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ABSTRACT 

 

A petrophysical study of the upper grainstone/packstone reservoir of the 

Oxfordian Smackover Formation in Little Cedar Creek Field was conducted, integrating 

core description, thin section analysis, log interpretation and cathodoluminescense to 

characterize controls on oil production in the upper reservoir. Little Cedar Creek Field 

produces approximately 2.4 million barrels (bbls) of oil annually and is currently in 

secondary recovery. By analyzing petrophysical characteristics such as porosity and pore 

type and correlating them to facies changes, better predictions can be made to optimize 

secondary recovery.  

The diagenetic history of the ooid-peloid grainstone records six separate events. 

Early marine phreatic dogtooth sparry rim cement helped create the framework that 

allowed it to maintain a good portion of its depositional porosity as it underwent 

subsequent compaction, dissolution and cementation events. The most common porosity 

types are vuggy, oomoldic and intercrystalline.  

The Smackover Formation ooid-peloid grainstone/packstone unit consists of 

multiple alternating ooid-peloid grainstone and peloid packstone/wackestone facies with 

varying porosity types. The most common types are oomoldic and vuggy with a range of 

preserved intergranular porosity. Porosity in the grainstone facies averages 17% and 

5.6% in the packstone/wackestone facies. The number of facies changes within the upper 

reservoir does not play a significant role in controlling well production. Facies changes 

are too thin to be identifiable utilizing well logs alone, although neutron and density well 
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logs do trace a close relationship between log values and core plug analysis values of 

porosity. Core reports indicate that porosity and permeability correlate strongly with 

pore size and facies. Areas with thicker accumulations of grainstone facies have higher 

porosity and permeability values and have higher oil production. Isopach maps of the 

cumulative grainstone facies indicate thick build-ups parallel to strike for the formation, 

consistent with a shoal environment. The strongest predictor of well production is the 

cumulative thickness of grainstone facies within the grainstone/packstone unit of the 

Smackover Formation. The grainstone is thickest in the southwest part of the field and 

pinches out updip in the northwest. Secondary recovery gas injection would be most 

effective if applied in the southwestern portion of the field because it could effectively 

sweep the oil updip towards the stratigraphic trap.  
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NOMENCLATURE 

 

LCCF Little Cedar Creek Field 

NPHI Neutron porosity log 

DPHI Density porosity log 
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mcf Thousand cubic feet 
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1. INTRODUCTION 

 

Little Cedar Creek Field (LCCF), in southwestern Alabama (Fig.1), was 

discovered in 1994 with the Hunt Oil Co. Cedar Creek Land and Timber Co. 30-1 #1 

well; commercial production began in November 1994 (Geological Survey of Alabama 

Oil and Gas Board, 2009). While operating, this well produced from the upper oolitic 

grainstone/packstone reservoir of the Smackover Formation. Little Cedar Creek was a 

one well field until Midroc Operating Company took over in 2000; since then, more than 

100 wells have been drilled by Midroc and other operators. On January 1, 2005, the 

western portion of Little Cedar Creek field was unitized, summing the production of all 

the wells in the nearly 6,000-acre area and distributing production based on a 

predetermined allocation to the multiple field operators. In 2006, Sklar Exploration 

Company LLC began drilling wells in LCCF. Today Midroc and Sklar are the main 

operators in this field. In 2007, Midroc began gas injection in two wells in the western, 

unitized portion of the field, within the upper grainstone reservoir (Geological Survey of 

Alabama Oil and Gas Board, 2009). A total of 15,675,944 Mcf of gas and 15,181,182 

bbls of oil and condensate were recovered from the field as of February 2012.  

The Jurassic Smackover Formation (Fig. 2) ranges from 58-117 ft (18-36 m) 

thick in LCCF (Mancini, 2008). There are two reservoirs separated by an impermeable 

layer of lime mudstone/peloidal wackestone. The lower reservoir is microbial 

boundstone that ranges from 0-36 ft (0-11 m) thick; the upper reservoir consists of 

oolitic grainstone ranging from 0-20 ft (0-6 m) thick (Mancini, 2008). Oil accumulated 
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in a stratigraphic trap (Fig. 3) of the Smackover Formation (Geological Survey of 

Alabama Oil and Gas Board, 2009). The seal of the lower microbially influenced 

reservoir is the overlying subtidal laminated peloidal mudstone/peloidal wackstone 

within the Smackover Formation (Mancini, 2006). The most likely seal for the upper 

grainstone reservoir is the argillaceous bed of the overlying Haynesville Formation. 

Although the base of the Haynesville Formation is the Buckner anhydrite, this unit is 

thin and discontinuous in the field area. Unlike production from other Smackover 

Formation fields, LCCF produces from rocks that are little dolomitized (Heydari and 

Baria, 2005). It is possible that oil was generated in situ, however, it is thought that the 

oil migrated from the type I kerogen of the Smackover Formation downdip, because of 

the thin reservoir beds and low organic carbon content of the Smackover Formation at 

Little Cedar Creek Field (Mancini et al., 2003; 2008).   

 

1.1 Objective 

 

Well logs, core description, and thin section analyses were integrated to 

determine the petrophysical characteristics of the upper grainstone. Qualities such as 

grain types and their size, porosity, and diagenetic history were described to better 

understand the link between oil production and petrophysical trends. This research 

provides insight into where gas injection would be most effective to maximize sweeping 

unrecovered hydrocarbon resources. 
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Figure 1. Location of Little Cedar Creek Field (adapted from Geological Survey of 
Alabama Oil and Gas Board, 2012).  
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Figure 2. Generalized stratigraphic column of Upper Triassic and Jurassic strata in Little 
Cedar Creek Field. The Smackover Formation is highlighted (adapted from Mancini et 

al., 2001; 2003). 
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Figure 3. Structure map of the top of the Smackover Grainstone Unit measured from sea 
level.  
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2. GEOLOGICAL SETTING  

 

2.1 Tectonics 

 

The Jurassic Smackover Formation was deposited in a series of rift basins 

created by Triassic rifting of Pangaea and the subsequent creation of the Gulf of Mexico 

and its passive margins. Little Cedar Creek Field’s geologic history is similar to that of 

many other basins formed during the early development of the Gulf of Mexico. The 

tectonic history is separated into two major events, continental rifting and continental 

drifting.  In the first stage, Late Triassic-Middle Jurassic northwest-southeast crustal 

stretching and rifting of the supercontinent Pangaea separated North and South America 

and Africa (Scott, 2010). This separation created a series of half-graben basins separated 

by arches in the Gulf of Mexico, including the Conecuh Ridge (Mancini, 2001). This 

rifting eventually led to marine flooding in the Middle Jurassic (Scott, 2010). The second 

stage is dominated by drifting of the continents away from each other, the subsidence of 

the newly formed oceanic crust, and the counter-clockwise rotation of the Yucatan 

peninsula by approximately 40 degrees (Pindell, 2010).  The Yucatan Peninsula ended 

its rotation during the Berriasian, but the Gulf of Mexico did not completely open and 

cease rotational spreading until the Valanginian, with the termination of northeast-

southwest basement-involved extension (Pindell, 2010).  
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2.2 Stratigraphy 

 

The Jurassic Norphlet Formation (Fig. 2) records the earliest deposition post-

widespread rifting of the southern North American continent in the and is dominated by 

conglomeratic alluvial fan deposits that grade downdip into finer grained distal fan and 

wadi systems, as well as local lake sediments deposited in a broad, desert-plain system 

(Mancini et al., 1985, 1999). Farther downdip, near the paleoshoreline to the south, the 

Norphlet contains large-scale eolian sandstone and nearshore marine deposits that were 

derived from the southern Appalachians in an arid climate (Mancini et al., 1985). 

