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ABSTRACT

Production compilers implement optimizing transformation rules for built-in types.

What justifies applying these optimizing rules is the axioms that hold for built-in

types and the built-in operations supported by these types. Similar axioms also hold

for user-defined types and the operations defined on them, and therefore justify a

set of optimization rules that may apply to user-defined types. Production com-

pilers, however, do not attempt to construct and apply these optimization rules to

user-defined types.

Built-in types together the axioms that apply to them are instances of more

general algebraic structures. So are user-defined types and their associated axioms.

We use the technique of generic programming, a programming paradigm to design

efficient, reusable software libraries, to identify the commonality of classes of types,

whether built-in or user-defined, convey the semantics of the classes of types to

compilers, design scalable and effective program analysis for them, and eventually

apply optimizing rules to the operations on them.

In generic programming, algorithms and data structures are defined in terms of

such algebraic structures. The same definitions are reused for many types, both

built-in and user-defined. This dissertation applies generic programming to compiler

analyses and transformations. Analyses and transformations are specified for general

algebraic structures, and they apply to all types, both built-in and primitive types.
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1. INTRODUCTION

Optimizing is a process of semantics-preserving transformations. The behavior

of an optimizer is defined by the set of analyses and transformations this optimizer

supports. How broadly the transformations apply has a significant impact on the

effectiveness of an optimizer. This dissertation focuses on broadening the applica-

bility of common optimizations to user-defined types and operations and thus on

improving the effectiveness of compiler transformations for imperative programming

languages.

1.1 Abstraction Penalties

Implementing a practically useful compiler for a general purpose programming

language is expensive. To manage the complexity of such a task, a compiler is

usually divided into three modules—the front-end, the middle-end, and the back-

end. The front-end of a compiler is designed to be language specific; it translates

a program into its AST (abstract syntax tree). The back-end is target specific;

it emits code (instructions in binary form) for specific targets. The middle-end is

independent of languages and targets; it usually employs a language- and target-

neutral IR (intermediate representation) and performs analyses and optimizations

upon it.

That the middle-end is language- and target-neutral is important for reuse and

modularity. At the same time, it is, however, a challenge for the optimizer. The IR

of the middle-end of a compiler generally does not maintain information about user-

defined types; user-defined types are mainly used for type checking source code in

the front-end and discarded afterwards. As a result, the middle-end does not directly

support optimizations for user-defined types. Instead, transformations in the middle-

end are defined only for built-in types and the set of built-in operations for them.

User-defined abstractions are thus obstacles to compiler optimizers; compilers merely

1



translate them into lower-level representations according to their definitions before

attempting to perform optimizations.

The difficulty of optimizing user-defined abstractions raises a performance con-

cern with the use of abstractions. On the one hand, abstraction helps solve prob-

lems by reducing the complexity of problems, and indeed high-level programming

languages provide rich facilities for defining abstractions. For example, C++ allows

extending the syntax of built-in types to user-defined types, by operator overloading.

As a result, a programmer may use concise notations for expressing computations

involving user-defined types. On the other hand, uses of abstractions come with

costs, such as function call overhead and increased number of temporaries.

To quantify the impact of abstractions to performance, Stepanov defines abstrac-

tion penalty as the ratio of the execution time of a high-level, abstract implementation

over that of the corresponding low-level, direct implementation [1, §D.3]. A concrete

example of abstraction penalties follows.

Let x,y, and z be of some user-defined vector type that supports vector arithmetic.

Consider the expression z = x + y. A compiler likely translates this expression into

two successive simpler expressions, t = x + y; z = t, where t is a temporary vector

variable, introduced by the compiler. If the above expressions would be for integers,

or for another built-in numeric type, a compiler would be able to eliminate the effect

of the additional temporary; it would apply copy propagation to replace the use

of z with the use of t, and it would rely on unreachable code analysis to remove

z = t. Similar optimizations for a user-defined vector type, however, are beyond the

capabilities of production compilers. Optimizing away z = t for vectors would require

a compiler to have semantic knowledge about the operations on vectors, including

that the assignment operator creates two objects that compare equal. A compiler

typically neither maintains nor takes advantage of such knowledge. As a result, in

the case of vectors, z = t cannot be directly optimized away by a compiler. At most

a compiler translates the expression into its low level representation according to

2



the definition of vector assignment operator, which typically involves a loop, and

then attempts to perform optimizations. Such a way of optimizing user-defined

abstractions is opportunistic—the effectiveness of optimizations depends on many

arbitrary factors.

To see why a compiler has difficulty in optimizing operations involving user-

defined types, we analyze another simple example. Its simplicity is a bit deceiving,

as the interplay of many analyses and optimizations are needed for a not particu-

larly impressive transformation. Consider the code in Figure 1.1. Assuming a few

T x, y, z, w, r, s;
... // initialization
r = x + y + z;
... // code that does not change x and y
s = x + y + w;

Figure 1.1. A code sample containing common subexpressions.

conditions on the type T, that copying produces two distinct objects that compare

equal and that operator+ has no side-effects, this code contains several optimiza-

tion opportunities. These opportunities become more evident when the compiler

breaks complex expressions into simpler ones as illustrated in Figure 1.2. If common

T x, y, z, w, r, s, t1, t2, t3, t4;
... // initialization
t1 = x + y;
t2 = t1 + z;
r = t2;
... // code that does not change x and y
t3 = x + y;
t4 = t3 + w;
s = t4;

Figure 1.2. Code resulting from simplifying the code in Figure 1.1.
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subexpression elimination is applied, the expression t3 = x + y becomes t3 = t1. This

rewrite reveals another optimization opportunity, namely that of copy propagation:

the use of t3 in t4 = t3 + w can be replaced with t3’s definition t1. Eventually t3

becomes unused, and the compiler can elide its definition altogether as dead code.

The above reasoning can only be expected of a typical modern compiler if T

is some built-in type, such as int. If T is a user-defined type it is unlikely that

the optimizations are performed, even if T is a simple “value type,” such as one

representing a coordinate pair or a complex number. If a compiler does not know

the semantics of a user-defined type’s operations, it is forced to make conservative

assumptions. E.g., to show that x and y cannot change between the two calls x + y

is beyond most compilers’ abilities.

In general, even though the operations and properties of a user-defined type were

essentially the same as those of some built-in type, a compiler is not capable of the

same class of analyses and optimizations for the user-defined type as it is for built-in

types.

1.2 Generic Transformations

Extending a compiler to apply its built-in optimizations to some particular user-

defined type would be useful for that particular type but applying this approach

on a type-by-type basis quickly becomes unmanageable, leading to a proliferation

of compiler versions; a large monolithic compiler that would perform optimizations

for all possible types is not realistic. The cost of maintaining multiple versions of

compilers is high and different compiler versions are not composable. For example,

given one compiler that supports optimizations for the std::vector class and one for the

std::list class, it is not straightforward to build a compiler that supports optimizations

for both of the two classes.

This dissertation develops more economical means to enable traditional optimiza-

tions for user-defined types. In this thesis, we rely on generic programming. This

4



programming paradigm, advocated by Stepanov and others, achieves significant code

reuse through systematic categorization of abstractions. Analogously, such a system-

atic categorization can be the basis of generic and reusable compiler optimizations.

This is natural as programmers of generic code routinely rely on the algebraic prop-

erties of types to transform their code (manually). In this respect, this dissertation

is a work towards fulfilling the goal described by Dehnert and Stepanov [2]:

Ultimately, we would like compilers to be able to perform such optimiza-

tions [common subexpression elimination, const and copy propagation,

and loop-invariant code hoisting and sinking] at a high semantic level as

well as they do at the built-in type level.

1.3 Domain-Specific Optimizations

Even if we succeed in constructing a compiler that is capable of traditional op-

timizations for user-defined types, we should not stop there. Modern software con-

struction uses off-the-shelf libraries heavily; an application is usually built upon a

set of reliable libraries. Such library-centric software construction may not arrive at

efficient code, however. Two reasons are identified for this.

First, a library usually encapsulates domain knowledge, e.g., algebraic properties

of types. Such knowledge is an opportunity for further optimizations. It is often the

case that two operations may be semantically equivalent but one is more readable

and the other is more efficient. To transform the former to the latter requires domain

knowledge, but such domain knowledge is rarely exploited in a production compiler.

Languages do not provide mechanisms to convey such knowledge to the compiler.

Further, the performance of a library may depend on the context where this li-

brary is used, including the run-time system, the operating system, and the architec-

ture; taking into account the context information may allow a compiler to generate

specialized, highly efficient code for the library in a particular context. As there
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are typically no mechanism to communicate such context knowledge to a compiler,

obtaining the most performance when composing libraries may be challenging.

To address performance concerns with the use of libraries, this dissertation studies

how to support domain-specific optimizations in compilers.

1.4 Infrastructure for Generic Optimizations

The goal of this dissertation is to enable the implementation of reusable and ex-

tensible transformations in a compiler. Reusable in the sense that transformations

apply to user-defined types and built-in types equally and that a single implementa-

tion of an optimization applies to more than one type. Extensible in the sense that

a compiler shall allow a programmer to add custom transformations. To achieve its

goals of reusability and extensibility, this dissertation studies the compiler infrastruc-

ture for supporting reusable transformations, a variety of reusable transformations,

language support for user-defined transformations, and the necessary program anal-

ysis support.

Specifically, this dissertation describes an infrastructure for implementing generic

compiler optimizations that apply to open-ended classes of user-defined (or built-

in) types. Transformations on operations of particular types are instances of these

generic optimizations. This infrastructure follows the principles of generic program-

ming, a paradigm for designing and implementing reusable software libraries. It was

popularized to the mainstream by the Standard Template Library (STL) [3], now

part of C++ standard library [4]. Following the example of the STL, many successful

generic libraries have been developed for a variety of domains [5–11]. Characteris-

tic to these libraries are rigorously specified interfaces, using “concepts.” Concepts

are essentially algebraic descriptions of requirements on types—both syntactic and

semantic. In generic libraries, generic algorithms are expressed in terms of abstract

properties of types using concepts, rather than concrete types, and data types are
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categorized according to which abstract properties they satisfy, i.e., which concepts

they model.

For reusable, extensible optimizations, this infrastructure enables transformations

to be defined in terms of concepts. This capability is obtained by supplying a tra-

ditional compiler with additional rich type information, including types of variables

and functions, concepts, and the modeling relations from types to concepts. Such rich

type information is accessible throughout the compiler pipeline in the infrastructure.

Type systems of mainstream programming languages do not typically allow the

expression of semantic properties. Particularly, in C++, the language this thesis

uses as a study subject, concepts do not have an explicit representation in the type

system; they are a documentation convention. To improve C++’s support of generic

programming, recent extensions to C++ lift concepts from documentation to language

features [12]. This extended language provides an experimental platform for the work

in this dissertation, and this dissertation refers to it as ConceptC++.

Note that the concepts proposal was decoupled from the C++11 standard. There

were a variety of uncleared worries and concerns about using the proposed concepts

facilities at the time of deciding on the features of the C++11’s standard. However,

previous work on concepts has showed the technical strength of using concepts in

generic programming. As Stroustrup pointed out [13],

“Concepts,” as developed over the last many years and accepted into

the C++0x working paper in 2008, involved some technical compromises

(which is natural and necessary). The experimental implementation was

sufficient to test the “conceptualized” standard library, but was not pro-

duction quality. The latter worried some people, but I personally consid-

ered it sufficient as a proof of concept.

There is an ongoing effort [13] to introduce concepts into a future revision of C++,

led by Stroustrup.
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This dissertation views the concepts feature as a non-intrusive means for com-

municating knowledge of abstractions (including transformation rules) to compilers.

Without the concepts feature in C++, other kinds of annotations could be used. This

dissertation uses the concepts features, but the exact form of how concepts are ex-

pressed is not essential. What is essential is a means to categorize types and attach

algebraic rules to these categories.

1.5 Contributions

This dissertation studies building reusable, extensible transformations in modern

compilers for mainstream imperative programming languages, C++ in particular. As

its contributions, this work

• Proposes “concept-based optimization” to support extensible optimizations

and develops a framework for supporting user-defined domain-specific trans-

formations. The framework is based on term rewriting. In particular, this

dissertation identifies a set of algebraic structures and their algebraic proper-

ties relevant for typical compiler transformations. The framework allows to

recognize models of these structures and apply transformation rules derived

from these structures to an open-ended set of user-defined types.

• Devises an approach that extends generic term rewriting beyond the front-end

of a compiler into the middle-end. This approach utilizes the compiler’s existing

functionalities to translate rewrite rules and subject code side by side into their

respective intermediate representations. For effective rewriting, this approach

assigns an abstraction index to a function or a rewrite rule for indicating the

relevant abstraction level where a function or a rewrite rule stays among all

functions and rewrite rules in a program, and uses the abstraction indices to

address the phase ordering problem arising from combining term rewriting and

function inlining.
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• Implements a concept-based optimizer prototype, as an extension to the Con-

ceptGCC compiler [12]. It exploits the “concepts” language feature [14] of the

C++ concepts proposal [15] for specifying generic rewrite rules and justifying

their validity for desired user-defined types.

• Evaluates concept-based optimizations with some customized code and a micro-

benchmark from Adobe [16]. The evaluation results indicate that the concept-

based approach can effectively eliminate abstraction penalties in C++ programs.

• Explores the structure of composite objects, one important class of types in

generic programming, and characterizes the aliasing invariant of composite

objects. It then presents a summary-based program analysis that uses the

properties of composite objects to reduce analysis efforts and improve analysis

precision.

• Evaluates the program analyzer by analyzing uses of the STL containers and

three real-world applications. This evaluation shows that the analyzer pro-

duces more precise and concise procedure summaries. Compared to traditional

analysis, we measure significantly smaller points-to relations and procedure

summaries in analyzing real-world applications.

• Lifts a few classes of optimizing transformations into generic transformations

in the concept-based framework. These generic transformations apply equally

to user-defined classes and built-in types.

• Prototypes generic transformations in the LLVM infrastructure [17] and the

Clang compiler [18]. These generic transformations are integrated with the

above program analyzer.

• Evaluates the transformation prototype with SPEC2000 [19]. The capabil-

ity of optimizing user-defined types gains modest performance speedup for

SPEC2000.
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1.5.1 Optimization Cases

To give a concrete example of the optimization capability attained in this work,

consider the code below.

int accumulate(const std::vector<int> &grades) {

int sum = 0;

for (std::vector<int>::iterator iter = grades.begin(); iter != grades.end(); iter++) {

sum += ∗iter;

}

return sum;

}

The above code simply iterates over all elements of a vector, the input of the

accumulate function, and accumulates the values of these elements. It is obvious

to a programmer that the method call grades.end() is loop invariant— this call on

each iteration produces the same side effect, e.g., accessing the same memory with

the same value each iteration and/or writing to the same memory the same value

each iteration. This optimization opportunity, however, fails to be revealed by a

traditional optimizing compiler.

The foremost challenge for optimizing the above code is efficiently and effectively

computing the aliases arising from the use of pointers (and references). Such pointer

analysis is usually prohibitive to a traditional compiler, requiring being flow-sensitive,

context-sensitive, and inter-procedural. This thesis attacks the challenge by utilizing

the knowledge of user-defined types, e.g., the aliasing invariant with the vector<int>

class, to make pointer analysis affordable. Our approach manages to reveal the

loop-invariant method call in the above code.

In addition to hoisting grades() out of the loop, there are other opportunities for

high-level optimizations. For example, in our approach we can augment the compiler

with the knowledge of a single generic rule such as iter++ → ++iter which can allow
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replacing the use of iter++ with ++iter (++iter is often more efficient than iter++ in

C++).

1.6 Thesis Organization

The structure of the thesis is as follows. After introduction, Chapter 2 reviews

related work. Chapter 3 overviews the approach of exploring concepts for optimiza-

tions and describes the background on the approach. Chapter 4 presents an approach

that exploits concepts and axioms for enabling generic, user-defined transformations

in the compiler. Transformations described in Chapter 4 are limited to the front-end

of the compiler; Chapter 5 extends these transformations into the middle-end of the

compiler. Chapter 6 describes how to exploit the compositeness property of user-

defined types to improve the precision of program analyses. Relying on the analysis

in Chapter 6, Chapter 7 studies lifting some common optimizations into generic ones

such that they apply to user-defined types as well. Lastly, Chapter 8 concludes this

thesis and discusses future work.
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2. RELATED WORK

This dissertation pushes a traditional optimizing compiler to take advantage of

the semantic and domain knowledge of user-defined abstractions for optimizations.

In a broad sense, this work is related with using abstractions in software construction,

and, specifically, with the areas of program analyses and program transformations.

2.1 Library-Centric Software Construction

A programming language is designed for facilitating solving problems. To solve

a given problem, it is appealing to use a special-purpose language which provides

primitive operations for performing computations in the domain of this problem. A

special-purpose language can allow for a concise and intuitive implementation, for

which a compiler of the special-purpose language may ensure high performance.

Developing and maintaining the toolset (the compiler, debugger, linker, and run-

time support) for a special-purpose language is, however, expensive, considering

a limited number of users. In contrast, the analogous cost for a general-purpose

programming language, like C, C++, or Java, is amortized over a larger base of users.

To achieve the effect of a special-purpose language, a general-purpose language

may be extended with domain-specific features. For example, Rex Jaeschke formed

the numerical C extension group for extending C with linguistic features for scien-

tific computing [20]. Supporting domain-specific features with language extensions

is, however, controversial. Language extensions require compiler support, which com-

piler vendors tend to be reluctant to provide until the extensions become part of lan-

guage standards. At the same time, including a language extension into a language

standard receives cautious considerations. To be included, a language extension

should be of interest to a large number of users and not increase the language’s com-

plexity disproportionately. Consequently, language extensions are a limited success

in providing domain-specific features to general-purpose programming languages.
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Libraries are alternatives to language extensions for adding domain-specific sup-

port for general-purpose languages. A well-designed library can provide a coherent

and complete set of data types and operations for computations within a particular

domain. As an example, consider the domain of linear algebra. Early in 1973, Han-

son, Krogh and Lawson argued about the benefits for using a set of basic routines

for solving problems in linear algebra [21]. Since then, the basic linear algebra sub-

programs(BLAS) [22–26] have been successful libraries in FORTRAN for building

high-quality linearly algebra software, e.g., LINPACK [27]. The success of BLAS in

FORTRAN has been replicated in other languages. CBLAS, a C library, provides

a set of interfaces which are equivalent to the interfaces BLAS defines [28]; uBLAS

makes BLAS functionality available to C++ users [29].

Today libraries are central in building applications; applications are built on re-

liable libraries. Often there are conflicting concerns for library design. Providing

concise, convenient notations or safety guarantees may compromise performance,

for example. Thus, some libraries provide multiple semantically equivalent sets of

interfaces for different goals. For instance, a programmer may use the overloaded

subscript operator to access an element of one instance of the vector template in the

standard template library (STL) [3]; this operation is not safe in that the subscript

operator performs no checks. In case that safety is valued above performance, a

programmer may choose to use the at method of the STL vector to access elements;

the at method performs run-time checks. Another example is LiDIA, a C++ library

for computational number theory [30]. For readability and maintainability, this li-

brary provides a set of interfaces following convenient and familiar mathematical

notations. At the same time, it provides an alternative set of interfaces which are

less convenient but promise better performance. With such dual interfaces, libraries

can satisfy different needs of users, but add complexity to their use, bothering users

with questions about interface choices.
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A programming paradigm of particular interest for library design is generic pro-

gramming. Generic programming promises reusable and efficient libraries. Reusable

algorithms and components are obtained through parametric polymorphism and ef-

ficiency is achieved by template specialization and compile-time overload resolution.

Examples of generic libraries include BGL [5,11], MTL [6], and STAPL [9].

Though C++’s way of implementing parametric polymorphism using templates

is efficient, use of well-designed generic libraries does not necessarily result in ef-

ficient applications; composing libraries is challenging, as described in Section 1.3.

Several approaches have been proposed for addressing this issue. One idea is gen-

erative programming and active libraries [31]. Generative programming resembles

generic programming in that they both aim for reusable and efficient software prod-

ucts. Their strategies for enhancing software construction, however, are different.

Generative programming is a software engineering paradigm; it is concerned with

all phases of software development; it models families of abstractions such that the

differences between them are encapsulated in customizable features, and a user is

allowed to choose the right set of features for an efficient, specialized component in

a particular context. In contrast, generic programming is a paradigm for designing

libraries; it seeks the commonality of similar implementations of a single algorithm,

and extracts the commonality into abstractions (concepts) such that a single, generic

implementation of this algorithm can cover many concrete implementations.

Libraries designed following generative programming are often called active li-

braries. An active library provides not only a set of abstractions, but a set of opti-

mizations for the abstractions as well. Examples of active libraries include MTL [6],

POOMA [32], and Blitz++ [33]. At compile time, an active library plays an active

role in generating efficient code by benefiting from the set of optimizations defined

in this library. For example, to make full use of the cache line of an architecture, a

loop in the body of the transpose method in MTL is automatically unrolled. Though

active libraries are often easy to adopt in that they require no modification to exist-
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ing compilers, the techniques that are used for implementing active libraries require

quite some expertise. Further, the transformations that active libraries support are

limited to the front end of the compiler and sophisticated analyses are not used.

2.2 Program Transformations

Besides active libraries, several approaches have been designed for addressing

the performance issues with using libraries. They differ in implementation strate-

gies, usability, effectiveness, scalability, and economics. This section reviews them,

categorized according to their implementation strategies.

