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ABSTRACT

We consider a two-way relay channel in which two transmitters want to exchange

information through a central relay. The relay observes a superposition of the trans-

mitted signals from which a function of the transmitted messages is computed for

broadcast. We consider the design of codebooks which permit the recovery of a func-

tion at the relay and derive information-theoretic bounds on the rates for reliable

decoding at the relay.

In the spirit of compute-and-forward, we present a multilevel coding scheme that

permits reliable computation (or, decoding) of a class of functions at the relay. The

function to be decoded is chosen at the relay depending on the channel realization.

We define such a class of reliably computable functions for the proposed coding

scheme and derive rates that are universally achievable over a set of channel gains

when this class of functions is used at the relay. We develop our framework with

general modulation formats in mind, but numerical results are presented for the case

where each node transmits using 4-ary and 8-ary modulation schemes. Numerical

results demonstrate that the flexibility afforded by our proposed scheme permits

substantially higher rates than those achievable by always using a fixed function or

considering only linear functions over higher order fields.

Our numerical results indicate that it is favorable to allow the relay to attempt

both compute-and-forward and decode-and-forward decoding. Indeed, either method

considered separately is suboptimal for computation over general channels. However,

we obtain a converse result when the transmitters are restricted to using identical

binary linear codebooks generated uniformly at random. We show that it is impossi-

ble for this code ensemble to achieve any rate higher than the maximum of the rates

achieved using compute-and-forward and decode-and-forward decoding.
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Finally, we turn our attention to the design of low density parity check (LDPC)

ensembles which can practically achieve these information rates with joint-compute-

and-forward message passing decoding. To this end, we construct a class of two-way

erasure multiple access channels for which we can exactly characterize the perfor-

mance of joint-compute-and-forward message passing decoding. We derive the pro-

cessing rules and a density evolution like analysis for several classes of LDPC en-

sembles. Utilizing the universally optimal performance of spatially coupled LDPC

ensembles with message passing decoding, we show that a single encoder and de-

coder with puncturing can achieve the optimal rate region for a range of channel

parameters.
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CHAPTER I

INTRODUCTION

I.1. Background

In 1948, Claude Shannon made a historic breakthrough which has lead to research

disciplines known as information and coding theory [1]. Since then a half-century

of technical innovations, improvements in computational technology, and economic

demands have motivated changes in the way we communicate over long distances

[2]. Recently, the number and functionality of portable wireless devices have grown

sharply while the available wireless spectrum remains constant. Therefore there is a

growing demand for innovations for the efficient use of available spectrum.

The wireless setting presents intriguing challenges because of the shared nature

of the wireless medium. A wired network is typically thought of as a large collec-

tion of nodes connected with non-interfering point-to-point links or channels. In a

wireless network, transmitted messages can be received by all nearby (or connected)

nodes, and simultaneous transmissions interfere at all shared destinations. These

features are generally referred to as the broadcast and superposition properties of

wireless networks. Traditionally, the superposition property is considered a detriment

to wireless communication with simultaneous transmissions relegated to orthogonal

frequencies or transmission times [3]. Eventually, the superposition property was

utilized by code division multiple access (CDMA) schemes which orthogonalize in-

terfering transmissions via digital spreading sequences [3], [4]. In such schemes, the

interference is often treated as a noise source with the signal to noise ratio (SNR)

and signal to interference ratio (SIR) often appearing in the same equations.

Perhaps surprisingly, the change in our thinking about wireless superposition

1



was catalyzed by a breakthrough in wired networking called network coding [5], [6].

Network coding was first introduced to optimize network efficiency for wired relay

networks with multiple sources and multiple destinations [7] and uses the principle

that bandwidth efficiency may be improved if relays are allowed to forward simple

functions of their received messages. For the multicast problem, it has been shown

that forwarding linear combinations of received packets is sufficient to achieve the

capacity for each destination in the network [8], [9].

Physical layer network coding (PLNC), introduced in [10], combines the princi-

ple of network coding with the superposition property of wireless channels by only re-

quiring relays to recover functions of the superimposed signals for forwarding. Thus,

PLNC comprises a subfield of network coding in which modulation and/or coding

techniques are developed so that a relay may recover its desired functions efficiently.

For a recent and approachable tutorial/survey of the key ideas behind PLNC with

reliable decoding, we refer readers to [6]. For another broad tutorial/survey of PLNC

with an eye towards practical implementation, we refer readers to [11].

I.2. Two-Way Relay Channel

In this thesis, we restrict our attention to the simplest network where PLNC tech-

niques have been shown to be effective, namely, the wireless two-way relay (TWR)

channel. In this simple network, node A has data to send to node B and vice versa.

The relay R is included to assist in this communication, and there is no direct link

between nodes A and B. The PLNC approach, shown in Fig. 1, is to allow nodes A

and B to transmit simultaneously in the multiple access (MA) stage. Then in the

broadcast (BC) stage, the relay broadcasts a function of the received signal to nodes

A and B from which they decode their desired messages.
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MA Stage 

A B 

R 
𝑥𝐴 𝑥𝐵  

𝑦𝑅~𝑃 𝑦𝑅|𝑥𝐴, 𝑥𝐵  

BC Stage 

A B 

R 

𝑥𝑅 = 𝑥𝐴 ⊕ 𝑥𝐵  

Fig. 1.: System model of a two-way relay channel with PLNC.

PLNC approaches to the TWR problem vary depending on assumptions made

about the channel model. A thorough survey of such PLNC techniques is beyond

the scope of this thesis. Therefore, we focus on two practical concerns which have

inspired our research. First, for networks where noise is a significant impediment, it

is desirable to correct errors at the relays so they do not propagate. This motivates

the search for coding structures for which reliable physical layer network coding, as

described in [6], can be executed efficiently. Second, we consider a network with

random fading in which there is no channel state information at the transmitter

(CSIT) but we assume there is perfect channel state information at the receiver

(CSIR). This is a well accepted model because it is reasonable to expect the relay to

estimate the channel parameters from the observed signal [12]. Therefore, we consider

modulation/coding schemes which allow the relay to adapt its computed function

depending on the channel. Here, we provide a brief review of recent literature which
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addresses one or both of these concerns. The recent literature is compared with our

results which are discussed in detail in the later chapters.

I.2.1. Reliable PLNC

Decode-and-Forward: A traditional information-theoretic approach to reliably

decode a function of the received messages at the relay is to treat the channel as

a multiple access channel [6], [13]. Nodes A and B use independent codebooks for

encoding such that the relay can reliably decode both received codewords. Then, the

relay computes a function of the encoded messages which is re-encoded and broadcast

to nodes A and B. This reliable PLNC scheme is called decode-and-forward (DF).

Compute-and-Forward: PLNC achieves its efficient performance by allowing

the relay to recover a function of the transmitted messages. For the two-way relay

channel, an acceptable function must allow node A (node B) to recover node B’s

(node A’s) message ideally using the knowledge of their own transmitted message.

Because of the linearity of the superposition in most wireless channels, a popular

approach is for node A and B to use an identical linear codebook over an appropriate

field [14], [15], [6]. Then, the linear combination of the transmitted codewords is a

member of this linear code and can be reliably decoded at the relay. The message

associated with this linearly combined codeword is then re-encoded for broadcast.

We refer to this reliable PLNC scheme as compute-and-forward (CF).

Notice that these two decoding paradigms for reliable PLNC, DF and CF, make

different assumptions about the codebook structure. The approach that maximizes

the achievable rate for reliable computation depends on the structure of the channel

and the function to be computed. Research related to the CF paradigm typically

focuses on finding functions which are well matched to both the channel and the

codebooks used at nodes A and B. If a channel is ideally matched to a network
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function, then the channel can be expressed as a noiseless computation of the function

followed by a discrete memoryless channel.

To the best of our knowledge, DF and CF provide the best known achievable

information rates for the problem of reliable function computation at a relay. This

is perhaps surprising because each scheme utilizes a decoding structure which is

fundamentally suboptimal for this problem. DF requires the relay to reliably recover

all received codewords. Traditional CF operates on a test statistic which discards

partial information about the interfering sequences which are not relevant to the

desired linearly combined codeword prior to error correction. For CF based on nested

lattice codes, the modular operations of lattice decoding decreases information about

the observed codeword pair [15]. For CF based on binary multiple access channels,

elementwise estimates of the desired xor operation are obtained prior to decoding

and are processed by a message passing decoder [16].

Joint-Compute-and-Forward: To address the sub-optimality of CF decod-

ing, several schemes which perform message passing decoding with larger message

alphabets have been proposed [17], [16], [18], [19]. We refer to the decoding paradigm

used in these papers as joint-compute-and-forward (JCF). The key idea of JCF is

to attempt to recover as much information about the observed codeword pair as

possible using a joint estimator. Then a simple function is used to combine these

estimates into a hard decision about the desired linearly combined codeword.

It makes sense that a decoder which utilizes all information provided by the

channel should outperform CF. Indeed, there are simulation results in [17], [16],

[18], [19] which indicate that JCF decoding can outperform CF decoding for certain

channel parameters. However, these results are based only on simulations and provide

little insight into the operation of the JCF decoder. Particularly, the relationship

between the achievable rates for DF, CF, and JCF is not clear. For the case where
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nodes A and B are restricted to use identical binary linear codebooks, we provide a

detailed analysis of the achievable computation rates for general discrete memoryless

channels.

I.2.2. TWR Without Fading

For the TWR channel with AWGN without fading, near optimal CF schemes have

been designed to maximize the exchange rate in [15], [20], [21]. Building on results

from [22], these authors derive an upper bound on the capacity for complex channels

of log(1+snr) and show, that with identical lattice codebooks at nodes A and B and

lattice decoding at the relay, a rate of log(1
2

+ snr) is achievable, which is optimal at

high SNR. This problem has also been studied for the case where there is fading in

the channel, but each node perfectly knows the fading coefficients for each network

link in [23]. They show that near-optimal performance can be obtained at high SNR

if each transmitter inverts its channel prior to transmission. The authors in [24]

apply lattices with list decoding to the two way relaying problem with a direct link

between nodes A and B. Finally, CF schemes for multiple input multiple output

channels have been considered in [25]. Recall that the DF scheme with independent

Gaussian codebooks can achieve 1
2

log(1 + 2snr) for the TWR problem with AWGN

[26]. Then, these lattice results introduce the notion that CF based schemes perform

well at high SNR and DF based schemes work well at lower SNR for wireless channels.

Therefore, networks with high SNR are commonly referred to as being interference

limited [27] as opposed to noise limited. These CF schemes using lattice codes are

most exciting because they introduce the notion that highly structured ensembles

can outperform random coding.
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I.2.3. TWR With Fading

In practical wireless channels, the transmitted signals are multiplied by random com-

plex channel gains which change the magnitude and phase of the observed baseband

waveform. The aforementioned lattice results assume that these channel gains are

either fixed to unity or are fully known and invertible at the transmitters. A more

realistic assumption is that the complex channel coefficients hA and hB are assumed

to be perfectly estimated at each receiver but unknown to each transmitter.

For this scenario, the authors in [28] introduce a scheme called denoise-and-

forward (DNF) which uses channel dependent denoising functions at the relay to

minimize the symbol error probability. These authors focus on the case where nodes

A and B use a 4-ary constellation during the multiple access stage. The relay chooses

denoising functions so that the distance profile for constellation points with different

labels is optimized. Their work showcased the challenge associated with unknown

channel coefficients at the transmitters and the advantages of adapting the network

coding functions to the channel parameters at the relay. With DNF, the symbol

error rate between nodes A and B is improved; however, the relay does not attempt

to correct its hard decisions prior to broadcast. Indeed, the denoising functions

available to the relay are not required to have representations based on finite field

operations, so the structure of the codebook induced at the relay does not favor

reliable error correction. In [29], the DNF scheme is extended to be used with trellis

codded modulation and Viterbi decoding. This indeed provides some coding gain,

however, it is still possible for the relay to forward sequences with errors.

A lattice based CF scheme which allows both adaptation of decoding functions

and error correction at the relay and which originally coined the term compute-

and-forward has been presented in [26]. In this scheme, the relay decodes an integer
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combination of the transmitted codewords, where the integer combination is adapted

according to the channel gains. They show that such a scheme can be implemented

using nested lattice codes to take advantage of the duality between modulus arith-

metic in prime order fields and the modular operations of lattice decoding. Their

scheme requires the construction of infinite-dimensional lattice codes which is not

practical. The results in [26] are extended in a remarkable way in [30], where an al-

gebraic framework is provided to design lattices over principle ideal domains. Their

proposed coding scheme is also based on large-dimensional lattice codes.

In later chapters, we propose a novel scheme for reliable PLNC based on multi-

level coding (MLC). Our scheme facilitates reliable computation, function adaptation

at the relay, and implementation with practical codes over small finite fields (e.g. bi-

nary linear block codes).

I.2.4. Quantize Map Forward

The idea to approximate the superposition of real or complex signals of different

signal strength by linear combinations of different bit levels over the binary field was

first introduced by the linear deterministic model for arbitrary networks in [27]. In

fact, they suggest that these linear combinations can be approximated with the use of

a multilevel lattice code as described in [31]. For a large class of linear deterministic

networks, the authors in [27] prove that a constant gap to the cut-set bound can be

achieved by computing random linear combinations of the signalling levels at each

relay. They extend this proof to an equivalent class of Gaussian relay networks by

quantizing the signal at the noise level and re-encoding the quantized signal with

random Gaussian codebooks at each relay. The resulting scheme, called quantize-

map-forward (QMF) is shown to achieve a constant gap to the cut-set upper bound

(for the relay Gaussian network) which does not change with SNR. This duality
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between the deterministic model and the AWGN model was revisited using lattice

codes for transmission and structured mappings at the relay nodes in [32]. The

QMF scheme was generalized to wireless networks over general discrete memoryless

channels in [33]. Particularly, the noisy network coding scheme of [33] is shown to be

a generalization of QMF for Gaussian networks and several other schemes for other

types of channels.

The QMF approach provides an additional perspective of the superposition of

wireless signals and provides a strategy for approaching the capacity of general net-

works up to the limit of interference. The QMF scheme does not perform error

correction at the relays and, hence, the gap to capacity can grow with the size of

the network [27]. The CF strategy is generally more robust to the size of the net-

work because the reliable computation prevents noise propagation. The lack of error

correction at the relays in QMF also has implications for the decoding complexity

at destination nodes. There are results for a simple relay network in [34] in which a

proposed message passing decoder uses a graph structure which emulates the connec-

tions within the network. Each QMF destination nodes requires detailed knowledge

of the signal interaction and encoding process of each relay within the network.

Correcting errors at each relay distributes the computational complexity in a more

favorable way. Also, the performance of the QMF strategy for the bi-directional

relaying problem has not been studied well for the case when there is no CSIT. A

QMF strategy for the TWR channel and for the multi-pair TWR channel has been

proposed in [35] and [36] respectively. These schemes require the transmitters to

choose code parameters based the channel gains of each interfering node, but they

do achieve a constant gap to the cut-set bound for the case of known CSI at the

transmitter.
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I.3. Overview of Results

The TWR problem has received considerable attention in recent literature. The

value of both adaptability to the channel parameters and reliable computation at

the relay is well supported. However, few practical schemes which support both

of these features exist. In this thesis, we fill in some of the gap between theory

and practice for this problem. We present novel information-theoretic analysis of

the reliable computation problem for the TWR channel. We also present practical

coding schemes with numerically computed or simulated performance which match

our theoretical results. The following is a more detailed list of the most important

contributions of our work.

• Multilevel Coding for Adaptive Computation: We present a reliable

PLNC scheme based on MLC. Unlike the coding schemes in [26], [30], our pro-

posed scheme does not require a lattice code. Rather our scheme uses identical

linear codebooks over small prime fields (e.g. binary linear codes) for each level

of the multilevel code. Therefore, our scheme can be implemented with lower

encoding and decoding flexibility. Yet, it facilitates error correction for a larger

class of decoding functions than those proposed in [26]. This is because the

class of functions for our scheme is derived from the large set of non-singular

square matrices over Fp in place of the set of non-zero elements in large prime

order fields. To the best of our knowledge, the use of multilevel encoding in

conjunction with the linearity of a small prime order field to facilitate adaptive

decoding at a relay is new.

• Rate Penalties for Structured Ensembles: Conventional MLC schemes

require the use of independent linear codes in each level with careful selection

of coding rates [37]. In contrast, the code constructions used in this thesis use
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identical linear codes in each level to facilitate adaptive decoding. This requires

a non-trivial extension of the achievability theorem from the conventional case.

An important result in this thesis is that the use of the same linear code for

each encoding level requires that penalty rate constraints must be satisfied for

reliable decoding.

• DF and CF for Improved Adaptation: Previous research has established

the notion for AWGN channels with linear superposition that DF with inde-

pendent codes is optimal at low SNR while CF with structured (e.g. identical

linear) codes is optimal at high SNR. We show that when there is no CSIT,

it is better to attempt both CF and DF decoding with structured codes. Par-

ticularly, the phase mismatch between the channel gains sometimes makes DF

decoding favorable at moderate and even high SNR.

• Joint-Compute-and-Forward Decoding: Previous works have introduced

a notion of joint decoding for computation especially for message passing de-

coders. We provide an information-theoretic framework to analyze such joint-

compute-and-forward decoders. We study the case where nodes A and B use

identical linear codebooks for transmission over a binary-input memoryless

multiple access channel. We show that JCF naturally achieves the computa-

tion rate for the better of CF or DF. We conversely show that higher rates

than those achievable DF or CF (and hence JCF) cannot be achieved with the

ensemble of uniformly distributed identical linear codebooks on this channel

model.

• TWEMAC Channel Model: In order to design LDPC codes and code en-

sembles which achieve the optimal computation rates for identical linear code-

books, we propose a simplified two-way erasure multiple access (TWEMAC)
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channel model. The TWEMAC model may be used to simplify the design and

analysis of coding schemes for many problems in wireless communications. We

derive and simplify the processing rules for a JCF message passing decoder

on a TWEMAC. We subsequently derive efficiently computable expressions for

the exact performance of LDPC ensembles with JCF message passing.

• Spatial Coupling for Computation: We numerically show that JCF mes-

sage passing of a spatially coupled LDPC code/ensemble can achieve near-

optimal computation rates for identical linear codebooks for several TWEMACs.

This is complemented with simulation results of a spatially coupled protograph

ensemble for the AWGN channel with binary phase shift keying.

I.4. Organization of Thesis

Throughout this thesis, we focus on the problem of function computation at a relay

node suitable for a PLNC solution to the two-way relaying problem. Each chapter

uses different assumptions about the channel model to allow us to focus on a different

aspect of this problem. In each case, our approach to the problem is to propose or

consider an encoding structure for nodes A and B which is suitable for reliable

computation over the studied channel. Then, we thoroughly investigate the decoder

at the relay. This involves analysis of both the information-theoretic limits for reliable

decoding and the details of practical implementation.

In Chapter II, we propose a novel multilevel modulation and coding scheme

for the AWGN channel with unknown fading coefficients at the relay. The realistic

nature of this channel model invites a detailed analysis of encoding structures which

allow the relay to adapt its computed function to the channel realization. The

proposed scheme facilitates such adaptation for an larger class of decoding functions
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than those achievable using linear functions over higher order finite fields. A careful

information-theoretic analysis of the decoder reveals that the proposed encoding

structure, which is suitable for flexible decoding, imposes penalty rate constraints for

certain channel parameters. Our numerical analysis reveals that decoding flexibility

can be significantly improved by allowing the relay to attempt to reliably recover

both incoming codewords as in decode-and-forward.

In Chapter III, we consider a simplified encoding structure, namely identical

binary linear codebooks at nodes A and B, for the general class of binary-input

memoryless multiple access channels. A joint decoding structure which we call joint-

compute-and-forward is investigated. Our analysis reveals that the JCF decoder

essentially performs either CF or DF decoding which we show is rate optimal for the

studied encoding structure.

In Chapter IV, we consider how to design LDPC ensembles which achieve the

information-theoretic performance limits for reliable computation. To this end, we

develop a simplified class of erasure multiple access channels for which we derive the

exact performance of JCF message passing decoding. Numerical results reveal that

spatially coupled LDPC ensembles with JCF message passing can achieve the desired

performance.

Throughout this thesis, tools and analysis are developed which suggest further

research both for the studied computation problem on the two-way relay channel and

for more general wireless networks. In Chapter V we discuss our main conclusions

and suggest specific ways in which our results may be generalized or extended.

Notation: Throughout this thesis, we will use the following naming conven-

tions. Vectors or sequences will be denoted by underlined variables such as x. Ran-

dom variables will be denoted by upper case variables such as X, while their outcomes

will be represented by lowercase variables. Matrices will be represented by capital
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boldface letters such as X. Subsets will be denoted by capital scripted letters such

as X . If a variable is associated with a specific node, this will be indicated by a

subscripted capital letter like xA. We attempt to be consistent in our naming con-

ventions throughout this thesis. However, chapter specific notational issues which

may be confusing are mentioned in a brief note about notation near the beginning of

each chapter.
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CHAPTER II

MULTILEVEL CODING SCHEMES FOR COMPUTE-AND-FORWARD WITH

FLEXIBLE DECODING*

In the previous chapter, we discussed recent works which use structured code ensem-

bles for reliable computation at rates not achievable with traditional independent

encoders. This improved performance generally requires the structure of the multi-

ple access channel to be matched to the desired function. In some cases, the exact

nature of the superposition may not be known prior to transmission. Therefore

schemes which permit adaptive network coding have been proposed to improve the

matching at the receiver. However, few schemes which support both adaptive net-

work coding and reliable computation exist.

In this chapter, we propose a novel multilevel coding scheme which permits the

computation of a class of functions at the relay. The function to be computed (or,

decoded) is chosen depending on the channel realization. We define such a class of

functions and derive rates that are universally achievable over a set of channel gains

when this class of functions is used for decoding. The proposed scheme facilitates

improved decoding flexibility over previous schemes by providing the relay with a

larger class of decoding functions than the set of linear functions over a finite field.

The proposed coding scheme is also practically implementable with binary linear

codebooks and common modulation schemes. We develop our framework with gen-

eral modulation formats in mind, but numerical results are presented for the case

where each node transmits using 4-ary and 8-ary modulation schemes. Numerical

* c©2013 IEEE. Reprinted, with permission, from Brett Hern and Krishna
Narayanan, “Multilevel Coding Schemes for Compute-and-Forward with Flexible
Decoding”, IEEE Transactions on Information Theory, 2013.
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results demonstrate that the flexibility afforded by our proposed scheme results in

substantially higher rates than those achievable by always using a fixed function or

considering only linear functions over higher order fields. Additionally, we discover

that allowing the relay to attempt to decode both incoming codewords, as in the

decode-and-forward paradigm, results in improved decoding flexibility.

This chapter is organized as follows. The key elements of the problem are out-

lined in Section II.1. Our proposed solution is detailed in Section II.2. An achievable

rate for the proposed scheme during the MA stage is given in Section II.3. These

rates are numerically determined for an example where nodes A and B transmit us-

ing 4-ary and 8-ary constellations in Section II.4. Simulation results for a regular

LDPC code are shown to corroborate the information-theoretic results. Key results

are reiterated in Section II.5.

Note about notation: In this chapter, we use different variables v and x to refer

to multilevel codewords for channel coding and binary address vectors which are

adaptively network coded respectively. This unusual notation is explained in (2.7)

and the surrounding discussion. Also in this chapter, superscripts are used primarily

to differentiate between different encoding levels of the multilevel encoder.

