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ABSTRACT 

 

The U.S. is the largest maize producer in the world with a production of 300 

million tons in 2012. Approximately 86% of the maize production is focused on the 

Midwestern states. The rest of the production is focused in the Southern states, where 

Texas is the largest maize producer. Grain yield in Texas ranges from 18 tons/ha in the 

irrigated production zones to 3 tons/ha in the dryland production zones. As a result, grain 

yield has increased slowly because of the poor production in the non-irrigated acres. 

Methods to improve the grain yield in Texas is to breed for maize varieties adapted to 

Texas growing conditions, including mapping genes that can be incorporated into 

germplasm through marker assisted selection. This dissertation includes two separate 

projects that exploit historical data and maize diversity to increase grain yield in Texas. 

For the first project, a large dataset collected by Texas AgriLife program was 

analyzed to elucidate past trends and future hints on how to improve maize yield within 

Texas. This study confirmed previous reports that the rate of increase for grain yield in 

Texas is less than the rate observed in the Midwestern US.  

For the second project, a candidate gene and whole genome association mapping 

analysis was performed for drought and aflatoxin resistance in maize. In order to do so, 

maize inbred lines from a diversity panel were testcrossed to isogenic versions of Tx714. 

The hybrids were evaluated under irrigated and non-irrigated conditions. The irrigated 

trials were inoculated with Aspergillus flavus and the aflatoxin level was quantified. This 

study found that the gene ZmLOX4 was associated with days to silk, and the gene 
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ZmLOX5 gene was associated with plant and ear height. In addition, this study identified 

13 QTL variants for grain yield, plant height, days to anthesis and days to silk. 

Furthermore, this study shows that diverse maize inbred lines can make hybrids that out 

yield commercial hybrids under heat and drought stress. Therefore, there are useful 

genes present in these diverse lines that can be exploited in maize breeding programs.  
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CHAPTER I  

INTRODUCTION 

 

Maize is the most important crop in the world with a world production of 800 

million tons in 2010 (FAOSTAT) [Verified on May 8/2013]. The United States is the 

major producer of maize with a production of 320 million tons in 2011 having an 

estimated value in the market of 77 billion dollars (National Agricultural Statistical 

Service [NASS], 2013). Maize is currently grown on approximately 33 million hectares 

of land, with the majority in the Midwest region. The rest of the production is in 

Southern states, where Texas is the largest maize producer, and 13th in the U.S. (NASS, 

2012). The maize production in Texas was eight million tons in 2010 with a farm gate 

value of 1.5 billion dollars (NASS, 2012). 

Different studies have showed that average grain yield has steadily increased 

over years in the U.S. and Midwestern states. In contrast, the average grain yield has 

remained steady in the state of Texas. One of the reasons for this lack of improvement in 

grain yield is the use of unadapted germplasm and dryland locations with inadequate 

rainfall. In addition, major obstacles for maize producers in Texas are drought stress and 

aflatoxin accumulation. Methods to improve the grain yield in Texas is to breed for 

maize varieties adapted to Texas growing condition, including mapping genes that 

increase resistant to drought tolerance and aflatoxin contamination, which can be 

incorporated into germplasm through marker assisted selection. In order to address these 

problems, two separate projects are included in this dissertation. 



 

 

2 

 

For the first project, a multi-environment trial (MET) dataset collected by the 

Texas AgriLife Crop Testing Program from 2000 to 2010 was analyzed. The Texas 

Agrilife Crop Testing program is an extension program that has been testing hybrids for 

almost fifty years. In this program hybrids submitted from different companies are 

evaluated every year to provide relevant information to farmers in the region. Like 

testing programs in many states, these METs are conducted to provide unbiased 

information to growers about the best currently available varieties for their area. 

Approximately 1,500 to 2,200 datapoints are generated each growing season and 

important agronomic traits, including days to silk, plant and ear height, lodging, plant 

population, moisture, test weight, and grain yield are collected. The Texas Agrilife Corn 

Performance Trials represent a large historical dataset with broad sampling of genotypes 

and environments that allow direct investigation of many questions that cannot be 

addressed by one of few years of data (DeLacy et al., 1996a,b). The major goal of this 

project is to elucidate past trends and future hints on how to improve maize yield within 

Texas using this MET dataset collected from 2000 to 2010.  

For the second project, a candidate gene and whole genome association mapping 

study for drought and aflatoxin resistance in maize was performed. The first major 

objective of this project is to evaluate the effect of natural alleles of ZmLOX4 and 

ZmLOX5 on conferring tolerance to drought and resistance to aflatoxin accumulation, 

respectively. Two different hypotheses were tested under this goal. The first hypothesis 

is that genetic background impacts the effects of mutant LOX alleles. The second 
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hypothesis is that different alleles at ZmLOX4 and ZmLOX5 will have different impacts 

on drought tolerance and aflatoxin resistance respectively. These hypotheses are 

supported by previous research that showed that the deletion of the ZmLOX4 gene results 

in increase seedling and mature plant drought tolerance. On the other hand, knock-out 

mutants of the ZmLOX5 gene in different genetic backgrounds accumulated 5-fold less 

aflatoxin when infected with Aspergillus flavus. The second major goal for this project is 

to map genomic regions that confer drought tolerance, aflatoxin resistance and influence 

important agronomic traits such as flowering time, plant and ear height, test weight and 

grain yield in a testcrossed association mapping panel. The hypothesis for this goal is 

that different regions in the maize genome mediate quantitative variation for these traits. 
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CHAPTER II  

LITERATURE REVIEW 

 

Maize production, breeding and the Texas AgriLife program 

The United States produced 320 million tons of maize in 2011 with an estimated 

market value of 77 billion dollars (National Agricultural Statistical Service [NASS], 

2012). Maize is currently grown on approximately 33 million hectares of land, with the 

majority in the Midwest region. A series of field studies that compared successful 

hybrids released by Pioneer Hi-Bred International in the Midwest since 1930s - the so-

called “ERA hybrids studies”, showed that grain yield has steadily increased over years 

(Duvick, 1984, 2001; Duvick and Cooper, 2003, Duvick et al., 2004; Crosbie et al., 

2008). This trend in maize yield increase in the U.S. is further corroborated by United 

States Department of Agriculture (USDA) data collected since 1900s (NASS, 2012). 

Yield increase in maize has been largely attributed to genetic gain, which accounts for 

approximately 50%, and improvement in crop management practices are attributed to the 

other half (Russell, 1991; Duvick, 1992). These studies provided evidence that yield 

increases were caused by breeding for plants better adapted to stress and capable of 

production under high planting densities (Duvick, 1977, 1984; 1992, 2001; Duvick and 

Cassman, 1999; Duvick and Copper, 2003; Duvick et al., 2004). A number of traits were 

also associated with greater biomass accumulation and enhanced plant growth in 

historical U.S. yields including: number of ears per 100 plants, small tassel size, reduced 

anthesis-silking interval (ASI) and stay-green (Duvick, 1977, 1984; Duvick and Cooper, 
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2003; Duvick et al., 2004). Recent studies based on simulations and empirical data has 

identified that the modification of the harvest index and root structure has a greater 

direct effect than canopy modification in explaining yield increase and its interaction 

with plant density (Hammer et al., 2009). 

Both the public and private sector played a major role in historical yield increases 

in maize.  Maize varieties were bred and released by land-grant universities, state 

agricultural experimental stations, and other public agencies in the early 1930. This role 

evolved with the consolidation and widespread use of hybrid seed during the 1950 and 

the approbation of the plant protection and variety act in the 1970 (Knudson and Pray, 

1991; Frey, 1996; Fuglie, 2000,2008; Duvick, 2001; Fernandez-Cornejo, 2004; Alston 

and Venner, 2002;). The industry investment in maize research has increased fourfold 

since the 1970s, and it is now estimated that 80% is focused on major corn producing 

states in the Midwest (Frey, 1996; Fuglie, 2000,2008; Schimmelpfennig et al., 2004). 

In contrast, seed industry investment in R&D within the southern states which 

include Texas, has not been significant compared to the Midwestern states. This is 

believed to be because of the smaller market share that those states represent (NASS, 

2012). As a consequence, there are fewer commercial maize breeding programs 

developing inbreds adapted to specific growing conditions in Southern U.S. and Texas. 

To develop new varieties for Texas inbreds are generally test crossed elsewhere and the 

resulting hybrids are evaluated for two to three years in Texas before commercialization. 

As a likely result, the use of unadapted germplasm has increased major constraints to 

maize production in Texas and the Southeastern US, specifically aflatoxin contamination 
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and drought stress (Horne et al., 1991; Brown et al., 1999; Widstrom et al., 2003; 

Williams et al., 2003; Betran et al., 2005;  Mayfield et al., 2011). Texas is the largest 

maize producer of the southern states, and 12
th

 in the U.S. (NASS, 2012). The maize 

production in Texas was 8 million ton in 2010 with a farm gate value in the market of 

1.5 billion dollars (NASS, 2012). Only 86 out of 254 counties produce maize in Texas, 

but these occupy a wide geographical range, in turn making each production zone unique 

in its precipitation, wind and solar irradiation patterns, types of soils, and agronomic 

practices. Little work has been conducted to quantify these different environments so far. 

The Texas A&M Agrilife (formally Texas Agricultural Experiment Station) 

maize program began in 1927, and it was complemented by the corn performance trials, 

which began in 1969. The extension based Crop Testing Program, housed at Texas 

A&M University, specifically began to test elite hybrids from different companies to 

provide the most relevant evaluations to regional farmers.  Like testing programs in 

many states, these MET’s are conducted to provide unbiased information to growers 

about the best currently available varieties for their area.  The Texas AgriLife Crop 

Testing Program annually evaluates approximately 100 to 200 commercial maize entries 

in Texas Corn Performance Trials every year over 9 to 12 different locations believed to 

be most representative of the growing production areas of Texas. The goals of these 

studies are immediate and no retrospective study has yet been conducted. Approximately 

1,500 to 2,200 datapoints are generated each growing season and important agronomic 

traits, including days to silk, plant and ear height, lodging, plant population, moisture, 

test weight, and yield are collected. 
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Drought stress, physiological effects and hormones involved in drought acclimation 

The majority of the regions where maize is grown in Texas are dryland locations 

that depend on rainfall to get moisture for the crop. A highly variable inter-annual 

precipitation in the state increases the change of drought episodes during flowering and 

milky stage, which are the most sensitive to drought effects. This is further worsened by 

the fact that the majority of hybrids that are grown in the state of Texas were not 

developed for Texas environments. Drought stress is a complex trait that involves 

thousands of genes and different physiological responses (Cooper et al., 2009). Breeding 

for drought is challenging because residual error variance in drought trials is greater than 

well-watered trials, which decrease the statistical power to detect significant differences 

between the hybrids tested. Therefore, it is important to control field error variation and 

water input to ensure the survivability of the plants in the field. Drought stress is first 

sensed by the root, which in turn triggers several physiological and acclimation 

responses that are regulated by different phytohormones. The duration of the response 

depends on the severity of the stress and adaption of the plants to the drought conditions. 

The goal of this section is to describe the different physiological responses to drought 

and the role of different phytohormones involved in the drought response. The first part 

is dedicated to one of the well-known effects of drought stress in plants: lipid 

peroxidation and Reactive Oxygen Species (ROS) production (Munné-Bosch, 2005; 

Shalata and Tal, 1998; Yan et al., 2007; Cruz de Carvalho, 2008). This section is 

followed by the role of major phytohormones in drought stress.  
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Drought stress and lipid peroxidation 

Lipid peroxidation occurs during free radical damage to cell membranes under 

drought, cold or high salinity stress (Shalata and Tal, 1998; DaCosta and Huang, 2007; 

Hara et al., 2003; Türkan et al., 2005;; Anjum et al., 2012;). Lipid peroxidation induces 

changes in the lipid composition of the membrane, which affect the structural and 

functional properties of cell membranes (Smirnoff, 1993). Lipid peroxidation is caused 

by the accumulation of reactive oxygen species (ROS) during abiotic stress. Singlet 

oxygen (
1
O2), superoxide radical (  

 ), hydrogen peroxide       and the hydroxyl 

radical (     are the principal ROS in plants (Cruz de Carvalho, 2008). ROS plays a 

dual role in abiotic stress response, based on the concentration, they can participate in 

the stress-signaling pathways, which contributes to the acclimation and stress responses. 

On the other hand, if ROS accumulation reaches high levels, they can initiate an 

oxidative burst that will lead to cell death (Cruz de Carvalho, 2008). One of the principal 

enzymes in lipid peroxidation are lipoxygenases (LOX). These family of proteins 

regulate the dioxygenation of polyunsaturated fatty acids containing a cis, cis-1,4-

pentadiene backbone (Feussner and Wasternack, 2002; Porta and Rocha-Sosa, 2002; 

Liavonchanka and Feussner, 2006; Christensen and Kolomiets, 2011). The primary 

product of this reaction is hydroperoxy fatty acids, which are highly reactive compounds 

toxic to cells. These intermediaries are rapidly metabolized into jasmonates, conjugate 

dienoic acids, and volatile aldehydes such as malondialdehyde (MDA) (Blée, 2002). 
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Production of ROS species during drought stress 

and scavenging mechanisms 

One of the first organs that sense the limitation in water supply is the root 

system. Under water stress, abscisic acid (ABA) accumulates in the roots and 

aboveground parts of the plant (Sauter et al., 2001; Ren et al., 2007). One of the well 

recognized roles of ABA in drought stress is the induction of stomata closure. This 

water-saving strategy has a direct impact on photosynthesis and ROS production 

(Smirnoff, 1993; Cruz de Carvalho, 2008; Türkan et al., 2005). Depending on the extent 

and duration of stomatal closure, the water balance in the leaves and fixation of carbon 

dioxide (CO2) is affected. The lack of CO2 fixation reduce the regeneration of NADP
+ 

by 

the Calvin cycle, which provoke a major leakage of electrons from the photosynthetic 

electron transport chain to O2 by the Mehler reaction, generating superoxide (  
 ) and 

hydrogen peroxide        (Smirnoff 1993). 

ROS are produced naturally by the chloroplast during photosynthesis and 

photorespiration. The mitochondrial electron transport is also responsible for ROS 

generation. Plants have developed scavenging systems to protect cells against lipid 

peroxidation and cellular damage. ROS are increased significantly under drought stress, 

which represent a risk to the chloroplast and thylakoid membranes because of their high 

content in polyunsaturated fatty acids (Smirnoff, 1993). The risk that lipid peroxides 

represent to the cell membrane is evidenced by studies showing a positive relationship 

between the concentration of MDA and reduced electron transport capacity. Singlet 
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oxygen and hydroxyl radical are the most toxic ROS and these are kept under minimal 

production under normal conditions because of their capacity to oxidize lipids, DNA and 

RNA. Under drought conditions, the real threat to the thylakoids membranes is the 

production of the hydroxyl radical by the Mehler reaction through “iron-catalized” 

reduction of         by the superoxide dismutase (SOD) and ascorbate. It has reported 

that wheat under drought stress experienced a 50% in the electron leakage to O2 under 

water stress (Biehler and Fock, 1996). 

Plants are natural producers of ROS and have developed scavenging systems that 

protect the cells against oxidative damage. The major enzymes of this scavenging system 

are SOD, metabolites and enzymes of the ascorbate-glutathione cycle, and catalase. 

Different studies have given contradictory evidence regarding the role of each of this 

systems in scavenging ROS; however, it is well established a positive relation between 

the level of induction of these antioxidant systems and the degree of drought resistance 

(Quartacci and Navari-Izzo, 1992; Pastori and Trippi, 1993; Moussa and Abdel-Aziz, 

2008; Sofo et al., 2004; Torres-Franklin et al., 2008; Kakumanu et al., 2012; Pal et al., 

2012). Similarly, studies have shown that enzymes from the glutathione metabolism, the 

glutathione-S-transferase (GST) and glutathione peroxidase (GPX) are induced under 

drought stress. GPX has the capacity to scavenge      and lipid hydroperoxides, which 

further protect the cellular membranes under drought stress (Sasaki-Sekimoto et al., 

2005; Torres-Franklin et al., 2008). Antioxidants also play a role under drought stress in 

scavenging ROS and preventing membrane damage. Alpha-tocopherol has been shown 

to accumulate under drought stress. This antioxidant has the ability to scavenge lipid 
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peroxyl radicals, hybroxyl radicals and singlet oxygen, which are the most dangerous 

ROS to the cell (Munné-Bosch, 2005). Other strategy of the plant during drought stress 

is shifting the production of       to the peroxisomes to prevent formation of hydroxyl 

radicals by the Mehler reaction. This is accomplished by the increase in the 

photorespiration rate by the rubisco enzyme, which produces glycolate. Glycolate is 

transported to peroxisomes, where it is oxidized to produce glycine, a precursor of the 

glutathione, and      (Cruz de Carvalho, 2008). 

 

Role of lipoxygenases in drought stress  

The role of lipoxygenases (LOXs) in abiotic stress is still unclear. A study on 

olive trees, which are considered drought tolerant, shows an accumulation of MDA and 

LOXs when leaf water content (LWC) and net photosynthetic rate is reduced in stressed 

trees. This paper hypothesized that LOX generate high levels of lipid peroxidation that 

could produce lipid derivates that serve as secondary messengers. These secondary 

messengers may initiate the response to desiccation in the plant. Additionally, the 

hydroperoxy fatty acids metabolism can also generate jasmonic acid that has been shown 

to reduce plant growth during the drought stress conditions (Sofo et al., 2004). 

 

Role of jasmonic acid, ethylene and ABA in drought stress 

Plants are sessile organisms that have evolved different mechanisms to respond 

to drought stress. Under water-deficit conditions, the root, the first organ in the plant that 

senses the water deficit, signals the production of ABA and ethylene in the roots and 



 

 

12 

 

above ground parts of the plants. The abscisic acid (ABA) phytohormone has been 

intensively study because of its well-known role in plant acclimation under drought 

stress (Wang et al., 2008; Sirichandra et al., 2009; Cutler et al., 2010; Kim et al., 2010; 

Wilkinson and Davies, 2010). Plants can tolerate drought by different mechanisms such 

as stomata closure, osmotic regulation, reduction of plant growth rates, increases in root 

extension rates, leaf senescence, and increase in antioxidant activity (Wilkinson and 

Davies, 2010; Wang et al., 2008; Skirycz et al., 2011; Rengel et al., 2012). The response 

to drought in plants involves stress signaling pathways that are interconnected and 

complex. These signaling pathways are ABA-dependent and ABA-independent. Other 

pathways that are involved in these mechanisms are ethylene and derivates of the 

octadecanoid pathway responsible for jasmonate (JA) biosynthesis (Golldack et al., 

2011). In this section, the role of ABA, ethylene and jasmonate methyl-jasmonate 

(MeJA) is discussed (Anjum et al., 2011). 

