water source. This is supported  by the following observations: 

a. The abnormal increase in water-cut for a number of wells during field 

water injection shut-in between December 2004 and July 2005 

b. The declining water cut trend for a number of wells that did not show 

any tracer from water-cuts as high as 85% to as low as 40%. 

c. The abnormal higher than 99% water-cut appearing for a short period 

of time for a number of wells surrounding tracer study area. 

d. The high fluctuation of water-cut values between as high as 90% to as 

low as 50% for a number of wells without changes in active injection 

rates that justify such behavior. 

e. Simultaneous water breakthrough of a group of 6 wells in 1973 

without data showing an active injection system in the area. 
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10. Simultaneous breakthrough of 44 wells in 2002 is dominated by 

fracture saturation. This is supported by the match between group 

water production rate and different combinations of injection rates of 

active injectors.  

11. Majority of pattern injectors, 6 out of  11, show that part of the injected 

water flow outside Sherrod Area toward east. Although tracers indicate 

small volumes, these volumes could be underestimated by excessive 

tracer dilution
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5. CONSTRUCTION OF SIMULATION MODELS 

 

5.1 Construction of Base Case Model 

     Construction of a base case model requires knowledge about matrix & fracture 

properties, fluid properties, rock-fluid and matrix-fracture interaction properties, and 

knowledge of reservoir structure in the area understudy.  

     Matrix properties such as porosities, permeabilities, and net thicknesses of 5U and 1U  

sand units were taken from a general knowledge of these properties in areas surrounding 

Sherrod in Spraberry Field such as O‟Danial and Patrson Units. On the other hand, 

fracture and fracture-matrix interaction properties were treated as highly uncertain 

parameters determined solely by the history match. Properties used for base case are 

listed in Table 5.1 below.  

     Sherrod PVT model was built based on 5 reservoir fluid studies from different areas 

in Spraberry Field. Out of the 5 oil samples used for the study, four were obtained using 

bottom hole sampling and only one was recombined at surface. Smoothed PVT functions 

used for the base case are shown in Tables 5.2 & 5.3. 

     Fluid-matrix interaction functions were used from both experimental measurements 

and correlations. As mentioned earlier in chapter 2, oil-water imbibition capillary 

pressure measurements using static-equilibrium, mercury injection, and centrifuge 

method was done on core samples from Judkins Area in Spraberry Field. Static 

equilibrium is believed to be the most representative capillary pressure measurement and 

hence, it was used for the base case while considering some uncertainty. For matrix 

relative permeability curves, they were constructed by using correlations which relies on 
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residual saturations obtained from imbibition oil-water capillary pressure measurements 

and the weak water wettability behavior indicated in previous studies. The correlation 

used was as follows:  

         )   ……………………………………………………………………..(15) 

           
  

 ……………………………………………………………………..(16) 

   
      

         
 ………………………………………………………………………..(17) 

where Sn is normalized water saturation, Sw is matrix water saturation, Swr is irreducible 

water saturation, Sor is residual oil saturation, Kro is oil relative permeability, exponent 

“no” is oil saturation exponent, Krw is water relative permeability, Krwe is water relative 

permeability at residual oil saturation, and exponent “nw” is water saturation exponent. 

Constants used in the correlations above are reported in Table 5.4 below. Oil-water 

capillary pressure and relative permeability curves used for the matrix system of the base 

case are shown in Figures 5.1 and 5.2 below. For the fracture system, capillary pressure 

was assumed to be zero and relative permeability curves were assumed to be straight 

lines as typically done in simulation studies of naturally fractured reservoirs. 
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Table 5.1: Matrix and fracture properties used for base case  

 

 

 

Table 5.2: Oil PVT functions used in base case 
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Table 5.3: Gas PVT functions used in base case 

 

 

 

Table 5.4: Constants used to build matrix oil-water relative permeability curves 
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Figure 5.1: Imbibition oil-water capillary pressure used for base case 

  

 

 

Figure 5.2: Oil-water relative permeability curves used for base case 
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5.2 Dual Porosity Simulators with Tracer Options   

     Three different simulators with tracer option in dual porosity reservoirs were 

available at the time of the study: Eclipse E-100 developed by Shlubmerger, tNavigator 

developed by Rock Fluid Dynamics, and UTCHEM developed by University of Texas at 

Austin. One inverted 9-Spot pattern located on north-east of Sherrod was used as a case 

study to compare performance of the three simulators. The pattern as wells as the sector 

model is shown in Figure 5.3 below. 

     At the time of the study, application of tracer option in UTCHEM was limited to 

single phase flow for dual porosity reservoirs. Thus, the case study chosen is not 

applicable for testing. Moreover, tracer option in dual porosity reservoir was a new 

option in tNavigator and has not been tested thoroughly. tNavigator was tested using 

different values of fracture permeability and shape factor for the case understudy. 

Testing results show that tNavigator have unstable solver. Round off error in initial 

reservoir pressure creates large differences in pattern water performance. In addition, 

tracer solution showed oscillations between positive and negative values. These 

discrepancies in results are shown in Figures 5.4 and 5.5 below.  Discrepancies were 

reported to tNavigator support and a decision was made to use Eclipse E100. 
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Figure 5.3 Sector model chosen as a case study for different simulators 

 

 

 

Figure 5.4: tNavigator water-cut solution effected by round off error 
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Figure 5.5: Oscillation in tNavigator tracer solution with unrealistic values  

 

 

5.3 Two-Well Simulation Models & Sensitivities 

5.3.1 Objectives 

     Two-well simulation models are sector models to model connectivity between a pair 

of injector and producer. Examples of possible two-well models are shown in Figure 5.6 

below. The overall objectives of two-well simulation models include: 

1. Assess flow path characteristic by matching tracer breakthrough and peak 

concentration through high resolution simulation models. 

2. Utilization of fraction of water in communication between two pairs of wells (if 

applicable). 

3. Assess dilution and saturation uncertainty by modifying initial saturation and 

concentration injected (if needed). 
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4. Use pseudo wells to model loss of tracer & water injected outside study area (if 

needed). 

 

 

 

Figure 5.6: Examples of two-well simulation models 

 

 

5.3.2   Approach Limitations 

     Two-well simulation models have the following limitations: 

1. Effect of the interaction of the two wells with their surrounding via the complex 

fracture network is not captured.  

2. Over-simplify connectivity 

3. High uncertainty in drainage area surrounding the two wells 
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5.3.3 Case Studies 

     Three different phenomena observed in the field will be taken as case studies: First, 

tracer flow with ultra-high velocities from 6 injectors to producer “Ruby 18” which 

exists outside pattern injection area. This tracer movement is illustrated in Figures 5.7 

and 5.8. Second, tracers flow with ultra-high velocities from the same injectors, but 

toward producer “Sherrod 1809” which exist on the opposite direction of “Ruby 18”. 

This tracers‟ movement is illustrated in Figure 5.9.  Third, the simple tracers movement 

indicated by tracers‟ responses with high recoveries (> 0.5%). This simple tracers‟ 

movement is illustrated in Figure 5.10 below using a schematic diagram showing tracer 

velocities and direction of movement around the first two rows of injectors north of 

pattern injection area.  
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Figure 5.7: Field map of tracers movement toward „Ruby 18‟ outside tracer study area 

 

 

 

Figure 5.8: Diagram of tracers movement and velocities toward „Ruby 18‟ outside tracer study area 
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Figure 5.9: Diagram of tracers‟ movement and ultra-high velocities toward „Sherrod 1809‟. 

 

 

 

Figure 5.10: Tracers path and velocities for tracer recovery > 0.5% 

 

 

5.3.4   Case Study I: Sensitivities & Tracer Flow outside Study Area  

     Multiple two-well simulation models were created to model tracer flow between a 

group of injectors and well „Ruby 18‟ which exist outside pattern injection area. A list of 

injectors showing significant tracer recovery at „Ruby 18‟ and their tracers‟ velocities 

are shown in Table 5.5 below. The tracer responses at Ruby18 are shown in Figure 5.11 
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below. This case study has two main objectives: First, investigate sensitivities of matrix 

and fracture parameters on tracer and water-cut responses. Second, model the ultra-high 

velocity, significant tracer recovery, and excessive tracer dilution observed between 

„Ruby 18‟ and a group of injectors.  