II.1. Problem Description

Each node in the relay network is assumed to be half-duplex, so communication is

split into two stages, a multiple access (MA) stage and a broadcast (BC) stage. We

assume perfect symbol synchronization between the transmitters and mainly focus

on the MA stage throughout this thesis.
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II.1.1. Multiple Access Stage

Nodes A and B each encode their binary messages uA and uB into codewords vA ∈ CA

and vB ∈ CB where CA and CB are the codebooks used at the nodes A and B

respectively. These codewords are mapped to sequences of symbols sA, sB ∈ QN

with |Q| = 2`. The relay receives noisy observations of the sum of these symbol

sequences according to

y
R

= hAsA + hBsB + wR (2.1)

where hA and hB are complex fading coefficients, and wR is complex additive white

Gaussian noise (AWGN). This induces an effective constellation QR at the relay

defined by

QR = {qR ∈ C|qR = hAqA + hBqB, qA, qB ∈ Q}. (2.2)

II.1.2. Adaptive Decoding at the Relay and the Induced Codebook

The main idea proposed in this chapter is the construction of a coding scheme such

that the relay can reliably decode some function of vA and vB for a desired set of

channel conditions H ⊂ C2. Specifically, we jointly design codes CA and CB and a

set of decoding functions F such that, for any (hA, hB) ∈ H, there exists f ∈ F such

that the relay can reliably decode f(vA, vB) from y
R

. We require that node A (B)

must be able to unambiguously decode vB (vA) from the output of f(vA, vB) with its

knowledge of vA (vB) [29]. For a given f ∈ F , we will define an induced codebook

at the relay as the codebook corresponding to f i.e.

Cf,R = {f(vA, vB)|vA ∈ CA, vB ∈ CB}. (2.3)

It is important to understand the structure of Cf,R since the probability of error in

decoding f(vA, vB) from y
R

depends on hA, hB, and Cf,R. The main advantage of
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our proposed scheme is that it guarantees that choosing one codebook CA and CB at

the transmitter can result in a good induced codebook Cf,R for a class of functions

F . More specifically, it guarantees Cf,R is a member of the ensemble of random coset

codes which is an optimal ensemble for achieving the uniformly distributed input

information rate for the equivalent channel between f(vA, vB) and y
R

for all f ∈ F .

We restrict our attention to classes of functions F which are applied componentwise

at the relay. For the uncoded case, the authors in [28] have considered the design of

modulation schemes that optimize the performance when the demodulating function

is adapted. The broadcast stage is fairly standard and is identical to that considered

in [15], [20].

II.2. Proposed Scheme

II.2.1. Multilevel Encoder

The system model for the multilevel encoder for nodes A and B and the channel

model for the MA stage is shown in Fig. 2. The encoder at nodes A and B uses

MLC with a different coset of the same linear code C used at each bit level. For a

detailed description of MLC and achievable rates for the point-to-point channel see

[37].

The encoder is described as it pertains to node A to simplify notation. First,

the message uA is split into length K sub-vectors u1
A, ..., u

`
A which form rows of an

`×K matrix

UA =


u1
A

...

u`A

 . (2.4)

Each u1
A, ..., u

`
A is encoded with the same generator matrix G into codewords γ1

A
, ..., γ`

A
.
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Fig. 2.: Block diagram of MLC coset encoders for MA stage.

These codewords form the rows of an `×N matrix

ΓA = UAG =


γ1
A

...

γ`
A

 . (2.5)

Finally, an i.i.d Bernoulli random sequence λkA is added to each γk
A

to symmetrize

the input distribution to the channel. The symmetrized codeword vkA = λkA ⊕ γkA is

therefore a member of a random coset of the original linear code C. The random

coset leaders λkA form the rows of a binary `×N matrix

ΛA =


λ1
A

...

λ`A

 . (2.6)

The resulting coset codewords vkA form the rows of a binary `×N matrix XA given
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by

XA = UAG⊕ΛA =


v1
A

...

v`A

 = [xA[1], ..., xA[N ]] . (2.7)

Thus each code CkA, k ∈ {1, ..., `} will be a different coset of C. The kth row vkA of XA

is then a codeword of CkA. We use the two variables xA[n] and vkA to refer to the nth

column and kth row of XA respectively because it will simplify our notation later. It

should be mentioned here that much of the intuition about the main result in the

chapter is best obtained by ignoring the fact that cosets are used at each layer and

simply considering the use of identical linear codes at each level in the MLC scheme.

The coset matrix ΛA is included to symmetrize the effective channel at the relay (i.e.

ΛA is necessary for the proofs to be correct).

The nth binary address vector xA[n] ∈ F`2 maps to a symbol sA[n] ∈ Q through

the use of a symbol mapping function M : F`2 → Q. An example of such a mapping

function is given in Fig. 3 where Q is the QPSK constellation. As shown, the

mapping function is usually derived by partitioning the set of signaling points in Q

into equal sized subsets [37]. Let S ⊆ {1, ..., `} be the subset of elements of xA which

are fixed. Then let X{xkA|k∈S} ⊆ F`2 be the set of xA’s with the same given values for

all elements in S. Then we define the output of M({xkA|k ∈ S}) ⊆ Q according to

M({xkA|k ∈ S}) =
⋃

b∈X{xk
A
|k∈S}

M(b) (2.8)

This means that the returned subset of constellation points is the subset whose

address vectors are equal to the known bits for all indices, S. The output of

M({xkA|k ∈ S}) is 2`−|S| constellation points.
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Fig. 3.: Example of MLC address labeling by set partitioning using QPSK.

In the example in Fig. 3 if S = {2} ⊆ {1, 2} and x2
A = 1, then

M({xkA|k ∈ S}) =M({x2
A = 1}) = {M(01),M(11)} = {−1,−j}.

Here, |S| = 1, and ` = 2. Therefore M returns 22−1 = 2 constellation points.

II.2.2. Adaptive Decoding at the Relay

As mentioned previously, the goal of the proposed scheme is to allow the relay to

decode a function of the transmitted codewords. Similar to the compute-and-forward

scheme, our scheme utilizes the linearity of the base code C and the fact that the

relay knows ΛA and ΛB. If nodes A and B encode their messages as described, the

set of decoding functions F which the relay can use for decoding is defined as follows.

Define D as the set of ` × ` binary matrices which are invertible over F2. The
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set of functions we consider is given by

F =

f : F`2 × F`2 → F`2

∣∣∣∣∣∣∣f(xA, xB) = [DADB]

 xA

xB

 , DA,DB ∈ D

 . (2.9)

Therefore a given f ∈ F is defined by some DA,DB ∈ D from which the relay should

attempt to decode a matrix Xf,R given by

Xf,R = [DADB]

 XA

XB

 . (2.10)

Due to the linearity of matrix multiplication, we can express the desired matrix

Xf,R as

Xf,R = [DADB]

 XA

XB

 = [DADB]

 UAG⊕ΛA

UBG⊕ΛB


= [DADB]

 UAG

UBG

⊕ [DADB]

 ΛA

ΛB


= [DADB]

 UA

UB

G⊕ [DADB]

 ΛA

ΛB


= Uf,RG⊕Λf,R. (2.11)

Here, we see that the matrix Xf,R can be written in terms of an effective message

Uf,R and coset matrix Λf,R which can be computed separately based on f . Thus

each row of Xf,R is a codeword from a different coset code of C. Note that f is

applied elementwise to the sequences sA and sB.

For clarification, consider the case of ` = 2. Let a function f1 be defined by

DA = DB =

 1 0

0 1

 . Writing the vectors xA and xB as [x1
A x2

A]T and [x1
B x2

B]T
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respectively, we see that xf1,R = [x1
f1,R

x2
f1,R

]T is given by

xf1,R = f1(xA, xB) =

 1 0 1 0

0 1 0 1




x1
A

x2
A

x1
B

x2
B


. (2.12)

This corresponds to the binary XOR function given by f1(xA, xB) = [x1
A ⊕ x1

B, x
2
A ⊕

x2
B]T .

Define another function f2 using DA =

 1 0

0 1

 and DB =

 0 1

1 0

 . This is

the rotated-XOR function given by f2(xA, xB) = [x1
A ⊕ x2

B, x
2
A ⊕ x1

B]T .

Recall from (2.7), that vk[n]⇔ xk[n]. Thus using f1 at the relay corresponds to

decoding [v1
A ⊕ v1

B] and [v2
A ⊕ v2

B]. Similarly, applying f2 at the relay corresponds to

decoding [v1
A ⊕ v2

B] and [v2
A ⊕ v1

B].

To illustrate the importance of choosing the decoding function f depending on

(hA, hB), consider an example with

Q = {1, j,−1,−j} = {M(00),M(01),M(11),M(10)}

(i.e. QPSK with Gray Labeling). Further, let hA = 1 and hB = ejθ. Then θ is

the phase difference between node A and B’s channel gains. Consider the decoding

functions

f1(xA, xB) = [x1
A ⊕ x1

B, x
2
A ⊕ x2

B]

f2(xA, xB) = [x1
A ⊕ x2

B, x
2
A ⊕ x1

B].

The resulting constellation QR at the relay is shown for different values of θ in Fig.

4. Note that the complex coordinates of the constellation points are exactly the
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Fig. 4.: Effective constellation at relay for different values of θ.
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same, but their labels are different based on θ and f ∈ {f1, f2}. When θ ≈ 0, f1

appears to ensure larger distances between points with unequal labels than f2. The

situation is reversed when θ ≈ π
2
. This suggests that the performance for a fixed

decoding function can vary widely with θ even when both |hA| and |hB| are large.

This motivating illustration is based on similar examples from [28] which includes a

more through analysis of the benefits of function adaptation. We include it here for

completeness.

As illustrated in Fig. 4, each f ∈ F induces a different mapping function

Mf,R : F`2 → QR. Since |QR| = 22` and each xf,R has length `,Mf,R(xf,R) returns a

set of 2` points similar to (2.8) for the point-to-point case. Particularly this is given

by

Mf,R(xf,R) =
⋃

{(xA,xB)|f(xA,xB)=xf,R}

hAM(xA) + hBM(xB). (2.13)

Similar to the description of M, let S ⊆ {1, ..., `} be the subset of elements from

xf,R which are fixed. Then let X{xkf,R|k∈S} ⊆ F`2 be the set of xf,R’s with the same

given values for all elements in S. Then the output of M({xkf,R|k ∈ S}) ⊆ QR is

defined

Mf,R({xkf,R|k ∈ S}) =
⋃

b∈X{xk
f,R
|k∈S}

Mf,R(b). (2.14)

For the example in Fig. 4,Mf,R(11) returns the four constellation points labeled

11 in each figure. Similarly, Mf,R({x1
f,R = 1}) returns the eight constellation points

in the union Mf,R(11) ∪Mf,R(10).

In order for nodes A and B to be able to unambiguously decode their desired

messages, the authors in [28] show that f must satisfy

f(xA, xB) 6= f(x′A, xB) ∀ xA 6= x′A and xB

f(xA, xB) 6= f(xA, x
′
B) ∀ xB 6= x′B and xA. (2.15)
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The authors in [28] have called this the ‘exclusive law’. In this thesis, we call functions

which satisfy this property unambiguous. The relay broadcasts the values of the

decoded functions f(xA, xB) to nodes A and B. Therefore, if any ambiguous functions

are used during the MA stage, nodes A and B will be unable to recover their desired

message from f(xA, xB) and their knowledge of their own message.

Lemma II.1. For any DA,DB ∈ D, a decoding function

f(xA, xB) = [DADB]

 xA

xB

 (2.16)

is unambiguous.

Proof. The proof follows from the invertibility of DA and DB. For some xA, suppose

that there exists xB 6= x′B so that

[DADB]

 xA

xB

 = [DADB]

 xA

x′B

 .
This can be written as

DAxA ⊕DBxB = DAxA ⊕DBx
′
B

DAxA ⊕DAxA ⊕DBxB = DAxA ⊕DAxA ⊕DBx
′
B

DBxB = DBx
′
B

D−1
B DBxB = D−1

B DBx
′
B

xB = x′B

which is a contradiction.

It has been observed in [15] that for some channel gains and signal to noise
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ratios, Decode-and-Forward (DF), i.e., decoding

XAB =

 XA

XB

 (2.17)

can provide higher information rates than compute-and-forward. After XAB has

been decoded, any of the functions from the set F in (2.16) can be recovered from

XAB.

Therefore, there are two primary methods to recover our desired function. The

Compute-and-Forward (CF) decoder directly attempts to recover xf,R from the sym-

bolwise estimates

P (YR[n]|Xf,R[n]) =
∑

{(xA,xB)|f(xA,xB)=xf,R[n]}

P (YR[n]|xA, xB). (2.18)

The DF decoder attempts to recover xf,R by first reliably decoding XAB from the

observations P (YR[n]|XA[n], XB[n]). For the remainder of the chapter, we will focus

on the complete recovery of functions from the set F from (2.16) with either CF or

DF decoding.

II.3. Achievable Information Rates

II.3.1. Achievable Rates for General Discrete Memoryless Channels

So far, we have described the multilevel encoder used by nodes A and B which uses a

coset of the same linear code in each level. We have justified this scheme by deriving

the set of functions which can be unambiguously decoded at a relay node if this

encoder is used. Here, we derive the rates which can be achieved by this scheme for

fixed channel parameters. To accomplish this, we will derive the achievable rates for

the proposed encoding scheme (where random cosets of the same linear code with
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generator matrix G are used at each level) for a general discrete memoryless channel

(DMC) with input alphabet F`2 in Theorem II.1. Then we extend this to define the

achievable rates for decode-and-forward and compute-and-forward using the channel

model we have described.

Consider a DMC with ` level codeword X = UG ⊕ Λ as the input and noisy

observations y as the output, where P (Y |X) =
∏N

n=1 P (Y [n]|X[n]). Let each element

of U, G, and Λ be i.i.d. Bernoulli random variables with parameter 1
2
. Therefore,

over the ensemble of codes, each Xk is Bernoulli distributed with parameter 1
2
.

Theorem II.1. Let Z` be the set of families of subsets of {1, ..., `} which are non-

empty and disjoint. That is, {S1, ...,Sp} ∈ Z` if each Si ⊆ {1, ..., `} is non-empty

and Si∩Sj = ∅ ∀ i 6= j. Define S =
⋃p
i=1 Si and S = {1, ..., `}\S. Then the receiver

can reliably recover X from y as long as

R < min
{S1,...,Sp∈Z`}

1

p
I(Y ; {Xk|k ∈ S}|{Xk|k ∈ S}, {Xk⊕Z1|k ∈ S1}, ..., {Xk⊕Zp|k ∈ Sp}).

(2.19)

Each Zi, i ∈ {1, ..., p} is a Bernoulli random variable with parameter 1
2
.

Proof. The detailed proof is provided in Section II.6. However, the key steps in the

proof are outlined below.

Our proof uses the standard approach of deriving upper bounds on the proba-

bility of error for a jointly typical decoder averaged over a carefully chosen ensemble

of codes. The ensemble considered here is obtained by using random cosets of the

same linear code for each signaling level in the multilevel coding scheme. The use

of a coset of the same linear code in each level is an important ingredient in our

proposed scheme since we allow the relay to decode linear combinations of codewords

from different signaling levels. This ensures that for each f ∈ F , Ckf,R, k ∈ {1, ..., `}

is a coset of C. However, this is also what complicates the proof. If each node used
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an independent linear code, then the rate region is fully characterized by the coding

theorem for the multiple access channel. While independent linear codes have been

used widely to obtain achievable rates for MLC for the point-to-point channel and

the multiple access channel, the former ensemble has not been analyzed in detail

in the literature. The key contribution of our proof in Section II.6 is to derive the

achievable rates with identical linear codes at each level.

Corollary II.1. For the special case of ` = 2, the achievable information rate can

be expressed

R < min

{
1

2
I(Y ;X1, X2), I(Y ;X1|X2), I(Y ;X2|X1), I(Y ;X1, X2|X1 ⊕X2)

}
.

(2.20)

Proof. This can be shown by letting the sets S1, ...,Sp ⊆ {1, 2} take each of the

values in Z2. These are given by

{S1 = {1},S2 = {2}}

{S1 = {1}}

{S1 = {2}}

{S1 = {1, 2}}. (2.21)

Notice that the first three terms in (2.20) are also required by the proof for multilevel

coding with independent linear codes (i.e. they characterize the multiple access rate

region). The last bound is a result of the requirement that each signaling level uses

a coset of the same linear code. Note that

I(Y ;X1, X2|X1 ⊕ Z1, X
2 ⊕ Z1) = I(Y ;X1, X2|X1 ⊕X2).

That is, {X1 ⊕ Z1, X
2 ⊕ Z1} and {X1 ⊕ X2} carry the same information about
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(X1, X2). A detailed proof of this corollary is given in the appendix as part of the

proof for Theorem II.1.

II.3.2. Achievable Rates at the Relay

Theorem II.1 is flexible enough to be applied to general channels, however its primary

purpose is to indicate the achievable rates at a relay node which wants to recover a

function of the two messages XA and XB with either CF or DF decoding. Note that

for the extension of Theorem II.1 to the multiple access stage, the elements of G,

ΛA, and ΛB are i.i.d. Bernoulli random variables with parameter 1
2
. The following

corollaries define the rates at which the relay can reliably recover a function f ∈ F

of the transmitted messages using CF or DF decoding.

Corollary II.2. For a fixed DA,DB ∈ D let

xf,R = f(xA, xB) = [DADB]

 xA

xB

 . (2.22)

Then the relay can reliably recover Xf,R =
[
xf,R[1], ..., xf,R[N ]

]
at the relay using a

compute-and-forward decoder as long as R satisfies

R < min
{S1,...,Sp}∈Z`

1

p
I(YR; {Xk

f,R|k ∈ S}|{Xk
f,R|k ∈ S}, {Xk

f,R ⊕ Zi|k ∈ Si} ∀ i ∈ {1, ..., p}).

(2.23)

Corollary II.3. The relay can reliably recover XAB at the relay using a decode-and-

forward decoder as long as R satisfies

R < min
{S1,...,Sp}∈Z2`

1

p
I(YR; {Xk

AB|k ∈ S}|{Xk
AB|k ∈ S}, {Xk

AB ⊕ Zi|k ∈ Si} ∀ i ∈ {1, ..., p}).

(2.24)

The relay can then broadcast any f ∈ F to nodes A and B.
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II.3.3. Universally Achievable Rate

Since nodes A and B do not have channel state information, it is important that there

exists a single code from the ensemble of random coset codes which can achieve the

rates from Theorem II.1 for many channel parameters. More rigorously, define P` as

a finite set of DMCs with input alphabet F`2. We say that a rate R is universally

achievable over P` if there exists a fixed linear code C of rate R and coset matrix

Λ such that for each P (Y |X) ∈ P`, X can be reliably decoded at the receiver. The

existence of such a code is verified in Theorem II.2.

Theorem II.2. Define R(P (Y |X)) as the supremum of rates satisfying (2.19) for

a fixed P (Y |X) ∈ P`. Then any rate RP` such that

RP` < min
P (Y |X)∈P`

R(P (Y |X)) (2.25)

is universally achievable over P`.

Proof. Define δ > 0 as the acceptable probability of error for a finite length code

and choose a fixed R < RP` . We will first consider an arbitrary P (Y |X) such that

R < R(P (Y |X)). Define ΩN as the set of linear codes of the form C of length N

and rate R. Thus, by increasing the value of N we form a sequence of ensembles of

linear codes Ω. Define P (Err|ΩN) as the ensemble average probability of decoding

error for the ensemble ΩN . Define P (Err|C) as the probability of decoding error for

a particular C (averaged over the set of random cosets Λ). Define ΩN
bad ⊂ ΩN as

ΩN
bad = {C ∈ ΩN |P (Err|C) ≥ δ}. (2.26)

Then let ΩN
good = ΩN \ ΩN

bad. Define P (ΩN
bad) =

|ΩNbad|
|ΩN | and P (ΩN

good) =
|ΩNgood|
|ΩN | as the

probability that a bad code or good code is selected uniformly at random from ΩN
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respectively. We know that

P (Err|ΩN) = P (ΩN
bad)P (Err|ΩN

bad) + P (ΩN
good)P (Err|ΩN

good)

≥ P (ΩN
bad)δ + P (ΩN

good)P (Err|ΩN
good)

≥ P (ΩN
bad)δ.

The proof of Theorem II.1 relies on showing that lim
N→∞

P (Err|ΩN) = 0. Therefore,

there exists some N0 such that for any N > N0,

P (ΩN
bad)δ ≤ P (Err|ΩN) <

δ

τ
⇒ P (ΩN

bad) <
1

τ

for some finite τ > 2|P`|. This means that |ΩN
bad| <

|ΩN |
τ

. Note that choosing

τ > 2|P`| is arbitrary but ensures that τ will be “large enough” to complete the

proof.

We want to show the existence of some fixed C ∈ ΩN such that for every

P (Y |X) ∈ P` we have P (Err|C) < δ. We can apply the steps above to find a

set ΩN
bad(P (Y |X)) for each P (Y |X) ∈ P`. Since |P`| is finite, the largest N required

by any P (Y |X) ∈ P` must exist and be a finite integer Nmax.

Since τ is chosen to be larger than 2|P`|, the set

ΩNmax \

 ⋃
P (Y |X)∈P`

ΩNmax
bad (P (Y |X))


must be non-empty because

∑
P (Y |X)∈P`

|ΩNmax
bad (P (Y |X))| ≤ |ΩNmax|/2.

Thus, since at least half of the codes are always good, there exists at least one C

which allows reliable decoding for every P (Y |X) ∈ P` as long as R < RP` .
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Theorem II.2 can be applied directly to the problem of recovering a function

of XA and XB at the relay using either CF or DF. This results in the following

corollaries.

Corollary II.4. For a fixed f ∈ F and (hA, hB), define Rf (hA, hB) as the supremum

of rates satisfying (2.23) where xf,R = f(xA, xB). Then define

RCF (hA, hB) = max
f∈F
Rf (hA, hB). (2.27)

For any finite set of channel gains, H ⊂ C2, any rate RH,CF which satisfies

RH,CF < min
(hA,hB)∈H

RCF (hA, hB) (2.28)

is universally achievable with CF decoding.

Proof. For each (hA, hB) ∈ H, choose the f ∈ F to maximize Rf (hA, hB). Then

Theorem II.2 can be applied with the set of channels P` of the form P (YR|Xf,R).

Corollary II.5. For fixed (hA, hB), define RDF (hA, hB) as the supremum of rates

satisfying (2.24). For any finite set of channel gains H ⊂ C2, any rate RH,DF such

that

RH,DF < min
(hA,hB)∈H

RDF (hA, hB) (2.29)

is universally achievable on H using DF decoding.

Proof. For each (hA, hB) ∈ H, Theorem II.2 can be applied with the set of channels

P` of the form P (Y |XAB).

One of the unique features of our scheme is that it allows the relay to choose

between CF and DF decoding without requiring any changes at the encoder. This

means that the relay can perform such an adaptation without feedback. More im-

portantly, this indicates that the universally achievable rate RH for a fixed set of
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channel gains H may be larger than max(RH,CF ,RH,DF ). Particularly, it is possible

for RH,CF and RH,DF to be limited by different channel gain pairs. The universally

achievable rate is defined in Corollary 6.

