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ABSTRACT 

 

The Coats-Hines site (40WM31) is a potential pre-Clovis site located in Franklin, 

Tennessee. The site rests, geographically, at the convergence of the Central Basin and 

Western Highland Rim. The site was discovered during the construction of a nearby golf 

course when a salvage team uncovered a mature female mastodon.. The site was later 

excavated in 1994-1995, during which time two additional mastodons were uncovered, 

in direct association with lithic artifacts. Preliminary radiocarbon dates reveal the site 

was deposited during the late Pleistocene epoch at roughly 12,000 14C yr BP.  

During the summer of 2012, the site was excavated with the goal of determining 

the depositional setting of the site and geographic region, as well as establishing the 

antiquity of the archaeological remains. The site geology was determined through field 

interpretation and texturing, micromorphological analysis, laboratory particle size 

analysis, and radiocarbon dating. Sedimentation at the site is a combination of cherty 

colluvium from upslope as well as alluvium. Four chronostratigraphic sequences of 

sedimentation were determined to have occurred during the last glacial, the Pleistocene-

Holocene transition, the Holocene, and modern time periods. The volume, distribution, 

and composition of the nine defined stratigraphic units are dependent on the fluctuations 

occurring in the climate during these time periods. The climate changes and rates of 

deposition occurring at Coats-Hines were correlated to similar sites in the region.  

The Coats-Hines site was surveyed along the wet-weather drainage that bounds 

the site during  in the spring of 2013. A channel unconformity was discovered, likely 
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dating to the Pleistocene-Holocene transition and providing context to the 1994/1995 

excavation. 



 

iv 

 

DEDICATION 

 

This thesis is dedicated to my parents, Verlynn and Anne Schmalle, who have 

supported me unconditionally every step of the way.  

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Michael Waters, for giving me the 

opportunity to work at the Coats-Hines site and develop this project; his support and 

guidance in the field, as well as during the laboratory analysis and writing process made 

this thesis possible. I would also like to thank Dr. Ted Goebel for his invaluable advice 

and support throughout my time at Texas A&M.  Thanks to Dr. Cristine Morgan, for her 

instruction and patience throughout the course of this research.  

I would like to thank Roy J. Shlemon, the Center for the Study of the First 

Americans, and Department of Anthropology at Texas A&M for their financial support, 

making this research possible. In addition, I would like to thank Paul and Sharlene 

Litchy, for allowing myself and Texas A&M to conduct the survey and excavation on 

their property. 

I thank John Broster and Mark Norton for their expertise on the Coats-Hines site 

and spending time out at the site during the summer of 2012. Thanks also go to Dr. 

Steven Driese, for taking the time to analyze thin sections, and providing his expert 

opinion and interpretation. Thanks to Dr. Randy Cox, for helping to figure out a geologic 

puzzle that had me baffled for months. And a special thanks to  Donna Prochaska for 

having the patience to help me in the Soil Characterization Lab.   

I want to extend my gratitude to my friends, Courtney Cox and Stephanie Stutts 

for their hard work in the field, spending long nights organizing the excavation. I would 

like to thank my friend and fellow graduate student, Angela Gore, for devoting an entire 



 

vi 

 

week surveying the site, I literally would not have been able to do it without you. Thanks 

also to Joshua Keene for his technical support and valuable advice. 

Thanks to my parents, Anne and Verlynn Schmalle for their encouragement, for 

keeping me focused, and for keeping the lights on. Thanks to my sister, Greta Schmalle, 

for showing me the ropes of being a successful graduate student. 



 

vii 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT……………………………………………………………………............... ii 

DEDICATION…………………………………………………………………………. iv 

ACKNOWLEDGEMENTS……………………………………………………………... v 

TABLE OF CONTENTS………………………………………………………………. vii 

LIST OF FIGURES……………………………………………………………………. ix 

LIST OF TABLES………………………...…………………………………....……… xi 

CHAPTER I INTRODUCTION AND PROJECT OUTLINES............…………............ 1 

 1.1 Introduction……………………………………..……………………. …… .1 
  1.2 Project Outline 2012/2013……………………………..…………...……… .2 

CHAPTER II BACKGROUND....………………………………………………...…..…6 

 2.1 Background to the Coats-Hines Site (40WM31)…………………………... .6 
 2.2 Radiocarbon  (14C)  Dates from Past Excavations………….…………....... 12 

CHAPTER III PHYSIOGRAPHIC SETTING……………………..…………………. 13  

 3.1 Topography………………………..………………………………………  13 
 3.2 Bedrock…..……………...………………………………………………… 15 
 3.3 Modern Climate……..……………………..……………………………… 16 

CHAPTER IV GEOLOGY……………………………………………………...……... 17 

 4.1 Introduction……...…………………..…………………………………….. 17 
 4.2 2012 Excavation Area……….……………………………..……………… 20 
 4.3 Macromorphology: Turbation Features………………..………………….  23 
 4.4 Micromorphological Analysis…………………………..…………………26 
   4.4.1 Introduction to Micromorphology………...……………………… 26 
   4.4.2 Methods of Micromorphological Analysis…………...………….. .26 

4.4.3 Interpretation of Micromorphological Thin Sections……….......... 28 
 4.5 Gravel Distribution…………..……………………………..……...………33 



 

viii 

 

  4.5.1 Introduction to Coarse Fragments………..……..……………….. .33 
  4.5.2 Methods of Gravel Analysis…………..…………………….……. 34
  4.5.3 Results of Gravel Analysis…………..…………………………… 36 
   4.5.3.1 Composition…...……………………………………..… .36
   4.5.3.2 Weight Distribution of Gravels…………............…… …37 
   4.5.3.3 Roundness and Sphericity………….………………. ......39 
   4.5.3.4 Interpretation.........................……...……………….… …41 
 4.6 Dates from the 2012 Excavation……………………….………….…… ….41
 4.7 Channel Unconformity………...……………..…………………….…… …44 
  4.7.1 Introduction………………………...………………………..… ….44 

4.7.2 Unit Descriptions……...……...……………………….…… ……..44
  4.7.3 Interpretation……….…………………..…………….………… ...45 
4.8 Geochronology………………..…………………………………….… …....47 
 

CHAPTER V CORRELATIONS………………...………………………………… …..52 

 5.1 Introduction…..……………………………………………………… …….52 
 5.2 The Duck River, Tennessee…........……………………………….…… ….53 
 5.3 The Pomme de Terre River, Missouri…………………........................... …53 
 5.4 Douthard Creek, West Virginia………………………………...……….. …54 
 5.5 Interpretation…………………………………..………………….……… ..55 
 
CHAPTER VI ARCHAEOLOGICAL CONTEXT………………………………… ….58 

6.1 Correlations of the 2012 Excavation to Previous Excavations at Coats-
Hines…………………………………………….…………………………… …58 
6.2 Context of Mastodon B……..……………………...……………………. …59 
 

CHAPTER VII CONCLUSION…………….………………………………………..… 63 

REFERENCES……………………………………………….………………………… 65 

APPENDIX A……………………………………………………………….…………. 68 

APPENDIX B…………………………………………………………...………… ……69 

APPENDIX C………………………………………………………….………….. ……70 

APPENDIX D………………………………………………………...……………… …74 

APPENDIX F…………………………………………………………………… ……...78 

APPENDIX G………………………………………………………...………… ………79 



 

ix 

 

LIST OF FIGURES 

 

FIGURE   Page 

1 Coats-Hines site map, including past excavations of the site……………….3 
 
2  Adapted cross-section profile originally drawn by John Broster of  
 Area B; geological descriptors were determined during the 1994  
 excavation also by John Broster…………………………….……………….9 

 
3 Summary of the locations of the stratigraphic profiles recorded  
 during the 1994-1995, 2010, and 2012 excavations………………………...9 
 
4 Adapted 2010 test trench stratigraphic column drawn by Deter- 
 Wolf et al. 2011. The representative proveniences of both the  
 faunal and lithic remains are recorded within the column…………………11 
 
5 Topographic map of the Coats-Hines site………………………………….14 
 
6 Topographic relief of the Coats-Hines site area…………………………...14 
 
7 Coats-Hines site 2012 excavation, east profile wall……………………….18 
 
8 Coats-Hines site 2012 excavation, north profile wall……………………...19 
 
9 Coats-Hines site 2012 excavation, south profile wall……………………...19 
 
10 Treethrow features along the east wall of the 2012 excavation pit…….......25 
 
11  Manganese concretion, lateral illuvial clay coats in root pores,  
 Unit 5, Sample 1, XPL, 1.25× magnification….…………………………..30 
 
12 Banded illuvial clay, Unit 5, Sample 1, PPL, 10 × magnification…………31 
 
13 Banded clay in root pore, depleted matrix, Unit 4, Sample 2, PPL,  
 10× magnification………………………………………………………….31 
 
14 Faecal pellets, Unit 4, Sample 2, PPL, 1.25 × magnification……………...32 
 
15 Charcoal with cellular structure, Unit 2, Sample 4,XPL, 10×  
 magnification………………………………………………………………32 
 



 

x 

 

16  Iron Concretion with composite coating, Unit 1, Sample 7, PPL 4× 
magnification………………………………………………………………33 

 
17 Roundness and sphericity chart (Krumbein and Sloss 1963)……………...36 
 
18 Cumulative (Levels 51-61) composition of the gravel clasts in  
 excavation levels 51-61 (Units 1-4)………………………………………..37 
 
19 Total weight (g) of each excavation level of Unit N996/E1008 and 
 their associated geologic unit………………………………………………38 
 
20 Roundness of gravels in excavation levels 51-61 of Unit  
 N996/E1008. Presented using the average weight (%) of each  
 roundness classification per level………………………………………….40 
 
21 Sphericity of gravels in excavation levels 51-61 of Unit  
 N996/E1008. Presented using the percentage by volume of each 
 sphericity classification by level…………………………………………...40 
 
22 Generalized core of 2012 excavation units with associated  
 radiocarbon dates (14C  yr BP)……………………………………………..43 
 
23 Locality I profile of channel unconformity………………………………...46 
 
24 Locality II profile of channel unconformity……………………………….46 
 
25 Generalized cross-section of the lithologic units at Coats-Hines………….51 
 
26 Study areas of the (1) Pomme de Terre River, Missouri; (2)  
 Douthard Creek, West Virginia; (3) the Coats-Hines site,  
 Tennessee; and (4) Duck River, Tennessee………………………………..52 
 
27 Time correlations of deposition and stability between the Duck  
 River, Pomme de Terre River, Coats-Hines site, and Douthard  
 Creek……………………………………………………………………….57 
 
28 Planview of Mastodon B (Breitburg et al. 1996)…………………………..60 

    
  

 

 



 

xi 

 

LIST OF TABLES 

 

TABLE   Page 

1 Adapted table of radiocarbon dates from the 1994-1995 and 2010  
 excavations (Breitburg et al. 1996; Deter-Wolf et. al. 2011)……………….12 
 
2 Stratigraphic unit and micromorphological sample correlation……...……..27 
 
3 2012 radiocarbon dates……………………………………………………..42 
 
4 Correlation between the stratigraphic units of the 2010 and 2012  
 excavations………………………………………………………………….59 

 
 
 



 

1 

 

CHAPTER I  

INTRODUCTION AND PROJECT OUTLINES 

1.1 Introduction  

The Coats-Hines site (40WM31) is located near the convergence of the Western 

Highland Rim and the Central Basin, in northern Williamson County, Tennessee 

(Breitburg and Broster 1995). The site was discovered in 1977 with the construction of a 

local golf course, uncovering mastodon (Mammut americanum) remains that would later 

be designated Mastodon A (Brietburg et al. 1996; Deter-Wolf et al. 2011). The salvage 

excavation that occurred in 1977 was never published and the site was not investigated 

further until a survey in 1994 by Emmanuel Brietburg and John Broster of the Tennessee 

Division of Archaeology (TDOA) (Brietburg et al. 1996). The TDOA discovered the 

remains of a second Mastodon eroding from the banks of a wet-weather drainage that 

bordered the site. An emergency excavation was completed by Breitburg and Broster in 

which the disarticulated remains of a young male mastodon were uncovered in 

association with several chert artifacts (Breitburg and Broster 1995).  Initial radiocarbon 

dates for the 1994 mastodon (Mastodon B) yielded dates between 10,260 ± 240 14C  yr 

BP and 12,030 ± 40 14C  yr BP,  which indicated that the Coats-Hines site was 

potentially a Clovis or pre-Clovis Paleoindian butchering site (Table 1) (Brietburg et al. 

1996; Deter-Wolf et al. 2011).  

 In 2010 a test trench was excavated to validate the early radiocarbon dates 

obtained in 1994, as well as establish the location and distribution of archaeological 

remains at the site. The test trench yielded several Pleistocene bone fragments and a 
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radiocarbon date of 12,050 ± 60 14C  yr BP, again placing the site in the pre-Clovis time 

range (Deter-Wolf et al. 2011) .  

 Although the Coats-Hines site has been excavated several times in the past, the 

stratigraphy, depositional history, and context of the archaeological and faunal remains 

have not been properly recorded. To propose a site of this potential antiquity and 

significance the data needs to be well-dated and provenienced. The site was again 

excavated during the Summer of 2012 by Texas A&M University to address the issues 

of context. The goal of this project specifically is to define the stratigraphy at the site 

using field and laboratory analysis, collect samples for radiocarbon dating to create a 

geochronological sequence, and establish the depositional history at the site. In addition, 

the remains of Mastodon B will be provenienced based on correlations to the established 

stratigraphy at the site and with lithological sequences in the region coinciding with 

climatic transitions occurring during the late Pleistocene-Holocene transition.  

1.2 Project Outline 2012/2013 

 The 2012 Coats-Hines project excavated a 5 by 5 m excavation pit that 

intersected the corner of the 1994-1995 excavation along the north wall, and the 2010 

test trench along the west (Figure 1).  The excavation was later expanded along the west 

wall to include an additional 3 by 5 m of units.  Each excavation unit was 1 by 1 m and 

excavated using 5 cm arbitrary levels within the stratigraphic units, beginning at a depth 

of up to 3 m below the ground surface. The datum elevation for the 2012 excavation was 

set at 99.914 m, which is not at the modern ground surface but is roughly at the 
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boundary between the 1994-1995 ground surface and its contact with the modern 

backfill of Unit 9. 

 

Figure 1. Coats-Hines site map, including past excavations of the site. 