 

The phytohormone ABA plays an essential role in drought response 

The phytohormone ABA was discovered in the 1960, shown to act as a long-

distance signaling hormone between the root and the shoot. ABA synthesis and 

accumulation is started in the roots. Most of the enzymes of the biosynthetic ABA 

pathway has been characterized and it has been determined that 9-cis-epoxycarotenoid 

dioxygenase (NCED) is a key enzyme in the ABA biosynthesis (Tan et al., 1997; 

Liotenberg et al., 1999; Ren et al., 2007). Accumulation of ABA in the roots and leaves 

triggers downstream responses that adapt the plant to the drought stress in an ABA-
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dependent manner. A well-known effect of ABA accumulation is the concentration of 

cytosolic Ca
2+ 

inducing stomata closure by efflux of anions and potassium ions (LeNoble 

et al., 2004; Ren et al., 2007; Hubbard et al., 2010; Wilkinson and Davies, 2010). 

Several signaling pathways, receptors and molecules participate in the ABA-mediated 

changes in efflux and uptake of ions and anions. Recently, researchers have focused on 

NO and      roles in affecting potassium uptake and the efflux channels in the guard 

cells (Hetherington and Woodward, 2003; Yan et al., 2007; Sirichandra et al., 2009; Kim 

et al., 2010; Wilkinson and Davies, 2010). Different studies have reported different roles 

of ABA in promoting or inhibiting shoot growth. Some studies suggest that ABA 

induces the inhibition of leaf growth to reduce water loss by transpiration (Parent et al., 

2009; Thompson et al., 2007). In contrast, other studies report that ABA promotes shoot 

growth by suppressing ethylene-mediated growth under drought stress (LeNoble et al., 

2004). These inconsistencies could be explained if ABA participates directly or 

indirectly in shoot growth by interacting with other important signaling pathways 

(Wilkinson and Davies, 2010). Thompson et al., (2007) investigated the effect of over-

expressing two enzymes that are important for the biosynthesis of ABA in tomato plants 

under drought stress. One of the major findings of this study was that ABA increases the 

root hydraulic conductivity, which in turn, increases the water movement from the root 

to the shoot.  
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Ethylene reduces growth under drought stress 

Ethylene plays an important role in plants under drought response. Ethylene 

synthesis begins in root in response to water deficit. Similar to ABA, ethylene is a long 

range phytohormone that travels from roots to shoots. Water deficit triggers in the roots 

the biosynthesis of ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) 

that is transported via xylem sap to shoot where the enzyme ACC oxidase (ACO) 

synthesizes ethylene in shoot (Gagne et al., 2004; Young et al., 2004; Manavella et al., 

2006; Wilkinson and Davies, 2010). Different studies using mutant and transgenic plants 

have shed light on the role of ethylene during drought stress. One of the most relevant 

studies was the work done by Gagne et al., (2004) that shows that ethylene-insensitive 

Arabidopsis mutants exhibited improved leaf growth. ACC synthase mutants also reveal 

a possible role of ethylene in decreasing photosynthetic ability under drought conditions 

(Young et al., 2004). Further molecular characterization has shed light on the mechanism 

involved in growth suppression induced by ethylene. Skirycz et al., (2011) reported that 

the cell cycle progression is inhibited by a cyclin-dependent kinase A. This observation 

was further corroborated by transcriptome data, which shows that ethylene biosynthesis 

and signaling genes are upregulated during drought stress (Skirycz et al., 2011). More 

supporting evidence for the role of ethylene in drought stress was published by 

Manavella et al., (2006), which characterized the transcription factor Hahb-4 in 

sunflower. Hahb-4 is a member of the subfamily I of HD-Zip proteins that is regulated 

transcriptionally during water stress. This study showed that overexpression of this 

transcription factor repressed the biosynthesis of ethylene. Consequently, transgenic 
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plants that overexpressed Hahb-4 delay leaf senescence, which allow sunflower to 

maintain photosynthetic activity for a longer time under drought conditions. These 

results suggest that Hahb-4 is involved in the regulation of ethylene-related genes 

(Manavella et al., 2006).  

 

Role of methyl jasmonate and jasmonic acid in drought tolerance 

The jasmonic acid (JA) and MeJA have been extensively studied. Their function 

in plant development and response in biotic stresses is well-established (Blée, 2002; 

Creelman and Mullet, 1997). By contrast, the role of JAs during drought stress suggests 

different roles. A molecular and physiological analysis of drought stress in Arabidopsis 

revealed that JAs are involved in stomata closure in early drought responses and 

homeostasis of plant cell in late drought response, which contribute to yield under 

drought stress (Suhita et al., 2004; Harb et al., 2010). Furthermore, other studies have 

shown that JA synthesis and antioxidant activity increases under drought (Sasaki-

Sekimoto et al., 2005). Similar results were obtained in study in soybeans, the authors 

demonstrated that the exogenous application of MeJA increase the activity of antioxidant 

enzymes such as superoxide dismutase (SOD), peroxidases (POD) and catalase (CAT). 

This study also showed that the concentration of proline, which is known for its 

contribution to maintaining osmotic balance, was increased in soybeans as well (Anjum 

et al., 2011). Other studies have found conflicting results with the possible role of JAs in 

sustaining yield under drought conditions. A study in rice and peanuts found that the 

application of exogenous Jas decreased yield (Kim et al., 2009a,b).  
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Aspergillus flavus and aflatoxin contamination 

Aspergillus flavus infects high-oil content crops such as peanuts, nuts, cotton and 

maize (Amaike and Keller, 2011; Brown et al., 1999; Kelley et al., 2009;). The fungus 

produces and contaminates the seed with aflatoxin, which is a secondary metabolite that 

is carcinogenic and highly regulated. Other Aspergillus species are known as 

opportunistic fungi that infect immunosuppressed individuals causing aspergilliosis 

(Gerson et al., 1984; Lin et al., 2001). The sexual stage of the fungus was recently 

described and named Petromyces flavus. Petromyces forms cleistothecia inside the 

sclerotia, which provide protection for adverse environmental conditions (Varga et al., 

2000; Horn et al., 2009; Varga et al., 2011). It was also reported that different strains 

belong to different vegetable compatibility groups, which would increase sexual 

diversity (Kwon-Chung and Sugui, 2009).  

Conidia (spores) or sclerotia are found in the soil, where the fungus overwinters 

in the crop debris. Sclerotia germinate and develop conidia that are dispersed by the 

wind or rain splash. Spore dispersion by rain-splash is the main pathway of infecting 

cotton and peanuts (Payne, 1998; Zuber and Lillehoj, 1979; Amaike and Keller, 2011; 

Windham et al., 2005). Spore dispersion by wind is the important method to infect nuts 

and maize. The conidium colonizes maize kernels through silk channel. Hot and dry 

conditions favor the fungus infection. Different strains of A. flavus exist, strains L and S 

produced aflatoxin B1 and B2, but only strain S is capable of produce aflatoxin G1 and 

G2. The first report of aflatoxicosis occurred in the early 1960 when thousands of 



 

 

17 

 

turkeys died as a consequence of eating grain contaminated with aflatoxin (Zuber and 

Lillehoj, 1979; Amaike and Keller, 2011; Abbas et al., 2002; Betran et al., 2002; Betran 

et al., 2005; Menkir et al., 2006). The most dangerous aflatoxin is the B1, which has 

been extensively studied, and it has been directly linked to liver cancer. Aflatoxin is 

metabolized in aflatoxin B1 epoxides and B1-exo-epoxides that intercalate between the 

bases of DNA of the tumor suppressor protein p53 causing a mutation in the 249 codon 

(AGG to AGT, R249S) (Liu and Massey, 1992; Bressac et al., 1991; Hollstein et al., 

1991; Hsu et al., 1991; Macé et al., 1997; Guo et al., 2003). This mutation is often found 

in patient with Hepatocellular carcinoma (HCC), and it is a landmark of consumption of 

grain contaminated with aflatoxin (Liu and Massey, 1992; Bressac et al., 1991; Hollstein 

et al., 1991; Hsu et al., 1991; Macé et al., 1997; Guo et al., 2003). 

Aflatoxin is highly regulated in the U.S. and other countries. Quantities as low as 

20 pbb are allowed in grain for human consumption and 5 pbb in grain for dairy cattle 

(Shephard, 2003; Gilbert and Vargas, 2003; Robens and Cardwell, 2003; Campbell et 

al., 2003). Economical losses caused by aflatoxin range in the billions of dollars every 

year in the world and Southern states. Approximately 4 million dollars in losses were 

reported for grain contaminated with Aflatoxin in Texas in 2011 (RMA-USDA). There 

are pre-harvest and post-harvest mechanisms of controlling A. flavus infection. The use 

of atoxigenic strains of A. flavus is a pre-harvest control and it is currently 

commercialized under the brand of Afla-Guard by Syngenta originally developed for 

peanuts, and, AF36, originally developed by the USDA for cotton by the USDA for 

cotton (Bruns, 2003; Widstrom et al., 2003). Other mechanisms of control are to find 
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resistance genes that decrease the A. flavus infection and aflatoxin accumulation 

(Windham and Williams, 2002; Widstrom et al., 2003; Williams et al., 2003; Betran et 

al., 2005; Mayfield et al., 2011;). Different QTLs have been reported for aflatoxin 

resistance as well as (Mayfield et al., 2012) different lines with better resistance have 

been released. Post-harvest control includes an appropriate control of grain aeration and 

temperature during storage (Bruns, 2003; Robens and Cardwell, 2003). 

 

Association mapping and QTL mapping 

A quantitative trait locus (QTL) is a region in the genome that is associated with 

a quantitative trait. A QTL can be identified via linkage or linkage disequilibrium 

mapping. To identify a QTL via linkage mapping, it is necessary to have a trait with 

contrasting phenotypes, polymorphic markers and to generate a population (backcross, 

F2, recombinant inbred lines, etc) from a bi-parental cross. A major advantage of bi-

parental QTL mapping is that rare alleles are enriched (Kearsey and Farquhar, 1998; 

Collard et al., 2005; Flint-Garcia et al., 2005; Cooper et al., 2009; Eeuwijk et al., 2010). 

However, the major drawbacks of this approach is the low QTL resolution, which 

sometimes can be of several cM (million base pairs), the evaluation of the QTLs in just 

two genetic backgrounds and the low number of allele numbers that can be screened. 

Sibling mating, which consist of several generations of random mating before 

inbreeding, have been used to increase recombination rate and QTL resolution (Liu et 

al., 1996; Lee et al., 2002). An alternative method is association mapping that is based 

on linkage disequilibrium and has potential to greatly increase QTL resolution, and the 
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evaluation of the QTLs across multiple genetic backgrounds. Linkage disequilibrium 

mapping is the non-random association of multiple alleles in different loci caused (Flint-

Garcia et al., 2003, 2005; Gupta et al., 2005; Yan et al., 2009; Chen et al., 2012). Major 

advantages of association mapping are that existing inbred lines and breeding 

populations can be directly used and multiples alleles per locus can be evaluated. One of 

the major drawbacks of the method is that when the diversity panels and populations 

exhibit high levels of population substructure and diverse levels of familial relatedness 

among individuals, spurious associations can occur (Balding, 2006; Neale and 

Savolainen, 2004; Flint-Garcia et al., 2005; Gupta et al., 2005; Yu et al., 2006; Kang et 

al., 2008; Atwell et al., 2010; Brachi et al., 2010; Pritchard et al., 2000a,b; Quesada et 

al., 2010; Varshney et al., 2012).  

Other major statistical issue for genome wide association mapping (GWAS) 

analysis is the appropriate threshold level to declare an association significant due to the 

multiple testing from tens of thousands to millions of markers. Several approaches have 

been proposed to account for multiple testing; one of them is the Bonferroni correction, 

which corrects the experiment-wise error rate (EWER). The Bonferroni correction 

divides the alpha value into the total number of multiple tests. When a large number of 

markers are used, Bonferroni correction can be too conservative and lead to type II error. 

Other issue with the Bonferroni correction is the assumption of independence and no 

correlation between the multiple tests, which can be problematic since different locations 

in the genome can have different levels of linkage disequilibrium. 
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Other statistic that has been widely used in GWAS is the false discovery rate that 

detects the false associations (Benjamini and Hochberg, 1995; Reiner et al., 2003; 

Moskvina et al., 2008). FDR can be a good option when many of the null hypotheses are 

expected to be false (e.g. microarray analysis). However, the consequences of false 

negatives can significantly impact the results of association mapping since it is expected 

that few associations are true.  

Other major issue with this statistical method is that it assumes independence 

between the multiple tests. Another approach proposed by Cheverud et a., (2001) 

circumvent the issue of independence by calculating the effect number of tests (Meff). 

The Meff is calculated from the eigenvalues obtained in a principal components analysis. 

Principal components analysis is a dimensionality reduction technique that calculates the 

eigenvalues and eigenvector from a matrix (Cheverud, 2001; Han et al., 2009). The 

obtained principal components (PCs) are linear combinations of the original variable that 

are orthogonal to the other PCs and independent. A modified approach of this method 

proposed by Gao et al., (2008) calculates the pair-wise composite linkage disequilibrium 

matrix (Gao et al., 2008, 2010, 2011). The number of PCs required to explain 99.5% of 

the variation in the dataset is used to calculate the Bonferroni correction. This approach 

has been shown to perform well in genome wide association analysis with dense marker 

data (Cheverud, 2001; Gao, 2008,2010,2011). 
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CHAPTER III  

A MULTI-ENVIRONMENT TRIAL ANALYSIS SHOWS A SLIGHT GRAIN YIELD 

IMPROVEMENT IN MAIZE IN TEXAS

 

 

Introduction 

The United States produced 320 million tons of maize in 2011 with an estimated 

value in the market of 77 billion dollars (National Agricultural Statistical Service 

[NASS], 2012). U.S. maize is currently grown in approximately 33 million hectares of 

land, with the majority in the Midwest region. A series of field studies that compared 

successful hybrids released by Pioneer Hi-Bred International in the Midwest since 1930s 

- the so-called “ERA hybrids studies”, showed that grain yield from genetic 

improvement has steadily increased over years at a rate of 0.077 ton/ha (Duvick, 1984, 

2001; Duvick and Copper 2003; Duvick et al., 2004; Crosbie et al., 2008).This trend of 

maize yield increase in the U.S. is further corroborated by United States Department of 

Agriculture (USDA) data collected since 1900 (NASS, 2012). Yield increase in maize 

has been largely attributed to genetic gain, which accounts for approximately 50%, and 

improvement in crop agronomic management practices are attributed to the other half 

(Russell, 1991; Duvick, 1992). These studies evidenced that yield increases were caused 

by breeding for plants better adapted to stress and capable of production under higher 

                                                 


 Reprinted with permission from “A multi-environment trial analysis shows a slight grain yield 

improvement in commercial maize in Texas” by Barrero Farfan, I.D., Murray, S.C., Labar, S., Pietsch, D., 

2013. Field Crops Research 149, 167-176. Copyright 2013 by Elsevier. 
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planting densities (Duvick, 1977, 1984, 2001; Duvick and Cassman, 1999; Duvick and 

Cooper 2003; Duvick et al., 2004). A number of traits were also associated with greater 

biomass accumulation and enhanced plant growth in historical U.S. yields including: 

number of ears per 100 plants, smaller tassel size, reduced anthesis-silking interval (ASI) 

and increased stay-green (Duvick, 1977; Duvick, 1984; Duvick et al., 2003; Duvick et 

al., 2004). Recent studies based on simulations and empirical data have identified that 

the modification of the harvest index and root structure has a greater direct effect than 

canopy modification in explaining yield increase and its interaction with plant density 

(Hammer et al., 2009).  

Both the public and private sector played a major role in historical yield increases 

in maize.  Maize varieties were bred and released by land-grant universities, state 

agricultural experimental stations, and other public agencies in the early 1930s. This role 

evolved with the consolidation and widespread use of hybrid seed during the 1950s and 

the approbation of the plant protection and variety act in the 1970s that lead to an 

increase in the investment in research and development by the private sector (Frey, 

1996; Fuglie, 2000; Duvick, 2001; Knudson and Pray, 1991; Huffman and Evenson, 

1992; Alston and Venner, 2002; Fernandez-Cornejo, 2004). Private sector investment in 

maize research has increased fourfold since the 1970s, and it is now estimated that 80% 

is focused on major corn producing states in the Midwest (Frey, 1996; Fuglie, 2000; 

Schimmelpfennig et al., 2004). 

In contrast, seed industry investment in R&D within the southern states which 

include Texas, have not increased significantly compared to Midwestern states. This is 
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believed to be because of the smaller market share that those states represent (NASS, 

2013). As a consequence, there are few commercial maize breeding programs 

developing inbreds adapted to specific growing conditions in Southern U.S. To develop 

new varieties for Texas, inbreds are generally bred and test-crossed elsewhere and the 

resulting hybrids are evaluated for two to three years in Texas before commercialization. 

As a likely result, the use of unadapted germplasm has increased major constraints to 

maize production in Texas and the Southeastern U.S., specifically aflatoxin 

contamination and drought stress (Payne, 1998; Robens and Cardwell, 2003; Horne et 

al., 1991; Brown et al., 1999; Widstrom et al., 2003; Williams et al., 2003; Betran et al., 

2005; Mayfield et al., 2011). Texas is the largest maize producer of the southern states, 

and 12
th

 in the U.S. (NASS, 2013). Maize production in Texas was eight million tons in 

2010 with a farm gate value in the market of 1.5 billion dollars. County level average 

maize grain yield data (ton/ha) collected by the NASS service (data available in 

http://www.nass.usda.gov/) showed that grain yield in the state of Texas has not kept the 

same pace as the rest of the Midwest states (Figure 3.1). When grain yield data for 

county level are separated into irrigated and non-irrigated counties, it is evident that the 

lack of improvement is caused primarily by the dryland maize producing countries, 

which exhibit greater inter-annual variation (Figure 3.1).  

Only 86 out of 254 counties produce maize in Texas, but these occupy a wide 

geographical range, in turn making each production zone unique in its precipitation, 

temperature, wind and solar irradiation patterns, types of soils, and agronomy practices. 