Corollary II.6. For any finite set of channel gains H ⊂ C2, the relay can reliably

decode some function of XA and XB as long as

RH < min
(hA,hB)∈H

max (RDF (hA, hB),RCF (hA, hB)) . (2.30)

Proof. We define two sets of channels P` and P2`. For each (hA, hB) ∈ H, choose

the f ∈ F to maximize Rf (hA, hB). Then, for every (hA, hB) ∈ H for which

Rf (hA, hB) > RDF (hA, hB), Theorem II.2 can be applied to the set of channels P`

of the form P (YR|Xf,R). Likewise, for every (hA, hB) ∈ H for which RDF (hA, hB) >

Rf (hA, hB), Theorem II.2 can be applied to the set of channels P2` of the form

P (YR|XAB). Each application of Theorem II.2 shows that the majority of linear

codes are good. Therefore, there must exist at least one linear code which is good

for both sets of channels P` and P2`.

Note that in order for this problem to be practically interesting, the setH should

be meaningfully defined. It may seem more natural to evaluate our scheme based

on the outage probability for a fixed transmission rate, and we include an outage

experiment in the numerical results section for completeness. However, we focus on

the universally achievable rate formulation because it is more meaningful to discuss

function computation at the physical layer when both channel gains are large. If one

of the channel gains is small, decode-and-forward can provide near-optimal symmet-

ric information rates (i.e. the rate will be limited by the weak user). In the presence

of two strong channels, the outage probability will likely be dominated by the phase

differences θ which limit RH. The RH metric leads to natural characterization of
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different features of the proposed scheme for a specific input constellation Q. Par-

ticularly, the flexibility of the proposed scheme to phase mismatch between nodes A

and B can be illustrated. This is especially interesting if we consider a system where

the relay is used to provide power control information to nodes A and B as in [23].

II.4. Numerical Results

II.4.1. Results for 4-qam

We begin by presenting some numerical results on the achievable rates with the

proposed scheme when ` = 2 and both nodes use 4-qam as the modulation scheme.

II.4.1.1. Extra Rate Constraint

First, we illustrate the effects of the additional rate constraints which are imposed if

nodes A and B use cosets of the same linear code for each level. Consider the rate at

which the relay can reliably recover the function, f1(xA, xB) defined in (2.12), using

CF decoding when hA = 1, hB = ejθ, and snr = 6 dB. For the proposed scheme,

the achievable rate (2.20) is plotted as a function of θ in Fig. 5. For comparison, if

the use of identical linear codes for each bit-level did not impose a rate penalty, our

scheme could achieve

R < min

{
I(YR;X1

f1,R
|X2

f1,R
), I(YR;X2

f1,R
|X1

f1,R
),

1

2
I(YR;X1

f1,R
, X2

f1,R
)

}
(2.31)

which corresponds to the multiple access rate region with equal rate codes. This

achievable rate is also plotted as a function of θ in Fig. 5. The additional rate

constraint I(YR;X1
f1,R

, X2
f1,R
|X1

f1,R
⊕X2

f1,R
) required by the proposed scheme is seen

to be dominant for values of θ close to π
2
.
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Fig. 5.: Achievable rates for the function f1. The extra rate constraint

I(YR;X1
f1,R

, X2
f1,R
|X1

f1,R
⊕ X2

f1,R
) must be satisfied if nodes A and B use the

proposed MLC scheme.
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Fig. 6.: `Rf (hA, hB) vs. θ for each function f ∈ F with the proposed coding

scheme using CF decoding.

II.4.1.2. Achievable Information Rates for the Proposed Scheme and

Comparison to Coding over GF(4)

In Fig. 6, the achievable rate with the proposed scheme and a CF decoder is shown as

a function of θ for each f ∈ F . It can be seen that for different θ, different functions

provide better performance demonstrating the importance of adapting the function

at the relay.

Next, we consider the performance of a compute-and-forward scheme using the

same linear code CGF (4) of rate RGF (4) over GF (4). Specifically, the relay uses the

set of decoding functions FGF (4) corresponding to linear combinations of codewords

of the form

vR = f(vA, vB) = αvA ⊕ βvB, α, β ∈ F4\{0}. (2.32)
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Fig. 7.: I(YR; f(XA, XB)) vs. θ for each linear function f ∈ FGF (4) with identical

linear codebooks over GF(4) using CF decoding.

Node A can decode vB from (vA, vR) by

vB = β−1((−αvA)⊕ vR). (2.33)

Node B can recover vA similarly. The relay should be able to decode vR reliably as

long as there exists some f ∈ FGF (4) for which

RGF (4) < I(YR; f(XA, XB)). (2.34)

For, hA = 1, hB = ejθ, and snr = 6 dB, the achievable rates for each function

in FGF (4) are plotted as a function of θ in Fig. 7. There are only two curves because

several of the functions in FGF (4) have the same distance profile for QPSK signaling.

From Fig. 6 and Fig. 7, it can be seen that the proposed scheme with the CF decoder

provides higher achievable rates than using codes over GF (4) and a CF decoder for
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every θ.

II.4.1.3. CF and DF Decoding

Recall that the proposed scheme facilitates the use of DF decoding at the relay in

addition to function adaptation with CF decoding. Therefore, the achievable rates

at the relay using CF and DF decoding are plotted as a function of θ in Figs. 8(a),

8(b), 8(c) for snr = 0, 6, and 12 dB respectively. The CF rates represent the

best computation rate for the set of functions F for the given channel parameters

as defined in (2.27). As expected, DF decoding performs better at low SNR, and

CF decoding performs better at high SNR. For each of these SNRs, the universally

achievable rate RH defined in Corollary II.6, is also shown for the hA = 1 and

hB = ejθ case. Note that this is equivalent to the set of channel gains

H = {(hA, hB)|hA = ejθA , hB = ejθB} (2.35)

where θA, θB ∈ {0, πm , ..., 2π} for a finite integer m and θ = θA − θB. This demon-

strates the schemes ability to adapt to changes in the phase difference between hA

and hB. The universally achievable rates RH,CF , RH,DF , and RH for the channel

gains (2.35) are plotted as a function of SNR in Fig. 8(d). The universally achievable

rate benefits from the ability of the relay to adapt between CF and DF. Particularly,

for moderate SNRs we see that RH > max(RH,CF ,RH,DF ). This is because CF is

limited for θ near {π
4
, 3π

4
}, and DF is limited for θ near {0, π

2
}. This is depicted in

Fig. 8(b).

II.4.1.4. Performance of QPSK for hA = 1 and Arbitrary hB

In Fig. 9, an image of the achievable rates with the proposed scheme is shown when

hA = 1 and hB = <{hB}+j={hB} for various <{hB} and ={hB} for snr = 7 dB and
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(a) `R vs. θ for snr = 0 dB
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(b) `R vs. θ for snr = 6 dB

Fig. 8.: Achievable rates for the proposed scheme when the decoder adaptively

chooses between CF and DF decoding.
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(c) `R vs. θ for snr = 12 dB
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(d) `RH,CF , `RH,DF , and `RH vs. SNR

Fig. 8.: Fig. 8: Continued.
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(a) Best achievable rate vs. hB for snr = 7 dB
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(b) Best achievable rate vs. hB for snr = 15 dB

Fig. 9.: Achievable rates for the proposed scheme with 4-qam when hA = 1 as a

function of hB.
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snr = 15 dB for the 4-qam signal constellation. It can be seen from the plots that the

achievable rates are close to the maximum for a large region of (<{hB},={hB}). It

can be also seen that the achievable rate is limited to 1.5 bits per symbol for channel

gains such that hA
hB
∈ {
√

2ej(
π
4

+mπ
2

), 1√
2
ej(

π
4

+mπ
2

)} for any integer m. This has been

observed in [28] which proposes specific 5-ary denoising functions for these channel

gains. If we want to achieve reliable decoding at the relay, our scheme requires the

careful design of signaling constellations Q and mapping functionsM to avoid such

limits at high SNR. A thorough analysis of such designs is beyond the scope of this

thesis.

II.4.1.5. Outage Performance

An outage experiment provides a better perspective to understand the effectiveness

of the proposed scheme for a more realistic channel model. Consider a two way

relay channel with block fading at the multiple access stage. For this experiment,

the channel coefficients hA and hB are complex Gaussian random variables with zero

mean and unit variance. They are assumed to be independent of each other and

from block to block. In our experiment, we test 18, 000 randomly selected channel

gain pairs (hA, hB) and record the achievable symmetric exchange rate for the MLC

encoder with either CF or DF. Our proposed MLC scheme achieves the maximum

of CF and DF for each channel gain. For each (hA, hB) we also record two upper

bounds on the achievable rates based on a trivial cut-set upper bound. We consider

the cuts between node A and the relay and between node B and the relay. For each

cut, the interference from the other user can be assumed to be perfectly known at the

relay. If node A and B each use a Gaussian codebook, the resulting power limited
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upper bound is expressed

R < min(log(1 + |hA|2snr), log(1 + |hB|2snr)). (2.36)

If node A and B each use 4-qam signalling with optimal coding, the resulting cut-set

bound is similarly the minimum of the achievable rates for the point-to-point channel

between node A and the relay or between node B and the relay. The results of our

experiment are plotted in Fig. 10.

In Fig. 10(a), the frame error rate (FER) is plotted as a function of SNR for

the outer bounds and the proposed scheme if the code rates are selected to achieve

1.5 bits per symbol spectral efficiency. For the MLC scheme, each code level uses

the same linear code of rate R = 0.75. The performance is limited by the weakest

channel gain min{|hA|, |hB|}. Note that the FER for the proposed scheme is very

close to the limit imposed by the signalling constellation. This indicates that the

proposed scheme handles interference between the users very well for this code rate.

In Fig. 10(b), we fix the acceptable FER as 0.05 and plot the achievable rate as a

function of SNR for the outer bounds and for the proposed scheme MLC scheme. We

also plot the results for the MLC encoder with only CF or DF decoding or choosing

whichever decoder is best as proposed. It is interesting that our performance is quite

close to the limit imposed by the signal constellation until there is marked divergence

at `R = 1.5. This suggests that the distance shortening events identified in Fig. 9

only begin to affect the outage performance at these higher code rates. This contrasts

well with the case where the decoder is limited to use DF decoding because any

distance shortening events should affect the achievable rate. With DF decoding only,

the outage performance is tight for all rates below `R = 1. Again, a rigorous design of

signalling constellations is beyond the scope of this thesis. However, the relationship

between the unavoidable distance shortening events and the outage performance for
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(b) Rate (bits per symbol) vs. SNR for 4-qam with a FER of 0.05

Fig. 10.: Outage experiment results with 4-qam signalling.
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different code rates should have interesting implications for such designs.

In Fig. 11, we compare the outage performance for the proposed MLC scheme

with the outage performance if nodes A and B use identical linear codebooks over

GF (4). As in Fig. 10(b), we fix the acceptable FER as 0.05, and the achievable rates

for both schemes are plotted as a function of SNR. We have previously demonstrated

in Figs. 6 and 7 that the proposed MLC scheme facilitates a larger class of decoding

functions for CF decoding. It is therefore surprising that coding over GF (4) with

CF decoding has better outage performance at high SNR than the proposed MLC

scheme with CF decoding. This can be explained by the fact that for coding over

GF (4) with CF decoding, only one rate constraint needs to be satisfied to achieve

reliable decoding (2.34). For MLC with CF decoding, three additional constraints

must be satisfied (2.23) including one penalty constraint associated with the use of

identical linear codebooks for each signalling level.

II.4.2. Numerical Results for 8-ary Constellations

We now provide additional illustrative examples using three different 8-ary modula-

tion schemes which are shown in Fig. 12. This means that we use MLC with ` = 3

bit levels, and the scheme supports 168 unique decoding functions for CF decoding

at the relay (one for each invertible `× ` binary matrix).

For the 8-qam constellation, we plot the performance of CF and DF decoding

as a function of θ for hA = 1, hB = ejθ, and snr = 12 dB in Fig. 13(a). The

universally achievable rate RH is plotted as a function of SNR in Fig. 13(b). We

note that the high SNR performance is limited for both CF and DF for values of θ

near {0, π}. There are many constellation points with unequal labels and nearly the

same location in QR for these channel gains. However, in Fig. 13(b), we see that at

least one of the CF decoding functions facilitates a 0.5 bits per symbol improvement
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(a) Rate (bits per symbol) vs. SNR for 4-qam with a FER of
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(b) Rate (bits per symbol) vs. SNR for 4-qam with a FER of
0.05 at high SNR

Fig. 11.: Outage experiment results with 4-qam signalling. Proposed multilevel

coding scheme compared to coding over GF(4), both with CF decoding.
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(b) 8-psk signaling constellation

Fig. 12.: 8-ary modulation schemes considered in this section.
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(c) 8-box signaling constellation

Fig. 12.: Fig. 12: Continued.
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(a) `R vs. θ for snr = 12 dB with 8-qam signaling.
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(b) `RH,CF , `RH,DF , and `RH vs. SNR with 8-qam signaling.

Fig. 13.: Achievable information rates for the proposed scheme with 8-qam sig-

nalling.
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of CF over DF at high SNR, for this constellation.

For the 8-psk constellation, the achievable rate for CF and DF decoding is plot-

ted as a function of θ for snr = 12 dB in Fig. 14(a). The universally achievable rate

RH is plotted as a function of SNR in Fig. 14(b). The performance of the 8-psk sig-

naling constellation are particularly interesting because RH > max(RH,CF ,RH,DF )

at high SNR. This is because the limiting values of θ for the tested channel parame-

ters are different for the two decoding methods.

Lastly, we consider the performance of a signalling constellation called 8-box

shown in Fig. 12(c). The 8-box constellation is effectively two QPSK constellations

with the second constellation rotated by π
4

and scaled by
√

2. For 8-box, the achiev-

able rate for CF and DF decoding is plotted as a function of θ for snr = 12 dB

in Fig. 15(a). The universally achievable rate RH is plotted as a function of SNR

in Fig. 15(b). We see that the RH for the 8-box constellation is the best for all

SNRs among the tested 8-ary constellations. This is partially because the constella-

tion is defined by points on a lattice in the complex field which assists CF decoding

when |hA| = |hB|. Note that for each of the signalling constellations considered, the

universal performance for DF is consistently better at low SNR while the universal

performance for CF is better at high SNR. Further, the universally achievable rates

are improved by the use of both CF and DF decoders.

II.4.3. Comparison to Upper Bounds and Lattice based Compute-and-

Forward

To thoroughly understand the performance of the proposed scheme, it is helpful

to compare the results for the given constellations to some upper bounds. For the

case when the channel is not known at the transmitter, tight upper bounds on the

achievable rates are not known, making this comparison difficult. Nevertheless, a
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(a) `R vs. θ for snr = 12 dB with 8-psk signaling.
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(b) `RH,CF , `RH,DF , and `RH vs. SNR with 8-psk signaling.

Fig. 14.: Achievable information rates for the proposed scheme with 8-psk sig-

nalling.
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(a) `R vs. θ for snr = 12 dB with 8-box signaling.
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(b) `RH, `RH,DF , and `RH,CF vs. SNR with 8-box signaling.

Fig. 15.: Achievable information rates for the proposed scheme with 8-box sig-

nalling.
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trivial upper bound can be obtained using a cut-set bound. This bound is obtained

by considering a cut between node A and the relay and assuming that the interference

from the other user is perfectly available at the relay. Further, when computing the

information rate for this cut, the specific modulation format used by the nodes is

considered. We will refer to this bound as the cut-set bound with known interference.

This bound and the performance of the proposed scheme are shown in Fig. 16 for

the 4 different modulation formats considered. While there is a gap between the

performance of the proposed scheme and the upper bounds, the proposed scheme

is asymptotically optimal in the 4-qam case (for the case of hA = 1, hB = ejθ) and

performs within about 0.5 bits/channel use for the 8-box case.

In [26], Nazer and Gastpar derive achievable rates for a compute-and-forward

scheme using infinite dimensional lattice codes when channel state information is

not available at the transmitter. In Fig. 17, the universally achievable rate with the

proposed scheme is compared to that achievable by Nazer and Gastpar’s scheme for

the hA = 1 and hB = ejθ case. It can be seen that the proposed scheme with 4-

qam and 8-box modulation schemes outperform the lattice code for low and moderate

SNRs for the tested channel gains. At higher SNRs, the performance of the proposed

schemes are limited by the cardinality of the 4-qam and 8-box constellations and the

lattice based compute-and-forward scheme outperforms the proposed schemes.

II.4.4. Simulation Results

To corroborate our theoretical results, we simulated the performance of a regular

(3,6) low density parity check (LDPC) code with message passing decoding. In Fig.

18 the required SNR is plotted as a function of θ for the case where hA = 1 and

hB = ejθ. The theoretical results assume the linear code C used at each bit level has

rate R = 1
2
. Therefore, the theoretically required SNR for CF refers to the SNR such
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(a) `R vs. SNR with 4-qam signaling.
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(b) `R vs. SNR with 8-qam signaling.

Fig. 16.: Universally achievable rates with the proposed scheme compared to the

cut-set bound with known interference.
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(d) `R vs. SNR with 8-box signaling.

Fig. 16.: Fig. 16.: Continued.

56



ℓ
ℛ

ℋ
 

𝑆𝑁𝑅 𝑑𝐵  

Fig. 17.: `RH vs. SNR for 4-qam and 8-box signaling compared to RH for lattice

based compute-and-forward.
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Fig. 18.: Required SNR (dB) vs. θ to reliably decode a rate `R = 1 code using

the proposed scheme MLC scheme. The theoretical results are compared to

simulation results for a long (3, 6) LDPC code.

that Xf,R can be reliably decoded for at least one f ∈ F . The theoretically required

SNR for DF refers to the SNR such that XAB can be reliably decoded. Any function

can be subsequently computed. For the simulated results, we simulated up to 200

transmissions of a (3,6) LDPC codeword of length 100, 000 for each tested SNR and

θ. The simulated curves therefore represent the SNR for which there were zero bit

errors after 200 simulated transmissions. This had to be satisfied for at least one

f ∈ F for CF decoding. The messages from both node A and B had to be recovered

without error for DF decoding.

For a point-to-point AWGN channel using binary phase shift keying (BPSK), it

has been shown in [38] that the required SNR for a (3,6) LDPC code with iterative

58



decoding is about 1 dB away from the Shannon limit for BPSK signaling and AWGN.

The simulated SNR are approximately 0.85 to 1.5 dB larger than the theoretically

required SNR for the tested values of θ for the best of CF and DF which suggests

that the achievable rates discussed in this chapter can be approached with practical

coding schemes.

Note that to achieve the theoretical limit imposed by (2.19) using structured

codes, it will be necessary to design practical coding schemes which universally

achieve capacity for many channel conditions. The conventional approach to achiev-

ing capacity with a message passing decoder has been to optimize the code ensemble

depending on the channel conditions. However, it has recently been discovered that,

for certain classes of spatially coupled LDPC codes, a message passing decoder can

achieve the performance of an optimal decoder for the underlying code ensemble

[39], [40]. This has been shown to hold universally for a large class of binary-input

channels [41] including the binary-input MAC channel with AWGN and fading [42],

[43]. For these reasons, it appears that the class of spatially coupled LDPC codes

may allow us to achieve the information rates derived in this chapter with practical

decoding complexity. This is investigated for a simplified channel model in Chapter

IV.

II.5. Concluding Remarks

In this chapter, we have proposed a multilevel coding scheme which is more practical

and facilitates improved decoding flexibility over previous schemes based on infinite

dimensional lattice codes. Our scheme can be implemented with practical binary

linear codebooks and modulation schemes. Our analysis of the achievable rates with

the proposed scheme reveals that the identical linear codebooks for each signalling
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level imposes penalty rate constraints. Specifically, our construction introduces a

class of error events which are not present with independent codebooks. A detailed

proof is provided in the following Appendix II.6. Our numerical results for show

that decoding flexibility can be significantly improved if the relay attempts direct

computation of the desired functions (called the CF decoder) or attempts to decode

all incoming codewords (called the DF decoder) depending on the channel. This fact,

along with the notion that the achievable computation rate is the suitable metric for

system performance, should have important implications for the design of better

signalling constellations.

A logical step for further research might be to investigate ways to optimize

the signaling constellations for reliable PLNC. We discuss some ways we think this

should be approached with future work in Chapter V. However, as we have found

in this chapter, there are still things we do not know about the limits for reliable

decoding when the transmitters use structured code ensembles suitable for joint

channel and network coding. Particularly, we do not have a converse result to match

the achievability proof in this chapter. We address this for a general channel model

with identical binary linear codebooks in Chapter III. Then, we consider how to

design practical coding schemes to achieve our theoretical performance in Chapter

IV. These results are consolidated and concluded in Chapter V.

II.6. Appendix: Proof of Theorem II.1

II.6.1. Additional Notation

It will be notationally convenient to refer to variables associated with different mes-

sages according to a single integer index. Therefore, we define the integer j as the

binary expansion of the message Uj. Recall that Uj is an ` ×K binary matrix, so
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j ∈ {0, ..., 2K`−1}. We use Ut to refer to the true message sent from the transmitter.

The relay will attempt to reliably decode Xt from y using a joint typicality

decoder. Thus an error occurs if either Xt is not jointly typical with y or if some

incorrect message Xj, j 6= t is jointly typical with y.

II.6.2. Pairwise Independence of Codewords

Here we provide a brief analysis of the ensemble of coset codes used by the transmit-

ter. Both of the following lemmas appear as part of the proof of Gallager’s Coding

Theorem for Random Parity Check Codes [44]. We include these proofs because the

intuition behind some of the steps is used for other parts of the proof.

Lemma II.2. Let each element of G and λk be i.i.d. Bernoulli random variables

with parameter 1
2
. Then we have

P (V k
j = vkj ) =

1

2N
∀ vkj ∈ FN2 . (2.37)

That is, the codeword vkj ∈ FN2 associated with message vector ukj ∈ FK2 can take any

value with uniform probability over the ensemble of random coset codes.

Proof. For a fixed G and ukj , the output of the linear encoder γk
j

= ukjG must take

some value in FN2 . Since λk can take any value with equal probability we have

P (V k
j = vkj ) = P (Λk = vkj ⊕ γkj ) =

1

2N
∀ vkj ∈ FN2 . (2.38)

Lemma II.3. Let each element of G and λk be i.i.d. Bernoulli random variables
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with parameter 1
2
. Then for any j′ 6= j such that ukj 6= ukj′, we have

P (V k
j = vkj , V

k
j′ = vkj′) = P (V k

j = vkj )P (V k
j′ = vkj′)

=
1

22N
∀ vkj , vkj′ ∈ FN2 . (2.39)

Particularly, the codewords vkj and vkj′ associated with ukj and ukj′ respectively are

independent and uniformly distributed over FN2 .

Proof. Suppose that ukj and ukj′ differ in position m, and let g
i
, i ∈ {1, ..., K} refer

to the ith row of G. Then for any set of rows

g
1
, ..., g

m−1
, g

m+1
, ..., g

K

there is some g
m

which gives vkj ⊕ vkj′ = γk
j
⊕γk

j′
any fixed value. By the construction

of G and Lemma II.2, g
m

and vkj can take any value with uniform probability. We

can conclude that

P (V k
j = vkj , V

k
j′ = vkj′|ukj 6= ukj′)

= P (V k
j = vkj |ukj 6= ukj′)P (V k

j′ = vkj′ |vkj , ukj 6= ukj′)

= P (Λk = vkj ⊕ γkj |u
k
j 6= ukj′)P (Gm = vkj′ ⊕ vkj |vkj , ukj 6= ukj′)

=
1

2N
1

2N
=

1

22N
∀ vkj , vkj′ ∈ FN2 . (2.40)

The key idea behind each proof is the same. In Lemma II.2, we see that the

uniform distribution of λk implies the uniform distribution of vkj . In Lemma II.3,

we see that the uniform distribution of G implies the independence of codewords

corresponding to distinct messages.
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II.6.3. Analysis of Error Probability

The relay uses a joint typicality decoder to decode Xt from y. For some fixed ε > 0,

define ANε as the set of (Xj, y) pairs which satisfy the definition of joint typicality

given in [13]. The set ANε is referred to as the jointly typical set. Let the event

Ej, j ∈ {0, ..., 2K` − 1} be the event (Xj, y) ∈ ANε . The probability of error given

that the codeword corresponding to t is observed by the receiver can be expressed

P (Err|t) = P

Et ∪
⋃

j∈{0,...,2K`−1}\{t}

Ej

∣∣∣∣∣∣ t
 (2.41)

Applying the union bound, we get

P (Err|t) ≤ P
(
Et|t

)
+

∑
j∈{0,...,2K`−1}\{t}

P (Ej|t). (2.42)

Recall that y ∼ P (Y |Xt). Thus by the joint asymptotic equipartition property

(AEP) we have that for any ε > 0,

P (Et|t) < ε (2.43)

for sufficiently large N .