 
 The 1994-1995 excavation as well as the 2010 trench were both discussed using 

depth from the modern ground surface. For ease of correlation, this study will also use 

depth from ground surface, but given the fluctuations in the modern ground surface 

elevation, especially following the 1994-1995 excavation when modern backfill covered 

the site stratigraphy, this study will also incorporate elevation in relation to the 

excavation datum.  
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 Sediment within the excavation area was removed via bobcat  to a depth of 1.5-

1.6 m below the ground surface, or to a depth of 98.150-97.050 m.  Following the 

removal of the overlying sediment, 5 cm levels were excavated with trowels beginning 

at excavation level 49 (98.050-98.00 m or 1.7 -1.75 m) up to excavation level 65 (97.25-

97.2 m or 2.6-2.65 m). All sediment excavated from the 5 cm excavation levels was 

collected as a bulk sample and water screened.  

 The 2012 excavation area (Figure 1) was profiled based on field interpretation of 

the stratigraphic units. The sediment was later processed in the laboratory using the 

pipette method to determine the particle size distribution. In addition, 

micromorphological samples were collected for thin sectioning and analysis to 

determine soil formation processes, the structure of deformation features, and the general 

relatedness of each unit. Similarly, the coarse grained materials from the excavated 

levels were washed and analyzed to determine the source of colluvial/alluvial material, 

distance material was transported, and energy of deposition by unit. Finally, charcoal 

samples were collected from the excavation levels to create a geochronological sequence 

of deposition. The absence of charcoal above level 49 prevented the dating of the upper 

sequence of the 2012 excavation area, therefore the stratigraphic units of the upper 

profile are dated using relative dating methods and correlation to other regional 

stratigraphic profiles.  

 In March of 2013, the site was surveyed along the wet-weather drainage to 

determine the provenience, stratigraphy, and depositional history of a channel 

unconformity resting between what is believed to be Pleistocene and Holocene sediment 
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packages. The significance of the channel unconformity is related to the context of 

Mastodon B and will be discussed in later sections.  
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CHAPTER II 

BACKGROUND 

2.1  Background to the Coats-Hines Site (40WM31) 

The Coats-Hines site (40WM31) is located near the western convergence of the 

Central Basin and the Highland Rim in northeast Williamson County and has been 

proposed as a potential pre-Clovis mastodon (Mammut americanum) butchering site 

(Breitburg et al. 1996; Deter-Wolf et al. 2011). The Coats-Hines site was first discovered 

in 1977 during the construction of a local golf course in northern Williamson County, 

Tennessee when several large bones were uncovered (Breitburg and Broster 1995; 

Breitburg et al. 1996; Deter-Wolf et al. 2011). A salvage excavation conducted by the 

Tennessee Division of Archaeology (TDOA) to recover the remains of what was 

discovered to be a partial mastodon skeleton (Breitburg and Broster 1995; Breitburg et 

al. 1996; Deter-Wolf et al. 2011). The skeletal remains of the mature, female mastodon 

were designated Mastodon A  (Figure 1) (Deter-Wolf et al. 2011). Following the 

minimal excavation Area A was destroyed from construction and the analysis of the 

remains of Mastodon A were never published (Breitburg et al. 1996; Deter-Wolf et al. 

2011).  

A second mastodon was discovered when the TDOA returned to the area in the 

Spring of 1994 and surveyed the wet-weather drainage (Breitburg and Broster 1995; 

Breitburg et al. 1996). The TDOA discovered the backbone, ribs and tusk of a young 

male mastodon (Mammut americanum) eroding out of the south bank of the drainage 

(Breitburg and Broster 1995; Breitburg et al. 1996; Deter-Wolf et al. 2011). Following 



 

7 

 

the discovery of a second mastodon in the area, an emergency excavation was conducted 

by the TDOA in May of 1994 with the goal of collecting, mapping and removing soil, 

bone, and archaeological samples from the drainage for analysis (Breitburg and Broster 

1995). The excavation area was designated Area B (Figure 1). 

The 1994 excavation uncovered thirty-four chert specimens in direct association 

with the mastodon remains in Area B, including ten “formal” tools and twenty-four chert 

flakes (Breitburg et al. 1996; Deter-Wolf et al. 2011). The formal tools were defined as  

a prismatic blade fragment, a proximal bifacial knife, two gravers, two unifacial side 

scrapers, and two cores (Breitburg et al. 1996). All thirty-four lithic artifacts are 

composed of locally-available Fort Payne chert, with the exception of one scraper and 

flake that is St. Louis chert, and one flake that is Dover chert (Breitburg et al. 1996; 

Deter-Wolf 2011).  

Following the microscopic examination of the Area B mastodon, is was 

determined that a cut marks were present on a thoracic vertebra, implicating that the 

Coats-Hines site is the first documented Paleoindian-mastodon site in Tennessee 

(Breitburg et al. 1996). In addition to the mastodon remains, the faunal complex of the 

1994/1995 excavation includes skeletal elements of horse (Equus spp.), deer 

(Odocoileus sp.), muskrat (Ondatra zibethicus), turkey (Meleagris gallopavo) frog 

(Rana spp.) and turtle (Chrysemys cf.) (Breitburg et al. 1996). 

The stratigraphy of the 1994-1995 excavation was recorded as a cross-section of 

the excavation across the drainages by John Broster of the TDOA (Figures 2 and 3). The 

late Pleistocene bone bed and lithic artifacts of the 1994-1995 excavations were recorded 
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as resting relatively level within blue/gray clay deposits, 2.1 m below the ground surface 

(Figure 2). Above the gleyed clay, John Broster recorded 70 cm of dark clay, with 

roughly 1.2 meters of brown loess capping the deposits (Figure 2). The late-Pleistocene 

deposits were described as being randomly mixed clays with slightly rounded chert 

cobbles. The stratigraphy of the site was stated to be compromised by the extensive 

disturbance of soil sediments by angle worms and tree-root growth, although the 

disturbance was not recorded in the cross-section profile of the excavation (Breitburg et 

al. 1996). Finally, the depositional environment of Area B was interpreted as an old 

stream channel, sinkhole, or beaver pond (Breitburg et al. 1996).  

During the Spring of 1995, additional fragmentary mastodon remains were 

recorded eroding from the south bank of the drainage, to the west of Area B. The 

remains were designated Mastodon C and were recovered during the summer of 2008 

(Figure 1) (Deter-Wolf et al. 2011). Mastodon C was discovered to be heavily 

fragmented, mineralized, and resting 1.5 m below the ground surface (Deter-Wolf et al. 

2011). 
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Figure 2. Adapted cross-section profile originally drawn by John Broster of Area B; 

geological descriptors were determined during the 1994 excavation also by John Broster. 

 

Figure 3. Summary of the locations of the stratigraphic profiles recorded during the 

1994-1995, 2010, and 2012 excavations. 
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Finally, in 2010 the TDOA returned to the Coats-Hines site to conduct an 

archaeological test trench with the goal of determining the archaeological 

integrity/context of the Pleistocene deposits (Deter-Wolf et al. 2011). The trench was 

situated on a southwest to northeast diagonal, 4.5 m south of the wet-weather drainage 

(Figures 1 and 3) (Deter-Wolf et al. 2011). The TDOA uncovered 1,582 faunal elements 

consisting of mastodon, turtle, and rodent resting between 2.6 and 3.1 m below the 

ground surface (Deter-Wolf et al. 2011). In addition, ten lithic artifacts were recovered 

in situ between 2.6 and 2.8 m below the ground surface (Deter-Wolf et al. 2011).  

During the 2010 excavation, five stratigraphic sediment packages were defined 

(Figures 3 and 4). The first, Unit Ia and Ib are defined as modern silt loam topsoil with 

rock fill and measures between 0 and roughly 1 m below the ground surface. The second 

unit, Unit IIa and IIb, is defined as a dark grayish brown (10YR 3/2) silt loam with a 

content of  up to 50% manganese. Unit II rests between 1 and 1.8 m below the ground 

surface.  Unit III is defined as a dark grayish brown (10YR 4/2) clay loam, measuring 

1.8 to 2.1 m below the modern ground surface. Unit IV is a dark gray (10YR 4/1) 

mottled clay loam between 2.1 and 2.3 m below the ground surface (Deter-Wolf et al. 

2011). Finally, Unit V is a grayish brown (10YR 5/2) mottled clay with up to 50% 

manganese content, measuring 2.3 to 3.5 m below the modern ground surface (Deter-

Wolf et al. 2011). Unit V is also the unit that contained the lithic artifacts and 

Pleistocene bone fragments (Figure 4). 
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Figure 4. Adapted 2010 test trench stratigraphic column drawn by Deter-Wolf et al. 

2011. The representative proveniences of both the faunal and lithic remains are recorded 

within the column. 
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2.2 Radiocarbon (
14

C ) Dates from Past Excavations 

Radiocarbon dates from the 1994 excavation provided an age range between 

27,050 ± 200 14C yr B.P. to 6,530 ± 70 14C yr B.P (Table 1) (Breitburg et al. 1996). The 

earlier date was taken from soil samples below the bone bed; the latter date was taken 

from organic soil within the bone bed (Breitburg et al. 1996). Only one charcoal sample 

was dated from the 1994-1995 excavation and dated to 31,594 ± 22014C  yr B.P. and was 

collected from below the mastodon bone bed (Table 1). 

The majority of dates collected from the 2010 test trench were taken from 

organic sediment. One charcoal specimen was dated from what was believed to be bone 

bed horizon and dated to 12,050 ± 60 14C  yr B.P. (Deter-Wolf et al. 2011); implicating 

that the deposits are  pre-Clovis. 

Table 1. Adapted table of radiocarbon dates from the 1994-1995 and 2010 excavations 

(Breitburg et al. 1996; Deter-Wolf et. al. 2011). 

Radiocarbon Date 
14

C yr BP 

 
Lab Number/    Date Recovered   Material 

Provenience 

  
10,260 ± 240 

Above Bone Bed 

Beta-125351 
 

1994-1995 
 

Organic sediment 

 Within Bone Bed   

12,030 ± 40 Beta-125350 1994-1995 Organic sediment 
12,050 ± 60 Beta-288801 2010 Charcoal 

 Under Bone Bed   

14,750 ± 220 Beta-125352 1994-1995 Organic sediment 
23,250 ± 110 Beta-290991 2010 Organic sediment 
26,810 ± 200 Beta-80169 1994-1995 Charcoal 
28,870 ± 150 Beta-288802 2010 Charcoal 

 



 

13 

 

CHAPTER III 

PHYSIOGRAPHIC SETTING 

3.1 Topography 

The site rests along the convergence of the Nashville Basin and the eastern edge 

of the Western Highland Rim. Regional topography is controlled by the uplift of the 

Nashville Dome, which was formed as the by-product of isostatic adjustment to erosion 

and is not seismically active (Huckemeyer 1999; Reesman and Stearns 1989). The uplift 

rates of the Nashville Basin for the past 100 million years are estimated to be 4.6 m per 

millennia (Reesman and Stearns 1989). The average elevation of the Highland Rim is 

over 300 m, whereas the Nashville Basin averages roughly 200 m in elevation, creating a 

giant crater-like structure.   

The Coats-Hines site is 230 m above mean sea level, resting along the foothills of 

conical-shaped knobs, including Slider’s Knob, less than 500 m to the east of the site 

(Figures 5 and6). The summit of Slider’s Knob is 344.12 m above sea level and is the 

highest peak of the surrounding hillslopes. Coats-Hines is bounded to the north by an 

intermittent, first-order stream that collects the erosional sediment and surface runoff 

from the eastern slopes and flows west, draining into Spencer Creek (Breitburg et al. 

1996). Spencer Creek, in turn, continues to flow west, eventually draining into the 

Harpeth River, roughly 250 m north of Franklin, TN (Brietburg et al. 1996; Wilson and 

Miller 1963). 
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Figure 5. Topographic map of the Coats-Hines site. 

 

 
Figure 6. Topographic relief of the Coats-Hines site area. 
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3.2 Bedrock 

 

The Nashville Basin is composed primarily of Ordovician limestone formations. 

The Highland Rim bedrock is mainly composed of  Mississippian limestone interbedded 

with discontinuous Mississippian shale and sandstone lenses (Huckemeyer 1999; Wilson 

and Miller 1963). The site rests on the Ordovician Bigby-Cannon Limestone Formation 

which consists of three facies, the Cannon limestone, Dove-colored limestone and Bigby 

limestone which replace each other laterally and vertically (Wilson and Miller 1963). 

Bigby-Cannon limestone is composed of medium to coarse-grained limestone 

interbedded with microcrystalline and cryptocrystalline silicate nodules that have 

observed conchoidal fracture breaks (Wilson and Miller 1963). The knob formations to 

the east of the site are composed of the Ordovician Leipers and Cathes Formations as 

well as the Mississippian Fort Payne Formation and Chattanooga Shale. The Leipers and 

Cathes Formation are composed of fine-grained, fossiliferous, argillaceous limestone 

that precipitates phosphatic clay in residuum (Wilson and Miller 1963). The Fort Payne 

Formation consists of an upper cherty facies that vertically grades into thinly-bedded 

carbonaceous, laminated shale and minor amounts of medium-grained sandstone 

(Chattanooga Shale) (Wilson and Miller 1963) 

Chemical weathering of the carbonate bedrock yields a highly dissolved load and 

thick deposits of clay throughout the region (Huckemeyer 1999). Phosphorous is found 

in the form of pellets within the Ordovician formation exposures in high enough 

amounts to be mined in the area. In addition, fluoride, lead, zinc, and barium are present 

within fissure veins of the Ordovician formations (Huckemeyer 1999). Chert is found in 
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the form of nodules (rarely bedded) within the Fort Payne and Bigby-Cannon 

Formations (Huckemeyer 1999). Elemental manganese and iron are present within the 

Mississippian formations; manganese is found in the form or low-grade psilomentane 

and iron in the form of limonite and goethite concentrations (Huckemeyer 1999).  

3.3 Modern Climate 

 The modern climate of the region is described as humid continental, with warm, 

humid summers, and mild winters (Brakenridge 1984; Huckemeyer 1999). Hard freezes 

and snowfall are infrequent, and precipitation during the winter and fall seasons is 

generally from frontal systems. The yearly precipitation in the region averages 130 cm, 

with the majority of the precipitation occurring between late fall and early spring 

(Delcourt 1979; Huckemeyer 1999). The mean annual temperature for the Nashville 

region is 4.5º C in January and 27º C in July (Brakenridge 1984). 
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CHAPTER IV 

GEOLOGY 

4.1 Introduction 

The goal of this analysis is to describe the alluvial/colluvial stratigraphy and 

depositional history of the occurring within the 2012 excavation pit and along the first 

order drainage bordering the site (Figures 1 and 3). The stratigraphy and soils as well as 

their properties including coarse sediment load and sorting, dates, and micromorphology 

are used to determine the landscape evolution, paleoclimate and rates of soil formation 

in the area (Huckemeyer 1999).  In addition the laboratory analysis of the stratigraphic 

units revealed how the physical and chemical properties of the stratigraphic profile have 

changed over time. The site stratigraphy and depositional history of the Coats-Hines site 

are addressed in this chapter for a better insight into the context of the faunal and 

archaeological remains occurring at the site (Guccione 2008). 