Reflection and metaprogramming Reflection and metaprogramming allow a

programmer to manipulate the behavior of a program. With Java or C# reflection,

a programmer may examine or modify the run-time state of an application, e.g., by

enumerating the methods which a class defines and invoking these methods with an

object of this class. As opposed to reflection, metaprogramming is for manipulating

programs at compile time rather than at run time.

Several works explore reflection and metaprogramming for domain-, application-,

or even class-specific transformations. The aforementioned active libraries are im-

plemented by metaprogramming. In particular, Todd Veldhuizen and David Van-

devoorde reveal that C++ expression templates are an effective means to eliminate

temporary variables for expressions operating on user-defined types [34–36]. An-

other work is OpenC++ [37]. OpenC++ is an extended version of C++. In OpenC++,

an object may be associated with a metaobject; such an object is called as a reflec-

tive object to distinguish itself from a normal object. The behavior of a reflective

object may be altered by the metaobject associated with it. For example, invoking

a method of a reflective object may be intercepted, such that additional operations

may be performed before entering into and/or exiting from this method.
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Reflection and metaprogramming are advanced features for program manipula-

tion. They do not come without cost. Metaprogramming demands expert skills,

while reflection requires run-time support and can have a notable performance over-

head.

Term rewrite system Rewrite rules are effective for communicating user-defined

transformations to compilers. User-specified rewrite rules for optimizations are sup-

ported even in some familiar popular programming languages such as in Haskell [38].

Next we describe a few works that exploit term rewriting for domain-specific trans-

formations, and are relevant for our work. We start from the most closely related

works.

Sibylle Schupp et al. designed Simplicissimus for exploiting domain-specific knowl-

edge for optimizing transformations in C++. Simplissimus is a source-to-source trans-

lator [39]; it applies user-defined transformation rules during the course of translation.

What most characterizes Simplissimus is the means of defining rewrite rules and the

preconditions on applying them. In Simplissimus, a rewrite rule and the constraints

on applying this rewrite rule are grouped into a class template. Such a rewrite rule

in a class template applies to a type if this type is specified to satisfy the constraints

this class template defines.

Simplicissimus follows the principles of generic programming. In Simplicissimus,

rewrite rules in a class template are generic; they apply to an open-ended set of

types. This dissertation shares with Simplicissimus the same inspiration that generic

programming can support extensible transformations. What differentiates the two

works is as follows. First, Simplicissimus uses C++ template metaprogramming for

defining and effecting code transformations while this dissertation leverages the lin-

guistic support for concepts in ConceptC++. Moreover, this dissertation extends the

applicability of generic transformations from the exact syntactic pattern matching

that Simplicissimus requires.
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Bagge and et al. also exploit term rewriting for domain-specific optimizations.

Their work, called CodeBoost [40], is built upon a general term rewrite language,

called Stratego [41, 42]. Stratego provides abstractions for users to define strategies

for applying rewrite rules. A strategy may be as simple as an identity transformation,

or it may be a complex composition of different strategies. In CodeBoost, a rewrite

rule is prefixed with a strategy that controls the rule’s application. Besides lever-

aging Stratego, CodeBoost enhances the expressiveness of rewrite rules in several

aspects. First, rewrite rules are defined in C++ syntax; variables involved in rewrite

rules may be declared with types and such type information is taken into account for

distinguishing overloaded operators. Second, rewrite rules may be optionally associ-

ated with conditions; these conditions act as guards for applying the rewrite rules.

Third, rewrite rules may be defined independently of types and function signatures,

thus being generic and applicable in many scenarios.

Following the line of work of building domain-specific transformation in a general

term rewrite language, Visser explores dynamic rewrite rules for overcoming the lim-

itation that term rewriting is context free [43]. Dynamic rewrite rules are generated

on the fly at run time to propagate data-flow facts. Visser describes that combining

scope information with dynamic rewrite rules, i.e., “scoped dynamic rewrite rules”, is

expressive enough for defining transformations such as function inlining. Olmos et al.

further explore dynamic rewrite rules for expressing more general transformations,

such as cost propagation, copy propagation, and common subexpression elimina-

tion [44]. The key to their work is introducing “dependent dynamic rewrite rules” to

model the fact that dynamic rewrite rules depend on data-flow information. Depen-

dent dynamic rewrite rules eases maintaining the mapping from dependencies to the

rewrite rules they affect, allowing certain transformations to be specified concisely.

Rewrite rules have of course been exploited for transformations from early on. For

example, TAMPR, initiated in 1970, is a rewrite-rule based transformation system
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[45] that has been successfully used to define high-level transformation rules for calls

to the routines of the LINPACK library.

As in Schupp and et al.’s work [39], user-defined rewrite rules, in this thesis,

are in C++ syntax and they are generic. Also as in Bagge and et al.’s work [40],

rewriting, in this thesis, is flow-sensitive—conditions are associated with rewrite rules

to express transformations that are dependent on data-flow facts. What distinguishes

this thesis from them is that we aim for building a general framework that allows to

exploit common knowledge of data types for transformations throughout the whole

compilation pipeline. In this framework, we use ConceptC++ to concisely express

type-safe generic rewrite rules; we exploit the common properties of data types for

an affordable, scalable, and precise pointer analysis, to enable a broad range of

transformations for user-defined types, including conducting flow-sensitive rewriting.

Annotation languages and sophisticated analysis frameworks Employing

sophisticated analysis, e.g., for computing data-flow facts or reasoning about the

semantics of user-defined functions, may reveal more transformation opportunities

than relying on traditional analyses in compilers. Such sophisticated analysis is

challenging, however. Precise data-flow analysis is impossible or expensive for prac-

tical programming languages. Therefore, some works utilize annotation languages

for communicating the semantics of user-defined abstractions to compilers hoping to

enable sophisticated analyses and transformations.

Guyer et al. provide a compiler, called Broadway, for exploiting domain-specific

transformations. Broadway applies abstract interpretation for uncovering transfor-

mation opportunities [46]. Abstract interpretation maps concrete objects to abstract

objects and simulates the execution of a program in the domain of abstract ob-

jects [47]. The goal (of abstract interpretation) is to gain some information about

the actual running of a program. The necessary knowledge for enabling abstract

interpretation is the abstract domains and the abstract semantics of functions oper-
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ating in the abstract domains. Broadway designs an annotation language for users

to provide such knowledge to the abstract interpretation engine.

Kennedy et al. exploit axiomatic systems for reasoning about programs and

discovering transformation opportunities [48–50]. Their work, called Telescoping

languages, also relies on annotating functions to describe their semantics. So, like

Broadway, the telescoping languages approach puts the annotation burden upon

users. Compared with Broadway and Telescoping languages, this thesis reduces the

annotation efforts through generic transformations and performs sophisticated data-

flow analysis for automatically reasoning about data-flow facts of programs.

Declarative specification languages Extensible, or open, compilers are one pos-

sible approach for supporting domain-specific transformations. An open compiler

allows users to inject custom transformations to the compilation process. This is

usually achieved with declarative specification languages.

One example of an open compiler is the Cobalt project by Lerner et al. [51].

This project develops a language for specifying transformations and the analyses

which these transformations depend on. A noteworthy feature of Cobalt is that

it produces automatic soundness proofs of transformations defined in it. Recently,

Willcock proposed a regular expression language called Pavilion for an extensible

compiler [52]. Like this thesis, Pavilion also applies the idea of generic programming

for its extensible transformations.

2.3 Program Analyses

This thesis draws from many works in the area of program analysis. Program

analyses reveal information about possible run-time states of a program. Such in-

formation is usually required for justifying program transformations. Typically, a

compiler performs data-flow analysis for reasoning about the use and definition of

variables. This data-flow information is the input to some other analyses and some
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transformations, e.g., reaching definition analysis, liveness analysis, available expres-

sion analysis, and constant propagation [53]. Precise data-flow analysis is challenging,

however. In particular, the aliasing issues arising from the use of pointers complicate

data-flow analysis. On the other hand, given the points-to relations at every program

point of a procedure, it is quite straightforward to compute the side effects that the

procedure may produce. Assuming the availability of pointer analysis, this thesis

performs side effect analysis according to the strategy described by Landi et al. [54].

This section next reviews works on aliasing.

Aliasing occurs when a storage is accessible in more than one way, usually as the

result of the use of pointers. Alias analysis is to disambiguate aliasing by computing

what pointers may refer to what objects. Landi proves that the aliasing problem

is difficult; it is impossible to statically compute precise aliases for a programming

language which supports if-statements, loops, dynamical storage, and recursive data

structures [55]. Ramalingam provides different proofs for the same results as Landi’s

work [56]. Consequently, many works have focused on computing safe approximations

to the aliasing problem.

A solution to the aliasing problem is safe if each possible run-time points-to re-

lation at each program point is in the set of the points-to relations that this solution

computes at the same program point. There exists a variety of safe aliasing analy-

ses. These analyses differ in their precision and efficiency. Andersen describes a fast

flow-insensitive analysis [57]. Flow-insensitive analysis does not take into account

the order of program statements and thus may generate results that are too con-

servative. Andersen’s approach derives subset constraints from the statements of a

program; solving a constraint system composed of such subset constraints amounts

to computing a safe approximation to the run-time points-to relations of the pro-

gram. Steensgaard proposes a fast constraint-based pointer analysis [58], which is

also flow-insensitive. Compared to Anderson’s, his is faster but less precise.
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Flow sensitivity is crucial for the precision of pointer analysis. Choi et al. present

a flow-sensitive pointer analysis [59]. They formulate points-to analysis as a mono-

tone data-flow framework [60], where an equation is established at each statement

to describe this statement’s effect on aliasing. Computing the fixed point solution

for a set of such equations eventually produces a set of points-to relations or a set

of aliases at each program point. Besides being flow-sensitive, Choi’s approch is also

interprocedural, context-sensitive, and field-sensitive. Interprocedural analysis takes

into account the aliasing effects that function calls may produce; context sensitivity

differentiates different calls to a single function; and field sensitivity distinguishes

different member fields of objects. All of these techniques contribute to the precision

of pointer analysis. This thesis applies these techniques for a precise points-to anal-

ysis. In addition, this thesis explores three further means to improve the precision

and efficiency of pointer analysis: (1) type-based alias analysis, (2) summary-based

analysis, and (3) aliasing control in object-oriented programming.

Type-based alias analysis Types are known to be helpful for disambiguating

aliases. Diwan et al. discuss [61] three kinds of type-based alias analyses for detect-

ing whether two objects may overlap. Type information alone may produce quite

conservative results on aliasing. E.g., type-based analyses cannot determine that two

objects of certain types are disjoint. This thesis observes that certain class invari-

ant, that guarantee disjointedness is common and thus present in many classes. For

example, two distinct objects of a STL string are disjoint. This thesis studies such

classes and their class invariants, and explores the invariants in designing an efficient

and precise points-to analysis.

Summary-base analysis Summary-based analysis can help scalability [62–64]. A

procedure summary conservatively approximates a procedure, describing information

such as the procedure’s side effects and its impact on aliasing. Procedure summaries

act as transfer functions at call sites. An analysis approximates the effect of a
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function call by binding a calling context to the function’s parameters in the callee

procedure’s summary; the body of the callee is not analyzed again.

Generating a precise procedure summary is usually not possible; the knowledge

about a procedure’s invisible variables, i.e., objects accessible via the procedure’s

parameters and via global variables used in a procedure [65,66], is often incomplete.

Wilson et al. argue that computing a procedure’s summary based on all possible

aliases of its invisible variables is prohibitively expensive [67]. Chatterjee et al.

describe a summary based analysis for a simplified variant of C++ [62]. They use,

in the context of object-oriented programming, the types of invisible variables to

reduce the number of spurious aliases among the invisible variables: only if the

type of one invisible variable is in a subtyping relation with the type of another

invisible variable, the two variables may alias. This thesis exploits types and their

properties to further reduce spurious aliases among the invisible variables. As a

result, procedure summaries remain very small; they contain a small number of

points-to relations and side effects.

Aliasing control Several works propose sophisticated type systems for enforcing

aliasing control on objects, so that aliases may be better statically understood and

verified. John Hogg introduces the notion of islands for ensuring that objects are not

aliased [68]. An island encapsulates a set of objects and guarantees that accessing

this set of objects must go through a unique interface. Thus, an island has no

aliases. Almeida’s balloon types are similar to island types, but the underlying

implementation mechanism is different [69].

Island types and balloon types impose a full alias protection for an object in its

entirety. In contrast, Noble et al. describe a more flexible partial alias protection

strategy [70]. They use two parameters, arg and rep, in an object’s type definition to

specify which parts of an object are allowed to be referenced from outside and which

are not. Clarke et al. subsequently design ownership types [71]. Ownership types

22



formalize the core of flexible alias protection. In a basic ownership type system, each

object has a unique owner, which is another object or a predefined entity. Accessing

an object must first access the owner of this object. In a followup work, Clark et al.

explore ownership types for statically disambiguating aliases between objects [72].

Ownership type systems are quite relevant for the work presented in this thesis.

This thesis studies how to exploit the knowledge for classes of data types for analyses

and optimizations. One particular class of data types, regular composite types,

studied in this thesis resemble ownership types. What distinguishes the thesis from

ownership types is the way of exploiting type information for addressing the aliasing

problem; this thesis performs program analysis to understand aliases while Clark’s

work uses type systems for imposing alias restrictions.

2.4 Summary

This section diagrammatically summarizes how this thesis is related with previ-

ous work. The two diagrams, Figure 2.1 and Figure 2.2, illustrate the related op-

timization techniques that previous works and this thesis propose for the front-end

and middle-end of the compiler. In the two figures, the solid arrows denote normal

processing flow in the traditional compiler and the dashed ones denote additional

optimization flows explored by previous work and this thesis.

In Figure 2.1, normally source code and libraries are fed into the parser and type

checker, which output the AST. The AST is then transformed into the intermediate

representation (IR), e.g., via the lowering processing. In the normal processing flow,

additional optimizations may be achieved by leveraging the capability of metapro-

gramming. Such examples include active libraries [31] and Simplicissimus [39].

To support domain-specific optimizations, third-party optimizers, such as Broad-

way [46], the Telescoping languages project [48], and CodeBoost [40], often work as

source-to-source translators. For obtaining domain-specific knowledge, third-party
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Figure 2.1. Various optimizations techniques applied in the front-end.

optimizers often require users to annotate source code and libraries. This thesis

and a few works, such as Simplicissimus [39] and Willcock’s Pavilion language [52],

utilize the concepts specification [14, 73, 74] to communicate domain knowledge to

the compiler. Concepts describe the syntactic and semantic requirements for a class

of types, rather than a specific type. Such specification is abstract, generic. One

benefit of tying transformations with concepts is that it makes them part of normal

routine of generic programming. This assumes a language that supports concepts

as a language feature. Indeed this thesis is partially motivated by the concepts

features in ConceptC++. It studies how concepts support domain-specific analyses

and optimizations. In contrast, Simplicissimus utilizes metaprogramming to emulate

concepts, and Willcock investigates how to support concepts in a language which is

used for specifying analyses and optimizations.

To utilize the abstract or generic domain knowledge along with source code, this

thesis builds a generic rewrite system. This rewrite system, from abstract domain
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knowledge, derives type-specific transformation rules and applies them throughout

the compilation process. Use of domain knowledge and type-specific rewrites is thus

not limited to the front-end. This is an important difference between our work and

previous works such as Simplicissimus; Simplicissimus performs optimizations only

in the front-end.
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Figure 2.2. Various optimizations techniques used in the middle end.

In the middle-end, as shown in Figure 2.2, typically analyses and optimizations

apply to built-in types. To extend these optimizations, one approach is to use declar-
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ative languages for defining analyses and transformation. Examples of this approach

include Cobalt [51] and Willcock’s Pavilion [52]. These works have different fo-

cuses from this thesis. They focus on facilitating and designing custom program

transformations. Instead, this thesis focuses on usability. It enables the compiler to

apply some common transformations to user-defined types and perform user-defined,

domain-specific optimizations without little or no efforts from users.

Our approach aims to exploit concepts to define analyses and optimizations that

are generic. Generic analyses and optimizations are not defined for specific types but

for a class of types, namely concepts. With the available domain knowledge from

the front-end, generic analyses and optimizations work as if type-specific analyses

and transformations are generated on the fly for optimizing user-defined types and

operations. In the long run, generic analyses and transformations may completely

cover built-in analyses and optimizations. This thesis, however, keeps both.

Also this thesis performs term rewriting in the middle-end. Together with the

term rewriting functionality in the front-end, this thesis presents a full-fledged generic,

flow-sensitive term rewrite system. This system requires users to define generic

rewrite rules, as part of concepts specification, and attempts then to apply these

generic rewrite rules to appropriate concrete types throughout the compilation pipeline.

For effective rewriting, it uses data-flow facts that are available from the middle-end

analyses.
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3. CONCEPT-BASED OPTIMIZATIONS*

The prior chapters describe the potential benefits of high-level optimizations, why

they are typically not applied in industrial compilers, and suggest an approach rely-

ing on the generic programming paradigm to attain those benefits. The subsequent

chapters will detail our contributions in enabling and realizing high-level optimiza-

tions in industrial compilers. This chapter gives an overview of the approach and

reviews the relevant background.

3.1 Concept-Based Optimization Infrastructure

In generic programming, algorithms whose type parameters are constrained by

concepts apply to types that satisfy those concept constraints. This thesis applies the

same principle to compiler analyses and optimizations. It studies, when the compiler

has knowledge of concepts and of which types model those concepts, how to exploit

such knowledge for implementing user-defined, domain-specific optimizations.

Figure 3.1 shows the compiler architecture for taking advantage of concepts for

various analyses and optimizations. This architecture is that of a traditional com-

piler, augmented with an additional component for maintaining the concept and

model information. To obtain this information, the front-end parses and analyzes

concepts specifications and records the modeling relation between types and con-

cepts. The modeling information is retained during lowering, i.e., the processing of

translating high-level programming languages into low-level intermediate representa-

tions. The availability of types and concepts at many stages of compilation enables

exploiting concepts for various analyses and optimizations.

*Reprinted with permission from “Concept-based optimization”, by Xiaolong Tang and Jaakko
Järvi. In Proceedings of the 2007 Symposium on Library-Centric Software Design, pages 97–108,
Montreal, Canada, 2007. c©2007 ACM, Inc.
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Figure 3.1. Concept-based optimization architecture.

The first possibility of applying concept-based optimizations is at the point of

type checking constrained templates. Then, only intra-procedural analysis is possi-

ble and the optimization opportunities are thus limited. Our prototype compilers

nevertheless apply optimizations at this early phase, immediately after type checking,

to simplify further processing. At this point, all necessary information for effecting

concept-based transformations is readily available. The constraints on the type pa-

rameters of a generic component are used to bind each function and operation call

to a particular operation defined in some concept, and thus the transformations that

are derived from that concept can be applied. Such transformations are described in

Chapter 4.

Many optimization opportunities may only become available after inlining, con-

stant propagation, alias analysis, and other data-flow sensitive information, and it

is thus beneficial to apply concept-based optimizations throughout the compilation

process. This topic is covered in Chapters 5–7.
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3.2 Programmers Perform Generic Optimizations

It is common practice in generic programming that programmers utilize the se-

mantic properties of concepts for ensuring the correctness of algorithms and/or im-

proving code performance. One example is the definition of the advance() algorithm

in STL. This algorithm takes as input two parameters, an iterator i and a distance

number n, and increases the iterator by the distance number. Depending on the kind

of the iterator, there are different optimization opportunities. If the iterator is an

input iterator, increasing it by n times can be implemented as while (n−−) ++i. This

implementation is not efficient when the iterator is a random access iterator, how-

ever. For a random access iterator, the implementation can be as simple as i += n.

To accommodate different implementations for a single algorithm, STL utilizes tag

dispatching [75] and function overloading. In a particular context, an appropriate

implementation of an algorithm is selected.

As is clear from the above examples, programmers routinely rely on the semantics

specified in concepts to transform code. The key point of this thesis is that a compiler

should take advantage of those same semantics for its transformations, and the key

contribution of this thesis is to show how this is possible.

3.3 Sources of Concept Taxonomies

Appropriately abstracting type requirements into a hierarchy of concepts is the

key to designing such an algorithm as advance(). Figure 3.2 depicts the iterator

concepts involved in the advance() algorithm. Concepts in generic libraries typically

arise after careful consideration of algorithms and data structures in a particular

domain, and have in select domains obtained a standard, or de facto standard, status.

Such standard concepts are good candidates for which high-level optimizations should

be defined.
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Another class of concepts that are of interest for optimizations are mathematical

objects. Peter Gottschling describes a concept taxonomy for algebraic structures,

and uses it as the basis for building efficient numerical operations in MTL4 [76, 77].

Sibylle Schupp et al. utilize algebraic properties for deriving transformation rules to

optimize library function calls [39]. Telescoping languages are an axiomatic system

which uses axioms (with algebraic structures) for reasoning about programs [48].

Bagge et al. exploit algebraic properties for optimizing numerical libraries [40]. This

thesis, too, uses algebraic concepts as a starting point for supporting domain-specific

optimizations. In this thesis, select axioms associated with algebraic concepts are

interpreted as transformation rules and they apply to models (concrete algebraic

structures) that satisfy these axioms; this way of exploiting concepts agrees with the

intended use of axioms in ConceptC++, to be described later in Section 3.5. Chapter 4

and Chapter 5 provide in-depth discussion on this topic.