Little work has been conducted to quantify these different environments so far. The 

http://www.nass.usda.gov/
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Texas AgriLife (formally Texas Agricultural Experiment Station) maize program began 

in 1927, and it was complemented by the Texas AgriLife Corn Performance Trials, 

which began in 1969. These extension based trials are run by the Crop Testing Program 

housed at Texas A&M University, specifically to test elite hybrids from different 

companies to provide the most relevant evaluations to regional farmers.  Like testing 

programs in many states, these METs are conducted to provide unbiased information to 

growers about the best currently available varieties for their area. 

 

Figure 3.1 Five year moving average yields across irrigated and non-irrigated acres in Texas, combined 

acres in the state of Texas, the Midwest and the entire U.S. Data in these categories were obtained from  

the USDA (NASS, 2012). 
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The Texas AgriLife Corn Performance Trials annually evaluate approximately 

100 to 200 commercial maize entries every year over 9 to 12 different locations believed 

to be most representative of the major growing production areas of Texas. The goals of 

these studies are immediate and no retrospective study has yet been conducted. 

Approximately 1,500 to 2,200 datapoints are generated each growing season and data 

are collected for important agronomic traits, including days to silk, plant and ear height, 

lodging, plant population, grain moisture, test weight, and yield.  

The Texas AgriLife Corn Performance Trials historical dataset allows direct 

investigation of many questions that cannot be addressed by one or a few years of data. 

In addition, the testing of commercial hybrids in crop’s target population of 

environments represents a measure of hybrid adaptation and performance (DeLacy et al., 

1996a,b). The authors believed that by compiling and investigating this data, a number 

of objectives to elucidate past trends and future hints on how to improve maize yield 

within Texas would be identified. The goals of this study were: (1) to determine which 

sources of variation are most important for the MET in the Texas AgriLife Corn 

Performance Trials; (2) to estimate the reliability of METs when the number of 

locations, years and replications are increased from which the design of the trials could 

be modified to increase precision; (3) to elucidate changes and trends in yield potential 

across the state of Texas over the last eleven years, and to determine which hybrids have 

been highest yielding; and (4) to investigate the correlation between physiological and 

agronomic measurements with yield across Texas environments to suggest directions for 

future improvement. 



 

 

26 

 

Materials and methods 

Corn performance trial dataset 

A total of 11 years (from 2000 to 2010) was investigated from the Texas 

AgriLife Corn Performance Trials. Testing locations for these corn performance trials 

are distributed in different maize production areas and cover a large geographical area 

(Figure 3.2). Trials located in South, Central and East Texas are planted from late 

February to late March. In contrast, trials in the High Plains are planted from late April 

through early May. Yield trials are harvested in late July for trials located in South, East 

and Central Texas. Trials located in the High Plains are harvested from the middle of 

October to early November. Locations in the High Plains are fully irrigated using center 

pivot systems, while locations in East, Central and South Texas, when irrigation is 

available, generally use a furrow irrigation system. Several dryland locations (no 

supplemental irrigation is available) are included in this dataset (Table 3.1). For Medina 

county and Williamson county, the test site was changed over the 10 year period. 

Castroville (CA) and Hondo (HO) are both located in Medina county (Figure 3.2). 

Nearly all entries were elite hybrids that were currently commercialized for 

different maize production areas in Texas or adjacent states (from all major companies). 

A few entries were experimental hybrids that have at least one inbred developed by 

maize breeders from Texas AgriLife Research (Texas A&M University and Lubbock 

research station), these were generally included for data collection and the goal was not 

commercialization. Within years, not all hybrids were grown in all locations because of 
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the perceived differences between maize production areas and because not all hybrids 

are commercially recommended in all areas (Table 3.2 and 3.3). 

 

Figure 3.2. Maize production counties in Texas and testing locations used in the Texas AgriLife Corn 

Performance Trials from 2000 to 2010. The maize producing counties are highlighted in a grayscale. Dark 

represent high grain yield, light gray represent low grain yield as obtained from the USDA data (NASS, 

2012). Texas AgriLife Corn Performance Trial locations include BA (Bardwell), CA (Castroville), CC 

(Corpus Christi), CS (College Station), DA (Dalhart), DU (Dumas), GR (Granger), HO (Hondo), HW 

(Halfway), LE (Leonard), PR (Prosper), SL (Springlake), TH (Thrall), TY (Tynan), WE  (Weslaco), and 

WH (Wharton).  
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Table 3.1. Characteristics of the different locations in the Texas AgriLife Corn Performance Trials from 2000 to 2010 . RW (row width) is the width in 

(cm) between rows. Plant population (Ppop) per hectare was calculated based on the average for all years within each location.  The planting and 

harvesting date cover the range where the crop was grown through all years when the locations was used. P. irrigated (partial irrigation through furrow 

irrigation), IRRI (crop irrigated through central pivot system). Crops abbreviation: MZ (maize), CO (cotton), CUC (cucumber), FA (fallow), SC 

(sugarcane), SRG (sorghum), SUN (sunflower), SYB (soybean), and WHT (wheat). 

 
Location County Soil type Planting date Harvesting date Ppop Irrigation RW Crop rotation 

Rest of Texas, dryland locations 

BA Ellis Houston black clay Middle March Late August 56,871 None 76.2 CO, SYB, WHT 

CC Nueces Victory clay Late February Late July 49,814 None 96.5 CO, FA, SRG 

GR Williamson Houston clay Early March Early September 50,975 None 96.5 MZ, SRG 

LE Fannin Houston black clay Early April Early September 43,814 None 76.2 MZ 

PR Collin Houston black clay Middle March Early September 48,141 None 76.2 FA, SRG, WHT 

TH Williamson Burleson clay Late March Late August 51,398 None 96.5 CO 

TY Bee Victory clay loam Late February Middle August 65,900 IRRI 76.2 CO 

WH Wharton Lake Charles clay loam Early March Middle August 57,328 None 101.6 MZ, CO 

Rest of Texas, non dryland locations 

CA Medina Castroville clay loam Early March Late August 62,159 IRRI 91.4 MZ, WHT 

CS Brazos Ships clay loam Late February Middle of August 67,509 P. Irrigation 76.2 MZ, SRG, CO 

HO Medina Montell clay Early March Late August 59,313 IRRI 91.4 MZ, CUC, WHT 

WE Hidalgo Raymondville clay loam Middle February Middle July 58,383 P. Irrigation 101.6 CO, SC 

High Plains 

DA Dallam Dally sandy loam Late April Middle November 74,512 IRRI 76.2 WHT, SUN 

DU Moore Sherman silty clay loam Late April Middle October 73,425 IRRI 76.2 MZ, CO, SRG, WHT 

HW Hale Pullman clay loam Late  April Late September 59,992 P. Irrigation 101.6 CTN 

SL Lamb Olton sandy loam Late April Early October 65,802 IRRI 101.6 CTN 
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Table 3.2. Number of hybrids common across locations for grain yield (ton/ha) and other traits in the Texas AgriLife Corn Performance Trials for 2000 

to 2010 (diagonal are total hybrids evaluated in individual locations). Number of locations and datapoints for grain yield per location is given in the 

table. 

 

Locations BA CA CC CS DA DU GR HO HW LE PR SL TH TY WE WH 

BA 311 
               

CA 73 111 
              

CC 82 37 115 
             

CS 177 68 77 264 
            

DA 68 11 24 60 177 
           

DU 84 26 31 73 134 239 
          

GR 155 72 64 136 41 57 237 
         

HO 100 12 46 110 44 39 59 142 
        

HW 7 6 3 7 3 19 6 0 21 
       

LE 26 0 8 22 9 11 5 18 0 32 
      

PR 164 58 53 117 47 58 129 57 7 7 216 
     

SL 26 25 9 26 5 55 28 0 17 0 22 87 
    

TH 45 0 27 42 19 18 4 36 0 6 3 0 50 
   

TY 65 8 54 72 30 28 30 67 0 17 27 0 35 91 
  

WE 123 55 71 141 39 51 82 92 6 18 76 16 31 58 251 
 

WH 218 68 92 199 59 77 142 114 7 25 142 26 46 78 147 312 

Grain yield datapoints 1729 588 516 1452 945 1389 1276 718 104 94 1197 432 192 426 1465 1724 

Locations are abbreviated using: BA (Bardwell), CA (Castroville), CC (Corpus Christi), CS (College Station), DA (Dalhart), DU (Dumas), GR 

(Granger), HO (Hondo), HW (Halfway), LE (Leonard), PR (Prosper), SL (Springlake), TH (Thrall), TY (Tynan), WE (Weslaco), and WH (Wharton).
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Table 3.3. Number of hybrids common across years for grain yield (ton/ha). The hybrids were tested in 

the Texas AgriLife Corn Performance Trials for 2000 to 2010 (diagonal are total hybrids evaluated in 

individual years). 

  

Years 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

2000 84 
          

2001 23 89 
         

2002 14 27 80 
        

2003 10 15 27 88 
       

2004 6 7 8 19 104 
      

2005 3 3 4 9 25 128 
     

2006 2 2 2 6 19 39 134 
    

2007 2 2 2 5 11 21 42 121 
   

2008 0 0 0 0 4 10 19 26 121 
  

2009 0 0 0 0 0 1 3 5 21 97 
 

2010 0 0 0 0 0 2 2 2 7 23 94 

Datapoints 1268 1129 888 947 1135 1457 1599 1570 1327 1127 1800 

Mean 

grain yield 

(ton/ha) 

8.92 7.96 9.44 8.90 10.94 8.60 8.28 11.59 8.33 7.85 9.65 

Number of locations, datapoints and   arithmetic means for grain yield per year is given in the table. 

Across the entire dataset, the average grain yield was 9.17 ton/ha 
 

 

 

Across years, the data were unbalanced and no single hybrid was grown in all 

years (Table 3.3). All trials were laid out in a randomized complete block design 

(RCBD) with four replications and 20-45 entries per trial. Plots were harvested using a 

John Deere 3300 combine equipped with an HM-1000B Grain Gauge (Harvestmaster, 

Logan, UT). Although data are available for years before 2000, these samples were hand 

harvested and they were believed to be incomparable to combine collected data. For 

grain yield, a total of 14,568 datapoints were collected, and approximately the same 

number were collected for plant height, ear height, days to silk, lodging, number of 

plants per plot / plant population, test weight and grain moisture (Table 3.4).  
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Table 3.4. Summary of raw data collected for the Texas AgriLife Corn Performance Trials from 2000 to 

2010 across all locations. A total of 107 different trials, 11 years for each trait with four reps per location. 

 

Trait Datapoints Min Mean Max SD 

Days to silk 13,020 55 72.88 92 5.9 

Plant height (cm) 13,923 134.62 241.55 355.6 31 

Ear height (cm) 13,915 27.94 91.58 180.34 19.8 

Plant density (plants/ha) 14,057 10,252 59,492 106,443 4,349 

Lodging (% lodged plants /plot) 13,714 0 4.1 85 9.85 

Test weight (kg/hl) 14,199 58.91 74.19 84.48 2.93 

Grain moisture (%) 14,346 6.9 13.23 33.7 2.83 

Yield (ton/ha) 14,247 0.81 9.18 20.7 3.64 

Number of datapoints, minimum (min), arithmetic mean (mean), maximum (max), and standard deviation 

(SD) 
 

 

 

Plant height was measured as the number of centimetres from ground to top of 

the tassel. Ear height was measured as the number of centimetres from ground to the 

bottom ear node. Days to silk were measured by 50% of the plants in a plot showing any 

silks. Plant population was expressed as plants per hectare, calculated from number of 

plants in a harvested plot multiplied by a hectare conversion factor. Lodging was 

calculated as the percentage of plants per plot that were lodged or broken below the ear. 

These counts were made at the time of harvest. Grain moisture was determined at 

harvest with the HM-1000B Grain Gauge mounted on the plot combine. Moisture was 

expressed as percentage of weight. Test weight was determined at harvest with the HM-

1000B Grain Gauge and was expressed as kg/hl. Yield values determined at harvest with 

the HM-1000B Grain Gauge were corrected to 15.5% moisture and expressed as ton/ha. 

All raw data have been posted at http://maizeandgenetics.tamu.edu/CTP/CTP.html  

 

http://maizeandgenetics.tamu.edu/CTP/CTP.html
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Principal component analysis of Texas county level yield data  

A principal component analysis (PCA) was performed using the raw means per 

county level from 2000  to 2010 for grain yield data (NASS, 2012) to determine the 

relationship between maize producing counties based solely on yield data (ton/ha). The 

NASS data are freely and publicly available from http://www.nass.usda.gov/ . Counties 

that had from 8 to 10 missing datapoints were discarded from this analysis. The matrix 

of years-by-counties was centered by columns through subtraction of the county mean 

(mean centered) and normalized by dividing by the standard deviation. The Bayesian 

PCA (bPCA) approach, originally developed for analyzing missing microarray data (Oba 

et al., 2003) was used because of the amount of missing observations which this method 

tolerates (Oba et al., 2003). This method combines an expectation maximization (EM) 

approach together with a Bayesian model to calculate the likelihood for a reconstructed 

value.  

 

Statistical analysis 

The analysis of MET data was complicated by the endemic unbalanced nature as 

a result of changing entries, locations, checks and missing plots or locations. Many 

different methods have been devised for dealing with imbalanced METs. The general 

linear mixed model using the residual maximal likelihood (REML) approach provides a 

powerful method to analyze any linear model with or without covariates (Patterson and 

Thompson, 1975; Gilmour et al., 1995; Smith et al., 2001, 2005; Gilmour et al., 2009). A 

one step linear mixed model that accommodates different residual error variance per 

http://www.nass.usda.gov/
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environment was used to analyze the Texas AgriLife Corn Performance Trials (Alison et 

al., 2001; Smith et al., 2005). The phenotypic observation yijkl on hybrid i in replicate j of 

location k and year l was modeled as: 

 

Yijkl  =  μ + ek + yl + e*ykl + gi + (r/e/y)jkl + (g*y)il + (g*e)ik + (g*e*y)ikl + εijkl                 (3.1)                                                                                                        

                                               

where, µ is the grand mean; ek is the fixed effect of location k, yl is the fixed 

effect of year l, (ey)kl is the fixed effect of the interaction between year l and location k; 

gi  is the random effect of hybrid i and is ~ NID (0, σ²g), i= 1, . . .,847; (r/e/y)jkl is the 

random effect of replication j nested in location k and year l and is ~ NID (0, σ²r), j= 1, . 

. .4; (gy)il is the random effect of the interaction between hybrid i and year l and is ~ NID 

(0, σ²gy); (ge)ik is the random effect of the interaction between hybrid i and location k and 

is NID (0, σ²ge); (gey)ikl is the random effect of the interaction between hybrid i in 

location k and year l and is NID (0, σ²gey) and εijkl is the random residual effect for hybrid 

i in the replication j of location k and year l (experimental error) and is NID (0, σ²ε(lxk)). 

The components of variance and standard error of random terms were estimated using 

REML (Patterson and Thompson, 1975); the best linear unbiased estimators (BLUEs) 

and best linear unbiased predictors (BLUPs) were computed using the sparse average 

information algorithm as implemented in ASREML (Gilmour et al., 1995, 2009).  
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Repeatability was estimated as follows (Rasmusson and Lambert, 1961): 

 

   
σ²g

σ²g   σ²ge e   σ²gy y   σ²gye ey  σ²  rey  
                                                                                   (3.2)                                                                                  

 

Using the estimated variance components for hybrids (σ²g), hybrid-by-location 

interaction (σ²ge), hybrid- by-year interaction (σ²gy); hybrid-by-location-by-year 

interaction (σ²gey) and residual variance (σ²ε) obtained from the linear mixed model 

described in Eq. (3.1). The effect of different combinations of locations and years on 

hybrid-mean repeatability was evaluated by substituting numerical values in Eq. (3.2) 

and plotting.   

 

Relationship between the different traits and maize yield 

The relationships between grain yield, days to silk, plant and ear height, test 

weight and grain moisture were evaluated using PCA. Because of the different scales of 

measurement, the matrix of hybrids-by traits was centered by columns through 

subtraction of the trait mean (mean centered) and normalized by dividing by the standard 

deviation. The principal components of the squared Euclidean distance matrices of 

hybrids by traits were calculated by single value decomposition and biplots (Gabriel, 

1971) of the first two PCs using the R statistical package (R Development Core Team, 

2013). The Pearson correlation between grain yield and plant and ear height, plant 
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population, lodging, test weight, and grain moisture were calculated separately for the 

High Plains and the rest of Texas testing locations.  

 

Results and discussion 

Maize production in Texas 

Plotting the county level average maize yield data (ton/ha) obtained from the 

USDA-NASS  (http://www.nass.usda.gov/ ) by year evidenced that the lack of 

improvement for the average grain yield for the state of Texas is largely a product of the 

non-irrigated counties which experience significant inter-annual variation (Figure 3.1). It 

is noticeable that for the non-irrigated counties grain yield improved with huge and 

widening gaps between the best and worst years. Breeding for drought is complex 

because of the variation on timing of moisture stress, temperature, solar irradiation, 

wind, relative humidity and other environmental conditions. USDA county level yield 

data contained 1155 observations of counties average yield, acreage and production. 

There were 212 missing observations in corn producing counties, likely from a lack of 

production in these counties in specific years accounting for 20% of the data. Major 

production zones were also determined from USDA-NASS maize yield data per county 

from the last 11 years and the first two principal components accounted for 36.84 % of 

the variation. Despite this data having been mean-centered and normalized, the first 

principal component divides the counties based approximately on grain yield; counties 

above the mean are counties that have irrigation and have higher yields than the average 

grain yield for Texas. Plotting the first two principal components, neighboring counties 

http://www.nass.usda.gov/
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tended to group together.  It was evident that production counties located in the High 

Plains form a group (Figure 3.3). The northern High Plains region has the highest maize 

yields in Texas; this zone is characterized by high daytime temperatures, low humidity 

and high evaporation rates and demands a large supplemental irrigation to achieve 

maximum yields (Colaizzi et al., 2009; Kapanigowda et al., 2010; Allen et al., 2011).  

 

Figure 3.3. Bayesian principal component analysis of maize grain yield (ton/ha) per county in Texas from 

2000 to 2010.Two major production areas are recognized by plotting the scores of the first two principal 

components, the High Plains and rest of Texas. All data are publically available from USDA website 

(NASS, 2012). Data were centered and standardized to unit variance before analysis. 