 

 

 

Table 5.5: List of injectors with significant tracer show at „Ruby 18‟ 
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Figure 5.11: Tracer responses at „Ruby 18‟ with significant tracer recovery 

 

 

     Base case for two-well simulation models was slightly changed to avoid running 

cases with no water and tracer breakthrough. This was done by slightly increasing initial 

water saturation and decreasing reservoir thickness. „Sherrod 1012-Ruby18‟ simulation 

model was used to run sensitivities on initial water saturation, matrix and fracture 

properties, drainage area, grid resolution, and reservoir dispersive characteristics. 

Locations of the two wells are shown in Figure 5.12 below. 
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Figure 5.12: Map showing locations of „Sherrod 1012‟ and „Ruby 18‟ 

 

 

5.3.4.1   Sensitivities on Initial Water Saturation  

     Sensitivities on initial water saturation of the matrix-fracture system are shown in 

Figures 5.13 and 5.14 below. While initial water saturation showed no impact on tracer 

response, it caused the water-cut response to shift vertically upward. A water-cut match 

is obtained by using fracture-matrix initial water saturation of 90%. Figure 5.15 shows 

that historical oil rates are achievable even with such high matrix-fracture saturation. 

This gives an indication that water and oil rates are contributed primarily by pore 

volume of the fracture system and matrix has insignificant impact on well performance. 
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Figure 5.13: Effect of initial water saturation on tracer response at „Ruby 18‟ 

 

 

Figure 5.14: Effect of initial water saturation on „Ruby 18‟ water-cut response 
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Figure 5.15: Effect of initial water saturation on deliverability of historical oil rate 

 

 

5.3.4.2   Sensitivities on Fluid-Rock Interaction Functions  

     Sensitivities were made also on fluid-rock interaction functions. Maximum capillary 

pressure and exponents of oil-water relative permeability curves were varied to 

investigate their effect on the imbibition process of the matrix system. Capillary pressure 

and matrix relative permeability curves tested are shown in Figures 5.16 and 5.17, 

respectively. Both oil-water capillary pressure and relative permeability curve showed 

no impact on tracer responses. For capillary pressure, it plays a major role in controlling 

the distribution of injected water when initial saturation of the system is close to initial. 

In Sherrod, pre-production water invasion have caused initial saturation to be much 

higher than initial. Hence, capillary pressure is not expected to be of significant 
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importance.  As for relative permeability curves, it did not show an impact due to the 

insignificant contribution of the matrix system to flow of oil and water as indicated 

earlier. 

 

 

 

Figure 5.16: Sensitivities on imbibition capillary pressure curve  
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Figure 5.17: Sensitivity on matrix oil-water relative permeability curves  

 

 

5.3.4.3   Sensitivities on Fracture Properties and Matrix-Fracture Interaction Function  

     Sensitivities made on fracture properties and matrix-fracture interaction function 

showed large impact on tracer responses for specific parameters. As for fracture 

permeability, it was varied from 200 md up to 10 darcies. Increasing fracture 

permeability showed no impact on tracer breakthrough time and insignificant impact on 

peak concentration produced and water-cuts. This is because tracer response is affected 

more by the system pore volume contacted rather than permeability. Performance plots 

are shown in Figures 5.18 and 5.19 below.  

     As for anisotropy in fracture permeability, Kfy / Kfx , it is highly effected by type of 

gridding and grid orientation.  For sensitivity purposes, Kfy / Kfx was varied from 0.25 to 
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10.0 and the impact on tracer and water-cut are shown in Figures 5.20 and 5.21 below. 

Due to location of the wells on the corners of the model, a lower Kfy / Kfx cause the 

tracer to cover less drainage area and thus breakthrough faster. It was noticed for Kfy / 

Kfx below 0.25, oil rate constrain are not met. Moreover, for values equal or less than 

0.01, solver start to crash due to severe convergence problems. Thus, fracture 

permeability anisotropy has an effect of limited range on tracer peak concentration and 

breakthrough.  

     As for Sigma, the shape factor, it shows no effect on tracer or water-cut response. 

Shape factor plays a major role in controlling the distribution of injected water-

movement when initial saturation of the system is close to initial. In Sherrod, pre-

production water invasion have caused initial saturation to be much higher than initial. 

Hence, shape factor did not show significant importance. 

    As for fracture pore volume, it appeared to be the most important parameter 

controlling tracer breakthrough time. If fracture pore volume was decreased, the tracer 

response will exhibit a faster breakthrough and a higher peak concentration produced. 

The higher peak simulated is because tracer contact smaller reservoir pore volume, while 

the faster tracer breakthrough is because less volume of water injected is required to 

achieve breakthrough. Figure 5.22 show the effect of changing fracture pore volume by 

changing thickness, while Figure 5.23 show the effect of changing fracture pore volume 

by changing fracture porosity. The effect of the two parameters is almost identical. 

Figure 5.24 overly thickness and fracture porosity effect and show that equal values of 

(f h) product give same tracer solution given the same drawdown condition between a 



 

185 

 

 

given injector and producer. Figure 5.25 shows that fracture pore volume have no clear 

impact on water-cut.  

 

 

 

Figure 5.18: Effect of fracture permeability on tracer response 
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Figure 5.19: Effect of fracture permeability on water-cut 

 

 

 

Figure 5.20: Effect of fracture permeability anisotropy on tracer response 
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Figure 5.21: Effect of fracture permeability anisotropy on water-cut response 

 

 

 

Figure 5.22: Effect of thickness on tracer responses 
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Figure 5.23: Effect of fracture porosity on tracer responses 

 

 

 

Figure 5.24: Identical tracer solutions for equal (f h) product 
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Figure 5.25: water-cuts of identical tracer solutions  

 

 

5.3.4.4   Sensitivities on Matrix Properties 

     Sensitivities made on matrix properties showed weak impact on tracer and water-cut 

responses. As for matrix permeability, it was reduced and increased by a factor of 2 and 

4. Figures 5.26 and 5.27 shows the weak impact of matrix permeability on tracer and 

water-cut responses. This is because these responses are dominantly controlled by the 

fracture system. Similarly, matrix porosity of base case was reduced and increased by a 

factor of 1.25 and 1.5. Figures 5.28 and 5.29 shows the weak impact of matrix porosity 

on tracer and water-cut responses. It should be noted that the weak impact of matrix 

porosity on water-production is due to the short production history of the pair 

understudy. 
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Figure 5.26: Effect of matrix permeability on tracer response 

 

 

 

Figure 5.27: Effect of matrix permeability on water-cut 
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Figure 5.28: Effect of matrix porosity on tracer response 

 

 

 

Figure 5.29: Effect of Matrix porosity on water-cut response 
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5.3.4.5   Sensitivities on Grid Design, Dilution, and Fraction of Water Injected       

     Sensitivities made on grid resolution, dilution, and fraction of injection rate in 

communication between the well pair showed a varying degree of impact on tracer 

responses. As for grid resolution, grid size of base case was reduced and increased by a 

factor of 1.5 and 2. As shown in Figure 5.30 below, changing size of grid cells have a 

large impact on tracer breakthrough time and peak concentration produced. This 

highlight that tracer breakthrough and peak concentration produced has a strong bias 

toward grid design.  

     As for drainage area surrounding the two wells, it was increased by a factor of 1.15 

and 1.3 while keeping well distances the same. As shown in Figure 5.31 below, 

increasing drainage area showed large impact on tracer breakthrough and peak 

concentration produced. This is because a larger drainage areas cause the tracer to be 

more dispersed contacting more reservoir pore volume. As a result of contacting larger 

reservoir pore volume, breakthrough is delayed and the response appears to be more 

diluted.  

     To study the effect of dilution on tracer response, the process of mixing tracer with 

injected water is studied.  Figure 5.32 show the effect of varying injection rate during the 

mixing process on the concentration injected. Concentration injected is a key input 

because it is used as a boundary condition to solve the tracer partial differential equation. 

For the concentration of tracer injected to be more diluted than what is initially 

calculated is very likely to happen. This is due to the inter-connectivity of a number of 

Sherrod pattern injectors which will cause the wellbore of the injector to receive water 



 

193 

 

 

from nearby wells. Effect of initial concentration injected on tracer response is shown in 

Figure 5.33 below. Initial concentration is only used to scale the response and it does not 

affect breakthrough time or shape of curve.  

     To investigate the effect of losing injected water to outside study area, a fraction of 

the actual injection rate is used to model water produced at „Ruby 18‟ from „Sherrod 

1012‟. Figure 5.34 shows the effect of using various fractions of „Sherrod 1012‟ 

injection rates on tracer response. As fraction of injection rate is lowered, less drawdown 

is created between the pair of injector and producer. As a result, tracer breakthrough is 

delayed and peak concentration produced reflects a more diluted response.  