The proof of the channel coding theorem for the general discrete memoryless

channel in [13] relies on upper bounding P (Ej|t) using the joint AEP. This is not

straightforward here because Xj, j 6= t and y are not independent with the same

marginals for certain classes of error events. For example, if ` = 2, we could have

Uj = Ut ⊕

 eu

0


⇒ Xj = Xt ⊕

 ev

0

 (2.44)
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for some eu ∈ FK2 \ {0} and ev ∈ FN2 \ {0}. This means that v1
j 6= v1

t but v2
j = v2

t .

Thus for this class of error events Xj and Xt are not independent. Note that this

class of error events is handled by the proof of the coding theorem for the multiple

access channel [37], [13], and [45]. In the coding theorem proof for the multiple

access channel, it is possible for the receiver to correctly decode a codeword from

one transmitter while making an error in decoding the codeword from a second

transmitter. This has the same effect as correctly decoding the codeword on one level

of a multilevel encoder while making an error in decoding the codeword transmitted

on the second level.

Unfortunately, choosing to use a coset of the same linear codes at each bit level

introduces a new class of error events of the form

Uj = Ut ⊕

 eu

eu


⇒ Xj = Xt ⊕

 ev

ev

 . (2.45)

For this class of error events, the columns of the error matrix Xj ⊕ Xt must be

in {[0 0]T , [1 1]T}. This is the key difference between our proof and the proofs for

the general multiple access channel or for the point-to-point channel with multilevel

coding using independent encoders for each level.

We can move forward by splitting the sum in (2.42) into different events for

which Xj and Xt are conditionally independent. Define a set of p ≤ ` disjoint

subsets S1, ...,Sp ⊆ {1, ..., `}. Let τi be the smallest element of Si, i ∈ {1, ..., p}, and

define the sets T = {τ1, ..., τp}, S = S1 ∪ ...∪ Sp, and S = {1, ..., `} \ S. For each set
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of subsets, define an index set JS1,...,Sp given by

JS1,...,Sp =


j

∣∣∣∣∣∣∣∣∣∣∣∣∣
ukj =



ukt ⊕ eu,1 , k ∈ S1

...

ukt ⊕ eu,p , k ∈ Sp

ukt , k ∈ S


. (2.46)

Here each message error vector, eu,i ∈ FK2 \ {0} ∀ i ∈ {1, ..., p} satisfies eu,i 6=

eu,i′ ∀ i 6= i′. For clarification, a subset Si gives the levels of an incorrect message

Uj which differ from Ut with the an equal message error vector eu,i. Thus the

disjoint families of subsets {S1, ...,Sp} ∈ Z` allow us to describe all classes of error

events similar to (2.45) for general `. Recall that Z` is the set of disjoint families of

subsets of {1, ..., `}. Each index set JS1,...,Sp ⊆ {0, ..., 2K` − 1} contains the integer

indices of all incorrect messages Uj which differ from Ut as indicated by the subsets

S1, ...,Sp. This notation may seem redundant, however, it allows us to simplify

many expressions through the remainder of the proof. For the sake of clarity, we will

complete the analysis of error probability for the case where ` = 2, and then extend

the results to a general `.
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Case {` = 2}: If ` = 2, the subsets in (2.46) can be written as

J{1} =

j
∣∣∣∣∣∣∣Uj = Ut ⊕

 eu,1

0




J{2} =

j
∣∣∣∣∣∣∣Uj = Ut ⊕

 0

eu,1




J{1,2} =

j
∣∣∣∣∣∣∣Uj = Ut ⊕

 eu,1

eu,1




J{1}{2} =

j
∣∣∣∣∣∣∣Uj = Ut ⊕

 eu,1

eu,2


 .

These subsets are disjoint and describe each class of error events, so

J{1} ∪ J{2} ∪ J{1,2} ∪ J{1}{2} = {0, ..., 22K − 1} \ {t}.

Therefore, the union bound on the probability of error for ` = 2 can be written as

P (Err|t) ≤P (Et|t) +
∑
j∈J{1}

P (Ej|t, j ∈ J{1})

+
∑
j∈J{2}

P (Ej|t, j ∈ J{2})

+
∑

j∈J{1,2}

P (Ej|t, j ∈ J{1,2})

+
∑

j∈J{1}{2}

P (Ej|t, j ∈ J{1}{2}). (2.47)

We define ev,i = eu,iG, i ∈ {1, 2} as the codeword error vector associated with

subset Si. The subscript u or v is used to differentiate between the message error

vector and codeword error vector respectively. Over the ensemble of codes, each

ev,i is uniformly distributed in FN2 , and codeword error vectors ev,i, ev,j, i 6= j are
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independent. These facts can be shown using steps similar to the proofs of Lemmas

II.2 and II.3.

If {j ∈ J{1}} is given, then we know that

Xj = Xt ⊕

 ev,1

0

 .
By Lemmas II.2 and II.3, v1

t and v1
j are independent and uniformly distributed on

FN2 . Lemma II.2 also tells us that v2
t and v2

j are equal and uniformly distributed on

FN2 .

Define v2 as the common value taken by v2
j = v2

t . The joint AEP provides an

asymptotically tight upper bound to each P (Ej|t, j ∈ J{1}) if we can show that

P (Xj, Y |t, j ∈ J{1}) = P (Xj|t, j ∈ J{1})P (Y |t, j ∈ J{1}). (2.48)

This is equivalent to showing that

P (Xj, Y |v2, j ∈ J{1}) = P (Xj|v2, j ∈ J{1})P (Y |v2, j ∈ J{1}). (2.49)

for each value of v2. Therefore, consider some arbitrary fixed v2. We can use the

definition of conditional probability to get

P (Xj, Y |v2, j ∈ J{1})

= P (Xj|v2, j ∈ J{1})P (Y |Xj, v
2, j ∈ J{1})

= P (Xj|v2, j ∈ J{1})P (Y |v1
j , v

2, j ∈ J{1}). (2.50)

Since y ∼ P (Y |Xt) = P (Y |v1
t , v

2), we can see that y is a random function of v1
t

conditioned on v2. This is expressed as

y = g(v1
t ; v

2). (2.51)
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Since j ∈ J{1}, v1
t and v1

j are independent according to Lemma II.3. Therefore, we

have

P (Y |v1
j , v

2, j ∈ J{1}) = P (Y |v2, j ∈ J{1}). (2.52)

This allows us to conclude that (2.49) holds so we can use [13, Theorem 15.2.3] to

get the following bound

P (Ej|t, j ∈ J{1}) < 2−N(I(Y ;X1|X2)−3ε). (2.53)

Similar steps can be used for the case when j ∈ J{2} to get

P (Ej|t, j ∈ J{2}) < 2−N(I(Y ;X2|X1)−3ε). (2.54)

For the case when j ∈ J{1,2}, we have

Xj = Xt ⊕

 ev,1

ev,1

 .
The most direct way to find a bound for this case is to reassign the address vectors

so that this case is similar to the case when j ∈ J{1}. Define a binary matrix ∆{1,2}

given by

∆{1,2} =

 1 0

1 1

 . (2.55)

Define effective codeword matrices X̃t and X̃j by

X̃t = ∆{1,2}Xt

X̃j = ∆{1,2}Xj = X̃t ⊕

 ev,1

0

 .
This is the same as the case where j ∈ J{1} if the relay observes the ỹ corresponding

to codeword matrix, X̃t through the effective channel P (Ỹ |∆{1,2}X t). Therefore for
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the case where j ∈ J{1,2}, we have the bound

P (Ej|t, j ∈ J{1,2}) < 2−N(I(Y ;X̃1|X̃2)−3ε) (2.56)

which can be expressed in terms of the original address variables as

P (Ej|t, j ∈ J{1,2}) < 2−N(I(Y ;X1|X1⊕X2)−3ε). (2.57)

By the definition of mutual information, we have

I(Y ;X1|X1 ⊕X2)

= H(Y |X1 ⊕X2)−H(Y |X1, X1 ⊕X2)

= H(Y |X1 ⊕X2)−H(Y |X1, X2)

= I(Y ;X1, X2|X1 ⊕X2).

Therefore the bound is equivalent to

P (Ej|t, j ∈ J{1,2}) < 2−N(I(Y ;X1,X2|X1⊕X2)−3ε). (2.58)

Lastly, for the case when j ∈ J{1}{2}, Xt and Xj are i.i.d. by Lemmas II.2 and

II.3. We can therefore use joint AEP directly to get the bound

P (Ej|t, j ∈ J{1}{2}) < 2−N(I(Y ;X1,X2)−3ε). (2.59)

Applying the upper bounds for each index set to (2.47), we get the following
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bound

P (Err|t) < ε+
∑
j∈J{1}

2−N(I(Y ;X1|X2)−3ε)

+
∑
j∈J{2}

2−N(I(Y ;X2|X1)−3ε)

+
∑

j∈J{1,2}

2−N(I(Y ;X1,X2|X1⊕X2)−3ε)

+
∑

j∈J{1}{2}

2−N(I(Y ;X1,X2)−3ε). (2.60)

There are 2NR − 1 elements in the sets J{1},J{2}, and J{1,2}, and there are fewer

than 22NR elements in the last set J{1}{2}. Thus the upper bound on the probability

of error for this code ensemble can be expressed

P (Err|t) <ε+ 2N(R−I(Y ;X1|X2)+3ε)

+ 2N(R−I(Y ;X2|X1)+3ε)

+ 2N(R−I(Y ;X1,X2|X1⊕X2)+3ε)

+ 2N(2R−I(Y ;X1,X2)+3ε). (2.61)

Each of these terms can be made arbitrarily close to zero by increasing N as long as

R satisfies

R < max(I(Y ;X1|X2), I(Y ;X2|X1), I(Y ;X1, X2|X1 ⊕X2),
1

2
I(Y ;X1, X2)).

(2.62)

Note that this proof holds for an arbitrary t which means that the bound holds

independent of the transmitted message.

Case {` ≥ 2}: For a general `, the proof is very similar. We split (2.42) into the
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disjoint classes of error events in (2.46) to get

P (Err|t) ≤ P (Et|t) +
∑̀
p=1

∑
{S1,...,Sp}Z`

∑
j∈JS1,...,Sp

P (Ej|t, j ∈ JS1,...,Sp). (2.63)

Then we find upper bounds on the probability of error for different classes of error

events.

First, we consider the case where each Si, i ∈ {1, ..., p} contains only its smallest

element τm. This is analogous to the case where {j ∈ J{1}} for the proof when ` = 2.

By Lemmas II.2 and II.3, we have

P (V k
j = v1, V

k
t = v2|j ∈ JS1,...,Sp) =


2−2N , k ∈ S

2−N , v1 = v2 and k 6∈ S

0 , v1 6= v2 and k 6∈ S.

(2.64)

That is if k ∈ S then vkj and vkt are independent and uniformly distributed. If k 6∈ S

they are equal and uniformly distributed. Let vk, k 6∈ S be the common value taken

by the kth row of Xj and Xt.

The joint AEP gives an asymptotically tight upper bound to P (Ej|t, j ∈ JS1,...,Sp)

if we can show that

P (Xj, Y |t, j ∈ JS1,...,Sp) = P (Xj|t, j ∈ JS1,...,Sp)P (Y |t, j ∈ JS1,...,Sp). (2.65)

This is equivalent to showing that

P (Xj, Y |{vk, k 6∈ S}, j ∈ JS1,...,Sp)

= P (Xj|{vk, k 6∈ S}, j ∈ JS1,...,Sp)P (Y |{vk, k 6∈ S}, j ∈ JS1,...,Sp) (2.66)

for each possible set of values {vk, k 6∈ S}. This is possible using the same arguments

as for the ` = 2 case. Particularly, if we condition on {vk, k 6∈ S}, j ∈ JS1,...,Sp , then
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y ∼ P (Y |Xt) = P (Y |{vkt , k ∈ S}, {vk, k 6∈ S}). Since j ∈ JS1,...,Sp , we have that

vkj and vkt are independent for every k ∈ S. Therefore, y is conditionally a random

function of {vkt , k ∈ S} and we can conclude that

P (Xj, Y |{vk , k 6∈ S}, j ∈ JS1,...,Sp)

= P (Xj|{vk , k 6∈ S}, j ∈ JS1,...,Sp)P (Y |Xj, {vk , k 6∈ S}, j ∈ JS1,...,Sp)

= P (Xj|{vk , k 6∈ S}, j ∈ JS1,...,Sp)P (Y |{vkj , k ∈ S}, {vk , k 6∈ S}, j ∈ JS1,...,Sp)

= P (Xj|{vk , k 6∈ S}, j ∈ JS1,...,Sp)P (Y |{vk , k 6∈ S}, j ∈ JS1,...,Sp) (2.67)

Therefore (2.65) holds which allows us to apply joint AEP to get the upper bound

P (Ej|t, j ∈ JS1,...,Sp) ≤ 2−N(I(Y ;{Xk,k∈S}|{Xk,k 6∈S})−3ε). (2.68)

To extend this result to the general case where each S1, ...,Sp can contain multi-

ple elements, we make this problem look like the first case. Define a matrix ∆S1,...,Sp

whose mth column dm is given by

dτk [n] =


1 , n ∈ Sk

0 , n 6∈ Sk
∀ k = 1, ..., p

dm[n] =


1 , n = m

0 , n 6= m

∀ m 6∈ T . (2.69)

72



For example, if ` = 6, S1 = {2, 4, 5}, and S2 = {3, 6} we have

D{2,4,5},{3,6} =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


.

Define effective codeword matrices X̃j and X̃t by

X̃j = DS1,...,SpXj

X̃t = DS1,...,SpXt. (2.70)

Then the kth row ṽkj of X̃j is given by

ṽkj =


ṽkt , k 6∈ T

ṽkt ⊕ ev,m , k = τm, m = 1, ..., p

(2.71)

for some pairwise independent set of error vectors ev,1, ..., ev,p ∈ FN2 \ {0}.

For the ` = 6 example, this means that

X̃j = X̃t ⊕



0

e1,v

e2,v

0

0

0


.

This is the same as the case where each S1, ...,Sp contains only one element. Thus,
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we can apply the bound in (2.68) to get

P (Ej|t, j ∈ JS1,...,Sp) ≤ 2−N(I(Y ;{X̃k, k∈T }|{X̃k, k 6∈T })−3ε). (2.72)

The only step that remains is to show that the mutual information in (2.72) can

be expressed as

I(Y ; {X̃k, k ∈ T }|{X̃k, k 6∈ T })

= I(Y ; {Xk|k ∈ S}|{Xk|k 6∈ S}, {Xk ⊕ Zi|k ∈ Si} ∀ i = 1, ..., p) (2.73)

where S =
⋃p
i=1 Si, and each Zi is an auxiliary Bernoulli random variable with

parameter 1
2
. By (2.70), we have

x̃k =


xk , k ∈ S ∪ T

xk ⊕ xτm , k ∈ Sm \ {τm}.
(2.74)

We therefore have

{x̃k|k ∈ T } ⇔ {xk|k ∈ T }

{x̃k|k 6∈ T } ⇔ {xk|k 6∈ S} ∪
p⋃

m=1

{xk ⊕ xτm|k ∈ Sm \ {τm}}.

The mutual information can therefore be expressed

I(Y ; {X̃k|k ∈ T }|{X̃k|k 6∈ T })

= I(Y ; {Xk|k ∈ T }|{Xk|k 6∈ S} ∪
p⋃

m=1

{Xk ⊕Xτm|k ∈ Sm \ {τm}})

= H(Y |{Xk|k 6∈ S} ∪
p⋃

m=1

{Xk ⊕Xτm|k ∈ Sm \ {τm}})−H(Y |X1, ..., X`).

The last equality follows because if we know xτm and xk⊕xτm then we know both xτm

and xk. Which tells us that knowing {xk|k ∈ T } ∪
⋃p
m=1{xk ⊕ xτm|k ∈ Sm \ {τm}}
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is equivalent to knowing {xk|k ∈ S}.

It can be shown for each Sm, m ∈ {1, ..., p} that

{xk ⊕ xτm |k ∈ Sm \ {τm}} ⇔ {xk ⊕ zm|k ∈ Sm}. (2.75)

For example, if we consider our ` = 6 case, we have S1 = {2, 4, 5}. If we know that

(x4 ⊕ x2, x5 ⊕ x2) = (a, b) , a, b ∈ {0, 1}

then we have

(x2, x4, x5) ∈ {(0, a, b), (1, a, b)}

which is equivalent to knowing

(x2 ⊕ z1, x
4 ⊕ z1, x

5 ⊕ z1).

We therefore have

I(Y ; {X̃k|k ∈ T }|{X̃k|k 6∈ T })

= H(Y |{Xk|k 6∈ S} ∪
p⋃

m=1

{Xk ⊕Xτm|k ∈ Sm \ {τm}})−H(Y |X1, ..., X`)

= H(Y |{Xk|k 6∈ S} ∪
p⋃

m=1

{Xk ⊕ Zm|k ∈ Sm})−H(Y |X1, ..., X`)

= I(Y ; {Xk|k ∈ S}|{Xk|k 6∈ S}, {Xk ⊕ Zi|k ∈ Si} ∀ i = 1, ..., p). (2.76)

This is the same as (2.73), which allows us to restate the bound in (2.72) as

P (Ej|t, j ∈ JS1,...,Sp)

≤ 2−N(I(Y ;{Xk|k∈S}|{Xk|k 6∈S},{Xk⊕Zi|k∈Si} ∀ i=1,...,p)−3ε)

, 2−N(I(Y ;S1,...,Sp)−3ε). (2.77)

The last step defines a mutual information I(Y ;S1, ...,Sp). This slight abuse of
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notation simplifies the last few steps of the proof.

Plugging this into (2.63), we have

P (Err|t) ≤ P (Et|t) +
∑̀
p=1

∑
S1,...,Sp

∑
j∈JS1,...,Sp

2−N(I(Y ;S1,...,Sp)−3ε). (2.78)

For each possible S1, ...,Sp we have

|JS1,...,Sp | = (2NR − 1)(2NR − 2)...(2NR − p) < 2NRp.

Therefore we have

P (Err|t) ≤ ε+
∑̀
p=1

∑
S1,...,Sp

2NRp2−N(I(Y ;S1,...,Sp)−3ε)

≤ ε+
∑̀
p=1

∑
S1,...,Sp

2N(Rp−I(Y ;S1,...,Sp)+3ε).

This bound approaches zero as long as

R < min
S,S,S1,...,Sp

1

p
I(Y ; {Xk|k ∈ S}|{Xk|k ∈ S}, {Xk ⊕ Zi|k ∈ Si} ∀ i ∈ {1, ..., p}).

This completes the proof.
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CHAPTER III

JOINT-COMPUTE-AND-FORWARD FOR BINARY MEMORYLESS MULTIPLE

ACCESS CHANNELS

In the previous chapter, our proposed multilevel coding scheme with identical lin-

ear codes for each bit level practically facilitates generous computation flexibility

with reliable decoding at the relay. Our analysis had shown that it is beneficial to

allow the relay to attempt both CF and DF decoding depending on the channel

parameters. Indeed, either decoding method considered separately is suboptimal for

computation with general channel parameters. Therefore a joint decoding paradigm

for computation has been proposed in a message passing framework to address this

suboptimality [17], [16], [18], [19]. We call the decoding paradigm considered in these

papers joint-compute-and-forward (JCF). These authors provide simulation results,

based on JCF message passing, which show that JCF can strictly outperform CF or

DF decoding for certain channel conditions. In fact, it has been conjectured in [17],

that JCF decoding achieve strictly better computation rates than CF and DF for

the two way relaying problem.

The main result in this chapter is that, while JCF decoding is rate optimal for

computing the finite field sum of transmitted codewords, JCF cannot achieve better

computation rates than the better of CF and DF decoding. This surprising negative

result verifies that CF and DF provide a fundamental limit for linear computation.

This result is proved for the very general class of binary-input memoryless multiple

access channels. We obtain the converse by restricting that nodes A and B use

the ensemble of independent cosets of an identical binary linear codebook generated

uniformly at random. A key implication of this analysis is that, if it possible to

achieve better computation rates suitable for transmission over a two way relay
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network, it will require clever joint design of the encoders at nodes A and B. Indeed,

the conjecture in [17] is requires the design of channel codes such that a computable

network function is perfectly matched to the channel parameters. The details of the

information-theoretic analysis in this paper should be useful for such an investigation.

Note about notation: In Chapter II, we used two different symbols v and x to

refer to a binary codeword or address vector respectively. This unusual notation

enabled us to shift our discussion between the adaptive network coding and reliable

channel coding components efficiently. This is not necessary in this chapter, so we

use x ∈ C to refer to a codeword and refer to arbitrary or indexed elements of x by

x or x[n] respectively. Throughout the proofs in this chapter, we use δ(ε) to refer to

a function of ε > 0 for which δ(ε) → 0 as ε → 0. Also, εN ≥ 0 is used as shorthand

for sequences which approach 0 as N →∞.

III.1. Three Decoding Paradigms

For the system model in this chapter, nodes A and B encode their binary message

sequences uA, uB ∈ {0, 1}K into length N codewords xA ∈ CA and xB ∈ CB. The relay

observes the output of a memoryless multiple access channel P (YR|XA, XB). The

objective of the relay is to reliably decode the message uR = uA⊕uB which is encoded

and broadcast to nodes A and B. Again, the achievable computation rate R is the

largest K
N

such that uR can be decoded reliably in the usual information-theoretic

sense. We primarily focus on the case where nodes A and B select independent

cosets of identical linear codebooks generated uniformly at random for encoding.

This ensemble provides the structure necessary for CF decoding, and exhibits the

penalty constraints discovered in Chapter II if the relay uses DF decoding.

Decode-and-Forward: In the traditional DF scheme, nodes A and B use
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independent codebooks, so the blockwise optimal DF decoder computes

(x̂A, x̂B)(y
R

) = arg max
(xA,xB)∈CA×CB

P (y
R
|xA, xB)

x̂A → ûA x̂B → ûB

⇒ ûR,DF = ûA ⊕ ûB. (3.1)

DF can achieve all equal exchange rates subject to [13]

RDF < min

{
1

2
I(YR;XA, XB), I(YR;XA|XB), I(YR;XB|XA)

}
. (3.2)

Define R′DF as the achievable rate for decoding (xA, xB) if nodes A and B use

an identical linear codebook C. In Chapter II, we showed that if nodes A and B

use the same linear code, then a rate penalty must be satisfied to recover (xA, xB).