Thermal subsidence, from the cooling new oceanic crust, produced a major transgressive 

sequence above the pre-existing desert plain, causing deposition of the Norphlet 

Formation’s thick eolian sands to backstep northward (Mancini, 2010). In some areas in 

the northeastern Gulf of Mexico the uppermost sands of the Norphlet have been 

reworked into clastic shoreface facies (Mancini, 2010).  The Oxfordian Smackover 

Formation is a carbonate ramp deposited conformably over the Norphlet Formation 

during this transgression and the subsequent regression. The Smackover Formation at 

LCCF (Fig. 4) consists of seven lithofacies formed during a 3rd-order depositional 

sequence. Listed from the base the seven lithofacies are: (1) laminated peloidal 

wackestone; (2) bioturbated peloidal packstone; (3) microbial boundstone; (4) laminated 

peloidal wackestone/packstone; (5) bioturbated peloidal packstone; (6) oolitic 

grainstone; and (7) a siliciclastic unit containing shale to conglomerate (Heydari and 

Baria, 2005). The laminated peloidal wackestone (1) and the bioturbated peloidal 
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packstone (2) often include evidence of microbial influence such as wavy laminations 

and a gradual transition into the boundstone above. The microbial boundstone (3) unit 

formed as a series of coalescing bioherms deposited in a subtidal environment on the 

inner ramp (Mancini et al., 2008). The laminated peloidal wackestone/packstone (4) 

records the deepest-water facies on the ramp and grades upward into bioturbated 

peloidal packstone (5), which was deposited as sea level began to fall. Oolitic grainstone 

(6) was deposited in a shallow subtidal to beach environment (Heydari and Baria, 2006). 

The grainstone is composed of alternating peloid packstone and peloid-ooid grainstone. 

The uppermost siliciclastic unit (7) commonly is comprised of conglomerate and locally 

includes red and green shale. This siliciclastic unit represents tidal flat deposition, 

including paleosols formed during prolonged subaerial exposure (Heydari and Baria, 

2005; Mancini et al., 2008). The Smackover Formation at Little Cedar Creek field most 

likely formed within three miles (5 km) of the paleoshoreline (Mancini et al., 2006). 
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Figure 4. Idealized stratigraphy of the seven units of the Smackover Formation in Little 
Cedar Creek Field, Conecuh County, Alabama. Scale at base of section is the Dunham 

Classification (1962) for carbonate rocks (M-mudstone, Cls- calcisiltstone, W-
wackestone, P- packstone, Gs-grainstone, B-boundstone) and the Wentworth size 

classification for siliciclastics (Sh-shale, Si-siltstone, FS-fine sandstone, MS-medium 
sandstone, CS- coarse sandstone, Cong-conglomerate). This study focuses on the yellow 

highlighted oolitic grainstone/packstone unit (Modified from Mancini et al., 2002).  
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3. METHODS 

 

Cores from 15 wells in LCCF were described at the Alabama Oil and Gas Board 

in Tuscaloosa, Alabama, in December 2011. Thin sections were made from the 

grainstone facies of each well; two thin sections from each well were made from plugs 

sampled in reservoir-quality grainstone facies (Table 1). In well 13472, four samples 

were collected from each grainstone facies in the upper reservoir. The available logs 

from the described wells and 20 additional wells were integrated to compare calculated 

log porosity to measured core porosity from core analyses obtained from the operators. 

Only wells with sufficient data to determine grainstone unit thickness were added, 

limiting the number of additional wells used in this study. All wells have corresponding 

core analysis reports. The wireline logs from each well (Table 2) also were used to 

construct the isopach maps.  
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Table 1. Data utilized in study. 
 

Well Permit # Descriptions Thin sections 
(depth) 

Logs 

11963 Grainstone Unit 11866.8 
11874.2  

GR, NPHI, DPHI 

13472 Grainstone Unit 11495.2 
11502.8 
11508.2 
11511.6 

GR, NPHI, DPHI 

13510 Grainstone Unit 11499.4 
11506.0 

GR, NPHI, DPHI 

13907 Grainstone Unit 11802.5 
11815.5 

GR, NPHI, DPHI 

14112 Grainstone Unit 11267.6 
11272.6 

GR, NPHI, DPHI 

14155 Grainstone Unit 11311.2 
11312.5 

GR, NPHI, DPHI 

14325 Grainstone Unit 11043.8 
11046.7 

GR, PHIE 

14646-B Grainstone Unit 11255.4 
11266.5 

- 

15000 Grainstone Unit 11121.6 
11125.5 

GR, NPHI, DPHI 

15159-B Grainstone Unit 11129.2 
11132.5 

GR, NPHI 

15165 Grainstone Unit 11502.4 
11519.5 

GR, NPHI, DPHI 

15263-B Full Smackover 11218.2 
11223.3 

- 

15496-B Grainstone Unit 11102.5 
11108.5 

GR, NPHI 

15614-B-1 Full Smackover -  
16115 Grainstone Unit 10795.2 - 
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Table 2. Additional wells with core and log data utilized. 
 