3.4 Generalizing Built-in Types to Regular Types

Optimizations for built-in types have been well studied. Many user-defined types

behave as built-in types. So is it possible to exploit concepts for extending the set

of optimizations for built-in types to user-defined types? Dehnert and Stepanov [2]

argue about the essential semantics of built-in types which allows reasoning about
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the code using built-in types. They introduce the notion of regular types to capture

the set of types to which the set of optimizations for built-in types may apply.

Regular types support default and copy construction, destruction, assignment, and

equality comparison in a way that preserves the consistency of these operations. The

semantics of regular types specify that the default constructor, copy constructor,

and assignment operator leave their target objects in a well-defined state, and that

the copy constructor and assignment result in two objects that compare equal [2].

Regular types thus behave, for these operations, as built-in types int, double, and so

on.

In addition to such built-in types, user-defined types whose member variables are

of a regular type and who rely on the compiler-generated default and copy construc-

tor, destructor, and assignment operator, as well as an equality operator defined as

“memberwise” equality, are regular. Moreover, even many user-defined types that

contain pointer fields are regular. For instance, even though the container types of

the STL allocate memory from the free store, they are regular. In this category

of types, regularity cannot generally be proven by a compiler, but requires a user

annotation.

Since regular types generalize built-in types, it is natural to generalize the classes

of optimizations for built-int types to regular types. A compiler that is capable of

such generalized optimizations requires precise data-flow analysis to understand the

behavior of user-defined operations. Traditional program analysis is not aware of

the properties of user-defined types and may generate very conservative results in

some cases. In contrast, this thesis exploits the concepts knowledge, specifically the

properties of regular types, to obtain an affordable, precise, and efficient pointer

analysis. This analysis is described in Chapter 6. The available pointer analysis

enables many built-in optimizations to be generalized to regular types. Chapter 7

describes some such generalized optimizations.
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3.5 Language Support for Concepts: Concepts Feature in ConceptC++

As the piratical realization of our high-level optimizations uses C++ and its “con-

cepts” extensions, we give here a short introduction to ConceptC++.

Concepts in generic programming describe requirements on types. Syntactic re-

quirements in concepts specify what operations must be supported by types to satisfy

an interface, and semantic requirements define algebraic laws that must be satisfied

by the operations. Commonly requirements are also placed on the complexity of the

operations. Concepts are what this thesis uses for the algebraic categorizations of

types and for defining the algebraic properties justifying optimizing transformations.

ConceptC++ was designed to extend C++ with complete linguistic support for

generic programming, providing a direct representation for concepts in the language.

Concept descriptions and their use to constrain type parameters of generic algorithms

are immediately useful for enabling modular type checking of templates. This thesis

seeks to further take advantage of the concept descriptions as the foundation of an

optimization framework.

The central language construct of ConceptC++ is concept. It is used to define

sets of requirements on one or more types. Types that satisfy the requirements of a

concept model that concept. For example, the following (artificially simple) concept

requires that the “less than” operator < is defined for objects of type T:

concept LessThanComparable<typename T> {

bool operator<(T, T);

}

An explicit declaration, a concept map, establishes that a particular type (or a parametrized

class of types) is a model of a concept. The following two declarations state that

the types int and pair<int, string> (serving as a key-value pair here) are models of

LessThanComparable:

concept map LessThanComparable<int> { }

32



concept map LessThanComparable<pair<int, string> > {

bool operator<(pair<int, string> a, pair<int, string> b)

{ return a.first < b.first; }

}

These two definitions differ in how LessThanComparable’s requirements are satisfied.

For int, the built-in < operator for integers suffices. For pair<int, string>, we explicitly

define operator< in the body of the concept map (in this case, we order by the first

element, i.e., the key). For a concept map to type check, each required operation

must either be defined in the concept map’s body or in the scope where the concept

map is defined.

Though not shown here, the LessThanComparable concept comes with the seman-

tic requirement that the order defined by the < operators is a strict weak order.

The correctness of many generic algorithms that require their input types to be

LessThanComparable (e.g., std::sort) indeed depends on their input types satisfying

this semantic requirement. This thesis will rely on such semantic properties to en-

able optimizations. With the explicit declarations (concept maps) that types model

a concept, programmers also state that the non-syntactic requirements are satisfied.

Concept maps can be templates and can thus adapt entire classes of types at

once. For example, the following concept map declares all instances of the standard

pair template to be models of LessThanComparable (implementing a lexicographical

ordering), assuming the pair’s element types are LessThanComparable:

template <typename T, typename U>

requires LessThanComparable<T>, LessThanComparable<U>

concept map LessThanComparable<pair<T, U> > {

bool operator<(const pair<T, U>& a, const pair<T, U>& b)

{ return a.first < b.first || (!(b.first < a.first) && a.second < b.second); }

}
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Figure 3.3 shows a simple generic algorithm min element that uses the LessThanComparable

concept as a constraint. Constraints on type parameters are stated in the requires

clause. They are enforced at the time of template instantiation and assumed to

hold when type checking template bodies. Together, these conditions realize mod-

ular type checking of templates. The ForwardIterator concept used in the constraints

of min element is also shown in Figure 3.3. This concept provides basic iteration

capabilities (capturing the basic notion of a sequence of values). The dereferencing

operator ∗ gives the value that an iterator refers to. The ++ operator advances an

iterator to the next element. Equality comparison is used to decide when the end of

the sequence is reached. Requirements for the == and != operators are not stated

directly but obtained through refinement of another concept EqualityComparable (not

shown). The syntax of refinement is that of class inheritance. The associated type

value type denotes the type of values that the iterator refers to. The requires clause

in the concept body places additional constraints on parameters or associated types.

Here, value type must model CopyConstructible, which is a built-in concept, and it has

its expected meaning.

Describing the generic min element algorithm in terms of ForwardIterator allows

the algorithm to operate on any sequence of values—whether they are stored in

linked lists, hash tables, arrays, or even generated on-the-fly—provided that the

value types model the LessThanComparable concept. For example, assuming the con-

cept map for pair<int, string> showed above, the following call (where vec has type

vector<pair<int, string>>) satisfies min element’s constraints.

pair<int, string> smallest = min element(vec.begin(), vec.end());

3.5.1 Axioms in Concepts

The correct operation of generic algorithms requires much more than simply

the existence of certain operations. The type system of ConceptC++ does not deal
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template <typename Iter>
requires ForwardIterator<Iter>,

LessThanComparable<Iter::value type>
Iter min element(Iter first, Iter last) {

Iter best = first;
while (first != last) {
if (∗first < ∗best) best = first;
++first;
}
return best;
}

concept ForwardIterator<typename Iter>
: EqualityComparable<Iter> {

typename value type;
requires CopyConstructible<value type>;

value type& operator∗(Iter);
Iter& operator++(Iter&);
Iter operator++(Iter&, int);
}

Figure 3.3. The min element generic algorithm and the
ForwardIterator concept (simplified from the one in the STL).

with (the generally intractable) semantic requirements attached to concepts, but

nevertheless provides a mechanism for their expression. Axioms in concept descrip-

tions [78, §7.6] allow programmers to state semantic requirements for concepts in

terms of invariants that must hold for types modeling those concepts. ConceptC++

defines no semantics for axioms. They are intended for providing documentation and

for conveying information to program manipulation tools. This thesis utilizes axioms

for deriving generic optimization rules.

This section uses the algebraic structure of Monoid to illustrate axioms in con-

cepts. The Monoid concept requires two operations, the constant identity function

and a binary operation. It can be defined in ConceptC++ as follows:

concept Monoid<typename Op, typename T> {
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T identity element(Op, T);

};

Note that this concept is parametrized in both the carrier type T and the binary

monoid operation, as these are what uniquely characterize the structure.

The above definition does not fully capture what it means to be a Monoid, since

the concept lacks the semantic requirements identity axiom and associativity ax-

iom. The following code uses ConceptC++’s axiom construct to add the first of these

requirements into the Monoid concept:

concept Monoid<typename Op, typename T> {

T identity element(Op, T);

axiom Identity(Op op, T x) {

op(x, identity element(op)) == x;

op(identity element(op), x) == x;

}

};

The syntax of axioms is that of functions but with the keyword axiom as the place-

holder for function return types. Here, Identity names our identity axiom, and its

body contains the equations describing the invariants comprising the axiom: the

right identity law and left identity law. The definition of Monoid is still incomplete

in other ways; Figure 4.3 shows the complete definition.

Axioms allow the specification of equations and inequalities. Equations are of

interest for this work as they can give rise to transformation rules. For instance, the

two identity laws permit to replace expressions with their simplified versions (e.g. x

in place of op(x, identity element(op))), resulting in performance improvement. As the

equations in axioms hold for all types that model a concept, transformation rules

arising from the equations potentially apply widely. For example, the transformation

rules in Figure 4.1 are instances of monoid’s identity laws with the tuples <int, +, 0>

and <int, ∗, 1> as monoids. Many user-defined types satisfy the same laws and can
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be declared as models of Monoid. Examples include a multiplicative monoid for an

unbounded precision integer <bignum, ∗, bignum(1)> or for C++’s standard string class

with concatenation <string, +, string()>.

Note that this work does not attempt to formally verify that axioms are respected.

This is left to the programmer to guarantee. Examples of relying on programmers

to provide a certain semantics for user-defined types, and relying on that in op-

timizations, are common. For example, C++ compilers can elide copy constructor

invocations, even if the constructors have side effects [79][§12.8], and Haskell compil-

ers are allowed to assume that so called Monad laws hold for types that are instances

of the Monad type class [80,81].
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4. AXIOM-BASED OPTIMIZING TRANSFORMATIONS*

Consider traditional optimizing transformations based on the properties of the

built-in operations and types hard-coded into a compiler. Often transformation

rules for different built-in types are essentially isomorphic, yet the transformations

are implemented as separate rules. For example, Figure 4.1 shows the simplification

rules x + 0 −→ x and x ∗ 1 −→ x for the built-in integer type in GCC [82]. As

seen, these rules are defined in two distinct cases. However, both transformations

are justified by the same algebraic property, right identity, that holds in all monoids.

Here, in the first transformation, integer can be viewed as a monoid with addition as

the binary operation, and 0 as the identity element. In the second transformation,

multiplication is the binary operation, and 1 the identity element.

tree fold binary (enum tree code code, tree type,
tree op0, tree op1) {

switch (code) {
case PLUS EXPR:
if (! FLOAT TYPE P (type)) {
if (integer zerop (arg1))
return non lvalue (fold convert (type, arg0));

...
case MULT EXPR:
if (! FLOAT TYPE P (type)) {
if (integer onep (arg1))
return non lvalue (fold convert (type, arg0));

...

Figure 4.1. Excerpt from the simplifier in the GNU compiler.

As described in Chapter 3, types can be categorized into concepts, and trans-

formations rules defined as axioms of those concepts. Where two isomorphic trans-

*Reprinted with permission from “Concept-based optimization”, by Xiaolong Tang and Jaakko
Järvi. In Proceedings of the 2007 Symposium on Library-Centric Software Design, pages 97–108,
Montreal, Canada, 2007. c©2007 ACM, Inc.
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formation rules are today repetitively implemented as separate cases, in such an

approach they become two different instances of the same generic rule. Moreover,

the generic rule applies in all cases where a type with its operations models the

appropriate concepts. The right identity rule above, e.g., applies to a user-defined

string data type with string concatenation as the binary operation and the empty

string as the identity element of a monoid. When axioms in concepts are interpreted

as generic transformation rules, their application to particular types are justified

by the concept maps that establish that these particular types model the concepts

defining these axioms.

The contribution of this chapter is a framework for “axiom-based optimizing

transformations” for ConceptC++, implemented on top of the ConceptGCC com-

piler [12]. Specifically, this chapter examines interpreting axioms in concepts as

transformation rules and identifies a set of concepts relevant for compiler transfor-

mations. It describes the design and implementation of a prototype concept-based

simplifier that recognizes these concepts and applies transformation rules derived

from them generically to all types that are models of the concepts.

This chapter draws ideas from the Simplicissimus framework [39, 83], which also

used concepts for describing and implementing generic compiler transformations.

The work on Simplicissimus preceded the built-in concepts extensions of C++. Con-

sequently, properties on operations justifying transformations were expressed with

C++ “traits” [84] and other advanced template techniques, instead of using explicit

concept descriptions for this purpose. Simplicissimus relied heavily on so called “C++

template meta-programming” to effect its transformations.

4.1 Axiom-Based Optimizations

Algebraic identity optimizations [85–87] have been well established in traditional

compilers. The goal of this chapter is to generalize them from special rules for built-in

types like int and double, or for particular vector or matrix classes, to general rules for
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abstract algebraic categories, i.e., concepts. To accomplish this, it is necessary to first

define the representations for the algebraic concepts like SemiGroup, Monoid, Group,

Ring, and Field [88] in ConceptC++. These concepts capture the essential algebraic

properties of the above mentioned numerical types, and the algebraic laws of the

concepts are candidates for transformation rules.
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Figure 4.2. Hierarchy of algebraic concepts

Figure 4.2 depicts a taxonomy of the algebraic concepts studied in this chapter.

The lines between concepts represent refinement. Some of the concepts introduce

new operations, some merely add new axioms. Magma represents a set with a binary

operation; RightIdentity, LeftIdentity, and Associative refine Magma, introducing one op-

eration identity(), and observing the left identity axiom op(identity(op, x), x) == x,

the right identity axiom op(x, identity(op, x)) == x, and the associative axiom

op(op(x, y), z) == op(x, op(y, z)) respectively; RightInverse and LeftInverse are refine-

ments of RightIdentity and LeftIdentity, introducing the new operation inverse(), and

observing the left and right inverse axioms op(inverse(op, x), x) == identity(op, x)

and, respectively, op(x, inverse(op, x)) == identity(op, x). The Identity concept re-

fines both the LeftIdentity and RightIdentity concepts; SemiGroup refines Associative;

the Inverse concept comprises of requirements from both RightInverse and LeftInverse;
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the Monoid concept augments SemiGroup with Identity requirements; and finally Group

refines Monoid and Inverse.

The axioms in these concepts serve as transformation rules, interpreted from left

to right. The rules are applicable to all types that are established to be models of

these concepts, and are used to simplify expressions. Figure 4.3 shows the definitions

of the Magma, Associative, SemiGroup, and Monoid concepts.

To illustrate the applicability of the generic transformation rules, Table 4.1 sum-

marizes some of the types and operations that are models of Monoid and can take

advantage of the identity rules.

concept Magma<typename Op, typename T> {
requires std::Callable<Op, T, T>;
requires std::SameType<

std::Callable2<Op, T, T>::result type, T&>;
}

concept Associative<typename Op, typename T>
: Magma<Op, T> {

axiom Associativity(Op op, T x, T y, T z) {
op(x, op(y, z)) == op(op(x, y), z);
}
}

concept SemiGroup<typename Op, typename T>
: Associative<Op, T> {}

concept Monoid<typename Op, typename T>
: SemiGroup <Op, T> {

T identity element(Op);
axiom Identity(Op op, T x) {

op(x, identity element(op)) == x;
op(identity element(op), x) == x;
}
};

Figure 4.3. An excerpt of definitions of algebraic concepts.
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The taxonomy in Figure 4.2 was obtained as a result of analyzing the existing

algebraic simplification rules in an industrial strength C++ compiler [82]. Results

of the analysis suggests extending the taxonomy further. Simplifications with more

than two operators are common. E.g., GCC takes advantage of the distributivity laws

A∗C+B∗C == (A+B)∗C and X∗C1+X∗C2 == X∗(C1+C2). More sophisticated

concepts, such as Ring and BooleanAlgebra, capture many common optimization cases

with more than two operators. This thesis does not cover those concepts; it focuses

on demonstrating the feasibility and benefits of exploiting axioms and concepts for

optimizations, but does not describe a full-fledged generic optimizer.

Data type Operation Identity Element
int + 0

int * 1

set<T> union set<T>()

bool && true

string + string()

bignum + bignum(0)

matrix(m,n) + zero matrix(m,n)

Table 4.1
Several models of Monoid

4.2 Framework and Implementation

The concept-based optimizer effecting the optimizations described here is im-

plemented by extending the ConceptGCC compiler [12]. This extended compiler

is available in ConceptGCC’s public subversion repository [89]. The concept-based

optimizer takes effect if the compiler is given the -fconcept-simplify option.

Axiom-based optimizations span across the whole compilation process, from the

front-end to the back-end. Figure 4.4 depicts how the concept-based optimizer inte-

grates to the existing structure of ConceptGCC. The optimizer interacts with three

42



Compiler Pipeline (ConceptGCC) 

Interface between compiler and concept−based optimizer

Rewriting EngineAxiom Translator

Utility Trans. Rules

Concept−Model Repository

In
te

rm
ed

ia
te

 R
ep

re
se

n
ta

ti
o
n
 (

IR
)

Figure 4.4. Framework of the concept-based optimizer for exploit-
ing axioms for optimizations.

entities: it provides a set of hook functions for the compiler pipeline to initiate op-

erations for concept-based optimizations, such as generating transformation rules,

pattern matching over target expressions, and conducting rewriting operations; it

accesses the concept-model repository for axioms and modeling relationships when

generating transformation rules; and it analyzes internal representations of the pro-

gram at various stages of compilation and applies the axiom-based transformation

rules. As indicated in Figure 4.4, the optimizer itself consists of three sub-modules:

the axiom translator, the rewriting engine, and a sub-module of utility functionality.

The utility sub-module comprises of basic operations like initialization and resource

recycling. The other two sub-modules are discussed below.
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4.2.1 Optimizer Interface

The concept-based optimizer executes axiom-based transformations at two stages

of compilation: first in the front-end, second in the middle-end. In the front-end, it

optimizes constrained template functions. The front-end consults the axiom transla-

tor to prepare transformation rules before parsing the body of constrained template

functions, and, after type-checking them, initiates the rewriting engine to conduct

the pattern matching and transforming operations over statements or expressions

within the function body.

Whereas the front-end optimization processing is interleaved with parsing and

type checking of templates, the middle-end processing occurs in a separate pass de-

voted for axiom-based optimization. This pass is registered into GCC’s existing

optimization framework whose “pass manager” manages optimization processes, ap-

plying a sequence of optimizer callbacks to each function node in a pre-defined order.

In the middle-end, the optimizer targets non-generic code. Thus, the optimizer

has to instantiate generic transformation rules for particular types guided by the con-

cept map definitions. For instance, to apply generic algebraic simplification rules to

built-in types, it generates transformation rules for specific types based on program-

wide concept maps, as discussed in Section 4.4.2.

Extending the axiom-based optimizations to the middle-end is described in the

following chapter. The goal is to take advantage of information regarding aliasing,

constant and copy propagation, and of inlining.

4.2.2 Rule Translator

The task of the rule translator is to generate effective transformation rules. This

consists of two subtasks. First, the rule translator interprets axioms defined in con-

cepts and generates transformation rules to be applied, in the front-end, directly

to uninstantiated templates. These rules transform bodies of function templates
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independently of any of their instantiations. Second, the rule translator lowers al-

ready established generic rules to be used in the middle-end optimization pass. At

that point, templates have already been instantiated, and the lowered rules apply

to operations on concrete types. Therefore, the concept-based optimizer retains the

information of what concepts those concrete types model, and what concepts were

used as constraints of the function templates from which the code to be optimized

was generated.

Transformation rules generated by the rule translator are matched against the

AST or other internal representations of the program. The representation of the pat-

terns that describe the left-hand side of the transformation rules is thus important

for efficient matching of rules. In the front-end, the first-child next-sibling repre-

sentation of a tree [90, 91] is chosen as the pattern representation of transformation

rules.

As an example, Figure 4.5 demonstrates the representation of the left-hand side

of the right identity law op(x, identity element(op)) defined in the Monoid concept. To

find a match, the optimizer recursively traverses the program’s AST to match the

patterns against the AST nodes.

4.2.3 Rewriting Engine

Once the rule translator has generated the transformation rules, the rewriting

engine pattern matches each expression in a function to be optimized against the

patterns of those rules that are in effect in the function. When a redex is identified,

it is replaced with its contraction that results from applying the substitution (that

validates the redex as an instance of a pattern) to the right-hand side of the corre-

sponding transformation rule. The substitution is obtained with normal unification

mechanisms.
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[1 e06d20 pck fun cell call expr ...]
[1.1 42d1b000 pck const cell integer cst ...]
[1.2 e03e70 pck var cell var decl ...]
[1.3 e062a0 pck var cell var decl ...]
[1.4 e062a0 pck fun cell call expr ...]
[1.4.1 42d1b000 pck const cell integer cst ...]
[1.4.2 e0ccb0 pck code cell function decl ...]
[1.4.3 e03e70 pck var cell var decl ...]

Figure 4.5. The internal representation of the right identity law
from Monoid as generated by the rule translator. Each row stands for
a tree node, where position, kind, cell category and original tree code
are shown from columns one to four. For example, the root node (1)
is a call expression and corresponds to the function invocation op();
node (1.1) is the operand number of the function; and nodes (1.2),
(1.3), and (1.4) correspond to the arguments of the function; the self
object; x, and identity element(op), respectively.

The rewriting engine tries to match transformation rules in a pre-defined order

a fixed number of times. It uses the leftmost-outermost reduction strategy: for a

particular pattern, it sequentially selects redexes from left to right, and the outermost

redex presents a higher reduction priority than the innermost one.

The rule generation for effective pattern matching and application of the concept-

based optimization rules in the middle-end optimizer is somewhat challenging. The

GCC compiler lowers non-template code and instantiated template code to so called

GIMPLE form [92] immediately after parsing and type-checking. GIMPLE provides a

language-independent representation suitable for optimizations—most optimizations

are performed after lowering ASTs into the GIMPLE form. GIMPLE retains much

of the structure, lexical scopes and control constructs, of the parse tree: functions

are represented as trees and loops as containers.