To understand this, note that recovering (xA, xB) means that the codeword xR =

xA⊕xB ∈ C has also been decoded. Therefore the multiple access channel constraints

for the codeword pair (xA, xR), given by

R < min

{
1

2
I(YR;XA, XR), I(YR;XA|XR), I(YR;XR|XA)

}
. (3.3)

must be satisfied in addition to those required to recover (xA, xB) with independent

codebooks. The achievable rates for DF decoding with identical linear codebooks

R′DF is the union of the constraints in (3.2) and (3.3). Such a scheme can achieve

all rates subject to

R′DF < min {RDF , I(YR;XA, XB|XR)} . (3.4)

Compute-and-Forward: The CF scheme requires node A and B to use the
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same linear codebook. The blockwise optimal CF decoder computes

x̂R,CF (y
R

) = arg max
xR∈C

∑
{xA,xB∈{0,1}N |xR=xA⊕xB}

P (y
R
|xA, xB)

= arg max
xR∈C

N∏
n=1

P (yR[n]|xR[n]). (3.5)

CF can achieve all rates subject to

RCF < I(YR;XR). (3.6)

Joint-Compute-and-Forward: The JCF scheme also requires the use of iden-

tical linear codebooks. The blockwise optimal JCF decoder computes

x̂R,JCF (y
R

) = arg max
xR∈C

∑
{xA,xB∈C|xR=xA⊕xB}

P (y
R
|xA, xB). (3.7)

Note that the summation is taken over the set of codewords C instead of the set

{0, 1}N as in (3.5). Comparing (3.5) and (3.7), it is clear that the JCF decoder is

better than the CF decoder because it only considers sequences which could possibly

be transmitted from nodes A and B.

Notice that with either CF or JCF decoding, uR = uA ⊕ uB can be computed

from xR = xA ⊕ xB because of the structure of the identical linear codebook C.

III.2. Simultaneous Non-unique Decoding

A direct analysis of the probability of error for the maximum likelihood JCF decoder

(3.7) is very difficult. However, we can move forward by adapting an analysis of the

achievable rate region for interference networks presented in [46]. They consider a

discrete memoryless multiple access channel P (YR|XA, XB) in which the receiver is

interested in decoding only one of the codewords xA and does not need xB. The
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simultaneous non-unique decoder from [46] works by making a list of all codeword

pairs (xA, xB) which are jointly typical with y
R

. If every pair in the list contains

a unique x̂A, the simultaneous non-unique decoder declares x̂A to be the desired

codeword. If the list of typical codeword pairs is empty or contains multiple xA’s,

the decoder declares an error.

For this problem the authors in [46] prove two key results. First, this simulta-

neous non-unique decoder can achieve any rate which is achievable by attempting to

decode the exact pair (xA, xB) or by treating the interfering codeword xB as noise

with a known distribution. Second, they conversely show that it is impossible to

recover xA at any higher rates than those achievable with the better of these two

schemes. Key to their analysis is a restriction to code ensembles “with superposition

coding and time sharing of independent and identically distributed (i.i.d.) code-

words.” For our purposes, it is enough to say that their results hold if CA and CB are

generated independently at random.

In what follows, we perform an analysis of maximum likelihood JCF decoding for

computation similar to the analysis in [46]. First, we define an ensemble of codeword

triplets (xA, xB, xR) about which we prove some properties which will be important

for our proofs. Then we define a JCF typicality decoder which is analogous to the

simultaneous non-unique typicality decoder in [46]. We derive the achievable com-

putation rates for JCF typicality decoding with our ensemble of codeword triplets.

Then, we conversely show that reliable computation of xR is impossible at code rates

higher than those achievable with JCF typicality decoding. Combining these results,

we can conclude that maximum likelihood JCF decoding is rate-optimal for computa-

tion over binary-input discrete memoryless MACs if nodes A and B use independent

cosets of a uniformly generated identical linear codebook.
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III.3. Ensemble of Coset Codeword Triplets

The problem in [46] is very similar to our JCF problem, because the relay only needs

to decode xR and does not need to know the transmitted pair (xA, xB). In order to

perform a similar analysis for a JCF typicality decoder, we need to understand the

ensemble of codeword triplets (xA, xB, xR) which is obtained if nodes A and B use

independent cosets of an identical linear code C.

Specifically, let the elements of the generator matrix G ∈ {0, 1}K×N and coset

vectors λA, λB ∈ {0, 1}N be i.i.d. bernoulli random variables with parameter 1
2
. Let

mA, mB, and mR denote the message indices whose binary expansions are bA, bB,

and bR respectively. Then let mR = mA ⊕mB refer to the fact that bR = bA ⊕ bB.

Then node A transmits

xA(mA) = bAG⊕ λA, (3.8)

and xB(mB) is encoded similarly. We use δ(ε) to refer to a function of ε > 0 for

which δ(ε) → 0 as ε → 0. Also, εN ≥ 0 is used as shorthand for sequences which

approach 0 as N →∞.

A particular {G, λA, λB} from our code ensemble defines a set of 22NR triplets

(xA, xB, xR) of length N coset codewords. Let CN refer to the ensemble of such sets

of triplets along with the mappings (mA,mB,mR) → (xA, xB, xR). We recall from

[44] that for the ensemble of random coset codes, the codeword associated with a

fixed message is uniformly distributed on {0, 1}N , and codewords with unequal input

messages are pairwise independent. This allows the use of the joint AEP to obtain

upper bounds on the probability of error. The following lemmas about CN are useful

for our analysis and follow from the uniformity and pairwise independence of the

ensemble of random linear coset codes.

Lemma III.1. For a fixed (mA,mB,mR) ∈ CN the conditional distribution P (XA, XB|XR)
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on the ensemble CN , is

P (XA, XB|XR) =


1

2N
, xR = xA ⊕ xB

0 , otherwise
(3.9)

Proof. First, note the joint distribution

P (XA, XR) = P (XA)P (XB ⊕XA|XA)

= P (XA)P (XB|XA)

= P (XA)P (XB) =
1

22N
.

Thus XA and XR are independent and uniformly distributed on {0, 1}N . Therefore,

we obtain

P (XA, XB|XR) = P (XA|XR)P (XB|XA, XR)

=
1

2N
1{xR=xA⊕xB}. (3.10)

Lemma III.2. For a fixed (mA,mB,mR) ∈ CN , the joint distribution P (XA, XB, XR)

on the code ensemble CN , is

P (XA, XB, XR) =


1

22N
, xR = xA ⊕ xB

0 , otherwise
. (3.11)

Proof. Since XA and XB are independent and uniformly distributed on {0, 1}N , we

have

P (XA, XB, XR) = P (XA, XB)P (XR|XA, XB)

=
1

22N
1{xR=xA⊕xB}. (3.12)
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III.4. Achievable Rates for JCF Typicality Decoding

JCF Typicality Decoder: The JCF typicality decoder declares that m̂R is the

message index for the desired xR if it is the unique m̂R which satisfies

(xA(mA), xB(mB), xR(m̂R), y
R

) ∈ ANε for some mA,mB. (3.13)

If there is no such m̂R (i.e. none of the codeword triplets are jointly typical with y
R

)

or if there are multiple such m̂R, then the decoder declares an error. Note that it does

not matter which (mA,mB) was transmitted as long as a unique m̂R is represented

in the set of jointly typical triplets.

In (3.13), ANε is the set of jointly typical sequences of the random variables

(XA, XB, XR, YR) as defined in [13]. We include the definition for completeness.

Define a subset of these four random variables by S ⊆ {XA, XB, XR, YR}. Then let

s refer to an outcome of taking N independent observations of the random variables

S according to the marginal distribution P (S). Then the jointly typical sequences

ANε are those which satisfy

ANε =

{
(xA, xB, xR, yR)

∣∣∣∣ ∣∣∣∣ 1

N
log(P (s))−H(S)

∣∣∣∣ < ε ∀ S ⊆ {XA, XB, XR, YR}
}
.

(3.14)

This decoder satisfies our notion of JCF because it considers only the sequence

pairs (xA, xB) which satisfy the code constraints, yet the decoder will facilitate decod-

ing even if some incorrect pairs (x′A, x
′
B) are typical with y

R
as long as xR = x′A⊕x′B.

In the following we prove that R < RJCF = max{RCF ,RDF} is achievable with

a JCF typicality decoder and the ensemble CN . Then we conversely show that no

decoder can reliably recover xR from y
R

with CN unless R < max{RCF ,RDF}.

We emphasize that all of these results indicate the performance averaged over the

ensemble CN .
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Theorem III.1. The JCF typicality decoder can reliably compute xR ∈ C at all

computation rates subject to

RJCF < max(RCF ,RDF ) (3.15)

if nodes A and B use a random code from the ensemble CN .

Proof. Since the channel is symmetrized by the random cosets, we can assume with-

out loss of generality that the transmitted messages are (mA,mB,mR) = (0, 0, 0).

An error occurs for the JCF typicality decoder only if one of the following events

occur

E1 = {(xA(0), xB(0), xR(0), y
R

) 6∈ ANε }

E2 = {(xA(mA), xB(mB), xR(mR), y
R

) ∈ ANε for some mR 6= 0 and some mA,mB}.

(3.16)

We have P (E1) < ε by the joint AEP [13].

By the definition of ANε , we also have that

{(xA(mA), xB(mB), xR(mR), y
R

) ∈ ANε } ⇒ {(xR(mR), y
R

) ∈ ANε }. (3.17)

Therefore,

E2 ⊆ {(xR(mR), y
R

) ∈ ANε for some mR 6= 0} = E ′2. (3.18)

By the joint AEP, we have

P (E2) ≤ P (E ′2) ≤ 2−N(R−I(YR;XR)−δ(ε)). (3.19)

85



We can also partition E2 into the disjoint events

E21 = {(xA(0), xB(mB), xR(mR), y
R

) ∈ ANε for some mR = mB 6= 0}

E22 = {(xA(mA), xB(0), xR(mR), y
R

) ∈ ANε for some mR = mA 6= 0}

E23 = {(xA(mA), xB(mB), xR(mR), y
R

) ∈ ANε for some mR 6= 0, and 0 6= mB 6= mA 6= 0}.

The condition {mR = mB 6= 0}, recalls the fact that bR = bA ⊕ bB. Therefore

if bA = 0 which corresponds to node A’s transmitted message, then bR = bB 6= 0

forms a class of |E21| = 2NR error events. A similar argument can be made for

the {mR = mA 6= 0} condition. Finally, the condition {mR 6= 0, and 0 6= mB 6=

mA 6= 0} ⇔ {0 6= bA 6= bB 6= 0}. Thus bA, bB are both unequal to the correct

messages, and the error patterns differ in at least one bit position. This forms a class

of |E23| = (2NR− 1)(2NR− 2) ≤ 22NR error events (i.e. there are (2NR− 1) incorrect

messages, and we must chose two without replacement).

By the joint AEP, we obtain the following bounds

P (E21) < 2−N(R−I(YR;XR,XA|XB)−δ(ε))

P (E22) < 2−N(R−I(YR;XR,XB |XA)−δ(ε))

P (E23) < 2−N(2R−I(YR;XR,XA,XB)−δ(ε)). (3.20)

Since I(YR;XR|XA, XB) = 0, we use the chain rule to get

I(YR;XR, XA|XB) = I(YR;XA|XB)

I(YR;XR, XB|XA) = I(YR;XB|XA)

I(YR;XR, XA, XB) = I(YR;XA, XB). (3.21)
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Combining (3.20) and (3.21) we have

P (E21) < 2−N(R−I(YR;XA|XB)−δ(ε))

P (E22) < 2−N(R−I(YR;XB |XA)−δ(ε))

P (E23) < 2−N(2R−I(YR;XA,XB)−δ(ε)). (3.22)

Since E2 = E21 ∪ E22 ∪ E23, we have

P (E2) ≤ min {P (E21), P (E22), P (E23)} . (3.23)

Combining (3.19) and (3.23), we have P (E2)→ 0 as N →∞ if

R ≤ max(RCF ,RDF ). (3.24)

Notice that the penalty constraint I(YR;XA, XB|XR) from (3.4) does not appear

in the achievability proof. The penalty constraint can be used with the joint AEP

to upper bound the probability of the event

E3 = {(xA(mA), xB(mB), xR(mR), y
R

) ∈ ANε for mR = 0, and (mA,mB) 6= (0, 0)}.

(3.25)

Since we only want to recover the correct mR = 0, we do not care if this event occurs.

III.5. Converse for Binary Linear Codebooks

Interestingly, the penalty constraint and the corresponding bound obtained from the

joint AEP expresses itself in the converse proof for the achievable computation rates

on P (YR|XA, XB) averaged over the ensemble CN . To obtain the converse, we will

require the following lemma which is adapted from [46].
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Lemma III.3.

lim
N→∞

1

N
H(Y R|XR, CN) = H(YR|XA, XB) + min{R, I(YR;XA, XB|XR)}. (3.26)

Proof. We first obtain the upper bounds

H(Y R|XR, CN) ≤ NH(YR|XR) (3.27)

and

H(Y R|XR, CN) ≤ H(Y R,MA,MB|XR, CN)

= NR+H(Y R|XA, XB)

≤ N(R+H(YR|XA, XB)). (3.28)

These are obtained because the channel is memoryless and by Lemmas III.1 and

III.2.

We continue our assumption that the true messages are (mA,mB,mR) = (0, 0, 0)

to simplify notation. We use the identity H(Y |Z) = H(Y,X|Z) − H(X|Y, Z) =

H(Y |X,Z)+H(X|Z)−H(X|Y, Z) with the substitutions Y → Y R, X → (MA,MB),

and Z → (CN , XR) to get

H(Y R|XR, CN) = H(Y R|XR, CN ,MA,MB) +H(MA,MB|XR, CN)

−H(MA,MB|XR, CN , Y R). (3.29)

The first two terms on the RHS can be simplified to

H(Y R|XR, CN ,MA,MB) = NH(YR|XR, XA, XB)

= NH(YR|XA, XB) (3.30)

H(MA,MB|XR, CN) = NR (3.31)
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which follow by the channel structure and Lemma III.1.

We upper bound the term H(MA,MB|XR, CN , Y R) to obtain a lower bound on

H(Y R|XR, CN). Construct a list L ⊆ {0, ..., 2NR − 1}2 of pairs (mA,mB) which

satisfy

L = {(mA,mB) | (XA(mA), XB(mB), XR, Y R) ∈ ANε }.

There are only 2NR pairs (mA,mB) which correspond to the given xR(0). This

includes the transmitted pair (mA,mB) = (0, 0) and 2NR − 1 incorrect message

pairs. The probability that any of the incorrect message pairs is jointly typical with

(Y R, XR) is upper bounded by

P ((XA(mA), XB(mB), XR(0), Y R) ∈ ANε )

=
∑

(xA,xB ,xR,yR)∈ANε

P (XA, XB|XR)P (XR, Y R)

= |ANε |P (XA, XB|XR)P (XR, Y R)

≤ 2N(H(XA,XB ,XR,YR)+δ(ε))2−N(H(XA,XB |XR)−δ(ε))2−N(H(XR,YR)−δ(ε))

= 2−N(H(XA,XB |XR)+H(XR,YR)−H(XA,XB ,XR,YR)−δ(ε))

= 2−N(H(XA,XB |XR)−H(XA,XB |XR,YR)−δ(ε))

= 2−N(I(YR;XA,XB |XR)−δ(ε)). (3.32)

The term P (XA, XB|XR) is used in the first step because we consider incorrect

message pairs for which xR(0) is correct.

We obtain our desired upper bound through an argument on the cardinality

of L. Particularly, we have |L| ≤ 1 + T where T is a binomial random variable

with 2NR − 1 trials and a maximum probability of success 2−N(I(YR;XA,XB |XR)−δ(ε)).

Therefore

E [|L|] ≤ 1 + 2N(R−I(XA,XB ;YR|XR)+δ(ε)). (3.33)
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The correct pair (mA,mB) = (0, 0) is likely to be in L. Therefore, define an

indicator random variable E = 1{(0,0)∈L}. Following the logic from [46], we have

H(MA,MB|XR, Y R, CN) = I(MA,MB;E|XR, Y R, CN) +H(MA,MB|XR, Y R, CN , E)

≤ H(E|XR, Y R, CN) +H(MA,MB|XR, Y R, CN , E)

(a)

≤ 1 +H(MA,MB|XR, Y R, CN , E)

= 1 + P (E = 0)H(MA,MB|XR, Y R, CN , E = 0)

+ P (E = 1)H(MA,MB|XR, Y R, CN , E = 1)

≤ 1 + P (E = 0)NR+ P (E = 1)H(MA,MB|XR, Y R, CN , E = 1) (3.34)

where (a) holds because E is a binary random variable. The last term can be upper

bounded by arguing that if E = 1, then the transmitted (mA,mB) must be one of the

|L| pairs in L. Thus the conditional entropy can be no more than log(|L|). Therefore

H(MA,MB|XR, Y R, CN , E = 1)
(a)
= H(MA,MB|XR, Y R, CN ,L, |L|, E = 1)

≤ H(MA,MB|L, |L|, E = 1)

=
2NR−1∑
`=0

P (|L| = `)H(MA,MB|L, |L| = `, E = 1)

≤
2NR−1∑
`=0

P (|L| = `) log(`)

= E[log(|L|)]
(b)

≤ log(E[|L|])

≤ log(1 + 2N(R−I(XA,XB ;YR|XR)+δ(ε))) (3.35)

where (a) is true because L and |L| are functions of XR, Y R, CN , and (b) follows

from Jensen’s inequality [13]. We obtain an upper bound on the last step of (3.35)
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in two ways. Particularly, note that for any real constant α,

log(1 + 2α) ≤ log(1 + 1) = 1 ∀ α ≤ 0

log(1 + 2α) ≤ log(2α + 2α) = 1 + α ∀ α ≥ 0. (3.36)

Substituting α = N(R− I(XA, XB;YR|XR) + δ(ε)) for the last step of (3.35), we get

H(MA,MB|XR, Y R, CN , E = 1) ≤ 1 + max{0, N(R− I(XA, XB;YR|XR) + δ(ε))}

(3.37)

Combining (3.37) and (3.34) we obtain

H(MA,MB|XR, Y R, CN)

≤ 2 +NRP (E = 0) + max{0, N(R− I(YR;XA, XB|XR)) + δ(ε)}. (3.38)

Substituting back into (3.29) and applying (3.30) and (3.31), we get

H(Y R|XR, CN)

≥ NH(YR|XA, XB) +NR− 2−NRP (E = 0)

−max{0, N(R− I(YR;XA, XB|XR)) + δ(ε)}. (3.39)

Dividing by N and simplifying, we obtain

1

N
H(Y R|XR, CN)

≥ H(YR|XA, XB) + min{R, I(YR;XA, XB|XR)) + δ(ε)} − 2

N
−RP (E = 0).

(3.40)

Recall that we take the limit as N → ∞ so that the last two terms approach zero.

Also, δ(ε) can be made arbitrarily small by our selection of ε. The result follows.
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Theorem III.2. If PN
e (CN)→ 0 as N →∞ then

R < max{RCF ,RDF}. (3.41)

Proof. We use the weak version of Fano’s inequality

H(MR|Y R, CN) ≤ 1 +NRPN
e (CN) ≤ NεN . (3.42)

where εN → 0 as N →∞ since PN
e (CN)→ 0.

First, R < I(YR;XR|XA) must always be satisfied.

N(R− εN) = H(MR|CN)−NεN

= I(Y R;MR|CN) +H(MR|Y R, CN)−NεN
(a)

≤ I(Y R;MR|CN) +NεN −NεN

≤ I(Y R;XR|CN)

= H(XR|CN)−H(XR|Y R, CN)

(b)
= H(XR|XA, CN)−H(XR|Y R, CN)

≤ H(XR|XA, CN)−H(XR|Y R, XA, CN)

= I(Y R;XR|XA, CN)

= H(Y R|XA, CN)−H(Y R|XR, XA, CN)

(c)
= H(Y R|XA, CN)−NH(YR|XR, XA)

(d)

≤ NH(YR|XA)−NH(YR|XR, XA)

= NI(YR;XR|XA). (3.43)

Here (a) holds by Fano’s inequality, (b) holds by Lemma III.2, (c) holds because the

channel is memoryless, so each YR depends only on {XR, XA} ⇔ {XA, XB} which

are i.i.d. by Lemma III.2, (d) holds by the chain rule and by removing conditioning.
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Therefore R < I(YR;XR|XA) if Pe(CN) → 0. Similarly, R < I(YR;XR|XB). Note

that I(YR;XR|XA) = I(YR;XB|XA) and I(YR;XR|XB) = I(YR;XA|XB).

Now, we want to show

R < max

{
I(YR;XR),

1

2
I(YR;XA, XB)

}
.

Using Fano’s inequality and Lemma III.3, we get

N(R− εN) ≤ I(Y R;XR|CN)

= H(Y R|CN)−H(Y R|XR, CN)

≤ NH(YR)−H(Y R|XR, CN)

≤ NH(YR)−NH(YR|XA, XB)−N(min{R, I(YR;XA, XB|XR)}+NεN

= N (I(YR;XA, XB)−min{R, I(YR;XA, XB|XR)}+ εN) .

Dividing by N and omitting εN , we get

R ≤ I(YR;XA, XB)−min{R, I(YR;XA, XB|XR)}

R ≤ max{I(YR;XA, XB)−R, I(YR;XR)}

R ≤ max

{
1

2
I(YR;XA, XB), I(YR;XR)

}
. (3.44)

We conclude that

R < max {RCF ,RDF} (3.45)

We have shown that JCF performs as well as the better of CF or DF for the

binary computation problem for a large class of channels for the ensemble of identical

linear coset codes. We have further shown that no decoder can reliably recover xR

if identical linear codes are used with rates larger than max{RCF ,RDF}. We note
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that the penalty constraint I(YR;XA, XB|XR) in (3.4) must be satisfied if we want

to recover the entire pair (xA, xB). It is shown in Theorem III.3, that this constraint

is never dominant if RDF > RCF .

Theorem III.3. If nodes A and B use the ensemble CN . Then the penalty constraint

I(YR;XA, XB|XR) is never dominant for any binary-input multiple access channel if

RDF > RCF .

Proof. The active constraint forRDF is the smallest of I(YR;XA|XB), I(YR;XB|XA),

and 1
2
I(YR;XA, XB). Suppose,RDF = I(YR;XA|XB). Then sinceRCF = I(YR;XR) ≤

I(YR;XA|XB) = RDF , we have

I(YR;XA|XB) ≤ 1

2
I(YR;XA, XB) =

1

2
(I(YR;XR) + I(YR;XA, XB|XR))

I(YR;XA|XB) ≤ 1

2
(I(YR;XA|XB) + I(YR;XA, XB|XR)). (3.46)

Simplifying we get

I(YR;XA|XB) ≤ I(YR;XA, XB|XR) (3.47)

so the penalty constraint is not dominant. The same steps work forRDF = I(YR;XB|XA).

Suppose RDF = 1
2
I(YR;XA, XB). Then, applying (3.2) and (3.6) we have

I(YR;XR) ≤ 1

2
I(YR;XA, XB)

=
1

2
(I(YR;XR) + I(YR;XA, XB|XR))

⇒ I(YR;XR) ≤ I(YR;XA, XB|XR). (3.48)

Therefore we have

I(YR;XA, XB|XR) + I(YR;XR)

2
≤ I(YR;XA, XB|XR) + I(YR;XA, XB|XR)

2
1

2
I(YR;XA, XB) ≤ I(YR;XA, XB|XR). (3.49)
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The penalty constraint is not dominant for each case.