 

 
 

 

 

Additional counties with higher values of the first principal component are 

located in the South and some areas in Central Texas, where supplemental irrigation 

could be available. The counties of Uvalde and Zavala were plotted close to the High 
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Plains and are located on the highly productive area of the Winter Garden located west 

from San Antonio. Growers in these counties can use water for irrigation from the 

Edwards aquifer. The counties that had the lowest yields are located in Central Texas 

and the Coastal Bend. The precipitation pattern among the years investigated was highly 

variable and counties located in the Coastal Bend generally could not use water for 

irrigation because of high salinity. The second principal component corresponds weakly 

to a north (higher) south (lower) trend but no other pattern was recognized. Based on the 

plot of the first two principal components, the rest of Texas counties cannot be further 

separated based on the PCA scores. Consequently, it was decided to divide the maize 

production zones in Texas in two main areas: the High Plains and the rest of Texas 

(Figure 3.3). 

 

 Analysis of MET data from the Texas AgriLife Corn Performance Trials 

Since the year 2000, the Texas AgriLife Corn Performance Trials have had 107 

yield trials in 16 locations testing a total of 847 different maize hybrids representative of 

Texas growing conditions. The summary statistics for the 107 trials, which include the 

minimum, mean, maximum, and standard deviation calculated from the original data 

exhibited a large amount of variation across years, hybrids, and locations (Table 3.4). 

When the trials were divided into locations from the High Plains, and rest of Texas, it 

was evident that yield, plant and ear height, and plant population means were all much 

higher for the High Plains (Table 3.5).  
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The residual variance obtained after fitting the linear mixed model (Eq. 3.1) was 

different between locations nested in years for grain yield, plant and ear height (data not 

shown). The three factor hybrid-by-location-by-year interaction was the largest 

component of variance of the G x E term for grain yield, plant height, ear height, days to 

silk, grain moisture and test weight (Table 3.6). The magnitude of the variation 

explained by the hybrid (g) component for all four traits ranged from 29.19% (grain 

yield) to 64.3% (grain moisture). 

Comparing the magnitude of the genotype by enviornment (G x E; same as the 

hybrid by enviornment in maize) component of variance to other studies, it is evident 

that studies in other crops have also reported the three factor hybrid-by-location-by-year 

interaction as the largest component of variance for G x E. Basford and Cooper, (1998) 

showed that the three factor genotype-by-location-by-year interaction was the largest 

component of variation for the wheat MET trials data from two Australian wheat 

databases. Cooper et al., (1996) summarized different studies that documented the 

magnitude of the G x E interactions in Queensland. Both the two factor genotype-by-

location and three factor genotype-by-location-by-year interactions appear to be the 

largest component of variance in separate MET studies. 

Similar results were reported for MET trials in sorghum and rice (Cooper et al., 

1999; Chapman et al., 2000; DeLacy et al., 2010a,b). Smith et al., (2001) reported that 

the four factor interaction genotype-by-region-by-location-by-year was the largest 

component of variance for the wheat MET dataset collected for the South of Australia.  
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Table 3.5. Summary of the Texas AgriLife Corn Performance Trials data for the different traits from 2000 

to 2010 separated for the High Plains and the rest of Texas. 

 

 
High Plains Rest of Texas 

Trait Min Mean Max Min Mean Max 

Days to silk 63 75.66 90 55 72.39 92 

Plant height (cm) 215.9 280.59 355.6 134.6 234.7 330.2 

Ear height (cm) 73.66 117.97 180.34 27.94 86.96 157.5 

Plant density (plants/ha) 31,862 73,595 106,443 10,252 57,072 92,271 

Lodging (% lodged 

plants/plot) 
0% 3% 56% 0% 4.30% 85% 

Test weight (kg/hl) 64.61 74.43 81.18 58.91 74.14 84.48 

Grain moisture (%) 10.4 17.33 33.7 6.9 12.44 22.3 

Yield (ton/ha) 4.56 14.45 20.7 0.81 8.14 18.29 

Number of missing datapoints, minimum (min), average (mean), maximum (max), and standard deviation 

(SD). 

 

 

 

Other studies that did not partition the G x E interaction into different 

components (genotype-by-location, genotype-by-year, and genotype-by-location-by-year 

interactions) still evidenced that the ratio between magnitude of the G x E variance and 

genotypic variance is greater, which indicated strong G x E interaction for MET data 

collected for maize (Chapman, 2008; Chapman et al., 1997), quinoa (Bertero et al., 

2004) and sunflower (de la Vega et al., 2007a;b). One possibility for a lower magnitude 

of the genotype-by-location interaction in our study was the use of elite and commercial 

hybrids that have been tested extensively by private industry for broad adaptation in 

different locations before commercial release. This in turn implies that these hybrids 

should be found to exhibit a wide adaptation, high yield mean and decreased variability 

(Cooper et al., 2008).  
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Table 3.6. Estimated variance components (±standard errors) and percentage of variation explained for grain yield, plant height, ear height, days to 

silk, test weight and grain moisture. These were derived from the locations (e), hybrids (g), replications (not reported), years (y), experimental error ( ), 

and the interactions of the entire dataset. The percentage of variation explained for each term was calculated by dividing the amount of variation 

explained by the sum of all variance components in the linear mixed model. 

  

 

Grain yield (ton/ha) Plant height (cm) Ear height (cm) Days to silk Grain moisture (%) Test weight (kg/hl) 

σ²g 0.51 ± 0.04 29.19 % 93.33 ± 5.95 45% 61.85 ± 3.89 46% 2.76 ± 0.17 58% 1.15 ± 0.07 64.3% 2.43 ± 0.15 58% 

σ²ge 0.02 ±  0.02 1.32 % 3.72 ± 2.52 1.8% 2.53 ± 0.85 1.89% 0.07 ± 0.03 1.4% 0.07 ± 0.01 4.13% 0.09 ± 0.03 2% 

σ²gy 0.05 ±  0.01 2.98 % 5.57 ± 4.11 2.7% 2.91 ± 0.80 2.18% 0.1 ± 0.03 3% 0.01 ± 0.01 0.37% 0.08 ± 0.03 2% 

σ²gey 0.21 ±  0.02 11.95% 10.47 ± 6.41 5% 5.24 ± 0.96 3.92% 0.31 ± 0.03 7% 0.19 ± 0.01 10.5% 0.48 ± 0.04 12% 

σ²ε
a 0.83 ± 0.12 48. 14% 86.19 ± 12.04 42% 58.73 ± 0.96 43.8% 1.36 ± 0.19 29% 0.37 ± 0.05 21% 1.09 ± 0.16 26% 

a 
Variance components and standard errors were averaged from the residual error obtained for each of the 107 trials
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Hybrid-mean repeatability in the Texas AgriLife Corn Performance Trials 

Hybrid-mean repeatability is important because indicates the extent of testing 

necessary to maximize genetic gain. Hybrid-mean repeatability was estimated from the 

components of variance estimated using the linear mixed model (Eq. 3.1) (Figure 3.4). 

Based on these estimates, the repeatability for one year and one environment was 0.41 

for two replications, and for four years and one environment was 0.72 for two 

replications. The Texas AgriLife Corn Performance Trials always use four replications 

and also suggest companies enter their hybrids for three years and multiple locations.  

 

Figure 3.4. Predicted hybrid-mean repeatability for grain yield (ton/ha) in the maize production areas in 

Texas as the number of testing locations and years are changed using two replications. The repeatability 

was calculated based on the components of variance given in Table 3.6 and estimated using the mixed 

model and Eq. (3.2) from Texas AgriLife Corn Performance Trial data between 2000 and 2010. 

 

 
 

 

 

Based on the trends from these results, testing the hybrids in two years and two 

replications for the Texas AgriLife Corn Performance Trials would give a nearly 

adequate estimate of performance. However, increasing the number of different 
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environments and the number of years is advisable since the largest component of 

variation for the G x E interaction was the three factor hybrid-by-location-by-year 

interaction. This hybrid-mean repeatability was similar to those reported in studies of 

other crops. In sunflower, the yield repeatability has been estimated as 0.63-0.77 for one 

and three replicates for 10 trials (de la Vega et al., 2007a,b; DeLacy et al., 2010a,b). For 

stover yield of dryland Rabi sorghum (DeLacy et al., 2010a,b), the estimated 

repeatability was  approximately 0.7 for 15-20 trials, two years and two replicates per 

trial. 

 

Changes in grain yield in Texas since 2000 

A major motivation of this study was to confirm the trend observed in the USDA 

county level data (Figure 3.1) that Texas grain yield has remained steady over 20 years 

for dryland counties. The BLUPs for the hybrid grain yield based on the linear mixed 

model (Eq. 3.1) and all environments were regressed against the first year of testing.  

The estimated trend-line slope was 0.0078 ton/ha (Figure 3.5). Regressing the BLUPs 

for the top five hybrids against the first year of testing increased the trend-line slope to 

0.0189 ton/ha (Figure 3.6). Both of these values are smaller than the 0.077 ton/ha 

reported by Duvick et al., (2004). Based on these results, it can be concluded that genetic 

increases in grain yield have not nearly kept the same pace than the average of the U.S. 

and Midwest. In fact, the hybrids with the highest BLUPs were first tested in 2002 and 

2006 (Table 3.7), which corroborates the trend observed in the USDA data. In order to 

discard that the differences in grain yield between the High Plains and the rest of Texas 
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testing locations were causing this effect, an analysis was performed separately for the 

High Plains and the rest of Texas. The same pattern was observed for the rest of Texas 

testing locations (results not shown). In contrast, the estimated trend-line slope obtained 

for the High Plains testing locations by regressing the BLUPs of all hybrids tested 

against the first year of testing was of 0.0305 ton/ha (Figure 3.7). This value is about 

40% of the increase reported by other authors (Duvick et al., 2004). Interestingly, when 

the BLUPs for the top five hybrids for the High Plains were regressed against the first 

year of testing, the trend-line slope was 0.0088 ton/ha (Figure 3.8). 

 

Figure 3.5. Genotypic BLUPs for grain yield for all the hybrids tested in the Texas AgriLife Corn 

Performance Trials from 2000 to 2010. The BLUPs were obtained from the linear mixed model described 

in Eq. (3.1). The BLUPs for the commercial hybrids tested in 107 trials across all Texas testing locations 

from 2000 to 2010 were regressed against the first year of testing. 
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Figure 3.6. Genotypic BLUPs for grain yield for the top five hybrids per year tested in the  

Texas AgriLife Corn Performance trials from 2000 to 2010. The BLUPs were obtained using the linear 

mixed model described in Eq. (3.1). The BLUPs for the top five commercial hybrids per year tested in 107 

trials across all Texas testing locations from 2000 to 2010 were regressed against the first year of testing. 

 

 
 

 

 

This value was similar to the value estimated when the BLUPs from the 

combined analysis were regressed against the first year of testing (Eq. (3.1)) (0.0078 

ton/ha). The best linear unbiased estimators (BLUEs) for grain yield for the year (fixed) 

effect obtained using the linear mixed model (Eq. (3.1) were plotted against year to 

ensure that the variation was not partitioned into this term of the model. Significant 

inter-annual variation was observed. This variation is in part explained by the drought 

episodes that occurred during the growing seasons of specific years 

(http://droughtmonitor.unl.edu/dmtabs_archive.htm ). 

http://droughtmonitor.unl.edu/dmtabs_archive.htm
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Table 3.7. BLUPs and standard error (SE) for the worst and best 10 hybrids respectively tested in the 

Texas AgriLife Corn Performance Trials from 2000 to 2010. The number of trials tested is over all years 

and locations. 

 

Hybrid BLUP (ton/ha) SE First year of testing Number trials tested 

RX718RRYG -1.662 0.532 2004 1 

Cazador -1.584 0.47 2009 1 

TRX01601X -1.572 0.433 2010 2 

WWFH07 -1.463 0.453 2005 1 

TG891W -1.433 0.445 2007 1 

5660 -1.375 0.468 2000 2 

W2612 -1.369 0.458 2007 1 

F76.225 -1.225 0.434 2001 3 

DonAbel -1.201 0.470 2009 1 

NF246 1.052 0.339 2005 4 

8292YG1 1.059 0.254 2004 10 

x676.26RRBT 1.076 0.341 2003 5 

CXO3415 1.095 0.491 2003 2 

Exp942117 1.097 0.398 2010 2 

TV26B34 1.114 0.372 2005 3 

CXO5819 1.175 0.48 2006 2 

DKC6469GENVT3P 1.215 0.537 2010 1 

6361RB 1.275 0.2467 2006 10 

5202B 1.317 0.4419 2002 3 

 

 

 

The years of 2006, 2008, and 2009 had the lowest BLUEs for the year effect of 

grain yield, and corresponded to years limited by drought. Those years with the lowest 

grain yield BLUEs for the year effect also grouped together when the loadings of the two 
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principals components from the bPCA were plotted (results not shown). These loadings 

reveal the relationships and influence of the different years for grain yield and reinforced 

results shown in Figure 3.9. Previous studies have used the best historical hybrids, across 

time, to estimate genetic gain (Duvick, 1977, 1984, 1992; Duvick and Cassman, 1999; 

Duvick and Cooper, 2003; Duvick et al., 2004). A major drawback of those studies is the 

fact that agronomic practices have changed through time and the common testing 

environments are not representative of the target environments the hybrids were 

developed for. 

Some authors have suggested that MET data provides an opportunity to gain 

historical perspectives since this expands the number of hybrids and represents the target 

environments with relevant agronomic practices (de la Vega et al., 2007a,b). A major 

limitation of using MET data across years is that there may not be sufficient checks or 

controls to ensure data compatibility across years or locations. The MET data collected 

in the Texas AgriLife Corn Performance Trials have common checks between many 

years and locations to ensure data compatibility (Tables 3.2 and 3.3). The inbred lines 

used in the commercialized Texas hybrids over the last 11 years have not been 

specifically bred for Texas growing conditions, and are likely not directly related, so it 

would not be appropriate to refer to genetic gain in the traditional sense. However, by 

regressing the hybrid’s BLUPs against the first year of testing, it is possible to estimate 

the yield increases of commercial relevant material through time. 
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Figure 3.7. Genotypic BLUPs for grain yield for all the hybrids tested in the High Plains in the Texas 

AgriLife Corn Performance trials from 2000 to 2010. The hybrid effect was obtained using the linear 

mixed model described in Eq. (3.1). The BLUPs for the commercial hybrids tested in 18 trials across the 

High Plains locations of the Texas AgriLife Corn Performance Trials from 2000 to 2010 were regressed 

against the first year of testing. 

 

 
 

 

 

Figure 3.8. Genotypic BLUPs for grain yield for the top five hybrids per year tested in the High Plains in 

the Texas AgriLife Corn Performance trials from 2000 to 2010. The hybrid effect was obtained using the 

linear mixed model described in Eq. (3.1). The BLUPs for the top five commercial hybrids per year tested 

in 18 trials across the High Plains locations of the Texas AgriLife Corn Performance Trials from 2000 to 

2010 were regressed against the first year of testing. 
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Figure 3.9. BLUEs of grain yield for the year effect. The BLUEs were obtained using the linear mixed 

model described in Eq. (3.1) of the Texas AgriLife Corn Performance Trials from 2000 to 2010. Error bar 

are the standard error for the BLUEs 

 

 
 

 

 

Overall, USDA/NASS data suggest that grain yield has been steadily increasing 

for irrigated maize acres in the High Plains, while remaining stable for dryland and 

partially-irrigated acres (Figure 3.1). In contrast, this MET analysis suggests that yield 

has not increased at the same pace as the Midwest for the last 11 years anywhere in 

Texas. Because the majority of irrigated maize is located on the High Plains; the yield 

increases observed in the county level data for the USDA/NASS data could be the result 

of improved agronomics or increased use of water resources. The High Plain irrigated 

hectares have depended on the Ogalla aquifer for irrigation. A growing concern is that 

water has been used at a rate exceeding replacement and it is expected that those 

resources will be more limited in the future. This suggests a need for maize breeding 
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programs to develop lines and hybrids that are adapted to the specific growing 

conditions in Texas and are heat and drought tolerant as well as water use efficient. It is 

interesting that grain yield increases when the grain yield for all the hybrids is regressed 

against the first years of testing for the High Plains trials, but, is generally similar to the 

rest of Texas when only the top five hybrids are regressed (trend-line slope of 0.0088 

ton/ha). The differences between the trend-line slopes could be a result of improvement 

of the average available commercial hybrids with little genetic improvement in the best 

commercial hybrid  

Other possible reason for the slower improvement of grain yield in Texas is that 

plant densities in the different maize producing counties are lower and have not 

increased as fast as in the Midwest (Table 3.5). Duvick et al., (2004) clearly 

demonstrated that maize grain yield increased in the Midwest by breeding for plants 

capable of producing under higher densities and stress conditions. In order to increase 

plant densities, it is necessary to further increase plant stress tolerance to already 

stressful Texas growing conditions. Breeding for heat and drought tolerance will be 

essential to increase plant density in all maize growing counties. This further strengthens 

the argument that the primary explanation for the lack of grain yield gains for the state of 

Texas is the lack of line and hybrid development programs under Texas conditions. 

Another explanation, such as changing crop rotations, could be possible because maize 

may be grown after cotton in different maize producing counties depending on yearly 

commodity pricing. Cotton is well-known by its dehydrating capabilities with respect to 

residual soil moisture; nonetheless, this analysis cannot determine the effect of rotating 
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maize after cotton based on the data collected. Additional alternative explanations such 

as a change in the amount of irrigated acres and shifting production areas do not appear 

to be valid based on NASS data.  

 

Relation between grain yield, plant height, ear height and days to silk 

This dataset allowed a comparison between measured agronomic traits and yield 

which suggests future ideotype targets of plant breeding for Texas environments. The 

first two components of the biplots of hybrid performance values (BLUPs) estimated 

over all locations and years retained 81% of the variation (Figure 3.10). The biplots 

provided a visual representation of the relations between four traits. Grain yield was 

more positively correlated to plant height than to ear height and days to silk. Grain yield 

was not correlated with grain moisture. The longest vector was for grain yield, which 

meant that it was the best criteria to discriminate between hybrids.  Separately, using the 

Pearson correlations (Table 3.8) grain yield was found to be positively correlated with 

plant and ear height, plant population, test weight, and grain moisture. This effect was 

more pronounced in the rest of Texas region then in the High Plains. Within the rest of 

Texas region, this correlation is higher for the locations that are grown in dryland. For 

ear height, positive correlations were observed with grain yield in dryland locations, the 

combined data and all the locations except the High Plains. A likely explanation for 

lower correlations between yield with plant and ear height in irrigated locations is that 

they are under better growing conditions, so traits or factors other than grain moisture 

were more important to achieve higher yields. Grain yield was slightly positively 
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correlated with days to silk; however, for the High Plains the correlation was slightly 

negative suggesting longer season hybrids could have value in the rest of Texas while 

shorter season hybrids might be beneficial in the High Plains. Lodging was negatively 

correlated (~15 to 21%) with grain yield in all different environments as would be 

expected. 