GIMPLE breaks expressions into 3-address form, using temporary variables to

hold intermediate values. Considering that the compiler directly compiles non-

generic functions into GIMPLE trees, it is necessary to represent optimization rules
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in a manner that is compatible with this form for pattern matching and for applying

transformations. A suitable representation is described in the next chapter.

4.2.4 Concept-Model Repository

The concept-model repository is accessible in all phases of compilation where

concept-based rules are applied. The repository holds information of every concept

in the program and the information of which types are models of which concepts.

This information is obtained during parsing and semantic analysis in the front-end

of the compiler.

Much of the necessary information is already present in existing constructs of the

compiler. E.g., the modeling relationship is accessible by looking up the “special-

izations” of the concept with existing mechanisms of GCC (concepts do not really

have specializations, but as concepts are internally represented as class templates

in ConceptGCC [12], internally they do), and the models associated with a con-

strained template are reachable by going through the requires clause of the template.

The concept-model repository provides a central access mechanism to all information

necessary for applying the concept-based transformations.

4.3 Example

This section shows an example of how a high-level optimization rule is commu-

nicated to the compiler using concepts and axioms. We also describe the effect of

the optimization on a simple program, thus confirming that the compiler successfully

recognizes the rule. The example uses the Monoid concept and demonstrate how its

generic identity laws enable optimizations for user-defined types, in this case opera-

tions on the Matrix Template Library’s matrix types; matrices with addition as the

binary operation and the zero matrix as the identity element form a monoid. Thus,

as long as it is established that MTL’s matrix with its addition operation model the
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Monoid concept, identity transformations of Monoids become applicable to matrices.

Figure 4.6 declares a specific matrix type from MTL and the operation plus<Matrix>

as a Monoid. For technical reasons, the concept map declaration includes the second

argument (of type Matrix) in the identity element function. Also, due to the way in

which the Monoid concept is expressed, parametrized by both the carrier set and the

binary operation, MTL’s add function is wrapped into an instance of the plus function

object—a function pointer cannot directly serve as a type parameter.

typedef mtl::matrix<double, mtl::rectangle<>,
mtl::array<mtl::dense<> >, mtl::row major>::type Matrix;

concept map Monoid<mtl::plus<Matrix>, Matrix>{
Matrix identity element(mtl::plus<Matrix> op, Matrix x) { return mtl::zero(x); }
}

Figure 4.6. Declaration that specifies an instance of mtl::matrix and
the operation plus<matrix> as a monoid.

The concept map in Figure 4.6 is the only piece of code specific to MTL matrices

to enable the identity law optimizations for matrix addition. Figure 4.7 demon-

strates an application of the optimization. Because the template parameters of

the mtl opt test function are constrained by the concept Monoid, the axioms defined

in Monoid are effective in the scope of that function. As a result, the expression

op(t, identity element(op, t)) is optimized to be t, which is later optimized away due to

dead code elimination. In main(), M and N come from command line parameters.

Figure 4.8 shows the results (opt−add denotes the optimized executable with

−fconcept−simplify flag and add the unoptimized version). The execution time without

optimization comprises of the time to initialize the matrices and perform a matrix

addition, and it thus grows linearly with the size of the problem (number of elements

in the matrices). With concept-based optimization the execution time consists only of
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#include <concepts>
#include ”algconcept.hpp”
#include ”mtl/mtl.h”

namespace mtl{
template <class Matrix>
struct plus : std::binary function<Matrix, Matrix, Matrix> {

Matrix operator() (Matrix a, Matrix b) { add(a, b); return a; }
};

template <class Matrix>
Matrix zero(Matrix A) { zero matrix(A); return A; }
}

template <typename Op, typename T>
requires Monoid<Op, T>
void mtl opt test (Op op, T t) { op(t, identity element(op, t)); }

int main(int argc, char∗ argv[]) {
...
Matrix x(M, N);
mtl opt test (mtl::plus<Matrix>(), x);
...
}

Figure 4.7. Code that contains the identity law optimization op-
portunity for matrix addition.

the initialization of the matrices, and stays thus 5-6 times lower. With optimization,

the size of the executable also shrinks.

The example demonstrates that with little or no additional effort for the program-

mer, the optimizer can perform high-level optimizations on operations of user-defined

types. In contrast, the traditional approach of lowering the high-level operation into

operations on built-in types, and then attempting to optimize, cannot recover the

lost semantic information, resulting in significantly less efficient code.
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Figure 4.8. Executable sizes (a) and execution times (b) of the
test program with and without concept-based optimization. The
execution times were measured with varying matrix sizes; the unit of
x-axis is M , where the size of the matrix is M ×M .

4.4 Discussion

Not all concepts and axioms should be exploited for optimizations. Therefore,

caution is needed for ensuring the appropriate use of concepts and axioms for opti-

mizations. Regarding this concern, the feature of auto concepts; the scope of concept-

based optimizations; the properties of the rewrite system which is formed by the

set of transformation rules derived from axioms; and the strategy for applying these

transformation rules must be considered.

4.4.1 Auto Concepts

The language construct concept map serves as a mapping between types and con-

cepts, establishing the relation that a type models a concept. This explicit declaration

by the programmer establishes that a type satisfies (or types satisfy) the semantic

requirements of a concept—violations of syntactic requirements are caught by the

compiler. Explicit concept maps thus justify that certain generic algorithms, and

generic optimizations, apply to particular data types.
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ConceptC++ supports a special form of concepts: auto concepts. For these con-

cepts, no explicit concept map declaration is needed to establish a models relation.

All that is needed is that the syntactic requirements are satisfied, that is, all re-

quired operators and functions are defined. Regarding the implementation of our

concept-based optimizer, this poses no difficulty for us. Even in the case of auto con-

cepts, structures corresponding to an explicit concept map are created internally, and

can be used for realizing concept-based transformations. Regarding the correctness

of transformations, however, auto concepts raise a concern; when mere structural

conformance (presence of certain user-defined operators and functions) suffices to

enable certain transformations, special care is needed to guarantee that the seman-

tics of those operations are such that correctness is preserved. It is observed that

auto concepts in the “conceptualized” standard library are typically concepts with

a single operation requirement and no algebraic laws attached to the operation—

CopyConstructible, Assignable, and Callable are typical examples. Such concepts do

not introduce optimization opportunities. Furthermore, separate annotations can

be used to select the set of concepts that the compiler considers for optimization

transformations; auto concepts can be excluded from this set.

4.4.2 Scope of Concept-Based Optimizations

A concept map is only in effect in a context where a type is constrained with the

corresponding concept. For example, consider the concept map Section 3.5 that made

all std::pairs models of LessThanComparable. That concept map defines operator< to

provide a lexicographical ordering for pairs. The operator, however, is only in scope

in instantiations of generic classes or functions where a pair instance is bound to a

type parameter constrained by LessThanComparable. The concept map has no effect

outside generic functions. This design is justified—concept maps are a new layer on

top of the existing overloading mechanism of C++ and concept maps are geared for

adapting interfaces. Concept maps define views that are only active when requested,
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which is a desirable trait for adaptation and library composition [93]. However, for

enabling high-level optimizations, this characteristic of concept maps is a limitation—

ConceptC++ provides no mechanism for establishing a “type models concept”-relation

(which is necessary for activating concept-based optimizations) that would apply

outside generic definitions.

If we wish to replace most type-specific simplification rules in a compiler with

instances of generic algebraic rules, it is necessary that concept-based optimization

can be extended to non-generic code. One strategy is making the compiler aware of

a class of concepts and a set of models declarations, e.g., that int with operator +

and constant 0 is a model of Monoid, and that int with operator ∗ and constant 1 is a

model of Monoid. Compiling the entire program assuming that such a set of concepts

and concept maps are in effect enables the generic rules in non-generic code—and

the same level of optimization as with non-generic rules but with fewer special cases.

Furthermore, the approach of program-wide concept maps makes it relatively easy

to extend the set of built-in optimizations to apply more widely, say, to types and op-

erations defined in the standard library. For example, the standard string class, with

concatenation operation + and the empty string as the identity element are a model of

the Monoid concept, from which we get the optimization rules x + std::string(””) == x

and std::string(””) + x == x.

4.4.3 Properties of Rewriting System

The rewriting system emerging as a combination of an unrestricted set of concept-

based transformation rules is unlikely to exhibit nice properties, such as termination

and confluence (termination guarantees that no infinite rewriting sequence exists,

whereas confluence asserts that the rewriting order does not matter for the final

result [94]). These properties seldom hold for optimizations in practical compilers

either [95]. Consequently, transformations are typically tried and applied in a set

order, a bounded number of times, rather than applied repeatedly until a fixed
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point is reached, or attempted to be solved as one set of equations. The benefits

of this “engineering” approach are that the concept-based optimization framework

makes it relatively easy to implement new transformations, and more importantly,

enables existing built-in optimizations to apply to user-defined types—the set of

rules to include and the strategy of applying them is still built into the compiler.

An interesting direction of future research is to investigate the expression of such

optimization strategies as libraries.

4.5 Conclusions

Concepts describe a set of properties of a class of types. Programmers state, using

concept maps, which types possess those properties and belong to particular classes

of types. Concepts can be utilized in optimization at two levels. First, it is possible

to express transformations for sets of types collectively and have the transformations

apply to an open-ended collection of types, extensible by the programmer. Second,

optimization rules can be directly derived from the description of concepts—in par-

ticular, the axioms in concepts can be interpreted as rewrite rules. The focus of this

chapter was on the latter level. The following chapters focus on the former level and

move towards more general ways of exploring concepts for optimizations.

The concept-based optimization framework in this chapter supports the definition

of arbitrary transformation rules as axioms of a concept. The transformation rules

apply intra-procedurally in contexts that are explicitly constrained by the relevant

concepts. The next chapter extends the concept-based optimization rules to be

applied also at later phases of compilation to uncover substantially more optimization

opportunities, e.g., after inlining, constant propagation, and utilizing the results of

data-flow analysis. Next steps after that include establishing the core set of concepts

and axioms that result in widely applicable effective optimizations for a concept-

based optimizing compiler. One measure of success this work strives for is whether
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the concept-based optimization framework can largely replace type-specific built-in

algebraic simplification rules.
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5. GENERIC FLOW-SENSITIVE REWRITING*

The approach of axiom-based optimization utilizes axioms for specifying rewrite

rules. These rewrite rules are generic,and applying these generic rewrite rules to

non-generic code is challenging. To be concrete, consider the example of applying

the identity axioms in monoid to the std::string class.

Recall the Monoid concept. Figure 5.1 shows a definition for this concept, which is

simplified from a proposed taxonomy [96] of algebraic concepts for ConceptC++: The

concept Monoid<typename Op, typename T> : SemiGroup<Op, T> {

T identity element(Op, T); // identity element

axiom Identity(Op op, T x) {
op(x, identity element(op, x)) == x; // right identity law
op(identity element(op, x), x) == x; // left identity law
}
}

Figure 5.1. A simplified definition for the Monoid concept.

two type parameters Op and T represent an operation and a set, respectively. The

identity element() function corresponds to the identity element in a monoid, and the

axiom specification defines monoid’s identity laws. By refining the concept SemiGroup,

the Monoid concept inherits all requirements defined in SemiGroup, notably that Op

is an associative binary operation.

The Identity axiom expresses two generic transformation rules, one for the left

identity and the other for the right identity. These transformation rules are defined at

a high level of abstraction—the op operation and the identity element() function which

are involved in these transformation rules are not in the context of non-generic code.

*Reprinted with permission from “Generic flow-sensitive optimizing transformations in C++ with
concepts”, by Xiaolong Tang and Jaakko Järvi. In Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 2111–2118, Sierre, Switzerland, 2010. c©2010 ACM, Inc.

55



The two identity rules shall be lowered to ones which are suitable for optimizing

non-generic code.

A concept map for the Monoid concept justifies applying these generic transfor-

mation rules to a particular type. At the same time, this concept map provides the

clue about how to translate these transformation rules to optimize the operations

for this particular type in non-generic code. For example, Figure 5.2, a concept map

declaration, states that the binary operation of the model is the string concatenation,

which is not shown, wrapped into the function object plus<string>. It also states that

the identity element is std::string(””), as specified in the the implementation of the

identity element function.

concept map Monoid<plus<std::string>, std::string> {
std::string identity element (plus<std::string> op, std::string x) {
return std::string(””);
}
}

Figure 5.2. The declaration for specifying that the std::string class
and the string concatenation forms a model of the Monoid concept.

Given the above model, the goal is to generate these two concrete transformation

rules for the string class:

x + string(””) → x (5.1)

string(””) + x → x (5.2)

This chapter describes an approach that accomplishes the translation from generic

transformation rules to concrete transformation rules. This approach leverages the

existing processing functionality of the compiler and does not affect the normal

pipeline of the compiler.
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Our approach also addresses a limitation with simple term rewriting. In simple

rule-based rewriting, pattern matching is often confined to a single expression or

statement; it fails to “see across a semicolon.” For example, consider the rewrite rule

f(x, g(y))→ h(x, y). Its left hand side (LHS) matches an expression like f(a, g(b)),

but a seemingly inconsequentially transforming (adding a temporary variable) the

expression into {t = g(b); f(a, t)} may hide the rewriting opportunity. Robison argues

that optimizers should be robust for the above kinds of transformations [97].

For robust high-level optimizations, the approach of this chapter utilizes a flexible

representation for rewrite rules. It transforms rewrite rules into conditional rewrite

rules, so that data-flow analysis can be exploited for more flexible optimizations. For

instance, the above rewrite rule is transformed into

f(x, t) | { def(t) = g(y) } → h(x, y) (5.3)

which reads as the normal rewrite rule f(x, t) → h(x, y) with an extra condition

def(t) = g(y) on the LHS, insisting that t is defined to be the result of g(y).

With the flexible representation for rewrite rules, the approach extends axiom-

based optimizations into the middle-end of the compiler, and combines the compiler’s

existing analyses and transformations with axiom-based optimizations. In particular,

this approach proposes a strategy for combining function inlining with axiom-based

optimizations for addressing the phase-ordering problem [98,99].

Specifically, this chapter makes the following contributions.

• It presents an approach for exploiting concepts and axioms for supporting

domain-specific optimizations in the middle-end of the compiler. It shows how

to utilize the compiler’s middle end for high-level rewriting, including instan-

tiating generic rewrite rules to produce type-specific rules to be applied by the

middle end, and controlling function inlining to avoid loss of rewriting oppor-

tunities.
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• It provides a prototype for the approach. The prototype is implemented as

an extension to ConceptGCC [12]. The experiments with this prototype show

that the approach effectively reduces abstraction penalties without a significant

increase in compilation times.

The remaining of this chapter is organized as follows. Section 5.1 details the

steps of translating generic rewrite rules into type-specific rewrite rules, describes the

combination of term rewriting with function inlining, and presents an approach that

exploits concepts and axioms for algebraic simplifications for user-defined operations.

Section 5.2 evaluates the approach. Finally Section 5.3 concludes this chapter.

5.1 Generic and Flow-Sensitive Rewriting

The axiom feature of concepts offers a means to specify generic rewrite rules,

applicable to all types that model a particular concept. The syntax of axioms can

only express an equivalence between two expressions, not a rewrite rule.. Therefore,

additional conventions or annotations (e.g., with the help of C++11’s attribute mech-

anism) are necessary to specify a direction of applying a rewrite. In our prototype,

we interpret each equation in an axiom as a left-to-right rewrite rule. Consider again

the Monoid concept in Figure 5.1. The two equations in the body of the Identity axiom

result in the generic left identity rule R4 and the generic right identity rule R5.

op (identity element (op, x), x) → x (R4)

op (x, identity element (op, x)) → x (R5)

These generic rules express the common pattern of many type-specific rules. Table 5.1

lists several such “non-generic” rewrite rules, all instances of the generic R5 rule.

This table is similar to Table 4.1 but the rule instances have been added. In our

approach, the instances are not hard-coded into the compiler, but instead generated

from the generic rule of Monoid for all models of that concept. For example, the
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concept map in Figure 5.2 justifies generating the left and right identity rules for the

string class.

Type Op Identity Rewrite Rule
int + 0 i + 0 -> i

int * 1 i * 1 -> i

set<T> union set<T>() union(s, set<T>()) -> s

bool && true b && true -> b

string + string() s + string() -> s

bigint + bigint(0) i + bigint(0) -> i

matrix(m, n) + zero matrix(m, n) r + zero matrix(m, n) -> r

Table 5.1
Several models of Monoid along with their corresponding specific right
identity rules. The triple of the values in the first three columns
describes a particular monoid, and the fourth column shows the in-
stance of the right identity rule in that monoid.

5.1.1 Conditional Rewrite Rules

Directly mapping axioms to rewrite rules leads to rules with rigid patterns, un-

likely to unveil many optimization opportunities. E.g., the rewrite rules in Table 5.1

directly match only to the abstract syntax tree (AST) of a single expression where

the right-hand side (RHS) operand is the identity element; an operand equivalent to

but not literally the same as the identity element would prevent the rule from being

applied. Figure 5.3 illustrates the limitation using the rule x + string(””) → x as an

example: the code fragment (a) can be transformed because one of its expressions

contains an exact match against this rule’s LHS; the fragments (b) and (c) both

have expressions that evaluate to a value equivalent to the rule’s LHS, but do not

constitute a match.
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string x (”text”);
string z = x + string (””);

(a)

string x (”text”);
string y (””);
string z = x + y;

(b)

string add (string a, string b) {
return a + b;
}

void main () {
string x(”text”), y(””);
add (x, y);
}

(c)

Figure 5.3. Code fragments that contain equivalent expressions to
the LHS of the rewrite rule x + string(””) → x.

To improve the robustness of the transformations, data-flow facts that are ex-

pressed in rewrite rules are separated from rule patterns. This separation give rises

to conditional rewrite rules. For example, the conditional rule for the right identity

rule for string is defined as:

x + y | { def(y) = string(””) } → x (R6)

The transformation of a generic rewrite rule to a conditional rewrite rule is mechan-

ical, and is explained in 5.1.2.

Applying the above rule requires the pattern matching to recognize the operator+()

overload for string, followed by ensuring, based on data-flow information, that the

definition for the operator’s second argument is equivalent with the result of the

constructor call string(””). This strategy of rule application allows for rewriting the

fragment (b) and (c) in Figure 5.3, as long as the compiler’s analyses are powerful

enough to recognize the equivalences. Section 5.1.2 discusses how to utilize the

compiler’s existing analyses and extend them towards this goal.
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5.1.2 Processing Pipeline

Figure 5.4 illustrates the processing pipeline for effecting high-level optimizations.

There are two new tasks for the compiler to perform: the generation of rewrite rules

from axioms and the application of the generated rewrite rules to transform code. To

accomplish the first task, the axioms in concepts are extracted during parsing and

type-checking, then instantiated for specific types along template instantiation, and

finally interpreted as rewrite rules to be stored into a “rule repository.” The rules

in this repository are available for the ME’s rewrite engine. The second task is the

responsibility of the function abstraction analyzer, which governs function inlining

and rule application, as well as determines which rules to attempt in each function

so that excessive attempts of rule application are avoided.

Generating Rewrite Rules

Generating conditional rewrite rules from axioms is achieved by leveraging the

processing of concepts that is already part of ConceptGCC. Structurally, a concept is

very similar to a C++ class template. Indeed, ConceptGCC internally represents con-

cepts as class templates (axioms as member functions), and concept maps as special-

izations of those class templates, [12,14]. Instantiating an axiom for particular con-

crete types, as a result of processing a concept map definition, is thus accomplished

by way of normal template instantiation. For example, the Identity axiom in Fig-

ure 5.1, when instantiated as part of a concept map for Monoid<plus<string>, string>,

yields the axiom instance in Figure 5.5.

One rule in an axiom instance is a single expression. The pattern and the condi-

tion(s) in a conditional rewrite rule are, however, composed of a group of expressions

that are chained together by data-flow information. For example, the rule R6 con-

tains two expressions, x + y and string(””), where y in the first expression is defined by
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Figure 5.4. The processing pipeline for effecting high-level optimiza-
tions. The boxes with single lines represent functional units related
to processing of high-level rewrite rules. The boxes with double-lines
represent functions that are part of a typical compiler—we only show
the functions relevant to our framework. The arrows indicate data
dependencies (flow of data) between functional units.
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axiom Identity (plus<string> op, string x) {
op (x, Monoid<plus<string>, string>::identity element (op, x)) == x;
op (Monoid<plus<string>, string>::identity element (op, x), x) == x;
}

Figure 5.5. Axiom instance generated from the Identity axiom in
Figure 5.1. The qualifier Monoid<plus<string>, string>:: preceding the
identity element function identifies the concept map for which the ax-
iom is instantiated.

the second expression. In order to bridge the structural difference between a rule in

an axiom instance and its corresponding conditional rewrite rule, the sub-expressions

in this rule is recursively factored out by substituting each sub-expression with a tem-

porary variable. The result is a representation of the LHS and RHS expressions of the

rule in a three address form. In GCC this form is called GIMPLE [92]. Afterwards,

the conditional rewrite rule for the original rule in the axiom instance is obtained

by performing data-flow analysis and necessary transformations as described below.

In detail, this process of generating conditional rewrite rules involves four steps of

transformations to axiom instances.