 

 

 

Figure 5.30: Effect of grid resolution on tracer response  
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Figure 5.31: Effect of increasing drainage area around wells on tracer solution  

 

 

 

Figure 5.32: Effect of mixing injection rate used on injected concentration   
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Figure 5.33: Effect of injection concentration on tracer response 

   

 

 

Figure 5.34: Effect of fraction of injection rate on tracer response   
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5.3.4.6   Sensitivities on Reservoir Dispersive Characteristics       

     Reservoir dispersive characteristics have two components: longitudinal dispersion, 

and transverse dispersion. Several studies indicated that transverse dispersion is 

insignificant with respect to longitudinal dispersion. Hence, only the first component is 

studied. With the absence of any information about longitudinal dispersion, the full 

range allowable by Eclipse dual porosity solver was tested. Sensitivity showed that 

solver is unable to handle longitudinal dispersion lower than 0.01 and higher than 400. 

Tracer responses for several values between the upper limit and lower limit are shown in 

Figure 5.35 below. Longitudinal dispersion has strong impact on breakthrough time, 

peak concentration, and width of the response.       

 

  

 

Figure 5.35: Effect of longitudinal dispersion on tracer response.    

 



 

197 

 

 

5.3.4.7   Summary of Tracer and Water-cut Sensitivities        

     A summary on sensitivities is shown in Table 5.6 below. Out of all reservoir 

parameters investigated, tracers responses are dominantly affected by fracture porosity-

thickness product, fracture permeability anisotropy, and longitudinal dispersion. It is 

important to highlight that non-reservoir parameters also have significant impact on 

tracer response like dilution effect, grid cell resolution, drainage area of simulation 

model, and fraction of injected water in direct communication. 

     For water-cut response, it is affected dominantly by three parameters: water 

saturation of the fracture system, matrix porosity, and thickness. Unlike tracer response 

were non-reservoir parameters have large impact, water-cut is only affected by reservoir 

parameters.  
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Table 5.6: Summary of water-cut and tracer response sensitivities. 

 

 

5.3.4.8   Matching Abnormal Tracer Velocity: Sherrod 1012 – Ruby 18 

     Tracer flow between the pair „Sherrod 1012 – Ruby 18‟ exhibited unique tracer 

response. Tracer traveled with a velocity of 8,900 ft / day toward „Ruby 18‟ which exist 

outside patterns injection area. Tracer appeared 1 day after tracer injection with the first 

water sample. Although breakthrough was fast, the tracer response exhibited excessive 
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dilution showing tracer recovery of only 0.3%. The tracer response and the locations of 

the two wells are shown Figures 5.36 and 5.37 below, respectively. 

     As tracer breakthrough time is primarily driven by fracture pore volume, Figure 5.38 

below shows the linear relation observed while attempting to match tracer breakthrough 

time by changing (f h). The slope of the line remains constant as long as the drawdown 

between the two wells remains unchanged. This linear relation obtained through large 

number of simulation runs indicates that a breakthrough of 1 day is not mathematically 

possible using fracture properties alone. This supports the hypothesis of the presence of 

an external water source flowing to Sherrod Area which creates both high tracer 

velocities and excessive dilution. This phenomenon is modeled by introducing a pseudo 

injector and a pseudo producer acting 1000 feet away from the two wells to create a 

higher drawdown or a „stream‟. Stream injection rates tested were between 0 – 18,000 

stb/d. Pseudo producer operates at injection to production ratio (IPR) of 2 for all cases. 

Eclipse dual porosity solver start to crash for cases with stream injection rate higher than 

18,000 stb/d. A schematic of the simulation model design is shown in Figure 5.39 below. 

Figure 5.40 summarizes simulation attempts to match a tracer breakthrough of 1 day and 

shows how the linear relation between (f h) product and tracer breakthrough time 

changes under different drawdown conditions. Maximum achievable tracer velocity was 

2,225 ft / day which represent only 25% of the actual velocity observed.              
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Figure 5.36: Tracer response at „Ruby 18‟ from injector „Sherrod 1012‟ 

‟. 

 

 

Figure 5.37: Locations of well pair: „Ruby 18‟ and „Sherrod 1012‟. 
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Figure 5.38: Linear relation observed between tracer breakthrough time and (f h). 

 

 

 

Figure 5.39: Schematic of „Sherrod 1012 – Ruby 18‟ Simulation Model with pseudo wells 
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Figure 5.40: Tracer BT versus (f h) for different drawdown conditions 

 

 

5.3.4.9   Matching Tracer Flow outside Study Area 

     Matching moderate tracer velocities in the range of 669 – 853 ft /day was achievable 

by modifying (f h) product as mentioned in the previous sub-section. Peak 

concentration was matched by modifying concentration injected to account for dilution 

caused by water flow from nearby injectors. Figure 5.41 show a match of the tracer 

response between the pair „Sherrod 2114 - Ruby 18‟ using a fracture porosity-thickness 

product of 0.006. Figure 5.42 shows that the observed tracer response between the pair 

„Sherrod 1405 – Ruby 18‟ appears as a dual peak tracer response due to miss-sampling. 

The three simulated peaks correspond to fracture porosity thickness product of 0.003, 

0.00475, and 0.005, respectively. Locations of the wells Sherrod 2114, Sherrod 1405, 
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and Ruby 18 are shown in Figure 5.43 below. Assuming a fracture porosity of 0.5%, 

these tracers reflect movement in highly stratified and fractured thin layers with 0.6-1 ft 

extending for vast distances outside tracer study area. 

 

 

 

Figure 5.41: Tracer match for „Sherrod 2114-Ruby18‟ response 
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Figure 5.42: Tracer match for „Sherrod 1405-Ruby18‟ response 

 

 

 

Figure 5.43: Sherrod 1405, Sherrod 2114, and Ruby18 wells‟ locations 
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5.3.5   Case Study II: Tracers Flow toward ‘Sherrod 1809’    

     The same injectors that showed ultra-high tracer velocities toward „Ruby 18‟ in case 

study I showed ultra-high velocity in an opposite direction toward „Sherrod 1809‟. 

Injectors contributing significantly to „Sherrod 1809‟ and their observed tracers‟ 

velocities are listed in Table 5.7 below.   These ultra-high tracer velocities acting in 

opposite directions are highlighted in the schematic diagram shown in Figure 5.44 

below. In a similar manner to case study I, tracer breakthrough were matched by 

reducing (f h) product, and peaks were matched by reducing concentration injected to 

account for dilution from nearby injectors. Figures 5.45 through 5.46 show matches for 

tracers responses and their respective locations. These tracers reflect movement in highly 

stratified and fractured thin layers in the range of 0.1-0.2 ft. 

 

 

 

Table 5.7: Significant tracers show and tracers velocities at „Sherrod 1809‟ 
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Figure 5.44: The two opposite in direction ultra-high tracer velocities observed from same injectors 

 

 

 

Figure 5.45: „Sherrod 1012 – Sherrod 1809‟ tracer response match  
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Figure 5.46: „Sherrod 1202 – Sherrod 1809‟ tracer response match 

 

 

 

Figure 5.47: „Sherrod 1405 – Sherrod 1809‟ tracer response match 
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Figure 5.48: „Sherrod 2114 – Sherrod 1809‟ tracer response match 

 

 

5.3.6   Case Study III: Modeling Simple Tracer Movement  

     As indicated section 5.2.3 earlier, tracers‟ responses with relatively high recovery ( > 

0.5%) exhibit simple tracer movement in the vicinity of the tagged injectors. In a similar 

manner to the previous case studies, tracer breakthrough time was matched by changing 

(f h) product, and peak concentration produced was matched by reducing concentration 

injected to account for dilution.  Figures 5.49 through 5.52 show matches for tracers‟ 

responses and their respective wells‟ locations. Similarly to case studies 1 & 2, these 

tracers reflect movement in highly stratified and fractured layers but with relatively 

larger thicknesses in the range of 0.6-1.5 ft. 
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Figure 5.49: „Sherrod 2114 – Sherrod 2001‟ tracer response match 

 

 

 

Figure 5.50: „Sherrod 2114 – Sherrod 2111‟ tracer response match 
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Figure 5.51: „Sherrod 1904 – Sherrod 2111‟ tracer response match 

 

 

 

Figure 5.52: „Sherrod 1904 – Sherrod 1804‟ tracer response match 
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5.4 Multi-layered Simulation Model per Tracer Injected    

5.4.1 Objectives  

     Multi-layered simulation models are sector models to model connectivity between a 

tagged injector and all producers showing moderate and high tracer shows. Example of a 

possible simulation model incorporating all moderate and high tracer shows is shown in 

Figure 5.53 below. The overall objectives of these types of simulation models include: 

1. Simplify the complex fracture network by matching responses of one injected 

tracer at a time.  