 

Figure 3.10. Biplot for 648 unique hybrids and six traits. Grain yield (yield), plant height (PH) ear height 

(EH), days to silk (DTS), test weight (TestWt) and grain moisture (moist) derived from the BLUPs 

calculated from 2000 to 2010 Texas AgriLife Corn Performance Trials using the linear mixed model 

described in Eq. (3.1).All data were centered and standardized to unit variance. 

 

 



 

 

52 

 

Table 3.8. Pearson correlation estimates for the 2000 to 2010 calculated from the raw data collected for 

Texas AgriLife Corn Performance Trials between grain yield and other important agronomic traits. 

Separation between the High Plains and the rest of Texas including irrigated and dryland locations show 

distinctly different patterns. Further separation of only dryland locations within the rest of Texas region 

shows similar patterns to including irrigation in these regions. 
 

  
Grain yield (ton/ha) 

  

Trait Texas High Plains Rest of Texas Dryland 

Plant height (cm) 0.61*** 0.19*** 0.46*** 0.45*** 

Ear height (cm) 0.56*** 0.03NS 0.40*** 0.35*** 

Days to silk 0.13*** -0.25*** 0.05*** -0.08*** 

Plant density (plants/ 

ha) 
0.66*** 0.44*** 0.51*** 0.36*** 

Lodging (% plants/ 

plot) 
-0.16*** -0.24*** -0.15*** -0.21*** 

Moisture (%) 0.55*** 0.04* 0.28*** 0.30*** 

Test weight (kg/hl) 0.33*** 0.04NS 0.45*** 0.50*** 
*
P <0.05; 

**
P <0.01; 

***
P <0.001; NS: non-significant. 

 

 

 

The positive correlation between grain yield with both plant and ear height has 

been reported in different studies (Liu and Wiatrak, 2011; Sreckov et al., 2011; Yin et 

al., 2011). Ear height was reported to be correlated with grain yield. However, the 

regression analysis evidenced that plant and ear height explained from 6 to 8% of the 

variation for grain yield under well-watered and well-fertilized conditions (Liu and 

Wiatrak, 2011). In contrast, Yin et al., 2011 found that plant height is related with grain 

yield in late stages of growing in different production systems; these authors even 

proposed to use plant height to predict maize yields. This basic agronomic trait data in 

our study is in agreement with a hypothesis that selecting taller plant ideotypes with 

higher ear heights would improve yields in Texas as long as lodging does not become an 

issue.
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CHAPTER IV 

CANDIDATE GENE AND WHOLE GENOME ASSOCIATION STUDY FOR 

DROUGHT AND AFLATOXIN RESISTANCE IN MAIZE IN A SUB-TROPICAL 

ENVIRONMENT 

 

Introduction 

Maize is one of the three most important crops of the world with rice and wheat. 

World production in 2011 was of 883 million tons (http://faostat.fao.org [verified 6 May 

2013]). Maize is the most important crop in the United States (U.S) with a production of 

301 million tons of maize in 2012 with an estimated value in the market of 77.4 billion 

dollars (National Agricultural Statistical Service [NASS] 2013). The most important and 

highest yielding production areas are in the temperate Midwestern U.S. and other 

temperate regions throughout the world, which is where the majority of investment in 

maize breeding is focused (Frey, 1996; Fuglie, 2000; Schimmelpfennig et al., 2004). 

Other important but lower yielding regions, such as the sub-tropics, experience different 

challenges to maize production. These production zones are hotter and drier, among the 

two greatest challenges for maize production are drought stress and aflatoxin 

contamination. Sub-tropical maize production in the U.S. Southern states, account for 

approximately 9% of the production of maize in the U.S. (NASS, 2013). Texas is the 

largest producer of maize in the Southern states, summers in Texas are hot and dry, and 

there is a strong inter-annual precipitation variation across the state (Barrero et al. 2013). 

Severe drought episodes have occurred in the last ten years; therefore, major constraints 

http://faostat.fao.org/
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for maize production in Texas are heat and drought stress, and aflatoxin contamination 

(Payne, 1998; Horne et al., 1991;Brown et al., 1999; Robens and Cardwell, 2003; 

Widstrom et al., 2003; Williams et al., 2003; Betran et al., 2005; Mayfield et al., 2011; 

Smith, 2011). Consequently, Texas provides deal environmental conditions to do 

research in drought tolerance and aflatoxin contamination.  

Breeding for drought is important because agriculture is the major use of surface 

and ground water in the U.S. It has been estimated that water usage in agriculture for the 

Western states accounts for up to 90% of the total water used in these states (USDA-

ERS [Economic research service, verified May 6-2013]). The use restrictions and 

competition for water by growing urban areas will make drought stress even more 

common in irrigated agriculture. Additionally, drought episodes are likely to increase in 

the Midwestern U.S., because of a stronger inter-annual variation in precipitation and 

temperature attributable to a changing climate (Rosenzweig et al., 2002; Wuebbles and 

Hayhoe, 2004). Drought tolerance is difficult to quantify and improve. It is clearly 

quantitative and complex and regulated by thousands of genes (Campos et al., 2004; 

Kakumanu et al., 2012; Rengel et al., 2012). In addition the impact of drought stress 

depends on the severity, onset and length of the stress. Maize is most sensitive to 

drought stress during flowering and milky stages (Bolaños and Edmeades, 1996; 

Bänziger et al., 2000; Campos et al., 2004). Drought stress in maize causes reduction in 

plant height, leaf rolling, early senescence, kernel abortion and barren ears (Bolaños and 

Edmeades, 1996; Bänziger et al., 2000; Campos et al., 2004). 
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Drought episodes are often followed by pre-harvest aflatoxin contamination. 

Aflatoxin is a carcinogenic mycotoxin, produced by the fungus Aspergillus flavus, which 

thrives under hot and dry stressful conditions. Aflatoxin is federally regulated at 20 ng 

g
−1

, and is believed to cause over $200 million dollars of economic losses in the 

Southern U.S. each year (Abbas et al., 2002; Windham and Williams, 2002; Williams et 

al., 2003; Betran et al., 2005). Aflatoxin susceptibility in plants is a highly complex trait 

and no complete source of resistance is known for maize (Mayfield et al.2012). Adding 

to the complexity of this pathogen, both colonization and aflatoxin production appears to 

have strong host-by-pathogen interaction (Scheidegger and Payne, 2003; Kelley et al., 

2009; Amaike and Keller, 2011; Christensen and Kolomiets, 2011). As a consequence, 

breeding for aflatoxin resistance is a complex challenge. Despite this complexity a 

number of breeding lines and germplasm with improved aflatoxin resistance have been 

released. The lines Mp313E, Mp715, and Mp420 (Scott and Zummo, 1990; Williams 

and Windham, 2012) were derived from the tropical maize race Tuxpeño after several 

cycles of selection. The maize inbred lines Tx736, Tx739, Tx740, and Tx772 (Llorente 

et al., 2004; Mayfield et al., 2012) were selected by pedigree selection from Argentinean 

and Bolivian lines. Other sources of resistance such as the line GT603 were selected 

from temperate elite hybrids from the 1970s (Guo et al., 2011). This diverse germplasm 

has already been used in QTL linkage mapping studies to identify the loci responsible 

for conferring resistance (Abbas et al., 2002; Paul et al., 2003; Widstrom et al., 2003; 

Brooks et al., 2005; Alwala et al., 2008; Warburton et al., 2010; Xiang et al., 2010; 

Willcox et al., 2013). Different QTLs for aflatoxin resistance have been reported for 
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chromosomes one, three, four, five, and nine (Paul et al., 2003, Warburton et al., 2010; 

Mayfield et al., 2012). These findings evidence that diverse germplasm has been the 

primary source for resistance to different plant and ear rot diseases (Scott and Zummo, 

1990; Wisser et al., 2006; Mayfield et al., 2012; Williams and Windham, 2012). In 

addition, it also indicates that aflatoxin resistance is heritable. Diverse and tropical maize 

germplasm has also demonstrated potential to outyield commercial hybrids and exhibit 

improved drought tolerance or unique traits unavailable in commercial temperate 

hybrids when testcrossed to elite temperate lines (Carson et al., 2006; Nelson et al., 

2006; Whitehead et al., 2006; Nelson and Goodman, 2008; Flint-Garcia et al., 2009; 

Ortiz et al., 2010). However, tropical and diverse germplasm can also have many 

undesirable traits, such as delayed flowering time/ photoperiod sensitivity and dry down, 

lower yield, poor stalks which makes it challenging to use in lines per se (Nelson et al., 

2006; Whitehead et al., 2006; Nelson and Goodman, 2008).  

To identify new sources of diverse genetic variation to deal with heat and 

drought stress and aflatoxin contamination outside of the elite Midwestern germplasm 

(the so called exPVP’s – Nelson et al. 2008) diverse germplasm should be investigated. 

Different sources of diverse germplasm previously characterized for the maize research 

community include the 282 maize association panel (Flint-Garcia et al., 2005; Flint-

Garcia et al., 2009; McMullen et al., 2009). The 282 maize association panel includes 

several lines that originated from the dent maize commercial lines in the 1970 and 1980 

(Mikel and Dudley, 2006). The identification of these favorable alleles in diverse 

germplasm will allow targeted genetic improvement of current germplasm and the 
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incorporation of those alleles into elite material. In addition, diverse germplasm with 

differences in phenotype and high density of polymorphisms in the genome facilitates 

linkage mapping and association studies (Yan et al., 2011). Despite that there has been a 

number of bi-parental linkage QTL mapping studies on aflatoxin and drought, this 

approach finds many loci specific to a couple genetic backgrounds, but not to maize as a 

whole. By contrast, association studies using diverse germplasm can identify important 

alleles or test candidate genes that have effects across diverse genetic backgrounds. 

Previous research showed that two maize lipoxygenases mutants zmlox4-3::mu 

and zmlox5-3::mu exhibit greater drought tolerance and aflatoxin resistance, respectively 

in a few inbred lines (Park et al., 2010). However, these mutants have not been validated 

across multiple genetic backgrounds. In order to do so, a previous study characterized 

the genetic diversity of zmLOX4 and zmLOX5 in an assembled association panel, which 

include 200 lines out of the 282 maize association panel, to identify polymorphisms that 

can be used in a candidate gene association study (De la Fuente et al, 2013). ZmLOX4 

and ZmLOX5 genes belong to the lipoxygenase family, which are ubiquitous enzymes 

present in animals, fungi and plants. The lipoxygenases are non-heme iron-containing 

dioxygenases that catalyzes the oxygenation of poly-unsaturated fatty acids (PUFAs) 

(Feussner and Wasternack, 2002; Porta and Rocha-Sosa, 2002; Liavonchanka and 

Feussner, 2006). The intermediaries are involved in multiple responses in plants that 

range from green leaf volatile production, plant development and plant defense 

responses to biotic and abiotic stresses, which suggest likely candidates (Blée, 2002; 
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Mosblech et al., 2009). ZmLOX4 and ZmLOX5 genes share 95% sequence homology but 

have different expression patterns in the root and shoot respectively (Park et al., 2010). 

Based on the hypothesis that ZmLOX4 and ZmLOX5 genes conditioned drought 

tolerance and aflatoxin resistance respectively, this study testcrossed isogenic lines 

having these knock-outs in the same genetic background to a 400 lines assembled 

diversity panel to determine the effects of native variation at these two LOX genes and 

other loci for a variety of traits. Specifically, the goals of this study were: 1) to evaluate 

the effect of natural alleles of ZmLOX4 and ZmLOX5 on conferring phenotypic variation 

in drought tolerance, aflatoxin resistance and other important agronomic traits using a 

candidate gene association study; 2) to estimate the yield potential, aflatoxin resistance, 

and agronomic abilities of these diverse lines in hybrid combination; and 3) to identify 

other genomic regions that confer these phenotypes in hybrids grown in a Southern sub-

tropical environment using a genome wide association study (GWAS). 

 

Materials and methods 

Phenotypic and genotypic data collection 

A temperate focused panel comprising USDA Flint-Garcia/Buckler/Goodman 

panel (300 lines, Flint-Garcia et al., 2005) and a diverse Southern subtropical focused 

panel Williams/Warburton panel (100 new lines plus 302 lines from Flint-Garcia et al., 

2005) (Warburton et al., In review) was assembled for a total of 400 lines (De La Fuente 

et al., 2013). These 400 lines were crossed to two LOX family knock-out-mutant 

isogenic lines in the Tx714 (Betrán et al., 2004) background (Tx714zmlox4-
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8::Mu/zmlox4-8::Mu and Tx714zmlox5-3::Mu/zmlox5-3::Mu) in a summer and fall 

nursery in College Station, TX and Weslaco, TX, respectively in both 2010 and 2011 

(Figure 4.1).  

The hybrids (ZmLOX4/zmlox4-8::Mu) were evaluated in two replicates in a 

randomized complete block (RCBD) design separately under irrigated and non-irrigated 

treatments with commercial checks randomly assigned. Irrigation was provided using 

furrow irrigation. Separate hybrids (ZmLOX5/zmlox5-3::Mu) were evaluated in two 

replicates under irrigated conditions and inoculated with A. flavus isolate NRRL 3357 

(Wicklow et al., 1998) using a modified colonized kernel technique. In the colonized 

kernel technique, maize kernels are autoclaved and inoculated with A. flavus spores. The 

maize kernels are incubated 24 to 36 hour to promote A. flavus growth and sporulation. 

Infected kernels are placed on the soil surface between treatment rows when the maize 

hybrids reach mid-silk stage (Windham et al., 2003; Betran et al., 2005;). The hybrids 

were grown in College Station in 2011 (CS11) and 2012 (CS12) in one row plots 7.92 

meters long and 76.2 centimetres wide, and measured for all reported traits. The target 

plant population was 75000 plants/ha and the soil type was a ships clay loam. 

Combination of year and treatment were designated trials and the following coding 

system was adopted in this research: The irrigated trials were inoculated with A. flavus 

and coded LIYT (lipoxygenase yield trials) and the non-irrigated trials were coded as 

DYTL (drought yield trials). An additional location was evaluated in two replicates at 

Mississippi State, MS in 2012 (MS12) only for aflatoxin accumulation and days to silk. 
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Hybrids in this location were inoculated using the side needle method (Windham et al., 

2003, 2005).  

 

Figure 4.1. Crossing scheme for hybrid generation. Two isogenic lines with the zmLOX4 and zmLOX5 

genes mutated were crossed to 357 inbred lines from a diversity panel. The hybrids have only one native 

and functional copy for the zmLOX4 or zmLOX5 allele. 

 

 
 

 

 

Plant height was measured from the ground to top of the tassel; ear height was 

measured to the bottom ear node. Days to silk and days to anthesis was measured by 

50% of the plants in a plot showing silks or pollen shed respectively. Anthesis silking 

interval (ASI) was calculated using the difference between days to silk and days to 

anthesis. Because of the severe drought in 2011 Texas, the CS11-DYTL non-irrigated 
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trial was completely hand-harvested. In contrast, for the non-irrigated trial in CS12-

DYTL and the irrigated trials in CS11-LIYT and CS12-LIYT, 10 ears were hand 

harvested skipping the first five plants in the plot and then hand harvesting every other 

plant; the rest of the plot was harvested using a John Deere 3300 combine with a HM-

1000B Grain Gauge (Harvermaster, Logan, Utah) from which plot weight, moisture and 

test weight were obtained. For the MS12-LIYT irrigated trial only the 10 inoculated ears 

were hand harvested and processed for aflatoxin content. Hand harvested ears from each 

hybrid in CS were photographed and phenotyped for disease, percentage of kernel 

abortion and pollination. 500-kernel weight was determined after shelling. All yields 

were adjusted to 15.5% moisture as determined from the combine at harvest or for hand 

harvested ears after shelling using a Dickey-John mini GAC plus® portable moisture 

tester. Moisture was expressed as percentage of weight. Aflatoxin content was 

determined by the Vicam Aflatest (Vicam, Watertown, MA) following standard 

procedures (Brooks et al., 2005; Warburton et al., 2010; Mayfield et al., 2011). Aflatoxin 

values were transformed using the transformation (Log10 [aflatoxin + 10]) to improve 

normality and constant variance. 

 

Evaluation of the ZmLOX4 and ZmLOX5 alleles and treatment effects 

The isogenic hybrids (ZmLOX4/zmlox4-8::Mu and ZmLOX5/zmlox5-3::Mu) of 

each inbred were grown side by side under irrigated conditions in the CS trials to 

decrease environmental variation. A single analysis to determine the effect of the LOX 

alleles and the treatment effects (irrigated vs non-irrigated) was not implemented 
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because the experiment was unbalanced, and the ZmLOX5/zmlox5-3::Mu hybrids were 

grown only under irrigated conditions. The significance of the zmLOX4 and zmLOX5 

gene for the different traits collected was estimated using the general linear model: 

 

Yijkl  =  μ + yk + LOXl + LOX*ykl + gi + (r/LOX/y)jkl + (g*LOX)il + (g*y)ik + (g*LOX*y)ikl + 

εijkl                                                                                                                                  (4.1)                                                                                                                

 

Where Yijkl is the response for hybrid i in replicate j in year k and LOX l; where   

is the general mean; yk is the fixed effect for year; LOXl is the fixed effect for LOX l; 

LOX*ykl is the fixed effect of the interaction between LOX l and year k; gi is the hybrid 

fixed effect; (g*LOX)il is the fixed effect of the interaction between hybrid i and LOX l; 

(g*y)ik is the fixed effect of the interaction between hybrid i and year k; (g*LOX*y)ikl is 

the fixed effect of the interaction between hybrid i, year k and LOX l; (r/LOX/y)jkl is the 

random effect of replication j nested in LOX l and year k; εijkl and is the random residual 

effect for hybrid i in replicate j in year k and LOX l and is NID (0, σ²ε(lxk)).  