Permit # Logs Permit # Logs 

13176 GR, NPHI, DPHI 15357 GR, NPHI, DPHI 
13177 GR, NPHI, DPHI 15497 GR, NPHI, DPHI 
13438 GR, NPHI, DPHI 15713 GR, NPHI, DPHI 
13589 GR, NPHI, DPHZ   
13625 GR, NPHI, DPHI   

13729-B GR, NPHI, DPHI   
13746 GR, NPHI, DPHI   
13906 GR, NPHI, DPHI   
14114 GR, NPHI, DPHI   
14270 GR, NPHI, DPHI   

14301-B GR, NPHI, DPHI   
14309 GR, NPHI, DPHI   
14358 GR, NPHI, DPHI   
14360 GR, NPHI, DPHI   
14545 GR, NPHI, DPHI   
14692 GR, NPHI, DPHI   
14708 GR, NPHI, DPHI   

 

 

 

 

3.1 Petrography 

 

Twenty-nine thin sections from 14 wells were sampled in reservoir quality 

grainstone. Petrographic thin sections were described using Dunham’s Classification 

(1962). Descriptions include grain types and grain sizes, cements, diagenesis, and 

porosity estimation. Slides were impregnated with blue epoxy to highlight porosity.  
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3.1.1 Facies 

 

3.1.1.1 Grain Size, Type, and Arrangement 

 

Although interpreted as the ooid grainstone unit of the Smackover Formation 

(Heydari and Baria, 2005; Mancini et al., 2008), thin sections from this unit contain a 

significant amount of peloids, grapestones, intraclasts, and many samples also include a 

few siliciclastic grains. Of the 29 thin sections described from the “ooid grainstone” and 

classified according to the Dunham Classification (1962) two are peloid grainstone; two 

are peloid packstone/wackestone; seven are ooid grainstone; four are peloid-ooid 

grainstone; three are peloid-grapestone grainstone; and eleven are peloid-ooid-

grapestone grainstone (Fig. 5).  Peloids ranged in diameter from less than 0.05 mm to 1 

mm and ooids were ~1 mm (Fig. 5d). Grapestones often encased two or more ooids, 

peloids, or intraclasts. The grapestones range in size from less than 0.5 cm to greater 

than 2.5 cm (Fig. 5e). Milliolid foraminifera and small skeletal fragments, mostly 

bivalves and gastropods, also are common. A syntaxial overgrowth around a crinoid 

fragment occurs in one thin section (Fig. 6). Commonly, grains are heterogeneously 

arranged with no preferred grain orientations. However, thin horizontal laminations 

occur in four wells: 13472, 13510, 15263-B, and 15496-B. Cross bedding occurs in well 

15000 (Fig. 7). Grain size, type, and arrangement were wide-ranging and varied, even 

vertically in the same well only inches or feet apart. It was not uncommon to have two 

thin sections a few feet apart in a well, where one thin section is well sorted ooids and 
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peloids and one is poorly sorted, and composed of a combination of grapestones, peloids 

and ooids.   

Figure 5. Rock types in the Smackover Formation grainstone unit. The scale bar represents 1mm. Pink circles indicate 
ooids, green for grapestones, and white for peloids. (A) Peloid Grainstone from well 15496-B at 11,102.5 ft with 

moldic porosity (B) Peloid Packstone/Wackestone from well 15165 at 11,519.5 ft with primarily vuggy porosity (C) 
Ooid Grainstone from well 11963 at 11,866.8 ft with moldic porosity (D) Peloid Ooid Grainstone from well 15000 at 

11,125.5 ft with very little vuggy porosity (E) Peloid Grapestone Grainstone from well 14,112 at 11272.6 ft with 
abundant vuggy porosity (F) Peloid Ooid Grapestone Grainstone from well 15263-B at 11,218.2 ft with both vuggy 

and moldic porosity. (See appendix for locations of thin sections on the core descriptions). 
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Figure 6. Syntaxial overgrowth of crinoid grain in well 13472 at 11,508.5 ft. It was very 
rare to find grains that lacked rim cement. Scale bar represents 200 µm (See appendix 

for location of thin section on the core descriptions). 
 

 

Figure 7. Cross-laminae in well 15000 at 11,125.5 ft in core and in thin section. Both 
scale bars represent 1 cm (See appendix for location of thin section on the core 

descriptions). 
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3.1.1.2 Vertical and Lateral Variations  

 

Some degree of algal influence in the form of algal structures that commonly are 

wavy microbial laminations, microbial coatings, binding of grains, and grapestones 

occur in each of the thin sections (Fig. 8).  Microbial coating and binding of the grains 

occurs in wells 13510 and 13472, and seven wells have algal coatings on grains and 

contain aggregated grapestones bound with algal material (Fig. 8). The remaining four 

wells contain small grapestones. Large (up to about 0.5mm) vugs formed by preferential 

dissolution within most algal grapestones. In all thin sections, the more algal influence 

there was, the darker the matrix. Therefore, grainstone without significant algal 

influence are lighter colored buff to grey. Algal influence was more pronounced in the 

southwestern portion of the field. For example, in well 13510 most grains are 

encompassed by many large grapestones, the microbial binding is so extensive that the 

overall color of the rock is darker than most grainstone samples (Fig. 9). In the lower 

two grainstone facies of well 13472 there is extensive microbial binding (Fig. 10). 

 Each grainstone facies in well 13472 differs clearly from the others on a 

continuum of decreasing algal content and increasing ooid content (Fig. 10). The sample 

at 11,511.6 ft features mostly microbially bound grains. This sample is nearly devoid of 

ooids, the ooids that are present were only distinguishable by the residual circular rim 

cement (Fig. 10d). The sample at 11,508.5 ft was not as pervasively influenced by 

microbial activity but has a wavy texture from the algal binding material. Grapestones 

were more discernable from other grains; however, there were few ooids, and they are 



 

17 

 

only recognizable from the residual circular rim cement (Fig. 10c). The sample at 

11,502.8 ft has a clear distinction between the algally influenced grey-brownish patches 

and the buff, more ooid-rich, grainstone. The grapestones were bound by algal material 

and ranged from about 1.0 mm across to about 1.0 cm. Ooid content is estimated to be 

approximately 10%, still only discernable from the residual rim cement and located 

mainly in the buff patches (Fig. 10b). Lastly, the sample at 11,495.2 ft is buff color with 

fewer and smaller algal grapestones, and there is a significant increase in ooid content 

(about 25% ooid grains). The ooid grains are in variable stages of dissolution and 

recrystallization (Fig. 10a); this uppermost grainstone facies had the most visible 

porosity (20% estimated and 20.3% core plug analysis porosity), mainly in molds and 

small vugs.   
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Figure 8. Distribution of algal influence in upper grainstone reservoir of the Smackover 
Formation. Significant algal influence includes: thick mat-like microbial coating and 

binding of the grains, peloids and ooids, referred to as grapestones (Winland and 
Matthews, 1974), and wavy laminations potentially caused by microbial activity. Some 

algal influence includes fewer algal coatings and grapestones and minor influence 
includes the samples with very few grapestones or algal coatings. Large micritic masses 

occur in four cores. 
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Figure 9. Grapestones encompassing many grains in well 13510 at 11506.0 ft. Scale bar 
represents 1 mm. (See appendix for location of thin sections on the core descriptions). 
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Figure 10. Photomicrographs of grainstone facies in the Smackover Formation 
grainstone unit in well 13472; scale bar represents 1 mm: (A) Top grainstone facies at 

11,495.ft with mainly moldic porosity and few vugs (B) upper middle grainstone facies 
at 11,502.8 ft with mainly vuggy porosity (C) lower middle grainstone facies at 11,508.5 
ft with mainly interparticle porosity (D) Base grainstone facies at 11,511.6 ft with small 
vuggy porosity and intergranular porosity (See appendix for location of thin sections on 

the core descriptions). 
 

