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ABSTRACT 

 

Following growing public awareness of the danger from hurricanes and 

tremendous demands for analysis of loss, many researchers have conducted studies to 

develop hurricane damage analysis methods. Although researchers have identified the 

significant indicators, there currently is no comprehensive research for identifying the 

relationship among the vulnerabilities, natural disasters, and economic losses associated 

with individual buildings. To address this lack of research, this study will identify 

vulnerabilities and hurricane indicators, develop metrics to measure the influence of 

economic losses from hurricanes, and visualize the spatial distribution of vulnerability to 

evaluate overall hurricane damage. This paper has utilized the Geographic Information 

System (GIS) to facilitate collecting and managing data, and has combined vulnerability 

factors to assess the financial losses suffered by Texas coastal counties. A multiple linear 

regression method has been applied to develop hurricane economic damage predicting 

models. To reflect the pecuniary loss, insured loss payment was used as the dependent 

variable to predict the actual financial damage and ratio. Geographical vulnerability 

indicators, built environment vulnerability indicators, and hurricane indicators were all 

used as independent variables. Accordingly, the models and findings may possibly 

provide vital references for government agencies, emergency planners, and insurance 

companies hoping to predict hurricane damage. 
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1. INTRODUCTION 

 

1.1 Background 

Natural disasters in the United States have been increasing because abnormal 

weather and climate change have stimulated severe weather events. Increased 

populations in seaside areas and cities have become vulnerable to widespread risks 

including danger from cyclones, hurricanes, deluges, and even tsunamis (Pielke Jr and 

Landsea 1998). Furthermore, this rapid increase in disaster events has caused 

unavoidable damage to property and infrastructure during the past five decades. In a 

brief evaluation, direct losses per year have exceeded $7.6 billion in the United States 

(Cutter and Emrich 2005). This estimate does not cover indirect costs such as insurance 

compensation from the United States government or indirect costs to companies and 

individuals. Moreover, Hurricane Andrew, in August of 1992, created insured losses of 

$150 million in a single event (Boissonnade and Ulrich 1995). Not only has the United 

States suffered significant losses, it also has spent a tremendous amount of money on 

restoration: $150 billion between 2004  and 2005 alone (Pielke Jr et al. 2008). 

Although a number of communities have recognized the seriousness of the 

damage and will spend their budgets on mitigation plans, the core problem is how and 

where to invest their limited funds to prevent and prepare for natural disasters. Therefore, 

research in this area may help analyze the damage suffered and reduce future monetary 

loss. Although damage is inescapable, creating damage prediction models may provide a 

key solution for decreasing these losses. 
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Following a growing public awareness of the danger from disasters and the 

tremendous demand for damage prediction, many researchers have conducted studies to 

develop natural disaster damage prediction methods. Nevertheless, their research has not 

comprehensively identified the interrelationships among the vulnerabilities, natural 

disasters, and economic losses of commercial buildings. Consequently, this research will 

fill this gap in hurricane damage prediction using Hurricane Ike in Texas's coastal 

counties as a case study. 

 

1.2 Research Objective 

The objectives of this research are: 1) to identify the relationships among 

hurricane damage loss, vulnerability indicators, and hurricane indicators for commercial 

buildings, 2) to predict hurricane damage and ratios by vulnerability factors and 

hurricane indicators, based on insured loss payments for the Texas coastal counties, 3) to 

decide the magnitude and significance of the indicators, and 4) to create a methodical 

process using Geographical Information Systems (GIS) to assess other times and states 

in order to predict hurricane damage. These factors provide the framework necessary to 

identifying the spatial distribution of financial hurricane loss.  

 

1.3 Predicted Benefits and Importance 

This hurricane damage prediction will determine if the developed models are 

verifiable; additionally, this prediction will calculate the significant relationships among 

economic losses (i.e., insured loss payments), vulnerability indicators, and hurricane 
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indicators. This model and findings may together become one of the most useful and 

vital references for hurricane damage prediction for public works, as well as other 

entities such as government agencies, emergency planners, and insurance companies. 

For instance, insurance companies may be able to adjust their policies to follow the 

indicators, and therefore enjoy more profit. This model should become an important 

guideline to be used by government agencies and local emergency planners who need to 

identify the exact relationship between hurricanes and vulnerability indicators. 

Furthermore, this model will help to define the distribution of hurricane losses and 

hurricane-prone areas in order to diminish the perceived risks for residents who live in 

hurricane-vulnerable areas. 

The vulnerability indicators included in this study will help to identify building 

environment and geographic vulnerabilities, as well as evaluate the effect of each factor 

with respect to damage from hurricanes in order to mitigate perceived danger. 

Additionally, the significant hurricane indicators will help to improve hurricane damage 

prediction. Through developed statistical models, it is possible that other states may at 

some point be able to identify the significant relationships among the indicators in order 

to assess their own possible hurricane losses. 

 

1.4 Structure of the Dissertation 

This section discusses the background, objective, predicted benefits, and 

importance of this research. Section Two discusses the need and framework for 

hurricane damage assessment, and explains the indicators used. This second section also 
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described previous studies in this research area. Section Three explains  the research 

methodology used, as well as the research hypothesis, assumptions, and limitations. 

Section Four describes the data, as well as data collection and management. Sample 

selection, dependent variables, and independent variables are also described.  Section 

Five discusses the analysis of the data and the results. Two regression models were 

established to perform this research. Lastly, research conclusions, a summary of the 

results, and recommendations for future research are discussed in Section Six. 
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2. LITERATURE REVIEW 

 

The  goal of this section is to provide an understanding of the basic knowledge 

and development of this research. Particularly, previous studies using various natural 

disasters and vulnerability indicators to predict natural disaster damage and losses were 

investigated to identify the significant indicators in damage prediction. The previous 

studies also provided frameworks used for this type of damage prediction. 

 

2.1 Hazard, Vulnerability, and Risk 

Damage and risk are significantly and positively correlated (Farber 1987). For 

this reason, an exact comprehension of risk is crucial to a successful damage prediction. 

The meaning of risk includes both anticipation and probability. Natural disasters impact 

different places and then, depending on the features of those places, the level of that risk 

is subject to modification (Taubenböck et al. 2008). Hence, risk refers to a combination 

of the vulnerabilities and hazards (Wisner 2004). The Equation (1) explains this 

relationship (Pelling et al. 2004): 

 

                       Risk = Hazards x Vulnerability                     (1) 

 

In this equation, Risk represents the expected loss or damage, and Hazards 

represents the probability of incidence of hazards in a certain area. Vulnerability stands 

for the inclination of damage from the Hazards (Crichton 1999). As a result, the amount 
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of Risk depends upon the other two components in the equation. For instance, if one of 

the values (either Hazards or Vulnerability) is increased, then Risk also is increased. 

 

2.2 Vulnerability Assessment 

A Vulnerability Assessment examines a combination of vulnerabilities that exist 

among a certain people, in a particular environment, and within a given community. To 

measure vulnerability, a number of studies have selected different computable indicators. 

 

2.2.1 Vulnerabilities 

Vulnerability is a fundamental idea in natural disaster research (Wu et al. 2002), 

and researchers have made significant contributions to promote this idea. A vulnerability 

is defined as a “latent deficiency” or “the capacity to be injured” (Alexander 1997; 

Cutter 1996; Dow 1992). However, owing to such broad definitions, the terminology is 

considered debatable because the meaning of the term can be interpreted in different 

ways depending upon the research subject and method (Cutter 1996; Dow 1992). 

However, three major viewpoints have become widely known. First, both 

property and people are vulnerable, in that they are subject to substantial exposure to 

disasters(Cutter 1996). To determine this type of vulnerability, researchers evaluate the 

distribution of certain hazardous conditions and assess their impact on humans and 

buildings (Wu et al. 2002). Second, hazard vulnerability is unevenly distributed among 

individuals and groups. This research focused on "coping ability." which includes both 

resistance and resilience. Resistance is the ability to tolerate disasters, and resilience is 
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the capability of an individual to recover from hazard damage (Anderson and Woodrow 

1991; Clark et al. 1998; Dow 1992; Wu et al. 2002). Third, S.L. Cutter integrated the two 

concepts discussed above and developed the hazard of place model. Due to the 

comprehensive nature of this approach, many researchers have adopted this model as the 

most adaptable to a pragmatic study and a geographic method (Cutter et al. 2000).  

 

2.2.2 Geographical Vulnerability and Indicators 

Geographical vulnerability is defined as a substantial exposure to peril (Cutter 

1996). Since vulnerability is an essential feature of natural disasters, it can be explained 

by biophysical risks such as elevation and other geographical impacts (Cutter et al. 

2003). In general, geographical features differ depending on the location, and the level 

and amount of exposure to natural hazards can also be diverse. For instance, the Federal 

Emergency Management Agency (FEMA) created the FEMA Q3 Flood Data study in an 

effort to understand the risks of hurricanes and floods. FEMA designated flood zones 

based on the level of flood risk (Fulton County 2012). The zones show the potential risk 

of flood in each defined area. As shown in Table 1, there are three types of flood zones. 

Zone A is an area anticipated to have a 1%, or larger chance to flood in any given year. 

Zone X500 is an area anticipated to have a 0.2% to 1% chance to flood in any given year. 

Zone X is an area anticipated to have a 0.2% or smaller chance to flood in any given year. 

Although floods can occur anywhere, flood prone areas exist. Based on historical flood 

data, geographical vulnerability presents flood prone areas.  
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Table 1. Definition of FEMA Flood Zone 

Zone Explanation 

A Areas have a 1%, or larger, chance to flood on any given year 

X500 Areas have a 0.2% to 1% chance to flood on any given year 

X Areas have a 0.2%, or smaller, chance to flood on any given year 

(Source: http://www.fema.gov/) 

 

The National Weather Service created a five point scale to represent the 

hurricane surge zone in an effort to help clarify the dangers of hurricanes in coastal areas. 

As shown in Table 2, the categories created are based on sustained wind speed and surge 

height. Each scaled area is predicted to be influenced by a defined category called the 

Hurricane Surge Zone. This scale not only presents hurricane risks in scaled areas, but 

also compares the geographical vulnerability of each area.  

 

Table 2. Definition of Hurricane Surge Zone 

Hurricane 

Surge Zone 
Wind Speed (mph) Surge Height (ft) 

5 74 ~ 95 4 ~ 5 

4 96 ~ 110 6 ~ 8 

3 111 ~ 129 9 ~ 12 

2 130 ~ 156 13 ~ 18 

1 >157 >18 
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The distance from a building to the water also plays a key role in defining 

geographical vulnerability. Highfield et al. (2010) measured the distance from a building 

to the water to assess the damage to Galveston Island and Bolivar Peninsula caused by 

Hurricane Ike. They found that the damage increased as the distance from the water 

decreased  (Highfield et al. 2010). These findings indicated that areas closer to water 

have more geographical vulnerability than areas further from water. 

Accordingly, geographical vulnerability indicators should be considered in 

hurricane damage prediction.  FEMA Flood Zones, Hurricane Surge Zones, and 

distance from water should all be integrated into the hurricane damage prediction model 

as geographical vulnerability indicators. 

 

2.2.3 Built Environment Vulnerability and Indicators 

Natural disasters have a tremendous impact on both people and property, and the 

level of  exposure to the disaster determines the magnitude of the damage. Therefore, 

insurers must estimate the vulnerability of an insured built environment to measure the 

likelihood of economic loss (Khanduri and Morrow 2003). On a large scale, for instance, 

water-related infrastructure systems such as dams, seawalls, and dikes are constructed in 

flood and hurricane-prone areas, and play a prominent role in preventing damage from 

natural disasters (Brody et al. 2008). On a smaller scale, the building features of each 

building such as building age, building floor area, and building appraised value are 

important components of natural exposure (Chock 2005; Dehring and Halek 2006; 

Highfield et al. 2010; Khanduri and Morrow 2003). Highfield et al. (2010) used building 
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age to assess the damage to Galveston Island and Bolivar Peninsula from Hurricane Ike. 

They found that the damage increased as the building age increased (Highfield et al. 

2010). Dehring et al. (2006) used building floor area to assess the residential property 

damage from Hurricane Charley in Lee County. These researchers revealed that  the 

damage increased as the building floor area increased (Dehring and Halek 2006). The 

research implies that the building’s features decide the level of vulnerability, because 

each building can be classified by combining the characteristics of the buildings to 

determine the amount of damage and exposure (Chock 2005).  

Consequently, quantifying built environment vulnerabilities are important for 

assessing the damage caused by natural disasters; built environment vulnerability 

indicators (e.g., building age, building floor area, and building appraised value) should 

be included in the hurricane damage prediction model. 