From Theorem III.3, we can conclude that the computation rates achieved by

JCF decoding can be achieved by using the better of DF or CF without making any

changes to the encoder. The discussion of the penalty constraint shifts our focus

from the computation problem, but helps clarify the limitations of the ensemble

CN . In the proof of Theorem III.2, if the error event in Fano’s inequality represents

x̂A 6= xA, then swapping all the terms XR ↔ XA in (3.42) and (3.43) shows that

R < I(YR;XA|XR) to reliably recover xA. Repeat this analysis for xB and note that

I(YR;XA|XR) = I(YR;XA, XB|XR) = I(YR;XB|XR). Then the penalty constraint

must be satisfied to recover either xA or xB with CN .

We remark that for ensembles similar to CN which allow for the recovery of

more than one type of function (e.g. multilevel codes or coding over larger finite

fields discussed in Chapter II and [26]), there may be multiple penalty constraints

and some may be dominant for certain channel parameters. The JCF decoding

paradigm is practically suited to adaptive computation because it naturally uses

the best decoding function or recovers a suitable subset of messages with a single

decoder. In the next chapter we focus on practical implementation of JCF decoding

and design codes which facilitate decoding at information rates near the theoretical

limit for identical linear codebooks.

III.6. Concluding Remarks

In this chapter, we have analyzed the performance of joint-compute-and-forward

decoding for reliable PLNC with identical binary linear codebooks. JCF achieves

computation rates equal to the best of the compute-and-forward or decode-and-

forward schemes for binary-input memoryless multiple access channels. Further, a
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converse is provided for the binary case which shows that innovations to the decoder

cannot improve achievable computation rates. Therefore, the best of CF and DF

provides a fundamental limit for computation rates with the studied code ensemble.

If it is possible to improve the computation rates for the binary-input memoryless

MAC, it will require clever joint design of the code ensembles used by the transmitting

nodes. Next in Chapter IV, we consider how to practically achieve the theoretical

performance for identical linear codebooks with JCF message passing decoding.
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CHAPTER IV

JOINT-COMPUTE-AND-FORWARD MESSAGE PASSING FOR TWO-WAY

ERASURE MULTIPLE ACCESS CHANNELS*

In the previous chapter, we performed an information-theoretic analysis of DF, CF,

and JCF decoding at the relay node. We found that JCF decoding essentially per-

forms as well as the better of CF and DF decoding depending on the channel condi-

tions. In this chapter, we consider how to achieve this theoretical performance with

JCF message passing decoding using practical LDPC ensembles This investigation

seems natural because JCF was originally proposed in a message passing framework

[17], [16], [18], [19]. To this end, we introduce a simple class of erasure multiple access

channels and derive the processing rules and a density evolution like analysis. We

then perform numerical experiments for several classes of LDPC ensembles. Our nu-

merical results show that spatially coupled LDPC ensembles are capable of achieving

the optimal computation rates for identical linear codebooks. We show that uniform

puncturing of the spatially coupled ensembles can be used to obtain this performance

for a range of channel parameters with a single encoder and decoder.

One might reason from our previous analysis in Chapter III that the relay should

simply use either CF or DF decoding as we have Chapter II. In this chapter, we find

that for certain channel parameters and code ensembles JCF message passing may

achieve strictly better decoding thresholds than CF or DF based message passing.

Admittedly, these examples are for regular LDPC ensembles for which message pass-

ing decoding is known to be suboptimal [38]. However, we also provide one simple

* c©2012 IEEE. Portions of this chapter are reprinted, with permission, from
Brett Hern and Krishna Narayanan, “Joint-Compute-and-Forward for the Two-Way
Relay Channel with Spatially Coupled LDPC Codes”, IEEE Global Conference on
Communications, December 2012.
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example with the proposed channel model where nodes A and B use a length N = 5

identical linear codebook and JCF decoding successfully decodes while both CF and

DF decoding fail. This chapter furthers our investigation and provides some useful

tools for further research.

Note about notation: In this chapter, we use x ∈ C to refer to codewords just

as in Chapter III. For details, see the note about notation near the beginning of

Chapter III. Normally, we use subscripts to indicate whether a variable is associated

with a specific node. In this chapter, we make one exception to this convention by

dropping the subscript on xA,B which is referred to simply by x. This is mentioned

in the text near (4.11) but is used throughout the chapter.

IV.1. TWEMAC Channel Model

In order to exactly characterize the performance of a JCF message passing decoder

for an LDPC code or ensemble, we must restrict our attention to a simplified channel

model. We introduce the two way erasure multiple access (TWEMAC) channel model

for which this characterization is numerically efficient. We introduced a special case

of this channel very recently in [47]. A TWEMAC is randomly in one of five states

τ ∈ T = {1, ..., 5} during each channel use. The value of yR is a deterministic

function of xA, xB and the state τ . In this chapter, the probability P τ
ch that the

channel is in state τ is parameterized by an erasure probability ε ∈ [0, 1]. The

subscript ch associates this type distribution with the channel output. Thus the
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channel is defined

YR =



(E,E) with probability P 1
ch(ε)

(XA, E) with probability P 2
ch(ε)

(E,XB) with probability P 3
ch(ε)

(XA ⊕XB) with probability P 4
ch(ε)

(XA, XB) with probability P 5
ch(ε)

(4.1)

where E denotes an erasure and
∑5

i=1 P
i
ch(ε) = 1 ∀ ε ∈ [0, 1]. The state of the channel

is assumed to be known to the relay but unknown at nodes A and B.

Since we are interested in message passing decoding, it is useful to refer to the

messages from the channel as having a message type from the set T . Then messages

passed along the edges in the decoder will also have a type from the set T . We define

the type distribution vector for a given channel according to

P ch(ε) =



P 1
ch(ε)

P 2
ch(ε)

P 3
ch(ε)

P 4
ch(ε)

P 5
ch(ε)


. (4.2)

Throughout this chapter, we will use the underlined P ch to denote a 5-ary type

distribution, and we use P i
ch to denote the probability of a message of type i ∈ T .

The class of TWEMACs has the advantage that the probabilities P τ
ch, τ ∈ T can

be chosen in order to mimic or isolate many characteristics of wireless channels. For

example, the authors in [47] study capacity for recovering bR = bA ⊕ bB at a relay
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with a channel equivalent to

P ch =



0

ε
2

ε
2

1− ε

0


.

In this channel, the quality of the matching between P (YR|XA, XB) and XR = XA⊕

XB is ideal when ε = 0 and continuously degrades until it is unmatched when ε = 1.

This allowed the authors to analyze how decoding strategies should change when the

quality of the matching changes. They also find that max{RCF ,RDF ) can be beaten

if the transmitters are provided with strictly causal feedback of the state of the

channel. This does not conflict with our converse result because they do not employ

identical linear codebooks generated uniformly at random for this performance. The

codebooks are adaptively (and jointly) designed based on knowledge of the relays

observations.

The authors in [40] study the achievable rate region for decoding xA and xB at

the relay with independent spatially coupled codes using a channel equivalent to

P ch =



ε

0

0

1−ε
2

1−ε
2


.

This parametrization mimics the effects of interference and noise for a wireless MAC

channel, while the quality of the matching between P (YR|XA, XB) and XR remains

constant with ε (i.e. half the non-erased symbols interfere). This makes the density
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evolution analysis similar to that of the point-to-point erasure channel where the

erasure probability emulates noise.

Our TWEMAC was recently generalized to an erasure multi-way relay channel

(EMWRC) in [48]. They consider the problem in which all source nodes want to

fully exchange their information with the use of a central relay. Their EMWRC is

parameterized by independent erasure probabilities for each link to mimic packet

erasures in a fading environment with wireless superposition. The simplicity of the

channel is leveraged to design and analyze packet mixing strategies based on fountain

codes for the multiple access and broadcast phases. A relay network consisting of

a class of erasure multiple access channels was also studied in [49]. The simplicity

of the erasure structure was used for a network information-theoretic analysis of the

unicast problem. Their model similarly mimics a fading environment with wireless

superposition.

For this chapter, we will mostly present numerical results for the TWEMAC

parameterized by

P ch(ε) =



ε2

(1− ε)ε

ε(1− ε)

(1− ε)2

0


. (4.3)

This channel is generated if we assume that xA and xB are erased with probability ε

independently. When neither symbol is erased, the relay observes the type 4 message

which gives xR = xA ⊕ xB. When xA (xB) is erased and xB (xA) is not, the relay

receives a message of type 3 (type 2). For this channel, the erasure parameter ε

mimics the signal to noise ratio for an AWGN channel. When both channels are

strong, the matching improves until it is ideal at ε = 1.
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IV.2. Example: JCF beats CF and DF

Before we dive into the details of the message processing rules and performance anal-

ysis, a brief example utilizing the TWEMAC channel model is useful to demonstrate

the potential benefits of JCF decoding. Suppose that nodes A and B each use an

identical linear codebook corresponding to generator matrix

G =


1 0 0 1 1

0 1 0 1 1

0 0 1 0 1

 . (4.4)

This generates the codebook

C =



0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 0

1 0 0 1 1

1 0 1 1 0

1 1 0 0 0

1 1 1 0 1



. (4.5)

Then, suppose that the relay observes the following output from a TWEMAC

y
R

= [(1, E), (E, 1), (1), (1, 1), (1)] (4.6)

which corresponds to the sequence of message types [2, 3, 4, 5, 4].

Upon receiving this y
R

, the maximum likelihood CF decoder attempts to find

a unique codeword xR ∈ C such that the last three bits are 1,0,1. There are two
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codewords which satisfy this

xR,CF ∈

 0 0 1 0 1

1 1 1 0 1

 . (4.7)

Therefore, the maximum likelihood CF decoder fails.

The DF decoder attempts to find a unique pair of codewords (xA, xB) which

could correspond to the received sequence. If we first consider only the received

signals of type 2, 3, and 5, then the possible codeword pairs include

(xA, xB) ∈



1 0 0 1 1 , 0 1 0 1 1

1 0 0 1 1 , 0 1 1 1 0

1 0 1 1 0 , 0 1 0 1 1

1 0 1 1 0 , 0 1 1 1 0


. (4.8)

The set of possible codeword pairs can be further reduced by considering the messages

of type 4 in the third and fifth bit position. Then the possible codeword pairs with

DF decoding are

(xA, xB)DF ∈

 1 0 0 1 1 , 0 1 1 1 0

1 0 1 1 0 , 0 1 0 1 1

 . (4.9)

Since xA and xB cannot be computed exactly, the maximum likelihood DF decoder

fails.

The JCF decoder considers the possible set of codeword triplets (xA, xB, xR)

and succeeds if all possible triplets correspond to the same xR. Following the same
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steps as for the DF decoder we have the following triplets

(xA, xB, xR) ∈

 1 0 0 1 1 , 0 1 1 1 0 , 1 1 1 0 1

1 0 1 1 0 , 0 1 0 1 1 , 1 1 1 0 1

 .

⇒ xR =

[
1 1 1 0 1

]
(4.10)

Since xR is represented uniquely, the maximum likelihood JCF decoder succeeds.

Notice that in this example JCF decoding succeeds while CF and DF both fail.

Since nodes A and B use an identical linear codebook and the TWEMAC is a binary-

input memoryless channel, this example may seem to contradict our results from

Chapter III where we have shown that JCF does not improve the computation rates

for identical linear codebooks generated uniformly at random. This example suggests

that codes or code ensembles may exist for which JCF can provide substantial gains.

Note that in this example, if we were to permute the order of the channel states

(e.g. [2, 3, 4, 5, 4] → [4, 5, 4, 2, 3]) then CF, DF, and JCF may all succeed. For the

remainder of this chapter we focus our analysis on JCF message passing decoding.

IV.3. Message Passing Framework

A JCF decoder utilizes the parity check constraints for the three codewords xA, xB, xR ∈

C for decoding. All three of these constraint sets can be jointly expressed by an Ex-

tended Tanner Graph (ETG) as shown in Fig. 19. In the following, we derive the

check and variable node processing rules for JCF message passing decoding for the

TWEMAC. Particularly, we show that the performance of a message passing decoder

can be evaluated by restricting our attention to the 5 message types which define

the channel.
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Extended Tanner Graph 

𝑥𝐴,𝐵  

Node A Tanner Graph 

𝑥𝐴 

Node B Tanner Graph 

𝑥𝐵 

4-ary 
Messages 

Fig. 19.: Extended Tanner graph when nodes A and B use a length 3 repetition

code.

In the ETG, each variable node

xA,B[n] =

 xA[n]

xB[n]

 , n ∈ {1, ..., N} (4.11)

takes a value from {0, 1}2. We will drop the subscript and use the shorthand x[n] =

xA,B[n] to simplify many of the following expressions. The edges carry 4-ary messages

which are local estimates of x[n] of the form

µn =



P (X[n] = [00]T |Y R)

P (X[n] = [01]T |Y R)

P (X[n] = [10]T |Y R)

P (X[n] = [11]T |Y R)


. (4.12)

By the standard message passing rules in [38], the initial message from the channel

is defined by the 4-ary vector

µch,n =



P (YR[n]|X[n] = [00]T )

P (YR[n]|X[n] = [01]T )

P (YR[n]|X[n] = [10]T )

P (YR[n]|X[n] = [11]T )


. (4.13)

We will refer to elements of a message µn according to the associated value of x[n] ∈
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{0, 1}2. For example,

µch,n(01) = P (YR[n]|X[n] = [01]T ). (4.14)

According to (4.1) and (4.13) for any TWEMAC, we can say that the initial

message from the channel must be in the set

µch ∈



[
P 1
ch

4
,
P 1
ch

4
,
P 1
ch

4
,
P 1
ch

4

]T [
P 2
ch

2
,
P 2
ch

2
, 0, 0

]T [
0, 0,

P 2
ch

2
,
P 2
ch

2

]T
[
P 3
ch

2
, 0,

P 3
ch

2
, 0
]T [

0,
P 3
ch

2
, 0,

P 3
ch

2

]T [
P 4
ch

2
, 0, 0,

P 4
ch

2

]T [
0,

P 4
ch

2
,
P 4
ch

2
, 0
]T

[
P 5
ch

4
, 0, 0, 0

]T [
0,

P 5
ch

4
, 0, 0

]T [
0, 0,

P 5
ch

4
, 0
]T [

0, 0, 0,
P 5
ch

4

]T


These correspond to the five message types T and the associated parametrization

P i
ch(ε), i ∈ T . Recall from [38] that the normalization of a message provides no

information about the value of any x[n]. Thus we can consider a simplified message

alphabet U in which each component µ(x), x ∈ {0, 1}2 is either 0 or 1, and there are

1, 2, or 4 non-zero entries in each µ. Matching the messages in the set U with their

appropriate types from the set T , we see that

τ = 1⇔ µ ∈ {[1111]T}

τ = 2⇔ µ ∈ {[1100]T , [0011]T}

τ = 3⇔ µ ∈ {[1010]T , [0101]T}

τ = 4⇔ µ ∈ {[1001]T , [0110]T}

τ = 5⇔ µ ∈ {[1000]T , [0100]T , [0010]T , [0001]T} (4.15)

Note that each component µn(x), x ∈ {0, 1}2 no longer refers to a probability in the

strict sense. Rather, each µn(x) is a binary indicator of whether it is possible that
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X[n] = x given that the sequence Y R = y
R

was received at the relay.

We want to develop the notion that to predict the performance of an LDPC

code or ensemble for the class of TWEMACs, it is enough to track the types τ ∈ T

of the messages sent by the variable and check nodes. This requires that we derive

the variable and check node operations V AR(·) and CHK(·) for a variable and check

node respectively. We use this notation V AR(·) or CHK(·) to describe the variable

or check node operations on the sets U , T , and later on the set of type distribution

vectors. We first need to verify that these operations are closed on the set U .

IV.3.1. Variable Node Processing

For variable nodes, the message processing rules from [38] state that the outgoing

message along each edge is the componentwise product of the incoming messages.

Since the channel never makes an error, it is impossible for the outgoing message to

be the all zero vector (i.e. the incident information to a variable node must agree).

For example, if the correct value of a variable node x[n] = [10]T , all of the incom-

ing messages must be from the set {[1111]T , [0011]T , [1010]T , [0110]T , [0010]T} ⊂ U .

Notice that there is one message associated with each τ ∈ T and that the outgoing

message must also come from this subset of U . We conclude that V AR(·) is closed

on the set of messages U and is subsequently closed on the set of types T .

A degree dv variable node is connected to dv check nodes and one function node

associated with the channel observation. Thus, each outgoing message from a degree

dv variable node is a function of dv input messages µ1, ..., µdv . By the associativity

and commutativity of multiplication, the output of the variable node operation on

U satisfies

µout = V AR(µ1, V AR(µ2, ...V AR(µdv−1, µdv))). (4.16)
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It is therefore constructive to create an operator table for V AR(·) with two input

types τ1, τ2 ∈ T . This can be accomplished by exhaustively evaluating V AR(µ1, µ2)

for each µ1, µ2 ∈ U associated with message types τ1, τ2 ∈ T . Since the channel

never makes errors, each µ1, µ2 pair must have at least one 1 in common. The result

is Table I.

VAR
τ1

1 2 3 4 5

τ2

1 1 2 3 4 5

2 2 2 5 5 5

3 3 5 3 5 5

4 4 5 5 4 5

5 5 5 5 5 5

Table I.: Variable node operator table with respect to types T .

For a variable node of degree dv, if the input messages have types τ1, ..., τdv , then

the output message type, τ out is found by recursively applying V AR(·) according to

τ out = V AR(τ1, V AR(τ2, ...V AR(τdv−1, τdv))). (4.17)

The commutativity and associativity of V AR(·) is maintained on the set T .
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IV.3.2. Check Node Processing

Consider a check node of degree dc connected to variable nodes x[n], n ∈ {1, ..., dc}.

In order for xA, xB, xR ∈ C, these variable nodes must satisfy

xA[1]⊕ ...⊕ xA[dc] = 0

xB[1]⊕ ...⊕ xB[dc] = 0

xR[1]⊕ ...⊕ xR[dc] = 0. (4.18)

These constraints are equivalent to

x[1]⊕ ...⊕ x[dc] = [00]T (4.19)

where the ⊕ operation is applied element-wise. Note that if the constraints for

xA, xB ∈ C are satisfied for all the parity checks, then they are satisfied for xR. The

identical linear code C ensures that the check constraints for xA, xB can have identical

edge connections.

The message processing rules from [38] state that the outgoing message on edge

dc is given by

µout(x[dc]) =
∑
∼x[dc]

1{x[dc]=
⊕dc−1
i=1 x[i]}

dc−1∏
i=1

µi(x[i]). (4.20)

The shorthand notation ∼ x[dc] indicates that the summation is over the values that

can be taken by x[1], ..., x[dc − 1] ∈ {0, 1}2. For a degree 3 check node, this is

µout(x[3]) =
∑
∼x[3]

1{x[3]=x[1]⊕x[2]}µ1(x[1])µ2(x[2])

=
∑

x[1],x[2]∈{0,1}2
µ1(x[1])µ2(x[2]⊕ x[3]). (4.21)

This defines the operation CHK(·) on U . We can verify that CHK(·) is closed on

the set U , by exhaustively evaluating CHK(µ1, µ2) with all pairs (µ1, µ2) ∈ U × U .
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For a degree dc check node, the output message µout is computed from the input

messages µ1, ..., µdc−1 by recursively applying CHK(·) as

µout = CHK(µ1, CHK(µ2, ...CHK(µdc−2, µdc−1))). (4.22)

This follows from the commutativity and associativity of multiplication, addition,

and ⊕. The degree dc check node operation is also closed on U by induction.

Similar to the variable node operation, we define CHK(·) on the set T by

exhaustively evaluating CHK(µ1, µ2) for pairs (µ1, µ2) ∈ U ×U and determining the

input and output message types. The result is given in Table II.

CHK
τ in1

1 2 3 4 5

τ in2

1 1 1 1 1 1

2 1 2 1 1 2

3 1 1 3 1 3

4 1 1 1 4 4

5 1 2 3 4 5

Table II.: Check node operator table with respect to types T .

For a check node of degree dc, if the input messages have types τ1, ..., τdc−1, then

the output message type, τ out is found by recursively applying CHK(·) according to

τ out = CHK(τ1, CHK(τ2, ...CHK(τdc−2, τdc−1))). (4.23)

The commutativity and associativity of CHK(·) is also maintained on the set T .
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IV.3.3. Type Distribution Processing Rules

We have defined the input output relationship for variable and check nodes on the

sets U and T . Here, these rules are extended to the set of 5-ary type distributions.

Similar to (4.2), we define the type distribution of messages from the variable to

check (check to variable) nodes during iteration ` as P (`)
vc (P (`)

cv ). We will index these

pmfs according to

P (`)
vc =



P
1,(`)
vc

P
2,(`)
vc

P
3,(`)
vc

P
4,(`)
vc

P
5,(`)
vc


P (`)
cv =



P
1,(`)
cv

P
2,(`)
cv

P
3,(`)
cv

P
4,(`)
cv

P
5,(`)
cv


(4.24)

which is consistent with our notation for P ch in (4.2).

The probability that an output message from a variable or check node has type

i ∈ T can be explicitly computed by evaluating the sum of the probabilities of input

message types which result in an output message of type i ∈ T . Consider a variable

node of degree dv whose messages have input type distributions P
(`)
cv,1, ..., P

(`)
cv,dv−1

and P ch from the check nodes and the channel respectively. Following the rules for

evaluating output message types for variable node (4.17), construct the set

Tdv ,i ={(j1, ..., jdv) ∈ T dv |i = V AR(j1, V AR(j2, ...V AR(jdv−1, jdv)))}. (4.25)

Then, the probability that the output message has type i ∈ T is expressed

P (τ out = i) =
∑

(j1,...,,jdv )∈Tdv,i

P
j1,(`)
cv,1 ...P

jdv−1,(`)
cv,dv−1 P

jdv
ch (ε). (4.26)

It is helpful to think of the variable node operation on the set of type distribu-

tions as a series of state transitions in a trellis. This is illustrated for a degree dv = 3
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Fig. 20.: Trellis diagram for the type distribution update operation of a degree

3 variable node. Each edge in the trellis is labeled with the message types

corresponding to the illustrated transition.

variable node in Fig. 20. The distribution for the initial state is given by the channel

type distribution P ch. Then, there are two input messages from check nodes whose

type distributions are applied in the form of transitions through the trellis. These

transitions are labeled according to the message types τ ∈ T which correspond to the

labeled transition. The probability associated with each transition is therefore the

sum of the probabilities of the corresponding types (e.g. the probability of transition

from type 3 to 5 is P
2,(`)
cv + P

4,(`)
cv + P

5,(`)
cv ).

With this trellis structure in mind, it is natural to express this type distribution

update operation as a series of multiplications of state-transition matrices. For a

degree 2 variable node, we have

P (`)
vc = P(`)

cv P ch. (4.27)
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The (i, j)th element of the matrix P
(`)
cv is defined

[
P(`)
cv

]
i,j

= P (j → i) =
∑

{k∈T | i=V AR(k,j)}

P k,(`)
cv (4.28)

where the elements of the summation follow the rules given in Table I. The notation

P (j → i) refers to the probability of a transition from type j to type i as depicted

in Fig. 20.

This is equivalent to

P(`)
cv =



P
1,(`)
cv 0 0 0 0

P
2,(`)
cv P

1+2,(`)
cv 0 0 0

P
3,(`)
cv 0 P

1+3,(`)
cv 0 0

P
4,(`)
cv 0 0 P

1+4,(`)
cv 0

P
5,(`)
cv P

3+4+5,(`)
cv P

2+4+5,(`)
cv P

2+3+5,(`)
cv 1


with the shorthand P

i+j,(`)
cv = P

i,(`)
cv + P

j,(`)
cv .