3.1.2 Porosity 

 

Diagenetic porosity in the grainstone facies is primarily moldic, vuggy and 

enhanced interparticle. The best porosity occurs in samples with a combination of two or 

all three types of porosity.  Many samples also retain depositional intergranular porosity. 
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The most common combinations were oomoldic and vuggy and oomoldic and 

interparticle. Of the twelve samples with these types of porosity, all had porosity values 

from plugs and thin section estimates above or near 20%, compared to the average 

grainstone porosity of 17%. Additionally, the five samples with all three pore types also 

had higher than average porosity. The samples with the lowest porosities are more 

recrystallized, have more cement in the pores, or they contained only oomoldic porosity.  

 

3.1.2.1 Diagenesis and Paragenetic History 

 

The paragenetic history of the Smackover Formation grainstone unit, determined by 

thin section petrography and cathodoluminescence, indicates there were six diagenetic 

events (Table 3, Fig. 11). Not all diagenetic events occur in all thin sections, and the 

degree of diagenesis varies among samples. Shortly after deposition, clear dogtooth 

sparry calcite (1) formed an isopachous rim cement that completely surrounded each 

grain, suggesting the rock had not yet undergone significant compaction. This cement 

formed in a phreatic environment. Commonly, just this rim cement remains in samples 

with good moldic porosity. This early rim cement created the framework for the 

grainstone and aided retention of depositional porosity. Although it mainly aided 

porosity, this rim cement decreased interparticle pore space to varying degrees. 

Dissolution (2), the next diagenetic event, dissolved most ooids, leaving few with 

recognizable internal structure. Many ooids and peloids were completely dissolved, 

leaving only the rim cement (Fig. 12). This dissolution event was widespread, as it 
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occurs in samples from every well. At Little Cedar Creek Field this dissolution event 

most likely occurred as undersaturated fresh water passed through the rock in the 

meteoric phreatic environment while the Smackover Formation was subareally exposed 

(Heydari and Baria, 2005).  

Next, calcite precipitated (3) as a fine layer of microspary calcite in pore throats (Fig. 

13). The microsparry calcite cement closed important pore spaces and was the most 

destructive phase of diagenesis. This cement is brightly cathodoluminescent, indicating a 

Mn+ rich water source indicative of the meteoric environment (Meyers, 1974 and 

Meyers and Lohmann, 1985).  Well #16115 was the only well with no visible porosity; 

all its pore space was occluded during the microsparry calcite cementation phase, as 

indicated by the lack of internal structure in any of the ooid grains. 

A minor dissolution (4) episode formed large vugs that cut across previous cements 

and dissolved some of the microsparry calcite (Fig. 14).  This second dissolution event 

opened up larger voids and created increased pathways for fluid flow. It was not as 

pervasive as the first dissolution event, appearing to only enlarge previous voids rather 

than creating a substantial amount of new voids. In rocks that retained oomoldic porosity 

from the first dissolution event, the second phase of dissolution connected molds into 

vugs and enhanced interparticle porosity. New blocky calcite crystals (5) formed in these 

larger voids and smaller calcite crystals formed in the voids between grains or in molds. 

The large clear calcite crystals are as long as 2.5 cm in core. Cathodoluminescense of the 

larger crystals shows some zones (Fig. 15), that could record changes in pore water 

chemistry and temperature (Heydari and Moore, 1993). These large blocky calcite 
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crystals have bright cathodoluminescence indicating that we waters from which they 

were precipitated contained a significant amount of Mn+. Due to their large size, they do 

not fill pore throats, but preferentially occur in larger molds, vugs and fractures. 

Lastly, gypsum (6) occurs as smaller crystals in pore spaces and large crystals that 

envelope and eventually replace grains and voids (Fig. 11F). The largest gypsum crystals 

occur primarily in the northern part of the field. Gypsum generally forms at depths above 

4,000 ft (Murray, 1964) and most likely formed in a shallow burial environment at 

LCCF when the Haynesville anhydrite was forming in an arid environment (Ridgway, 

2010). The later phases of large blocky calcite and gypsum crystal growth were not as 

pervasive or destructive as earlier cementation events.  
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Table 3. Summary of diagenetic events and relative timing 

 

Diagenetic Event Plain Light Characteristics Cathodoluminescent (CL) 
Characteristics 

Diagenetic 
Environment 

Interpretation 

(1) Dogtooth 
calcite rim cement 

Light yellow to clear bladed calcite 
crystals encircling grains 

Dark brown, color makes it difficult 
to discriminate between initial 
micrite cement, bladed shape 

Marine Phreatic The cement completely surrounds each grain, 
suggesting that it occurred early after deposition. 

This cement builds the framework that helps 
maintain depositional porosity. 

(2) Dissolution  No Light Meteoric Vadose This dissolution was widespread and created the 
abundant moldic porosity. 

(3) Microsparry 
calcite cement 

Often occludes pores and pore throats. 
Grows between, around, and in grains. 
Fine clear to yellowish calcite crystals 

Dull dark orange to bright orange 
luminescence. Brighter 

luminescence often surrounds 
grains whereas darker 

luminescence fills voids 

Meteoric Phreatic Most destructive cement. Bright luminecense 
indicates  Mn>> Fe. 

(4) Dissolution  No Light Burial Smaller dissolution opened some pore spaces that 
had been occluded during the microspary calcite 
stage as well as creating larger vugs and molds. 

(5) Blocky Calcite 
cement 

Opaque light yellow blocky calcite 
crystals that form in larger voids 

between and in grains 

Bright orange with zonations in 
medium and large crystals. 

Burial The zonations in the CL record changing water 
chemistry and temperatures in pore spaces. 

(6) Gypsum crystal 
growth 

Light yellowish to clear medium to 
large crystals with two distinct 

cleavage planes. Occurs in voids or 
unimpeded by grain or cement 

boundaries 

Red orange to bright orange. 
Zonation and gradational changes 

in color 

Burial Large gypsum laths replace and obscure all other 
minerals and grains that they encompass, 

indicating that this was the last major diagenetic 
event. 
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Figure 11. Paragenetic Sequence: (A) dogtooth calcite cement in well 13510 at 11,506.0 ft depth (Plain light) (B) dissolution 
in well 14325 at 11,046.7 ft depth (plain light) (C) microsparry calcite cement in well 14112 at 11,272.6 ft depth (D) small 

dissolution event in well 14112 at 11,272.6 ft (30 sec) (E) blocky calcite formation in well 14325 at 11,043.8 ft depth (25 sec) 
crystal labeled “A” (F) gypsum formation in well 14325 at 11,043.8 ft depth (plain light) crystal labeled “B”. (See appendix 

for location of thin sections on the core descriptions). 
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Figure 12. Thin section photo of partially dissolved ooid grains leaving molds and 

internal concentric rings, Well 13510, 11,499.2 ft. Scale bar is 1 mm. (See appendix for 
location of thin sections on the core descriptions). 