 

2.2.4 Hurricane Assessment and Indicators 

Every year, hurricanes impact large areas and frequently affect both people and 

property. Numerous parameters of  hurricanes can act as key factors contributing to the 

amount of damage sustained, such as frequency, magnitude, and others. For example, 

wind parameters play a key role in hurricane damage and cause related disasters such as 

floods, hurricane surges, and landslides.  

The Hurricane Research Division (HRD) of the National Oceanic and 

Atmospheric Administration (NOAA) created the HRD real-time hurricane wind 

analysis system (H*Wind) to make an integrated hurricane observation system. The 



 

11 

 

HRD collects measured wind data from meteorological observing stations every four to 

six hours during hurricanes and integrates the data into a wind field which contains 

information such as maximum sustained wind speeds, duration and direction of 

maximum sustained wind speeds, and wind direction steadiness (Dunion et al. 2003; 

Powell and Houston 1998; Powell et al. 2010). This wind analysis utilizes the 

information gathered by measuring a hurricane's intensity, and thus improves upon 

earlier hurricane wind analyses. H*Wind analyses include gridded data, image data, and 

Geographical Information System (GIS) shape files. Researchers can use the H*Wind 

analyses to assess both wind and storm surges. Additionally, the swath map can be useful 

for hurricane damage assessments (Dunion et al. 2003; Powell and Houston 1998; 

Powell et al. 1998). The map also includes gridded data, image data, and Geographical 

Information System (GIS) shape files. As shown in Figure 1, the swath map consists of 

grids. Each grid has location information (i.e., longitude and latitude) and wind 

measurements (i.e., maximum sustained wind speeds, duration and direction of 

maximum sustained wind speeds, and wind direction steadiness). Using the location 

information and the wind measurements, researchers should be able to plot the wind 

database based on their interest time, area, and particular hurricane, and be able to study 

the relationship between the hurricane's damage and wind (Burton 2010; Powell et al. 

1998).  
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Figure 1. Hurricane Ike of H*Wind Swath for Texas Coastal Counties 

 

The side of a hurricane also plays an important role in measuring damage. In the 

Northern Hemisphere, areas located on the right side of a hurricane track usually sustain 

more damage than the left side of a hurricane track (Keim et al. 2007; Noel et al. 1995). 

The difference occurs because of the differences in wind intensity and direction on either 

side, due to the interaction of the two opposing actions of a hurricane (i.e., forward 

movement and counterclockwise rotation). As a result of the interaction, the areas 

located on the right side of the hurricane always face stronger and more extensive winds, 

and therefore becomes prone to a greater level of hurricane damage. Hence, the right 

side of the hurricane track is significantly more exposed to damage than the left side of 

the hurricane track. 
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As a consequence, hurricane indicators should be considered in damage 

predictions, and H*Wind analyses and the side of the hurricane track an area falls on 

should also be integrated into the hurricane damage prediction model as hurricane 

indicators. 

 

2.3 Hurricane Damage Prediction 

To predict hurricane damage, this research utilized the risk assessment method.  

Risk assessment was applied to find the probability of results from inexact disasters 

through an investigation of diverse indicators (Dwyer et al. 2004). The integration of 

features determine the place vulnerability of a certain area. Accordingly, indicators also 

can amplify natural disaster risks at a given location.  

The framework of this risk assessment offers a process of movement from risk 

elements to risk management. First, the risk elements need to be defined and the 

components divided into two parts: the vulnerability assessment and the hazard 

assessment. The vulnerability assessment tests the social vulnerability, geographical 

vulnerability, and built environment vulnerability, whereas the hazard assessment tests 

the hazard type and parameters. The combination of the vulnerabilities and the hazard 

assessment allows for the risk assessment. Finally, after risks have been assessed, a plan 

for risk management can be created (Peck et al. 2007). 

After adopting the framework for risk assessment described above, hurricane 

damage prediction can be conducted following the process of risk assessment shown in 

Figure 2. In this process, hurricane risk elements are defined and then divided into two 
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parts: a vulnerability assessment and a hurricane assessment. A vulnerability assessment 

tests a built environment's vulnerability and geographical vulnerability, whereas a 

hurricane assessment tests wind measurements. The combination of vulnerability 

information and a hurricane assessment allows for damage prediction. Lastly, after the 

hurricane damage is predicted, a plan for hurricane damage management can be created. 

Consequently, this study applies the above framework for hurricane damage 

prediction to predict hurricane damage. To quantify the damage, this study utilizes the 

Texas Windstorm Insurance Association's (TWIA) reported property damage losses from 

Hurricane Ike as dependent variables to measure the actual financial damage and ratio. 

The ratio is defined as the value of Texas Windstorm Insurance Association claim 

payouts for commercial building damage from Hurricane Ike ($) divided by the 

appraised value of buildings ($) based on a 2008 roll of the appraisal district. 

 

 

Figure 2. Framework of Hurricane Damage Prediction 
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2.3.1 Hurricane Ike  

Hurricane Ike was a critical disaster which began on 1 September 2008 and 

ended on 14 September 2008; the storm struck the Bahamas, Cuba, and the Gulf Coast 

of the United States (i.e., Florida, Louisiana, and Texas), in that order. The hurricane 

formed on the African coast as a tropical depression and became a hurricane when it 

traveled through the eastern Caribbean Sea. After that, the storm arrived at Cuba and the 

Bahamas as a Category 4 hurricane on the Saffir-Simpson Scale. By the time Ike hit the 

coastlines of Louisiana and Texas, it had become a Category 2 storm with a central 

pressure of 950 mb and a maximum wind speed of 95 knots (Berg 2009). Due to its 

abnormally large size, Hurricane Ike impacted a wide area, accompanied by strong 

winds and heavy rainfall which created huge waves and extensive surges. This impact 

caused fatalities and substantial damage to properties along the hurricane’s path 

(Kennedy et al. 2010). Particularly, the hurricane directly hit the Bolivar Peninsula and 

Galveston Island in Texas and devastated properties in those areas with severe storm 

surges and waves. The hurricane was recorded as the third costliest hurricane to strike 

the mainland of the United States, following hurricanes Katrina and Andrew. In 

Arkansas, Louisiana, and Texas, the estimated total monetary loss was approximately 

$24.9 billion with twenty human casualties (Berg 2009).  

 

2.3.2 Texas Windstorm Insurance Association (TWIA)  

The Texas Windstorm Insurance Association (TWIA) was established in 1971 to 

shield insurance policy holders in Texas coastal counties (see Table 3 and Figure 3) from 



 

16 

 

unexpected meteorological catastrophes. This association is made up of a group of 

windstorm insurance companies that cover direct loss of property, indirect loss of 

property or income, and casualties suffered in the Texas coastal counties. TWIA not only 

provides hurricane protection and training for agents and policy holders, but also 

receives insurance premiums and makes payments for acceptable claims. 

 

Table 3. TWIA Covers Counties 

No. County 

1 Aransas 
2 Brazoria 
3 Calhoun 
4 Cameron 
5 Chambers 
6 Galveston 
7 Harris 
8 Jefferson 
9 Kenedy 
10 Kleberg 
11 Matagorda 
12 Nueces 
13 Refugio 
14 San Patricio 
15 Willacy 

(Source: http://www.twia.org/) 
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Figure 3. TWIA Covers Counties 

 

2.4 Previous Studies 

Much research has been conducted to predict the damage that various disasters 

may cause. That research also identified the relationships among vulnerabilities, natural 

disasters, and economic losses using several vulnerability indicators and various natural 

disasters as examples. 

Sparks et al. identified the relationship between hurricane wind speeds and 

insurance losses in an effort to reduce hurricane damage suffered by residences in 

Florida and South Carolina. This study explained that damage and wind speed have a 

positive relationship and identified the area, South Florida, that is  most vulnerable to 

hurricanes (Sparks et al. 1994). The study also showed how to identify the relationships 

between hurricane parameters and insurance losses. However, the study is not 
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comprehensive, since it only considers hurricane parameters to the extent that they can 

be used to measure losses. 

Borden et al. measured vulnerability in urban regions in the United States using 

the built environment, as well as social and physical vulnerability indicators to identify 

the relationships among various vulnerabilities and natural disasters. One of the key 

findings showed that New Orleans is exposed to more natural disasters than any other 

urban region in the United States (Borden et al. 2007). This study identified how various 

vulnerabilities impact urban regions and showed the relationships among the various 

indicators. However, the research did not study spatial variability because each region 

would have a different geographic environment.  

Brody et al. surveyed flood damage in Texas using socioeconomic, built 

environment, and disaster indicators. These researchers described how flood damage is 

controlled by the hurricane period and the quantity of rainfall. Wetlands, dams, and the 

FEMA Community Rating System (CRS) also can play key roles in diminishing damage 

(Brody et al. 2008). These results showed that losses were a combination of several 

vulnerability indicators. Therefore, this study explained that various features of certain 

vulnerability indicators should be considered when attempting to predict disaster damage. 

Burton explored the relationships among hurricane losses, social factors, and 

hurricane parameters in the Mississippi coastal counties of Jackson, Harrison, and 

Hancock. He determined that the maximum sustained wind is the most significant factor 

for predicting damage. However, social vulnerabilities (e.g. race, wealth, type of job, and 

population) had less of an impact on the level of damage. Hurricane parameters did 
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affect the level of damage measured. On the other hand, social parameters were only 

significant at the critical level (Burton 2010). This study identified how various 

vulnerabilities impact urban regions and showed the relationships among the various 

indicators. However, this research did not study the losses of individual buildings 

because the study was based on the household as a survey unit. 

Cutter described natural disasters and their loss distribution in the U.S. and 

assessed vulnerabilities in Richland County, South Carolina, using social, built 

environment, and geographical vulnerability. This study showed the distribution of 

natural disasters and their losses, as well as a methodology of predicating natural disaster 

damage (Cutter 2010). This study explained that the various features of the vulnerability 

indicators should be considered when predicting disaster damage.  

Highfield et al. identified the relationship between vulnerability variables and 

hurricane damage on Galveston Island and the Bolivar Peninsula. Social, structural, and 

geographic factors were used as vulnerability indicators. These researchers identified 

vulnerability indicators and showed the relationships among the various indicators. This 

study found that the age of the house, its distance from water, its appraised value, FEMA 

flood zones, and non-white populations were all significantly related to the level of 

damage (Highfield et al. 2010). However, though this research identified relationships, 

the results were difficult to generalize to other coastal counties and to commercial 

buildings due to the small study area and survey unit. The researchers collected the 

damage data from households on Galveston Island and the Bolivar Peninsula. Moreover, 

using a damage index as a dependent variable made it difficult to see the financial loss. 
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As shown in Table 4, a number of researchers have attempted to predict natural 

disaster damage and losses using vulnerability indicators, and have provided frameworks 

for damage prediction. However, they have not utilized multiple vulnerability categories 

in their damage predictions, nor has there been a study dealing with commercial 

buildings. Therefore, there is a gap in the research to be filled by developing a hurricane 

damage prediction model for individual buildings. 

 

Table 4. Summary of Previous Studies 

Author 
(year) Damage Survey 

Unit 
Study 
Area Disaster Vulnerability 

Sparks, 
P. R.  
et al. 
(1994) 

Insured 
loss 

Household 
Florida, 
South 
Carolina 

Hurricane • Hurricane 
parameters 

Borden, 
K. A. 
et al. 
(2007) 

Property 
damage 

City U.S. 
Natural 
disasters 

• Built 
environment 

• Social 
• Disaster 

Parameters 

Brody, 
S. D.  
et al. 
(2008) 

Property 
damage 

County Texas Flood 

• Socioeconomic 
• Built 

environment 
• Disaster 

Parameters 
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Table 4. Continued 

Author 
(year) Damage Survey 

Unit 
Study 
Area Disaster Vulnerability 

Burton, 
C. G. 
(2010) 

FEMA 
Residential 
Substantial 
Damages 
Estimates 

Household 
 

Mississippi 
Coastal 
Counties 

Hurricane 
• Social 
• Hurricane 

parameters 

Cutter, 
S. L. 
(2010) 

Crops and 
property 
damages 

County U.S. 
Natural 
disasters 

• Social 
• Built 

environment 
• Geographical 

Highfiel
d, W. E. 
et al. 
(2010) 

Property 
damage 

Household 

Galveston 
Island, 
Bolivar 
Peninsula 

Hurricane 
• Social 
• Structural 
• Geographic 



 

22 

 

3. RESEARCH METHODOLOGY 

 

The purpose of this section is to describe the methodology of this research. First, 

data collection and data analysis methods are discussed. Two statistical models and their 

hypotheses are then described. Finally, assumptions, limitations, and definitions for this 

research are discussed, in that order. 