Based on finding non-significance of the LOX term, data from the hybrids were 

combined (or analyzed separately if significant) to evaluate the treatment effect (drought 

vs irrigated) for the different traits. An initial linear model that fit all the terms as 

random effects was fit to estimate the magnitude of the variance components.  
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The significance of the non-irrigated and irrigated treatments (Trt) was estimated 

using the general linear model: 

 

Yikl = μ + yk + trtl + trt*ykl + gi + (r/trt/y)jkl + (g*trt)il + (g*y)ik + (g*trt*y)ikl + εijkl         (4.2)      

                                                                                                 

Where Yikl is the response for hybrid i in replicate j in year k and treatment l; 

where   is the general mean; yk is the fixed effect for year k; trtl is the fixed effect for 

treatment l; trt*ykl is the fixed effect of the interaction between treatment l and year k; gi 

is the hybrid fixed effect; (g*trt)il is the fixed effect of the interaction between hybrid i 

and treatment l; (g*y)ik is the fixed effect of the interaction between hybrid i and year k; 

(g*trt*y)ikl is the fixed effect of the interaction between hybrid i, year k and treatment l; 

(r/trt/y)jkl is the random effect of replication j nested in treatment l and year k; εijkl and is 

the random residual effect for hybrid i in replicate j in year k and treatment l and is NID 

(0, σ²ε(lxk)). The significance of the effects for Eq. (4.2) was tested using the Type 3 Test 

of fixed effects as implemented in PROC MIXED in SAS 9.3 (SAS Institute, INC., 

Cary, NC, USA). 

 

Phenotypic analysis for the GWAS study 

The different hybrids within each treatment were laid out using a randomized 

complete block (RCBD) design with commercial checks randomly assigned to different 

plots in the trial. The commercial checks were used to adjust for field spatial variation 

and to estimate the residual variance, but were excluded for estimating variance 
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components and Best Linear Unbiased Predictors (BLUPs) for the GWAS. A combined 

multi-environment trial (MET) analysis was performed considering three different 

models. For the first one, an RCBD model was fit. The phenotypic observation yijk on 

hybrid i in replicate j of trial k was modeled as: 

 

Yik = μ + ek + gi + (r/e)jk + (g*e)ik + εijkl                                                                           (4.3)                                                                                                                                                                                                      

                       

where, µ is the grand mean; ek is the fixed effect of trial k; gi  is the random effect 

of hybrid i and is ~ NID (0, σ²g), i= 1, . . .,g; (r/e)jk is the random effect of replication j 

nested in environment k and is ~ NID (0, σ²r), r= 1,2; (ge)ik  is the random effect of the 

interaction between hybrid i and trial k and is NID (0, σ²ge), and εijk is the random 

residual effect for hybrid i in the replication j of trial k and is NID (0, σ²ε). This model 

was further expanded to account for field spatial variation by fitting a two-dimensional 

AR1 x AR1 terms for the row and column effects for the different traits (Cullis and 

Gleeson, 1991; Gilmour et al., 1997; Cullis et al., 1998; Gilmour et al., 2009).  

A third model assumes a genetic variance-covariance (VCOV) matrix based on an 

unstructured model for the random genetic effects where a specific variance was fit for 

each trial and a specific covariance was fit for each pair of trials. The phenotypic 

observation yik on hybrid i of trial k was modeled as:  

 

Yik  = μ + ek + (gge)ik + εijkl                                                                                              (4.4)                                                                         
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where, µ is the grand mean; ek is the fixed effect of trial k; ggei  represents the 

hybrid main effect together with the genetic environmental interaction (GEI) for hybrid i 

in trial k. This model was enhanced by including the significant terms for autoregressive 

terms for row and column effects. All three different models were fit using restricted 

maximal likelihood (REML) (Patterson and Thompson, 1975) in ASREML v3.0 

(Gilmour et al., 2009). Heritability (h
2
) was calculated: h

 
 1- 

PEV

 x σ 
 (Cullis et al., 2006; 

Oakey et al., 2006). The predicted error variance (PEV) is calculated as the square of the 

standard error of the (BLUPs), and it is used to determine the accuracy of the 

predictions. 

 

Genetic diversity, population structure and estimation of kinship matrix 

The exon 5 for ZmLOX5 and ZmLOX4 was sequenced using the Big Dye 

terminator method in a previous study (De La Fuente et al., 2013). Briefly, SNPs with a 

minor allele frequency (MAF) > 0.10 were extracted and used for the candidate gene 

association mapping analysis. Additional genomewide genotype data from 213 lines 

from the sub-tropical diverse panel was obtained from the USDA-ARS Corn Host Plant 

Resistance Research Unit (Mississippi State, MS) (Warburton et al. in Press) using the 

Genotype By Sequence (GBS) method (Elshire et al., 2011). Genotype data for 133 lines 

from a temperate panel was extracted from the maize diversity panel of 282 inbred lines 

available in Panzea (Flint-Garcia et al., 2005). These genotypes were identical to 

Warburton et al. (in review) with the additional lines obtained from the 282 association 
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mapping panel (Flint-garcia et al., 2005). SNPs with a minor allele frequency (MAF) 

greater than 25% and a low missing data rate (<7.5%) were extracted to perform the 

genetic diversity and structure analysis (total 1999 SNPS). The genetic distance was 

calculated using Nei’s genetic distance (Nei, 1972) using the software PowerMarker. A 

principal coordinate analysis (PCoA) was then carried out using the prcomp function in 

R (R Development Core Team, 2013).  

Population structure was determined using the software Structure v2.93 

(Pritchard et al., 2000). The number of subpopulations was estimated from five 

independent runs having 5 x 10
5 

burn-in and sampling iterations, the number of 

subpopulations varied between 1 and 15. The ancestry model allowed for population 

admixture and correlated allele frequencies. The optimum K was estimated using the ad 

hoc statistic   , which is based on the rate of change in the log probability of the data 

between successive K values (Evanno et al., 2005). Based on the estimated k determined, 

a run of 5 x 10
6 

burn-in and sample iterations was used. A kinship coefficient estimation 

matrix was created using the VanRaden algorithm as implemented in the software 

GAPIT (Lipka et al., 2012). 

 

Candidate gene and whole genome association mapping analysis 

Four sets of phenotypic observations were used for the association mapping to 

ensure that the findings were robust and to identify QTL variants for specific 

environments; these included 1) the entry mean for the different traits collected for all 

trials, 2) the BLUPs for the combined MET analysis in Eq. (4.3), 3) the BLUPs for the 
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MET analysis in Eq. (4.3) including the rows and columns effects for the spatial analysis 

and 4) the BLUPs from GEI analysis in Eq. (4.4). Population structure and relatedness 

were taken into account in the linear mixed model as described by Yu et al., (2006). The 

association mapping analysis was done using the compressed mixed linear mixed model 

(CMLM) and the P3D method, as implemented in GAPIT (Kang et al., 2008; Zhang et 

al., 2010; Lipka et al., 2012). SNPs with a MAF< 0.05 were discarded for the association 

mapping analysis as they are known to cause false positives (Myles et al., 2009). The p-

value was corrected for multiple testing using the modified method proposed by Gao et 

al., (2008). This approach calculates the Meff , which is the effective number of 

independent test to correct for (i.e. Bonferroni correction), by estimating the pair-wise 

composite LD matrix (Gao et al., 2008; Gao et al., 2010; Gao, 2011). The number of 

PCs required explaining 99.5% of the variation in the dataset was used to calculate the 

Bonferroni correction. The Meff calculated for this study was 49030 independent tests, 

which is equivalent to 1.01 x 10
6
 or 5.99 (-log10[p]). This study also use the false 

discovery rate (FDR) to correct for multiple testing for all the different analysis and 

traits in this study (Benjamini and Hochberg, 1995).  

 

Results and discussion 

The results of this chapter are divided into two major sections. The first section 

addresses the phenotypic results obtained for the ZmLOX4/zmlox4-8::Mu and 

ZmLOX5/zmlox5-3::Mu hybrids, which were grown side by side under irrigated 

conditions. This part is followed by the results obtained for the candidate gene 



 

 

68 

 

association study using the different alleles found by De La Fuente et al., 2013. The 

second section includes the results for grain yield and aflatoxin trials under irrigated and 

non-irrigated conditions, as well as, the performance of the different hybrids from the 

testcrosses between Tx714 and the different inbred lines that composed the diversity 

panel. The third section includes the results obtained for GWAS.  

 

Phenotypic results and candidate gene association study for zmLOX4 and zmLOX5 

Effect of ZmLOX4/zmlox4-8::Mu and ZmLOX5/zmlox5-3::Mu hybrids  

The 250 ZmLOX4/zmlox4-8::Mu and ZmLOX5/zmlox5-3::Mu hybrids grown side 

by side in CS11 and CS12, exhibited slight differences in summary statistics for grain 

yield, days to silk and anthesis, plant and ear height (Table 4.1). These traits were all 

slightly lower for the and ZmLOX5/zmlox5-3::Mu hybrids. The mean for aflatoxin 

content for the ZmLOX5/zmlox5-3::Mu hybrids was ~ 224 ng g
−1 

lower than the 

ZmLOX4/zmlox4-8::Mu  hybrids (Table 4.1).  Based on the type 3 test of fixed effects 

results days to anthesis, days to silk and aflatoxin content are statistically significantly 

different between the ZmLOX4/zmlox4-8::Mu and ZmLOX5/zmlox5-3::Mu but plant and 

ear height were not (Table 4.2). 

Most traits were highly correlated between different traits within 

ZmLOX4/zmlox4-8::Mu and ZmLOX5/zmlox5-3::Mu hybrids (Tables 4.3). Grain yield, 

500-kernel weight and height were negatively correlated with aflatoxin content in 

ZmLOX4/zmlox4-8::Mu and all traits were negatively correlated in ZmLOX5/zmlox5-

3::Mu hybrids and the magnitude of the correlation was greater (Table 4.3). 
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The correlation between plant height and aflatoxin level evidenced that shorter 

plants exhibited greater aflatoxin contamination in these trials, which may also be 

partially explained by the colonized kernel technique since infected maize kernels are 

placed on the soil between the plots where shorter plants are likely more exposed to the 

spores of A. flavus. 

 

Table 4.1. Summary of the raw data for the zmLOX4/zmLOX4-10::mu and the zmLOX5/zmLOX5-3::mu 

hybrids across all trials. Arithmetic means (mean) and their respective standard deviation, minimum (min), 

and maximum (max). 

 

 
zmLOX4/zmLOX4-10::mu hybrids zmLOX5/zmLOX5-3::mu Hybrids 

Variable Mean ± S.D. Min Max 
Mean ± 

S.D. 
Min Max 

Days to anthesis 62.8 ± 5.2 49 74 61.4 ±5.1 49 73 

Days to silk 63.5 ± 5.5 50 77 62 ± 5.5 49 78 

Anthesis silking interval (days) 0.7 ± 1 -3 5 0.6 ± 1 -2 7 

Plant height (cm) 234.5 ± 33.2 165.10 304.80 231.5 ± 32 160.02 292.10 

Ear height (cm) 98.1 ± 23.3 48.26 152.40 96.4 ± 21.8 48.26 162.56 

Moisture (%) 12.6 ± 2.2 5.80 21.30 12.4 ± 2 4.70 25.40 

Weight 500 kernels (gr) 115.4 ± 25.5 31.10 166.75 113.6 ± 23.5 57.20 171 

Yield (ton/ha) 6.9 ± 2.9 0.45 14.64 5.9 ± 2.5 0.43 13.40 

Aflatoxin (ng g−1) 
671.6 ± 

579.4 
0 3,200 447 ± 649.8 0 3,100 

Plot weight combined harvested 

(kg) 
3.1 ± 1.5 0.08 8.38 2.5 ±1.3 0.01 6.39 

10 ears weight (kg) 1 ± 0.3 0.12 2.17 0.9 ± 0.3 0.15 3.30 

Ear Count 10.2 ± 1 7 31 10.5 ± 2.6 1 44 

Pollination (%) 93.8 ± 5.7 60 100 93.2 ± 7.4 10 100 

Abortion (%) 2.4 ± 4.6 0 35 2.9 ± 6 0 55 

A.     Flavus colonization (%) 5.2 ± 11 0 100 6.4 ± 11.9 0 85 

Number of kernel rows 15.6 ± 1.5 12 20.67 15.1 ± 1.6 12 30.33 
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Table 4.2. Estimated F-value for the Type 3 test of fixed effect calculated from the general linear model in Eq. (4.1) to test the effect of ZmLox loci. 

 

Fixed effect 
Days to 

anthesis 
Days to silk ASI 

Plant height 

(cm) 

Ear height 

(cm) 

500-kernel 

weight (gr) 

Grain yield 

(ton/ha) 
Aflatoxin (ng g−1) 

Hybrid 42.9*** 37.15*** 4.23*** 13.2*** 10.9*** 7.4*** 4.84*** 3.16*** 

LOX 84.4*** 76.56*** 3.29NS 2.11NS 2.89NS 0.34NS 2.73NS 35.38* 

Year 3142.36*** 2902.2*** 133.33*** 838.89*** 1647.6*** 158.79*** 50.14*** NE 

LOX *Year 0.36NS 0.5NS 2.63NS 0.82NS 2.83NS 0.29NS 0.43NS NE 

Hybrid* LOX 0.96NS 0.83NS 0.81NS 0.63NS 0.6NS 0.7NS 0.74NS 0.99NS 

Hybrid*Year 3.26*** 3.07*** 1.57*** 2.5*** 1.54*** 2.58*** 2.05*** NE 

Hybrid* LOX *Year 0.87NS 0.98NS 0.94NS 0.59NS 0.61NS 0.55NS 0.58NS NE 

*
P <0.05; 

**
P <0.01; 

***
P <0.001; NS: non-significant; NE: non-estimable 
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Table 4.3. Pearson correlation coefficient estimates for the different traits collected for the zmLOX4/zmLOX4-10::mu and the zmLOX5/zmLOX5-3::mu 

hybrids from raw data of all locations. The lower half diagonal correspond to the Pearson correlations for the different traits for the zmLOX4/zmLOX4-

10::mu hybrids. The upper diagonal corresponds to the Pearson correlations for the different traits for the zmLOX5/zmLOX5-3::mu. 

 

Hybrids 
zmLOX5/zmLOX5-3::mu hybrids 
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Days to 

anthesis 

Days to 

silk 
ASI 

Plant 

height 

(cm) 

Ear height 

(cm) 

Moisture 

(%) 

500-kernel 

weight (gr) 

Grain 

yield 

(ton/ha) 

Aflatoxin 

(ng g−1) 

Days to 

anthesis 
. 0.98*** 0.29*** -0.57*** -0.54*** -0.45*** -0.69*** -0.47*** 0.58*** 

Days to silk 0.98*** . 0.46*** -0.58*** -0.55*** -0.44*** -0.70*** -0.49*** 0.58*** 

ASI 

 
0.16*** 0.35*** . -0.25*** -0.28*** -0.13*** -0.31*** -0.28*** 0.24*** 

Plant height 

(cm) 
-0.63*** -0.63*** -0.19*** . 0.91*** 0.43*** 0.71*** 0.73*** -0.67*** 

Ear height 

(cm) 
-0.58*** -0.59*** -0.24*** 0.91*** . 0.44*** 0.64*** 0.65*** -0.64*** 

Moisture (%) -0.54*** -0.54*** -0.15*** 0.55*** 0.53*** . 0.40*** 0.29*** -0.40*** 

500-kernel 

weight (gr) 
-0.68*** -0.70*** -0.23*** 0.78*** 0.71*** 0.51*** . 0.71*** -0.61*** 

Grain yield 

(ton/ha) 
-0.55*** -0.57*** -0.23*** 0.79*** 0.72*** 0.43*** 0.77*** . -0.58*** 

Aflatoxin 

(ng g−1) 
-0.03NS -0.06NS -0.06NS -0.38*** -0.29*** -0.02NS -0.29*** -0.38*** . 

*
P <0.05; 

**
P <0.01; 

***
P <0.001; NS: non-significant.
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The correlation between days to silk and aflatoxin level was slightly negative for 

the ZmLOX4/zmlox4-8::Mu hybrids, but it was not significant. Authors have had 

conflicting findings on the correlations between flowering time and aflatoxin. Betran et 

al., (2002, 2005) found a negative correlation between flowering (days to silk) and 

aflatoxin content in two different experiments. By contrast, Mayfield et al., (2011) 

reported a positive correlation between days to silk and aflatoxin level. This indicates 

that the relationship between days to silk and aflatoxin level varies with the year, 

environment and population and likely is a result of the shifting inoculum and weather 

conditions day to day. 

 

Candidate gene association analysis for zmLOX4 and zmLOX5 

Although novel variation was found in this panel at the ZmLOX4 and ZmLOX5 

genes (De la Fuente et al. 2013), only a few alleles were at high enough frequency to be 

formally tested in association mapping. The threshold after adjusting for multiple testing 

for zmLOX4 was 2 (-log10[p]) and the threshold for zmLOX5 was 2.44. For this 

candidate gene association analysis the phenotypic observation was obtained separately 

for the ZmLOX4/zmlox4-8::Mu and ZmLOX5/zmlox5-3::Mu hybrids for the different 

trials. Zmlox4 was not significantly associated with grain yield for any of the trials. 

However, zmLOX4 was associated with days to anthesis and days to silk (Table 4.4).  

The effect ranges from 0.6 to 0.7 days and the percentage of phenotypic variation ranges 

from 2.3 to 2.8% for days to anthesis and days to silk. The association between zmLOX4 

and days to anthesis is not surprising since it has been reported that the gene is expressed 
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in the root and the shoot apical meristems (Park et al., 2010; De La Fuente et al., 2013). 

Based on the tissue-specific expression of the zmLOX4 transcript that corresponds to 

GRMZM2G109056 in the maize B73 reference genome version 2 (Maize B73 

RefGen_v2, available at www.maizegdb.com/ ), it is observed that the gene is highly 

expressed in the primary root, the coleoptiles and the shoot apical meristems (SAM) in 

V1. The expression decreases in the SAM as the plant growths. The gene is also highly 

expressed during flowering in the cob and outer husk, as well, as there is an intermediate 

expression in the silks, the pericarp and the embryo (Winter et al., 2007; Sekhon et al., 

2011). 

 

Table 4.4. Candidate gene association analysis results for zmLOX4 for days to anthesis and days to silk. 

Significant markers associated after correcting for multiple testing (SNP), their MAF, number of lines with 

the SNP tested, p value of the association (-log10 [p]), allele estimated effect, percentage of variation 

explained by marker (R
2
), and the assigned name of the QTL in this study. 