 

 
Figure 13. Thin layer of microsparry calcite (bright orange cathodoluminescense) lining 
pore space and along pore throats in Well 14325, 11,043.8 ft and 25 secs exposure. Scale 

bar is 500 µm. (See appendix for location of thin sections on the core descriptions). 
 



 

27 

 

 
Figure 14. Arrow indicates dissolution path through microsparry calcite Well 14325, 
11,043.8 ft. There is no microsparry calcite growth into path which implies that this 

dissolution event occurred after microsparry calcite cementation. Scale bar is 200 µm. 
(See appendix for location of thin sections on the core descriptions). 

 

Figure 15. Cathodoluminescent image of blocky calcite crystal in pore space of Well 
14646-B, 11,266.5 ft and 20 sec exposure showing at least two different stages of growth 

as indicated by two distinct zones. The scale bar is 500 µm. (See appendix for location 
of thin sections on the core descriptions). 
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3.2 Core: Description and Plug Analysis 

 

Cores from fifteen wells in the Little Cedar Creek Field were described using a 

hand-lense and microscope at the Alabama Oil and Gas board in Tuscaloosa, Alabama, 

in December of 2011. Thirteen of the fifteen cores described only the grainstone unit of 

the Smackover Formation, identifying the different rock types within this unit. The rock 

types were determined by grain size and matrix/grain ratio changes of intervals greater 

than one inch (2.5 cm) indicated by a change in Dunham (1962) classification. A 

thickness of more than six inches (15 cm) indicates a ‘facies change’ and is identified on 

the descriptions with its separate Dunham classification as a new rock type interval (See 

appendix for core descriptions). Six inches was chosen because the rock type was 

usually not fully developed in thinner intervals due to the often gradational changes in 

facies. Core plug analysis reports were available for all wells.   

 

3.2.1 Facies 

 

3.2.1.1 Vertical and Lateral Variation 

 

Rapid changes in lithology occur only inches apart in the cores. Transitions from 

ooid grainstone to peloidal packstone/wackestone range from very abrupt with obvious 

color changes (Appendix A- Well 15000) to gradational (Appendix A- Well 13907).  It 

is very common for 1-3 in (2.5-7.6 cm) thick intervals of differing rock types to be 
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intimately interbedded. In the core descriptions, smaller (less than 6 in) gradational beds 

within a facies are noted in the facies profile but without separation into a new facies 

unit. Wells in the southwestern part of the field have more facies changes (Fig. 15). 

Wells 11963 and 13907 had four and five distinct grainstone facies, respectively, the 

most observed in the wells described. Surrounding wells averaged just over two 

grainstone facies in the Smackover Formation grainstone/packstone unit. The northern 

wells had one to two grainstone facies per well. On average, the grainstone is lighter in 

color and contains more ooid grains up section within the unit. Cores from wells 13907, 

14155, and 15000 have small-scale cross-bedding (Fig. 6) and wells 13472 and 16115 

have distinct horizontal laminations. Most wells do not have any ordered depositional 

texture or have light wavy laminations.  

Algal influence on deposition of the upper peloid-ooid grainstone/packstone is 

visible in cores 11963, 13472, 13907, and 14155 (Fig. 7). All four wells are located in 

the southwestern part of the field.  Algal influence includes large grapestones, algal 

coatings on grains, and irregular micrite masses averaging 0.5-1 in (1.3-2.5 cm) 

diameter. Algal influence diminished up section in both core and thin section. For 

example, in well 11963, the bottom two of four grainstone facies have large irregular 

micrite masses that do not occur in the upper two grainstone beds. A sample of one of 

the upper ooid grainstone facies did not indicate any algal influence, whereas a second 

thin section in one of the lower peloid-ooid grainstone records algal activity; this is a 

common trend in the wells. In well 13472, all samples, except the uppermost ooid 
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grainstone facies, had distinct algal micrite masses visible in core and thin sections.  

Wells 13907 and 14155 had algal influence in all grainstone facies.  

 

3.2.2 Porosity 

 

Intergranular, moldic, and vuggy porosity are common visible porosity types in 

the cores of the peloid-ooid grainstone/packstone unit of the Smackover Formation. 

Molds are formed by dissolution of the ooid and peloid grains, whereas the grapestones 

grains were dissolved to form vugs. Some vugs are associated with stylolites occurring 

within the peloid-ooid grainstone/packstone unit. The peloidal packstone/wackestone 

facies has very little visible porosity. Fracture porosity formed locally, and many 

fractures are filled with large, blocky calcite crystals.  Fractures are not a significant 

form of porosity in the grainstone unit of the Smackover Formation. The visual estimates 

of porosity from core descriptions are similar to the measured core values for porosity. 

Thin section estimates were quantitatively consistent with the core plug analysis, except 

when more than 25% porosity was estimated visually (Table 4). The grainstone facies 

has distinctly higher values for both porosity and permeability than the 

packstone/wackestone facies. The core plugs indicate the porosity averages 17% in the 

grainstone and 5.6% in the wackestone. There is a strong correlation between the 

described facies and porosity values from the core plug analysis (Fig. 16). 

Crossplots from core plug analysis indicate that pore types also are significant 

porosity and permeability indicators (Appendix B).  Moldic and vuggy porosity were the 
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two main types of porosity reported in the core analysis. Although the reports do not 

note intergranular porosity, all thin section samples with the exception of two retained 

significant intergranular porosity. Core plugs with vuggy pores had an average porosity 

of approximately 17.3 % and cores with moldic porosity averaged 16.3%.  The 

permeabilities are varied and do not indicate higher values associated with either the 

moldic or vuggy porosity type. The size of the pores has a strong impact on porosity and 

permeability with smaller pores having worse porosity and permeability values (Fig. 17).  