 

3.1 Process of Data Collection 

 Figure 4 shows the outline of the data collection process used for this research. 

First, the TWIA claim payout properties were mapped within the study area using the 

ArcGIS address locator. Second, sample payouts were randomly selected. Third, 

geographical vulnerabilities, building environment vulnerabilities, and hurricane 

indicators were combined, respectively, with the TWIA claim payouts by joining them 

with the data obtained from ArcGIS by using the Join Data function. Finally, regression 

models were generated and analyzed.   

 

3.2 Process of Data Analysis 

 After the creation of the data, a multiple linear regression method was applied to 

analyze the data, which resulted in two global equations that allowed for an 

understanding of the relationship between the dependent and independent variables. The 

global model assumes that the relationships are fixed and coherent throughout all of the 

data. This study identified the interrelationships among the vulnerability indicators and 
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TWIA claim payouts using a statistical method. The statistical method order is listed 

below.  

1. Descriptive statistics: mean, max, min, median, and standard deviation. 

2. Scatter plots: to check the relationships among the dependent and independent 

variables. 

3. Correlation test: Pearson’s and Spearman’s Tests to check the relationships 

among the variables. 

4. Multi-collinearity analysis: to check the correlations among the variables. 

5. ANOVA test and linear regression: to check the significance of the regression 

model. 

6. Test of normality: to check the normality of the data. 

7. Test of homoscedasticity: to use residual plots to check the variance of errors. 

8. Transformation: to use log transformation analysis, if required. 

9. A regression model. 
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Figure 4. Data Collection Process 

 

3.3 Research Hypothesis 

3.3.1 TWIA Claim Payout Regression Model 

• The TWIA claim payout increases as the maximum sustained wind speed 

increases. 

• The TWIA claim payout increases if the building is located on the right side 

of the hurricane track. 

• The TWIA claim payout increases as the building age increases. 

• The TWIA claim payout increases as the building floor area increases. 
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• The TWIA claim payout increases as the appraised value of the building 

increases. 

• The TWIA claim payout increases as the number of FEMA floodplain zones 

increases. 

• The TWIA claim payout increases as the number of hurricane surge zones 

decreases. 

• The TWIA claim payout increases as the distance between the property 

centroid and the shoreline decreases. 

 

3.3.2 Ratio Regression Model 

• The ratio increases as the maximum sustained wind speed increases. 

• The ratio increases if the building is located on the right side of the hurricane 

track. 

• The ratio increases as the building age increases. 

• The ratio increases as the building floor area increases. 

• The ratio increases as the number of FEMA floodplain zones increases. 

• The ratio increases as the number of hurricane surge zones decreases. 

• The ratio increases as the distance between the property centroid and the 

shoreline decreases. 
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3.4 Models 

In this study, two statistical models were generated to predict the hurricane 

damage and ratio caused by Hurricane Ike in Texas coastal counties for commercial 

buildings. Each regression model had different dependent and independent variables, as 

shown in Equations (2) and (4), and Table (5). 

  

3.4.1 TWIA Claim Payout Regression Model 

The goal of this model is to predict the insured claim payout. The dependent 

variable, the Texas Windstorm Insurance Association (TWIA) claim payout ($), can be 

predicted by the independent variables, as shown in Equation (2). 

 

PDL = β0 + β1 ∙ Wind_Speed + β2 ∙ Side_Right + β3 ∙ Age + β4 ∙ Area + β5  ∙ Imp_Value +  

      β6 ∙ FEMA_Zones + β7 ∙ Surge_Zones + β8 ∙ Dist_Shore                   (2) 

 

3.4.2 Ratio Regression Model 

The goal of this model is to predict the unconditional financial damage. The 

dependent variable, the ratio ($/$), is the value of the Texas Windstorm Insurance 

Association (TWIA) claim payout ($) divided by the appraised values of the buildings 

($), as shown in Equation (3). The ratio can be predicted by the independent variables, as 

shown in Equation (4). 
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                Ratio = ( TWIA claim payout ($) 
Building appraised value($)

)                    (3) 

 

Ratio = β0 + β1 ∙ Wind_Speed + β2 ∙ Side_Right + β3 ∙ Age + β4 ∙ Area + β5 ∙ FEMA_Zones  

      + β6 ∙ Surge_Zones + β7 ∙ Dist_Shore                                  (4) 

 

Table 5. Model Component Definitions 

Variables 
Variable 

Name 
Abbreviation Description 

Dependent 

TWIA claim 

payout 
PDL 

Texas Windstorm Association claim 

payouts for property damage from 

Hurricane Ike ($) 

Ratio Ratio 

Texas Windstorm Association claim 

payouts for property damage from 

Hurricane Ike ($) / Appraised value of 

building ($) (Based on 2008 roll) 

Hurricane Indicators 

Independent 

Max. 

sustained wind 

speed  

Wind_Speed Max. Sustained wind speed (m/s) 

Right side of 

the hurricane 

track 

 

Side_Right 

Dummy variable 

• 1 : A building locates on the 

right side of the hurricane track 

• 0 : A buildings locates on the 

left side of the hurricane track 

 



 

28 

 

Table 5. Continued 

Variables 
Variable 

Name 
Abbreviation Description 

Built Environment Vulnerability Variables 

Independent 

Building age Age 
Building Age 

(Based on 2008 roll) 

Building floor 

area 
Area 

Building floor area (m2) 

(Based on 2008 roll) 

Building 

appraised 

value 

Imp_Value 
Appraised value of building ($) 

(Based on 2008 roll) 

Geographical Vulnerability Variables 

Independent 

FEMA Flood 

Zones 
FEMA_Zones 

Ordinal Variable 

• 0: Unregistered zone 

• 1 : A building on the FEMA 

flood zone X 

• 2: A building on the FEMA 

flood zone X500 

• 3 : A building on the FEMA 

flood zone A 

Hurricane 

surge zones 
Surge_Zones 

Ordinal Variable 

• 1 ~ 5 

 

 

 

 

 

 

 

 

 

Distance from 

shoreline 

Dist_Shore 
Distance from the property centroid to 

shoreline (m) 
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3.5 Assumption 

• The Hurricane Ike surface wind analysis made by the Atlantic Oceanographic 

and Meteorological Laboratory (AOML) is accurate, and the wind attributes are 

the same within each grid. 

• Parcel information received from the appraisal district of each Texas coastal 

county is accurate because the data were obtained from official documentation.  

• The TWIA claim payout is an indicator that represents the economic loss from 

hurricanes.  

• The appraised value of the buildings is accurate because the value is based on 

property taxes evaluated by each office of the Assessor-Recorder of each of the 

Texas coastal counties. 

 

3.6 Limitations 

• The study unit is limited to commercial buildings in the Texas coastal counties. 

• The insured claim payouts only include structural damage. 

• Mitigation, safety nets, and preventive measures for natural disasters have not 

been considered in this study. 

• Only the direct effects of the dependent variables and independent variables have 

been taken into account.  

• Inflation and deflation were not factored in to insured loss payments.  
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4. DATA COLLECTION AND MANAGEMENT 

 

4.1 Population of Interest 

This study considered as observational units only improved commercial 

buildings that had insured claim payouts from the Texas Windstorm Insurance 

Association (TWIA) in Texas coastal counties from Hurricane Ike.  

As shown in Figure 5, Hurricane Ike, a Category 2 hurricane on the Saffir-

Simpson Scale, struck the Texas coastal counties on 13 September 2008. The financial 

damages suffered by Texas coastal counties are shown in Figure 6. 

Table 6 and Figures 7 and 8 show the total amount of claim payouts and the 

number of claim payouts collected from the Texas Windstorm Insurance Association 

(TWIA) for commercial property damage from Hurricane Ike from 17 August 2008 to 22 

February 2012.  

The total claim payout was $450,518,330 and the total number of claims was 

4,150. Galveston County received the most damage from Hurricane Ike in terms of both 

dollar amount of damage ($255,333,818; 56.68%) and the number of claims (1,807; 

43.54%). Other damaged counties included: Jefferson County (1,218 claims totaling 

$104,249,917); Brazoria County (597 claims totaling $46,922,396); Chambers County 

(470 claims totaling $39,755,609); Harris County (45 claims totaling $4,126,821); 

Matagorda County (9 claims totaling $36,981); Liberty County (2 claims totaling 

$67,501); and Nueces County (2 claims totaling $5,287). 
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Figure 5. Hurricane Ike 

 

Figure 6. Distribution of TWIA Property Claim Payouts 
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Table 6. TWIA claim payout Records per County from Hurricane Ike 

County Total Claim Payouts($) No. of Claim Payouts 

Galveston 255,333,818 1807 

Jefferson 104,249,917 1218 

Brazoria 46,922,396 597 

Chambers 39,755,609 470 

Harris 4,126,821 45 

Matagorda 36,981 9 

Liberty 67,501 2 

Nueces 5,287 2 

SUM 450,518,330 4150 
 

 

Figure 7. Distribution of Total Claim Payout Amounts ($) per County from 

Hurricane Ike 
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Figure 8. Distribution of Number of Claim Payout Records per County from Hurricane 

Ike 

 

4.2 Sample Selection 

In this study, 500 of the total damage reports (4,150) were randomly selected as 

samples.  

 

4.3 Description of Collected Data 

The focus of this study was to identify the interrelationships among 

vulnerabilities, a hurricane, and the economic losses suffered by commercial buildings. 

In order to predict these losses, this research used the Hurricane Ike claim payout records 

of commercial buildings from the Texas Windstorm Insurance Association (TWIA). In 
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addition, to measure the vulnerabilities of each building, this study used the spatial data 

and structural information of each building. As shown in Table 7, the necessary spatial 

data was acquired from the websites of related associations, and building information 

was obtained from the websites of the appraisal districts of each Texas coastal county.   

 

Table 7. List of Acquired Data 

Variable 
Variable 

Name 
Description Source 

Dependent 

TWIA 

Texas Windstorm Association 

claim payouts for property 

damage from Hurricane Ike 

($) 

Texas Wind Insurance Association 

(http://www.twia.org/) 

Building 

appraised 

value 

 

Appraised value of building 

($) 

(Based on 2008 roll) 

• Galveston County Appraisal District 

(http://www.galvestoncad.org/) 

• Jefferson County Appraisal District 

(http://www.jcad.org/) 

• Brazoria County Appraisal District 

(www.brazoriacad.org/) 

• Chambers County Appraisal District 

(www.chamberscad.org/) 

• Harris County Appraisal District 

(www.hcad.org/) 

• Matagorda County Appraisal District 

(www.matagorda-cad.org/) 

• Liberty County Appraisal District 

(http://www.libertycad.com/) 

• Nueces County Appraisal 

District(www.nuecescad.net/) 
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Table 7. Continued 

Variable 
Variable 

Name 
Description Source 

Hurricane Indicators 

Independent  

Max. 

sustained 

wind speed 

Max. sustained wind speed  

from the grid of Hurricane 

Ike surface wind analysis 

(m/s) 
Atlantic Oceanographic and 

Meteorological Laboratory 

(http://www.aoml.noaa.gov/hrd/Storm_pag

es/ike2008/wind.html) 

 

Side of the 

hurricane 

track 

 

Left or right side of the 

hurricane track 

Built Environment Vulnerability  

Independent 

Building 

age 

Building age 

(Based on 2008 roll) 

• Galveston County Appraisal District 

(http://www.galvestoncad.org/) 

• Jefferson County Appraisal District 

(http://www.jcad.org/) 

• Brazoria County Appraisal District 

(www.brazoriacad.org/) 

• Chambers County Appraisal District 

(www.chamberscad.org/) 

• Harris County Appraisal District 

(www.hcad.org/) 

• Matagorda County Appraisal District 

(www.matagorda-cad.org/) 

• Liberty County Appraisal District 

(http://www.libertycad.com/) 

• Nueces County Appraisal District 

(www.nuecescad.net/) 

Building 

floor area 

Building floor area (m2) 

(Based on 2008 roll) 

Building 

appraised 

value 

 

Appraised value of 

building ($) 

(Based on 2008 roll) 
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Table 7. Continued 

Variable 
Variable 

Name 
Description Source 

Geographical Vulnerability  

Independent 

FEMA Q3 
FEMA digital Q3 flood 

data 

Texas Natural Resources Information 

System (TNRIS)  

http://www.tnris.org/ 

Rate of 

hurricane 

surge zone 

Rate of hurricane surge 

zone (1~5) 
Coastal Communities Planning Atlas 

Mapping Service 

(http://coastalatlas.tamu.edu/) 

Distance 

from 

shoreline 

Distance from shoreline 

(m) 

 

4.4 Dependent Variables 

4.4.1 TWIA Claim Payout 

The selected samples from the Texas Windstorm Insurance Association property 

damage claim payouts resulting from Hurricane Ike were plotted on each county parcel 

of the shape files by using the ArcGIS address locator. For instance, as shown in Figures 

9 (a) and (b), each incident of damage was mapped on the centroid of the parcel within 

the study area. 