 

SNP CHR MAF Log10 Effect R2 (%) 

Days to silk 

CS11-LIYTa (average from raw data) 

S1_264224380 1 0.31 2.04 0.6 2.3 

CS12-LIYTa (average from raw data) 

S1_264224380 1 0.31 2.33 0.7 2.8 

Days to anthesis 

CS11-LIYTa (average from raw data) 

S1_264224380 1 0.31 2.05 0.6 2.3 

CS12-LIYTa (average from raw data) 

S1_264224380 1 0.31 2.34 0.7 2.8 

a
Phenotypic observation for the candidate gene association analysis was the average for days to anthesis or 

days to silk for the zmLOX4/zmLOX4-10::mu hybrids. 

 

 

 

http://www.maizegdb.com/
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The zmLOX5 gene was not significantly associated with aflatoxin level as 

hypothesized; however, it was significantly associated with grain yield, plant and ear 

height (Table 4.5). The association between zmLOX5 was only detected in the irrigated 

CS11-LIYT trial. By contrast, the association between zmLOX5 and plant and ear height 

was detected in both the irrigated CS11-LIYT and CS12-LIYT trials. The effect for 

grain yield was 0.4 ton/ha explaining 2.6% of the phenotypic variation. The effect for 

plant height ranged from 3.5 to 5.7 centimetres explaining 2.2 to 3.1% of phenotypic 

variation ranges. The effect for ear height ranged from 2.6 to 3.5 centimetres and 

explained 2 to 2.8% of phenotypic variation. 

zmLOX5 is expressed in the aboveground parts of the plants especially in the 

silks (Park et al., 2010). The expression of the zmLOX5 transcript that correspond to 

GRMZM2G102760 in the Maize B73 RefGen_v2 genome, further reveal that the gene is 

expressed in the SAM from V1 to V5 and the internodes from V5 to V9, which supports 

an effect on plant height as evidenced by the candidate gene association mapping 

analysis.  

The differences in flowering time between the ZmLOX4/zmlox4-8::Mu and 

ZmLOX5/zmlox5-3::Mu observed in table 4.2 was further corroborated by the candidate 

gene association study evidenced that zmLOX4 alleles play a role on the flowering time. 

By contrast, the candidate gene association study showed that the zmLOX5 allele was not 

associated with aflatoxin level, but it is associated with plant and ear height. This result 

contrasts with unpublished data that have shown that the zmlox5 mutants exhibited lower 
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levels of aflatoxin contamination. A possible explanation for this result is the fact that 

the different ZmLOX5 alleles were evaluated across multiple genetic backgrounds.  

 

Table 4.5. Candidate gene association analysis results for zmLOX5 gene for plant and ear height. 

Significant markers associated after correcting for multiple testing (SNP), their MAF, number of lines with 

the SNP tested, p value of the association [-log10 (p) ], allele estimated effect, percentage of variation 

explained by marker (R
2
), and the assigned name of the QTL in this study.  

 

Grain yield (ton/ha) 

SNP CHR MAF Log10 Effect R2 (%) 

CS11-LIYT (average from raw data) 

S5_12289748 5 0.32 2.68 0.42 2.6 

Plant height (cm) 

CS11-LIYT (average from raw data) 

S5_12289534 5 0.26 2.81 4.7 2.8 

CS11-LIYT-USa 

S5_12289534 5 0.26 4.12 3.9 3.1 

S5_12289504 5 0.28 3.6 3.5 2.6 

CS12-LIYT (average from raw data) 

S5_12289963 5 0.28 2.99 5.1 2.2 

S5_12289534 5 0.27 3.36 5.7 2.5 

SNP CHR MAF Log10 Effect R2 (%) 

CS12-LIYT-USa 

S5_12289534 5 0.26 4 5.5 2.8 

S5_12289504 5 0.28 3.7 5.1 2.6 

Ear height (cm) 

CS11-LIYT (average from raw data) 

S5_12289534 5 0.29 2.58 3.5 2.7 

CS11-LIYT-USa 

S5_12289534 5 0.26 3.58 3.1 2.8 

CS12-DYTL-USa 

S5_12289534 5 0.26 2.93 2.6 2.1 

CS12-LIYT-USa 

S5_12289534 5 0.26 3.24 3.2 2.3 
a
The phenotypic observation used was the BLUP for the hybrid effect obtained using Eq. (4.4). 
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Yield and aflatoxin trials and potential of the diverse lines in hybrid combinations 

Drought and irrigated trials 

The mean difference in grain yield between the non-irrigated trials: CS11-DYTL 

and CS12-DYTL was plus 4.19 ton/ha (Table 4.6). A similar result was observed for 

grain yield between the irrigated trials for CS11-LIYT and CS12-LITY. The difference 

between the non-irrigated trial CS11-DYTL and the irrigated CS11-LIYT trial was of 

2.56 ton/ha and between the non-irrigated trial CS12-DYTL and the irrigated CS12-

LIYT trial was of 1.78 ton/ha (Table 4.6). Therefore difference between drought and 

irrigated trials within year was smaller than the difference between years for the same 

treatment. The type 3 tests of fixed effects for the general linear model in Eq. (4.2) 

showed that the year and the treatment effect were significant for all the traits collected 

(Table 4.7). 

A modified model from Eq. (4.2) fitting all the effects as a random, showed that 

the largest magnitude of variation was for the year effect for all traits in addition to yield 

(results not shown). Differences between treatments (drought vs irrigated) within year 

and differences between years within treatments were observed for all traits collected 

(Table 4.6). Plant height was shorter in the non-irrigated DYTL trial, which is expected 

for pre-flowering drought stress (Bänziger et al., 2000). The flowering time window 

(silk, anthesis and ASI) was the longest for the non-irrigated trials CS11-DYTL, which 

totaled 32 days. 
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Table 4.6. Summary of phenotypic data collected for this study across the two non-irrigated and irrigated trials. 

 
Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

Trait CS11-DYTL CS12-DYTL CS11-LIYT CS12-LIYT 

Days to anthesis 70 ± 2.9 51 84 59.3 ± 2.6 48 63 67.1 ± 2.9 56 74 58.1 ± 2.8 49 63 

Days to silk 71.6 ± 3.1 59 85 61 ± 2.9 49 66 68.2 ± 3.1 57 78 58.5 ± 2.9 49 65 

Anthesis silking interval 1.6 ± 1.4 -1 8 1.7 ± 1.2 -2 9 1.1 ± 1 -2 7 0.4 ± 0.9 -3 4 

Plant height (cm) 
184.5 ± 

15.3 
116.8 221 236.6 ± 18.5 165.1 281.9 199.1 ± 17.2 139.7 243.8 

255.3 ± 

20.2 
193 304.8 

Ear height (cm) 72.8 ± 11.9 35.6 99.1 92.2 ± 12.9 50.8 137.2 74.7 ± 12.5 35.6 119.4 109.4 ± 16 50.8 162.6 

Moisture (%) 10.1 ± 1 7.9 14.1 10 ± 0.8 7.5 12.8 11 ± 1.9 4.7 20.2 13 ± 1.8 6.6 25.4 

Weight 500 kernels (gr) 78.6 ± 11.7 48.5 120.2 108.4 ± 17.9 57.8 152.8 95 ± 19.9 11.2 166.5 
130.1 ± 

14.6 
73.5 171 

Yield (ton/ha) 1.9 ± 1 0 5 6.1 ± 2.2 0.9 13.4 4.5 ± 2 0.4 10.9 7.9 ± 2.4 1.2 16.1 

Aflatoxin (ng g−1) . . . . . . 
877.1 ± 

676.7 
0 3,200 79.1 ± 133 0 990 

Pollination (%) 95.9 ± 5 50 100 86.2 ± 9.6 5 95 96.1 ± 4.2 60 100 91.5 ± 7 10 98 

Abortion (%) 7.6 ± 6.1 0 45 12.1 ± 8.9 0 65 1.4 ± 3.4 0 30 4 ± 6.3 0 55 

A.     Flavus colonization 

(%) 
18.4 ± 13.6 0 100 0.3 ± 1.5 0 20 13.9 ± 14.1 0 100 0.3 ± 1.3 0 16 

Number of kernel rows 14.1 ± 1.4 11.3 20.7 15.9 ± 1.5 12 20.7 15.3 ± 1.5 12 30.3 15.5 ± 1.5 12 20.7 

Arithmetic mean (mean) and their respective standard deviation, minimum (min), and maximum (max). CS11-DYTL College Station non-irrigated 

2011, CS11-LIYT College Station irrigated 2011, CS12-DYTL College Station non-irrigated 2012, CS12-LIYT College Station irrigated 2012.
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Table 4.7. Estimated F-value for the Type 3 test of fixed effect calculated from the general linear model in 

Eq. (4.2). Treatment (Trt) is full irrigation vs. drought irrigation.  

 

Fixed effect 
Days to 

anthesis 
Days to silk ASI 

Plant 

height 

(cm) 

Ear 

height 

(cm) 

500-kernel 

weight (gr) 

Grain 

yield 

(ton/ha) 

Hybrid 49.07*** 36.12*** 5.68*** 16.93*** 13.33*** 11.51*** 7.09*** 

Trt 156.99*** 328.63*** 170.48*** 63.86*** 4.5NS 19.77*** 27.94*** 

Year 8805.74*** 6297.48*** 20.65** 723.97*** 63.04*** 36.97*** 57.94*** 

Trt*Year 59.11*** 18.53** 21** 0.39NS 2.11NS 0.01NS 1.23NS 

Hybrid*Trt 2.12*** 1.72*** 1.47*** 1.42*** 1.28*** 1.98*** 1.05NS 

Hybrid*Year 4.13*** 3.06*** 1.76*** 2.46*** 2.12*** 2.12*** 1.96*** 

Hybrid*Trt*Year 2.01*** 1.82*** 1.57*** 1.31** 1.40*** 1.52*** 1.19* 

*
P <0.05; 

**
P <0.01; 

***
P <0.001; NS: non-significant; NE: non-estimable 

 

 

 

This was expected since silk elongation is delayed by water stress, and 

significant effort has been devoted to improve hybrids capable of silking under drought 

stress conditions (Bolaños and Edmeades, 1996; Chapman and Edmeades, 1999; 

Campos et al., 2004). Flint et al., (2005) reported a flowering time window of 40 days 

for the maize inbred lines for the 282 maize association panel and the same window was 

observed on the 400 lines when grown in College Station in 2009 (data not shown) .  

The average, maximum and minimum for aflatoxin levels were lower for the 

irrigated CS12 trials (Table 4.6) than CS11 trials though the same inoculum and 

inoculation technique were used. 2011 was one of the hottest and dries growing seasons 

in College Station and much more so than 2012, which likely influenced the average and 

maximum value observed for aflatoxin contamination between the years. A. flavus 

infection and colonization strongly depend on the environmental conditions, both hot 

and dry conditions and any forms of stress increase both the fungal colonization and 
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aflatoxin contamination (Payne and Widstrom, 1992; Paul et al., 2003; Betran et al., 

2005; Cotty and Jaime-Garcia, 2007; Warburton et al., 2010; Amaike and Keller, 2011; 

Mayfield et al., 2011). 

 

Variance component estimates and heritability 

The heritability estimates for the non-irrigated and irrigated trials for grain yield 

ranged from 0.61 to 0.83 (Table 4.8). The lowest heritability, in the non-irrigated trial 

during the extreme drought of 2011 was expected and heritability estimates are expected 

to decrease under stressed trials (Bänziger and Lafitte, 1997; Banziger et al., 1999; 

Chapman and Edmeades, 1999; Bänziger et al., 2000; Badu-Apraku et al., 2004). 

Heritability estimates ranging from 0.64 to 0.82 for heat stress trials, and 0.47 to 

0.8 under drought stress have reported for maize in a MET study that evaluated maize 

inbred lines to identify heat and drought stress sources (Cairns et al., 2013). Within each 

environment heritability estimates for aflatoxin level ranged from 0.67 to 0.83 for both 

the transformed and raw aflatoxin level data (Table 4.8). However across environments a 

much lower heritability estimate 0.59 was obtained (Table 4.9). Transformation of 

aflatoxin is a standard procedure used before QTL mapping (Paul et al., 2003; 

Warburton et al., 2010; Mayfield et al., 2011) and is needed because the data are often 

skewed. In addition, data transformation in this study increased the heritability in some 

environments, but decreased it in others.  
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Table 4.8. Estimates of the hybrid (σ²g), replicate (σ²r), error (σ²ε) variances and their respective standard 

errors for each trial for grain yield (ton/ha) and aflatoxin (ng g
−1

). The estimates were obtained using a 

linear mixed model that fit hybrids and replicate as a random effect and commercial checks as a fixed 

effect 

 

Effect 

College Station College Station Mississippi 
College 

Station 

Mississip

pi 

Irrigated 
Non-

irrigated 
Irrigated Irrigated 

Grain yield (ton/ha) Aflatoxin (ng g−1) (log10 [aflatoxin + 10]) 

 
2011 

σ²g 299.9 ± 41.3 59.3 ± 16.6 
233,845 ± 

36,311.3 
NAa 0.05 ± 0.009 NAa 

σ²r 
536.2 ± 

385.8 
20.5 ± 22.8 3,008.1 ± 4359.6 NAa 0.001 ± 0.001 NAa 

σ²ε 534.5 ± 28.9 187.1 ± 17.1 
264,382 ± 

22,235.6 
NAa 0.08 ±  0.006 NAa 

h² 0.73 0.61 0.81 NAa 0.77 NAa 

 
2012 

σ²g 767.9 ± 81.3 732.8 ± 83.9 296.7 ± 309 
652,827 ± 

87,276.3 
0.07 ± 0.02 

0.118 ± 

0.02 

σ²r 7.6 ± 10.7 28.6 ± 34 3,173. 8 ± 837.4 
10,654.5 ± 

18,058.5 
0.004 ± 0.004 

0.002 ± 

0.004 

σ²ε 703.6 ± 32.8 562.5 ± 50 11,612 ± 815.4 
617,598 ± 

51,338.2 
0.2 ± 0.01 

0.181 ± 

0.015 

h² 0.83 0.80 0.67 0.83 0.70 0.70 

a  
Data was not collected for this trait for this trial 

 

 

 

Across all environments heritability estimates ranged from 0.59 (aflatoxin) to 

0.98 for the different traits collected (Table 4.9), based on the components of variance 

estimated using the MET model from Eq. (4.3). Heritability estimates for grain yield, 

test weight and ASI ranged from 0.82 to 0.87. The lowest heritability estimate was for 

aflatoxin, which was 0.59 for the raw data and 0.70 for the (log10 (aflatoxin + 10)) 

transformation (Table 4.9). These heritability estimates are considerable higher than 

estimates reported by previous studies (Walker and White, 2001; Campbell et al., 2003; 

Warburton et al., 2009; Mayfield et al., 2011). 
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Table 4.9. Estimates of the hybrid (σ²g), hybrid-by-environment (σ²ge), error (σ²ε) variances, and their respective standard errors. The variance 

components were estimated using the combined MET analysis in Eq. (4.3) without spatial adjustment for the traits with the highest heritability 

estimates. 

 

Effect 
Days to 

anthesis 
Days to silk ASI 

Plant height 

(cm) 

Ear height 

(cm) 

500-kernel weight 

(gr) 

Grain yield 

(ton/ha) 
Aflatoxin (ng g−1) 

Log10 (aflatoxin (ng 

g−1)) 

σ²g 7.8 ± 0. 5 8.5 ± 0.5 0.3  ± 0.04 228.5 ± 19.2 107.3 ± 9.2 122.1 ± 11.5 0.08 ± 0.008 47465 ± 17197.5 0.04 ± 0.008 

σ²ge 0.3 ± 0.03 0.4 ± 0.05 0.2 ± 0.03 32.2 ± 3.6 13.8 ± 2.1 42.5 ± 4.2 0.02 ± 0.003 238610 ± 24273.7 0.04 ± 0.008 

σ²ε 0. 7 ±  0.02 0.9 ± 0.03 0.7 ± 0.02 91.7 ± 2.8 63.2 ± 1.9 94.2 ± 2.8 0.1 ± 0.003 273774 ± 12332.2 0.2 ± 0.007 

h² 0.98 0.97 0.82 0.93 0.92 0.88 0.87 0.59 0.70 
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Heritability estimates for aflatoxin that range from 0.20 to 0.42 have been 

reported for different bi-parental QTL studies using different parents and QTL validation 

studies in different testcrosses in maize (Walker and White, 2001; Brooks et al., 2005; 

Warburton et al., 2009; Warburton et al., 2010; Mayfield et al., 2011). The differences 

observed in the heritability estimates for grain yield and aflatoxin level between this 

study and others are partially explained by the high genetic variation present in our 

study. It is also explained largely on the 2011 environment which had extremely high 

stress throughout the field. Based on the heritability estimates observed, it can be 

concluded that genetic variation is present in this panel to perform an association 

analysis. 

 

Spatial analysis 

The number of hybrids investigated in the experiment resulted in large tests. 

Spatial analysis has proven useful in identifying and reducing error in large field studies 

when checks are replicated throughout the field (Gilmour et al., 1997; Cullis et al., 1991, 

1998). The analysis showed that field spatial variation was most important for the trials 

in CS11 for grain yield (results not shown). This would be expected with the extreme 

drought in 2011 which brings out the highest level of field variation. For other traits such 

as plant, ear height, days to anthesis, days to silk, and 500 kernel weight field spatial 

variation was observed. By contrast, field spatial variation was not observed for 

aflatoxin contamination. 
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Genetic correlation across different environments 

The modeling of the variance-covariance structure for GEI analysis using Eq. 

(4.4) showed that the lowest genetic correlation for grain yield was 0.46, which 

correspond to the genetic correlation between the non-irrigated trial in CS11-DYTL and 

the irrigated trial in CS12-LIYT (Table 4.10) (van Eeuwijk et al., 2010). By contrast, the 

genetic correlation between other trials for grain yield ranged from 0.70 to 0.94. The 

highest genetic correlation was for the trials grown in CS12 (Table 4.10). Based on these 

results, it was concluded that hybrid ranking between years and trials was consistent. 

This result is similar to other QTL studies in sorghum and wheat (Mathews et al., 2008; 

Sabadin et al., 2012). The lowest genetic correlation for aflatoxin level was between the 

irrigated trial in CS12-LIYT and MS12-LIYT (Table 4.11). 