Porosity type is not evenly distributed; wells with primarily moldic type porosity cluster 

in the southwestern-central part of the field. The concentration of moldic porosity occurs 

where unit thickness is greater than 10 ft (Fig. 18) this is likely because fresh, 

undersaturated waters move more easily through the ooid-rich facies.  
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Table 4. Estimated porosity from thin sections and reported porosity from core analysis 
 

Well Estimated Thin Section PHI Core report PHI 
Well 11963  

11866.8 ft 25% 19.9% 
11874.2 ft (11874.5 ft Core sample depth) 15 13.7  

Well 13472 
11495.2 ft (11495.1) 15-20 20.3  
11502.8 ft (11502.6) 15 16.8 

11508.5 ft (11508.35) 10-15 12.1  
11511.6 ft  (11511.55) 5 0.1 

Well 13510  
11499.4 ft (11499.2) 35 22.2 
11506 ft (11505.7) 25 16.1 

Well 13907  
11802.5 ft (11802.15) 20-25 11.2 
11815.5 ft (11815.7) 5 2.8 

Well 14112  
11267.6 ft (11267.95) 35 28.1 
11272.6 ft (11272.8) 30 24.4 

Well 14155 
11311.2 ft (11311.1) 25 23.6 

11312.5 ft (11312.75) 30 19.5 
Well 14325  

11043.8 ft (11043.7) 40/15 21.9 
11046.7 ft (11046.5) 35 27.7 

Well 14646-B   
11255.4 ft (11255.7) 35 25.4 

11266.5 ft (11266.35) 5/20 3 
Well 15000  

11121.6 ft (11121.7) 35 25.4 
11125.5 ft (11125.85) 5/20 19.1 

Well 15159-B   
11129.2 ft  35 29.6 

11132.5 ft (11132.9) 35 25.1 
Well 15165  

11502.4 ft (11502.55) 1 1.4 
11519.5 ft (11519.3) 10-15 13.3 

Well 15263-B   
11218.2 ft 30 19.5 

11223.3 ft (11223.2) 35 24.7 
Well 15496-B  

11102.5 ft 30 
Depths did not match  11108.5 ft 35 

Well 16115 
10795.2 ft (10795.5) 0-1 5 
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Figure 16. Isopach map of the upper grainstone/packstone unit of the Smackover 
Formation. The colored wheels indicate the number of grainstone facies in the 

grainstone/packstone unit in cores by the number of colors that appear in the wheels. 
There are one to five grainstone facies per well. 
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Figure 17. Porosity vs. permeability plot by facies from well 14646-B, illustrating that 
porosity and permeability are very closely related to facies. The grainstone facies 

consistently has higher permeability and porosity values whereas the wackestone facies 
has consistently low permeability and porosity values.  
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Figure 18. Porosity vs. permeability plot from various pore sizes within oomoldic 
porosity type reported from the core analysis reports. Although the main porosity type is 

oomoldic in each sample plotted, the size of the molds affects the porosity and 
permeability values. Larger pores correspond with higher permeability values. As pore 

size increases the clusters increase in size as a response to a larger range of porosities. It 
is likely possible that the small oomoldic and very small oomoldic porosities include 

primarily molds of peloids, however, the core analyses specifically reported oomoldic.  
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Figure 19. Visible porosity type superimposed on the Smackover Formation total grainstone unit isopach. Core reports did 
not include intergranular. Moldic porosity occurs at a unit thickness above 12 ft. While vuggy and intergraular pores are 

distributed throughout the field. The data control points represent wells for which there are total grainstone thickness values.  
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3.3 Log Analysis 

 

3.3.1 Correlation Between Well Logs and Facies  

 

Logs from all described wells were analyzed to determine if a correlation exists 

between the grainstone and packstone/wackestone facies and the log responses. 

Inspection of the logs indicates no consistent pattern for identifying facies in wells 

utilizing logs alone. For this analysis, well logs were correlated by matching 

grainstone/packstone unit tops picked on logs with the tops of the described wells. The 

gamma ray values change inconsistently across facies boundaries; for example, in well 

13510, the gamma ray log shows little change in value in the Smackover Formation 

grainstone/packstone unit (Fig. 20). In well 13472 the gamma ray values are more 

variable (Fig. 21). There is no common pattern in the gamma ray values within 

grainstone facies from well to well, making a facies determination utilizing only the 

gamma ray curves inconclusive. 

Neutron porosity (NPHI) and density porosity (DPHI) logs have a greater 

resolution than the gamma ray logs and show more variation in the grainstone/packstone 

unit. Typically the NPHI and DPHI logs track each other closely (Fig. 22). When 

compared to the core description, the log responses are minimal and appear to lag the 

facies changes by inches. Unfortunately, since many transitions between facies are 

gradual and are only a few inches thick as well as varying significantly between wells, it 

is difficult to interpret where a facies would start and end with logs alone (Fig. 20). 
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Other logs such as the spontaneous potential (SP) or caliper (CALI) logs also did not 

indicate a useful pattern in delineating facies in the grainstone unit (Figs. 20 and 21).  

 

3.3.2 Log Porosity Correlation to Core Reports and Thin Sections 

 

The logs were analyzed and compared to measured porosity from core analysis 

as well as with the estimated porosity from thin sections. Synthetic logs were created 

utilizing depth and core porosity data (Fig. 23). The core log was then depth shifted to 

better match with the porosity log values. The three porosity values often correlated 

closely. The core samples were taken in intervals of less than 6 in, which is also the 

vertical resolution of DPHI logs after processing. NPHI resolution can be even finer. 

However, because of the slight variations, the small and rapid facies changes would be 

difficult to accurately interpret and map field wide utilizing logs alone (Figs. 23 and 24) 
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Figure 20. Logs from well 13510 with core description. Even with a reduced gamma ray 
scale of 40 to 100 GAPI there are no obvious deviations indicating a change associated 
with facies. The gamma ray log does not have the resolution to differentiate the rapid 
facies changes in the grainstone/packstone unit. The porosity logs generally record 

higher values in the grainstone facies. However, with small facies changes (such as the 
top ooid grainstones in well 13510) even utilizing porosity logs as a facies indicator 

becomes inconsistant. 
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Figure 21. Well logs from 13472 with core description. Although the gamma ray shows 
more deflection than in well 13510, it does not correlate with the facies changes. The 
porosity logs do record higher values that initially correspond with upper grainstone 

facies. However, farther down section where the changes are more rapid, the log 
responses do not match the facies type.  
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Figure 22.  Cross plot of neutron and density porosity log values in the 
grainstone/packstone unit of Well 11963. The two logs have similar values, varying only 

slightly. With the addition of a trend line it is apparent that there is a small tendency 
towards a higher DPHI. This is a common trend in all described wells. The higher DPHI 

is likely due to the influence of the less dense siliciclastic grains affecting the density 
readings on a limestone scale. Also, NPHI logs are more accurate at lower porosities, 
which would account for why the NPHI values are closer the DPHI values as porosity 

decreases.  
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Figure 23. Well 14155 logs with synthetic core porosity trace. The NPHI and DPHI 
follow core porosity with some variation. The logs commonly overestimate the porosity 

rather than underestimate porosity. This is likely due to the resolution rather than an 
effect of lithology. 
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Figure 24. Stratigraphic dip cross-section A-A’(location on Fig. 1) illustrating the difficulty of delineating facies with logs 
alone.  
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Figure 25. Stratigraphic strike cross-section B-B’ (location on Fig. 1) illustrating not only the difficulty of using solely logs to 
interpret facies, but the number of facies changes throughout the field.  
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4. DISCUSSION 

 

4.1 Production  

 

Oil production continues to increase in LCCF since the field came on production 

in November 1994. The field operated with one well until 2000; today there are about 

100 producing wells. In 2007, operators began gas injection in two wells in the 

southwest part of the field with an additional well converted to gas injection in mid 2011 

(Fig. 1). The gas injection had a significant impact on the surrounding wells. In well 

13907, production went from 14,504 bbls in 2007 to 31,177 bbls in 2009. The field has 

steadily been increasing oil production, producing over 2.4 million bbls per year for the 

past four years. Gas production continues to increase as well; in 2011 the field produced 

over 3.2 million mcf. All production values are from the Alabama Oil and Gas Board 

online database collected summer 2012.   