 

 

 

 



 

37 

 

4.4.2 Ratio 

Samples from the Texas Windstorm Insurance Association property damage 

claim payouts from Hurricane Ike ($) were randomly selected. Then the appraised values 

of the samples were identified from each appraisal district. The ratio was calculated by 

dividing the Texas Windstorm Insurance Association (TWIA) claim payout ($) by the 

sum of the appraised values of the buildings ($). 

 

 

(a) 

Figure 9. TWIA Claim Payouts in Galveston : (a) and (b) 
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(b) 

Figure 9. Continued 
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4.5 Independent Variables 

4.5.1 Geographical Vulnerability Variables 

4.5.1.1 FEMA Flood Zones 

Federal Emergency Management Agency (FEMA) Q3 Flood Data was then 

mapped onto the Texas coastal counties. As shown in Figure 10, the zones are located 

along the coastline of Texas. There are four flood zones, each based on the level of flood 

risk.  They include: the Undersigned area, Zone X, Zone X500, and Zone A. These 

zones show the potential risk of flooding along the Texas coast.  

 

 

Figure 10. Map of FEMA Flood Zones in the Texas Coastal Counties 
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4.5.1.2 Hurricane Surge Zones 

The hurricane surge zones created by the National Weather Service were plotted 

on the map of Texas coastal counties. As shown in Figure 11, the zones are located along 

the coastline of Texas. There are five levels based on sustained wind speeds and surge 

heights. The number of each scaled area predicts the influence of the sustained wind 

speed and the surge height at that location. The number of each scaled area also shows 

the potential risk of hurricanes at that Texas coastal county.  

 

 

Figure 11. Map of Hurricane Surge Zones in the Texas Coastal Counties 
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4.5.1.3 Distance from Shoreline 

The distance from the shoreline was calculated by using the Near Analysis 

function of ArcGIS. This analysis measures the distance between an imputed feature 

(which can be a polyline, point, polygon or multiple type) and the nearest feature (which 

also can be a polyline, point, polygon or multiple type). As a result of the analysis, 

Near_Dist (distance) and Near_FID (identification number) were recorded in order to 

save the nearest distance from an inputted feature to the nearest feature, and the feature 

identification number, respectively. In this research, the damage data (point) and the 

shoreline (polyline) were inputted into the analysis to calculate the nearest distance. 

Following the analysis, the distance from the shoreline was measured, as shown in 

Figure 12. 

 

 

Figure 12. Calculating Distance from the Shoreline 
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4.5.2 Built Environment Vulnerability Variables 

4.5.2.1 Building Age, Floor Area, and Appraised Value 

The building information (i.e., building age,  building floor area, and appraised 

value of the building) was collected from each website of the appraisal district for each 

Texas coastal county, based on a 2008 roll, as shown in Figure 13. The appraised value 

of each building was calculated as the total value of  improvement homesite (HS) and 

improvement non-homesite (NHS). The improvement homesite value pertains to a 

residential property that is a taxpayer's homesite. The non-homesite value pertains to any 

improvements that are not part of the homesite or actual home. 
 

 

Building Age & Building Area (a) 

Figure 13. Parcel Information of Damaged Property on the Website of Galveston 

Central Appraisal District : Building Age & Building Area (a), Appraised Value 

(b) 
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(b) 

Figure 13. Continued 
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4.5.3 Hurricane Indicators 

4.5.3.1 Max. Sustained Wind Speed 

The map of the HRD real-time hurricane wind analysis system (H*Wind) for 

Hurricane Ike was mapped for the Texas coastal counties. As shown in Figure 14 (a), the 

swath map consists of grids. Each grid contains location information (i.e., longitude and 

latitude) and maximum sustained wind speeds (i.e., maxfc). The swath map covers the 

entire study area and has different wind speeds following the hurricane track, as shown 

in Figure 14 (b). 

 

 

(a) 

Figure 14. Map of Hurricane Ike of H*Wind Swath : 

Polygon Information (a) and Std. Dev. of Max. Sustained Wind Speed (b) 
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(b) 

Figure 14. Continued 
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4.5.3.2 Side of the Hurricane Track 

The side of the hurricane was determined by the track of Hurricane Ike. As 

shown in Figure 15, buildings located on the right side of the hurricane track defined the 

right side damages. On the other hand, buildings located on the left side of the hurricane 

track defined the left side damages. The left side total damage costs were $315,828,010 

(70%) and the right side total damage costs were $134,690,319 (30%). The left side total 

number of claims were 2,630 (63%) and the right side total number of claims were 1,530 

(37%). 

 

 

Figure 15. Damages Depending on the Side of the Hurricane Track 
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4.6 Data Management 

 This study utilized GIS to combine, manage, and create spatial information for a 

statistical examination. As a computerized database management system, GIS facilitates 

spatial data to store, capture, control, make, analyze, and present geographically 

referenced data (Bill 1994). Generally, spatial data presents the figure and position of the 

data by layers using raster data, digitally imaged grid data, and vector data, based on 

polygons, points, and lines, respectively (Hellawell et al. 2001). The primary benefit of 

using this application is in creating a new layer of data by using various useful functions 

such as merge, clip, union, intersection, join, buffer, overlay, and dissolve. Particularly, 

this research produced a new layer of data by using the overlay function to combine 

diverse sorts of obtained data from the related organizations, based on their locations.  

 Figure 16 presents an outline of the GIS process. This research utilized ArcGIS 

tools to combine both a dependent variable and independent variables. After the GIS 

process, data collection was completed as shown in Table 8. The process described 

below explains the GIS process. 

1. The TWIA claim payout properties were mapped in the study area using the 

ArcGIS address locator. 

2. Geographical vulnerability indicators, building environment vulnerability 

indicators, and hurricane indicators were joined with the TWIA claim payouts by 

joining the data of with ArcGIS. 

3. The data was completed for the regression models. 
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.  

Figure 16. GIS Process 
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Table 8. Sample of Data Matrix 

County PDL 
($) 

Ratio 
($/$) 

Wind 
Speed 
(m/s) 

Side_Right Age Area 
(m2) 

Imp_Value 
($) FEMA_Zones Surge_Zones Dist_Shore 

(m) 

Galveston 7,118.00 0.06 36 0 33 303.51 127,940 A 3 409.00 

Galveston 22,499.75 0.08 34.72 0 24 256.78 281,290 X 4 975.36 

Brazoria 15,306.00 0.15 35.22 0 34 384.99 105,140 X500 5 11,908.23 

Galveston 52,405.22 0.17 39.8 0 43 305.65 300,270 A 2 490.42 

Brazoria 4,121.71 0.05 35.2 0 33 487.74 76,410 X 5 17,067.58 

Jefferson 8,755.04 0.08 36.75 1 41 219.44 114,670 X 3 9,249.46 

Galveston 23,860.82 0.08 37.55 1 79 494.24 294,540 A 2 784.86 

Jefferson 8,341.57 0.2 36.18 1 51 84.73 41,890 X 4 13,906.20 

Galveston 10,676.51 0.08 36 0 45 337.98 138,190 X500 3 645.26 

Galveston 8,098.17 0.04 39.49 0 22 383.13 209,920 A 3 747.67 

Galveston 2,756.03 0.04 36 0 48 218.32 62,170 A 3 282.55 

Jefferson 4,736.81 0.06 35.66 1 31 143.63 75,550 X500 3 4,025.80 

Jefferson 26,294.18 0.17 36.06 1 36 425.12 150,510 X 3 20,566.68 

Brazoria 2,371.83 0.1 31.48 0 36 139.35 22,750 A 3 1,778.81 

Jefferson 6,755.17 0.07 35.58 1 47 234.86 92,480 X 3 18,672.96 

Galveston 5,825.56 0.06 37.43 0 12 226.68 91,560 A 3 726.34 
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5. DATA ANALYSIS AND DISCUSSION 

 

The aim of this section is to describe the creation of multiple regression models 

that predict the TWIA claim payouts and ratios, and to describe how this research 

determined the magnitude and significance of the indicators. The TWIA claim payout 

regression model and the ratio model are both described below.  

 

5.1 Descriptive Analysis  

Descriptive statistics present important properties such as number of samples, 

mean, median, standard deviation, quartiles, skewness, and kurtosis. Table 9 numerically 

shows the descriptive statistics of the dependents and independent variables used in this 

study. The mean and median present the central tendency of the data. The standard 

deviations measure the spread of the samples. The quartiles show the dispersion of data, 

and the skewness and kurtosis describe the distribution shape. In accordance with the 

skewness, the distribution of the Ratio and PDL are excessively skewed to the right. The 

values, 3.00 and 2.61, both higher than 0, indicate that the distribution is positively 

skewed (i.e., that the left of the tail is shorter than the right side of the tail, and the data 

distribution is left sided). According to the kurtosis, the distribution of the Ratio and 

PDL are leptokurtic, which indicates higher and sharper peaks than a normal 

distribution. The values, 13.32 and 9.41, both higher than 3, mean that the data is not 

normally distributed. 
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Table 9. Descriptive Statistics 

 

Dependent 

Variables 
Independent Variables 

Ratio 

($/$) 

PDL 

($10,000) 

Max. Sustained 

Wind Speed 

(m/s) 

Right side  

of the 

 hurricane track 

Building 

Age 

Building 

Floor Area 

(100 m2) 

Appraised  

value of building 

($10,000) 

FEMA Flood 

Zones 

Hurricane 

Surge 

Zones 

Distance from 

Shoreline 

(1,000m) 

N 500 500 500 500 500 500 500 500 500 500 

Mean .10 1.18 36.17 - 34.32 3.64 15.03 - - 4.49 

Median .07 0.77 36.00 - 35.00 2.81 11.85 - - 0.88 

Std. Deviation .11 1.22 2.11 - 18.00 2.68 11.72 - - 6.64 

Percentiles 

25 .04 0.41 34.84 .00 23.00 1.90 7.23 1.00 3.00 0.37 

50 .07 0.77 36.00 .00 35.00 2.81 11.85 2.00 3.00 0.88 

75 .12 1.50 36.74 1.00 47.00 4.55 18.82 3.00 3.75 6.03 

Skewness 3.00 2.61 .23 1.13 .45 1.83 1.83 -.07 -.05 1.64 

Kurtosis 13.32 9.41 .76 -.72 1.32 3.89 3.99 -1.58 .04 1.49 
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5.2 TWIA Claim Payout Regression Model  

5.2.1 Scatter Plots 

The scatter plot of the TWIA claim payout versus the maximum sustained wind 

speed in Figure 17 shows a positive relationship. This means that as the maximum 

sustained wind speed increases, the claim payout increases. The intercept, also called the 

starting value, of -30,838.50 means that when the wind speed is 0 m/s, the claim payout 

is -$30,838.50. The slope, also called the rate of change, of 1,177.77 indicates that if the 

maximum sustained wind speed increases by 1 m/s, the claim payout will increase by 

$1,177.77. The R-square of 0.041 signifies that this relationship can be explained with a 

4.1% margin of variance. In addition, the P-value of 0.000 is less than 0.05, which 

represents that the relationship is significant.  

 

 

• Intercept : -30,838.50 
• Slope : 1,177.77 
• R-square: 0.041 
• P-value: 0.000 

 

 

 

 

Figure 17. Scatter Plot of TWIA Claim Payout vs. Max. Sustained Wind Speed (m/s) 
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Figure 18 shows the TWIA claim payout versus the right side of the hurricane 

track. The right side of the hurricane track is a dummy variable, either 0 or 1. If a 

building is located on the right side of the hurricane track, it is dummy variable 1. If a 

building is located on the left side of the hurricane track, it is dummy variable 0. The two 

variables have a positive relationship which reveals that the TWIA claim payout 

increases if the building is located on the right side of the hurricane track. The intercept 

of 11,659.37 means that when the building is located on the left side of the hurricane 

track , the claim payout is $11,659.37. The slope of 402.57 indicates that if the building 

is located on the right side of the hurricane track,  the payout will increase by $402.57. 

However, the R-square is close to 0 and the P-value is 0.75, which indicates that the 

relationship is not significant.  