2.  Investigate the applicability of using multiple non-communicating layers to 

model each tracer response 

3. Integrate fracture realizations from multiple simulation models to build the 

global fracture network 

 

 

 

Figure 5.53: Example of a case study to incorporates moderate and high tracer shows in one model 
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5.4.2   Approach Limitations  

     The approach of modeling single tracer at a time using multi-layered simulation 

model has the following limitations: 

1. Limitations in modeling the water dilution effect from nearby injectors. 

2. Interaction of producers with other injectors is not captured. 

3. Approach could lead to a very large number of simulation layers when multiple 

simulation models are integrated into one.  

 

5.4.3   Case Study: Tracer Injected through ‘Sherrod 1814’ 

     Tracer injected through „Sherrod 1814‟ shows moderate recoveries in a small area 

enclosed around the injector. This presents a simple case to test our approach. Figure 

5.54 below show model area, injector location, and moderate tracer shows. Table 5.8 

below show a list of producers with moderate tracer shows, tracer breakthrough time, 

and velocities of tracers produced.     

     Simulation model was built using 8 non-communicating layers. Each producer was 

completed in a different layer to minimize well interference, and to allow matching of 

each tracer response independently. Injector completion covers all the 8 layers. Figure 

5.55 below show effect of varying (f h) product on tracer breakthrough time for 4 out of 

the 8 producers.  

     The approach of matching multi-tracer responses using simulation models with multi 

non-communicating layers did not show success. The main reason is that the draw down 

created by producers and the injector was not high enough to make tracers flow at the 
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observed velocities. This highlights two key findings: First, using sector simulation 

models for individual patterns is not capable of modeling tracers velocities observed. 

Second, injection from nearby wells needs to be included in simulation model in order to 

match tracers‟ breakthrough times.  

 

         

 

Figure 5.54: „Sherrod 1814‟ moderate tracer shows  
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Table 5.8: List of wells showing significant tracer responses from „Sherrod 1814‟  

 

   

 

Figure 5.55: (f h) product versus tracer breakthrough time (1814 pattern) 
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5.5 Modeling Simultaneous Water Breakthrough in 2002     

     A simulation model was built with the objective to match the simultaneous field-wide 

water breakthrough and the water production performance of 44 producers in 2002. 

Figure 5.56 below show locations of the 44 wells with respect to the map that shows 

paths of moderate tracer recoveries. Sensitivities studied earlier in section 5.2 showed 

that water-cut performance is dominantly controlled by three parameters: initial water 

saturation, thickness, and matrix porosity. Two approaches to model the problem were 

followed: First approach is to model wells performance using initially dry simulation 

model (initial saturation = Swir). This approach has the advantage of capturing the early 

dry production of all wells. Second approach is to model wells performance using 

initially wet simulation model. This approach has more flexibility to model water 

performance after breakthrough.  

      The first approach showed some success in matching the water breakthrough time 

but did not show an acceptable water-cut match. Figure 5.57 below shows the best 

obtainable match for total water production rate using the first approach. It indicates that 

to achieve such a quick water breakthrough, the pore volume of the system has to be 

very small in the range of (-h) product of 0.75 or below. It should be noted that for a 

(-h) product below 0.55, the water production match at the late period of Figure 5.57 

will be lost because simulated water production will be much higher than observed. 

     The second approach showed a remarkable success in matching the water production 

performance but left the early dry oil production period unexplained. Figures 5.58 and 

5.59 show multiple matches of field water production and field water-cut, respectively. 



 

216 

 

 

The multiple matches indicate two important things: First, water performance is 

dominantly driven by water saturation in the fracture system. Second, the match indicate 

a moderate matrix pore volume system of (-h) product of 1.65. Different combinations 

of matrix porosity and thickness with the same product yield identical solution. 

Examples for water-cut matches of individual wells are shown in Figures 5.60 through 

5.63. 

      

 

 

Figure 5.56: Locations of 2002 water breakthrough on tracer recovery map (white circles) 
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Figure 5.57: Best match for simultaneous water breakthrough in 2002 using dry model approach  

 

 

 

Figure 5.58: Multi-history matches (total water rate) for 2002 simultaneous water breakthrough using wet 

model approach 
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 Figure 5.59: Multi-history matches (total water cut) for 2002 simultaneous water breakthrough using wet 

model approach 

 

 

 

Figure 5.60: „Sherrod 1804‟ water-cut match using wet model approach 
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Figure 5.61: „Sherrod 3607‟ water-cut match using wet model approach 

 

 

 

Figure 5.62: Sherrod 2111 water-cut match using wet model approach 
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Figure 5.63: „Sherrod 2315‟ water-cut match using wet model approach 

 

 

5.6 Full Field Simulation Model 

5.6.1 Objectives  

     A Full field simulation model was built in order to model simultaneously the 13 

tracers injected as well as performances of all producers and injectors in Sherrod Area. 

The selection of full field boundary was done with precaution as tracer results showed 

interaction and ultra-high velocity gradients between patterns injection area and its 

surrounding. A selection of full field area should enclose all nearby water injection 

activities to capture history of early water movement in the field. The boundary of the 

full field model chosen for this study is shown in Figure 5.64 below and it includes 23 
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injectors and 195 producers. Eclipse input file for full field simulation model is included 

in Appendix G. The overall objectives of full field simulation model include: 

1. Assess average reservoir properties capable of explaining wells‟ performance. 

2. Investigate modeling 13 different tracers simultaneously using a full field 

simulation model. 

3. Investigate well interference through fracture system and its effect on tracer 

solution. 

 

 

 

Figure 5.64: Boundary of full field model selected for the study 
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5.6.2   Model Limitations  

     The full field simulation model has the following limitations: 

1. Heterogeneity and layering is not properly modeled due to absence of core 

studies and petro-physical data 

2. Large grid cells effect quality of tracer solution 

 

5.6.3   Matching Field Performance 

     The history matching process of the full field model has two parts: First part is to 

match high and moderate tracer shows for the 13 tracers used in the test. Second part is 

to match water-cuts of wells covering large area of the field.  

     Attempts to study tracer responses using full field simulation model has not been 

successful. The main reason behind such un-success is the extreme sensitivity of tracer 

solution to small convergence problems encountered by simulator. To achieve a 

simulation run free of convergence problems, a minimum time step of 0.1 days has to be 

used. Figure 5.65 show the effect of convergence problems on tracer solution: green 

tracer response is a tracer solution with no convergence problems while blue tracer curve 

is a tracer solution affected by one convergence problem. Due to this extreme sensitivity 

of tracer solution and the excessive CPU time required to run a full field model free of 

any convergence problem, a decision was made to use the full field model only to match 

water-cuts. 

     Sensitivity study on water-cut response presented earlier in section 5.2 of this study 

indicated that water-cut response is driven dominantly by three parameters: initial water 
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saturation of matrix-fracture system, thickness, and matrix porosity. While initial 

saturation could be inferred from initial water-cut wells, average matrix porosity and 

thickness of the field is estimated by trial and error. A matrix porosity-thickness product 

of 1.65 was found to match performance of several wells covering large area of the field. 

Figures 5.66 through 5.71 show water-cut matches for wells located in North-East, 

North, North-West, South, South-East, and South-West of the field using ( h) product 

of 1.65 and variable initial water saturation.  

 

 

 

Figure 5.65: Effect of one convergence problem on tracer solution 
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Figure 5.66: „Sherrod 711‟ water-cut match North-East of field (full field model, Swi=0.60) 

 

 

 

Figure 5.67: „Sherrod 510‟ water-cut match North of field (full field model, Swi=0.95) 

 

 

 

Figure 5.68: „Sherrod 1005‟ water-cut match North-West of field (full field model, Swi=0.65) 
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Figure 5.69: „Sherrod 2315‟ water-cut match South-West of field (full field model, Swi=0.95) 

 

 

 

Figure 5.70: „Sherrod 2414‟ water-cut match South of field (full field model, Swi=0.65) 

 

 

 

Figure 5.71: „Sherrod 3609‟ water-cut match South-East of field (full field model, Swi=0.60) 
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5.7 Summary of Results 

     Sector and full field simulation models used to study tracer and water-cut responses 

highlight the following: 

1- Tracer responses are primarily driven by fracture properties providing minimum 

information about properties of the matrix system 

2- Tracer solution is highly uncertain because it is strongly affected by non-

reservoir parameters like grid resolution, drainage area surrounding wells, water 

dilution from nearby injectors, and loss of injected water. 