The unit classifications  of Units 1 through 9, are based on both field and 

laboratory examination. Units 6a-c were not located within the 2012 excavation area, 

and therefore will be described in a separate section. Laboratory particle size analysis of 

the sediments was performed using the pipette method of analysis to definitively 

determine texture of each stratigraphic unit.  Distribution of the particles size (mm) for 

unit samples collected from the east excavation wall is represented in Appendix B and C. 

The textural classification of the units was designated based on the percentages of sand, 

silt, and clay within the USDA textural triangle (Schaetzl and Anderson 2005). The 

particle size fractions for each unit are provided in the pipette analysis in Appendix B.  
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For the pipette analysis, roughly 200 g of sediment/soil was collected at 10 cm intervals 

from the modern surface through the base of the 2012 excavation floor from the East 

Wall of the Excavation (Figure 7) (Kilmer and Alexander 1949). Description of the 

coarse fragments in the unit descriptions is based on the field examination of the units 

and additional examination of the coarse fragments will be discussed in the separate 

gravel analysis section. The color classification is based on the Munsell soil color chart 

is described in the tables below using the dry consistence of the soil/sediment; further 

explanation of both the dry and wet consistence as well as the color classifications is 

located in Appendix B and Appendix C.  In addition, the stratigraphic profiles of the 

excavation area are illustrated in figures 7,8, and 9. 

 

 

Figure 7. Coats-Hines site 2012 excavation, east profile wall. 
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Figure 8. Coats-Hines site 2012 excavation, north profile wall. 

 

 

 

Figure 9.  Coats-Hines site 2012 excavation, south profile wall. 
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4.2 2012 Excavation Area 

 The unit descriptions of the 2012 excavation are listed below and described from 

the ground surface to the base of the excavation. The depth was recorded from the 

ground surface. 

Unit 9: (0-22 cm) is an anthropogenic, backfill package that consists of a brown 

(10YR4/2), very friable silt loam with a fine, structureless-massive structure. 

This unit is highly disturbed and discontinuous. Gravels in this unit range from 7 

up to 15% in volume depending on the location in the excavation area, with the 

majority measuring between 2 to 5 cm in diameter, and the largest measuring 

20+ cm.  The majority of the coarse fragments in this unit are composed of 

angular, poorly sorted, limestone fragments. Presence redoximorphic features are 

little to none. Fine to medium-sized roots present at 7 to 10% by volume. Unit 9 

terminates with a clear, relatively smooth boundary. 

Unit 8: (22-55 cm) is a brown (10YR 4/3), friable, silty clay loam with structureless-

massive structure; moderately sorted, limestone gravels are present between 2 

and 3% by volume, measuring 2mm to 2 cm in diameter; decrease in abundance 

of fine to medium sized roots (5-7 %). No redoximorphic features present. The 

contact between Unit 8 and 7c is clear, smooth, and likely erosional. 

Unit 7c: Ab (55-70 cm)  is a dark brown (10YR 3/3) buried A horizon consisting of 

friable, silty clay loam with moderate, fine granular structure; minimal gravels 

(1-2%) measuring between 2 mm and 40 mm in diameter; few fine roots present 

at 2 to 3% by volume; no redoximorphic features and a clear, smooth boundary. 
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Unit 7b: Btb (70-100 cm) is a brown (7.5YR 3/2), friable, silty clay loam with 

secondary accumulations of clay films; structure of this unit is moderate, fine 

subangular blocky; few, fine, faint redoximorphic features; small, oxidized 

manganese nodules at 2-5% and measuring between 2-3 mm in diameter; few, 

fine roots present; very fine to fine coarse fragment at 2-3% by volume; clear, 

smooth boundary. 

Unit 7a: Btb2 (100-120 cm) is a brown (10YR 4/3), friable, silty clay loam with few 

faint secondary accumulations of clay films on moderate, medium subangular 

blocky peds; few, fine, faint mottles; very fine to fine coarse fragments at 2-3% 

of the bulk sample; few, very fine roots present at  1-2%; abrupt (likely 

erosional), smooth boundary. 

Unit 5: 2Btb(120-160 cm) is a very dark grayish brown (10 YR 3/2) firm, silty clay with 

moderate, fine, subangular blocky structure and secondary accumulations of 

illuvial clay along cracks and on ped surfaces. In addition, there are common, 

medium, distinct dark, yellowish brown (10YR 4/6) redoximorphic features  and 

accumulations of iron and manganese nodules; increase in size and amount of 

coarse fragments (2-5%) and ranging between 2 mm to 16 cm in diameter, with 

an average diameter of 8 mm; few, very fine roots; abrupt (erosional) smooth 

boundary. 

Unit 4: 2Btgb1 (160-180 cm) is a dark grayish brown (10YR 4/2) firm, silty clay with 

moderate, medium, subangular blocky structure and secondary accumulations of 

illuvial clay along cracks and ped surfaces; this unit is reduced with common, 
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fine, distinct nodules of manganese dioxide; limestone and chert coarse 

fragments at 3-5%, ranging in diameter from 2 to 16 mm, with an average of 8 

mm; few very fine roots; presence of turtle (Chrysemys sp.) carapace and 

plastron fragments; abrupt, smooth boundary. 

Unit 3:  2Btgb2 (180-210 cm) is a brown (7.5YR 4/2) firm, silty clay with moderate, 

medium, subangular blocky structure and secondary accumulations of illuvial 

clay films along cracks and ped surfaces; common, medium, prominent, strong 

brown redoximorphic features (7.5YR 4/6) in addition to manganese and iron 

concretions; increase in course fragments at 5-7%  by volume and ranging from 2 

to 32 mm with an average of 8mm; very few, very fine roots; small bone scatters 

dispersed throughout the unit at 2-3% abundance, increasing with depth; small 

rodent burrows averaging 5 cm in diameter present at the top of the unit, little to 

no burrows noted towards the base; abrupt, irregular boundary. 

Unit 2: 2Btgb3 (210-235 cm) is a gray (10YR 5/1) firm, clay with moderate, medium, 

subangular blocky structure and secondary accumulations of illuvial clay along 

cracks and ped surfaces; few, fine to medium, distinct strong brown 

redoximorphic features (7.5YR 4/6) as well as small manganese and iron 

concretions (plinthite and goethite); increase in abundance and size of  limestone 

and chert coarse fragments, with 7-9% by volume and measuring between 2 and 

64+mm in diameter, with an average of 8mm; very few, very fine roots; bone 

scatters at (2-5%) including mastodon tooth fragments, turtle shell, and 

Pleistocene megafauna bone fragments; abrupt, irregular boundary. 
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Unit 1:  2Btb (235-260 cm) is a strong brown (7.5YR4/6)) firm, gravelly clay with 

moderate, medium, subangular blocky structure and secondary accumulations of 

illuvial clay; common, medium, prominent grayish brown (10YR 5/2) reduced 

features present with frequent accumulations of manganese and iron concretions; 

increase in gravel size and abundance, with 10-15% abundance and a range of 2 

to 64 mm with an average between 8 and 16 mm in diameter; increase in bone 

fragments and size, bones are heavily replaced with iron; no roots present; 

abrupt, irregular boundary. 

4.3 Macromorphology: Turbation Features 

The bottom three units of the excavation area contain abrupt, irregular contacts in 

confined areas that are discontinuous throughout the site. The features are bowl-shaped 

with infill of reduced clay and adjacent mounds of gravelly, oxidized clay (Figure 10). 

Pit and mound microrelief is often interpreted as a cryogenic feature, or cryoturbation 

(Embleton-Hamann 2004). Since the Coats-Hines site is beyond glacial and periglacial 

conditions, and was therefore never cold enough to develop cryoturbation features, this 

study proposes an alternative hypothesis. An additional hypothesis is that the soft 

sediment deformation features were created as a result of paleoseismic activity, 

convoluting the lower three units. Given that no significant seismic events have been 

recorded in the site area, this hypothesis was dismissed. The cradle-and-knoll 

topography seen in the lower levels of the excavation are also typical features created by 

treethrow, or arboturbation in which sediments and soils can be buried, mixed, or 

brought to the surface (Waters 1992). 
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Treethrow, or “arboturbation” is formed when a tree falls over, creating a crater 

where the roots once were and adjacent mounds where soil and gravel slumps off the 

roots (Schaetzl and Anderson 2005). Treefall contorts, mixes, and overturns soil 

horizons in a profile, having the potential to double the thickness of a single unit 

(Schaetzl and Anderson 2005). Treethrow stratigraphy can appear somewhat convoluted 

from the displacement and contortion of lithologic units. The treethrow pit is a zone of 

stronger leaching, the pore space created by the decayed roots of the tree allow water to 

move through the profile. Distinguishing threethrow features is also important for the 

study of paleoenvironment in that it occurs most commonly, in forested areas. 

 When the roots of the fallen tree decay, infilling from upper horizons can 

penetrate into the units below, such as what occurs in the excavation area where Unit 2 

has infilled into the treethrow pits (Figure 10). The low permeability of the Unit 2 soils 

maintains the reduced conditions and color of Unit 2 within the tree pit. In addition  

coarse clasts from Unit 1 were displaced into Unit 2 and 3 by uprooting, creating 

concentrations of gravel in the uprooting mounds, as seen in Figure 7, 8, 9, and 10 

(Schaetzl and Anderson 2005). Gravels with a diameter of 64+ mm are not observed in 

Unit 3, except within the uprooting mounds, in which gravels were uprooted from Unit 

1. Planview of the excavation area in the bottom three units, show channel-like, oxidized 

sediment with gravelly clay infill which was formed from the collapse of decayed roots 

that were filled with the surrounding sediment, creating soft sediment root casts (Waters 

1992). 



 

25 

 

The uprooted soil of Unit 1, 2, and 3 were later covered with the silty clay of 

Unit 4, leveling the cradle-and-knoll topography. If the treethrow features were exposed 

to the surface they would be subject to weathering and erosional processes. Since the 

cradle-and knoll topography was preserved in the substrate it is unlikely that the 

deformation was exposed at the surface for a long period before being covered by the 

silty clay of Unit 4.  In addition, it is likely that the cohesiveness of the soil in the lower 

units helped maintain the structure of the turbation features. 

 

 

Figure 10. Treethrow features along the east wall of the 2012 excavation pit. 
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4.4 Micromorphological Analysis 

4.4.1 Introduction to Micromorphology 

Micromorphological analysis is useful for the interpretation of various aspects of 

archaeology and geology.  Examination of the various components and arrangement of 

the sediment and soil matrix of a thin section is used to determine if the sample has a 

pedogenic fabric (Schaetzl and Anderson 2005; Stoops 2003). In addition, 

micromorphological analysis is useful in determining whether or not certain depositional 

and post depositional processes have influenced the stratigraphic record of the site (Rapp 

and Hill 2006). The mineral and clast analysis within micromorphological thin sections 

can be used to determine sediment sourcing, and the given shape, size, and orientation of 

the particles and matrix one can potentially determine the geomorphic nature of 

deposition. Certain structures within a thin section are the result of climatic 

processes/changes and therefore can be used for the interpretation of the paleoclimate of 

a region (Fitzpatrick 1984; 1993).  Finally, the context, and therefore the age, of 

radiocarbon samples in a profile can be validated through micromorphological analysis, 

which is important for reporting early archaeological sites.   

4.4.2  Methods of Micromorphological Analysis 

Eight micromorphological samples were retrieved to be thin sectioned, from the 

bottom five units of the East Wall (Figure 7; Table 2). The samples were collected in the 

lower five units because these were the geological units that were bone-baring and based 

on correlation with previous excavations, potentially contained archaeological remains. 

In addition, the bottom three units (Units 1, 2, and 3) contained irregular stratigraphy in 
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some areas of the excavation, including along the East Wall that had yet to be 

conclusively defined. Samples 1 through 4 were collected along the northern edge of the 

East Wall, where there was relatively normal stratigraphy. Samples 5 and 7 were 

collected from Unit 1 in the areas of irregular bedding. Finally, samples 6 and 8 were 

both collected from Unit 2 to determine the relatedness of the sediment within this unit. 

The goal of the micromorphological analysis was to determine the relatedness between 

units, determine the lithology/mineralogy of each unit to discern the provenience, or 

ultimate source of the clastic sediments, the soil/plant/root relationships, and the 

microstructure of the peds and turbation features. 

The samples were collected in frames that measured (length × width× height)  5 cm 

× 5 cm × 5.5 cm, collecting approximately 131.1 cubic centimeters of sediment. The 

samples were impregnated with epoxy resin, hardened, and commercially thin-sectioned 

for micromorphological analysis (Fitzpatrick 1984; Driese et al. 2005). The thin sections 

were examined using both plain polarized and cross polorized light through a polarizing 

petrolgraphic microscope and observed at low (1.25× and 4×), medium (10×), and high 

objectives (40×) (Klein and Dutrow 2008; Stoops 2003).  

 
Table 2. Stratigraphic unit and micromorphological sample correlation. 

Micromorphological Thin Sections: Unit Correlations 

Geologic Unit Sample # 

5 1 
4 2 
3 3 
2 4, 6,8 
1 5, 7 
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4.4.3 Interpretation of Micromorphological Thin Sections 

 From the micromorphological analysis of the thin sections, it was determined 

that all five units were argillic B horizons with weathered subangular blocky structure 

secondary accumulartion of illuvial clays as seen in the longitudinal and cross sections 

of root pores and ped surfaces (Figures 11-16). The clay bands have continuous 

orientation and therefore were originally deposited in that way (Fitzpatrick 1984). The 

accumulation of clay coats along root pores and between peds occassionally forms plugs 

in the pores of the soil matrix of the lower units. Larger particles and concretions allow 

the alignment of clay particles parallel to their margins, often forming concentric bands 

(Fitzpatrick 1984; 1993). Acumulation of these bands on sand and gravel as well around 

peds (cutens) formed bridge structures in areas of the thin sections. 