 

 

• Intercept : 11,659.37 
• Slope : 402.57 
• R-square: 0.00 
• P-value: 0.75 

 

 

 

 

 

Figure 18. Scatter Plot of TWIA Claim Payout vs. the Right Side of the Hurricane Track 
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Figure 19 represents the relationship between the claim payout and the building 

age. This shows a positive relationship that as the building age increases, the claim 

payout also increases. The intercept of 11,075.69 means that when the building age is 0, 

the claim payout is $11,075.69. The slope of 19.98 indicates that if the building age 

increases by 1, the claim payout will increase by $19.98. The two variables have a low-

significance relationship because the P-value of 0.51 is higher than 0.05.  

 

 

• Intercept : 11,075.69  
• Slope : 19.98 
• R-square: 0.001 
• P-value: 0.51 

 

 

 

 

 

Figure 19. Scatter Plot of TWIA Claim Payout vs. Building Age 
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The relationship between the TWIA claim payout versus the building floor area is 

shown in Figure 20. The scatter plot displays a positive relationship which indicates that 

as the building floor area increases, the claim payout increases. The intercept of 5,107.71 

represents that when the building floor area is 0, the claim payout is $5,107.71. The 

slope of 18.29 implies that if the building floor area increases by 1 m2, the claim payout 

will increase by $18.29. The R-square of 0.16 signifies that this relationship can be 

explained with a 16% margin of variance. The P-value of 0.000 is less than 0.05, which 

verifies that the two variables have a significant relationship. 

 

 

• Intercept : 5,107.71 
• Slope : 18.29 
• R-square : 0.16 
• P-value : 0.000  

 

 

 

 

Figure 20. Scatter Plot of TWIA Claim Payout vs. Building Floor Area (m2) 
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The scatter plot of the TWIA claim payout versus the appraised value of the 

building in Figure 21 represents a positive relationship, which means that as the 

appraised value of the building increases, the claim payout also increases. The intercept 

of 6,053.74 implies that when the appraised value of the building is 0, the claim payout 

is $6,053.74. The slope of 0.04 indicates that if the appraised value of the building 

increases by $1, the claim payout will increase by $0.04. The R-square of 0.13 explains 

that there is a 13% margin of variance in the relationship between the variables. It 

demonstrates that the two variables have a significant relationship, because the P-value 

of 0.000 is less than 0.05. 

 

 

• Intercept : 6,053.74 
• Slope : 0.04 
• R-square : 0.13 
• P-value : 0.00 

 

 

 

 

 

Figure 21. Scatter Plot of TWIA Claim Payout vs. Appraised Value of Building ($) 
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Figure 22 shows the TWIA claim payout versus the FEMA flood zones. The 

FEMA flood zones are represented by an ordinal variable ranging from 0 to 3. 0 means 

that the zone is unregistered. The variable 1 signifies that the area is categorized in the 

FEMA flood zone X. The variable 2 signifies that the area is categorized in the FEMA 

flood zone X500. The variable 3 signifies that the area is categorized in the FEMA flood 

zone A. The two variables have a positive relationship which reveals that as the FEMA 

flood zone number increases, the claim payout increases. The intercept of 8,091.73 

means that when the building is located on the unregistered zone, the claim payout is 

$8,091.73. The slope of 1,868.58 indicates that if the  FEMA flood zone number 

increases by 1, the claim payout will increase by $1,868.58. The R-square value of 0.02 

signifies that this relationship can be explained with a 2% margin of variance. The P-

value of 0.000 is less than 0.05, which reveals that the relationship is significant.  

 

 

• Intercept : 8,091.73 
• Slope : 1868.58 
• R-square : 0.02 
• P-value : 0.001 

 

 

 

 

 

Figure 22. Scatter Plot of TWIA Claim Payout vs. FEMA Flood Zones 
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The relationship between the TWIA claim payout and the hurricane surge zone is 

illustrated in Figure 23. The hurricane surge zone is represented by an ordinal variable, 

from 0 to 5. The scatter plot shows a negative relationship which means that as the 

hurricane surge zone number increases, the claim payout decreases. The intercept of 

21,283.40 represents that when the hurricane surge zone is 0, the claim payout is 

$21,283.40. The slope of -3,103.58 implies that if the hurricane surge zone number 

increases by 1, the claim payout decreases by $3,103.58. The R-square of 0.072 explains 

that there is a 7.2% margin of variance in the relationship between the variables. The P-

value of 0.000 is less than 0.05, which verifies that the two variables have a significant 

relationship. 

 

 

• Intercept : 21,283.40 
• Slope : -3,103.58 
• R-square : 0.072  
• P-value : 0.00  

 

 

 

 

 

Figure 23. Scatter Plot of TWIA Claim Payout vs. Hurricane Surge Zones 
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Figure 24 represents the relationship between the TWIA claim payout and the 

distance from the property centroid to the shoreline. This shows a negative relationship 

which means that as the distance from the property centroid to the shoreline increases, 

the claim payout decreases. The intercept of 13,339.47 means that when the distance 

from the property centroid to the shoreline is 0, the claim payout is $13,339.47. The 

slope of -0.35 indicates that if the distance from the property centroid to the shoreline 

increases by 1 m, the claim payout decreases by $0.35. The R-square of 0.036 signifies 

that this relationship can be explained with a 16% margin of variance. The two variables 

have a significant relationship because the P-value of 0.000 is less than 0.05.  

 

 

• Intercept : 13,339.47 
• Slope : -0.35 
• R-square: 0.036 
• P-value : 0.000  

 

 

 

 

 

Figure 24. Scatter Plot of TWIA Claim Payout vs. Distance from the Property Centroid 

to Shoreline (m) 
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5.2.2 Correlation Analysis 

Table 10 shows the summary of the correlation results with the TWIA claim 

payouts and continuous variables. A Pearson Correlation analysis was used for testing 

the continuous variables. Each result represents the relationship between two variables. 

The building age has only an insignificant relationship with the claim payout. On the 

other hand, other variables (i.e., max. sustained wind speed, building floor area, 

appraised value of the building, and distance from the property centroid to the shoreline) 

have significant relationships with the claim payout. The sign of the coefficients 

determine whether the relationship is positive or negative, and the coefficients indicate 

the amount of the linear relationship with a range of +1 to -1. 

Table 11 displays the summary of the correlation results with the TWIA claim 

payout and the ordinal variables. Spearman's rho Correlation analysis was used to test 

the ordinal variables. Each result represents the relationship between two variables. The 

right side of the hurricane track has only an insignificant relationships with the claim 

payout, while the FEMA flood zones and hurricane surge zones each have significant 

relationships with the claim payout. The sign of the coefficients determines whether the 

relationship is positive or negative, and the coefficients indicate the amount of the linear 

relationship with a range of +1 to -1. 
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Table 10. Results of Pearson Correlation Analysis 

 PDL 

($) 

Wind_Speed 

(m/s) 
Age 

Area 

(m2) 

Imp_Value 

($) 

Dist_Shore 

(m) 

PDL 

($) 

Pearson Correlation 1 .203** .029 .400** .364** -.190** 

Sig. (2-tailed)  .000 .512 .000 .000 .000 

Wind_Speed 

(m/s) 

Pearson Correlation .203** 1 .040 -.057 .007 -.183** 

Sig. (2-tailed) .000  .375 .199 .879 .000 

Age 

 

Pearson Correlation .029 .040 1 -.123** -.383** -.062 

Sig. (2-tailed) .512 .375  .006 .000 .167 

Area 

(m2) 

Pearson Correlation .400** -.057 -.123** 1 .572** .044 

Sig. (2-tailed) .000 .199 .006  .000 .322 

Imp_Value 

($) 

Pearson Correlation .364** .007 -.383** .572** 1 .006 

Sig. (2-tailed) .000 .879 .000 .000  .899 

Dist_Shore 

(m) 

Pearson Correlation -.190** -.183** -.062 .044 .006 1 

Sig. (2-tailed) .000 .000 .167 .322 .899  
     **. Correlation is significant at the 0.01 level (2-tailed). 
       *. Correlation is significant at the 0.05 level (2-tailed). 
 

 
Table 11. Results of Spearman's Correlation Analysis 

 PDL 

($) 
FEMA_Zones Surge_Zones Side_Right 

 PDL 

($) 

Spearman's rho Correlation  1.000 .186** -.321** -.011 

Sig. (2-tailed) . .000 .000 .803 

FEMA_Zones 
Spearman's rho Correlation  .186** 1.000 -.521** -.243** 

Sig. (2-tailed) .000 . .000 .000 

Surge_Zones 
Spearman's rho Correlation  -.321** -.521** 1.000 .071 

Sig. (2-tailed) .000 .000 . .114 

Side_Right 
Spearman's rho Correlation  -.011 -.243** .071 1.000 

Sig. (2-tailed) .803 .000 .114 . 
     **. Correlation is significant at the 0.01 level (2-tailed). 
       *. Correlation is significant at the 0.05 level (2-tailed). 
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5.2.3 Initial Multiple Regression Analysis and Check for Assumptions 

In this study, the backward elimination method was used to find the best-fit 

regression model. Table 12 provides a summary of the initial TWIA claim payout 

regression model. The model is statistically significant because the P-value of 0.000 is 

less than 0.05. The R-square of 0.036 signifies that this relationship can be explained 

with a 16% margin of variance. 

Table 13 shows the coefficients of the initial TWIA claim payout regression 

model. There are five significant variables: max. sustained wind speed, building age, 

building floor area, appraised value of building, and hurricane surge zone. However, it 

was necessary to check the linear regression assumptions before interpreting them. 

 

Table 12. Summary of Initial TWIA Claim Payout Regression Model 

Model Sum of Squares df Mean 
Square F Sig. R2 Adj-R2 

Regression 2.409E10 5 4.819E9 46.898 .000 .322 .315 

Residual 5.076E10 494 1.027E8 
    

Total 7.485E10 499 
     

1. Predictors: (Constant), Imp_Value, Wind_Speed, Age, Area, Surge_Zones  
2. Dependent Variable: PDL 
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Table 13. Coefficients of Initial TWIA Claim Payout Regression Model 

Model β Std. 
Error Beta Sig. VIF 

Constant -20722.050 8614.942  .017  

Hurricane Indicators      

Max. sustained wind speed 
789.583 224.454 .136 .000 1.094 

Built Environment Vulnerability Indicators     

Building age 
126.947 27.722 .187 .000 1.209 

Building floor area 
12.854 2.089 .281 .000 1.521 

Appraised value of building 
.030 .005 .285 .000 1.761 

Geographical Vulnerability Indicators 

Hurricane surge zones 
-3121.964 447.780 -.270 .000 1.096 

 

The Kolmogorov-Smirnov value was adopted to test for the normality of the 

residuals. In Table 14, the p-value of 0.000 is smaller than 0.05, which  implies that the 

residuals are not normally distributed. Moreover, in Figures 25 (a) and (b), the 

standardized residuals histogram and the Q-Q plot also verify that the initial model’s 

residuals are not normally distributed.  

The residual plot tested whether the residuals have the constant variance to 

check for homoscedasticity, as shown in Figure 26. The fan-shaped residuals plot 

determined that the residuals have demonstrated a trend (i.e., that there is no dispersion 

based on the regression line). This means that the residuals’ variance is not constant. 
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In conclusion, these results, the residuals analyses, and the test all prove that the 

dependent variable needed a transformation. 

 

Table 14. Test of Normality for Initial TWIA Claim Payout Regression Model 

Tests of Normality 

 Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

PDL .190 500 .000 .734 500 .000 

a. Lilliefors Significance Correction 

 

 

    (a)                               (b) 

Figure 25. Q-Q plot and Histogram of Residuals for Initial TWIA Claim Payout 

Regression Model 
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Figure 26. Residuals Plot for Initial TWIA Claim Payout Regression Model 

 

5.2.4 Transformation of Dependent Variable 

The TWIA claim payout was transformed by a natural log. The transformed 

dependent variable is as follows: 

 

Transformed PDL = Log (TWIA Claim Payout ($)) 

 

After the log transformation of the dependent variable, the Kolmogorov-

Smirnov value shows that the transformed model’s residuals are normally distributed 

because the P-value of 0.200 is higher than 0.05, as seen in Table 15. Moreover, the 
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standardized residuals histogram and the Q-Q plot also confirm that the transformed 

model’s residuals are normally distributed, as shown in Figure 27. 

The residual plot checks the homoscedasticity, as shown in Figure 28. The 

residuals are randomly spread without any systematic patterns. This represents that the 

residuals’ variance is constant. 