Step 1 extracts rewrite rules from an axiom instance. Since a function is the

basic processing unit in a compiler from parsing to code generation, each rule in the

axiom instance is represented as a pair of functions, extracted and derived from each

side of the rule by the rule extractor unit. As a naming convention, this discussion

prefixes the names of such rule functions with “rule”. So, the first rule in the axiom

instance in Figure 5.5 gives rise to the pair of rule functions in Figure 5.6.

Step 2 translates a rule function into its intermediate representation and per-

forms the subsequent control- and data-flow analyses for it. This step is part of the

normal processing for a function in the compiler. For example, subject to GCC’s

standard translation from AST into the GIMPLE form [92], the rule functions in
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string rule string identity lhs (plus<string> op, string x) {
return op (x, Monoid<plus<string>, string>::identity element(op, x));
}

string rule string identity rhs (plus<string> op, string x) { return x; }

Figure 5.6. A pair of rule functions representing the right identity
rule in Figure 5.5.

Figure 5.6 turn into the from in Figure 5.7. On this form, the compiler performs

control- and data-flow analyses for rule functions to reason about data flow facts.

string rule string identity lhs (plus<string> op, string x) {
t1 = Monoid<plus<string>, string>::identity element(op, x);
t2 = op(x, t1);
return t2;
}

string rule string identity rhs (plus<string> op, string x) { return x; }

Figure 5.7. Rule function’s IR which results from processing the
rule functions in Figure 5.6 in the normal flow of processing a normal
function in GCC.

Step 3 eliminates the extra function abstractions that are present in an ax-

iom instance but should not be used in rewrite rules generated from the axiom

instance. For example, the Identity axiom in the Monoid concept is written in terms

of the identity element function. Each Monoid concept map specializes this function

to some expression that will construct an identity element for a particular model

of a Monoid; it is this specialized expression that is used in non-template user code,

not the identity element function. In the case of Monoid<plus<string>, string>, the

identity element function is specialized to the expression string(””).
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Another source of extra abstractions are function objects that wrap function sym-

bols, such as plus<string>() in the model Monoid<plus<string>, string> which wraps

the call to the operator+ function overloaded for string.

The rule de-abstractor unit identifies local functions in concept maps and/or the

function calls resulting from the use of function objects, and applies function inlining

to eliminate these abstractions. Thus, the rule functions in Figure 5.7 become those

in Figure 5.8.

string rule string identity lhs (plus<string> op, string x) {
t1 = string(””);
t2 = operator+(x, t1);
return t2;
}

string rule string identity rhs (plus<string> op, string x) { return x; }

Figure 5.8. Results from eliminating a certain class of abstractions
in the rule functions in Figure 5.8.

Step 4 constructs the rule’s LHS and RHS patterns from their corresponding

rule functions and puts them into the rule repository. The pattern of each side

of a rule is a AST-like tree, where the intermediate nodes represent function calls,

or unary or binary operations, and the leaf nodes constants or free variables, i.e.,

function parameters. Constructing such a pattern is obtained by examining the

control-flow graph (CFG) of a rule function, with the assumption that data-flow

analysis has computed the use-definition information for the CFG. Starting from

the last expression in the CFG (i.e., the argument of the return statement in the

rule function), we recursively process each expression as follows. If an expression

represents a function call (or an operator invocation), we create a pattern node for

this call and link the arguments’ patterns (constructed recursively) to the node; if an

expression is a temporary (all temporaries are generated by the compiler), we replace
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this temporary with the pattern constructed by processing its definition in the CFG;

if an expression is a constant, the constant is the pattern. As an example, consider

the rule function rule string identity lhs. Figure 5.9(a) shows its CFG. Applying the

pattern construction strategy on its CFG produces the tree in Figure 5.9(b), where x

is a free variable and ”” a constant. This tree corresponds to the LHS of the rule R6.

t1 = string("")

t2 = operator+(x, t1)

return t2

(a)

operator+()

x string()

""

(b)

Figure 5.9. The CFG for the rule string identity lhs rule function (a),
and the pattern derived from it (b).

Applying Rewrite Rules

Applying a rule to a function is accomplished by downward traversing the func-

tion’s CFG and employing the following strategy to each statement of the function.

Given a statement, the rule’s pattern is matched against the statement’s AST. As

the pattern and the statement both represent expressions, this matching process is

essentially attempting to finding a substitution which maps the free variable(s) in

the pattern to the expression(s) in the statement, known as Robinson’s unification

algorithm [100]. Note the case of attempting to match against a variable in the

statement—if this variable itself does not lead to a successful match, we replace it

with the expression defining it and continue the matching process (if this variable
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has more than one definition, we simply give up the matching). A successful match

is followed by replacing the redex denoted at the returned match position in the

statement’s AST with the appropriately substituted RHS of the rule.

The above strategy is sufficient, e.g., to uncover the rewriting opportunities in

the code in Figure 5.3(a) and 5.3(b). To reveal the rewriting opportunity in the code

in Figure 5.3(c), the rewriting approach is combined with function inlining.

Transformations and Inlining

Inlining plays two contradictory roles in application of rewrite rules. One the

one hand, inlining can expose new facts justifying rewriting. E.g., inlining add() in

Figure 5.3(c) reveals the fact that def(b) = string(””), which justifies the application

of the rule R6. On the other hand, too early inlining may lead to the loss of rewriting

opportunities. For example, in Figure 5.3(c), if the constructor string() or the function

operator+() is first inlined, the rule R6 no longer matches. Thus, a strategy for

interleaving inlining and rule application is necessary.

Compilers tend to carry out inlining in one pass, choosing candidates (functions

to be inlined) and inlining them all at once. It would be prohibitively expensive to

try a large number of different inlining orders, and with each inlining step, attempt

to apply rewrite rules. To help reduce the search space of potentially useful inlining

orders, function abstraction analysis is designed to obtain a measure, the abstraction

index, of how ”abstract” each function is in relation to other functions.

The abstraction index of a function is obtained from the program’s call graph.

Built-in functions and operations are at the lowest abstraction level, and a (non-

recursive) function is always on a higher abstraction level than any of its callees.

Concretely, the abstraction index φ of a built-in function is 0. For a non-recursive,

user-defined function f , it is defined as:

φ(f) = max(φ(g1), . . . , φ(gn)) + 1,
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where gi are the callees of f (and no gi is f).

Computing the value of φ for a given function follows the depth-first traversal

order of the program’s call graph. Recursive functions are handled by keeping track

of what functions have been visited and then ignoring recursive calls. More precisely,

if a call path leads to a cycle from a caller to itself, then none of the nodes in that call

path contribute to the computation of the abstraction index. The net effect is that

recursive calls to a function have no effect on computing the function’s abstraction

index. For example, in the code in Figure 5.3(c), assuming the abstraction indices of

the constructor string() and function add() are, respectively, 1 and 2, then φ(main) =

max(φ(string()), φ(add)) + 1 = 3.

The functions in a program, in particular those identified as candidates for inlin-

ing, can be partitioned based on their abstraction indices. Starting from functions

in the partition with the highest abstraction index, each candidate is inlined and

attempted to match the rewrite rules in the body of the just inlined function. The

process is then repeated recursively for the functions in the partition with the next

lower abstraction index. With this strategy, the rewriting effort becomes propor-

tional to the number of partitions.

Using the abstraction indices of functions to guard rewriting allows further im-

provement on the efficiency of applying rewrites. Naively, each rewrite rule could be

attempted to each function. In practice this is not necessary. It is possible to rule

out many rewrite rules based on their rule functions’ abstraction indices.

Given a function f and a rule function r, if φ(f) < φ(r), the rule corresponding

to the rule function r cannot match an expression in f . This property suggests a

practical approach to combining inlining and rewriting.

The approach consists of one preprocessing and two rewriting phases. In the

preprocessing phase, this approach partitions all functions that are candidates for

inlining according to their abstraction index, and does the same to all rewrite rules.

This approach orders the partitions of the function candidates and the rewrite rules,
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respectively, in the descending order of their abstraction indices. In the first rewriting

phase, then, this approach attempts to apply each rewrite rule to each function

whose abstraction index is at least that of the rule function. In the second rewriting

phase, it iterates over the ordered partition of the rewrite rules, interleaving inlining

and rewriting operations. Specifically, in each iteration, it uses the rewrite rules

from the partition as potential rewrite rules, inlines those function candidates whose

abstraction indices are greater than or equal to the abstraction index of the potential

rewrite rules, and attempts to match the potential rewrite rules to the bodies of the

just inlined functions.

The above approach is practical, as demonstrated by the experiments described

in Section 5.2. The number of iterations in the second phase is limited by the highest

abstraction index of any of the rule functions, and each iteration has a set of rules

to apply that is disjoint from the sets of other iterations.

5.2 Evaluation

This section describes the evaulation of the optimizing effectiveness of the ap-

proach of exploiting concepts and axioms for domain-specific optimizations in the

middle-end of the compiler and the impact this approach has on the compiling ef-

fort. The prototype of the approach, implemented as an extension of the Concept-

GCC compiler, can be obtained from our project home pages [101]. The proto-

type adds a command line option “-fconcept-simplify” for users to switch on the

concept-based optimizations. In the following test runs, the exception mechanism

was disabled with “-fno-exceptions” and the optimization switch was “-O2”. The

evaluation platform was an iMac 2GHz Intel Core Duo, running Mac OS X 10.5.3.

To measure the effectiveness of the approach, we selected programs that contain

algebraic expressions that an optimizing compiler routinely simplifies if the argu-

ments of those expressions are of built-in types. In these programs, built-in types

were repalced with user-defined types whose operations obey the same algebraic laws
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that justify the simplifications on built-in types. The evaluation aims to measure the

abstraction penalties of these programs. Abstraction penalty is defined as the ratio

of the execution time of an abstracted implementation over a direct implementa-

tion [1, §D.3]. The test programs are from Adobe’s C++ performance benchmark

suite1 [16], designed to measure, among other traits, abstraction penalties of C++

compilers.

The benchmark wraps a varying number of double values into user-defined classes

that support arithmetic operations (and thus follow the same algebraic rules as

double) and executes code that repeatedly evaluates arithmetic expressions on ob-

jects of those classes. Figure 5.10 summarizes the results. The user-defined classes,

DoubleClass, Double2Class, and Double4Class wrap one, two, and four doubles, respec-

tively. Each test was repeated for each of these classes. The names of the tests

indicate the algebraic operations being tested. As an example, the “mixed alge-

bra” tests measure the optimizer’s efficiency for compound expressions that include

more than one kind of algebraic operations. The code for these tests, where T is a

placeholder for one of the above three user-defined classes, is as follows:

T test (T input) {

return (−(T(0) − (((input + T(0)) − T(0)) / T(1)))) ∗ T(1);

}

The baseline for the test of abstraction penalty measurement in this case is the

function T base (T input) { return input; }.

The abstraction penalty is consistently essentially one with our optimizer. When

the concept-based optimizations were switched off, on the other hand, the compiler

only got rid of the abstraction overhead in three of the twelve cases. Our optimiza-

tions do not significantly slow down compilation. For this benchmark, applying the

optimizations increases the compilation time by a factor of 1.0035.

1The benchmark suite’s current public release does not yet include the tests used in this evaluation;
the tests are available on the project home pages [101].
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Test D1(A) D1(B) D2(A) D2(B) D4(A) D4(B)
add zero 1.00 1.25 0.99 1.65 1.01 1.70

zero minus 1.00 1.32 0.99 1.89 1.01 1.79
times one 1.00 1.00 0.99 1.00 1.00 0.99

mixed algebra 1.03 1.63 0.99 2.36 1.00 2.42

Figure 5.10. The benchmark results for algebraic simplifications for
user-defined types. D1, D2, and D4 denote DoubleClass, Double2Class,
and Double4Class, respectively. The columns denoted with (A) show
the abstraction penalties measured with high-level optimizations on,
the columns (B) show the same measured with those optimizations
off.

What is the burden for the programmer to enable the identity rules for the user-

defined types used in the benchmark? Recall that the identity rules are defined in the

concept Monoid, which is predefined in a header file. The necessary concept map for

the additive monoid for DoubleClass below is an example of one of the nine concept

maps (an additive, subtractive, and multiplicative monoid for each of DoubleClass,

Double2Class, and Double4Class) that the programmer would write to enable the iden-

tity laws:

concept map Monoid<plus<DoubleClass>, DoubleClass> {

DoubleClass identity element (plus<DoubleClass> op, DoubleClass x)

{ return DoubleClass(0); }

};

To measure the impact of high-level simplifications to later analysis and optimiza-

tion passes of the compiler, we estimated the size of the compiler’s intermediate data

at various stages of the compilation by measuring the size of the output GCC gen-

erates for each compilation stage when invoked with the option -fdump-tree-all.

We used the above benchmark as our test program. Results of this measurement

are shown in Figure 5.11. In the beginning, annotations for high-level optimizations,

concepts and concept maps, increase the size of the representation, but during fur-

71



ther stages, the size decreases: high-level rewrites, applied early, reduce the workload

of the later phases of the compilation.

 100
 20  40  60  80  100  120  140

 400

 300
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 0

Figure 5.11. The impact of early high-level transformations on the
size of intermediate data throughout compiling our benchmark. The
horizontal axis enumerates the compilation passes in chronological
order, the vertical axis denotes intermediate data size in kilobytes.
The dashed line was obtained with -fconcept-simplify, solid line
without it.

The performance of the motivating introductory example shown in Figure 5.3(c)

was also measured. This example code requires appropriate inlining strategy to un-

cover the optimization opportunity. To measure the execution time, a loop invoking

the add(x, y) function was iterated 100,000 times. The running time with the high-

level optimizations turned on was 0.013 seconds, compared to the 0.015 seconds when

they were turned off. To exercise the left identity rule, the experiment was repeated

for the call add(y, x). Now the running times were 0.013 with high-level optimizations,

and 0.033 without.

5.3 Conclusion

This chapter applies generic programming and the “concepts” language feature of

C++ for realizing generic user-defined simplifications. A programmer specifies generic

rewrite rules with axioms in concepts, and the rules are put to use for a particular type
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by simply stating that this type models a particular concept. Such simplifications

are effective for two reasons. First user-specified rewrite rules are transformed into

conditional rewrite rules where data-flow facts (in the user-defined rewrite rules) are

decoupled from rewrite patterns as the associated conditions with these patterns.

Rule application becomes pattern matching against rewrite patterns and satisfying

the conditions with these patterns. Second these simplifications are combined with

function inlining in an effective way. An appropriate order of function inlining helps

uncover more optimization opportunities.

This chapter also shows that the ability to perform high-level user-defined opti-

mizations can be built into an industrial strength compiler without distracting the

compiler architecture in major ways, and that the increase in the compiling resources

to support these optimizations stays small. Further, the experiments in this chapter

demonstrate that generic rewrite rules which apply to a large class of user-defined

types effectively eliminate abstraction penalties where standard low-level optimiza-

tion techniques fail to do the same.
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6. SUMMARY-BASED DATA-FLOW ANALYSIS THAT UNDERSTANDS

REGULAR COMPOSITE OBJECTS AND ITERATORS*

Recall the motivating example that is elaborated via Figure 1.1 and Figure 1.2,

in the thesis’s introduction. Figure 1.2 is reiterated below.

T x, y, z, w, r, s, t1, t2, t3, t4;

... // initializations

t1 = x + y

t2 = t1 + z;

r = t2;

... // code that does not change x and y

t3 = x + y

t4 = t3 + w;

s = t4;

If T in the above code is some built-in type, like int, a modern compiler will be able

to perform a series of reasoning and transformation steps to the code: first x + y

is identified as a common subexpression, then the use of t3 is replaced with the

use of t1, and finally t3 = x + y becomes unreachable and is eliminated. The same

reasoning, however, will not be possible if T is a user-defined type and even if it

behaves as a built-int type. This chapter shows how with better understanding of

the semantics of user-defined types, a compiler can perform more precise and scalable

program analyses, thus enabling the discovery of more optimization opportunities for

user-defined types.

This chapter focuses on summary-based analyses [62–64]. A procedure summary

conservatively approximates a procedure, describing information such as the proce-

*Reprinted with permission from “Exploiting regularity of user-defined types to improve precision
of program analyses”, by Xiaolong Tang and Jaakko Järvi. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 1743–1750, Trento, Italy, 2012. c©2012 ACM, Inc.
*Reprinted with permission from “Summary-based data-flow analysis that understands regular
composite objects and iterators”, by Xiaolong Tang and Jaakko Järvi, 2012. ACM SIGAPP Applied
Computing Review, volume 12, pages 36–47.
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dure’s side effects and its impact to the points-to relation. Procedure summaries act

as transfer functions at call sites. An analysis approximates the effect of a function

call by binding a calling context to the function’s parameters in the callee procedure’s

summary.

Generating a precise procedure summary is usually not possible; the knowledge

about a procedure’s invisible variables, i.e., objects accessible via the procedure’s

parameters and via global variables used in a procedure [65,66], is often incomplete.

Wilson et al. argue [67] that computing a procedure’s summary based on all possible

aliases of its invisible variables is prohibitively expensive. Chatterjee et al. [62] use,

in the context of object-oriented programming, the types of invisible variables to

reduce the number of spurious aliases among the invisible variables: only if the type

of one invisible variable is in a subtyping relation with the type of another invisible

variable, the two variables may alias.

In many cases programmers know that many of the invisible variables conform

to certain aliasing invariants and never alias with each other. This information often

comes from the semantics of user-defined types. For example, two distinct objects

of type std::vector<int> are not aliased; modifying one does not change the other.

Traditional program analyses, however, do not make such aliasing assumptions [62].

Conveying the precise semantics of each different user-defined type to an opti-

mizer is not feasible. This chapter employs a more practical strategy. This strategy

identifies a set of common properties that many, possibly most, user-defined types

possess, and that significantly improve the precision of aliasing guarantees in pro-

cedure summaries. In particular, the properties that are of interest are whether a

type is regular or not, whether values of a type are composite objects or not, and the

aliasing guarantees that follow from these properties. Both of these notions originate

from generic programming [102, §12], and are in use in the C++ Standard Template

Library (STL) [3].
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Regular is one of the fundamental concepts appearing in the STL; types modeling

this concept are regular types. They support default and copy construction, destruc-

tion, assignment, and equality comparison; total ordering is sometimes assumed, but

for our purposes this requirement is not necessary. The operations of regular types

conform to consistent semantics, described in Section 3.4. Examples of regular types

include built-in types, such as int, char, and double.

When regularity is extended to aggregate types, the result is many user-defined

types that have two useful aliasing guarantees: (1) an object “owns” the memory

locations reachable through it and (2) two distinct objects, where one does not own

the other, are not aliased. These guarantees are captured by the composite object

concept1 described by Stepanov et al. [102, §12.1]. This concept captures the “value

semantics” that is common for most built-in types.

A composite object is composed of other objects, its parts. The objects accessible

at constant offsets from the starting address of a composite object are its local parts ;

the other accessible objects from this address are its remote parts. A composite

object owns its parts; if one composite object is not nested into another or vice

versa, they are disjoint.

Non-aggregate built-in types like int, char, and double, are trivially models of the

composite object concept2. Other examples include aggregate types that rely on

the default construction, destruction, copying, and assignment semantics, and whose

members are composite objects; arrays of composite object types; and STL container

templates instantiated with composite object types.

This reasoning extends aliasing guarantees similar to those of built-in types to

many user-defined types. For example, it is safe to assume that two distinct objects

of std::vector<int> are disjoint. This chapter describes an abstraction for composite

objects, and shows how the effort of points-to-analysis is reduced when types are

1Stepanov et al. call it a concept schema as it only pertains to non-syntactic properties of objects.
2C++ has features that allow casting a value of one type to another type, and thus circumventing
the typing discipline. We assume that such features are not used here.
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classified to be models of the composite object concept, and how the precision of

procedure summaries is improved.

As containers are a common category of regular composite types, making the

points-to analysis aware of the concept of iterators allows further reducing the pointer

analysis effort. Iterators are abstractions of regular pointers and prevalent in modern

C++; every standard library container, for example, provides an iterator interface for

accessing the container’s elements in some predefined order. Iterators complicate

taking advantage of objects’ compositeness, as they provide a direct access to objects’

parts. These challenges, and solutions to them, are discussed in Section 6.3.

While the notions of regularity and composite objects originate from generic

programming, the means to put them in use in compilers we borrow from object-

oriented programming. Several works have focused on controlling aliasing between

objects in object-oriented programs through type systems that maintain invariants

about aliasing [71, 72, 103]. These works convincingly argue that many object types

conform to aliasing invariants that could be exploited by compilers for analyses and

optimizations. Most of these works, however, have not found their way to practice;

production compilers do not recognize these invariants.

The contributions of this chapter are as follows:

• it characterizes the properties of composite objects and devises an economic

abstraction for them;

• it designs a summary-based analysis based on the abstraction, in which an

important part is modeling and exploiting the semantics of container-iterator

relationships;

• it applies the analysis to uses of STL containers, and compared to traditional

analyses observes more precise and concise procedure summaries; and

• it applies the analysis to three real-world applications, and observes that points-

to relations and procedure summaries remain small.
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The structure of this chapter is as follows. After the introduction, Section 6.1 ex-

plains summary-based pointer analysis. Section 6.2 details how regularity is exploited

for program analyses. Section 6.3 describes how to leverage the well-established rela-

tion between iterators and containers for further improving program analyses. Sec-

tion 6.4 presents a prototype that implements the ideas of this chapter and reports

experiments. Finally, Section 6.5 concludes the chapter.

6.1 Summary-Based Analysis

Consider the code in Figure 6.1, part of a C++ implementation of a string class.