3- Tracer breakthrough time is primarily driven by (f h) product. Different 

combinations of fracture porosity and thickness with the same product yield 

identical tracer responses.    

4- The ultra-high tracer velocity of 8,900 ft /day between „Sherrod 1012‟ and „Ruby 

18‟ located outside tracer area support the presence of an external water source 

flowing to Sherrod Area. This is because there is no mathematical solution to 

generate such ultra-high tracer velocities using fracture properties alone.    

5- Overall tracers‟ response matches reflect tracer movement in highly stratified and 

fractured thin layers with low vertical communication. Assuming fracture 

porosity of 0.5%, layers thicknesses are in the range of 0.1 to 1.5 ft.   

6- Matches of tracer responses with higher than 0.5% recovery reflect tracer 

movement in limited extension fracture system oriented dominantly in E-W and 

NE-SW directions.  
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7- Matches of tracer responses with 0.1-0.5% recovery reflect a more complex 

fracture network with extensions outside tracer study area. Two types of fracture 

exist: limited extent fractures in N-S & NW-SE directions, and regional extent 

fractures in E-W, and NE-SW directions.            

8- Water-cut matches for both full field and sector models reflect a fracture system 

with high water saturation, and a matrix system with moderate pore volume of ( 

h) product of 1.65.  

9- Full field model is not practical to model tracers due to extreme sensitivity of 

tracer solution which requires infinitesimal & impractical time steps.       

 

 

 

 

 

 

 

 

 

 

 

 

 



 

228 

 

 

6. INVERSION MODELING APPROACHES  

 

6.1 Introduction 

     The process of history matching where parameters controlling reservoir performance 

is modified until an acceptable match is achieved between simulated and observed 

response is a process that has been performed traditionally by trial and error. With the 

advancement of computational capabilities and optimization approaches, new tools were 

developed to assist the reservoir engineer in such a process 
((45))

. These tools define an 

objective function based on the difference between observed data and simulated 

responses and uses gradient-based optimization techniques to minimize the objective 

function 
((46))

. 

     Whether the history match process is performed manually or with the aid of a 

gradient-based technique, two major difficulties is commonly encountered in any history 

matching study: First, which parameter(s) should be selected in order to achieve a 

history match. Second, how to ensure the consistency of changes applied to a simulation 

model with geological concepts and other fundamental data used to construct the model 

initially. 

     Bissell 
((47))

 proposed a “Gradzone Analysis” method which uses gradient information 

to guide reservoir engineer in choosing reservoir parameters to modify. This method is 

based on spectral analysis of the second derivative of the objective function (Hessian 

Matrix). Hessian Matrix is constructed using a quadratic approximation of the objective 

function near a minimum. To preserve relations between reservoir parameters or to 
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preserve the initial geological model from unreasonable deviation during the assisted 

history matching process, a prior term can be added to the objective function. The prior 

term in its simplest form contain estimation of standard deviations of the parameters to 

be adjusted. The prior term in general contains more geological concepts like correlation 

lengths, anisotropy, and permeability-porosity relationships. Any knowledge used in the 

initial construction of the simulation or geological model should be preserved as much as 

possible during the history matching process. The prior term is often neglected in the 

widely used traditional history matching approach although it forms a fundamental 

concept in the Bayesian approach to generate multiple geo-statistical models constrained 

to production data 
((48))

. 

                  

6.2 Inversion through Gradzone Analysis: Process Overview   

     One major advantage of gradient-based history matching approaches is their ability to 

provide useful information on which parameter to choose to start the history match. In 

general, Gradzone Analysis is a procedure for selecting zones in a reservoir model to 

apply a common multiplier to a particular reservoir property for all grid cells within a 

zone. Typically, the reservoir property is pore volume (e.g. porosity) or transmissibility 

(e.g. permeability). The overall flowchart of  Gradzone Analysis study as described by 

Brun et. al.
((48))

 is shown in Figure 6.1 below. The first step is to propose an objective 

function to be minimized. The second step involves selecting sample cells from the 

reservoir simulation model and performing simulation runs to construct the sensitivity 

matrix (first derivative of the objective function). Then, from the sensitivity matrix and 
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knowledge of standard deviation of parameters, an approximation of the Hesssian matrix 

(second derivative of objective function) can be constructed and normalized. Then, by 

decomposing the normalized Hessian matrix into eigenvectors and their corresponding 

eigenvalues, the reservoir engineer can determine the number and boundary of 

Gradzones needs to be constructed.  Finally, one multiplier per Gradzone per reservoir 

property is calculated and the regression starts and iterate on all multipliers until no 

improvement in solution is observed. Each step of the study is discussed in more detail 

in the next subsections.  

 

 

 

Figure 6.1: Flowchart summarizing steps in Gradzone Analysis as presented in SPE # 87680 
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6.2.1 Step # 1: The Objective Function  

      As mentioned earlier, the first step in Gradzone Analysis study is to select an 

objective function to be minimized. This function could be in the usual least-square 

form: 

   )   ∑ {  
   

   )   
    

  
}
 

 
    ………………………………………………..……………(18) 

where f(x) is the objective function to be minimized, yl
c
 is lth calculated point from a 

vector of a simulation response like water-cut, water rate, or bottom-hole pressure, yl
obs

 

is the corresponding observed value from data. The symbol “x” represents the reservoir 

parameter to be adjusted during the history match (e.g. thickness, porosity or 

permeability).  l is the standard deviation of the measurement error in the lth data point, 

and l is the weight assigned to the lth data point. 

     If a prior term to be added to the objective function, the modified objective function, 

Q(x), will be:  
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where Co is the prior covariance matrix of the parameter to be adjusted “x”, x
prior

 is the 

mean of the parameter “x”, and 
2

 is used to adjust the relative weight between the 

response mismatch and prior information. The superscript “T” indicates the transpose of 

the vector. The objective function that has the prior term, Q(x), could be re-written as 

follows:   
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where r, m, Cobs are defined by: 
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6.2.2 Steps # 2-5: Defining Sampling Cells, Sensitivity & Hessian Matrix Construction 

     If a history match problem is to be approached from an inversion point of view, then 

the potential parameter space is all the properties of all the grid cells. However, this will 

make the inversion approach impractical due the computational time required to handle 

such large simulation models and the large number of parameters. To make the inversion 

easier and more efficient, only the most sensitive parameters are selected and the number 

of simulation runs is reduced by effective sampling of simulation grids from the 

simulation model.    

     In Gradzone Analysis, reservoir simulation cells have to be sampled in such a way to 

maximize simulation model coverage. Thus, sample cells are expected be regularly 

spaced and as many as possible given the capability of available computational 

resources. Figure 6.2 below shows an example of sample cells selected for a 9x9 

simulation model. The purpose of selecting sampling cells from the simulation model is 

to construct the sensitivity matrix, Go.  Sensitivity matrix is constructed by performing 

one base simulation run plus one complete history-match simulation run per sample cell 
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per adjustable parameter. This is in order to calculate the derivative of the response 

vector with respect to a change in the cell‟s parameter of interest. The sensitivity matrix, 

Go is given by: 
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 ……………..……………………………………………...(24)   

where “p” is number of observed data points and “n” is the total number of sampling 

cells. Sensitivity Matrix along with prior information provide a key guide to parameter 

selection for history match based on a compromise between high sensitivity and high 

uncertainty parameters.  The Hessian Matrix, Ho, is given by: 

     
      

      …………………………………………………………..…………(25) 

where Cobs is the measurement error covariance matrix and superscript “T” indicate 

transpose of matrix or vector. The normalized Hessian Matrix, H, is given by: 

           
      

      
           

   ……………………………..………….(26) 

It must be noted that the Hessian Matrix, Ho, or the normalized Hessian Matrix, H has a 

dimension of n x n where “n”, as mentioned earlier, is the total number of sampling 

cells: 
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Figure 6.2: Sample cells locations for a 9x9 model  

 

 

6.2.3 Steps # 6-8: Hessian Matrix Decomposition & Gradzones Construction 

     A Singular Value Decomposition (SVD) must be performed on the normalized 

Hessian matrix in order to extract its eigenvalues and their corresponding eigenvectors. 