 

Table 15. Test of Normality for Transformed TWIA Claim Payout Regression Model 

Tests of Normality 

 Kolmogorov-Smirnov Shapiro-Wilk 
Statistic df Sig. Statistic df Sig. 

Log_PDL .028 500 .200* .993 500 .029 
a. Lilliefors Significance Correction 
*. This is a lower bound of the true significance. 

 
 
 

                 (a)                                   (b) 

Figure 27. Q-Q Plot and Histogram of Residuals for Transformed TWIA Claim Payout 

Regression Model 
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Figure 28. Residuals Plot for Transformed TWIA Claim Payout Regression Model 

 

5.2.5 Multiple Linear Regression Analysis 

The backward elimination method was used to find the best-fit regression model. 

Table 16 includes a summary of the transformed TWIA claim payout regression model. 

The model is statistically significant because the P-value of 0.000 is less than 0.05, 

which represents that independent variables and the dependent variable have a 

significant linear relationship. Also, the null hypothesis which states that there is no 

linear relationship between the independent variables and the dependent variable can be 

rejected. Thus, the regression model is allowed to predict the transformed dependent 

variable. 
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The adjusted R-square of 0.401 indicates that  the transformed dependent 

variable can be explained with 40.1% of variability by the significant variables (i.e., max. 

sustained wind speed, the right side of the hurricane track, building age, building floor 

area, appraised value of building, hurricane surge zones, and distance from the property 

centroid to shoreline). On the other hand, this study disregards the rest of the variability 

of 59.9%. The remainder could be explained by some unidentified variables. 

 

Table 16. Summary of Transformed TWIA Claim Payout Regression Model 

Model Sum of Squares df Mean  
Square F Sig. R2 Adj-R2 

Regression 32.628 7 4.661 48.721 .000 .409 .401 

Residual 47.071 492 .096 
    

Total 79.699 499 
     

1. Predictors: (Constant), Dist_Shore, Imp_Value, Wind_Speed, Age, Side_Right, 
Area, Surge_Zones  

2. Dependent Variable: Log_PDL 
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Table 17. Coefficients of Transformed TWIA Claim Payout Regression Model 

Model β Std. 
Error Beta Sig. VIF 

Constant 2.973 .269  .000  

Hurricane Indicators      

Max. sustained wind speed .019 .007 .099 .007 1.130 

Right side of the hurricane track .100 .039 .109 .011 1.506 

Built Environment Vulnerability Indicators     

Building age .007 .001 .317 .000 1.246 

Building floor area .000 .000 .169 .000 1.537 

Appraised value of building 1.526E-6 .000 .448 .000 1.808 

Geographical Vulnerability Indicators 

Hurricane surge zones -.111 .017 -.295 .000 1.741 

Distance from shoreline -5.254E-6 .000 -.087 .090 2.208 

 

Table 17 illustrates a summary of the coefficients for the transformed TWIA 

claim payout regression model. The seven significant predictors include: (1) max. 

sustained wind speed, (2) the right side of the hurricane track, (3) building age, (4) 

building floor area, (5) appraised value of the building, (6) hurricane surge zone, and (7) 

distance from the building property to the shoreline; each were identified as able to 

predict the transformed claim payout. The FEMA flood zones, however, were eliminated 

because the P-value was higher than 0.10. The Variance Inflation Factor (VIF) ranged 
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from 1.130 to 2.208. These values verify that the individual predictors have no serious 

multicollinearity. 

The beta coefficients, also called the standardized coefficients, were used to 

determine which independent variables have a significant influence on the claim payout; 

they ranged from 0 to 1,  reflecting when the variables have different units. Following 

the amount of the coefficients, the rank was listed in sequence: (1) the appraised value of 

building, (2) building age, (3) hurricane surge zone, (4) building floor area, (5) right side 

of the hurricane track, (6) maximum sustained wind speed, and (7) distance from 

property centroid to the shoreline. 

Based on the unstandardized coefficients, a multiple linear regression model was 

created with seven predictors to predict the transformed claim payout, as shown in 

Equations (5) and (6). The model can explain a 40.9% variability of the transformed 

dependent variable. 

Based on Equation (5), the interpretation of the unstandardized coefficients in 

the regression model are as follows: 

1. β1 �  is 0.019 which implies that if the maximum sustained wind speed 

increases by 1 m/s, the log transformed claim payout  increases by 1.9. 

2. β2 �  is 0.100 which implies that if a building is located on the right side of 

the hurricane track,  the log transformed claim payout increases by 10. 

3. β3 �  is 0.007 which implies that if the building age increases by 1, the log 

transformed claim payout increases by 0.7. 
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4. β4 �  is 2.522E-4 which implies that if the building floor area increases by 

1 m2, the log transformed claim payout increases by 0.025. 

5. β5 �  is 1.526E-6 which implies that if the appraised value of the building 

increases by $1, the log transformed claim payout increases by 0.00015. 

6. β6 �  is -0.111 which implies that if the hurricane surge zone number 

increases by 1, the log transformed claim payout decreases by -11.1. 

7. β7 �  is -5.254E-6 which implies that if the distance from the property 

centroid to the shoreline increases by 1, the log transformed claim payout  

decreases by -0.0005254. 

 

Log (Predicted TWIA Claim Payout ($))  =   2.973 +  (Wind_Speed ∗  0.019)  +

 (Side_Right ∗  0.100)  +  (Age ∗  0.007)  +  (Area ∗  2.522E − 4)  + (Imp_Value ∗

 1.526E − 6)  +   (Surge_Zones ∗   − 0.111)  +  (Dist_Shore ∗  −5.254E − 6)   

                              (5) 

Predicted TWIA Claim Payout ($)

= e

2.973+ �WindSpeed∗ 0.019�+ �SideRight∗ 0.100�+ (Age ∗ 0.007)+ (Area ∗ 2.522E−4)+ 
(ImpValue∗ 1.526E−6)+ 

 (Surge_Zones ∗  − 0.111) + (Dist_Shore ∗ −5.254E−6)   

  (6) 
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5.3 Ratio Regression Model 

5.3.1 Scatter Plots 

The scatter plot of the ratio versus the maximum sustained wind speed is shown 

in Figure 29. This Figure shows a positive relationship which means that as the 

maximum sustained wind speed increases, the ratio also increases. The intercept, also 

called the starting value, of -0.135 means that when the wind speed is 0 m/s, the ratio is -

0.135($/$). The slope, also called the rate of change, of 0.007 indicates that if the 

maximum sustained wind speed increases by 1 m/s, the ratio increases by 0.007($/$). 

The R-square of 0.016 signifies that this relationship can be explained with a 1.6% 

margin of variance. In addition, the P-value of 0.005 is less than 0.05, which represents 

that the relationship is significant. 

 

 

• Intercept : -0.135 
• Slope : 0.007 
• R-square : 0.016 
• P-value : 0.005 

 

 

 

 

 

Figure 29. Scatter Plot of Ratio vs. Max. Sustained Wind Speed (m/s) 
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Figure 30 shows the ratio versus the right side of the hurricane track. The right 

side of the hurricane track is a dummy variable, represented by 0 or 1. If a building is 

located on the right side of the hurricane track, it is assigned the dummy variable 1. If a 

buildings is located on the left side of the hurricane track, it is assigned the dummy 

variable 0. The two variables have a positive relationship which reveals that the ratio 

increases if the building is located on the right side of the hurricane track. The intercept 

of 0.094 means that when the building is located on the left side of the hurricane track, 

the ratio is 0.094 ($/$). The slope of 0.029 indicates that if the building is located on the 

right side of the hurricane track,  the ratio increases by 0.029($/$). The R-square of 

0.013 signifies that this relationship can be explained with a 1.3% margin of variance. 

The P-value of 0.011 is less than 0.05, which shows that the two variables have a 

significant relationship. 

 

• Intercept : 0.094 
• Slope : 0.029 
• R-square : 0.013 
• P-value : 0.011 

 

 

 

 

 

Figure 30. Scatter Plot of Ratio vs. the Right Side of the Hurricane Track 
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 Figure 31 represents the relationship between the ratio and the building age. It 

shows a positive relationship which means that as the building age increases, the ratio 

increases. The intercept of 0.035 means that when the building age is 0, the ratio is 0.035 

($/$). The slope of 0.002 indicates that if the building age increases by 1, the ratio 

increases by 0.002($/$). The R-square of 0.100 explains that there is a 10% margin of 

variance in the relationship between the variables. The two variables have a significant 

relationship because the P-value of 0.000 is higher than 0.05.  

 

 

• Intercept : 0.035 
• Slope : 0.002 
• R-square : 0.100 
• P-value : 0.000 

 

 

 

 

 

Figure 31. Scatter Plot of Ratio vs. Building Age 
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The relationship between the ratio versus the building floor area is illustrated in 

Figure 32. The scatter plot displays a negative relationship which indicates that as the 

building floor area increases, the ratio decreases. The intercept of 0.111 represents that 

when the building floor area is 0, the ratio is 0.111 ($/$). The slope of -2.504E-5 implies 

that if the building floor area increases by 1 m2, the ratio decreases by -2.504E-5($/$). 

The R-square of 0.004 signifies that this relationship can be explained with a 0.4% 

margin of variance. The P-value of 0.173 is higher than 0.05 which confirms that the two 

variables do not have a significant relationship. 

 

 

• Intercept : 0.111 
• Slope : -2.504E-5 
• R-square : 0.004  
• P-value : 0.173 

 

 

 

 

 

Figure 32. Scatter Plot of Ratio vs. Building Floor Area (m2) 
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Figure 33 shows the ratio versus the FEMA flood zones. The FEMA flood zones 

are represented by ordinal variables ranging from 0 to 3. The variable 0 means that the 

zone is unregistered. The variable 1 signifies that the area is categorized in the FEMA 

flood zone X. The variable 2 signifies that the area is categorized in the FEMA flood 

zone X500. The variable 3 signifies that the area is categorized in the FEMA flood zone 

A. The two variables have a positive relationship which reveals that as the FEMA flood 

zone number increases, the ratio increases. The intercept of 0.085 means that when the 

building is located in the unregistered zone, the ratio is 0.085 ($/$). The slope of 0.008 

indicates that if the  FEMA flood zone number increases by 1, the ratio increases by 

0.008 ($/$). The R-square of 0.005 illustrates that there is a 0.5% margin of variance in 

the relationship between the variables. The P-value of 0.109 is higher than 0.05 which 

reveals that the relationship is not significant.  

 

• Intercept : 0.085 
• Slope : 0.008 
• R-square : 0.005 
• P-value : 0.109 

 

 

 

 

 

 

Figure 33. Scatter Plot of Ratio vs. FEMA Flood Zones 
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 The relationship between the ratio and the hurricane surge zones are illustrated 

in Figure 34. The hurricane surge zones are represented by ordinal variables ranging 

from 0 to 5. The scatter plot shows a negative relationship which means that as the 

hurricane surge zone number increases, the ratio decreases. The intercept of 0.178 

represents that when the hurricane surge zone is 0, the ratio is 0.178 ($/$). The slope of -

0.025 implies that if the hurricane surge zone number increases by 1, the ratio decreases 

by 0.025($/$). The R-square of 0.058 signifies that this relationship can be explained 

with a 5.8% margin of variance. The P-value of 0.000 is less than 0.05, which verifies 

that the two variables have a significant relationship. 

 

 

• Intercept : 0.178 
• Slope : -0.025 
• R-square : 0.058 
• P-value : 0.000 

 

 

 

 

 

Figure 34. Scatter Plot of Ratio vs. Hurricane Surge Zones 
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Figure 35 represents the relationship between the ratio and the distance from the 

property centroid to the shoreline. This shows a negative relationship which means that 

as the distance from the property centroid to the shoreline increases, the ratio decreases. 

The intercept of 0.114 means that when the distance from the property centroid to the 

shoreline is 0, the ratio is 0.114 ($/$). The slope of -2.829E-6 indicates that if the 

distance from the property centroid to the shoreline increases by 1 m, the ratio decreases 

by -2.829E-6($/$). The R-square of 0.029 explains that there is a 2.9% margin of 

variance in the relationship between the variables. The two variables have a significant 

relationship because the P-value of 0.000 is less than 0.05.  

 

 

• Intercept : 0.114  
• Slope : -2.829E-6 
• R-square : 0.029 
• P-value : 0.000 

 

 

 

 

 

Figure 35. Scatter Plot of Ratio vs. Distance from the Property Centroid to Shoreline 
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5.3.2 Correlation Analysis 

Table 18 shows the summary of the correlation results with the ratio and the 

continuous variables. A Pearson Correlation analysis was used to test the continuous 

variables. Each result shows the relationship between the two variables used in the test. 