Unit 5 was thought to be a buried A horizon because of its low color value, 

therefore it was suspected to contain a high amount of organic matter. Upon examination 

of the thin section sample, what was thought to be organic matter was in fact a high 

amount of manganese dioxide staining and concretions (Figure 11). In addition, ferric 

hydroxide and goethite concretions occur very frequently, also contributing to the 

paleosols color. The areas of Figure 12 that are predominatley brownish-yellow and/or 

reddish-yellow, the principal coloring substance isiron, or iron oxide (Fitzpatrick 1984; 

1993). Goethite-coloring indicates a “hyrdated” matrix (Fitzpatrick 1984). Figure 12 is a 

plain polarized projection of a root pore with banded illuvial clay coats; which is typical 

in all five units. The laminated fabric of Figure 11 and 12, expressed by bands of clay 
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also support the conclusion that this soils was periodicaly saturated/hydrated (Brewer 

and Sleeman 1988). 

Unit 4 is unique in that it is extremely reduced, with rare staining of iron- or 

manganese-oxides, although goethite and manganese concretions do occur in this unit in 

the form of spherical and semi-spherical glaebules (Figure 13). The dominant depletion 

pedofeatures are the result of a saturated environment (Schaetzl and Anderson 2005). 

The concretions of manganese dioxide with compound coatings of illuvial clay and 

ferric hydroxide,  occassionally include silt and sand grains within the concentric 

coatings (Fitzpatrick 1984). Compound coatings also occurred alsong root pores within 

this unit (Figure 13). In addition, as seen in Figure 14, small ovoid and granular faecal 

pellets, likely from enchytraeid worms ro earthworms, were found in clusters within 

vermiforms occasionally in the soil matrix of all five units. The incorperation of sand 

grains within the clusters of faecal material is typical of vigorous earthworm activity 

(Fitzpatrick 1993; Schaetzl and Anderson 2005). 

Unit 3 contains more oxidation features compared to thin sections from Units 2 

and 4. Accumulations of weathered fossiliferous limestone and chert clasts occurred 

throughout the lower profile, originating from the Mississippian bedrock upslope; 

although, fossilized crinoid stems were observed, most prevalently in Unit 3, with 

preserved cell structure. 

Unit 2 appears very similar to Unit 4 in that it is extremely reduced, containing a 

gleyed matrix due to ferrous compounds that are found in soil horizons that are 

temporarily or permanently saturated with water (Fitzpatrick 1993). The saturated 
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environment of Units 2 and 4 are likely the result of a perched water table. Precipitation 

periodically flowed through the profile gravitationally depositing illuvial clay in lower 

horizons and as a result increased the bulk density and reduced the permeability of the 

lower units (Driese et al. 2005). Redoximorphic features are abundant through the lower 

profile, but concentrated in Units 2 and 4, where the water table became perched due to 

the low infiltration rates of the clay peds within these units. In addition, charcoal roughly 

retaining its original cellular structure was discovered in Sample 4 of this Unit (Figure 

15).  

Unit 1, in contrast to Unit 2, is abundantly oxidized, containing very frequent 

accumulations of goethite concretions (Figure 16). In addition there is an increased 

frequency of sand and gravel-sized rock in random distributions. 

 

 

Figure 11. Manganese concretion, lateral illuvial clay coats in root pores, Unit 5, 

Sample 1, XPL, 1.25× magnification. 
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Figure 12.  Banded illuvial clay, Unit 5, Sample 1, PPL, 10 × magnification. 

 

 

Figure 13. Banded clay in root pore, depleted matrix, Unit 4, Sample 2, PPL, 10× 

magnification. 
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Figure 14. Faecal pellets, Unit 4, Sample 2, PPL, 1.25 × magnification. 

 

 

Figure 15. Charcoal with cellular structure, Unit 2, Sample 4,XPL, 10× magnification. 
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Figure 16. Iron Concretion with composite coating, Unit 1, Sample 7, PPL 4× 

magnification. 

 

4.5 Gravel Distribution 

4.5.1 Introduction to Coarse Fragments 

Clastic materials (mineral and rock fragments) comprise a soil/sediments 

skeleton (Schaetzl and Anderson 2005). The roundness, sphericity, and composition of a 

particle can provide useful information in the distance it traveled from its original 

source. Although roundness and sphericity are typically used for the analysis of sand-

sized clasts, they were applied to this study to determine the extent of weathering 

processes. Roundness is the smoothness/roughness of a particle; increased roundness 

indicates increased erosion and likely greater distance traveled. Sphericity is the measure 

of how flat/spherical the particle is increased sphericity also can indicate increased 

erosion and distance traveled. The roundness and sphericity are not only dependent on 
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erosion and the original size of the grain surface, but the hardness of the clast which is 

dependent on the clast composition; softer rocks/rock fragments will erode faster than 

harder rocks/rock fragments (Rapp and Hill 2006).  

Sphericity related to the overall shape of a clast, and is measured by the degree to 

which the gravel resembles a sphere. Roundness is the measure of how much a particle’s 

corners and edges are smoothed and is a function of the velocity the gravel is transported 

and the process/roughness of transportation and deposition (Whitehouse 2004). Coarse 

clasts often become more rounded and spherical as they get more weathered (Schaetzl 

and Anderson 2005). Poorly sorted, large, rough gravels, with) indicate high energy flow 

with rapid deposition. In addition, coarse fragments affect the manner in which water 

moves through and is retained in the soil/sediment profile. Water will move rapidly 

through coarse-textured soils because the gravel fragments have larger pores and 

minimal surface area to attract water within the soil matrix (Schaetzl and Anderson 

2005). 

The goal of the gravel analysis is to determine the source of the gravel clasts, the 

nature in which they were deposited, and the relatedness of the gravels between Units 

based on composition and similar size and extent of weathering.  

4.5.2 Methods of Gravel Analysis 

A representative sample from Unit N996/E1008 was used to estimate the gravel 

distribution at the site. It would be too difficult to obtain the data on coarse fragment 

content for the entire site, and given the treefall features, as seen in Figure 10, the data 

could be skewed from post-depositional processes redistributing gravel clasts. Unit 
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N996/E1008 is positioned along the south wall of the 2012 pit (Figure 9) and was 

selected because it is in an area of the excavation pit with normal, unturbated 

stratigraphy. The gravels were collected and analyzed based on the arbitrary units in 

which they were excavated and therefore only represent the lower four lithologic units 

(Unit 1, 2, 3, and 4) (Figure 9). The arbitrary levels were excavated in 5 cm increments, 

beginning at level 51 (97.950-97.900 m) and ending at level 61 (97.450-97.400) (Figure 

9). 

The gravels from Unit N996/E1008 were collected with the bulk sample by 

excavation level; and later screened, washed, and size-sorted using a dry-sieve method 

(Figure 9). The sieves sorted the gravels into different size classes based on the clast 

diameters described by the Wentworth Grain-Size Classifications (Figure 17). The 

Wentworth Grain-Size Classification organizes gravels into granules (2 mm), small 

pebbles (4 mm), medium pebbles (8 mm), large pebbles (16 mm), very large pebbles (32 

mm), and cobbles (64 mm and greater). The bulk weight as well as the weight of each 

size class within a level was recorded. In addition, each level was sorted and weighed by 

composition (i.e. mineral or rock type).To test the roundness and sphericity of the gravel 

clasts, the gravel in each level was sorted based on the roundness and sphericity chart, 

adapted from Krumbein and Sloss (1963) (Figure 17). The roundness and sphericity 

chart is used as a guide to determine the extent of weathering a clast has undergone; the 

higher the number, the greater the amount of weathering (Krumbein and Sloss 1963).  
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Figure 17. Roundness and sphericity chart (Krumbein and Sloss 1963) 

 
Roundness of the gravels from each level was determined for all gravels larger 

than 2 mm. The sphericity of the gravels from each level was determined for all gravels 

larger than 4 mm. The interpretation of the roundness of the gravels was based on the 

average volume for each roundness classification in a level. The interpretation of the 

sphericity was based on the 8 mm size class (medium pebble) due to  the larger size 

classes were not well represented in every level. For further description or data collected 

from the gravel analysis, see Appendix E. 

4.5.3 Results of Gravel Analysis 

4.5.3.1 Composition 

 The composition of the gravels analyzed from Unit N996/E1008 consists of 

limestone, chert, and sandstone (Figure 18). The majority of the composition (95.3%) is 

limestone, with minimal chert clasts (4.4%), and statistically insignificant portions of 

sandstone (0.3%). The limestone originated from the bedrock in the area, physically 

weathering, and being transported into the site area from upslope. Similarly, the chert 
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clasts are found in nodules precipitating out of the bedrock in the region, and likely 

weathered and was transported and deposited from the bedrock upslope. Limestone 

dominates the clast composition because it is the most abundant rock-type in the region 

as well as being a softer rock and more susceptible to chemical weathering, compared to 

chert, and is therefore easier to erode and redistribute.  

 

Figure 18. Cumulative (Levels 51-61) composition of the gravel clasts in excavation 

levels 51-61 (Units 1-4). 

 
4.5.3.2 Weight Distribution of Gravels 

 The results of the gravel weight distribution in useful in confirming the Unit 

boundaries described in the previous discussion of the site stratigraphy based on the fine 

grained fraction (smaller than 2 mm). Figure 19 shows relatively low volumes of gravel 

for Level 51 and 52 (97.950-97.850 m). Level 51 and 52 are both within Unit 4 of the 

profile (Figure 19). Level 53 through 56 (97.850-97.700 m) have a moderate increase in 

gravel volume, indicating that they were deposited in a higher energy environment that 

Limestone 
95.3% 

Sandstone 
0.3% 

Chert 
4.4% 

Cumulative Composition 
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could weather and transport an increased load of coarse-grained deposits. Level 53 

through 56, were therefore determined to be lithologically distinct from Level 51 and 52, 

and therefore grouped into Unit 3. There is a significant increase in gravel volume 

between Levels 57 and 60 (97.700-97.650 m), coinciding with Unit 2. Finally, the 

highest volume of gravel was from Level 61, which coincides with Unit 1 (Figure 9). 

It should also be noted that there was an increase in the size of gravels with 

Levels 51 and 52 not containing gravels larger than 16mm and Levels 53 through 58 not 

containing gravels larger than 31.5 mm. In addition, the average size in diameter for all 

four units is 8 mm in diameter, as determined by total weight distribution by size in each 

level (Appendix E). 

 

 

 

Figure 19. Total weight (g) of each excavation level of Unit N996/E1008 and their 

associated geologic unit. 

4.5.3.3 Roundness and Sphericity 
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 Roundness and sphericity are relatively constant throughout the lower profile, 

with the exception of the Unit 4 gravels (Level 51 and 52) and the Unit 1 gravels (Level 

61). Generally, the gravels in Units 1 through 4 are subangular/subrounded (.5) with a 

spherical (.5) shape. This indicates that they were likely eroded from the same location, 

under similar depositional energy. 

The roundness of the gravels in Unit 4 are equally distributed, between very 

angular and well rounded (.1-.9) (Figure 20), rather than the majority of the gravels 

being subangular/subrounded (.5). The sphericity of the gravels in Unit 4 are comparable 

to the results for the rest of the profile with the exception of Unit 4 containing higher 

rates of prismoidal (.3) clasts. The majority of the gravels in Unit 4, like Unit 3, 2, and 1 

are spherical (.7). The discrepancy of the roundness values in Unit 4 (Level 51 and 52) 

could be the result of the small sample size/abundance of gravel in Level 51 and 52. In 

addition, the sizes of the gravels in Unit 4 are smaller in diameter, compared to the other 

three units.  Smaller clasts have less surface area to weather and erode and therefore tend 

to be more angular, depending on the depositional environment. Based on the field and 

micromorphological analysis it is not likely that the gravels from this Unit, originated 

from a different source from that of Unit 1, 2, or 3.  

Unit 1 (Level 61) has a significantly higher amount of gravels that are spherical 

(.7) but otherwise is comparable to the gravels of the other three units (Figure 21). The 

increase in spherical gravels could be due to the overall increase in the amount of gravel 

found in Unit 1. Spherical gravels are the most common in the profile, and Unit 1 simply 

has more creating a spike in abundance. 
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Figure 20. Roundness of gravels in excavation levels 51-61 of Unit N996/E1008. 

Presented using the average weight (%) of each roundness classification per level. 

 

 

 
 

Figure 21. Sphericity of gravels in excavation levels 51-61 of Unit N996/E1008. 

Presented using the percentage by volume of each sphericity classification by level. 

4.5.3.4 Interpretation 

 Given the composition, weight distribution and shape of the gravels found in the 

lower profile of the 2012 excavation area, it was determined that the gravels eroded from 
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the Mississippian limestone and chert bedrock from upslope. The gravels were 

transported equal distances and therefore had similar shapes throughout the profile. The 

gravels of Unit 1 were likely eroded from exposed bedrock upslope and deposited during 

a high energy, erosional event based on both the size and sorting of the gravels. The 

bedrock upslope became buried or less exposed to weathering, causing the decrease in 

size of gravels being transported into the site. By Unit 4, most of the gravels that would 

be weathered from upslope are deposited at the site. The Holocene paleosol capping 

Units 1-5 contain well-sorted fine grained sediment representing a shift to low-energy 

colluvial deposition of hillslope sediment. 

 
4.6 Dates from the 2012 Excavation 

A problem with previous excavations at the Coats-Hines site is the lack of 

radiocarbon dates taken on charcoal. Many of the previous dates were poorly 

provenienced and taken from bulk sediment samples, which provide a minimum age. As 

Breitburg and Broster (1995; 22) stated in their summary of the Coats-Hines site, “unless 

the find is carefully documented,…enough scientific evidence cannot be claimed to 

prove the site’s authenticity.”  Therefore, one of the goals for the 2012 excavation was to 

establish the archaeological context of the remains with solid radiocarbon dates. 

The high humidity and temperate climate of the region tends to rapidly oxidize 

and decay organic material for dating. Fortunately, the relatively anaerobic conditions of 

the dense clay in the bottom four units of the excavation area aided in the preservation of 

charcoal specimens. Unit 7 and 8, by  comparison, had little to no organic material, 
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including charcoal, to date and will thus be dated based on archaeological and terrace 

correlation from other regional studies (Huckemeyer 1999). 

 
Table 3. 2012 radiocarbon dates. 