The last three years of oil production values vary significantly across the field 

between wells in close proximity (Fig. 26). Since production is commingled in most 

wells it is difficult to accurately determine which reservoir is contributing the most. A 

select few wells produce solely from the grainstone reservoir; of the wells described, 

eight wells (11963, 13472, 13907, 14155, 14646-B, 15000, 15165, and 15614-B-1) 

report production only from the grainstone. Five additional wells (13176, 13177, 14358, 

14270, and 14692) with production only from the grainstone reservoir were also utilized 

(Fig. 27). 
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Figure 26. First three month cumulative oil production from selected wells. Production 
is extremely varied across the field. Production includes commingled wells.  
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Figure 27. First three month cumulative oil production from wells that only produce 
from the upper reservoir.  
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4.1.1 Correlation Between Oil Production and Facies Changes 

 

There is no correlation between the number of facies in core and the production 

rates of the well (Fig. 28). For example, wells 13472 and 14155 both have similar 

production values for the first three months of production however well 13472 has five 

separate grainstone facies, and well 14155 has only a single grainstone facies, both have 

approximately 20 feet of cumulative grainstone facies thickness. Also, wells with the 

same number of grainstone facies can have varying production values. For example 

wells 14155 and 15165 both have a single grainstone facies but produce at very different 

rates; well 14155 has high production values, whereas well 15165 has much poorer 

production.  

The significant differences between the singular grainstone facies of wells 14155 

and 15165 are the porosity characteristics and the thickness of grainstone facies within 

the grainstone unit. Thin sections and core reports agree that well 14155 has higher 

grainstone porosity, above 25% in some areas. Well 15165, however, has small vuggy 

porosity that averages only 5%. Well 14155 also has nearly ten times the amount of 

grainstone than occurs in well 15165 (Fig. 29).  
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Figure 28. First three month cumulative oil production in wells with described facies 
changes that are reported to produce only from the upper reservoir. There is no clear 
trend between the number of facies changes and production values. 
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Figure 29. First three month cumulative oil production from wells that produce only 
from the upper grainstone/packstone reservoir superimposed on the cumulative 

grainstone facies isopach. Production increases to the southwest where the grainstone 
facies is thickest. Data control points are wells that have values from cumulative 

grainstone facies thickness. 
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4.1.2 Correlation Between Oil Production and Porosity Type 

 

The effect that porosity type has on production is difficult to determine with the 

wells producing solely from the grainstone reservoir; ten of the twelve wells mainly have 

vuggy porosity and their first three month cumulative production varies from 1,549 bbls 

to 22,877 bbls (Fig. 30). The two wells that produce mainly from moldic porosity, 13176 

and 13472, produced 9,967 and 18,192 bbls of oil over the first three months on 

production respectively. Utilizing the porosity and permeability crossplots from core 

plug analysis and separating porosity type into pore sizes indicates that larger pores have 

better porosity values and better permeability values (Fig.17). Production may not be 

significantly affected by distinguishing between moldic and vuggy porosity because by 

nature they are both voids that may or may not be interconnected and therefore behave 

very similarly. In a permeability and porosity crossplot it is clear that these types of 

porosities have similar values. Trend lines are steeper in moldic porosity types indicating 

that moldic porosity/permeability values are slightly more variable (Fig. 31). The value 

of average grainstone porosity does not have a strong influence on production (Fig. 32).  
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Figure 30. First three month cumulative oil production values from wells that produce 
only from the upper grainstone/packstone reservoir. The shape of the production bubbles 

indicates the primary type of porosity. Porosity types from core reports were used in 
order to consistantly define the perforate intervals. The data control points are wells that 

have values from cumulative grainstone facies thickness. 
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Figure 31. The porosity and permeability crossplot indicates similar ranges for both 
moldic and vuggy pores. Data points were taken from core analysis reports from a 

representative selection of wells in the grainstone/packstone unit. Trend lines indicate 
that moldic pore types are slightly more variable than vuggy pores.   
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Figure 32. The average porosity of the perforated interval ranges from 1.3% in well 
15165 to 27.2 % in well 15000. The average porosity values do not indicate any trend in 

production.  
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4.1.3 Correlation Between Oil Production and Grainstone Facies Thickness 

 

There is a strong correlation in wells with thicker intervals of grainstone facies 

within the grainstone/packstone unit and higher production values (Fig. 33 and 34). This 

trend is consistent regardless of changing porosity types. The primary oomoldic or 

vuggy porosity types within the upper reservoir both behave similarly and do not appear 

to affect production independently, the most important factor in predicting production is 

cumulative grainstone facies thickness. Packstone/wackestone facies within the 

grainstone unit were subtracted from the unit thickness to obtain the cumulative 

grainstone thickness. The wells with the thicker cumulative grainstone facies are located 

in the southwest part of the field and follow an elongate trend, which extends into the 

south central portion of the field. The farthest southwest wells have the highest 

production values. This elongate trend is consistent with a shoal environment in which 

the thicker build ups are exposed to higher energy waters, the higher energy waters deter 

microbial growth and increase ooid content allowing for the accumulation of well sorted 

ooid grainstones (Mancini, personal correspondence). The grainstones have consistently 

higher porosity and permeability (Fig. 35).   

Although the ooid grainstone/packstone unit isopach map indicates that the unit 

thickens to the southwest, multiple dry holes were drilled outside of the field along the 

strike of the trend (Fig. 36). No data were available to estimate the thickness of their 

grainstone/packstone units. The peloid-ooid grainstones were deposited in a formed in a 

relatively lower energy shoal environment (Benson, 1988). A discontinuous elongate 
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shoal form could mean that the grainstone shoals terminated at the edge of the current 

field boundary due to natural depositional controls such as an energy deficient restricted 

environment (Ridgway, 2010). Since extending the field along trend has proven 

unsuccessful, secondary recovery has become necessary.   
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Figure 33. There is a direct correlation between three year cumulative oil production 
and perforated grainstone facies thickness. Wells used to create this chart were described 

from this study with the addition of wells 13176 and 14358 from Ridgway (2010). 
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Figure 34. An even closer correlation is seen with the cumulative amount of grainstone 
facies and the production values from wells that produce from the upper reservoir. Wells 
used to create this chart were described from this study with the addition of wells 13176 

and 14358 from Ridgway (2010). 
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Figure 35. Map of average grainstone unit permeability from core analysis. Areas of 
higher permeability are in areas of greater grainstone facies accumulation (Fig. 29).  
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Figure 36. Location of dry wells with respect to Little Cedar Creek Field. It is possible 
that the thick grainstone facies trend within the grainstone/packstone unit did not extend 

far past the last producing grainstone well (11963) due to the termination of the ooid 
shoals at the field boundary leading to the dry holes past the boundary.   
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4.1.4 Implications of Gas Injection for Oil Recovery  