The building floor area is the only variable that has an insignificant relationship with the 

ratio. Other variables (i.e., max. sustained wind speed, building age, and distance from 

the property centroid to shoreline) have significant relationships with the ratio. The sign 

of the coefficients determine whether the relationship is positive or negative, and the 

coefficients indicate the amount of the linear relationship, with a range of +1 to -1. 

Table 19 displays the summary of correlation results with the ratio and ordinal 

variables. Spearman's rho Correlation analysis was used to test the ordinal variables. 

Each result represents the relationship between two variables. The right side of the 

hurricane track is the only variable that has an insignificant relationship with the ratio. 

The FEMA flood zones and hurricane surge zones both have significant relationships 

with the ratio. The sign of the coefficients determine whether the relationship is positive 

or negative, and the coefficients indicate the amount of the linear relationship, with a 

range of +1 to -1. 
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Table 18. Results of Pearson Correlation Analysis 

 Ratio 
($/$) 

Wind_Speed 
(m/s) 

Age 
Area 
 (m2) 

Dist_Shore 
(m) 

Ratio 
($/$) 

Pearson Correlation 1 .126** .316** -.061 -.171** 

Sig. (2-tailed)  .005 .000 .173 .000 

Wind_Speed 
(m/s) 

Pearson Correlation .126** 1 .040 -.057 -.183** 

Sig. (2-tailed) .005  .375 .199 .000 

Age 
Pearson Correlation .316** .040 1 -.123** -.062 

Sig. (2-tailed) .000 .375  .006 .167 

Area 
(m2) 

Pearson Correlation -.061 -.057 -.123** 1 .044 

Sig. (2-tailed) .173 .199 .006  .322 

Dist_Shore 
(m) 

Pearson Correlation -.171** -.183** -.062 .044 1 

Sig. (2-tailed) .000 .000 .167 .322  

**. Correlation is significant at the 0.01 level (2-tailed). 
   *. Correlation is significant at the 0.05 level (2-tailed). 
 

      Table 19. Results of Spearman's Correlation Analysis 

 Ratio 
($/$) 

FEMA_Zones Surge_Zones Side_Right 

 Ratio 
($/$) 

Spearman's rho Correlation  1.000 .153** -.342** .066 

Sig. (2-tailed) . .001 .000 .140 

FEMA_Zones 
Spearman's rho Correlation  .153** 1.000 -.521** -.243** 

Sig. (2-tailed) .001 . .000 .000 

Surge_Zones 
Spearman's rho Correlation  -.342** -.521** 1.000 .071 

Sig. (2-tailed) .000 .000 . .114 

Side_Right 
Spearman's rho Correlation  .066 -.243** .071 1.000 

Sig. (2-tailed) .140 .000 .114 . 
**. Correlation is significant at the 0.01 level (2-tailed). 

  *. Correlation is significant at the 0.05 level (2-tailed). 
 



 

81 

 

5.3.3 Initial Multiple Regression Analysis and Checking Assumptions 

The backward elimination method was used to find the best-fit regression model. 

Table 20 provides a summary of the initial ratio regression model. The model is 

statistically significant because the P-value of 0.000 is less than 0.05. The adjusted R-

square of 0.198 verifies that  the independent variables can explain the 19.8% 

variability of the ratio. Table 21 shows the coefficients of the initial ratio regression 

model. There are four significant variables (i.e., the right side of the hurricane track, 

building age, hurricane surge zones, and distance from the property centroid to 

shoreline). However, it was necessary to check the linear regression assumptions before 

making interpretations. 

 

Table 20. Summary of Initial Ratio Regression Model 

Model Sum of 
Squares f Mean 

Square F Sig. R2 Adj-
R2 

Regression 1.236 4 .309 31.853 .000 .205 .198 

Residual 4.804 495 .010 
    

Total 6.040 499 
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Table 21. Coefficients of Initial Ratio Regression Model 

Model β Std. 
Error Beta Sig. VIF 

Constant .089 .017  .000  

Hurricane Indicators      

Right side of hurricane track 
.057 .012 .226 000 1.438 

Built Environment Vulnerability Indicators      

Building age 
.002 .000 .340 000 1.022 

Geographical Vulnerability Indicators 

Hurricane surge zones 
-.020 .005 -.195 000 1.685 

      Distance from shoreline -2.419E-6 .000 -.146 .014 2.180 

 

The Kolmogorov-Smirnov value was adopted to test for the normality of the 

residuals. In Table 22, the P-value of 0.000 is smaller than 0.05, which means that the 

residuals are not normally distributed. Moreover, in Figures 36 (a) and (b), the 

standardized residuals histogram and the Q-Q plot also shows that the initial model’s 

residuals are not normally distributed.  

The residual plot tests whether the residuals have the constant variance to check 

for homoscedasticity, as shown in Figure 37. The fan-shaped residuals plot determines 

that the residuals have a trend; there is no dispersion based on the regression line. This 

represents that the residuals’ variance is not constant. 
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In summary, these results, the residuals analyses, and the test all confirm that the 

dependent variable needs a transformation. 

 

Table 22. Test of Normality for Initial Ratio Regression Model 

Tests of Normality 

 Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Ratio .218 500 .000 .698 500 .000 

a. Lilliefors Significance Correction 
 

 

 

 
  

 

 

 

 

            

(a)                                      (b) 

Figure 36. Q-Q plot and Histogram of Residuals for Initial Ratio Regression 

Model 
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Figure 37. Residuals Plot for Initial Ratio Regression Model 

 

5.3.4 Transformation of Dependent Variable 

The ratio was transformed by a natural log. The transformed dependent variable 

is as follows: 

 

Transformed Ratio = Log ( TWIA Property Damage Loss ($) 
Building Appraised Value ($)

 ) 

 

After the log transformation of the dependent variable, the Kolmogorov-

Smirnov value shows that the transformed model’s residuals are normally distributed 

because the P-value of 0.200 is higher than 0.05, as seen in Table 23. Furthermore, the 
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standardized residuals histogram and the Q-Q plot also show that the transformed 

model’s residuals are normally distributed, as shown in Figure 38. 

The residual plot checks the homoscedasticity, as shown in Figure 39. The 

residuals are randomly spread without any systematic patterns. This represents that the 

residuals’ variance is constant. 

 

Table 23. Test of Normality for Transformed Ratio Regression Model 

Tests of Normality 
 Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
Log_Ratio .028 500 .200* .996 500 .323 

a. Lilliefors Significance Correction 
*. This is a lower bound of the true significance. 
 
 
 
 

 

 

 

 

 

          

(a)                                    (b) 

Figure 38. Q-Q plot and Histogram of Residuals for Transformed Ratio Regression 

Model 
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Figure 39. Residuals Plot for Transformed Ratio Regression Model 

 

5.3.5 Multiple Linear Regression Analysis 

The backward elimination method was utilized to find the best-fit regression 

model. Table 24 provides a summary of the transformed ratio regression model. The 

model is statistically significant because the P-value of 0.000 is less than 0.05. This 

means that the independent variables and the dependent variable have a significant linear 

relationship. Also, the null hypothesis which states that there is no linear relationship 

between the independent variables and the dependent variable can be rejected. Therefore, 

the multiple linear regression model is able to predict the transformed dependent 

variable. 
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The adjusted R-square is 0.337, which indicates that 33.7% of the variability in 

the transformed dependent variable can be explained with the significant predictors (i.e., 

the right side of the hurricane track, building age, hurricane surge zones, and distance 

from the building property to shoreline). However, this study does not address that the 

rest of the variability, 66.3%, could be explained by unidentified variables. 

  

Table 24. Summary of Transformed Ratio Model 

Model Sum of 
Squares df Mean 

Square F Sig. R2 Adj-R2 

Regression 26.089 4 6.522 64.471 .000 .343 .337 

Residual 50.078 495 .101 
    

Total 76.168 499 
     

1. Predictors: (Constant), Dist_Shore, Age, Side_Right, Surge_Zones 
2. Dependent Variable: Log_Ratio 

 

Table 25 shows the summary of coefficients for the transformed ratio regression 

model. The four significant predictors – (1) the right side of the hurricane track, (2) the 

building age, (3) the hurricane surge zone, and (4) the distance from the property 

centroid to the shoreline - were identified to predict the transformed ratio. The FEMA 

flood zones, maximum sustained wind speed, and building floor area were eliminated 

because the P-value was higher than 0.10. The range of the Variance Inflation Factor 



 

88 

 

(VIF) was from 1.022 to 2.180. These values verify that the individual predictors have 

no serious multicollinearity. 

The beta coefficients, also called standardized coefficients, ranged from 0 to 1 

and were used to determine which independent variables have a significant influence on 

the ratio  when the variables have different units. Following the amount of the 

coefficients, the rank is in sequence: (1) building age, (2) hurricane surge zone, (3) right 

side of the hurricane track, and (4) distance from property centroid to the shoreline. 

 

Table 25. Coefficients of Transformed Ratio Regression Model 

Model β Std. 
Error Beta Sig. VIF 

Constant -1.167 .055  .000  

Hurricane Indicators      

        Right side of hurricane track 
.200 .039 .223 .000 1.438 

Built Environment Vulnerability Indicators 

        Building age 
.010 .001 .441 .000 1.022 

Geographical Vulnerability Indicators 

        Hurricane surge zones 
-.112 .017 -.305 .000 1.685 

        Distance from shoreline 
-8.605E-6 .000 -.146 .007 2.180 

 

Based on the coefficients, a multiple linear regression model was created with 

four  significant predictors to predict the transformed ratio, as shown in Equations (7) 
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and (8). The models can explain the 34.3% variability of the transformed dependent 

variable. 

 

Log �Predicted Ratio �$
$
�� = − 1.167 +  (Side_Right ∗  0.200) + (Age ∗  0.010) +

 (Surge_Zones ∗   − 0.112) +  (Dist_Shore ∗  − 8.605E − 6)        (7)

                        

Predicted Ratio �
$
$
�

= e− 1.167 + (Side_Right ∗ 0.200) + (Age ∗ 0.010) + (Surge_Zones ∗  − 0.112) + (Dist_Shore ∗ − 8.605E−6) 

                (8)

  

Based on Equation (7), the interpretations of the coefficients in the regression 

model are as follows: 

1. β1 �  is 0.200 which implies that if the building is located on the right side 

of the hurricane track,  the log transformed ratio increases by 20. 

2. β2 �  is 0.010 which implies that if the building age increases by 1, the log 

transformed ratio increases by 1. 

3. β3 �  is -0.112 which implies that if the hurricane surge zone number 

increases by 1, the log transformed ratio decreases by -11.2. 
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4. β4 �  is -8.605E-6 which implies that if the distance from the property 

centroid to the shoreline increases by 1 m, the log transformed ratio 

decreases  by 0.0008605. 

 

5.4 Discussion 

5.4.1 Comparison between the Two Models 

In both models, multiple linear regression analysis was adopted to predict the 

TWIA claim payout and the ratio and establish the multiple linear regression models.  

In turn, the models were used to determine the magnitude and identify the significant 

indicators. Natural log transformation was used to transform the dependent variables for 

abnormal distribution and uneven variance. The two models for the claim payout and 

ratio violated the linear regression assumptions, the normality, and the homoscedasticity. 

This was confirmed by following the standardized residuals histograms, the Q-Q plots, 

and the residual scatter plots. Hence, the dependent variables were transformed as 

follows: 

 

Transformed PDL = Log (TWIA claim payout ($)) 

Transformed Ratio = Log ( TWIA claim payout($) 
Building appraised value ($)

 ) 

 

After the log transformation of the dependent variables, the regression models 

were seen to be significant because the P-values from the ANOVA table are less  than 
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0.05. Moreover, the standardized residuals histograms, the Q-Q plots, and the residual 

scatter plots demonstrate that the transformed model’s residuals are normally distributed 

and the residuals’ variance is constant. Hence, these results prove that the data’s 

robustness and the multiple linear regression models are statistically significant to test 

the hypotheses of this study. 

On the other hand, the models have different significant predictors and adjusted 

R-squares. The TWIA claim payout regression has seven significant predicators: 

maximum sustained wind speed, the right side of the hurricane track, building age, 

building floor area, appraised value of the building, hurricane surge zone, and distance 

from the property centroid to the shoreline. The model’s adjusted R-square is 0.401, 

which indicates that  40.1% of the variability in the transformed dependent variable can 

be explained by the significant variables.  The ratio regression has four significant 

predicators: the right side of the hurricane track, building age, hurricane surge zone, and 

distance from the property centroid to the shoreline. The model’s adjusted R-square is 

0.337, which indicates that  33.7% of the variability in the transformed dependent 

variable can be explained by the significant predictors. 