UCIAMS- SAMPLE 
TYPE LOCATION CHEMICAL FRACTION 

DATED 
Radiocarbon Age 

14C yr BP     

UCIAMS-120329 CHARCOAL Geologic Unit 4 ABA CHARCOAL 22,490 ± 100 
UCIAMS-120330 CHARCOAL Geologic Unit 3 ABA CHARCOAL 26,290 ± 150 
UCIAMS-120331 CHARCOAL Geologic Unit 3 ABA CHARCOAL 36,120 ± 480 

UCIAMS-121950 CHARCOAL Geologic Unit 3 ABA-NITRIC ACID 
CHARCOAL 36,590 ± 650 

UCIAMS-120332 CHARCOAL Geologic Unit 3/2 ABA CHARCOAL 31,140 ± 270 

UCIAMS-121951 CHARCOAL Geologic Unit 3/2 ABA-NITRIC ACID 
CHARCOAL 30,910 ± 320 

UCIAMS-120333 CHARCOAL Geologic Unit 2 ABA CHARCOAL 30,740 ± 240 
UCIAMS-120334 CHARCOAL Geologic Unit 2 ABA CHARCOAL 26,310 ± 150 
UCIAMS-120335 CHARCOAL Geologic Unit 1 ABA CHARCOAL 30,620 ± 240 
UCIAMS-120336 CHARCOAL Geologic Unit 1 ABA CHARCOAL >26,400 ± --- 

 

The radiocarbon dates from the 2012 excavation are listed in Table 3, further 

information on the dates is provided in Appendix F. In addition a core with the 

generalized stratigraphy of the 2012 excavation pit contains the radiocarbon dates with 

their associated elevations (Figure 22).The charcoal sample from Unit 4 dated to 22,490 

± 100 14C yr BP (UCIAMS-120329), and was taken from Level 50 at an elevation of 

97.961 m and is therefore near the bottom of the unit. Unit 3 dates between 26,290 ± 150 

14C yr BP (UCIAMS-120330) and 36,590 ± 480 14C yr BP (UCIAMS-121950) (Table 

3). The samples were taken from Level 52 at an elevation of 97.880 m near the top of the 

Unit and Level 55 at 97.744 m in elevation in the middle to bottom of Unit 3. The early 

date of 36,590 ± 480 14C yr BP (UCIAMS-121950) is likely from charcoal uprooted into 

Unit 3 from lower units. Unit 2 dates between 26,310 ± 150 14C  yr BP (UCIAMS-
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120334) and 30,740 ± 240 14C yr BP (UCIAMS-120333) , indicating relatively 

continuous deposition. The charcoal samples for Unit 2 were taken from Level 59 at 

elevations of 97.546 m and 97.520 m. Finally, Unit 1 dates to 30,620 ± 24014C yr BP 

(UCIAMS-120335), and was collected in Level 62 at an elevation of 97.394 m. 

 

 

Figure 22. Generalized core of 2012 excavation units with associated radiocarbon dates 

(14C  yr BP). 

4.7 Channel Unconformity 

4.7.1 Introduction 
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 In March of 2013 the wet-weather drainage was surveyed to determine when and 

how the remains of Mastodon B from the 1994/1995 excavation were deposited along 

the drainage. Evidence of a channel unconformity was discovered at Locality I and II 

along the banks of the drainage and area described below  (Figures 1, 23, and 24). No 

charcoal was discovered during the investigation of the channel, and therefore the 

geochronology of the sediments in the following units will be based on regional 

correlations discussed in later chapters of this thesis. 

4.7.2 Unit Descriptions 

Unit 6c:Bw1 (120-185 cm) consists of a brown (7.5YR 5/4), firm, slightly gravely clay 

with moderate, medium angular blocky structure; many, medium, distinct, strong 

brown (7.5YR 4/6)  iron and manganese redoximorphic features ; common, fine 

to medium roots; gravels are 10 to 15% by volume and range from 2 to 64+ mm 

with an average diameter of 8 mm; clear, wavy boundary. 

Unit 6b:Bw2 (185-220 cm) is a brown (7.5YR 5/3), firm, gravelly clay  with moderate, 

medium, angular blocky structure; common, medium, distinct strong brown 

redoximorphic features (7.5YR 4/6); increase in gravel size and abundance with 

15 to 20% gravels by volume and a range from 2 to 64+ mm in diameter, with an 

average of 16 mm; decrease in root presence to few, fine to medium roots; 

abrupt, irregular boundary. 

Unit 6a:(220-240 cm) is a dark, grayish brown (10YR 4/1), clayey gravel with platy 

bedding planes; clast supported imbrication; few, fine, distinct strong brown 
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redoximorphic features (7.5YR 4/6); no roots; limestone at >80%; abrupt, 

irregular boundary. 

4.7.3 Interpretation  

Unit 6a-c was deposited following a period of stability in the area indicated by 

the soil development of Unit 5. Following the period of stability and soil formation 

during the late Pleistocene, a high-energy stream channel event downcut into the Coats-

Hines stratigraphy, eroding Units 2 through 5 along the drainage and depositing Unit 6a-

c, which is composed of fluvial gravels that eroded from upland slopes (Figure 23 and 

24). Poorly sorted pebble to cobble-size rock fragments dominate the channel units, 

primarily being composed of limestone and chert fragments. The gravels of Unit 6a 

exhibit clast-supported imbrication parallel to the east-west flow of the channel waters. 

Unit 6b and 6c do not exhibit imbrication instead are poorly sorted gravels and clay that 

were deposited from a combination of both the bed load and suspended load sediments 

rapidly falling out of suspension. A brief period of stability followed the deposition of 

Unit 6a-c, allowing for weak soil structure to develop in Unit 6b and 6c. The base of the 

unit (Unit 6a) rests on an unconformable contact with the oxidized clay of Unit 1. 

Similarly, Unit 6c was eroded along with Unit 5 before the deposition of Unit 7a-c 

(Figures 23 and 24).  
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Figure 23. Locality I profile of channel unconformity. 

 

Figure 24. Locality II profile of channel uncornformity. 
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4.8 Geochronology 

The Coats-Hines site is located beyond glacial and periglacial conditions and 

given its position, was subject to higher insolation and moister conditions than more 

northern latitudes during the full-glacial period (Bettis et al. 2008). The high sediment 

and water discharge avulsion events that occurred at the site were the result climatic 

shifts. There are no obvious parallels between glacial outwash induced base level 

changes of the drainage, and therefore the periods of aggradation, erosion, and stability 

occurring at the site are likely the function of local climate (Brakenridge 1981). 

The presence of limestone and chert fragments, ranging from weathered to 

freshly eroded indicate that the source is locally derived from the limestone bedrock 

upslope (Driese et al. 2005). Units 1 through 5 are largely the product of different 

episodes of colluvial/alluvial deposition from the nearby hillslopes during the late 

Pleistocene (Figure 25). The top of Unit 1dates to 30,620 ± 24014C yr BP (UCIAMS-

120335) and is a gravelly, heavily oxidized paleosol that was deposited during a 

particularly high energy episode of deposition. The gravel content in the lower 

Pleistocene units fine-upward indicating that the units following Unit 1 were deposited 

under such high energy and/or the bedrock exposure upslope became less exposed to 

weathering. After a brief period of stability in which soil structure was developed in Unit 

1, Unit 2 was deposited between 26,310 ± 150 14C  yr BP (UCIAMS-120334) and 

30,740 ± 240 14C yr BP (UCIAMS-120333). The boundary between Unit 2 and Unit 1 is 

abrupt, indicating that Unit 1 was slightly eroded before Unit 2 was deposited directly on 

top of the surface.  Unit 3 was deposited shortly after the deposition of Unit 2, dating to 
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26,290 ± 150 14C yr BP (UCIAMS-120330). Again, Unit 3 was deposited on top of Unit 

2 after pedogensis occurred. The boundary between Unit 2 and 3 is abrupt, and therefore 

somewhat erosional. The base of the Unit 4 paleosol was deposited by 22,490 ± 100 14C 

yr BP (UCIAMS-120329), following a period of stability and pedogensis in Unit 3. 

Before Unit 4 was deposited, trees in the area fell, created discontinuous, mixed and 

convoluted bedding in Units 1, 2, and 3. Unit 4 was deposited on a flat-lying surface, 

after erosion had smoothed the surface of the treethrow features. The Pleistocene 

sediments are capped with Unit 5 which was likely deposited, shortly after Unit 4.  The 

boundary between Unit 4 and 5 is abrupt and erosional. Given the thickness and extent 

of soil development in the lower Units, there was a long period of upland stability in the 

region. 

Although Units 1, 2, 3, 4, and 5 are all part of the Pleistocene glacial package, 

they are separated by erosional contacts, indicating that before each period of 

aggradation in the lower units, there were brief periods of stability in which soil structure 

developed (Figure 25). Following the final Pleistocene aggradation, occurring around to 

22,490 ± 100 14C yr BP (UCIAMS-120329), there was a period of stability in which 

illuvial clays continued to accumulate in the lower units. The low chroma of Units 2, 3, 

and 4 in the lower profile of the excavation area signify that the paleosols formed under 

aquic or semiaquic conditions from fluctuations in the waters table (Figure 25).  

Reduction represents anaerobic conditions caused by minimal permeability of the soil, 

preventing water from moving through the unit. Since the water can no longer move by 

means of gravitational or capillary flow, it becomes ponded. Such is the case in Unit 2, 
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3, and 4. In addition Units 1 through 5 contain Pleistocene faunal remains, including 

turtle fragments, again indicating saturated conditions. During the Pleistocene time 

period, the region was cool and wet, with the flora being dominated by boreal forest 

composed primarily of spruce (Picea) and pine (Pinus) (Delcourt 1979). 

The Pleistocene-Holocene transition at the site area maintained a wet/humid 

climate with gradual warming (Alley and Clark 1999). The vegetation shifted from a 

boreal forest to a mixed boreal-deciduous forest composed of pine, spruce, and oak 

(Delcourt 1979). The change in vegetation along with the shift in climate may have 

caused the rapid downcutting  and aggradation of channel deposits along the drainage. 

Unit 6a-c was deposited following a long period of stability in the area indicated by the 

soil development of the lower Pleistocene Units. Following the period of stability and 

soil formation during the late Pleistocene, a high-energy avulsion event downcut into the 

Coats-Hines stratigraphy, eroding Units 2 through 5 along the drainage and depositing 

Unit 6a-c, which is composed of fluvial gravels that eroded from upland slopes. Poorly 

sorted pebble to cobble-size rock fragments dominate the channel units, primarily being 

composed of limestone and chert fragments. The gravels of Unit 6a exhibit clast-

supported imbrication parallel to the east-west flow of the channel waters. Unit 6b and 

6c do not exhibit imbrication instead are poorly sorted gravels and clay that were 

deposited from a combination of both the bed load and suspended load sediments rapidly 

falling out of suspension. A brief period of stability followed the deposition of Unit 6a-c, 

allowing for weak soil structure to develop in Unit 6b and 6c. The base of the unit (Unit 
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6a) rests on an unconformable contact with the oxidized clay of Unit 1. Similarly, Unit 

6c was eroded along with Unit 5 before the deposition of Unit 7a-c (Figure 25). 

Unit 7a-c was deposited during the Holocene, when the region was warm and 

somewhat arid (Delcourt 1979). Deciduous hardwoods such as oak  (Quercus) and 

hickory (Carya) were the dominant species of vegetation in the region (Delcourt 1979).  

Unit 7a-c is dominated by fine-grained sediment that chemically weathered from the 

limestone bedrock upslope.  Unit 7a-c contain very little coarse fragments and therefore 

the sediments were likely transported under gradual, low-energy deposition rather than 

high-energy avulsion events like those occurring during the Pleistocene. No major 

climatic or biota shifts occurred in the region since 10,500 14C  yr BP in which a shift to 

fine-grained sedimentation dominated. After the sediments of Unit 7a-c were deposited 

there was a period of stability in which pedogenesis took place. Based on regional 

correlation which will be discussed in the following chapter, sedimentation during the 

Holocene ceased between 4000 and 2600 14C  yr BP, thus Unit 7a-c was deposited 

during the early to mid-Holocene. 

Unit 8was likely deposited during historic times, within the last few hundred 

years. The climate in the area has been consistent in the area for the past 4000 years; 

therefore it was not a climatic shift that caused the sedimentation of Unit 9. Given the 

lack of soil development, the deposition of Unit 8 was relatively recent.  Relief and 

parent material hold constant and the deposition was not the result of climate, Unit 8 was 

likely deposited beginning in the 19th century when people began to occupy the area, 

farm and construct buildings. The construction and deforestation of the hill slopes 
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changed the stability of the sediment along the slopes, depositing silty clay loam at the 

site. Unit 8 would still be an active depositional surface if it was not buried by the 

modern backfill of Unit 9. Unit 9, as previously mentioned is modern backfill deposited 

within the last five to 10 years. 

 

 

 Figure 25. Generalized cross-section of the lithologic units at Coats-Hines. 
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CHAPTER V 

CORRELATIONS 

5.1 Introduction 

The stratigraphic sequence of the Coats-Hines site has been correlated with the 

stratigraphy of the Duck River, the Pomme de Terre, and Douthard Creek (Figure 26).  

The sites were selected for correlation based on their location near the Coats-Hines site, 

in addition to all being south of glacial and periglacial conditions, therefore periods of 

lateral and vertical accretion are likely the result of climate shifts. The dates of 

deposition and stability are going to vary slightly based on location and variations in 

regional climate. Similarly, the composition and thickness of the stratigraphic units will 

vary based on source and energy of deposition (Appendix G). 

 

 

Figure 26.  Study areas of the (1) Pomme de Terre River, Missouri; (2) Douthard Creek, 

West Virginia; (3) the Coats-Hines site, Tennessee; and (4) Duck River, Tennessee. 
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5.2 The Duck River, Tennessee 

The Duck River is a meandering, northwesterly flowing meandering perennial 

stream located just 40 miles south of the Coats-Hines site. Brakenridge (1984) 

essentially defines three chronostratigraphic terrace sequences along the Duck River 

ranging from the late Pleistocene to modern deposition. Terrace 2 is the oldest terrace 

defined in the stratigraphy, and although no radiocarbon dates were collected, 

Brakenridge (1984) estimates the deposition to have occurred between 33,000 and 

14,000 14C yr BP. Following the deposition of Terrace 2 there was a period of stability 

and soil development before several depositional events occurred through the 

Pleistocene-Holocene transition and the early to middle Holocene (Brakenridge 1984). 