More generally, consider a variable node with degree dv ≥ 2 and input type

distributions P
(`)
cv,1, ..., P

(`)
cv,dv−1 from check nodes and type distribution P ch from the

channel. Then the type distribution for the output message is given by

P (`)
vc = P

(`)
cv,1, ...,P

(`)
cv,dv−1P ch. (4.29)

To see this, consider dv = 3 with the two type update matrices P
(`)
cv,1 and P

(`)
cv,2.
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Each element of the product of these matrices is given by

[
P

(`)
cv,1P

(`)
cv,2

]
i,j

=
∑
k

[P
(`)
cv,1]i,k[P

(`)
cv,2]k,j

=
∑
k

∑
{j1∈T |i=V AR(j1,k)}

P
j1,(`)
cv,1

∑
{j2∈T |k=V AR(j2,j)}

P
j2,(`)
cv,2

=
∑
k

∑
{j1,j2∈T |i=V AR(j1,k),k=V AR(j2,j)}

P
j1,(`)
cv,1 P

j2,(`)
cv,2

=
∑

{j1,j2∈T |i=V AR(j1,V AR(j2,j))}

P
j1,(`)
cv,1 P

j2,(`)
cv,2 . (4.30)

This is the probability that the output message transitions from a message of type j

to i because of the input type distributions P
(`)
cv,1 and P

(`)
cv,2. Multiplying by P ch, we

obtain

[
P

(`)
cv,1P

(`)
cv,2P ch

]
i

=
∑

{j1,j2,j∈T |i=V AR(j1,V AR(j2,j))}

P
j1,(`)
cv,1 P

j2,(`)
cv,2 P j

ch(ε)

=
∑

(j1,j2,j)∈T3,i

P
j1,(`)
cv,1 P

j2,(`)
cv,2 P j

ch(ε)

= P (τ out = i). (4.31)

The equivalence of (4.26) and (4.31) for general dv follows by induction.

Note that

[
P

(`)
cv,1P

(`)
cv,2

]
i,j

=
∑

{j1,j2∈T |i=V AR(j1,V AR(j2,j))}

P
j1,(`)
cv,1 P

j2,(`)
cv,2

=
∑

{j1,j2∈T |i=V AR(j2,V AR(j1,j))}

P
j1,(`)
cv,1 P

j2,(`)
cv,2

=
[
P

(`)
cv,2P

(`)
cv,1

]
i,j
. (4.32)

The commutativity and associativity of the state transition matrix associated with

the variable node operation follows directly from the commutativity and associativity
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Fig. 21.: Trellis diagram type distribution update for a degree 4 check node.

Each edge in the trellis is labeled with the message types corresponding to the

illustrated transition.

of V AR(·) on the set T . It can be shown by induction that this also holds for general

dv.

For a check node of degree dc with input type distributions P
(`−1)
vc,1 , ..., P

(`−1)
vc,dc−1

we define the set

Tdc,i = {(j1, ..., jdc−1) ∈ T dc−1|i = CHK(j1, CHK(j2, ...CHK(jdc−2, jdc−1)))}.

(4.33)

Then the probability that the output message from the check node has type i ∈ T

is expressed

P (τ out = i) =
∑

(j1,...,,jdc−1)∈Tdc,i

P
j1,(`−1)
vc,1 ...P

jdc−1,(`−1)
vc,dc−1 . (4.34)

The trellis structure for a degree 4 check node is depicted in Fig. 21 where the
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transitions are arranged according to Table II.

The derivation of the matrix form for the check node operation on type distri-

butions is similar to the variable node derivation. The state transition matrix P
(`)
vc

is defined

P(`)
vc =



1 P
1+3+4,(`)
vc P

1+2+4,(`)
vc P

1+2+3,(`)
vc P

1,(`)
vc

0 P
2+5,(`)
vc 0 0 P

2,(`)
vc

0 0 P
3+5,(`)
vc 0 P

3,(`)
vc

0 0 0 P
4+5,(`)
vc P

4,(`)
vc

0 0 0 0 P
5,(`)
vc


.

For a check node of degree dc with input type distributions P
(`−1)
vc,1 , ..., P

(`−1)
vc,dc−1, the

type distribution for the output message is given by

P (`)
cv = P

(`−1)
vc,1 ...P

(`−1)
vc,dc−2P

(`−1)
vc,dc−1. (4.35)

As with the variable node case, the type distribution update operation for check nodes

is invariant to the order of matrix multiplications. The vector P
(`−1)
vc,dc−1 provides an

initial type distribution for the transition matrices associated with the other input

type distributions.

IV.4. Type Distribution Evolution

In this section, we characterize the performance of several LDPC ensembles using

JCF message passing decoding on a TWEMAC. For the normal binary erasure chan-

nel (BEC), the asymptotic (in length) performance of an LDPC ensemble is often

analyzed using density evolution analysis [38]. The main idea in density evolution is

to compute the probability that a message from a variable to check node (or check to

variable node) is erased during each iteration of message passing. Analogous density

evolution for the BEC we track the distribution of message types for each iteration.
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Hence, we refer to this performance characterization as type distribution evolution.

To be consistent with much of the literature, each variable node is initialized

(iteration 0) with the observation from the channel and forwards this message to all

connected check nodes. The check nodes process these messages and forward their

estimates back to the variable nodes. This process continues until the iterations reach

a fixed point. As in [38], we work under the assumption that, for a finite number of

iterations and for some N large enough, the local graph around any variable node is

a tree with high probability. This allows us to assume the statistical independence

of multiple input messages to a single variable or check node.

IV.4.1. Type Distribution Evolution for Regular LDPC Ensembles

For a (dv, dc) regular ensemble, the incoming messages to a variable or check node

are distributed according to P (`)
cv or P (`)

vc respectively. Since the first message from

the variable to check nodes is the message from the channel, the type distribution

evolution is initialized by

P (0)
vc = P ch

P (1)
cv =

(
P(0)
vc

)dc−2
P (0)
vc . (4.36)

For every iteration ` ≥ 2, the type distribution evolution is fully characterized by

P (`)
cv =

(
P(`−1)
vc

)dc−2 (
P(`−1)
cv

)dv−1
P ch︸ ︷︷ ︸

P
(`−1)
vc

. (4.37)

If we allow the decoder to complete `max iterations, the type distribution at the

output of the decoder is

P
(`max)
out =

(
P(`max)
cv

)dv
P ch. (4.38)

The objective of the relay is to recover the codeword xR. Therefore, the bitwise
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probability of successful computation after `max iterations is defined by

Pdec = P
4,(`max)
out + P

5,(`max)
out . (4.39)

This is because the value of each xR[n] is known if the decoder output is either type

4 or 5. We define εthesh as the largest ε such that reliable decoding is possible for an

LDPC ensemble (i.e. Pdec
`max→∞
−−−−→ 1).

We have proven analytically that optimal JCF decoding cannot outperform opti-

mal CF and DF decoding for random linear codebooks. However, the εthresh obtained

from type distribution evolution analysis for regular ensembles may be different for

DF, CF, or JCF message passing. The type distribution evolution for CF is per-

formed with the exact same processing rules, however, we make a change to the

channel model as

P ch,CF =



P 1
ch(ε) + P 2

ch(ε) + P 3
ch(ε)

0

0

P 4
ch(ε) + P 5

ch(ε)

0


. (4.40)

Therefore, the message passing decoder operates on estimates P (XR|YR) as discussed

previously. The type distribution evolution becomes exactly equivalent to density

evolution for a BEC in this case.

The type distribution evolution for DF is also performed with the same process-

ing rules, however we define

Pdec,DF = P
5,(`max)
out (4.41)

as the probability for successful decoding.
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IV.4.2. Type Distribution Evolution for Spatially Coupled Ensembles

Here we characterize the performance of the (dv, dc, L, w) spatially coupled LDPC

ensemble which is defined rigorously in [40]. Since node A and B each use the same

spatially coupled LDPC code, the ETG used for decoding at the relay is also spatially

coupled. The common method to achieve the capacity of a given channel is to find

some distribution on the variable and check node degrees such that a message passing

decoder can reliably decode at rates near capacity. It has recently been discovered

that for many spatially coupled LDPC ensembles a message passing decoder can

nearly achieve the performance of an optimal decoder [39], [40]. This holds for a

large class of binary-input channels [42], [41].

In the (dv, dc, L, w) ensemble, M variable nodes are placed in each position i ∈

{−L, ..., L} so that the codeword length is N = (2L+ 1)M . Each variable and check

node has degree dv and dc respectively. The ensemble is constructed by uniformly and

independently connecting the dv (dc) edges from a variable (check) node at position

i to check (variable) nodes at positions {i, ..., i + w − 1} ({i − w + 1, ..., i}). There

are Mdv edges in each position which requires that dv
dc
M check nodes be placed at

positions i ∈ {−L, ..., L + w − 1}. All check node connections to variable nodes

outside of positions {−L, ..., L} are connected to pseudo variable nodes whose value

is fixed to xA,B = [00]T . This decreases the effective degree of these check nodes.

The nominal rate for a (dv, dc, L, w) ensemble is defined

R(dv, dc, L, w) =

(
1− dv

dc

)
− dv
dc

w + 1− 2
∑w

i=0( i
w

)dc

2L+ 1
. (4.42)

This is a lower bound on the actual rate, however, it approaches the rate of the

regular ensemble R(dv, dc) = 1 − dv
dc

as L → ∞ for a fixed w. This ensemble is

primarily useful for information-theoretic analysis.
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𝐿 + 𝑤 − 1 

Fig. 22.: Protograph diagram for a (dv, dc, L = 5, w = 5) code ensemble. dv and

dc remain indeterminant because this diagram is valid for many values for dv and

dc. All protograph edge connections represent potential edge connections for a

random code in this ensemble.

A protograph diagram for a (dv, dc, L = 5, w = 5) ensemble is shown in Fig.

22 with variable and check nodes depicted by circles and squares respectively. The

dashed edges depict potential connections to pseudo variable nodes which will always

give a message of type 5. Note that each protograph edge in Fig. 22 represents a

potential edge connection for the connected protograph nodes. Particularly, for a

fixed code in this ensemble, a specific check node at position −L may only have

connections to pseudo variable nodes.

To characterize the average performance of the (dv, dc, L, w) ensemble, we need

to track the type distributions for the variable and check nodes in each position

separately. Also, the uniformly distributed edge spreading means that the effective

input type distribution to each variable (check) node is the average of the outgoing

type distributions from each potentially connected check (variable) node. More rig-

orously, we define the type distribution for outgoing messages from a variable node

at position i as P
(`)
vc,i, and we define the corresponding effective input type distribu-

tion to a check node at position i as P̃
(`)

vc,i. We similarly define P
(`)
cv,i and P̃

(`)

cv,i. The
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effective input type distributions are

P̃
(`)

cv,i =
1

w

i+w−1∑
j=i

P
(`)
cv,j ∀ i ∈ {−L, ..., L}

P̃
(`)

vc,i =
1

w

i∑
j=i−w+1

P
(`)
vc,j ∀ i ∈ {−L, ..., L+ w − 1}. (4.43)

The type distribution evolution for the (dv, dc, L, w) ensemble is initialized by

P
(0)
vc,i =

 P ch ∀ i ∈ {−L, ..., L}

[00001]T ∀ i 6∈ {−L, ..., L}
. (4.44)

Then, the type distribution evolution for this ensemble is fully characterized by

FOR ` = 1, ..., `max

P
(`)
cv,i =

(
P̃

(`−1)
vc,i

)dc−2

P̃
(`−1)

vc,i , i ∈ {−L, ..., L+ w − 1}

P
(`)
vc,i = (P̃

(`)
cv,i)

dv−1P ch , i ∈ {−L, ..., L} (4.45)

where (4.43) is used to determine P̃
(`)

cv,i and P̃
(`)

vc,i as needed.

Similar to (4.38), if we allow `max iterations, the output type distribution for a

variable node at position i for this ensemble is

P
(`max)
out,i =

(
P̃

(`max)
cv,i

)dv
P ch. (4.46)

Similar to (4.39), the bitwise probability of successful computation for a variable at

position i is

Pdec,i = P
4,(`max)
out,i + P

5,(`max)
out,i . (4.47)

We define εthresh as the largest ε such that reliable decoding is possible for this LDPC

ensemble (i.e. mini∈{−L,...,L} Pdec,i
`max→∞
−−−−→ 1). Notice, that we are already considering

the case that M is very large. This type distribution analysis defines the average
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performance of the ensemble defined by the parameters (dv, dc, L, w).

IV.4.3. Type Distribution Evolution for Spatially Coupled

Protograph LDPC Ensembles

The previous ensemble is quite interesting for information-theoretic analysis because

it can be shown to achieve the optimal decoding performance of asymptotically

regular LDPC codes for many types of channels. Unfortunately it does not provide

much assistance for the design or analysis of practical spatially coupled ensembles.

The check terminated protographs which use the edge spreading techniques proposed

in [50] provide a large class of practical spatially coupled ensembles to investigate. We

refer to [50], [51] for a thorough discussion of spatially coupled protograph ensembles.

However we include a brief description which is intentionally similar to [51] to obtain

some necessary notation. Then, we derive the type distribution evolution equations

for spatially coupled protograph ensembles on the TWEMAC. The density evolution

equations derived in this section can also be applied directly for uncoupled protograph

ensembles.

A binary protograph matrix is used to organize the edge connections of a spa-

tially coupled protograph ensemble. A common and convenient way to construct a

check terminated protograph matrix is to design w sub-matrices B1, ...,Bw of size
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(bc, bv). Then, a protograph matrix can be constructed according to

B[1,...,L] =



B1

...
. . .

Bw

B1

. . .
...

Bw


(L+w−1)bc×Lbv

. (4.48)

The parameter L represents the number of times the protograph structure is re-

peated, and w represents the memory of the protograph ensemble. Thus L and

w perform similar functions for spatially coupled protograph ensembles as for the

(dv, dc, L, w) ensemble. However, there are (L + w − 1)bc check node positions and

Lbv variable node positions, each with M check or variable nodes respectively. If we

choose bc = dv and bv = dc, the nominal rate for a code with a parity check matrix

of the form (4.48) is

RB[1,...L]
=

(
1− bc

bv

)
− w − 1

L

bc
bv

=

(
1− dv

dc

)
− w − 1

L

dv
dc
. (4.49)

The rate asymptotically approaches

lim
L→∞

RB[1,...,L]
=

(
1− bc

bv

)
=

(
1− dv

dc

)
. (4.50)

A parity check matrix for a spatially coupled protograph code is formed from B[1,...,L]

in (4.48) by replacing each 1 with an M ×M permutation matrix and each 0 by an

M×M all zero matrix. We will limit our focus to protographs which can be expressed

as in (4.48).

When we discuss type distribution evolution analysis for a protograph ensemble,
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we are referring to the expected asymptotic performance of codes in the B[1,...,L]

ensemble as M →∞. The type distribution of the input (or output) messages to (or

from) a variable or check node may not be the same for each edge. It is necessary to

keep track of the type distributions for each edge individually.

Therefore, we define Nv = {1, ..., Lbv} and Nc = {1, ..., (L + w − 1)bc} as the

sets of protograph variable and check node positions respectively. We denote the

protograph edge [i, j] which connects a check node at position i ∈ Nc to a variable

node at position j ∈ Nv. Let E be the set of all such edges. Define the type

distribution for messages from a variable node to a check node along edge [i, j] and

during iteration ` as P
(`)
vc,j→i. Similarly define the check to variable node message

returning on the same edge as P
(`)
cv,i→j. Then define Ec,i as the set of all edges

connected to the protograph check node at position i ∈ Nc. Similarly, Ev,j is the set

of all edges connected to a protograph variable node at position j ∈ Nv.

Consider the protograph check node at position i ∈ Nc. Select two distinct

edges [i, j1], [i, j2] ∈ Ec,i. The type distribution for the output message from i to the

variable node at position j1 ∈ Nv is given by

P cv,i→j1 =

 ∏
[i,j]∈Ec,i\{[i,j1],[i,j2]}

Pvc,j→i

P vc,j2→i (4.51)

where the product term is the matrix product. Recall that the order of matrix

multiplication and the selection of [i, j1], [i, j2] ∈ Ec,i may be arbitrary. Use the

notation

P cv,i→j = CHK[i,j′]∈Ec,i\{[i,j]}(P vc,j′→i) (4.52)

to denote the operation defined in (4.51).

For a protograph variable node at position j ∈ Nv, the output on an edge
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[i, j] ∈ Ev,j is given by

P vc,j→i =

 ∏
[i′,j]∈Ev,j\{[i,j]}

Pcv,i′→j

P ch (4.53)

where the product term is the matrix product. For notational consistency, use

P vc,j→i = V AR[i′,j]∈Ev,j\{[i,j]}(P cv,i′→j, P ch) (4.54)

to denote the operation defined in (4.53).

The type distribution evolution for the protograph ensemble is initialized by

P
(0)
vc,j→i = P ch ∀ [i, j] ∈ E . (4.55)

Then, the type distribution evolution for the protograph ensemble is fully character-

ized by

FOR ` = 1, ..., `max

P
(`)
cv,i→j = CHK[i,j′]∈Ec,i\{[i,j]}(P

(`−1)
vc,j′→i) ∀ [i, j] ∈ E

P
(`)
vc,j→i = V AR[i′,j]∈Ev,j\{[i,j]}(P

(`)
cv,i′→j, P ch) ∀ [i, j] ∈ E . (4.56)

If we allow `max iterations, the type distribution at the output of the decoder

for variable node positions j ∈ Nv is

P
(`max)
out,j =

 ∏
[i,j]∈Ev,j

P
(`max)
cv,i→j

P ch. (4.57)

The probability of successful computation for a variable node at position j ∈ Nv is

then

Pdec,j = P
4,(`max)
out,j + P

5,(`max)
out,j . (4.58)

Again, define εthresh as the largest ε such that reliable decoding is possible for this
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protograph ensemble (i.e. minj∈Nv Pdec,j
`max→∞
−−−−→ 1). Again, recall that we are already

considering the performance for the case that M →∞.

Through some experimentation, we have found a family of spatially coupled

protograph ensembles which perform efficiently. Our goal is to construct an asymp-

totically regular (dv, dc) protograph ensemble by proper choice of the sub-matrices

B1, ...,Bw. This means that each row of the concatenated matrix [B1...Bw] must

have dc 1’s and each column of

B =


B1

...

Bw


dvw×dc

(4.59)

must have dv 1’s. Our approach is to select (bc, bv) = (dv, dc) and w = dc
2

. Then,

we consecutively assign two 1’s to each row of B which satisfies the row constraints.

The 1’s in each row are ordered in a way which satisfies the column constraints. Our

First-Min spatially coupled protograph construction uses the following procedure.

In the following algorithm, let F (B) denote the first column of B which has a

column weight smaller than dv. Then let M(B) denote the first column of B which

has a minimal column weight. Then the dvw rows of B from (4.59) are consecutively
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designed according to

B = 0dvw×dc

FOR i = 1, ..., dvw

j = F (B)

Bi,j = 1

j = M(B)

Bi,j = 1

END FOR
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For an asymptotically (5, 6) code, this results in sub-matrices

B1 =



1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1



B2 =



0 1 1 0 0 0

0 1 0 1 0 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 1 1 0 0



B3 =



0 0 1 0 1 0

0 0 1 0 0 1

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 0 1 1


. (4.60)

Notice that all possible rows with two 1’s are represented without repetition.
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For an asymptotically (3, 6) code, this results in sub-matrices

B1 =


1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0



B2 =


0 1 0 0 1 0

0 1 0 0 0 1

0 0 1 1 0 0



B3 =


0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 1

 . (4.61)

An important feature of the First-Min construction is that for each repetition

of B in B[1,...,L], the variable nodes should be recovered in order from left to right.

The first matrix B1 strongly protects the variable nodes in the first column with dv

consecutive 1’s which are connected via the check constrains to dv different variable

positions. Thus the messages to and from the nodes in the first column of B should

converge quickly. When these bits are recovered, the check nodes with connections

to these bits behave as if their degree has been reduced by one. This pattern is

continued for the remaining rows of B2, ...,Bw. This successive recovery of variable

nodes in each position is the key principle of spatially coupled ensembles. We have

applied this principle in a nested way to design B1, ...,Bw. A more rigorous analysis

of this construction is in order, but that would diverge significantly from our analysis

of the JCF decoder.
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IV.5. Numerical Results

Here, we present εthresh for the three studied classes of LDPC ensembles. For each

test, we plot the theoretically achievable rates for DF with and without the penalty

constraint associated with identical linear codebooks from (3.2) and (3.4) respec-

tively. We also plot the theoretically achievable rate for CF from (3.6). Recall that

the JCF typicality decoder is able to achieve all rates subject to

RJCF < max{RCF ,RDF} (4.62)

which is rate optimal for the ensemble of identical linear codes.

For the regular (dv, dc) = (3, [5, ..., 11]) LDPC ensembles, the values for εthresh

from a type distribution analysis for DF, CF, and JCF decoding are plotted in Fig.

23. The channel parametrization for Fig. 23 is

P ch =



ε2

(1− ε)ε

ε(1− ε)
(1−ε)2

2

(1−ε)2
2


. (4.63)

The threshold performance of JCF over CF is visually apparent for moderate rates

with this parametrization. When DF achieves a better threshold than CF, however,

we see that the JCF and DF thresholds are equal. It is interesting however, that JCF

can strictly outperform DF and CF with message passing. This may have interesting

implications for the design of uncoupled protograph ensembles which may not be

optimized to the channel parameters.

JCF decoding is able to achieve the theoretically optimal performance for iden-

tical linear codebooks regardless of whether DF or CF are optimal for the channel
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Fig. 23.: Numerically computed values for εthresh using CF, DF, or JCF type

distribution evolution analysis for the channel parametrization in (4.63). JCF

message passing strictly outperforms CF and DF message passing for some reg-

ular LDPC ensembles with this parametrization. Theoretically achievable rates

RCF , RDF , and R′DF vs ε are shown for comparison.
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parameters. Therefore, we highlight a practical benefit associated with JCF message

passing decoding. It is possible to achieve the theoretically optimal performance for

a range of code rates with a single encoder and decoder with random puncturing.

We apply an identical uniform puncturing sequence π at nodes A and B to adjust

the rate of the transmitted codewords xA and xB. Let pπ = |π|
N

be the probability

that a given xA,B[n] is punctured. For the type distribution analysis, the punctured

bits are treated as type 1 messages. Thus, the effective channel after puncturing is

defined

P ch,π =



P 1
ch(ε)(1− pπ) + pπ

P 2
ch(ε)(1− pπ)

P 3
ch(ε)(1− pπ)

P 4
ch(ε)(1− pπ)

P 5
ch(ε)(1− pπ)


. (4.64)

The rate of a channel code is defined as the number of message bits K divided by

the codeword length N . Thus the rate of a code after puncturing is

Rπ =
K

N(1− pπ)
= R 1

1− pπ
. (4.65)

In Fig. 24, we plot the achievable rates for both un-punctured and punc-

tured (dv, dc, L, w) ensembles as a function of εthresh. For the un-punctured test,

we use the ensembles (dv, dc, L, w) = ([3, ..., 9], 10, 4000, 100) with `max = 20, 000.