The most important information is contained within the large magnitude eigenvalues 

which are usually the first few ones. Each eigenvalues can be treated as a Gradzone with 

the magnitudes of its corresponding eigenvectors determining the boundary of influence 

for each Gradzone. Thus, a threshold is applied on elements of each eigenvalue to 

remove cells with low eigenvector value which correspond to cells that have 

insignificant impact on the objective function (the history match). An eigenvalue with 

both positive and negative eigenvectors can be treated as two Gradzones. When two 

Gradzones intersect, the Gradzone corresponding to the higher eigenvector is chosen.  
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6.2.4 Steps # 9-12: Multipliers Construction, Regression, and Prior Weight  

     Once Gradzones have been defined, a prior covariance matrix for each Gradzone has 

to be constructed before performing the regression loop. Construction of multipliers can 

be illustrated by using a simulation model with two gradzones v1 and v2 as shown in the 

figure 6.3 below.   

 

 

 

Figure 6.3: Example of multipliers construction for two Gradzones  

 

 

     The porosity of a given Gradzone can be calculated by averaging porosities of all grid 

cells within that zone. Thus for Gradzones v1 and v2 : 
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where Vi and  i is volume and porosity of grid cell “i”, respectively.  Based on this, the 

initial porosity multiplier for a given Gradzone could be expressed as follows: 
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Similarly for permeability, with the exception of using the logarithm of the multiplier 

rather than the multiplier itself, the permeability multiplier, , for a given Gradzone can 

be expressed as follows: 
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Iterations performed on multipliers can be performed using Gauss-Newton 

approximation of the Hessian around a minimum using the following equations: 

For permeability:  

                                    ……………………………………….(33) 
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For porosity:  
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where  gradzone is the mean of the property being adjusted over the gradzone, g ( old) or 

g(kold) is the simulation response vector generated by using a vector of the reservoir 

parameter being adjusted from the previous time step. Vector “d” is the observed data 

vector being matched ”Cx” is the variance matrix of the property, and the superscript “T” 

indicate the transpose of the vector/matrix.  

 

6.3 Gradzone Analysis on Sherrod Area 

6.3.1 Inversion Objectives 

1. Invert water-cut responses to predict fracture properties governing flow in reservoir. 

2. Create multi-layer models through simultaneous or sequential inversion of water-cut 

responses. 

3. Investigate applications of inversion modeling in naturally fractured reservoirs. 

 

6.3.2 Inversion Design 

Inversion through Gradzone analysis requires the following elements: 

1. Definition of surface response(s) to invert and property to be inverted.  

2. Assigning weights to observed data. 

3. Allocation of standard deviation of measurement error in observed data. 

4. Design of areal and vertical sampling of simulation model grid cells.  

5. Selection of number of eigenvalues to be used. 

6. Selection of a threshold to be applied on eigenvectors of each eigenvalue. 
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6.3.3 Case Studies 

     The complex inter-connectivity of producers and injectors in Sherrod Area makes it 

difficult to select a small case study for inversion. Earlier in this study, the simultaneous 

water breakthrough of 44 wells in 2002 was studied both analytically and by 

constructing simulation models. This case could also be investigated by the use of 

inversion modeling as linking produced water with only three active injectors simplifies 

the problem.  

    Second case study to investigate is the limited number of inverted 9-spot patterns that 

exhibited weak communication with their surroundings. These patterns serve as the 

simplest case studies in Sherrod Area to test inversion. The pattern of injector Sherrod 

1814 where significant tracer shows were only in a small area enclosed around the 

injector was chosen as a case study.      

 

6.3.4 Case Study I: Simultaneous Water Breakthrough in 2002 

6.3.4.1 Starting Point 

     The simulation model presented earlier in section 5.4 of this study was used for 

inversion. Initial properties of the simulation model and initial inversion design are 

shown in Tables 6.1 and 6.2 below. Observed water-cut data from the 44 wells were 

given equal weights and the property chosen to be inverted was the pore volume of the 

fracture/matrix system. Figure 6.4 below show locations of sampling cells used to run 

sensitivities.   The presence of both negative and positive eigenvector elements in the 

first eigenvalue suggest that two Gradzones could be constructed from it as shown in 
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Figure 6.5 below. Performing regression on the two Gradzones did not show significant 

improvement in solution as root mean square value of the error was reduced by only 

2.3%. Figures 6.6 and 6.7 show the model heterogeneity and pre and post inversion 

performance, respectively. The next subsections will investigate effect of changing 

inversion design on error reduction.  

 

         

 

Table 6.1: Initial simulation model for inversion (Case Study I) 
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Table 6.2: Initial inversion design (Case Study I) 

 

 

 

Figure 6.4: Sampling cells locations to run sensitivities (Case Study I) 
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Figure 6.5: Gradzones using first eigenvalue to invert pore volume (Case Study I) 

 

 

 

Figure 6.6: Pore volume of matrix/fracture system (Case Study I:1 layer inversion) 
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Figure 6.7: Pre and post inversion field water performance (Case Study I) 

 

 

6.3.4.2 Choice of Property to be Inverted 

     Although reservoir parameters effecting water-cut response were investigated in the 

previous chapter, they were tested again in this sub-section. The same inversion design 

was tested but by using sigma and transmissibility in „xy‟ direction as properties to be 

inverted. While using Sigma as the property to be inverted showed no improvement in 

solution, Transmissibility showed slight reduction in root mean square value of error by 

0.4%. This shows that pore volume has the largest influence on water-cut performance. 

From this point forward, only pore volume will be used as an inversion property      
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6.3.4.3 Sampling Design 

     Sampling design to compute sensitivities was chosen initially to by 15 by 15 grid 

cells per simulation layer. A sampling design with lower number of grid cells 

significantly reduces the CPU time required to compute gradients and sensitivities. Thus, 

the inversion design was changed to use 10 x 10 grid cells per simulation layer. Figure 

6.8 below show the effect of choosing a lower number of sampling cells on boundary of 

Gradzones. In term of error reduction, no change was observed     

 

   

 

Figure 6.8: Gradzones using 10x10 (on left) and 15x15  sampling cells (on right)  

 

 

6.3.4.4 Inverting a Multi-Layered Simulation Model 

     Inverting a multi-layered simulation model could be done using two different 

approaches: simultaneous inversion and sequential inversion. In the simultaneous 

inversion approach, the inversion is performed on all layers at the same time. While in 
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the sequential inversion approach, inversion is performed one layer at a time. Figures 6.9 

and 6.10 show Gradzones and convergence behavior of solution for each case. While 

simultaneous inversion showed error reduction of 0.9%, sequential inversion showed 

error reduction of 17%. Figures 6.11 through 6.13 show the model heterogeneity and 

performance before and after inversion. 

 

 

 

Figure 6.9: Gradzones and solution convergence from simultaneous 2-layer inversion (Case Study I) 

 

 

 

Figure 6.10: Gradzones and solution convergence from sequential 2-layer inversion (Case Study I) 
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Figure 6.11: Inverted model of Case Study I using 2-layer sequential inversion: matrix & fracture layer # 1 

 

 

 

Figure 6.12: Inverted model of Case Study I using 2-layer sequential inversion: matrix & fracture layer # 2  
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Figure 6.13: Comparison of field water performance from all inversion cases.  

 

 

6.3.5 Case Study II: Pattern of Injector Sherrod 1814  

     A 5,200 by 5,300 feet sector model was built incorporating injector Sherrod 1814 and 

the 8 producers with moderate tracer shows around it. Initial properties of the simulation 

model and initial inversion design are shown in Tables 6.3 and 6.4 below. For the 

objective function, observed water-cut data from three key wells were given equal 

weights and the property chosen to be inverted was the pore volume of the system. 

Figure 6.14 below show the locations of the three key wells used in the objective 

function.   The presence of only positive eigenvector elements in the first eigenvalue 

suggest that only one Gradzone could be constructed from it. Figure 6.15 below show 

the boundary of the first Gradzone. Performing regression on the Gradzone showed 
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significant improvement in solution as root mean square value of the error was reduced 

by 23.6%. Figures 6.16 through 6.19 show the model heterogeneity and performance 

before and after inversion. The next subsections will investigate effect of changing 

inversion design on error reduction. 