Terrace 1 rests unconformably on top of Terrace 2 and was deposited in various stages 

beginning roughly 12,00014C  yr BP, and persisting until roughly 2600 14C yr BP 

(Brakenridge 1984). The composition shifts from a yellowish-brown clay loam in 

Terrace 2 to a brown silty loam of Terrace 1.  A period of stability that coincided with 

the warmer, drier climate of the Holocene persisted until the historic period, in which the 

Duck River began to avulse and deposit modern silt and sandy loam of Terrace 0 

(Brakenridge 1984).  The sediments of Terrace 0 began being deposited in AD 1820 and 

continue today, with absence of pedogenic structure (Brakenridge 1984). 

5.3 The Pomme de Terre River, Missouri 

The Pomme de Terre River is a meandering northward-flowing perennial stream 

located in southern-central Missouri (Brakenridge 1981). Like the Coats-Hines site, the 

Pomme de Terre was never glaciated (Brakenridge 1981). Unlike the Coats-Hines site, 
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the Pomme de Terre has an alluvial history that dates back to 140,000 yr BP, although 

during the late Pleistocene, the Pomme de Terre has contains dated stratigraphic units 

that are remarkably similar to those of Coats-Hines (Brakenridge 1981).  The Boney 

Spring formation of the Pomme de Terre is composed of two sedimentologically distinct 

members. The lower member of the formation is composed of olive/dark organic clay 

that was deposited beginning between 31,880 and 30,880 14C  yr BP and ended by 

22,00014C yr BP.  The upper member of the Boney Spring formation is composed of 

light gray to yellow-gray mottled clay that was deposited between 22,000 and 13,550 14C 

yr BP (Brakenridge 1981). The upper and lower members of the Boney Spring formation 

are not separated by an unconformity (Brakenridge 1981). The Boney Spring formation 

was followed by a period of stability and soil formation before Holocene aggradation 

beginning 10,200 ± 330 14C yr BP (Brakenridge 1981). Periodic deposition of the 

Holocene-age, Rodgers formation persisted, depositing fine-grained clayey silt until 

1680 ± 100 14C yr BP, when once again, a period of stability and soil formation occurred 

(Brakenridge 1981). The final package along the Pomme de Terre is the historic, Pippens 

formation, which is composed of silty sand, and began its deposition as early as 840 ± 60 

14C  yr BP and continues to the present without evidence of pedogenic processes 

(Brakenridge 1981).  

5.4 Douthard Creek, West Virginia 

 The floodplain-terrace system along the floodplain of Douthard Creek in 

southeastern West Virginia contains three distinct periods of deposition associated with 

climatic shifts occurring during the late Pleistocene and Holocene periods (Driese et al. 
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2005). The deposition along Douthard Creek is very similar to the deposits at the Coats-

Hines site. The earliest stratigraphic package, called the Douthard paleosol, is a fine to 

medium silt and clay paleosol containing four gleyed B horizons with root traces and 

clay and iron hypocoatings underlain by a shale and gravel body. The deposition of the 

Douthard paleosol occurred during the late Pleistocene, persisting until 22,940 ± 150 14C 

yr BP (Driese et al. 2005). The Douthard paleosol formed under aquic conditions 

because of a fluctuating water table. This Pleistocene package also contains late 

Pleistocene flora and fauna and has a fining upward sequence of gravels indicating a 

colluvial/fluvial deposition. The Douthard paleosol is overlain unconformably by the 

Holocene 1 terrace, which is a weak soil and gravel rich horizon and the product of 

fluvial deposition. The deposition of the Holocene 1 terrace occurred as a result of the 

changing climate during the Pleistocene-Holocene transition. The upper portion of this 

terrace dates to 6360 ± 40 14C yr BP (Driese et al. 2005). Finally, Holocene Terrace 2 

soil is defined as a modern surface soil, consisting of a fine sandy loam with two argillic 

B horizons and a sharp erosional contact at its base that dates to 3840 ± 40 14C yr BP 

(Driese et al. 2005). 

5.5 Interpretation 

All four sites experienced depositional events leading to vertical aggradation of 

sediment during the last glacial period, beginning roughly 30,00014C yr BP and ending 

by 22,000 14C yr BP followed by a period of stability and soil development (Figure 27). 

The climate in these areas during the late Pleistocene was cool and wet, with boreal 

forests predominately being composed of pine (Pinus) and spruce (Picea) (Delcourt 
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1979; Alley and Clark 1999).  The late Pleistocene deposits are generally composed of 

gravelly silts and clay, with higher clay content than the Holocene units proceeding 

them. In addition, the redoximorphic features found in the late Pleistocene units of these 

areas indicate saturated conditions that were the result of a wet climate.  

If the correlations between Coats-Hines and the selected sites during the 

Pleistocene, then one can correctly assume the correlation between sites during the 

Pleistocene-Holocene transition, and the Holocene (a period in which no dates were 

collected at the Coats-Hines site).The sites all have a unit/terrace that was deposited 

during the Pleistocene-Holocene transition, beginning between 14,000 and 10,000 C14 

yr BP (Bettis et al. 2008). In the Southeast, the climate during this transition period was 

warm and wet with a mixed (Miller and Gingerich 2013) By roughly 4000 14C yr BP, the 

climate was similar in the Southeast region to modern times (Delcourt 1979; 

Brakenridge 1984). 

Unit 7a-c correlates with the brown, silt-rich early to middle Holocene alluvium 

mapped and dated along the Duck River, Pomme de Terre, and Douthard Creek (Figure 

27). This silty fill is common to many sequences within Tennessee and the Southeast 

region (Brakenridge 1984). 

Finally, the historic alluvial units of the Pomme de Terre correlate with Unit 8 of 

the 2012 excavation, with both being dominated by fine-grained sediment that has yet to 

develop soil structure (Figure 27).  The Duck River also contains dark grayish-brown 

sediment that dates to a similar historic age as the Pomme de Terre River (Brakenridge 

1981). 
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Figure 27. Time correlations of deposition and stability between the Duck River, 

Pomme de Terre River, Coats-Hines site, and Douthard Creek. 
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CHAPTER VI 

ARCHAEOLOGICAL CONTEXT 

6.1 Correlations of the 2012 Excavation to Previous Excavations at Coats-Hines 

The 1994-1995 stratigraphic profile was completed by recording the general 

cross-section of the stratigraphic units along the drainage.  The southern corner of the 

1994-1995 connected with the northern wall of the 2012 pit. The stratigraphy between 

the northern wall and the 1994-1995 profile correlate well, with the designated bone bed 

of Mastodon B associating with Unit 2 of the 2012 pit. The dates from Unit 2 are too old 

to explain the deposits of the 1994-1995 excavation and given the methods of recording 

during the 1994 excavation, an unconformity was likely missed. Note, when comparing 

the profiles of the 1994-1995 excavation (Figure 3), the ground surface was lower by 

comparison to the 2010 test trench and 2012 excavation area due to the lack of modern 

backfill on the surface of the profile.  The depth of the modern backfill is variable based 

on location (the site is slightly sloping towards the north) and date. Erosional processes 

dispersed the backfill downslope between the 2010 and 2012 excavation, making the 

backfill package thinner during the 2012 excavation. 

The 2010 test trench intersects the 2012 excavation along the west wall; therefore 

the stratigraphy is the same between the two excavations (Table 4). Unit I of the 2010 

trench is the same as Unit 8 and 9 of the 2012 excavation. Units II and III of the 2010 

trench is actually the Holocene paleosol (Units 7a-c) recorded in 2012. Unit IV recorded 

in 2010 as a distinct dark gray clay loam is the silty clay paleosol of Unit 5. Unit V of 

the 2010 trench incorporates the Pleistocene paleosols of Units 4, 3, 2, and 1. 
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Table 4. Correlation between the stratigraphic units of the 2010 and 2012 excavations. 

Stratigraphic Correlation with 2010 Test 

Trench 

2012 Geologic Units 2010 Geologic Units 
9 Ia 
8 Ib 

7a-c II, III 
5 IV 
4 Va 
3 Va 
2 Vb 
1 Vb 

 

6.2 Context of Mastodon B 

Only Pleistocene faunal remains were discovered during the 2012 excavation. 

Similarly the 2010 trench stratigraphy is a match to the stratigraphy described and dated 

in the 2012 excavation pit, therefore the units of the 2010 excavation that were believed 

to contain archaeological remains precede the occupation of the Americas by several 

thousand years. The artifacts discovered during to 2010 excavation are geofacts, 

composed of chert that was weathered and broken through natural transportation 

processes. In addition, the ten lithic artifacts discovered during the 2010 excavation lack 

features typically associated with tool production, such as bulbs of percussion, striking 

platforms, ripple marks, etc.  

Details regarding the context, stratigraphy, and association of the 1977 mastodon 

were never published and therefore this study will not be making any correlation to those 

finds. In addition, it was never stated whether the Area A Mastodon was discovered with 

artifacts to associate past human exploitation. In summary, this project will analyze the 
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deposition and context of the 1994-1995 mastodon remains and their association with 

lithic artifacts. 

The plan view of the bone bed exposed during the 1994 excavation shows that 

the long bones are imbricated parallel to flow (Figure 28). Although the remains of 

Mastodon B are disarticulated they are in close proximity indicating that they are near 

their primary context but slightly transposed. 

 

Figure 28. Planview of Mastodon B (Breitburg et al. 1996). 

 
Breitburg and Broster (1995) recorded the mastodon and lithic artifacts to be 

located in blue/gray clay (Figures 3 and 25). The channel sediment of Units 6b and 6c 

are mottled with oxidized iron and manganese. Unit 6a is a dark, grayish brown deposit. 

Mastodon B could have been discovered resting on top or within Unit 6a, becoming 

rapidly buried and preserved by the gravelly clays of Unit 6b and 6c.  
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In addition, the 1994-1995 excavation recorded the stratigraphy of the drainage 

cross section for every 2.5 m, claiming that the stratigraphic units were deposited on 

smooth, horizontal beds. The 1994-1995 excavation also recorded heavy mixing due to 

the turbation from worms and tree roots  of redistributing and creating poor sorting of 

large gravels within the cross section. The bioturbation was not recorded in the profile 

and upon inspection of photographs of the excavation, no worm burrows or tree root 

turbation are visible. Similarly, is not possible for worms to disrupt the sorting of larger 

clast materials in the stratigraphy. Instead, the most likely scenario is that the mastodon 

was deposited on the surface of the gravel thalweg of the channel unconformity and 

rapidly buried by poorly sorted clays and gravels during the Pleistocene-Holocene 

transition. The channel containing Units 6a-c is very narrow and given that the cross 

section was investigated on such a large scale, rather than following discrete units and 

contacts, the channel unconformity could have been missed. The mixing of large cobbles 

with clay also represent a high energy flow, the bulk sediment was deposited 

contemporaneously without sorting based on weight or cohesion, likely during a flood 

event. Given that the bottom of the channel unconformity contains large cobbles (32 to 

64+ mm) that are also oriented parallel to stream flow, it is likely that Mastodon B was 

buried early in the flood event and in or near its original context (Figure 25).  

Additional evidence of the Pleistocene-Holocene association of Mastodon B 

(compared to the 30,000 to 22,000 14C  year old dates of Unit 2) is given by the amount 

of iron replacement in the bones. Many of the larger bones excavated within the 2012 pit 

as well as in the 2010 trench were heavily replaced/impregnated with iron oxide (Deter-
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Wolf et al. 2011). Mastodon B does not have any staining/replacement/impregnation of 

minerals due to the differing depositional context and environment from the older 

deposits.  

No charcoal dates were collected during the March 2013 survey to definitively 

state the antiquity of the deposits, but the organic sediment of the channel will be dated 

in the future, along with potential dates obtained from the bone of Mastodon B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 

 

CHAPTER VII 

CONCLUSION 

The Coats-Hines site (40WM31) is a Clovis or potential pre-Clovis Mastodon 

site located in northern Williamson County, Tennessee. The site rests along the 

convergence of the Central Basin and Western Highland Rim. The Coats-Hines site was 

discovered during the construction of a nearby golf course when a salvage team 

uncovered a mature female mastodon. The site was later excavated in 1994-1994, during 

which time two additional mastodons were uncovered, in direct association with lithic 

artifacts. Preliminary radiocarbon dates reveal the site was deposited during the late 

Pleistocene epoch at roughly 12,000 14C yr BP (Breitburg et al. 1996).  

During the summer of 2012, the site was excavated  by Texas A&M University 

with the goal of determining the stratigraphy and depositional setting of the site as well 

as establishing the antiquity of the archaeological remains through investigation of the 

depositional history and context of the lithic and faunal remains. The site geology was 

determined through field interpretation and hand-texturing, micromorphological 

analysis, laboratory particle size analysis, and radiocarbon dating. Sedimentation at the 

site is a combination of cherty colluvium from upslope as well as alluvium. Four 

chronostratigraphic sequences of sedimentation were determined to have occurred 

during the last glacial, the Pleistocene-Holocene transition, the Holocene, and historic-

modern time periods. The volume, distribution, and composition of the nine defined 

stratigraphic units are dependent on the fluctuations occurring in the climate during these 
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time periods. The climate changes and rates of deposition occurring at Coats-Hines were 

correlated to similar sites in the region.  