This section uses the operator= procedure as an example to illustrate a typical

summary-based analysis.

For precision, the analysis this chapter presents is field-, flow-, and context-

sensitive. Field-sensitive analyses let one model each instance of a field as a sep-

arate object. Flow-sensitive analyses take into account the order of statements; an

assignment to a pointer may kill the points-to relations that hold for the pointer

before executing the assignment. Context-sensitivity enables distinguishing between

the effect of different calls to a procedure, and as a result, heap objects allocated

by the procedure can be kept distinct. Specifically, for context-sensitivity, each heap

object is associated with a call string [53] as its identification. E.g., the heap object

arising from the call at Line 20 is denoted as heap31→20.

This chapter also follows the convention of program analysis to abstract run-time

objects of a program. An array is abstracted as a single object, the objects that

are recursively accessible from an object are approximated with this object itself,

and each dynamically allocated object is denoted by its allocation site. For instance,

the allocated array at Line 31 and Line 33 are denoted, respectively, by heap31 and

heap33, and the array str[] is represented as just str.
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class string {
2 public:

string(const string &s) {
4 int l = s.rep→ len; rep = new (l) Rep(l); strcpy(rep→ str, s.rep→ str);

}
6 string(int l = 0) { rep = new (l) Rep(l); }

string(const char ∗s) {
8 int l = strlen(s); rep = new (l) Rep(l); strcpy(rep→ str, s);

}
10 ∼string() { delete rep; }

string &operator=(const string& s) {
12 if (this == &s) return ∗this;

int l = s.rep→ len;
14 if (l <= rep→ max) {

delete rep; rep = new (l) Rep(l);
16 }

strcpy(rep→ str, s.rep→ str);
18 return ∗this;

}
20 void swap(string &s)

{ Rep ∗t = rep; rep = s.rep; s.rep = t; }
22 char ∗find(char);

private:

24 struct Rep {
Rep(int l) { len = l; max = l; str[0] = ’\0’; }

26 void ∗operator new(size t s, unsigned long l)
{ return new char[s + l]; }

28 void ∗operator new(size t s)
{ return new char[s]; }

30 int len; int max; char str[1];
};

32 Rep ∗rep;
};

Figure 6.1. Part of the definition of a string class
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Summary-based analysis commonly consists of two phases. The first and main

phase is computing the side effects and the points-to relations that a procedure may

produce at any calling context, and representing these behaviors as the summary

of the procedure. This phase is run as a bottom-up traversal of the call graph of a

program. The second phase runs as a top-down traversal and propagates the actual

arguments at a call site to its corresponding callee, and then computes the final

points-to relations and side effects at each program point.

Given a procedure p, its summary is represented as follows:

Sum(p) ::= (Sumpt(p), Sumse(p))

Sumpt(p) ::= {(C, (η, α))}

Sumse(p) ::= {(C, (α, e))}, e ∈ {RD,MOD}

where the metavariable C ranges over sets of conditions (to be explained later), α

over the objects accessible in p, and η over the pointers accessible in p; (C, (η, α))

means a comma-separated sequence of (C1, (η1, α1)), . . . , (Cn, (ηn, αn)), and similarly

for (C, (α, e)); RD and MOD denote the read and modification effects, respectively.

Sum(p) is represented as a 2-tuple. Its first part Sumpt(p) represents the set of

points-to relations that p may produce, where an element (C, (η, α)) means that

under C the pointer η refers to the object α. Its second part Sumse(p) represents

the set of side effects that p may produce, where (C, (α, e)) means that under C the

object α has the side effect e. Note that α and η are represented as access paths.

An access path is of the form v{.f|.∗f}, where v represents an object, f a field in that

object, ∗f the object obtained by dereferencing the field f, .f|.∗f either .f or .∗f, and

{.f|.∗f} a sequence of zero or more instances of .f|.∗f.

To analyze the operator= procedure, the invisible variables of the procedure are

needed to be presumed first. Through the parameter this, String object may be

accessed, and further a Rep object; and similarly for the parameter s. Figure 6.2
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depicts the invisible objects we presume from the parameters. The presumption,

however, is not precise. In Figure 6.2, string1 may be an alias to string2, because they

have the same type. Similarly, rep1 may be an alias to rep2. An analysis has to take

into account all these aliasing cases between the invisible variables when computing

points-to relations at pointer assignments. Take as an example the assignment at

Line 20 in Figure 6.1. If string1 is not an alias to string2, the assignment only causes the

rep field of string1 to refer to the heap object heap31→20; otherwise, it also causes the

rep field of string2 to refer to this heap object. To distinguish the different cases, each

points-to relation is associated with a (possibly empty) set of conditions, where each

condition describes an aliasing between two objects. Thus, the generated procedure

summary for the operator= method, i.e., Sumpt(operator=), is:

{(∅, (ret, string1), (∅, (string1.rep, rep1)),

(∅, (string1.rep, heap31→20)), (∅, (string2.rep, rep2)),

({string1 == string2}, (string2.rep, heap31→20))}

where ret denotes the return variable of the procedure, and string1 == string2 means

that string1 is an alias to string2. Note that Sumse(operator=) is not shown here. Given

the points-to relations at every program point of a procedure, it is straightforward

to compute the side effects that the procedure may produce, as described by Landi

et al. [54].

this string1 s string2rep1 rep2

Figure 6.2. The invisible objects of operator=.
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The problem with the above analysis is that it is not aware of the high-level

properties known to programmers, and thus it may generate too conservative points-

to relations. Consider analyzing a procedure with this signature:

void foo(std::vector<string> &v, std::deque<string> &d)

Figure 6.3 and Figure 6.10 depict the presumed invisible objects from the parameters

v and d, respectively, when using the vector and deque implementations in the GCC’s

standard C++ library. As described above, making the rep field of string3 point to a

new heap object gives rise to conditional points-to relations for the other invisible

string objects. For example, the rep field of string8 may also refer to that same heap

object if string3 == string8. The programmer knows, however, that string3 cannot

be the same as string8. Any object of type std::vector<string> is disjoint from any

object of type std::deque<string>, thanks to the semantics of these types, as discussed

in Section 6.2.1. Therefore, string3 accessed from v and string8 accessed from d are

disjoint.

len max str

rep3

len max str

rep4

len max str

rep5

rep

string3

rep

string4

rep

string5

v

M start M finish M end of storage

Figure 6.3. The invisible objects from the parameter v in the foo

procedure. The solid boxes denote objects; the circles denote the
starting addresses of objects; the dashed boxes denote the imaginary
boundaries of the interiors of composite objects; the solid arrows de-
note the references to fields or objects; and the dotted arrows indicate
the innermost owners of the parts of composite objects.
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Further cases where the analysis may fail to preserve the knowledge of the dis-

jointness of objects include the use of swapping, merging, or transferring operations

between objects, and the use of the copy-on-write technique [104]. As an example of

how the swap operation obscures the analysis, assume that x and y are of type string

from Figure 6.1. Analyzing now, say, the statement if(...) x.swap(y); would not reveal

that x and y are disjoint.

The empirical data which is shown in Table 6.1 confirms that the number of

points-to relations at a program point (computed using the above analysis) tends

to be large. Large points-to relations impair the scalability of program analysis—

applying procedure summaries at call sites is expensive. Applying a procedure sum-

mary means computing all possible actual-formal parameter binding lists at the call

site to the procedure; each binding list is a one-to-one mapping from each formal

parameter and invisible object of the procedure to its corresponding value at the call

site. A large points-to relation at a call site may result in a large number of possible

actual-formal parameter binding lists.

Many points-to relations only describe the internal state of composite objects.

When such points-to relations are abstracted away, the number of points-to relations

kept at program points is significantly reduced, and thus also the number of possible

actual-formal parameter binding lists.

As an example, consider the following code snippet:

40 string(‘‘Hello world’’) x;

41 string(‘‘Bye bye’’) y;

42 x = y;

Analyzing the code reveals that x.rep may point to two heap objects, heap31→11 and

heap31→20→42. Keeping both points-to relations is expensive. Both of the above two

heap objects, however, are encapsulated in x and are accessed via a common access

path relative to x. Thus, the two heap objects can be removed, and references to
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them replaced with a reference to x. All points-to relations with the removed heap

objects as targets can be dropped.

string6 string7 string8 string9 string10

d

M map M node M cur M first M last...

Figure 6.4. The invisible objects from the parameter d in the foo

procedure. M map and M node are of type string∗∗, and the other three
fields depicted are of type string∗. For simplicity, we omit another
three fields of type string∗ and one field of type string∗∗ in d and
hence the invisible objects from these fields.

6.2 Exploiting Regularity

Regular types provide a base for precisely understanding the behavior of user-

defined types. The concepts feature in ConceptC++ provides a natural way to declare

a type to be regular; in fact, Regular was a primitive concept in the concepts language

extension. Without direct language support for concepts in C++11, one alternative is,

for example, relying on C++11’s attribute syntax [105]. For example, the declaration

class string [[regular]] can assure the compiler that string class is regular.

6.2.1 Composite Objects

Regularity itself is too weak a property for the kind of analyses described in this

chapter. When regularity is combined with guarantees about the relationships be-

tween an object and what it refers to, sufficiently powerful properties are obtained.

To this effect, Stepanov et al. characterize the “composite object” concept, the mod-
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els of which are called composite object types. Four properties relating to the object

and its parts hold for all composite objects: connectedness, noncircularity, disjoint-

ness, and ownership [102, §12.1]. Connectedness means that parts are reachable

from the object’s starting address; noncircularity means that an object is not reach-

able from its starting address; disjointness means that an object exclusively owns

its parts, allowing no partial sharing with any other object; ownership means that

copying an object is deep copying (copying a pointer is accompanied with creating a

fresh distinct copy of what the pointer refers to), and destroying an object destroys

its parts too. Note that disjointness and ownership are conceptual requirements on

composite objects; it is, for example, possible to design a composite object type that

uses the copy-on-write technique.

The connectness and noncircularity properties of a composite object derive this

corollary:

Corollary 1 The accesses starting from (the starting address of) a composite object

are bounded.

What is reachable from a composite object is referred to as its interior, and any

object accessible from it as its component. A component of a composite object can

thus be the object itself, one of its local parts, or one of its remote parts.

The disjointness and ownership properties of a composite object result in access

restrictions to the interior of the object. Access to the components of a composite

object is required to conform to the owner-as-dominator property [72].

Property 1 (owner-as-dominator) A composite object is the owner of its inte-

rior. This owner dominates the accesses to its components from the outside.

To support the iterator idiom in the object-oriented programming, an iterator,

as an exception, is permitted to directly access the interior of the composite object

that the iterator is associated with. Section 6.3 describes what this means to our

summary based points-to analysis.
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Composite object types are closely related to ownership types [72]. In ownership

types the owner-as-dominator requirement is statically checked. Our work, however,

requires that programmers assume the responsibility for correctly specifying the set

of composite object types.

The owner-as-dominator property enforces a nesting structure among the com-

ponents of a composite object which are composite objects as well. In Figure 6.3,

identified composite objects include v, string3, string4, and string5. Therefore, every

component of v has an owner, and the interiors of the three string objects are nested

inside the interior of v.

6.2.2 Composite Object Abstraction

At run time, a composite object’s interior may acquire new components or lose

old ones. The access to the interior of a composite object is, however, limited to

the access paths originating from the object itself. (The accesses to a composite

object’s components via its iterators are resolved into an access through the object,

by points-to analysis.). This allows the use of the access paths relative to its owner

to symbolically represent its components. All possible access paths to the parts of a

composite object determine its static topology. The static topology for a composite

object is a graph. A node in the graph denotes the address of a component of the

composite object, and an edge denotes the access path from one node to another.

In Figure 6.3, the solid arrows depict the static topology of v, an object of type

std::vector<string>. Though not shown, each node of the static topology is identified

by an access path from v. For example, v.∗M start corresponds to the object denoted

by string3, v.∗M finish to the object denoted by string4, v.∗M start.∗rep to the object

denoted by rep3, and v.∗M finish.∗rep to the object denoted by rep4. Note that two

access paths in a static topology, e.g., v.∗M start and v.∗M finish, may alias each other.

As is common, points-to relations are used to track what objects are the com-

ponents of composite objects. These points-to relations are consulted to resolve
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accesses to composite objects during the course of side-effect analysis. Maintaining

these points-to relations can be expensive. Since they only describe the internal state

of composite objects, it is, however, not necessary to expose them to the clients of

composite objects. One alternative strategy is computing the possible side effects on

composite objects arising from assignments to the pointer components of compos-

ite objects. An assignment to a pointer component of a composite object means a

modification to what is reachable from the pointer component (including the pointer

component). The potential aliasing between the access paths in a static topology,

however, complicates keeping track of what is reachable from the pointer component.

To address the complexity of tracking points-to relations, this chapter exploits the

nesting structure of a composite object to design a strategy to normalize the access

paths originating from a composite object, such that the normalized access paths do

not have any aliases.

Assuming that x denotes a composite object, f denotes a data field of a com-

ponent of x, topo(x) denotes the static topology of x, α and β denote access paths

from x, and owner(α) denotes the innermost owner of the component(s) denoted by

α. The function used for normalizing an access path is called norm. The following

describes the normalizing process for a given access path, α.

• If α is of the form x, norm(α) = x;

• If α is of the form β.f , norm(α) = norm(β).f ;

• Otherwise, α is of the form β.*f . The processing then runs a depth-first

traversal on the subtree rooted at owner(β.f) in topo(x) and return as n the

first node whose type is the same as, or is in a subtyping relation with, the

type of the object denoted by α. Finally, norm(α) = norm(n).

Take as an example the composite object v in Figure 6.3. The access path

v.∗M start is already normalized. The access path v.∗M finish is normalized to v.∗M start,

because v is the owner of v.M finish, and v.∗M start denotes an object that has the
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same type as the object denoted by v.∗M finish. Also, norm(v.∗M end of storage) =

v.∗M start. Thus, the objects denoted by rep3, rep4, and rep5 are all abstracted into

one access path v.∗M start.∗rep.

6.2.3 Concept-Aware Program Analysis

A novel program analysis is designed to exploit the properties of composite

objects; it is called “concept-aware program analysis”. Compared to the typical

summary-based analysis as described in Section 6.1, the concept-aware program

analysis handles two cases differently. First, it does not generate invisible objects if

they are identified as components of composite objects. Second, it does not produce

points-to relations for assignments to pointer components of composite objects; these

assignments are instead considered as modifications on what is reachable from the

targets of them. For instance, in Line 20 in Figure 6.1, the result of the analysis is

that string1.∗rep is modified. Note that since string1.∗rep dominates the access to its

components, a modification to string1.∗rep also implies modifications to its compo-

nents.

The concept-aware analysis assumes that there is no aliasing between two distinct

composite objects. Temporary aliasing, however, may occur as the result of trans-

ferring components between composite objects, or with the copy-on-write technique.

Such temporary aliasing does not, however, lead to writing into two composite objects

at the same time. Thus, the analysis respects flow- and anti-dependency between

run-time objects of a program.

Correctness of Analysis

Conventionally, a safe abstraction strategy requires that one concrete object cor-

responds to at most one abstract object. If this is not the case, program analysis

itself must maintain the consistency between all abstractions that correspond to the
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same concrete object. In general, maintaining such consistency is challenging, be-

cause during program analysis it may not be known which abstract objects alias

which other abstract objects. This issue has to be addressed, since the concept-

aware program analysis may introduce two or more abstract representations for one

concrete object. However, the scenarios in which this can happen are restricted, and

can be handled as described below.

Specifically, two or more different abstract representations for one concrete object

arise when a heap object or an invisible object is assigned to be part of a composite

object. Figure 6.5 depicts a program path where an object is acquired in this way as

Sp P

SI

SJ

α x

β x

Figure 6.5. A program path where the concrete object x becomes
part of a composite object at program point P. Before P, x is ab-
stracted as α and after P, x is abstracted as β. SP denotes the state-
ment at P, SI denotes any statement which may modify x before P,
and SJ denotes any statement which may read x after P.

part of a composite object. In this figure, x corresponds to two abstract objects, α

and β. β denotes an access path relative to the composite object which acquires α as

its part, and in general α and β are two distinct representations. Figure 6.6 presents

a concrete example. Figure 6.6(b) illustrates an abstract object heap1 which will be

acquired as part of a composite object. After assigning p to rep, as in Figure 6.6(b),

heap1 is no longer available, and all accesses via p become accesses to str1.∗rep.

Even though the above scenario can lead to two or more abstractions for one ob-

ject, their scopes during the analysis are always disjoint, and it is thus not necessary
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str1

rep

*rep heap1

p

(a)

str1

rep

*rep

p

(b)

Figure 6.6. A heap object becomes part of a string, as a result of
an pointer assignment str1.rep = p. Case (a) depicts the topology of
the objects before the assignment and Case (b) after.

to explicitly maintain their consistency. To show the correctness of our approach, the

following proves that, at any program point, the abstraction of all concrete objects

contains the current value of the concrete object.

Consider again Figure 6.5. After the program point P, the concept-aware analysis

makes α unavailable, and any modification to x after P is via β. Thus, if β is

guaranteed to have the latest value of x at P, then β has the latest value of x at all

program points after P. As described in the beginning of Section 6.2.3, the analysis

handles a pointer assignment where the target is a component of a composite object

specially, considering it as a modification to all objects accessible from the target.

For example, in Figure 6.6, assigning p to rep results in modifications to all objects

accessible from rep. This strategy forces a dependency between α and β. This

dependency ensures that the modifications on α before P are also observed on β, and

β thus has the latest value of x at P.

The above described strategy guarantees that the data dependencies of a program

are preserved. Consider again the path in Figure 6.5. Since SI may modify x before

P and SJ reads x after P, then SJ depends on SI , denoted as SJ C SI . Because the

analysis forces SJ C Sp C SI . Thus, SJ C SI .
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The points-to and side-effect analysis result of the analysis is applicable to other

analyses and many optimizations. Care must be exercised, however, with liveness

analysis, specifically when computing the liveness information for an abstract object

which is acquired as part of a composite object. Consider the abstract object α in

Figure 6.5. This object α seems not to be alive after the program point P; this is not

correct, however, because β aliases α. To safely compute the liveness information

for an abstract object acquired as part of a composite object, the object’s lifetime is

conservatively extended to the end of the function where it is used.

Complexity of Analysis

The concept-aware analysis builds on the approach by Chatterjee et al. [62], and

the worst case complexity results established for their analysis apply to ours as well.

The work of this chapter exploits the semantics of user-defined types to improve the

practical applicability of points-to analysis. The experiment in Section 6.4 demon-

strates that the concept-aware analysis can be applied to large, practical applications.

6.3 Iterator Idiom Support

Requiring a composite object to strictly conform to the owner-as-dominator prop-

erty is too restricted. To allow iterators to directly access the inside of composite

objects, the owner-as-dominator property is compromised. This compromise presents

a challenge for pointer analysis.

Without loss of generality, consider the case where a pointer may directly refer to

the inside of a composite object. Figure 6.7 shows a code snippet where a pointer is

allowed to directly access the character elements of a string. At Line 52, the return

of the find call is assigned to q; thus q may refer to the inside of str1, as shown in

Figure 6.8(a). An issue arises when str1 and str2 are swapped and q is continuously
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50 string str1, str2;
...

52 char ∗q = str1.find(’c’);
if (!q) {

54 str1.swap(str2);
∗q = ’d’;

56 }

Figure 6.7. Code sample containing the use of a pointer to directly
access the inside of a composite object. This code uses the string class
defined in Figure 6.1.

used at Line 54 and Line 553. Under normal pointer analysis, swapping str1 and

str2 does not cause updating what q may refer to. Therefore, the behavior of the

assignment at Line 55 is modifying str1.∗rep.str rather than str2.∗rep.str; this is not

correct. To address the issue, it is necessary to update what q may refer to at Line 55,

e.g., by making q conservatively refer to the inside of str1 and str2.

If a pointer may directly access the inside of a composite object, tracking what

this pointer may refer to is not easy. Thus, using pointers to directly access to the

inside of composite objects is prohibited. One exception is iterators. The user is

required to provide knowledge on how to update what containers an iterator may

refer to based on the behavior on the containers this iterator may be associated with.

Consider the string class in Figure 6.1. Suppose that the iterator support for the string

class is provided by defining a nested iterator class and necessary member methods

for the string class. The specification for this iterator class may be as follows:

• string::iterator may access a string directly.

• If a string iterator may refer to a string prior to a statement and the rep field

of this string may be modified by this statement, then, after this statement,

3The C++11 standard specifies the behavior of the swap member function of a container as follows:
“Every iterator referring to an element in one container before the swap shall refer to the same
element in the other container after the swap.” [79, §23.2.1]
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str1

rep

len max str

q

(a)

str1 str2

q

len max str

rep

len max str

rep

(b)

Figure 6.8. These figures are to demonstrate that we fail to update
what an iterator may refer to in some cases if iterators are allowed.
Case (a) shows that the assignment at Line 52 in Figure 6.7 gives
rises to q → str1.∗rep.str; Case (b) shows that q remains to refer to
str1.∗rep.str after the swapping operation at Line 54 in Figure 6.7,
which is denoted by the dashed arrows. Note that q shall refer to
str2.∗rep.str in Case (b).

this string iterator may refer to all strings whose rep fields are modified by this

statement.

The updating strategy in the specification may lead to conservative points-to re-

lations for string iterators. This strategy is, however, feasible. First, iterators are

usually local variables, so the complexity of managing iterators is local as well. Sec-

ond, most operations on containers do not result in updating the iterators associated

with them.