 

 

 

Table 6.3: Initial simulation model for inversion (Case Study II)  

 

 

 

Table 6.4: Initial inversion design (Case Study II)  
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Figure 6.14: Three key wells used in objective function of pattern of „Sherrod 1814‟ simulation model 

 

 

 

Figure 6.15: Boundary of first Gradzone used to invert one layer simulation model of pattern of „Sherrod 

1814‟ 
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Figure 6.16: Matrix & fracture pore volume for pattern of „Sherrod 1814‟ (1-layer inversion) 

 

 

 

Figure 6.17: Pre and post inversion performance of „Sherrod 1804‟. 
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Figure 6.18: Pre and post inversion performance of „Sherrod 1809‟ 

 

 

 

Figure 6.19: pre and post inversion performance of „Sherrod 2111‟ 
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6.3.5.1 Effect of Initial Water Saturation 

     Two cases with the same inversion design but different initial water saturation were 

studied. The objective of this case is to compare which initial water saturation shows 

lower error after inversion. Figures 6.20 and 6.21 show a comparison of the Gradzone 

shapes and solution convergence behavior for cases with initial water saturation of 65% 

and 75%, respectively. For the case of 65% initial water saturation, it shows less initial 

error compared to the case of 75% initial water saturation. However, by the end of 

regression, 75% initial water saturation case showed slightly lower error with a 

difference of 1.1%. 

 

 

 

Figure 6.20: Gradzone & solution convergence for 65% initial water saturation case.  



 

252 

 

 

 

Figure 6.21: Gradzone & solution convergence for 75% initial water saturation case 

 

 

6.3.5.2 Effect of Number of Gradzones & Eigenvector Threshold 

     For the case understudy, creating more Gradzone to cover larger area of the model 

did not show significant reduction in ultimate error. Similarly, using a lower eigenvector 

threshold value imposed on the first gradzone did not improve ultimate solution. 

Comparisons of Gradzones created for each case are shown in Figures 6.22 and 6.23 

below. 
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Figure 6.22: Gradzones using eigenvector threshold of 0.05 (left) and 0.01 (right) 

 

 

 

Figure 6.23: Gradzones using first eigenvalue (left) and second eigenvalue (right) 
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6.4 Limitations of Gradzone Analysis 

     Several limitations were observed while using Gradzone analysis package in Eclipse 

SimOpt: 

1. Gradzone boundaries do not look realistic. This is due to the absence of any 

geological information that could be preserved during history matching 

2. Convergence problems encountered while performing regression prevent 

improvement in solution by terminating the regression. 

3.  Inversion modeling by Gradzone Analysis showed limitations in stability of 

inversion when dealing with models with greater than 2 layers. 

 

6.5 Summary of Results 

     1. Inversion modeling by Gradzone Analysis shows significant error reduction by 

17% for the case study of 2002 field-wide simultaneous water breakthrough. Inversion 

results show that north-east and west side of the field have very low pore volumes 

compared to the south-east. North-east and west side of field have 2% and 35% of the 

pore volume existing in the north-east, respectively.       

     2. Inversion modeling by Gradzone Analysis shows significant error reduction by 

23.3% for a case study of inverted 9-spot pattern showing weak communication with its 

surroundings. Inversion results show that pore volume of the matrix-fracture system 

should be much higher than what is initially assumed.    
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     3. Sequential inversion approach showed to be the most effective approach for the 

case studies tested. It showed error reduction of 17% compared to 2.3% for single layer 

inversion and 0.9% for simultaneous two layer inversion. 

     4. Inversion modeling could be used to assess initial water saturation of matrix-

fracture system by performing multiple inversions using identical models with different 

initial water saturation. Our case study showed initial water saturation of matrix-fracture 

system around pattern of Sherrod 1814 is more likely to be 75% based on water-cut 

responses.        

     5. Inversion modeling by Gradzone Analysis showed limitation when dealing with 

models with more than 2 layers. 
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7. ANALYSIS OF SHERROD INTER-WELL TRACER TEST DESIGN   

 

7.1 Introduction  

     Inter-well tracer test of Sherrod Area in Spraberry Field presents a key case study to 

highlight best practices in the design of inter-well tracer tests in naturally fractured 

reservoirs. This is due to the large number of tracers injected and producers sampled, 

and the high complexity of fracture network encountered.  

 

7.2 Objectives 

    The objective of this chapter is to utilize Sherrod inter-well tracer test as a case study 

to highlight best practices and lessons learned in the design and execution of inter-well 

tracer tests in naturally fractured reservoirs. History matched tracer responses will be 

utilized to analyze different design considerations, and to optimize cost and efficiency of 

these tests.            

    

7.3 Elements of Tracer Tests Design  

     After selecting which type of tracers to use, design of inter-well tracer tests have four 

main elements to consider: 

1. tracers injection locations 

2. tracer injection design 

3. operating conditions 

4. sampling locations & schedules 
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7.3.1 Tracers Injection Locations 

    Tracers‟ injection locations presented earlier and shown in Figure 7.1 highlight that 

majority of tracers were injected through pattern injectors. Only one out of the two 

active non-pattern injectors, Sherrod 701, was tagged with a tracer. 

     From the performance of pattern injectors, poor tracer recovery was expected. This is 

because activation of injectors showed either no effect or a slight increase in the water 

performance of already high producing water-cut wells in the range of 80-90%. If 

pattern injectors and pattern producers were in good communication, they would have 

caused producers to die from excessively high water-cut. Two examples for impact of 

pattern injectors on performance of pattern producers few months before introducing 

tracers are shown in Figures 7.2 and 7.3. In the first example in Figure 7.2, the well 

shows no change in performance after injector activation. In the second example in 

Figure 7.3, the performance of the producer is adversely affected by the increase in 

water cut to above 99%. The value of tracers injected in this case is to highlight the 

direction of water movement outside the pattern. Results presented in previous sections 

showed how 6 out of the 11 pattern injectors are connected with producers „Ruby 18‟ 

and „Ruby 19‟ outside patterns injection area.               
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Figure 7.1: Sherrod inter-well tracer test injection & sampling locations 

 

 

Figure 7.2: Example of well unaffected by activation of pattern injector 
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Figure 7.3: Example of well adversely effected by activation of pattern injector 

 

 

7.3.2 Tracer Injection Design 

     Tracers‟ masses and volumes, tracers‟ injection schedules, and water injection rates 

used for mixing of the 13 tracers used in Sherrod inter-well tracer are shown in Table 7.1 

below. The effect of tracer injection design such as volume of tracer to inject, mixing 

duration and injection rates are studied by utilizing a history matched tracer response 

between „Sherrod 1809-Sherrod 2114‟. Figure 7.4 show the tracer response match and 

the pair location.   

     The effect of all three parameters translates on concentration injected. A higher 

volume of tracer, a lower mixing rate, or lower mixing duration results in a more 

concentrated slug and vice versa. The effect of each parameter on injected 
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concentrations is shown in Figures 7.5 through 7.7. Figure 7.8 show the relation between 

concentration injected and peak concentration produced. Considering the low detection 

limit of 50 part per trillion used in Sherrod tracer test, a much lower tracer volume could 

have been used. From Figures 7.6 and 7.8, volume of tracer used in the test could have 

been reduced by 82% and still produce a high peak concentration of 10,000 ppt. Using 

less tracer volume not only reduce cost of running the tracer test, but also minimize the 

large number of  excessively diluted tracer responses generated mostly by water 

recycling. In summary, tracer volumes used were much higher than what was actually 

needed even with the excessive dilution that affected all tracers‟ responses.  

 

 

 

Table 7.1: Tracer injection schedule & design for all tracers 
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Figure 7.4: Tracer response used for analysis of test design 

 

 

Figure 7.5: Effect of mixing injection rate on concentration injected 
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Figure 7.6: Effect of tracer volume on concentration injected 

 

 

Figure 7.7: Effect of tracer mixing duration on concentration injected  
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Figure 7.8: Effect of concentration injected on peak concentration produced  

 

 

7.3.3 Operating Conditions Considerations 

     Effect of operating conditions, particularly injection rate, on tracer response was 

discussed partially in section 5.3 earlier. Injection rate for the pair under study was 

varied by a factor of 0.5 and 0.75. The impact of varying average injection rate on tracer 

response is shown in Figure 7.9 below and indicates that a lower average injection rate 

of a well will cause a lower peak concentration produced, a more diluted response and a 

further delay in tracer breakthrough for the same concentration injected. This highlight 

that wells‟ average injection rate should be considered in designing injected 

concentrations and duration of sampling schedule. This was already considered in the 

design of Sherrod tracer test by using a much higher concentration injected for the low 

injection rates wells as shown in Table 7.1 earlier.       
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Figure 7.9: Effect of operating conditions on tracer response   

 

 

7.3.4 Sampling Locations & Schedules 

     One important design consideration highlighted in Sherrod inter-well tracer test is the 

importance of early start of water sampling of producers. Figure 7.10 and Figure 7.11 

below shows tracers‟ responses with same day and one day breakthrough, respectively. 