This study has identified four different geochronological groups separated into 

nine different lithologically distinct units. Radiocarbon dates from Units 1 through 4 in 

the excavation area were collected, placing the lower deposits of the 2012 excavation in 

the last glacial period of the late Pleistocene (between 31,140 ± 270 and 22,490 ± 100 

14C yr BP). Following the Spring 2013 Coats-Hines site survey along the wet-weather 

drainage a channel unconformity was discovered, likely dating to the Pleistocene-

Holocene transition based on correlation to regional stratigraphy. The Pleistocene-

Holocene channel provides context to the mastodon and lithic remains discovered  along 

the drainage during the 1994-1995 excavation.  Finally, both the channel and the 

Pleistocene sediments were buried by fine-grained Holocene sediment deposition. 
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APPENDIX A 

WILLIAMSON COUNTY, TENNESSEE 
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APPENDIX B 

PIPPETTE ANALYSIS 

  
 

PARTICLE SIZE DISTRIBUTION (mm) 
  

  
 

----------------------------SAND--------------------------- -------SILT------- -------CLAY------- 
  

  
 

VC C M F VF TOTAL FINE TOTAL  FINE  TOTAL 
 

COARSE 

  
 

(2.0- (1.0- (0.5- (0.25- (0.10- (2.0- (0.02- (0.05- 
  

TEXTURE FRAG- 

ID DEPTH 1.0) 0.5) 0.25) 0.10) 0.05) 0.05) 0.002) 0.002) (<0.0002) (<0.002) CLASS MENTS 

  (cm)   --------------------------------------------------------%-----------------------------------------------------------   % 
Unit 

8 20-30 0.3 0.5 0.7 3.5 6.0 11.0 40.0 63.1 9.2 25.9 SiL 
 Unit 

8 30-40 0.5 0.4 0.6 4.2 6.9 12.6 34.9 58.4 11.7 29.0 SiCL 
 Unit 

8 40-50 0.1 0.3 0.4 2.2 4.6 7.6 36.0 58.1 14.8 34.3 SiCL 
 Unit 

8 50-60 0.6 0.8 1.2 3.4 3.7 9.7 41.2 60.1 10.7 30.2 SiCL 
 Unit 

8 60-66 0.5 0.8 1.2 3.3 3.4 9.2 43.3 61.9 9.6 28.9 SiCL 1 
Unit 
7c 66-70 0.4 0.6 0.8 2.8 2.9 7.5 48.7 66.2 7.1 26.3 SiL 

 Unit 
7c 70-80 0.3 0.6 0.8 2.4 2.6 6.7 48.4 64.2 8.3 29.1 SiCL 

 Unit 
7b 80-90 0.4 0.5 0.7 2.3 2.4 6.3 44.6 60.3 12.3 33.4 SiCL 

 Unit 
7b 90-100 0.3 0.5 0.6 2.1 2.3 5.8 42.4 56.3 16.9 37.9 SiCL 

 Unit 
7b 

100-
110 0.7 0.4 0.6 2.1 2.2 6.0 43.9 56.9 17.5 37.1 SiCL 

 Unit 
7a 

115-
120 0.5 0.7 0.7 2.8 2.4 7.1 42.1 56.6 18.1 36.3 SiCL 

 Unit 
7a 

120-
130 0.5 0.7 0.7 2.9 2.3 7.1 41.7 55.3 19.7 37.6 SiCL 

 Unit 
7a 

130-
140 0.5 0.5 0.5 2.7 2.2 6.4 39.3 52.4 23.3 41.2 SiC 

 Unit 
5 

140-
150 0.2 0.3 0.3 1.6 1.4 3.8 36.3 47.8 26.8 48.4 SiC 

 Unit 
5 

150-
160 0.0 0.1 0.1 0.8 1.0 2.0 41.2 52.5 22.4 45.5 SiC 

 Unit 
5 

160-
170 0.1 0.2 0.1 0.9 0.9 2.2 43.4 56.8 19.0 41.0 SiC 

 Unit 
5 

170-
180 0.7 0.7 0.3 1.1 1.0 3.8 41.6 55.3 18.7 40.9 SiC 

 Unit 
5 

180-
190 0.1 0.2 0.2 1.1 1.1 2.7 44.5 59.7 17.6 37.6 SiCL 

 Unit 
4 

190-
200 0.1 0.1 0.2 2.1 2.4 4.9 40.9 55.4 23.2 39.7 SiCL 

 Unit 
4 

200-
210 0.1 0.1 0.2 2.7 2.8 5.9 39.7 53.6 25.0 40.5 SiC 

 Unit 
4 

210-
220 0.2 0.2 0.4 4.3 3.5 8.6 36.7 52.2 24.2 39.2 SiCL 

 Unit 
3 

220-
230 0.4 0.5 0.7 5.3 4.4 11.3 34.6 49.2 22.9 39.5 SiCL 1 

Unit 
3 

230-
240 0.8 0.6 0.8 6.5 5.3 14.0 33.1 48.4 20.8 37.6 SiCL 1 

Unit 
3 

240-
250 0.8 0.6 1.0 6.9 4.9 14.2 30.6 44.8 24.0 41.0 SiC 1 

Unit 
2 

250-
260 0.8 0.6 1.1 8.5 6.2 17.2 28.1 38.6 27.3 44.2 C 2 

Unit 
2 

260-
270 0.6 0.6 1.1 8.6 6.4 17.3 27.4 37.3 28.3 45.4 C 1 

Unit 
1 

270-
280 2.0 1.4 1.8 8.6 6.5 20.3 23.5 33.7 26.0 46.0 C 6 

Unit 
1 

280-
290 1.6 1.4 1.5 7.9 5.9 18.3 25.3 35.6 24.9 46.1 C 6 



 

70 

 

APPENDIX C 

STRATIGRAPHIC DESCRIPTIONS 
 

Unit 9 (0-22 cm) 
Texture Class Silt loam 
Dry Consistence Soft 
Moist Consistence Very friable 
Munsell Color Dry: 10YR 4/2 (brown); Moist: 10YR 3/3 (dark brown) 
Plasticity Slightly Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Single grained; Fine, Structureless 

Redox features None 
Boundaries/contacts Clear; Smooth 
Horizon designation N/A: modern backfill 
Special Features N/A 
 

Unit 8 (22-55 cm) 
Texture Class Silty clay loam 
Dry Consistence Slightly hard 
Moist Consistence Friable 
Munsell Color Dry: 10YR 4/3 (brown); Moist: 10YR 4/4 (dark yellowish brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Single grained; Fine, Structureless 

Redox features None 
Boundaries/contacts Clear; Smooth 
Horizon designation N/A: No soil structure 
Special Features N/A 
 

Unit 7c (55-70 cm) 
Texture Class Silty clay loam 
Dry Consistence Slightly hard 
Moist Consistence Friable 
Munsell Color Dry: 10YR 3/3 (dark brown); Moist: 10YR 2/2 (very dark brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Granular; Moderate; Fine 

Redox features None 
Boundaries/contacts Clear; Smooth 
Horizon designation Ab 
Special Features N/A 
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Unit 7b (70-100 cm) 
Texture Class Silty clay loam 
Dry Consistence Slightly hard 
Moist Consistence Friable 
Munsell Dry: 7.5YR 3/2 (brown); Moist: 7.5YR 3/3 (brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Subangular blocky; Moderate; Fine 

Redox features Few; faint 
Boundaries/contacts Clear; Smooth 
Horizon designation Btb1 
Special Features Secondary accumulation of clay 
 

Unit 7a (100-120 cm) 
Texture Class Silty clay loam 
Dry Consistence Slightly hard 
Moist Consistence Friable 
Munsell Color Dry: 10YR 4/3 (brown); Moist: 10YR 4/2 (dark grayish brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Subangular blocky; Moderate; Medium 

Redox features Few; faint 
Boundaries/contacts Abrupt; Smooth 
Horizon designation Btb2 
Special Features Clay coating on ped surfaces 
  

6c (1.525-2.325m) 
Texture Class Slightly gravelly clay  
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 7.5YR 5/4 (brown); Moist: 7.5YR 4/4 (brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Angular blocky; Moderate; Medium 

Redox features Many; Distinct 
Boundaries/contacts Clear; Wavy 
Horizon designation Bw1 
Special Features Clay coating on ped surfaces; Fe-Mn concentrations; Siliceous gravels 
 

6b (2.325-2.825) 
Texture Class Gravelly clay  
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 7.5 YR 5/3 (brown); Moist: 7.5YR 5/4 (brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Angular blocky; Moderate; Medium 

Redox features Common; Distinct 
Boundaries/contacts Abrupt; Irregular 
Horizon designation Bw2 
Special Features Clay coating on ped surfaces; Fe-Mn concentrations; Siliceous gravels 
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6a (2.825-3.075) 

Texture Class Clayey Gravel (>80% gravel) 
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 10YR 4/1 (dark grayish brown); Moist: 10YR 4/1 (dark yellowish brown) 
Plasticity Non-Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Platy  

Redox features Few; Distinct 
Boundaries/contacts Abrupt; Wavy 
Horizon designation N/A 
Special Features Channel gravels 
 

Unit 5 (120-160 cm) 
Texture Class Silty clay  
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 10YR 3/2 (very dark grayish brown); Moist: 10YR 3/3 (dark brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Subangular blocky; Moderate; Fine 

Redox features Common; Distinct 
Boundaries/contacts Abrupt; Smooth 
Horizon designation 2Btb 
Special Features Clay coating on ped surfaces; Fe-Mn concentrations; Siliceous gravels 
 

Unit 4 (160-180 cm) 
Texture Class Silty clay  
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 10YR 4/2 (dark grayish brown); Moist: 10YR 4/4 (dark yellowish brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Subangular blocky; Moderate; Medium 

Redox features Common; Distinct 
Boundaries/contacts Abrupt; Irregular 
Horizon designation 2Btgb 
Special Features Clay coating on ped surfaces; Fe-Mn concentrations; Siliceous gravels 
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Unit 3 (180-210 cm) 
Texture Class Silty clay  
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 7.5YR 4/2 (brown); Moist: 10YR 4/4 (dark yellowish brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Subangular blocky; Moderate; Medium 

Redox features Common; Prominent 
Boundaries/contacts Abrupt; Irregular 
Horizon designation 2Btgb2 
Special Features Clay coating on ped surfaces; Fe-Mn concentrations; Siliceous gravels 
 

Unit 2 (201-235 cm) 
Texture Class Clay  
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 10YR 5/1 (gray); Moist: 10YR 5/1 (gray) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Subangular blocky; Moderate; Medium 

Redox features Few; Distinct 
Boundaries/contacts Abrupt; Irregular 
Horizon designation 2Btgb3 
Special Features Clay coating on ped surfaces; Fe-Mn concentrations; Siliceous gravels 
 

Unit 1 (235-260 cm) 
Texture Class Slightly Gravelly Clay  
Dry Consistence Hard 
Moist Consistence Firm 
Munsell Color Dry: 7.5YR 4/6 (strong brown), Moist: 7.5YR 4/6 (strong brown) 
Plasticity Plastic 
Sedimentary structures 
(Type, Grade, Class) 

Subangular blocky; Moderate; Medium 

Redox features Many; Prominent 
Boundaries/contacts Abrupt; Irregular 
Horizon designation 2Btg4 
Special Features Clay coating on ped surfaces; Fe-Mn concentrations; Siliceous gravels 
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APPENDIX D 

 
GRAVEL ANALSYIS 

 
 

 
Unit 996/1008 

Level 

51   Composition Roundness Sphericity 

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 

0.

5 % 0.7 % 

0.

9 % 

63 - - - - - - - - - - - - - - - - - - - - - - 

31.5 - - - - - - - - - - - - - - - - - - - - - - 

16 34.9 
34.
6 - - 

14.
6 

42
.2 4.4 

12
.7 

15.
9 

45
.9 - - - - 

20
.3 

58
.7 

14
.6 

42
.2 - - - - 

8 
227.

6 
227
.6 - - 

32.
6 

14
.3 

37.
3 

16
.4 

24.
2 

10
.6 

52.
3 

2
3 

81
.2 

3
6 

65
.1 

28
.6 

81
.7 

35
.9 

78.
1 

34
.3 

2.
3 1 

4 
144.

5 
142
.3 - 2.1 

24.
1 

16
.7 

15.
5 

10
.7 

39.
1 

27
.4 

61.
6 

4
3 

4.
2 

2.
9 - - - - - - - - 

2 2.1 - - - - - - - - - - - - - - - - - - - - - 

Totals 

409.
1 

404
.9 - 2.1 

71.
3 

17
.5 

57.
2 

14
.1 

79.
2 

19
.5 

113
.9 

2
8 

85
.4 

2
1                 

Level 

52     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 

0.

5 % 0.7 % 

0.

9 % 

63 - - - - - - - - - - - - - - - - - - - - - - 

31.5 - - - - - - - - - - - - - - - - - - - - - - 

16 77.9 
77.
9 - - 

12.
3 

15
.7 

16.
1 

20
.7 

24.
4 

31
.3 

18.
2 

2
3 

6.
9 

8.
9 

9.
5 

12
.2 

12
.9 

16
.6 

40.
5 52 

1
5 

1
9 

8 
190.

7 
190
.7 - - 

41.
7 

21
.9 

33.
4 

17
.5 

78.
5 

41
.2 

32.
7 

1
7 

4.
4 

2.
3 

37
.8 

19
.8 

75
.4 

39
.5 

71.
9 

37
.7 

5.
6 

2.
9 

4 
154.

3 
154
.2 - 0.1 

14.
3 

9.
3 

36.
4 

23
.6 

78.
1 

50
.6 

20.
8 

1
4 

4.
7 3 - - - - - - - - 

2 6.1 - - - - - - - - - - - - - - - - - - - - - 

Totals 429 
422
.8 - 0.1 

68.
3 

16
.2 

85.
9 

20
.3 181 

42
.8 

71.
7 

1
7 16 

3.
8                 

Level 

53     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 

0.

5 % 0.7 % 

0.

9 % 

63 - - - - - - - - - - - - - - - - - - - - - - 

31.5 50.5 
50.
5 - - - - - - 

50.
5 

10
0 - - - - - - 

50
.5 

10
0 - - - - 

16 
104.

5 
104
.5 - - 

18.
7 

17
.9 

15.
6 

14
.9 

32.
3 

30
.9 

37.
9 

3
6 - - 

15
.4 

14
.7 

67
.8 

64
.9 

21.
3 

20
.4 - - 

8 
478.

4 
472
.5 - 5.9 

77.
5 

16
.2 

106
.9 

22
.3 

242
.9 

50
.8 

41.
5 

8.
8 

9.
6 2 

62
.9 

13
.1 

17
6 

36
.8 

233
.1 

48
.7 

6.
4 

1.
3 

4 
463.

1 461 - 2.1 
17.
5 

3.
8 

60.
8 

13
.1 

352
.4 

76
.1 

23.
3 5 

9.
1 2 - - - - - - - - 

2 17.4 - - - - - - - - - - - -   - - - - - - - - 

Totals 

1113
.9 

108
9 - 8 

113
.7 

10
.4 

183
.3 

16
.7 

678
.1 

61
.8 

102
.7 

9.
4 

18
.7 

1.
7                 
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Level 

54     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 

0.

9 % 

63 - - - - - - - - - - - - - - - - - - - - - - 

31.5 55.3 
23.
3 

32.
1 - 

23.
2 42 - - 

32.
1 58 - - - - 

55
.3 

10
0 - - - - - - 

16 189 
139
.4 4.4 

45.
2 35 

18
.5 

70.
9 

37
.5 

30.
8 

16
.3 

45.
8 24 

6.
5 

3.
4 

22
.1 

11
.7 

90.
5 

47
.9 

69.
8 

36
.9 

6.
6 

3.
5 

8 
637.

3 
599
.1 - 

38.
2 

72.
6 

11
.4 

137
.4 

21
.6 

344
.9 

54
.1 

75.
3 12 

7.
1 

1.
1 

91
.6 

14
.4 

227
.6 

35
.7 303 

47
.5 

9.
1 

1.
4 

4 
570.