 

Currently there are three natural gas injection wells located in the southwestern 

part of the field (Fig. 1). The first two were converted from production in September 

2007. At that time, well 12872 was producing approximately 20,000 bbls annually and 

well 13301 was producing more than 30,000 bbls annually. Both were producing the 

month before they were converted in September 2007.  These wells were initially 

converted for pressure maintenance. In mid-2012 well 13583 also was converted to gas 

injection. Production in this well was declining and it was producing approximately 

3,200-3,400 bbls a year for the three years prior to being converted to injection. It 

contains less than 6 ft of grainstone facies.  

The effects of the injections are apparent in the surrounding wells with thicker 

grainstone facies. In well 13176 production had been steadily decreasing, then five 

months after injection began oil production picked up and in the first year production 

doubled and had more than quadrupled the pre-injection production by 2009. This well 

likely saw such a strong effect because it is situated between the two injectors. This is 

similar of well 13177, also located between the two injecting wells. Other nearby wells 

like 11963 and 13907 have seen a strong positive effect as well. However, nearby well 

13438 contains only 2 ft of grainstone facies and has been following a steady decline in 

production regardless of its proximity to the injecting wells. While it appears that 

grainstone facies thickness does affect the efficacy of injection, it remains difficult to 
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predict the radius of influence that an injection well will have in these vuggy and moldic 

carbonate reservoirs.   

Since LCCF is a petrophysically heterogeneous field due to the multiple facies 

and differential diagensis, efforts of secondary recovery would likely be maximized by 

injecting gas into the thicker, generally more porous and permeable grainstones in the 

southwest sweeping the oil towards the northern portion of field where the grainstone is 

thin or non-existent. This not only would maximize overall reservoir recovery since this 

strategy begins at one end of the field and moves laterally, it would allow for increased 

oil production from current wells without having to drill new injectors or producers.  

 

4.2 Modified Ahr Porosity Type 

 

As a tool for mapping by porosity type, each thin section was classified (Fig. 37) 

using the modified Ahr porosity classification; (Ahr, 2008). The pore type in each 

sample was classified as a hybrid 1-B.  Hybrid 1-B porosity occurs when the diagenetic 

features such as dissolution or recrystallization predominantly affect porosity but the 

original depositional texture is preserved. All samples have mainly moldic and vuggy 

porosity with interparticle porosity and a range of cementation, from none to complete. 

Molds range from less than 0.1 mm to slightly larger than 1 mm. Vugs range from 

approximately 0.1 mm to about 1 cm across. Primarily moldic porosity is specific to the 

thicker accumulations of grainstone because molds formed preferentially in the ooids 

and there are more ooids in the wells with thicker accumulations of grainstone 
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(Appendix A). All samples have well preserved depositional textures; in most samples of 

the ooid grainstone unit, the internal radial and concentric structure of the ooids can still 

be identified even when most of ooid is dissolved. The depositional intergranular 

porosity commonly is not well preserved being filled by rim cement, or recrystallized 

microspary calcite. Larger pores are preferable to maintain good porosity, regardless of 

moldic, vuggy, or interparticle pore type. The progression of significant diagenesis with 

preserved original depositional texture is what distinguishes hybrid 1-B porosity. The 

goal of this genetic pore typing is to map areas of a field that have different pore types to 

aid in predicting other characteristics such as oil production. While this may be helpful 

in fields with a range of porosity types, all samples from across LCCF have similar 

porosity types and therefore would not benefit from mapping according to genetic pore 

type.   
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Figure 37. The modified Ahr (2008) porosity classification simplifies porosity types into 
three main categories, depositional, diagenetic, and fracture. Rocks can further be 

classified by hybrid type depending on the degree of influence the end members have on 
the main porosity characteristics. All thin section samples from the upper grainstone 

reservoir are classified as hybrid 1-B.   
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5. CONCLUSIONS 

 

Petrophysical characteristics of the Smackover Formation peloid-ooid 

grainstone/packstone unit at Little Cedar Creek Field, Conecuh County, Alabama, are 

highly variable and complex. The peloid-ooid grainstone/packestone unit often consists 

of multiple rapid facies changes that cannot be laterally corrolated. The lack of 

continuity does not allow for the prediction of flow paths in the grainstone/packstone 

unit utilizing these separate rock types. However, oil production shows that the most 

significant control on production is cumulative grainstone facies thickness and that it is 

not affected by the number of facies changes. Porosity is higher in the grainstone facies, 

averaging 17%, while the wackestone facies averages 5.6% porosity. In areas with 

thicker accumulations of grainstone facies both permeability and porosity values are 

higher. Thicker accumulations of grainstone formed shoals that were exposed to higher 

energies, this decreased microbial influence and enabled the formation of more ooid 

grains.  

The two most common porosity types in the peloid-ooid grainstone/packstone 

unit of the Smackover Formation are oomoldic and vuggy. Production does not favor 

one type of porosity over the other. Early rim cement formed in the phreatic zone 

creating a framework that preserved depositional porosity. Diagenesis occurred over six 

stages and included two significant dissolution events which created moldic and vuggy 

pores and four cementation stages, the most porosity reducing stage being the formation 

of microsparry calcite.  
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Thicker grainstones facies within the grainstone/packstone unit lead to better 

production because the grainstone facies has higher porosity and permeability. In order 

to maximize secondary recovery efforts, it would be beneficial to focus gas injection in 

the southwestern part of the field. The injected gas will be able to propagate through the 

higher porosity and permeability of the thicker grainstone units, sweeping the 

hydrocarbons up dip into nearby wells.   
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APPENDIX A- CORE DESCRIPTIONS 

 



 

71 

 

  

Grainstone Unit 



 

72 

 

 

Grainstone Unit 



 

73 

 

Grainstone Unit 



 

74 

 

Grainstone Unit 



 

75 

 

Grainstone Unit 



 

76 

 

Grainstone Unit 



 

77 

 

Grainstone Unit 



 

78 

 

Grainstone Unit 



 

79 

 

Grainstone Unit 



 

80 

 

Grainstone Unit 



 

81 

 

Grainstone Unit 



 

82 

 

Smackover 



 

83 

 

Grainstone Unit 



 

84 

 

 

Smackover 



 

85 

 

 

Grainstone Unit 



 

86 

 

APPENDIX B- POROSITY AND PERMEABILITY CROSSPLOTS 
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