We use the values of dv ∈ {3, ..., 9} to characterize the performance for a range

of code rates without a puncturing sequence. For the punctured test, we use the

(dv, dc, L, w) = (9, 10, 10000, 100) ensemble with `max = 400, 000. We use a range of

puncturing probabilities to adjust the code rate. Notice that the right most point

for both the un-punctured and punctured tests corresponds to the thresholds for

an asymptotically (dv, dc) = (9, 10) code. With close inspection, we see that the
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Fig. 24.: Numerically computed values for εthresh using type distribution evo-

lution analysis for (dv, dc, L, w) = ([3, ..., 9], 10, 4000, 100) and (dv, dc, L, w) =

(9, 10, 10000, 100) spatially coupled ensembles which are un-punctured and punc-

tured respectively. The JCF message passing decoder approaches theoretical lim-

its with spatially coupled ensembles. Theoretically achievable rates RCF , RDF ,

and R′DF vs ε are shown for comparison.
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choice of L = 10, 000 in the punctured test results in decreased rate loss, and the

`max = 400, 000 does improve the threshold performance over the un-punctured test

with `max = 20, 000. Message passing decoding of these spatially coupled ensembles

requires a large `max at thresholds near capacity because each of the variable node

positions must be recovered sequentially. Puncturing of the low rate ensemble does

appear to slightly decrease the threshold performance when the puncturing proba-

bility becomes large. This should be less visually apparent with a larger `max. As we

have claimed, however, the spatially coupled ensembles achieve nearly the optimal

performance for identical linear codebooks with and without puncturing.

We perform a similar puncturing analysis for the asymptotically (7, 8) proto-

graph ensemble whose sub-matrices B1, ...,B4 are designed according to the First-

Min construction in Fig. 25. For the protograph puncturing test, however, we use a

relatively small L = 50 and use a large `max = 2, 000, 000 to characterize the theo-

retical performance of the protograph ensemble with a uniform puncturing sequence.

The finite L = 50 results in a significant rate loss, however we plot the asymptotic

rates as L→∞ against εthresh in Fig. 25. Notably, the threshold performance for the

punctured First-Min protograph ensemble is extremely close to the theoretical limit.

It is important to note, however, that this does not indicate that the protograph

ensemble is capable of better threshold performance than a (dv, dc, L, w) ensemble in

the limit as M →∞ and L→∞.

IV.6. JCF with Spatially Coupled Codes for the AWGN Channel

We present simulated results for JCF message passing decoding over the AWGN

channel with BPSK signalling. The extended tanner graph is used to pass 4-ary

messages of the form in (4.12). Each node maps its binary codewords to the BPSK
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Fig. 25.: Numerically computed values for the punctured rate Rπ as L→∞ vs.

εthresh for the asymptotically (7, 8) protograph ensemble designed by the First-

Min construction. The JCF message passing decoder approaches the theoretical

limits very tightly. Theoretically achievable rates RCF , RDF , and R′DF vs ε are

shown for comparison.
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symbol sequences sA, sB ∈ {−1, 1}N . Then the relay observes

y
R

= sA + sB + wR (4.66)

where wR a sequence of i.i.d. variables distributed as N(0, σ2). This channel is

poorly matched to xR at low SNR, but the matching is significantly improved as the

SNR increases.

The variable nodes in the ETG are initialized with messages of the form

µch,n =



P (XA,B[n] = [00]T |YR[n])

P (XA,B[n] = [01]T |YR[n])

P (XA,B[n] = [10]T |YR[n])

P (XA,B[n] = [11]T |YR[n])


. (4.67)

The output messages from the variable nodes are the elementwise product of each

input message. The output messages from the check nodes follow the rules in (4.21)

and (4.22), however the message alphabet is the set of 4-ary pmfs rather than the

restricted set U .

To reduce the computational complexity of the simulations in this section, we

use a message passing schedule based on the windowed decoding for spatially coupled

protograph ensembles developed in [52]. We leave a thorough discussion to [52] but

provide the details of our simulation for completeness. Our schedule is defined by

a sequence of L windows. The ith window, Wi consists of a set of target variable

positions {i, ..., i+ bv− 1} and sets of active check and variable node positions which

will process received messages. The target variable positions must be recovered

before proceeding to the next window. The active protograph check positions in Wi

are {i−wbc, ..., i+ 4wbc}. The active protograph variable positions are those which

have any edge connection to an active check position. Messages from inactive check
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nodes to active variable nodes are either the last computed outgoing message (if the

check node was previously active) or correspond to a uniform input message. The set

of active check nodes is optionally expanded by up to 2wbc on either side if the target

variables are not decoded within a suitable number of iterations. Our windowed

schedule reduces the computational complexity considerably for our simulations, but

the effect on the decoding thresholds is minimal with these parameters.

We construct asymptotically (dv, dc) = ({3, ..., 7}, 8), (3, 10) protograph codes

using the First-Min construction with parameters M = 5000 and L = 75. The edge

connections in each code are generated by random permutation, then all length four

cycles are removed via randomized edge swapping within each permutation matrix.

The terminated rate (4.49) and asymptotic rate (4.50) are plotted as a function of

SNR in Fig. 26(a). The rate loss for this L is quite apparent, especially for the low

rate codes. We perform the same test with parameters M = 1250 and L = 200 and

give the results in Fig. 26(b). The rate loss is considerably smaller, and a slightly

larger SNR is required for the communication. JCF decoding with these First-Min

codes closely approaches the optimal thresholds for the AWGN MAC with identical

linear codebooks and BPSK signalling.

IV.7. Concluding Remarks

The proposed TWEMAC channel model is a useful tool for code design for many

wireless communication problems. We derive and simplify the processing rules for

JCF message passing decoding for this class of channels and derive a type distribu-

tion evolution analysis to simplify the design of LDPC ensembles for such practical

decoding for computation. Our numerical results which show that spatially coupled

LDPC ensembles can nearly achieve the theoretical performance limit for identical
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SNR (dB) 

ℛ 

(a) Asymptotically (dv, dc) = ({3, ..., 7}, 8), (3, 10) First-Min
codes with, M = 5000, and L = 75

Fig. 26.: Simulated performance of randomly generated First-Min protograph

codes. The finite length and asymptotic (as L→∞) code rates are plotted as a

function of the SNR (dB) for which 0 bit errors were observed with 5 simulated

codeword transmissions. Theoretically achievable rates RCF , RDF , and R′DF vs

SNR (dB) are shown for comparison.
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SNR (dB) 

ℛ 

(b) Asymptotically (dv, dc) = ({3, ..., 7}, 8), (3, 10) First-Min
codes with, M = 1250, and L = 200

Fig. 26.: Fig. 26.: Continued.
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linear codebooks. This is extended with simulation results for the AWGN multi-

ple access channel with BPSK signalling. Generalizations of the TWEMAC channel

model may help us develop practical codes suitable for computation for a wider range

of practical problems. It would be of particular interest to consider computation over

time varying channels with the parameters unknown to the transmitters.

Next in Chapter V, we conclude this thesis by discussing the way our results

work together to shorten the gap between theory and practice for reliable PLNC.

We also describe in detail the ways our results can be combined and extended with

further research.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

V.1. Summary of Findings

In the previous chapters, we have investigated novel coding schemes for reliable

physical layer network coding over the two-way relay channel. Recent related research

has shown that, with structured code ensembles, the wireless superposition may

be used to compute a desired function of the transmitted messages. Our primary

goal was to shorten the gap between theory and practice for reliable PLNC. We

became particularly interested in the practical issue that nodes A and B may not

know the structure of the wireless superposition, though it is reasonable to expect

the relay to estimate the channel parameters from the observed signal [12]. Prior

work has established the value adaptable network coding in such situations. Our

primary contributions include a practical, reliable, and adaptable coding scheme,

novel information-theoretic analysis of structured ensembles, and tools to design

code ensembles which permit practical decoding for computation.

In Chapter II, we showed that significant decoding flexibility may be achieved

using multilevel codes with identical linear codebooks over the binary field. We dis-

covered that this coding structure induces penalty constraints to the achievable rates

which are not present with independent codebooks. We provided a rigorous deriva-

tion of these constraints. Our numerical results indicated that decoding flexibility

may be improved if the relay attempts both compute-and-forward and decode-and-

forward based computation with the proposed structured encoder.

As with many recently studied problems in information and coding theory, these

results emphasize the importance of reviewing the accuracy of our assumptions, par-
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ticularly if they are based on established solutions to simpler problems. In classical

information theory, random independent codebooks have been established as the go

to solution to achieve the rate region for the multiple access channel [13]. More re-

cently, the physical layer computation problem has revealed the value of structured

code ensembles, such as lattice codes, for efficient use of linear wireless superposition.

The compute-and-forward schemes based on nested lattice codes established the no-

tion that it can be wasteful to decode all incoming codewords at a receiver [15], [20],

[21]. In this thesis, we have shown that when the superposition is not known to the

transmitters both methods of decoding are useful with structured ensembles.

In Chapter III, we realized that either DF or CF are independently suboptimal

for reliable computation. Therefore, we studied an optimal decoding paradigm, joint-

compute-and-forward, which was originally proposed in a message passing framework

[17], [16], [18], [19]. We studied the simple yet general class of binary-input mem-

oryless multiple access channels and considered the case where nodes A and B use

independent cosets of identical linear codebooks generated uniformly at random. For

this case, we showed that JCF essentially performs as well as the better of CF and

DF depending on the channel parameters. Conversely, for the studied class of chan-

nels and code ensemble we showed that the linear combination of codewords cannot

be reliably computed at rates greater than those achievable by the better of CF and

DF. These results indicate that, if it is possible to improve the achievable rates for

reliable computation, it will require clever design of joint encoders.

In Chapter IV, we proposed the TWEMAC channel model, which can be used

to emulate various aspects of wireless superposition, and developed a framework for

JCF message passing decoding on TWEMACs. This should be useful for the design

of practical code ensembles which achieve our theoretical computation performance

for many scenarios. We used our framework to show that spatially coupled LDPC
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ensembles with JCF message passing decoding can approach the optimal compu-

tation rates achievable with identical linear codebooks. This is highlighted by our

result that identical random puncturing of a spatially coupled ensemble can facilitate

optimal performance for a large range of channel parameters with a single encoder

and decoder. These results were supplemented with simulation results for the AWGN

two-way relay channel with BPSK signaling.

Chapters III and IV reinforce our previous results and provide tools to develop

practical coding implementations. Limiting our focus to the binary case and identical

linear codebooks in these chapters allowed us to simplify our analysis and commu-

nicate key concepts effectively. We discovered that the additional computational

complexity required for JCF decoding does not improve the computation rates over

the better of DF and CF decoding; however, under certain assumptions such as fi-

nite length codes, JCF decoding may improve performance. The practical benefits

and information-theoretic optimality of JCF suggest that JCF is the right way to

think about decoding for computation. Throughout the thesis, we have focused on

different aspects of the reliable computation problem for symmetric exchange over

the two-way relay channel. Many of our results and analysis are applicable to more

general networking scenarios or more general goals for the desired communication.

Again, our narrow focus permitted an undistracted investigation of the ways wireless

superposition may be practically used for reliable PLNC. For the remainder of this

chapter, we discuss some interesting avenues for further research.

Note about notation: Throughout the thesis, we have attempted to keep notation

uniform. However, we have made a few small changes to the notation, especially from

Chapter II to Chapters III and IV. Important differences are mentioned in a note

about notation near the beginning of each chapter. In the following, we combine the

analysis for the different chapters and use the notation for the chapter most relevant
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to the discussion. We attempt to limit the confusion by referencing equations or text

in the previous chapters where relevant variables are defined. Note especially that,

in sub-section V.2.V.2.1, x denotes the binary address vectors which are adaptively

network coded as in Chapter II. In sub-sections V.2.V.2.3 and V.2.V.2.2, x denotes

a binary codeword as in Chapters III and IV.

V.2. Future Work

During our investigation, we have developed tools and analysis which suggest further

research for the reliable computation problem. In the following, we discuss specific

ways in which our results may be combined or generalized and areas where further

investigation should be especially informative.

V.2.1. Combining Our Results

In Chapter II, we provide numerical results for the case where the relay uses either CF

or DF decoding. In Chapter III, we have studied an additional decoding paradigm

called JCF for binary-input multiple access channels. JCF achieves all computation

rates achievable by either CF or DF and cannot achieve better for binary memoryless

MACs. However, this is not immediately clear for the multilevel case. For example,

there may be certain channel parameters for which it is better to use DF decoding

for one level and CF decoding for the other. For example, if nodes A and B use ` = 2

levels, the relay could attempt to decode a function given by

f ′(xA, xB) =


1 0 1 0

0 1 0 0

0 0 0 1


 xA

xB

 .
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Then, the relay could use the values of f ′(xA, xB) to recover one of our originally

proposed functions such as

f(xA, xB) =

 1 0 1 0

0 1 0 1


 xA

xB


Our numerical results in Chapter II do not consider the computation of functions

such as f ′(xA, xB). However, Theorem II.1 defines achievable rates for a MLC with

identical linear codebooks for a general DMC and is therefore general enough to define

achievable rates for such an expanded class of functions. Our theoretical notion of

JCF is to recover as much information as possible about the observed codewords using

a joint estimator, and then to combine these estimates into an efficient unambiguous

network coding function for broadcast. For the MLC scheme with ` = 2, the suitable

functions are denoted by the set F defined in (2.9). We expect a JCF typicality

decoder, generalized from the binary JCF typicality decoder used in Chapter III,

can achieve the computation rates rigorously defined in the following conjecture

Conjecture V.1. Let nodes A and B use the proposed MLC encoding scheme with

independent cosets of an identical linear codebook generated uniformly at random.

Suppose there exists a binary matrix Dk×2`, ` ≤ k ≤ 2`, such that

f ′(xA, xB) = Dk×2`

 xA

xB

 (5.1)

is unambiguous and can be decoded according to Theorem II.1. Then there exists

some f ∈ F as defined (2.9) which can be reliably decoded at the relay from y
R

.

This conjecture generalizes our theoretical notion of JCF to the multilevel de-

coder. It should be fairly straight forward to show that this result is achievable.

Theorem II.1 is already applied in the conjecture to define the achievable compu-
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tation rates for any unambiguous D. Therefore, we would only need to show that

decoding any unambiguous

f ′(xA, xB) = D

 xA

xB


implies that some f ∈ F can be decoded. This is true if, for any unambiguous matrix

Dk×2`, there exists a full-rank matrix E`×k such that ED ∈ F . Then some f ∈ F is

always a function of any unambiguous recoverable f ′. A converse statement is more

complicated to prove because we would need to extend our converse analysis to the

multilevel case. However, it should be possible to prove the following conjecture with

steps similar to the binary case in Chapter III.

Conjecture V.2. Let nodes A and B use the proposed MLC encoding scheme with

independent cosets of an identical linear codebook generated uniformly at random.

Then define PN
e,f as the probability of error, averaged over the ensemble of length N

codebooks, for decoding a function f ∈ F . If PN
e,f → 0 for any f ∈ F , then there

exists a binary matrix Dk×`, ` ≤ k ≤ 2` such that the corresponding f ′(xA, xB) is

unambiguous and can be decoded according to Theorem II.1.

Conjecture V.2 is the converse to Conjecture V.1 because it states that if reliable

computation is possible for any f ∈ F , then the code rate R must satisfy the

achievable rate constraints.

In Chapter IV, we developed a TWEMAC channel model for binary-input chan-

nels and showed that spatially coupled LDPC codes with JCF message passing de-

coding achieves the optimal computation rates for identical linear codebooks. It

should be quite useful to extend the TWEMAC channel model, variable and check

node processing rules, and type distribution evolution equations to the multilevel

case. The analysis should not change significantly, but there should be a larger
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number of message types as ` increases. The channel parameters for this extended

erasure model could be selected to mimic the conditional entropies from some sig-

nalling constellation and channel gains hA, hB ∈ C. Then this could be useful for

designing practical codes for the multilevel coding scheme.

V.2.2. Relaxing Design Constraints

In order to communicate key concepts effectively, we have often proposed the use

code ensembles with very specific structures. This is useful to simplify our analysis;

however, greater design flexibility may be obtained by relaxing some of our design

constraints. Here, we provide a few examples we find especially interesting.

In our proposed MLC scheme from Chapter II we use identical linear codebooks

for each encoding level. Yet, a degree of decoding flexibility can be maintained if the

` levels are assigned to disjoint subsets, and each subset of levels uses identical linear

codes which are independent from the other linear codes. For example, if ` = 4, than

we could use two linear codebooks Cα and Cβ. Then we could choose C1 = C2 = Cα and

C3 = C4 = Cβ. Then any unambiguous function which linearly combines codewords

from the same subset is acceptable for computation. This generalization facilitates

a greater degree of design flexibility because Rα need not be equal to Rβ. Also, the

independence of Cα and Cβ means that fewer penalty constraints need to be satisfied

at the decoder. Another useful generalization of the MLC scheme is to apply multiple

labels to the each constellation point to provide a shaping gain. Finally, it should

be interesting to study the decoding flexibility achieved with non-binary multilevel

coding schemes with identical linear codebooks.

In Chapter III, we only consider the case where nodes A and B use identical

linear codebooks generated uniformly at random. However, our analysis of the JCF

typicality decoder can be applied to the case where nodes A and B use generator
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matrices for which only a subset of the rows are identical and the rest are independent.

This is not likely to improve the computation rate. However, if the channel is only

partially matched to the linear function the relay may be able to decode some of the

message bits from node A and/or node B in addition to the network coded message

bits. This could be beneficial for some networks with different communication goals.

This can be better understood using a generalization of the notion of codeword

triplets (xA, xB, xR) developed in Chapter III. Particularly, consider an appended

codeword xJCF = [xAxBxR]. If nodes A and B use an identical linear code C with

generator matrix G, then the codeword xJCF is generated by an induced encoder

according to

xJCF = [uA, uB]

 G 0 G

0 G G

 (5.2)

or equivalently

xJCF = [uA, uB, uR]


G 0 0

0 G 0

0 0 G

 . (5.3)

More generally, suppose nodes A and B use linear codebooks CA and CB each of rate

R = K
N

. Then let the first K ′ rows of GA and GB be identical and the remaining

K ′′ = K −K ′ rows be independently distributed. Define R′ = K′

N
and R′′ = K′′

N
, so

that R = R′ +R′′. The generator matrices are given by

GA =

 G′K′×N

G′′K′′×N


GB =

 G′K′×N

G′′′K′′×N


where the elements of G′, G′′ and G′′′ are independently and uniformly distributed.
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Then the induced encoder for xJCF can be expressed

xJCF = [uA, uB]

 GA 0 GA

0 GB GB

 (5.4)

or equivalently

xJCF = [uA, uB, uR]



G′ 0 0

G′′ 0 G′′

0 G′ 0

0 G′′′ G′′′

0 0 G′

0 0 0


. (5.5)

Notice that the last K ′′ rows of the induced generator matrix are all zeros. Therefore,

the last K ′′ values of uR must be recovered as in the DF paradigm. We believe our

arguments in Chapter III can be extended for this generalized class of codebooks.

A thorough investigation should reveal a non-trivial rate region for pairs (R′,R′′).

It should be especially interesting to see how the penalty constraints which we have

discovered in this thesis should affect the analysis.

Finally, this generalized code ensemble may be applied to the multilevel coding

scheme with interesting results. Even if ` = 2 considerable design flexibility may

be obtained by clever selection of the codebooks C1
A, C2

A, C1
B, and C2

B. An appended

XJCF codeword matrix may be formed according to

XJCF =
[
u1
A, u

2
A, u

1
B, u

2
B

] G1
A 0 0 0 G1

A G1
A G1

A 0 0 0 G1
A G1

A G1
A 0 G1

A

0 G2
A 0 0 G2

A 0 0 G2
A G2

A 0 G2
A G2

A 0 G2
A G2

A

0 0 G1
B 0 0 G1

B 0 G1
B 0 G1

B G1
B 0 G1

B G1
B G1

B

0 0 0 G2
B 0 0 G2

B 0 G2
B G2

B 0 G2
B G2

B G2
B G2

B

 .
Then any combination of subsets of the rows from G1

A, G2
A, G1

B, and G2
B may be

identical or independent. Our analysis in Chapter III combined with the more general

results in [46] should be helpful to such an investigation.
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V.2.3. Extending Our Results

Code Ensembles for Computation: It would be most interesting to find a coding

scheme which facilitates reliable computation at rates strictly better than CF or DF

for the general binary-input memoryless multiple access channel. In Chapter III, we

showed that with identical linear codebooks generated uniformly at random, it is not

possible to reliably decode xR = xA ⊕ xB at rates higher than those achievable with

CF or DF. We hope that a jointly designed code ensemble may facilitate reliable

computation at higher rates.

Perhaps, polar codes as introduced in [53] offer such a promising method of joint

design. For the binary-input two-user MAC channel, the authors in [54] show that

a binary multiple access channel should polarize into one of five possible extremals.

The channel is either useless, provides perfect information from one user and nothing

about the other (one extremum for each user), or provides perfect information from

both users. These first four channel extremum are analogous to the messages of types

1, 2, 3, and 5 for our TWEMAC channel model. The last channel extremum found by

[54] is a channel with a sum constraint of one bit per channel use which the authors

claim can be used to transmit a bit from either user but not both. Perhaps this last

extremum could emulate a message of type 4 in which both transmitters send a bit,

but the receiver decodes the finite field sum. To the best of our knowledge, polar

codes have not been studied for the computation problem. The potential benefit of

a polar coding scheme for computation is that the transmitters know the positions

of the bits which correspond to each channel extremum.

Computation for Time Dependent Channels: In Chapter IV, we use spa-

tially coupled LDPC ensembles to achieve theoretical computation rates. Such codes

may be too long to be practical for some wireless scenarios. In a time-varying channel
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model (e.g. fast fading or block fading), it may be preferable to compute different

functions of the received codewords at different time intervals. Our TWEMAC chan-

nel model with time-varying input type distributions should be useful for such code

design.

Constellation Design for Computation: In Chapter II, we show numeri-

cal results for a few signalling constellations with our proposed MLC scheme. We

stress the importance of considering the structure of the network/channel code and

assumptions about the channel model for such constellation design. The denoise-

and-forward adaptive network coding scheme for un-coded two-way relaying [28] [29]

emphasizes the importance minimum distance between points in the induced constel-

lation with un-equal function labels. Special attention is placed on avoiding singular

fade states which are channel gains for which the minimum distance is zero for all

available decoding functions. This design helps decrease the symbol error rate for

un-coded PLNC. Very recently, some work for this un-coded PLNC problem on the

two-way relay channel has shown that adaptive PLNC can benefit from the design

of unconventional signalling sets [55].

For reliable PLNC schemes, such as our MLC scheme, the achievable compu-

tation rate is a more important performance metric. One reason we did not sys-

tematically approach the constellation design problem for adaptive PLNC is that

we did not understand the fundamental limits for reliable decoding with structured

ensembles. Even in this chapter, we have discussed some ways that greater design

flexibility for the encoders may be obtained. Constellation design is a complicated

optimization problem, and different design constraints and objective functions will

lead to very different solutions or approaches. For example, some of our numerical

results from Chapter II show that singular fade states and their respective distance

shortening events may not be the dominant factor in system performance. See Fig.
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10 and the relevant discussion for details. In order to design good signalling constel-

lations for reliable PLNC, it will be important to carefully consider the goal of the

desired communication, the adaptability of the network coding, and the rates which

may be achieved with the channel coding structure. This thesis primarily addresses

the network and channel coding part of this problem.

V.3. Conclusion

In this thesis, we have provided tools and analysis which should help close the gap

between theory and practice for wireless physical layer network coding. Recently,

we have realized that structured code ensembles have the potential to improve the

achievable information rates for such communication. Our work highlights the sub-

stantial benefits and reveals certain limitations of structured codes for physical layer

computation.
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