2 
566
.8 - 3.4 

34.
7 

6.
1 

113
.8 20 

359
.8 

63
.1 56 

9.
8 

5.
9 1 - - - - - - - - 

2 28.8 - - - - - - - - - - - - - - - - - - - - - 

Totals 

1480
.6 

132
9 

36.
5 

86.
8 

165
.5 

11
.4 

322
.1 

22
.2 

767
.6 

52
.9 

177
.1 12 

19
.5 

1.
3                 

Level 

55     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 

0.

9 % 

63 - - - - - - - - - - 
  

- - - - - - - - - - 

31.5 25.3 
25.
3 - - - - - - - - 

25.
3 

10
0 - - 

25
.3 

10
0 - - - - - - 

16 128 128 - - 
44.
1 

34
.4 

17.
7 

13
.8 

45.
4 

35
.5 

15.
9 12 

4.
9 

3.
8 

32
.2 

25
.2 

47.
8 

37
.3 48 

37
.5 - - 

8 
450.

1 
441
.9 - 8.2 

76.
1 

16
.9 

70.
9 

15
.8 

211
.8 

47
.1 85 19 

6.
2 

1.
4 

72
.9 

16
.2 

168
.7 

37
.5 

204
.2 

45
.4 

14
.5 

3.
2 

4 
323.

2 
319
.4 0.6 3.2 

39.
7 

12
.3 

46.
7 

14
.4 

195
.5 

60
.5 

37.
3 12 4 

1.
2 - - - - - - - - 

2 5.8 - - - - - - - - - - - - - - - - - - - - - 

Totals 

932.
4 

914
.6 0.6 

11.
4 

159
.9 

17
.3 

135
.3 

14
.6 

452
.7 

48
.9 

163
.5 18 

15
.1 

1.
6                 

Level 

56     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 

0.

9 % 

63 - - - - - - - - - - - - - - - - - - - - - - 

31.5 - - - - - - - - - - - - - - - - - - - - - - 

16 
354.

6 328 9.5 
17.
1 

45.
7 

12
.9 

80.
2 

22
.6 

178
.5 

50
.3 

44.
4 13 

5.
8 

1.
6 

44
.3 

12
.5 

124
.3 

35
.1 

112
.1 

31
.6 

73
.9 

2
1 

8 
673.

5 
660
.9 - 

12.
6 

101
.5 

15
.1 156 

23
.2 

313
.3 

46
.5 

84.
4 13 

18
.3 

2.
7 

59
.4 

8.
8 

232
.6 

34
.5 

346
.4 

51
.4 

35
.1 

5.
2 

4 
511.

5 
508
.6 - 2.9 

49.
1 

9.
6 

60.
7 

11
.9 

319
.6 

62
.4 

69.
4 14 

12
.7 

2.
5 - - - - - - - - 

2 18.1 - - - - - - - - - - - - - - - - - - - - - 

Totals 

1557
.7 

149
8 9.5 

32.
6 

196
.3 

12
.8 

296
.9 

19
.3 

811
.4 

52
.7 

198
.2 13 

36
.8 

2.
4                 
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Level 

57     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 0.9 % 

63 - - - - - - - - - - - - - - - 
 

- - - - - - 

31.5 82 82 - - - - 
35.
5 

43
.3 

46.
5 

56
.7 - - - - 

35
.5 

43
.3 - - 

46.
5 

56
.7 - - 

16 
436.

9 
334
.6 - 

102
.3 

11
0.5 

25
.3 

81.
9 

18
.7 

17
6.9 

40
.5 

67.
1 

1
5 

0.
5 

0.
1 

62
.2 

14
.2 

15
8.5 

36
.3 

21
6.3 

49
.5 - - 

8 
924.

7 
898
.8 - 

25.
9 

13
1.6 

14
.2 

16
6.4 18 

51
5.1 

55
.7 

10
3.3 

1
1 

8.
3 

0.
9 

87
.6 

9.
5 

35
5.2 

38
.4 

44
0.4 

47
.6 

41.
5 

4.
5 

4 
696.

5 
692
.4 - 4.1 

55.
9 8 

10
2.9 

14
.8 

45
4.4 

65
.2 

71.
7 

1
0 

11
.6 

1.
7 - - - - - - - - 

2 59.6 - - - - - - - - - - - - - - - - - - - - - 

Totals 

2199
.7 

200
8 - 

132
.3 

29
8 

13
.9 

38
6.7 

18
.1 

11
93 

55
.7 

24
2.1 

1
1 

20
.4 1                 

Level 

58     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

mes 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 0.9 % 

63 - - - 
 

- - - - - - - - - - - - - - - - - - 

31.5 
244.

9 
217
.3 - 

27.
6 

89.
1 

36
.4 

11
3.5 

46
.3 

42.
3 

17
.3 - - - - 

47
.2 

19
.3 

11
5.9 

47
.3 

81.
8 

33
.4 - - 

16 
655.

5 
604
.8 - 

50.
7 

86.
8 

13
.2 

20
5.5 

31
.4 

23
0.7 

35
.2 

11
4.7 

1
8 

17
.8 

2.
7 66 

10
.1 

25
1.3 

38
.4 

31
5.8 

48
.2 

22.
4 

3.
4 

8 
1445

.3 
141
4 - 

31.
4 

26
5.5 

18
.4 

41
6.3 

28
.8 

63
4.3 

43
.9 

11
9.1 

8.
2 

10
.1 

0.
7 

10
3 

7.
1 

57
3.2 

39
.7 

72
5.4 

50
.2 

44.
2 

3.
1 

4 
992.

1 955 - 
37.
1 

12
8 

12
.9 

24
2.1 

24
.4 

75
8.8 

52
.5 

13
3 

9.
2 

9.
7 1 - - - - - - - - 

2 139 - - - - - - - - - - - - - - - - - - - - - 

Totals 

3476
.8 

319
1 - 

146
.8 

56
9.4 

17
.1 

97
7.4 

29
.3 

16
66 

49
.9 

36
6.8 

1
1 

37
.6 

1.
1                 

Level 

59     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 0.9 % 

63 
537.

5 
537
.5 - - - - - - 

53
7.5 

10
0 - - - - 

15
4 

28
.7 

38
3.1 

71
.3 - - - - 

31.5 190 190 - - - - 
12.
3 

6.
5 

13
7.9 

72
.6 

39.
8 

2
1 - - - - 

15
0 

78
.9 

39.
8 

20
.9 - - 

16 
677.

7 
583
.5 - 

94.
2 

56.
1 

8.
3 

21
2.3 

31
.3 

29
7 

43
.8 

11
2.3 

1
7 - - 

79
.9 

11
.8 

21
2.3 

31
.3 

27
5.5 

40
.7 

11
0 

1
6 

8 
1159

.1 
113
5 1.1 

23.
1 

21
7.4 

18
.8 

17
8.5 

15
.4 

58
5.2 

50
.5 

14
8.4 

1
3 

29
.6 

2.
6 

13
2 

11
.4 

45
4.8 

39
.2 

47
2.7 

40
.8 

99.
9 

8.
6 

4 
960.

8 
950
.3 - 11 

14
4.1 15 

17
0.4 

14
.7 

62
1.1 

59
.3 

11
1.3 

9.
6 

16
.2 

1.
4 - - - - - - - - 

2 
135.

9 - - - - - - - - - - - - - - - - - - - - - 

Totals 3661 
339
6 1.1 

128
.3 

41
7.6 

11
.8 

57
3.5 

16
.3 

21
79 

61
.8 

41
1.8 

1
2 

45
.8 

1.
3                 

Level 

60     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 0.9 % 

63 - - - - - - - - - - - - - - - - - - - - - - 

31.5 
175.

8 
146
.8 - 29 - - 29 

16
.5 

14
6.8 

83
.5 - - - - - - 

78.
4 

44
.6 

97.
4 

55
.4 - - 

16 
614.

7 
549
.8 - 

64.
9 

10
1 

16
.4 

19
4 

31
.6 

26
5.1 

43
.1 

47.
5 

7.
7 

7.
1 

1.
2 

67
.2 

10
.9 

18
5.6 

30
.2 

31
9.5 52 

42.
4 

6.
9 

8 
1036

.4 
100
6 - 

30.
5 

17
6.2 17 

16
7.8 

16
.2 

53
2.8 

51
.4 

14
7.4 

1
4 

12
.2 

1.
2 

66
.7 

6.
4 

30
6.8 

29
.6 

60
1.4 58 

61.
5 

5.
9 

4 
902.

6 
887
.9 - 

15.
9 

66.
7 

7.
4 

15
5.5 

17
.2 

44
4.4 

49
.2 

20
4.4 

2
3 

18
.1 2 - - - - - - - - 

2 63.4 - - - - - - - - - - - - - - - - - - - - - 

Totals 

2792
.9 

259
0 - 

140
.3 

34
3.9 

12
.6 

54
6.3 20 

13
89 

50
.9 

39
9.3 

1
5 

37
.4 

1.
4                 
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Level 

61     
  

Roundness   Sphericity   

Size 

(mm) 

Wei

ght 

(g) 

Li

me 

Sa

nd 

Ch

ert 0.1 % 0.3 % 0.5 % 0.7 % 

0.

9 % 

0.

3 % 0.5 % 0.7 % 0.9 % 

63 
151.

7 
151
.7 - - - - 

15
1.7 

10
0 - - - - - - - - 

15
1.7 

10
0 - - - - 

31.5 
644.

5 
589
.2 - 

55.
3 

17
0.6 

26
.5 

86.
6 

13
.4 

20
1.7 

31
.3 

18
5.6 

2
9 - - 

27
7 

42
.9 

18
3 

28
.4 

18
4.7 

28
.7 - - 

16 
1155

.5 
102
9 

10.
9 

115
.9 

21
7.6 

18
.8 

25
5.4 

22
.1 

46
5.4 

40
.3 

20
7.5 

1
8 

9.
6 

0.
8 

11
6 10 

33
5.1 29 

43
1.6 

37
.4 

27
2.9 

2
4 

8 
1411

.3 
133
6 - 

74.
9 

25
8.9 

18
.3 

23
4.4 

16
.6 

67
6 

47
.9 

22
8.4 

1
6 

13
.6 1 

10
8 

7.
7 

37
2.4 

26
.4 

78
6.7 

55
.7 

14
4.1 

1
0 

4 
781.

3 
761
.4 - 

19.
9 

13
0.5 

16
.7 

11
4.9 

14
.7 

39
3 

50
.3 

13
4.4 

1
7 

8.
6 

1.
1 - - - - - - - - 

2 83.1 - - - - - - - - - - - - - - - - - - - - - 

Totals 

4227
.4 

386
7 

10.
9 266 

77
7.6 

18
.8 

84
3 

20
.3 

17
36 

41
.9 

75
5.9 

1
8 

31
.8 

0.
8                 
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APPENDIX F 
 

2012 RADIOCARBON DATES 
 

UCIAMS- 
SAMPLE 

TYPE 

FIELD 

NUMBER 

STRAT 

LOCATION 

CHEMICAL 

FRACTION 

DATED 

Fm FM SD 
14C 

AGE 
14C SD 

         
UCIAMS-

120329 CHARCOAL 136-1 Geologic 
Unit 4 

ABA 
CHARCOAL 0.0608 7.00E-

04 22,490 100 

UCIAMS-
120330 CHARCOAL 201-1 Geologic 

Unit 3 
ABA 

CHARCOAL 0.0379 7.00E-
04 26,290 150 

UCIAMS-
120331 CHARCOAL 223-1 Geologic 

Unit 3 
ABA 

CHARCOAL 0.0111 7.00E-
04 36,120 480 

UCIAMS-
121950 CHARCOAL 223-1 Geologic 

Unit 3 

ABA-NITRIC 
ACID 

CHARCOAL 
0.0105 8.00E-

04 36,590 650 

UCIAMS-
120332 CHARCOAL 655-15 Geologic 

Unit 3/2 
ABA 

CHARCOAL 0.0207 7.00E-
04 31,140 270 

UCIAMS-
121951 CHARCOAL 655-15 Geologic 

Unit 3/2 

ABA-NITRIC 
ACID 

CHARCOAL 
0.0213 8.00E-

04 30,910 320 

UCIAMS-
120333 CHARCOAL 388-1 Geologic 

Unit 2 
ABA 

CHARCOAL 0.0218 7.00E-
04 30,740 240 

UCIAMS-
120334 CHARCOAL 609-1 Geologic 

Unit 2 
ABA 

CHARCOAL 0.0378 7.00E-
04 26,310 150 

UCIAMS-
120335 CHARCOAL 341-01 Geologic 

Unit 1 
ABA 

CHARCOAL 0.0221 6.00E-
04 30,620 240 

UCIAMS-
120336 CHARCOAL 512-1 Geologic 

Unit 1 
ABA 

CHARCOAL 0.0028 0.0174 >26,400 --- 
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APPENDIX G 
 

CORRELATIONS 
 

Duck River Pomme de Terre River Douthard Creek 

Stratigraphy 

Inferred 

Dates* 
14

C Stratigraphy 

Inferred 

Dates* 
14

C Stratigraphy 

Inferred 

Dates* 
14

C 

Sowell Mill 

Formation 0 - 400 150* 
Pippens 

Formation 0 -900  190 ± 40 
Holocene 

Terrace 2 Modern 
   

 
380 ± 35 

  
430 ± 100 

             840 ± 60       

Leftwich 

Formation 

8000-
1500  

1570 ± 
230 

Rodgers 

Formation 

10,0000-
1680  1680 ± 100 

Holocene 

Terrace I 

10,000-
3840 3840 ± 40 

  
 

2980 ± 
600 

  
4585 ±120 

  
6360 ± 40  

  
 

3860 ± 
500 

  
7490 ± 170 

   
  

 

4130 ± 
130 

  
8100 ± 140 

   
  

 

7250 ± 
350 

  
10,200 ± 330 

   Cannon 

Bend  

Formation 

10,000- 
8000  

       
Cheek Bend 

Formation 

32,000-
14,0000  14,860 

Boney 

Spring 

Formation 

32,000-
13,500  13,550 ± 400 

Douthard 

Paleosol 

30,000- 
22,000 

22490 ± 
150 

  
 

31,320 ± 
1550 

  
16,580 ± 220 

   
  

 

32,330 ± 
2720 

  
21,380 ± 500 

     
    

22,730 ± 590 
   

  
    

26,440 ± 
1,170 

   
  

    

30,880 ± 
1320 

   
          

31,880 ± 
1340       

 