Figure 7.12 show examples of tracer responses with breakthrough time missed. 

Breakthroughs of these tracers were missed because of late sampling. This highlights the 

importance of sampling produced water from the same day of tracer injection.  
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     A second important factor to consider is the length of the sampling schedule. This 

study showed earlier in section 4.7 that tracer responses obtained after the second week 

of the test were not adequate for fracture characterization because those were either 

excessively diluted or largely effected by water recycling. Thus, Sherrod inter-well 

tracer test could have been terminated by the end of the second week. This could have 

saved 100 days or 87.7% of operation time. 

 

 

 

Figure 7.10: Tracer responses with same day breakthrough 
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Figure 7.11: Tracer responses with one day breakthrough 

 

 

Figure 7.12: Tracer responses with breakthrough time missed 
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7.4 Summary of Design Considerations 

     Inter-well tracer test design in naturally fractured reservoirs through lessons learned 

from Sherrod Area could be summarized as follows: 

1. Volume of tracers used was excessively large. Only 18% of the volumes used 

were required to capture and characterize the complex fracture network in the 

field. Using a combination of very low detection limit and excessive tracer 

volume was the main reason of creating high number of excessively diluted 

responses that added no value to characterization process.            

2. Sampling of water produced should start from same day of tracer injection in 

order to avoid missing breakthrough time of ultra-high velocity tracers.    

3. Test duration of Sherrod test should have been terminated by the second week 

when majority of responses turned to be intermittent and excessively diluted. 

This could have saved 87.7% of operating time without effecting test 

interpretation. 

4. Tracers injected through low water injection rate wells are expected to exhibit 

delays in breakthrough time and to have lower peak concentration produced. 

Thus, relatively larger injected concentration should be used wells with relatively 

lower injection rates.       
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8. CONCLUSIONS AND RECOMMENDATIONS  

8.1 Conclusions 

     In our study, water-cut and tracer responses of Sherrod Area in Spraberry field were 

analyzed using analytical, numerical simulation, and inversion modeling approaches. 

The objectives of the analytical approach were to effectively categorize tracer responses 

in order to quantify their significance in explaining water movement in the field, to map 

observations in order to understand water and tracer movement in the field, and to 

identify patterns and anomalies in water-cut and tracer responses in order to explain 

reservoir behavior. The objectives of numerical simulation study are to match tracers‟ 

responses, to explain the ultra-high tracer velocities observed in the field, and to explain 

water-cut behavior in the field. The objective of inversion modeling approach is to invert 

water-cut responses into multi-layer heterogeneous dual porosity models. Conclusions 

based on the research findings could be summarized as follows: 

1. Maximum sweep directions obtained from Methods of Moments indicate the 

presence of four major inter-connected flow features oriented N76
o
E governing 

water movement in the field. 

2. Sherrod Area of Spraberry Field exhibit very poor waterflood performance. This is 

evidenced by field water production which follows precisely the field water injection 

rate. 

3. Poor overall tracer recovery with none of the 13 injected tracer recovered by more 

than 9%. 
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4. Tracer responses could be categorized into four groups based on the distribution of 

tracer recovery for all tracers‟ responses. 

5. Studying characteristics of tracer responses based on tracer recovery highlight 

several aspects of tracer responses: 

a. No correlation between tracer velocity and tracer recovery. 

b. Tracer responses with less than 0.01% recovery is highly effected by 

water recycling. As tracer recovery of the tracer response increase, the 

water recycling effect decrease. 

c. Number of peaks in a tracer response correlates strongly with tracer 

recovery. This indicates that a higher recovery tracer response 

captures more the layering between a pair of injector and producer. 

6.   For a field where wells injection rates are in the range of 100-400 stb/d,   tracer 

responses with less than 0.1% recovery explains water movement of less than 1 bbl / 

day and thus should be ignored. 

7. Sherrod Area of Spraberry Field receives water influx from an external water source. 

This is supported  by the following observations: 

a. The abnormal increase in water-cut for a number of wells during field 

water injection shut-in between December 2004 and July 2005. 

b. The declining water cut trend for a number of wells that did not show 

any tracer. water-cuts declines from as high as 85% to as low as 40%. 

c. The abnormal higher than 99% water-cut appearing for a short period 

for a number of wells surrounding tracer study area. 
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d. The high fluctuation of water-cut values between as high as 90% to as 

low as 50% for a number of wells without changes in active injection 

rates that justify such behavior. 

e. The extensive instantaneous dilution and the abnormal tracer velocity 

of 8900 ft/day for a tracer travelled across the field from Sherrod 

1012 on west side to Ruby 18 which exist east side outside tracer 

study area.  

f. The absence of a mathematical solution using dual porosity 

formulation to describe a tracer velocity of 8900 ft/day based on 

fracture properties alone. 

g. Simultaneous water breakthrough of a group of 6 wells in 1973 

without data showing an active injection system in the area.    

8. Tracers recovered explains no more than 10% by average of patterns‟ water 

production 

9. Tracer responses are highly affected by non-reservoir parameters like grid resolution, 

dilution, drainage area surrounding wells, and loss of injected water outside study 

area. These factors make fracture properties from tracers matches highly uncertain.   

10. Breakthrough time of tracer responses provide a solution for (f h) of the fracture 

layer. Peak of tracer responses are highly affected by dilution and are not a reliable 

measure of any fracture property.  
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11. Simultaneous breakthrough of 44 wells in 2002 is dominated by water flow in 

fracture system. This indicates very weak communication with matrix system which 

is most likely caused by high degree of fracture mineralization.  This is supported by: 

a. Comparison between group water production rate and different 

combinations of injection rates of active injectors. 

b. A history match of field water performance using a dual porosity 

model with matrix-fracture water saturation of 80%. 

12. Majority of pattern injectors, 6 out of 11, show that part of the injected water flow 

outside Sherrod Area toward east. Although tracers indicate small volumes, these 

volumes could be underestimated by excessive tracer dilution. 

13. Inversion modeling results show that north-east and west side of the field have very 

low pore volume compared to the south-east. North-east and west side of field have 

2% and 35% of the pore volume existing in the north-east, respectively.     

 

8.2 Recommendations on Reservoir Management Practices  

1. Injectors introduced in 2010 have either adverse or no effect on wells‟ oil rates and 

water-cuts. Thus, these wells add no value and should be shut-in 

2. If a decision was made to keep 2010 injectors active, evaluation of cyclic production / 

cyclic water-injection strategy should be made in an attempt to improve water 

injection efficiency while maintaining reservoir pressure. 
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8.3 Recommendations for Future Work  

1. Detailed inversion modeling studies to invert water-cuts of the 11 inverted 9-spot 

patterns under initial saturation uncertainty.   

2. Assess of multiple fracture realizations obtained from Method of Moments and 

moderate and high tracer recoveries maps 

3. Extending the work on the full field model by increasing vertical resolution. 

4. Investigate in depth grid orientation, different types of grids, and longitudinal and 

transverse dispersion on tracer solution.         
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APPENDIX A 

WELL BY WELL PRODUCTION AND INJECTION DATA 

 

Well by well production and injection data from July 1951 to March 2012 described in 

section 3.1 is included as a separate Microsoft Excel file.  
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APPENDIX B 

TRACER RESPONSE DATA (WITHOUT CORRECTION) 

 

Tracer concentration measurements described in section 3.3 is included as a separate 

Microsoft Excel file.  
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APPENDIX C 

TRACER RESPONSE DATA (WITH CORRECTION) 

 

Tracer concentration measurements after water recycling corrections described in section 

3.3 is included as a separate Microsoft Excel File.   
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APPENDIX D 

REPORTS OF AVAILABLE PRESSURE MEASURMENTS 

 

Available limited pressure measurements described in section 3.4 is included as a 

separate PDF file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

284 

 

 

APPENDIX E 

METHOD OF MOMENT ANALYSIS CALCUATIONS  

 

Method of Moments calculations described in section 4.3 is included as a separate 

Microsoft Excel file 
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APPENDIX F 

WATER RATE DECOMPOSITION OF A PATTERN  

 

Method of Moments calculations described in section is included as a separate Microsoft 

Excel file 
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APPENDIX G 

FULL FIELD ECLIPSE SIMULATION MODEL  

 

Full field simulation model described in section 5.6 is included as a separate Microsoft 

Excel file 

 