 

5.4.2 Validity of the Two Models 

In this study, the backward elimination method was utilized to find the best-fit 

multiple linear regression model and to identify the significant predicators. In The TWIA 

claim payout regression, seven indicators were seen to be significant as predicators of 

the transformed dependent variable. The range of the Variance Inflation Factor (VIF), 
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from1.130 to 2.208, also confirms that the individual predictors have no serious 

multicollinearity. The model’s adjusted R-square of 0.401 indicates that the transformed 

dependent variable can be explained with 40.1% of variability by the significant 

independent variables. Figure 40 shows a scatter plot of the actual log-transformed 

TWIA claim payout versus the predicted log TWIA claim payout. 

 

 

 

Figure 40. Actual vs. Predicted Log TWIA Claim Payout ($) 

 

In the ratio regression, four indicators were seen to be significant as predicators 

for the transformed dependent variable. The range of the Variance Inflation Factor (VIF), 

from 1.022 to 2.180, verifies that the individual predictors have no serious 

multicollinearity. The model’s adjusted R-square, 0.337, indicates that the transformed 

dependent variable can be explained with 33.7% of variability by the significant 
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independent variables. Figure 41 shows a scatter plot of the actual log-transformed ratio 

versus the predicted log ratio. 

 

 

Figure 41. Actual vs. Predicted Log Ratio ($/$) 
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6. CONCLUSIONS 

 

With growing public awareness of hurricane danger and with tremendous 

demands for damage analysis, many researchers have conducted studies to develop 

hurricane damage prediction methods. However, to date there has been no 

comprehensive research directed towards identifying the relationships among 

vulnerabilities, hurricanes, and the economic loss of individual commercial buildings. To 

fill this gap, this research has identified vulnerability indicators and hurricane indicators, 

developed metrics to measure the influence of economic losses from hurricanes, and 

visualized the spatial distribution of vulnerability to evaluate overall hurricane damage. 

In this research, TWIA claim payouts from Hurricane Ike were used as the 

dependent variable to predict the actual financial damage and ratio and to decide the 

magnitude and significance of the indicators. Geographical vulnerability indicators, built 

environment vulnerability indicators, and hurricane indicators were used as independent 

variables.  

The models and findings produced in this study could provide vital references 

for government agencies, emergency planners, and insurance companies seeking to 

predict hurricane damage. This research may help analyze damage and reduce financial 

loss. Moreover, this study defines hurricane-prone areas and the distribution of hurricane 

losses in an effort to reduce the perceived risks for residents who live in hurricane 

vulnerable areas. 
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6.1 Results and Interpretations 

6.1.1 TWIA Claim Payout Record 

This study considered improved commercial buildings in Texas coastal counties 

that had received insured claim payouts from the Texas Windstorm Insurance 

Association (TWIA) resulting from Hurricane Ike.  The observational unit ranged from 

17 August 2008 to 22 February 2012.  

According to the claim payout records, the total claim payout was $450,518,330 

and the total number of claims was 4,150. Galveston County received the most damage 

from Hurricane Ike in both the dollar amount of damage ($255,333,818; 56.68%) and 

the number of claims (1,807; 43.54%). Therefore, we recognized from the distribution of 

the damages that Galveston county is the most hurricane-prone area in the Texas coastal 

counties. 

 

6.1.2 Correlation Results 

A Pearson Correlation analysis was conducted to check the correlation between 

the dependent variables and the continuous variables. The correlation results between the 

maximum sustained wind speed and the dependent variables are similar. In both cases, 

the wind speed  and the dependent variables have positive relationships because the P-

values are less than 0.05. However, the value of the correlation shows that the claim 

payout has a stronger correlation with the wind speed than the ratio. The distance from 

the property centroid to the shoreline has a similar correlation. The distance and the 

dependent variables have negative relationships because the P-values are less than 0.05. 
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Nevertheless, the value of the correlation shows that the claim payout is more negatively 

correlated with the distance than the ratio. 

On the other hand, the building age is not significantly correlated with the claim 

payout, while the relationship with the ratio is positively significant. The building floor 

area also has different relationships among the dependent variables. The building floor 

area is positively correlated with the claim payout, while the relationship with the ratio is 

not significant. The appraised value of the building is positively correlated with the 

claim payout.  

Spearman's rho Correlation analysis test was used to check the correlation 

between the dependent variables and ordinal variables. The correlations between the 

FEMA flood zones and the dependent variables have similar correlation results. In both 

cases, the FEMA flood zones have positive relationships because the P-values are less 

than 0.05. However, the value of the correlation representing the claim payout is more 

closely correlated with the FEMA flood zones than the ratio. The hurricane surge zones 

also have similar relationships with the dependent variables. The hurricane surge zones 

have negative relationships with the dependent variables because the P-values are less 

than 0.05. Nonetheless, the values of the correlations indicate that the ratio has a stronger 

negative correlation with the hurricane surge zones than the claim payout. However, The 

right side of the hurricane track is not statically correlated with the dependent variables 

because the P-value is larger than 0.05 in both cases. 
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In summary, in accordance with the correlation results, the claim payout 

increases as the maximum sustained wind speed, the building floor area, the appraised 

value of the building, and the FEMA flood zone number increases. Otherwise, the claim 

payout decreases as the distance from the property centroid to the shoreline and the 

hurricane surge zone number increases. The ratio increases as the maximum sustained 

wind speed, the building age, and the FEMA flood zone number increases. Meanwhile, 

the ratio decreases as the distance from the property centroid to the shoreline and the 

hurricane surge zone number increases. 

 

6.1.3 Regression Models 

In the TWIA claim payout prediction model, the model is statistically significant 

because the P-value of 0.000 is less than 0.05, which means that the independent 

variables could predict the TWIA claim payout. The adjusted R-square of 0.401 

represents that the 40.1% of variability in the transformed dependent variable can be 

explained by the significant variables. Checking the P-values reveal seven significant 

variables: maximum sustained wind speed, the right side of the hurricane track, building 

age, building floor area, appraised value of the building, hurricane surge zone, and 

distance from the property centroid to the shoreline. In this phase, the FEMA flood zones 

were rejected due to the high P-value. Following the values of the standardized 

coefficients, the significant variables also measured the magnitude of the dependent 

variable. Therefore, the claim payout can be measured by using the prediction model, as 

follows: 
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Log (Predicted TWIA Property Damage Claim Payout ($))  =

  2.973 +  (Wind_Speed ∗  0.019)  +  (Side_Right ∗  0.100)  +  (Age ∗  0.007)  +

 (Area ∗  2.522E − 4)  +  (Imp_Value ∗  1.526E − 6)  +   (Surge_Zones ∗

  − 0.111)  + (Dist_Shore ∗  −5.254E − 6)    

 

In the prediction model,  

1. The maximum sustained wind speed has a positive relationship with the 

TWIA claim payout, which means that if the maximum sustained wind speed 

increases, the claim payout increases. This result supports the results of the 

previous studies that wind speed is a significant indicator of hurricane 

damages and is useful for predicting hurricane damages (Burton 2010; 

Dunion et al. 2003; Powell and Houston 1998; Powell et al. 1998).  

2. The right side of the hurricane track has a positive relationship with the 

TWIA claim payout, which means that if a building is located on the right 

side of the hurricane track, the claim payout increases. This result reinforces 

former studies that a building located on the right side of the hurricane track 

usually has more damage than one on the left side of the hurricane track, in 

the Northern Hemisphere (Keim et al. 2007; Noel et al. 1995), and confirms 

that the variable is a critical indicator for hurricane damage prediction. 

3. Building age has a positive relationship with the TWIA claim payout, which 

means that if the building age increases, the claim payout also increases. This 
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result proves former study that the building age is a significant variable for 

predicting hurricane damage (Highfield et al. 2010). 

4. Building floor area has a positive relationship with the TWIA claim payout, 

which means that if the building floor area increases, the claim payout 

increases. This result corroborates previos study which conclude that this 

variable is one of the indicators for measuring hurricane damage (Dehring 

and Halek 2006). 

5. Appraised value of the building has a positive relationship with the TWIA 

claim payout, which means that if this value increases, the claim payout also 

increases. This result confirms that the appraised value of the building is a 

significant indictor in assessing the damage from hurricanes. 

6. Hurricane surge zone has a negative relationship with the TWIA claim payout, 

which means that if the hurricane surge zone number increases, the claim 

payout decreases. This result verifies that the hurricane surge zone is a useful 

indicator for predicting hurricane damage. 

7. Distance from the property centroid to the shoreline has a negative 

relationship with the TWIA claim payout, which means that if the distance 

increases, the claim payout decreases. This result confirms former study that 

the distance is related to the damage and is a significant variable for 

predicting hurricane damage (Highfield et al. 2010). 
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The ratio prediction model is statistically significant because the P-value of 0.000 

is less than 0.05. This proves that the independent variables could predict the ratio. The 

adjusted R-square of 0.337 verifies that 33.7% of the variability in the transformed 

dependent variable can be explained by the significant predictors. Checking the P-values 

reveal four significant variables: the right side of the hurricane track, building age, 

hurricane surge zone, and distance from the property centroid to the shoreline. In this 

phase, the maximum sustained wind speed, FEMA flood zone, and building floor area 

were all rejected due to high P-values. Following the values of the standardized 

coefficients, the significant variables also measured the magnitude of the dependent 

variable. Therefore, the ratio can be measured by using the prediction model, as follows: 

 

Log �Predicted Ratio � TWIA Claim Payout  ($)
Building Appraised Value ($)

�� = − 1.167 + (Side_Right ∗

 0.200) +  (Age ∗  0.010) +  (Surge_Zones ∗   − 0.112) +  (Dist_Shore ∗  − 8.605E −

6)   

 

In the prediction model,  

1. The right side of the hurricane track has a positive relationship with the ratio, 

which means that if a building is located on the right side of the hurricane 

track, the ratio increases. This result reinforces former studies which found 

that a building located on the right side of the hurricane track usually has 

more damage than one located on the left side of the hurricane track, in the 
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Northern Hemisphere (Keim et al. 2007; Noel et al. 1995), and verifies that 

the variable is a critical indicator for hurricane damage prediction. 

2. Building age has a positive relationship with the ratio, which means that if 

the building age increases, the ratio also increases. This result confirms 

former study that building age is a critical variable for predicting hurricane 

damage (Highfield et al. 2010). 

3. Hurricane surge zone has a negative relationship with the ratio, which means 

that if the hurricane surge zone number increases, the ratio decreases. This 

result verifies that hurricane surge zones are a useful indicator for predicting 

hurricane damage. 

4. Distance from the property centroid to the shoreline has a negative 

relationship with the ratio, which means that if the distance increases, the 

ratio decreases. This result confirms former study that the distance is related 

to the hurricane damage, and is a significant variable for predicting hurricane 

damage (Highfield et al. 2010). 

 

In two prediction models, there are four common predictors:  

1. Right side of the hurricane track 

2. Building age  

3. Hurricane surge zone  

4. Distance from the property centroid to the shoreline 
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Maximum sustained wind speed and building floor area are insignificant 

predictors in the ratio model. Appraised value of the building is significant in the TWIA 

claim payout model. 

On the other hand, the prediction models are both statistically significant. In 

addition, the ranks of the standardized and unstandardized coefficients and the 

magnitude of the standardized coefficients are similar, and the sign of the unstandardized 

coefficient is the same in each of the predictors.  Besides, the results of this research are 

similar to those of previous studies. In summary, the TWIA claim payout and the ratio 

could be predicted by the significant predictors and the results here enhance those of 

previous studies. Additionally, the findings and models could be beneficial to public 

works and government agencies, emergency planners, and insurance companies in the 

field of hurricane damage prediction. 

 

6.2 Recommendations 

The adjusted R-square values  of  the claim payout and the ratio are 0.401 and 

0.337, respectively, which means that the rest of the variability could be explained by 

some unidentified variables.  Consequently,  it would be valuable to come up with 

prospective indicators and make additions to find the best-fit regression model. 

This study only considered improved commercial buildings in Texas coastal 

counties. The results and findings would likely be different with residential properties. 

Future studies will need to include residential properties to strengthen the results and 

findings. In addition, the hurricane damages considered were only those resulting from 
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Hurricane Ike. Therefore, it would be worthwhile to study various other categories of 

hurricanes in the future. 

Moreover, using the developed methodology and indicators in this study, it 

should be possible to predict hurricane damage for other hurricane-prone areas such as 

Florida, South Carolina, North Carolina, Alabama, and  Louisiana. 
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