6.3.1 Exploiting Iterator-Container Relationship

Recognizing composite objects can significantly reduce the number of aliasing

relations in procedure summaries; Section 6.4 reports observed reductions that re-

sult from leveraging knowledge about composite objects. For further reductions, the

aliasing properties of iterators are studied. This is justified, because the C++ standard

library (as well as many other C++ libraries) follow a well-established container/it-
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erator abstraction that provides uniform semantics for different kinds of containers

and iterators; analysis that relies on the generic properties of iterators thus applies

widely.

Because iterators generally are not composite (an iterator does not own what is ac-

cessible from it), analyzing functions with iterator parameters is expensive. Consider

analyzing the std::copy template, instantiated for std::deque<string>::iterator, shown in

Figure 6.9. Figure 6.10 illustrates the invisible variables that may be accessed from

the parameter first; similarly for the other parameters. The large number of the dif-

ferent possible aliasing relations amongst the invisible variables of type string makes

the analysis for the std::copy function expensive.

typedef std::deque<std::string>::iterator iter;
void copy(iter ret, iter first, iter last, iter result);

Figure 6.9. The std::copy algorithm instantiated with
deque<string>::iterator as the template argument; note that re-
turn value optimization [106] turns the return value into the first
parameter of this instance.

string string string string

first

M node M cur M first M last

Figure 6.10. The invisible variables derived from a
deque<string>::iterator parameter. M node, M cur, M first, and
M last are the four members of a deque iterator. M node is of type
string∗∗ and the others of type string∗. A string is composite, and
thus we do not derive invisible variables from it.
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Two observations about containers and iterators provide insight into the strategy

which is used for improving the analysis for functions taking iterators as inputs.

First, an iterator is associated with a container, and accesses via an iterator are

essentially accesses to its associated container. Second, the points-to relation between

an iterator and its associated container is established by the begin() method for the

associated container. Thus, the program analyses translates accesses via an iterator

to the accesses to its associated container, if the associated container is composite.

The strategy is as follows. The compiler is conveyed the information on which

composite containers are associated with what iterators, and which of the contain-

ers’ methods establish the points-to relations from iterators to the container. That

information is generally available from the common structure of containers; given a

container T, T::iterator and T::const iterator are its iterators, and T::begin() decides how

the two iterators refer to T. Thus, the compiler is made aware of the common knowl-

edge between containers. This information is used in the following circumstance.

Given an iterator parameter, its associated container and the begin method of the

associated container are decided with the help of the common knowledge between

containers. If the associative container is composite, an invisible variable is derived

to represent this container. Then the summary of the begin method is utilized to

establish the points-to relations between the iterator parameter and the newly derived

invisible variable.

Consider again analyzing the std::copy instance in Figure 6.9. The parameter

type of std::copy indicates that it is associated with a composite container. Thus four

invisible containers are generated, one for each of the four iterator parameters. Rep-

resenting the containers explicitly, as invisible objects, significantly reduces the cost

of analyzing this std::copy instance. This strategy only needs to derive four invisible

variable. In contrast, without concept-aware analysis potentially 24 invisible vari-

ables are generated, 6 for each input. This strategy eliminates the need for creating

any points-to relations; otherwise, a few hundreds of points-to relations have to be
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maintained. As can be seen in Table 6.1, exploiting the iterator-container relationship

enables a successful analysis of the operator= method of the std::deque<std::string>.

This function’s body contains the use of the std::copy function.

In addition to the begin() function, there are of course other functions that con-

struct iterators. These can similarly be deduced in the high-level semantic knowledge

of the concept-aware analysis.

6.4 Experiments

The prototype implementation of the concept-aware program analysis is built

on the LLVM [17]4, and it conducts the first phase of a summary-based analysis as

described in Section 6.1.

To evaluate the analysis, the STL is used as one benchmark. The evaluation com-

putes the procedure summaries of the methods in five instantiated STL classes, using

both the traditional analysis described in Section 6.1 and the concept-aware analy-

sis. The comparison results in Table 6.1 indicate that concept-awareness significantly

reduces the effort of analyzing the five instantiated classes.

Table 6.1 is divided into five groups, each for the methods of one class; the table

does not include private methods or methods whose procedure summaries are trivial.

In each group, each row compares the procedure summary of a method generated by

the traditional analysis and the procedure summary of the same method generated

by the concept-aware analysis. The notations in this table are as follows. Columns I

and II denote, respectively, the results from the traditional analysis and the concept-

aware analysis; the reduction, in percents, from I to II is shown in columns III.

#args denotes the number of function arguments; PTA denotes the set of points-to

relations in a procedure summary or at a program point; PTB denotes the subset

4The current implementation is built on Revision 126844 of LLVM SVN [17]. The code is accessible
at http://parasol.tamu.edu/groups/pttlgroup/high-level-optimization/index.html.
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Method #args #PTA #PTB #PTC #SDA #SDB
I II III I II III I II III I II III I II III

std::string

ctor 2 3 0 100% 2 0 100% 1 0 100% 5 1 80% 9 3 67%
operator= 2 5 1 80% 2 0 100% 1 0 100% 6 1 83% 11 3 73%

insert 3 4 1 75% 2 0 100% 1 0 100% 6 1 83% 11 3 73%
reserve 2 2 0 100% 1 0 100% 0 0 n/a 5 1 80% 8 2 75%
begin 1 3 0 100% 2 0 100% 0 0 100% 6 1 83% 9 2 78 %

append 2 5 1 80% 2 0 100% 1 0 100% 5 1 80% 10 3 70%
swap 2 8 0 100% 4 0 100% 2 0 100% 7 2 71% 12 3 75%

std::vector〈std::string〉
ctor 2 12 0 100% 7 0 100% 3 0 100% 8 3(1) 62% 14 6 57%

operator= 2 21 1 95% 11 0 100% 6 0 100% 11 5(1) 55% 18 9 50%
insert 4 22 0 100% 12 0 100% 9 0 100% 13 4(1) 69% 24 6 75%
swap 2 12 0 100% 0 0 n/a 6 0 100% 6 8(2) -33% 6 8 -33%
resize 3 16 0 100% 7 0 100% 4 0 100% 11 3(1) 73% 20 6 71%

push back 2 15 0 100% 7 0 100% 4 0 100% 11 3(1) 73% 20 6 71%

std::deque〈std::string〉
ctor 2 24 0 100% 17 0 100% 6 0 100% 16 6(1) 63% 28 16 43%

operator= 2 * 2 n/a * 1 n/a * 0 n/a * 6(1) n/a * 16 n/a
swap 2 34 0 100% 0 0 n/a 12 0 100% 8 12(2) -50% 8 12 -50%
insert 4 114 10 91% 65 1 98% 64 0 100% 17 4(1) 76% 40 17 57%

push back 2 19 1 95% 11 1 91% 1 0 100% 17 10(1) 41% 21 13 38%
erase 3 27 6 78% 4 0 100% 6 3 50% 19 13(5) 32% 30 18 40%
resize 3 65 1 98% 42 0 100% 24 0 100% 19 6(1) 68% 30 8 73%

std::list〈std::string〉
ctor 2 6 0 100% 5 0 100% 0 0 n/a 7 1 86% 12 4 67%

operator= 2 5 1 80% 2 0 100% 0 0 n/a 8 3(1) 63% 13 6 54%
insert 4 2 0 100% 1 0 100% 0 0 n/a 7 2 71% 12 5 58%
splice 3 4 0 100% 0 0 n/a 0 0 n/a 4 5(3) -25% 4 5 -25%

push back 2 6 0 100% 5 0 100% 0 0 n/a 7 3(1) 57% 11 5 55%
swap 2 4 0 100% 0 0 n/a 0 0 n/a 4 4(2) 0% 4 4 0%
merge 2 6 0 100% 0 0 n/a 0 0 n/a 2 8(2) -300% 6 10 -67%
resize 3 3 0 100% 1 0 100% 0 0 n/a 8 2(1) 75% 14 5 64%

std::set〈std::string〉
ctor 2 13 0 100% 12 0 100% 0 0 n/a 10 3(1) 70% 18 9 50%

operator= 2 15 1 93% 12 0 100% 0 0 n/a 10 5(1) 50% 19 11 42%
insert 3 15 6 47% 11 6 45% 0 0 n/a 8 5(3) 38% 17 10 41%
swap 2 6 0 100% 0 0 n/a 0 0 n/a 8 10(2) -25% 8 10 -25%

set union 6 32 4 88% 28 4 86% 0 0 n/a 8 4(3) 50% 19 12 36%
set intersection 6 14 4 71% 11 4 64% 0 0 n/a 7 4(3) 43% 17 12 29%
set difference 6 23 4 83% 20 4 80% 0 0 n/a 7 4(3) 43% 17 12 29%

Table 6.1
Report on analyzing five instantiated STL classes.
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of its corresponding PTA that have heap objects as sources or targets and PTC

the subset of its corresponding PTA with non-empty conditions; SDA and SDB,

respectively, denote the set of modified objects and the set of read objects in a

procedure summary or at a program point. #PTA denotes the size of PTA, and the

same notation applies to PTB, PTC, SDA, and SDB as well. * denotes unavailability

of a measurement due to excessively long execution time of the analysis.

In concept-aware analysis, most procedure summaries have only one or two points-

to relations; only a handful of points-to relations track aliasing inside composite ob-

jects (indicated by PTB in the table); and only one procedure summary contains

conditional points-to relations (indicated by PTC). For those procedures whose in-

puts cannot be recognized as composite objects, e.g., the last three set operations in

the table, our approach falls back to the traditional analysis.

The concise points-to relations in procedure summaries simplify the application

of procedure summaries at call sites. In this benchmark, the traditional analysis

fails (it gave up after half an hour on a modern desktop machine) on the operator=

procedure of the deque<string> class, because applying the procedure summary of one

of its callees is so expensive—there are over 10,000 possible actual-formal parameter

binding lists for this application. Another benefit of the concise points-to relations

is the reduced number of side effects in most procedure summaries.

To assess the precision of the side effects produced by our approach, the evaluation

report unifies the components of each composite object involved in the write effects of

procedure summaries. Table 6.1 also shows the number of the corresponding unified

write effects (in parentheses). The concept-aware analysis reveals only one write

effect on a composite object for most methods.

Further evaluation for the concept-aware analysis is conducted using several

real-world applications: two programs (252.eon, llvm-bcanalyzer), and one library

(LiteSQL). 252.eon is the only C++ benchmark in SPEC CPU2000. The benchmark
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Program max(#PTA) max(#SDA) max(#SDB)
I II III I II III I II III

252.eon 42 36 14% 78 76 3% 41 40 2%
llvm-bcanalyzer 249 99 60% 36 37 -3% 25 25 0%

LiteSQL 305 21 93% 45 26 42% 13 9 31%

Table 6.2
Report on points-to and side-effect analysis results at program points
for three applications.

Program max(#PTA) max(#SDA) max(#SDB)
I II III I II III I II III

252.eon 16 16 0% 78 77 1% 41 41 0%
llvm-bcanalyzer 233 49 79% 155 119 23% 103 104 -1%

LiteSQL 305 9 97% 21 26 -24% 58 20 66%

Table 6.3
Report on procedure summaries of the functions in three applications.

defines its own string class, and this class is the only composite object we recognize

in the benchmark. llvm-bcanalyzer is a utility for analyzing bitcode files produced

by LLVM-capable compilers. The easily identifiable composite objects involved in

the utility are the STL string and an instance of the STL map. LiteSQL is a C++

library that provides object persistence into relational databases. The library is com-

piled into a single LLVM module, where the analysis recognizes the uses of the STL

string, a few instances of vector, and one instance of both set and map. These all are

composite objects.

Table 6.2 and Table 6.3 summarize the analysis results for the three applications,

in two aspects; Table 6.2 is concerned with the points-to and side-effect analysis

results at program points, and Table 6.3 the procedure summaries of functions. Ta-

ble 6.2 and Table 6.3 use the same notations as in Table 6.1; besides, they introduce a

new notation. max(#PTA) denotes the maximum size among a set of PTAs and such

a notation applies to PTB, PTC, SDA, and SDB as well. For example, max(#PTA)
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in Table 6.2 stands for the maximum among a set of numbers, where each number

is the size of the set of points-to relations at a program point. For the moment, our

prototype does not attempt to resolve function pointers and/or virtual function calls.

Hence, both the traditional analysis and the concept-aware analysis fail to analyze

some procedures. The traditional analysis also fails on these same procedures, and

additionally on five more procedures, as there are too many possible actual-formal

parameter binding lists (see below).

The concept-aware analysis does not notably improve the points-to analysis for

252.eon. This is because the string class defined in 252.eon is not involved as a

building block for more complex data structures. The improvement on the points-

to analysis for the other two applications, however, is significant. In particular,

our approach thoroughly eliminates conditional points-to relations for LiteSQL and

reduces the maximum size of its procedure summaries from 305 points-to relations

to 9. The traditional analysis failed to analyze three procedures in llvm-bcanalyzer

and two in LiteSQL; it gives up on a procedure if the number of possible actual-

formal parameter binding lists for any call site in the procedure exceeded 10, 000. In

the concept-aware analysis, the number of possible actual-formal parameter binding

lists at all call sites is at most one; applying procedure summaries thus remains

inexpensive.

6.5 Conclusion

This chapter shows how to take advantage of the properties of composite objects

for computing more precise procedure summaries and side effects. The proposed

concept-aware approach improves the scalability of a summary-based analysis. The

experiments on STL classes indicate that the concept-aware analysis significantly

reduces the number of points-to relations in procedure summaries. The side effects

that the analysis discovers preserve the information that two distinct composite

objects are disjoint. Analysis results of three relatively large applications suggest
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that the analysis scales to practical use. The analysis thus provides a practical

starting point for effective equational reasoning for user-defined types.
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7. TRANSFORMATIONS FOR USER-DEFINED TYPES AND OPERATIONS

The code in Figure 7.1 contains optimization opportunities that exist because

of the (algebraic) properties of user-defined types—and are typically beyond tradi-

tional compilers to exploit. The code defines a dynamic generic array, ggTrain, and a

three-dimensional coordinate, ggPoint3. The initialize function takes as input an array

representing a vector, and uses a loop to accumulate the componentwise absolute

differences between the first element and every other element of the vector. To see

template <typename T>
struct ggTrain {

T operator[](int i) const { return data[i]; }
private: T ∗data; int nData, arraySize;
...
};

struct ggPoint3 {
double& operator[](int i) { return e(i); }
ggPoint3(const ggPoint3 &p)
{ e[0] = p.e[0]; e[1] = p.e[1]; e[2] = p.e[2]; }
private: double e[3];
};

void initialize(const ggTrain<ggPoint3> &train) {
double x = 0, y = 0, z = 0;
int i = 0, j = 0;
do {

j++;
x += fabs((train[j])[0] − (train[i])[0]);
y += fabs((train[j])[1] − (train[i])[1]);
z += fabs((train[j])[2] − (train[i])[2]);
} while (j < train.length());
...
}

Figure 7.1. An example that illustrates optimization opportunities
for user-defined operators. The code is extracted from the 252.eon
program in SPEC2000, and slightly modified for better clarity.
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the optimization opportunities in Figure 7.1, we examine the loop in the initialize

function.

Generally a compiler simplifies complex expressions by converting them into

three-address forms, e.g., via the “gimplifier” pass in GCC [107]. This takes place

before attempting other transformations. For example, the simplified code for the

loop in Figure 7.1 is shown (stylized) in Figure 7.2.

int i = 0, j = 0; int l1; double x = 0, y = 0, z = 0;
ggPoint3 t1, t2, t3, t4, t5, t6; double d1, d2, d3, d4, d5, d6;
double ∗p1, ∗p2, ∗p3, ∗p4, p5, ∗p6; double r1, r3, r5;
do {

j++;
t1 = train[j]; p1 = t1[0]; t2 = train[i]; p2 = t2[0];
d1 = ∗p1; d2 = ∗p2; r1 = d1 − d2; x += fabs(r1);

t3 = train[j]; p3 = t3[1]; t4 = train[i]; p4 = t4[1];
d3 = ∗p3; d4 = ∗p4; r3 = d3 − d4; y += fabs(r3);

t5 = train[j]; p5 = t5[2]; t6 = train[i]; p6 = t6[2];
d5 = ∗p5; d6 = ∗p6; r5 = d5 − d6; z += fabs(r5);

l1 = train.length();
} while(j < l1);

Figure 7.2. Code after breaking complex expressions in the loop
in Figure 7.1. Several optimization opportunities can be observed in
the simplified code.

There are three important aspects to notice in Figure 7.2. First, the numerous

new variables, temporaries, introduced when breaking complex expressions. Second,

the compiler has applied named return value optimization (RVO) [106] to the calls

to operator[] in ggTrain. That is, t1 = train[j] is essentially a call to a function with the

signature like this:

void operator[](ggPoint3&, ggTrain<ggPoint3>&, int);

This signature is not what results from instantiating the T ggTrain.operator[](int) tem-

plate function. The compiler has added an additional parameter (the first) to rep-
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resent the return value, and changed the return type to void. Third, no other trans-

formations besides RVO have been applied.

The code in Figure 7.2 contains three kinds of optimization opportunities. First,

train.length() is loop-invariant, because train is not modified in the loop. Second, since

i is loop-invariant, t2 = train[i] and similar expressions are loop-invariant as well.

Third, t2 = train[i], t4 = train[i], and t6 = train[i] are essentially common subexpres-

sions, as are the similar expressions on train[j].

These three classes of optimization opportunities are not straightforward for a

compiler to reveal.

First, proving that train.length() and t2 = train[i] are loop-invariant requires alias

analysis, because train is essentially a pointer and accesses via a pointer may be

aliased. Given sufficient aliasing information, train.length() may be proved to remain

constant and not have side-effects, and thus may be hoisted out of the loop.

Second, the expression t2 = train[i] apparently modifies the object denoted by t2,

and hoisting this expression out of the loop requires additional knowledge. Semanti-

cally the function call t2 = train[i] creates an object at t2, via the copy constructor of

ggPoint3. This copy constructor must ensure that copy-constructing from the same

value into t2 in the loop is invariant.

Third, in order to show that t2 = train[i], t4 = train[i], and t6 = train[i] are common

subexpressions, a compiler needs to prove that t4, t6 are replaceable with t2.

Because of the lack of sophisticated pointer analysis, production compilers fail to

exercise the first two kinds of optimizations. It is noted that even if a compiler ap-

plies such “de-abstraction” transformations as function inlining and replacing objects

with their scalar members, the need for disambiguating the accesses via train (a ref-

erence) remains. For the running example, a typical compiler generates code that is

equivalent to eliminating the common subexpressions in our concern, after the “de-

abstraction” transformations. Consider t2 = train[i] and p2 = t2[0]. De-abstraction

transformations for the two expressions generates code as below:
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t2[0] = train.data[0][0];

t2[1] = train.data[0][1];

t3[3] = train.data[0][2];

p2 = &t2[0];

The variables in the above code are of built-in types; applying copy propagation,

forward propagation, and dead code elimination eventually transforms the above

code into a sole access to train.data[0][0]. Similarly, the expressions t4 = train[i] and

p4 = t4[0] are transformed into an access to train.data[0][1]; the expressions t6 = train[i]

and p6 = t6[0] are transformed into an access to train.data[0][2]. The behavior of these

transformations is equivalent to removing t4 = train[i] and t6 = train[i] and replacing

the the uses of t4 and t6 with t2.

Consider the aforementioned transformations which a typical compiler conducts

to achieve the goal of eliminating the common subexpressions among the three ex-

pressions t2 = train[i], t4 = train[i], and t6 = train[i]. The particular definition for the

copy constructor of ggPoint3 is crucial for the success of these transformations. Mu-

tating the copy constructor, however, in some seemingly insignificant manner may

challenge the compiler. E.g., consider another definition for the copy constructor:

ggPoint3(const ggPoint3 &p)

{ for (int i = 0; i < 3; i++) e[i] = p.e[i]; }

Unless loop unrolling, applied in a suitable order in relation to the other transfor-

mations, comes to rescue, a typical compiler fails to exercise the transformations

discussed above. Other mutations to the definition of ggPoint3, e.g., using memcpy to

copy data in its copy constructor or using dynamic memory for data, may ultimately

also be sufficient in inhibiting those transformations.

This chapter describes an approach that empowers the compiler to perform the

kinds of optimizations discussed with the running example.
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7.1 Transformations

Based on the aliasing information provided by points-to analysis, computing the

side-effects of functions is straight-forward [54]. Further analysis information, such

as the memory dependency between instructions, may be computed based on the

side-effects of function calls. The more accurate these analysis results are, the better

the (traditional) optimizer is expected to perform. What is more, such information

enables new optimizations, combining the high-level knowledge of user-defined op-

erations in the object-oriented programming. This section describes optimizations

that now apply at a higher-level of abstraction, because of the improved analysis

results from Chapter 6.

7.1.1 LICM

Loops are important optimization targets, as they typically dominate the com-

puting time of a program. LICM aims to move loop-invariant code out of loops,

thus reducing the amount of computation repeated on each loop iteration. Utilizing

the results of the concept-aware pointer analysis in Chapter 6, LICM applies to two

categories of functions.

First, LICM applies to functions without side effects (read-only functions). If a

read-only function only accesses variables that are not modified in the loop, and it

is safe to unconditionally execute this function outside of the loop, LICM moves the

read-only function outside of the loop. For example, in Figure 7.4, the vec container

is not modified in the loop body, hence vec.end() is a candidate for loop hoisting.

Since the analysis distinguishes between the components of a regular object, it

is also capable of uncovering calls such as the child.end() call in Figure 7.3 as loop

invariant.
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class Scene;
typedef std::list<Scene ∗> Scenes;
struct Group : public Scene {

Scenes child;
∼Group() {
for (Scenes::const iterator it=child.begin(); it!=child.end(); ++it)
delete ∗it;
}
};

Figure 7.3. A code fragment from the ray program from the LLVM
testsuite [108], a simple ray tracer in C++. Note that the elements of
Group::child are modified in the loop.

int accumulate(std::vector<int> &vec) {
typedef std::vector<int>::iterator iterator;
int r = 0;
for (iterator I = vec.begin(); I != vec.end(); I++)

r + = vec[i];
return r;
}

Figure 7.4. The call to vec.end() is recognized as loop-invariant,
since vec is only read, not modified in the loop body.

Second, by exploiting the knowledge that certain functions serve as constructing

objects or defining the state of objects, LICM is applied to functions with side effects

as well. Specifically, the candidate functions for LICM include three kinds of func-

tions: constructors of regular types, copy assignments of regular types, and functions

that return regular class types1. Constructors and copy assignments define the state

of their receiver objects. For a function returning a class type, its call is transformed

by RVO2 [106]; the result from this transformation is a call that constructs an ob-

ject at the location denoted by the first input of the call. So the commonality of the

1The requirement for functions returning class types ensures that RVO applies to the calls to such
functions.
2RVO does not apply when the return (class) type of a function can be coerced into a scalar type.
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three kinds of functions is that they all define the state of the objects at the locations

denoted by their first inputs.

The semantics on the three kinds of functions assure that the prior state of the

objects at the locations denoted by their first inputs does not contribute to the

result of these functions. Therefore, a candidate function in this category produces

the same behavior at each loop iteration and can thus be hoisted, if this candidate

satisfies two requirements:

• The candidate only modifies the components of the regular object.

• The memory the candidate accesses, other than the components of the regular

object, is not invalidated in the loop body.

In Figure 7.2, loop hoisting applies to t2 = train[i]; the two requirements are met and

executing the code out of the loop is safe.

7.1.2 GVN

Global value numbering aims to remove redundant expressions. An expression

E1 is redundant if another expression E2 predominates E13, E1 does not depend on

any expression on any path between E1 and E2, and the behaviors of E1 and E2 are

equivalent. GVN assigns a number to each expression, and if two expressions share

the same number, GVN identifies a redundant expression. GVN shares with LICM

the two categories of candidate functions, where it can possibly remove redundant

calls.

The first category are read-only functions. The second category contains two sub-

cases. In the first sub-case, the following four conditions are checked for a candidate.

• This candidate does not modify memory other than the components of the

regular object referred to by its first input.

3E2 predominates E1 if E2 is on all execution paths leading to E1.
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• Two calls to this candidate share the same set of inputs.

• Both calls access the same state of memory, except for the components of the

regular object referred to by the first inputs of the two calls.

• The state of the regular object referred to by the first inputs of the two calls

is not modified between the two calls.

The four conditions ensure that a second call to a candidate after a first call to the

candidate is redundant, if the first predominates the second. Consider a simple case

exemplified in the code below.

void foo() { std::string x, y; ...; x = y; ....; x = y; }

The first copy assignment ensures that x is equal to y. Suppose that x and y are not

modified between the two assignment and that the second assignment is predomi-

nated by the first. The second assignment is removed, because it does not change

the state of memory.

The second sub-case only considers functions whose return values are classes. In

contrast to the four conditions in the first sub-case, in this sub-case the first inputs

of two calls to a candidate can be different. This relaxation allows to uncover more

redundant function calls. Justifying that a call is redundant, however, requires more

proof. It must be shown that the regular object referred to by the first input of one

of two calls can be safely replaced with the object referred to by the first input of the

other, and appropriate replacement must follow the removal of a redundant call. A

simple proof is obtained if it is observed that the two objects are not modified except

for in their constructors and destructors.4 In the running example in Figure 7.2,

t4 = train[i] is proven to be a redundant call, after evaluating the pair of expressions

of t4 = train[i] and t2 = train[i] by the rules in this sub-case. Similarly, t6 = train[i] is

4Usually the temporaries introduced by compilers are only modified by their constructors and
destructors.
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also redundant. After removing t4 = train[i] and t6 = train[i], we must replace all of

the uses of t4 with t2, and replace all of the uses of t6 with t2 as well.

7.1.3 Copy Propagation

Copy propagation replaces the uses of a variable with its definition. Such replace-

ments may give opportunities for eliminating some variables altogether. Actually the

use of copy propagation, also for user-defined types, is suggested in the C++ stan-

dard [79, §12.8]

When certain criteria are met, an implementation [of a C++ compiler] is

allowed to omit the copy construction of a class object, even if the copy

constructor and/or destructor for the object have side effects.

Copy elision relies on the language semantics that guarantees whether a copy is

performed or not shall not impact program behavior. Return value optimization is

an instance of eliding copy constructors.

The analysis also helps with uncovering the opportunities for copy propagation.

One possible circumstance to apply copy propagation is function’s input parameters.

Consider the code in Figure 7.5 (a). The sum function passes its parameter by

value. Following the semantics of call-by-value, a typical compiler transforms the

function call to sum into the code in Figure 7.5 (b). Clearly, the compiler introduces

a temporary, and constructs this temporary with the value of vec. Also, the compiler

changes the signature of the sum function. The code in Figure 7.5 contains an

opportunity to apply copy propagation to transform sum(tmp) into sum(vec). This

application is guarded by two conditions:

• The sum function does not modify its input.

• The sum function does not escape its input.

This application must be followed by removing the destructor(s) of the temporary.
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int sum(std::vector<int>);
void foo(...) {

std::vector<int> vec;
...
int r = sum(vec);
...
}

(a)

int sum(std::vector<int> ∗);
void foo(...) {

std::vector<int> vec;
...
std::vector<int> tmp(vec);
int r = sum(tmp);
...
}

(b)

Figure 7.5. An opportunity to apply copy propagation. Figure (a)
shows the original source code; figure (b) the result of translating
that code by a typical C++ compiler.

7.2 Implementation

This section presents a prototype analyzer and optimizer for user-defined types

and operations. It is aware of the high-level properties of regular types, and is capable

of the optimizations described in Section 7.1. The prototype is built using the Clang

compiler [18] and the LLVM infrastructure [17]. Figure 7.6 illustrates the prototype’s

architecture.

front-end middle-end

clang conf

llvm bitcode + 
metadata

type pre
pointer
modref

dom licm gvn prop opt

Figure 7.6. The architecture of the prototype for analyzing and
transforming user-defined types and operations. opt represents the
LLVM optimizer, and it is not part of our prototype.

The architecture contains a front-end and a middle-end. The front-end is built

upon the Clang compiler, and provides high-level knowledge to the middle-end.

Specifically, the high-level knowledge includes:
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• The precise type information of a program, including the class hierarchies in

the program;

• The set of regular types;

• The iterator-container relationships.

Metadata support in the LLVM infrastructure is aimed for communicating informa-

tion from the front-end to the middle-end, and thus the high-level information is

conveyed to the middle-end via metadata. In the prototype, after Clang processes

the source files of a program, we arrive at a set of LLVM modules, each module

containing the LLVM bitcode for a source file and the metadata representing the

high-level information. All the modules of a program are linked together to form a

big module, and this big module is fed to the middle-end of the prototype.

The middle-end of the prototype contains a series of analysis and transformation

passes. The first pass “conf” is for reading the additional knowledge, which is pro-

vided by users and which is required for analyzing a program. For example, in the

case that the definitions of the system calls are not available in the module to be

analyzed, users are required to provide the summary of these calls to the prototype.

The second pass “type” utilizes the metadata associated with a program to rebuild

the type information for this program. The third pass “pre” conducts a pre-analysis;

it collects all addressable functions, so that it is possible to conservatively compute

the functions that could be called via a function pointer.

The first three passes are module-level passes; these passes generally use a whole

program as the unit, and do not have pre-defined patterns for processing a program.

The fourth pass conducts pointer and side effects analysis; it implements the analysis

described in Chapter 6. After the fourth pass, alias information becomes readily

useful in the LLVM infrastructure, because the fourth pass implements the alias

interface defined by LLVM.
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The fifth pass “dom” is required for the succeeding transformation passes; it

computes the dominator tree5 for a program. The sixth pass “licm” is a loop-level

transformation pass; it applies LICM to each loop in a program. The seventh pass

“gvn” is a function-level transformation pass; it applies GVN to each function in a

program. The eighth pass “prop” implements copy propagation; it is also a function-

level pass. Note that the three passes “dom”, “licm”, and “gvn” are part of the

LLVM infrastructure, and only appropriate changes are made to “licm” and “gvn”

for implementing the transformations in Section 7.1.

The output from the prototype is then fed to the LLVM optimizer for “standard”

processing, including LLVM’s analyses, optimizations, and code generation. The

prototype thus provides an opportunity to analyze and transform a program for

function calls before the traditional optimizations take place; it is not a replacement

for the traditional “low-level” optimizer.

7.3 Experiment

To see whether high-level optimizations opportunities exist in typical C++ pro-

grams, and to what extent our prototype can take advantage of them, this section

studies a set of C++ programs, and uses the prototype to analyze and optimize them.

It also reports the results of these experiments. The report includes an analysis of

how common regular types in the selected set of programs were, and the performance

numbers that show performance gains, albeit rather modest ones thus far.

Both the concept-aware analysis and the subsequent optimizations rely on regu-

larity of data types. If the conjecture that regular types are common would not hold,

the benefits of our approach would remain very small. Therefore it was necessary to

manually inspect several C++ programs of different variety, four altogether, ranging

from single-source applications to large applications containing multiple translation

5A node in a dominator tree predominates its children.
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units. Table 7.1 lists the regular types which were identified in these four C++ pro-

grams. As seen, regular types are very common in C++ applications.

ID Program Regular types Percent.
1 container vector<double>

set<double>

multiset<double>

list<double>

deque<double>

100%

2 ray Vec Hit Ray Scene

Sphere Group

100%

3 hexxagon HexxagonGame

HexxagonMoveList

100%

4 252.eon ggString

ggRaster<unsigned char>

ggRaster<ggRGBFPixel>

ggTrain<Spectrum>

ggTrain<int>

ggTrain<double>

ggTrain<point2>

ggTrain<ggPoint3>

72%

Table 7.1
The regular types which were identified in selected C++ programs.
The first program, “container,” represents the standard container
benchmark by Alex Stepanov and Bjarne Stroustrup; “ray” is a ray-
tracer in C++; “hexxagon” is a hexxagon board game written by Erik
Jonsson; and 252.eon is the only C++ benchmark in SPEC CPU2000.
The third column lists the major regular types our prototype rec-
ognizes for analyzing the program in the second column. The last
column is the percentage of regular types of all user-defined data
types in the program.

The prototype implements the transformations described in Section 7.1. For

instance, for the running example in Figure 7.1, the prototype helps generate more

efficient code. Figure 7.7 illustrates the memory accesses for the iteration of the

loop in Figure 7.1. The accesses to data, nData, and data[0] are repeated in each

iteration; these repeated accesses mean repeated load instructions. These repeated
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load instructions are not avoided by a typical optimizer, but the code generated by

our prototype completely avoids these repeated load instructions.

data nData arraySize data[0] data[1] data[2] ...

first iteration

second iteration

Figure 7.7. The memory accesses for each iteration of the loop in
Figure 7.1. The two records on the bottom denote two contiguous
memory regions; the left record denotes the layout of the input vector
train, and the right record denotes the vector elements pointed by the
data member of train. The solid arrows denote accesses.

In the case of the running example, the performance gains ended up being hardly

noticeable, since the floating point operations in the loop dominate the computation

time. Moreover, the instructions in the body can often be scheduled to execute in

parallel and to reduce the latency for load instructions, e.g., by software pipelining.

Of the studied applications, the only one that was suitable for performance study

was the 252.eon benchmark. In this application, the performance gains from using

our prototype become noticeable, but still modest.

The machine setting for the study was: iMac with 3.6GHz intel Core 2 Duo, 3

MB L2 Cache, 4G 1067 MHz DDR3 Memory, 1.07 GHz Bus Speed, and Mac OS

X 10.6.8. The LLVM tools which were used were built on Revision 137810 [109] of

LLVM SVN. The prototype was built upon the same revision of LLVM SVN, and

Revision 137823 of Clang SVN [110].

The study used Clang and the LLVM linker to generate a LLVM bitcode module

for 252.eon. It produced two versions of executables for the generated LLVM bitcode

module. One using just the LLVM optimizer; the other applying our prototype before

the LLVM optimizer. For both versions, the LLVM optimizer was invoked with the
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same optimization options: “-std-compile-opts” and “-std-link-opts”. The behavior

of these options is roughly equivalent to the “-O3” option in GCC.

The prototype hoisted 60 function calls out of loop bodies for the 252.eon module.

Except for the loop-invariant calls discussed in the running examples, all calls were

functions that return lengths of arrays in loops. The prototype also removed above

500 redundant function calls, but the LLVM optimizer was also able to remove them.

Therefore, for 252.eon, LICM was the main contributor for possible performance

gains. Table 7.2 summarizes the performance data for four runs of the two versions

of executables of 252.eon. The four runs use the cook rendering algorithm. All of

the running instances use the same input data as what the Benchmark provides for

the cook rendering algorithm, except that we varied the size of the input images in

those runs. The performance gains were small, but nevertheless there. In inspecting

252.eon, it was noticed that the application is written rather carefully, so that the

programmer has already performed optimizations that our prototype could target.

Image size Base Prototype Decrease Percentage
(Sec) (Sec) (Sec)

300 20.65 20.51 0.1 0.67%
500 57.39 56.78 0.61 1.06%
1000 228.62 226.55 2.07 0.9%
5000 5677.73 5667.34 10.39 0.18%

Table 7.2
The performance gains for 252.eon. Each row pertains to one run,
each with a different input image size; e.g., 300 means 300 × 300
pixels. The Base column shows the running time when the program
was compiled without our prototype, and the Prototype column the
other case. The Decrease column shows the absolute decrease in
running time, and the last column the relative decrease in percents.
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7.4 Conclusion

This chapter studies how the semantics of user-defined types can be taken advan-

tage of for analyzing and optimizing user-defined operations. The study focuses on

types that conform to “value semantics,” or regular types, as they are known in the

context of generic programming. Regular types are very common in C++ programs;

the container classes in the C++ standard library are good examples of regular types.

A regular type conforms to similar aliasing constraints as what ownership type sys-

tems ensures; an object of a regular type owns what may be accessed from the object.

Chapter 6 exploits such aliasing constraints to improve the efficiency and precision

of program analysis for regular types.

The availability of a scalable and sufficiently precise pointer analysis enables sev-

eral optimizing transformations at the level of user-defined operations. In particular,

we show how copy propagation, LICM, and GVN are enabled for regular types in

several situations.

To study the impact of concept-aware analyses and transformations, a prototype

was implemented with the Clang compiler and the LLVM infrastructure. Initial

experiments with the implementation show modest performance gains. By leveraging

the analysis results for a wider array of standard compiler optimizations, we believe

that the impact of optimizations for user-defined operations will be more significant
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8. CONCLUSION AND FUTURE WORK

8.1 Conclusion

In a traditional compiler, analyses and optimizations are defined for built-in types

and operations. There are generally no mechanisms for leveraging the semantics

of user-defined types and operations for optimizations. It is the case even when

user-defined types have the similar behaviors as built-in types. This thesis studies

mechanisms that allow a modern compiler to exploit the semantics of user-defined

types for optimizations.

This thesis applies the principles of generic programming for building generic

analyses and optimizations that apply to built-in and user-defined types equally.

This approach is built upon concepts. Concepts describe the syntactic and semantic

requirements of classes of types and it is common practice that generic library design-

ers utilize the semantics of concepts for implementing efficient algorithms. This the-

sis proposes a compiler infrastructure which allows the compiler to exploit concepts

for optimizations. It shows that the linguistic support for concepts in ConceptC++

provides a non-intrusive means for communicating to the compiler such knowledge

as concepts and the modeling relationship between types and concepts. With the

availability of concepts, this thesis investigates several classes of optimizations and

analyses and makes them generic. Figure 8.1 summarizes these works.

One class of optimizations are algebraic simplifications. In traditional compilers,

algebraic simplifications are defined solely for built-in types. This thesis exploits

algebraic concepts and builds an axiom-based optimizer which enables algebraic

simplifications for user-defined types and operations. In this optimizer, algebraic

simplification rules are defined in the axioms of concepts. These simplification rules

are generic, applying to any type which models the concepts where these rules are

defined.
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Figure 8.1. Concept-enabled generic optimizations.

For improving the robustness and effectiveness of transformations, the optimizer

applies those simplification rules in both the front-end and middle-end of the com-

piler. Robustness is obtained by transforming simplification rules into conditional

rewrite rules where data-flow facts are decoupled from rewrite patterns. A rewrite

opportunity is then justified by two conditions, (1) there is an occurrence of a rewrite

pattern and (2) the data-flow facts associated with this rewrite pattern hold for that

occurrence. Effectiveness is achieved by combining rewriting with function inlining.

This thesis proposes a strategy for computing an order of the functions to be inlined.

Following this order ensures that rewrite opportunities are not lost when inlining

functions.

This thesis builds a prototype for the axiom-based optimizer. Experiments with

this prototype show that the axiom-based optimizer can eliminate abstraction penal-

ties; algebraic simplifications are effectively extended to user-defined types and op-
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erations. The effort for specifying such algebraic simplifications is just two simple

steps. First, the programmer specifies appropriate concepts and axioms or skips

this step if existing concepts and axioms are sufficient. Second, the programmer

declares appropriate concept maps to justify the transformations for specific types

and operations.

This thesis also shows that it is practical to implement the axiom-based optimizer

as part of an industrial strength compiler. The implementation effort of our optimizer

was reasonable, and no drastic changes were required to the infrastructure of the

compiler. Furthermore, the increase in compiling resources for performing axiom-

based optimizations stays relatively small.

Besides algebraic simplifications, this thesis studied several other classes of op-

timizations, including copy propagation, CSE, and LICM. These optimizations are

well established from built-in types. As study on generic programming generalizes

built-in types as regular types, this thesis exploits regular types for generalizing

those well-established optimizations for built-in types to user-defined types. Specific

optimizations supported in this thesis include:

• Eliminating redundant copy assignments for regular types;

• Hoisting user-defined functions that return regular classes and that only read

memory.

• Applying copy propagation to an input argument of a user-defined function

if this argument corresponds to a parameter whose type is regular and the

function does not modify the parameter.

Again, implementing the above optimizations is practical in a modern compiler.

This thesis describes an implementation which is based on the LLVM infrastructure

and the Clang compiler. This implementation does not rely on the direct support for

the concepts feature. Instead, it uses the attribute feature in C++11 [105] to convey

to the compiler that a type is regular. It uses the metadata utility of LLVM to carry
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the knowledge about user-defined types and concepts throughout the compilation

pipeline. This implementation provides one additional, optional optimizer which is

inserted into the LLVM compilation pipeline, after the end of the front-end compiler,

Clang, and before running the normal LLVM optimizer.

Evaluating the effectiveness of exploiting regular types for optimizations is con-

ducted with the SPEC2000 benchmark. The evaluation shows a modest performance

speedup for SPEC2000 resulting from the optimizations for user-defined types and

operations. This is noteworthy, as we can expect most optimization opportunities in

SPEC2000 to have already been explored by modern compilers.

Effective optimizations rely on precise program analyses. This thesis proposes an

affordable, precise points-to analysis. This analysis exploits the aliasing invariants

of composite objects to improve the analysis performance and precision. This thesis

builds a prototype for this analysis, also within the LLVM infrastructure. Experi-

ments with real C++ applications show that this analysis significantly improves the

efficiency and precision of points-to analysis in most cases.

Overall, this thesis has made concrete achievements towards the aforementioned

goal described by Dehnert and Stepanov [2]:

Ultimately, we would like compilers to be able to perform such optimiza-

tions [common subexpression elimination, const and copy propagation,

and loop-invariant code hoisting and sinking] at a high semantic level as

well as they do at the built-in type level.

By generalizing the semantics of built-in types to user-defined types, our approach

has successfully lifted some traditional optimizations such that these optimizations

equally apply to built-in types and user-defined types.
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8.2 Future Work

With this thesis, we have laid the ground work and shown a direction for making

high-level optimizations practical. We can already demonstrate concrete benefits,

but much of the work still lies ahead. We envision that one could revisit many

traditional optimizations and consider their generalizations along the lines of what is

shown in this thesis. In particular, we consider the following topics worthy of further

study.

• Function-level prallelization

The precise points-to analysis for user-defined types and operations entails

effectively disambiguating the dependency between function calls, which in

turn makes it possible to explore function-level parallelization.

• Equational reasoning

Equational reasoning allows replacing equals with equals. Essentially, copy

propagation, LICM, and CSE are all applications of equational reasoning. The

semantics of regular types support equational reasoning. We plan to exploit

regular types for enabling the compiler to conduct equational reasoning. Tate

et al. describe an approach that is built on equational reasoning to compute

the set of possible programs that are obtained after applying a given set of

axioms to a given program [111]. This approach does not have the issue of

phase-ordering problem [99]; it promises to optimally apply a set of axioms to

optimize a program. Their study focuses on built-in types, however. We plan

to investigate the case for user-defined types.
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