 

Table 4.10. Variance-covariance unstructured matrix for grain yield (ton/ha) for four trials grown in 

College Station in 2011 and 2012. The diagonal represents the genetic variance for each trial. The 

elements off the diagonal in the lower half of the matrix are the specific genetic covariance per each pair 

of trials. The elements off the diagonal in the upper half of the matrix (shaded in gray) represent the 

specific genetic correlation for each pair of trials. 

 

Environment CS11-DYTL CS11-LIYT CS12-DYTL CS12-LIYT 

CS11_DYTL 0.06 0.76 0.70 0.63 

CS11_LIYT 0.06 0.09 0.95 0.84 

CS12_DYTL 0.07 0.11 0.15 0.94 

CS12_LIYT 0.05 0.08 0.12 0.10 

CS11-DYTL College Station non-irrigated 2011, CS11-LIYT College Station well watered 2011, CS12-

DYTL College Station non-irrigated 2012, CS12-LIYT College Station well watered 2012. 
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Table 4.11. Variance-covariance unstructured matrix for aflatoxin level (ng g

−1
) for the College Station 

2011 and 2012 trials and Mississippi 2012 trial. The diagonal represent the genetic variance for each trial. 

The elements off the diagonal in the lower half of the matrix are the specific genetic covariance for each 

pair of trials. The elements off the diagonal in the upper half of the matrix (shaded in gray) represent the 

specific genetic correlation for each pair of trials.  

 

Environment CS11-LIYT CS12-LIYT MS12-LIYT 

CS11_LIYT 0.02 0.77 0.60 

CS12_LIYT 0.04 0.10 0.46 

MS12_LIYT 0.03 0.05 0.13 

CS11-LIYT College Station well watered 2011, CS12-LIYT College Station well watered 2012, MS12-

LIYT Mississippi well watered 2012. 

 

 

 

Best performing hybrids 

There were multiple hybrids that performed as well as or better than the elite 

commercial checks used in this study for grain yield. This study evidenced that diverse 

material has the potential to outyield elite commercial hybrids under water stress. Under 

the severe drought that experienced Texas in 2011, neither of the commercial checks 

was in the top five hybrids for the CS11-DYTL trial. For the CS11-LIYT and CS12-

DYTL trials only one of the commercial checks was in the top five hybrids. In contrast, 

the top two hybrids for the CS12-LIYT, a “good environment” were commercial checks 

(Table 4.12). For aflatoxin resistance none of the testcrosses accumulated less aflatoxin 

than the commercial checks in any environment (results not shown), likely because the 

tester used, Tx714, is known to have high aflatoxin susceptibility (Betrán et al., 2004). 

However, it was observed that some of the testcrosses exhibited decreased aflatoxin 
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susceptibility for the lines bred in tropical and sub-tropical areas. These results indicate 

the presence of favorable genes for stress tolerance and Aspergillus ear rot disease 

resistance in diverse material. The presence of favorable alleles in diverse germplasm 

has been previously reported by different authors (Betrán et al., 2003; Nelson et al., 

2006; Whitehead et al., 2006; Nelson and Goodman, 2008; Flint-Garcia et al., 2009; 

Ortiz et al., 2010). 

 

Table 4.12. BLUPs for the best 15 grain yield (GY) hybrids of the MET analysis using Eq. (4.3) without 

spatial adjustment and for each trial using Eq. (4.4). Eq. (4.4) was expanded to include AR1 x AR1 terms 

for row and column spatial effects. Four commercial checks were used in this study.  

 

MET analysis CS11-DYTL CS11-LIYT CS12-DYTL CS12-LIYT 

Line 
GY 

(ton/ha) 
Line 

GY 

(ton/ha) 
Line 

GY 

(ton/ha) 

Line 

 

GY 

(ton/ha) 
Line 

GY 

(ton/ha) 

CML381 2.80 AAP244 1.17 
AMY072

22 
2.45 

AMY072

22 
3.52 check 3 3.49 

NC334 2.78 NC358 1.15 CML381 2.11 CML381 3.33 check 4 3.31 

AMY072

22 
2.65 check 3 0.94 CML254 2.06 NC334 3.13 CML264 3.26 

NC370 2.56 AAP102 0.94 check 4 1.97 CML264 2.98 CML115 3.23 

CML115 2.42 CML108 0.92 CML264 1.96 CML115 2.96 CML45 3.20 

CML264 2.42 
AMY072

22 
0.90 CML115 1.94 B14A 2.95 NC370 3.20 

CML45 2.37 AAP281 0.89 AAP122 1.92 check 4 2.88 Tzi11 3.13 

Check 3 2.33 CML348 0.87 B14A 1.88 CML254 2.87 NC334 3.09 

Check 4 2.31 
AM40700

4 
0.84 Tzi11 1.88 Tzi11 2.86 

AMY072

22 
2.92 

Tzi11 2.22 NC408 0.84 CML108 1.87 CML9 2.78 SC357 2.82 

Check 2 2.17 check 2 0.81 CML432 1.77 CML5 2.64 CML9 2.75 

CML5 2.07 AAP122 0.77 NC318 1.74 NC370 2.61 CML381 2.74 

NC366 1.97 CML423 0.76 CML9 1.72 SC357 2.56 NC322 2.68 

AAP242 1.95 CML381 0.75 check 3 1.72 NC318 2.52 B14A 2.62 

NC322 1.86 AAP242 0.74 check 2 1.71 CML45 2.52 Mp707 2.58 

CS11-DYTL College Station non-irrigated 2011, CS11-LIYT College Station irrigated 2011, CS12-DYTL 

College Station non-irrigated 2012, CS12-LIYT College Station irrigated 2012. 
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Genome wide association study for drought tolerance, aflatoxin resistance and 

other important agronomic traits 

Genetic diversity, population structure and estimation of kinship matrix 

Genetic diversity analysis between the 346 inbred lines from this diversity panel 

that have genotypic data available evidenced that the majority of the lines are not related 

to each other, only 0.23% of the pairs of entries exhibit a genetic distance less than 0.2. 

between all pairs of lines the mean and median for the genetic distance was 0.50 and 

0.49, respectively. 55% of the entry pairs exhibit a genetic distance of less than 0.5 and 

97% of the entry pairs exhibit a genetic distance less than 0.6 suggesting most of the 

lines are equally distantly related. Using Structure (Pritchard et al. 2000), a preliminary 

analysis to estimate the optimum K (number of populations) evidenced that the rate of 

change in the log probability, as measured by the ad hoc statistic ∆K was K 4. It was 

determined that this diversity panel consisted of four different clusters that correspond 

to: Tropical, temperate, B73 and a mixed group. Although it is normally uncommon that 

the Northern U.S./B14 stiff stalk lines (Mikel and Dudley, 2006) would cluster together 

with non-stiff stalk  lines (Mo17 related lines) this is likely because this Northern 

germplasm is poorly represented in the hybrids used in this study. In contrast, the B73 

group is well-defined and it is formed by a few lines. Structure analysis of the 300 lines 

that compose the diversity panel found six clusters that correspond to B73, temperate, 

Lancaster/C103, NorthernUS/B14, SC76, tropical, and a mixed group (Warburton et al., 

2013 under review). This demonstrates how important the sample choice is in the 

Bayesian clustering methods of Structure.  
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The genetic distance pairwise matrix was visualized using a PCoA and four 

general clusters were identified based on additional knowledge about the germplasm 

(Figure 4.2). One well-defined cluster that corresponds to lines closely related to B73 

was observed. There are other three clusters that are interconnected between and 

correspond to tropical and temperate lines. These first two PCoA eigenvectors explained 

0.13% and 0.14% respectively. To explain 80% of the variation, at least 100 PCoA 

eigenvectors are required, which further corroborated the weak relatedness between the 

inbred lines from this panel. 

 

Figure 4.2. PCoA eigenvector plot of maize inbred lines that composed the diversity panel in this study. 

Nei’s (197 ) genetic dissimilarly matrix was calculated from 1999 SNP markers. 
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GWAS analysis for grain yield and 500-kernel weight 

GWAS analysis was performed on raw data and on spatially adjusted data to 

ensure results were robust across analysis methods. Five quantitative trait variants 

(QTV) for grain yield on chromosomes two, seven, nine and ten were identified (Figure 

4.3). The allelic effects for the different QTV ranged from 0.14 to 0.59 ton/ha and the 

amount of phenotypic variation ranged from 3 to 5% (Table 4.13). QTV1, QTV2, and 

QTV3 were detected under both irrigated and non-irrigated conditions in 2011 and 2012 

(Table 4.13). QTV1 has the strongest effect in the non-irrigated trial in 2012. These 

QTV were also detected in the MET analysis that adjusted for field spatial variation 

(Figure 4.3). No QTV were detected in the non-irrigated trial in 2011, likely due to low 

overall heritability. QTV4 was only detected in the well-irrigated trial in 2012 and 

QTV5 was only detected through MET analysis that adjusted for field spatial variation 

(Table 4.13). Several linkage studies have reported multiple linkage mapping QTLs for 

grain yield but to our knowledge this has not yet been examined using association 

approaches in testcrosses (Ajmone-Marsan et al., 1994; Beavis et al., 1994; Veldboom 

and Lee, 1994; Ajmone-Marsan et al., 1995; Austin and Lee, 1996; Veldboom and Lee, 

1996a,b; Ajmone-Marsan et al., 2001; Schaeffer et al., 2006). These studies identified 

one to five linkage QTLs for grain yield explaining 20 to 35% of phenotypic variation 

for all QTLs together.  

QTV1 found in this study for grain yield is located in bin 2.03. No QTLs 

associated with grain yield has been reported in this bin by other authors and this SNP is 

in the abph1 - aberrant phyllotaxy1- gene (Maize B73 RefGen_v2available at 
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www.maizegdb.com/ ). abph1 is expressed in the shoot apical meristems and the gene 

mutation alters the regular arrangement of leaves and flowers (Lee et al., 2009). Despite 

LD decaying rapidly in this area of the genome, further investigation needs to be done to 

confirm that this SNP is indeed associated with the abph1 locus. QTV2 is located in bin 

7.04, the allelic effect ranges from 0.14 to 0.42 and the percentage of explained 

phenotypic variation ranges from 4.5 to 5% (Table 4.13). 

 

Figure 4.3. GWAS results for grain yield (ton/ha) using spatial adjustment. The phenotypic observation 

was the BLUPs for the MET analysis, which includes AR1 x AR1 terms to adjust for column and row 

effects. The red line represents the threshold value after correcting for multiple testing using the Meff. The 

arrows point significant SNPs detected by the FDR statistics 
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Table 4.13. GWAS results for grain yield (ton/ha). Significant markers associated after correcting for 

multiple testing (SNP), their MAF, FDR adjusted p value of association, p value of the association [-log10 

(p) ], allele estimated effect, percentage of variation explained by marker (R
2
), and the assigned name of 

the QTV in this study. 

 

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) QTV 

CS11-LIYT-USa 

S7_164955163 7 0.08 0.0003 8.25 0.37 4.9 QTV2 

S9_142746374 9 0.26 0.0147 6.32 0.28 3.6 QTV3 

S9_142746338 9 0.27 0.0197 6.02 0.28 3.4 QTV3 

S2_27482479 2 0.22 0.0585 5.42 0.26 3 QTV1 

CS12-DYTL (average from raw data) 

S2_27482431 2 0.24 0.0212 6.21 0.59 4.7 QTV1 

S2_27482479 2 0.22 0.0212 6.16 0.59 4.7 QTV1 

CS12-DYTL-USa 

S7_164955163 7 0.08 0.0005 8.11 0.42 5 QTV2 

S9_142746374 9 0.26 0.0083 6.57 0.33 3.9 QTV3 

S2_27482479 2 0.22 0.0133 6.08 0.31 3.6 QTV1 

S9_142746338 9 0.27 0.0133 6 0.32 3.5 QTV3 

S2_27482431 2 0.24 0.0133 5.97 0.31 3.5 QTV1 

CS12-LIYT-USa 

S7_164955163 7 0.08 0.0028 7.35 0.14 4.9 QTV2 

S2_27482431 2 0.24 0.0457 5.69 0.28 3.7 QTV1 

S2_27482479 2 0.22 0.0457 5.63 0.28 3.6 QTV1 

S9_142746374 9 0.26 0.0457 5.46 0.28 3.5 QTV3 

S9_149545863 9 0.06 0.0457 5.43 0.37 3.5 QTV4 

Spatial analysisb 

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) QTV 

S7_164955163 7 0.08 0.0017 7.6 0.35 4.5 QTV2 

S10_10246117 10 0.24 0.0326 6 0.26 3.4 QTV5 

S7_164954968 7 0.09 0.0361 5.7 0.32 3.2 QTV2 

S2_27482479 2 0.22 0.0361 5.6 0.25 3.2 QTV1 

a 
The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using 

model in Eq. (4.4).  
b 
The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using the 

MET model in Eq. (3.3) including AR1 AR1 terms for row and column effects. 
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In addition to yield, QTV2 was also detected for plant height, days to anthesis 

and days to silk, suggesting a pleiotropic effect on multiple traits (Table 4.14). In a 

recent meta-analysis of Texas commercial yield trial data, the R
2
 of plant height and 

grain yield was determined to be 0.61 suggesting the importance of robust tall plants 

under Southern stress (Barrero et al. 2013). In order to further address this question an 

association analysis was performed including plant height as a covariate in Eq. (4.3) and 

(4.4). The QTV2 variant was no longer significant for grain yield providing an additional 

line of evidence that this QTV has a pleiotropic effect variant on grain yield (Figure 4.4).  

 

Figure 4.4. GWAS results for grain yield (ton/ha) using spatial adjustment and a covariate for plant 

height.  The phenotypic observation was the BLUPs for the MET analysis, which includes AR1 x AR1 

terms to adjust for column and row effects. In addition, this model includes a centered and standardized 

covariance for plant height. The red line represents the threshold value after correcting for multiple testing 

using the Meff. The arrows point significant SNPs detected by the FDR statistics 
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Table 4.14. Summary of the most promising QTV variants found in this study. SNP position test, QTV name, bin, chromosome, SNP_1 allele one 

present, SNP_2 allele two, description of the translated protein motif, plausible transcript as reported in the B73. 

 

SNP QTV variant Bin Chr. Allele 1 Allele 2 Description Plausible transcript 

Grain yield (ton/ha) 

S2_27482431 QTV1 2.03 2 A C* PUT-2-171a-Zea_mays-13770 GRMZM2G035688 

S7_164955163 QTV2 7.04 7 A C* Protein unknown function GRMZM2G009320 

S9_142746374 QTV3 9.06 9 A G* Clp amino terminal domain GRMZM2G150598 

S9_149545863 QTV4 9.07 9 C T* unknown motif GRMZM5G864133 

S10_10246117 QTV5 10.02 10 G* T unknown motif GRMZM2G475197 

Plant height (cm) 

S7_164955163 QTV2 7.04 7 A C* Protein unknown function GRMZM2G009320 

S3_168307280 QTV6 3.05 3 A* C Chromatin assembly factor I GRMZM2G096458 

Ear height (cm) 

S2_34433893 QTV7 2..04 2 C T* Proton-dependent oligopeptide transporter GRMZM2G138731 

S4_62573339 QTV8 4.05 4 C* G* four cysteine-rich zinc finger protein GRMZM2G153722 

S4_173817044 QTV9 4.07 4 C T* Promoter region GRMZM2G549279 

S4_173996901 QTV10 4.07 4 A G* Promoter region GRMZM2G010755 

Days to anthesis or days to silk 

S7_164955163 QTV2 7.04 7 A C* Protein unknown function GRMZM2G009320 

S8_131176630 QTV11 8.05 8 C* T Protein tyrosine kinase GRMZM2G120839 

S4_173817044 QTV9 4.07 4 C T* 

Promoter region 

GRMZM2G549279 

S8_123509373 QTV12 8.05 8 C G* Protein unknown function GRMZM2G479987 

S3_1775697 QTV13 3.02 3 A C* Epsin N-terminal homology (Domain) GRMZM2G123499 

*Allele with the positive effect
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Based on these results, the transcript for QTL2 variant was investigated. Austin 

and Lee (1996) found a QTL for grain yield in the same bin that explain 3.9% of the 

phenotypic variation; however, the sparse map makes it impossible to know the exact 

location. Recent studies using a 1000 F4:5 maize testcross progenies developed by 

Pioneer Hi-Bred in 1995, found a QTL in the same chromosome bin across seven 

environments in the corn belt (Schön et al., 2004; Boer et al., 2007). To identify 

potential candidate genes for QTV2, the LD was investigated and found to decay within 

0.2 kilobases (kp) upstream and showed no LD with the closest marker 225 (kb) 

downstream. Different authors have reported that LD decay rapidly in maize around 1 to 

10 kb, and specifically for chromosome seven linkage disequilibrium has varied from 2 

to 5 kb depending on the region and the germplasm (Remington et al., 2001; Gore et al., 

2009; Yan et al., 2009; Yan et al., 2011; Chia et al., 2012). Assuming that the LD 

follows the same pattern observed for the upstream area from QTV2, a plausible 

transcript corresponds to a protein with an unknown function (Table 4.14) that is 

expressed in the V1 (vegetative stage 1) (Maize eFP browser) (Winter et al., 2007; 

Sekhon et al., 2011).  

QTV3 is located in bin 9.06, the allelic effect ranges from 0.28 to 0.33 ton/ha and 

the percentage of explained phenotypic variation ranges from 3.5 to 3.9% (Table 4.13). 

No QTLs have been reported in bin 9.06 for grain yield to our knowledge. LD nearby 

the QTV3 variant is higher than average, which is consistent to previous reports for 

chromosome nine (Remington et al., 2001; Yan et al., 2009; Yan et al., 2011). Upstream 

from the QTV3 variant there are six transcripts that exhibited a high level of LD between 
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them. Downstream from the QTV3 variant, there are two additional transcripts 

(GRMZM2G150594 GRMZM2G573775). QTV4 (bin 9.07), and QTL5 (bin 10.02) have 

no previously reported QTL, and correspond to genes of unknown function (Table 4.14) 

This study did not find a significant QTV for 500-kernel weight after stringent 

corrections for multiple testing. However, a skyscraper near significance was 

consistently observed on bin 9.01 (Figure 4.5) across different trials and both of the 

MET analysis (Table 4.15).  

 

Table 4.15. GWAS results for 500-kernel weight (gr.). Significant markers associated after correcting for 

multiple testing (SNP), their MAF, FDR adjusted p value of association, p value of the association (-log10 

(p)), allele estimated effect, percentage of variation explained by marker (R
2
), and the assigned name of 

the QTV in this study.  

 

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) 

CS11-LIYT-USa 

S9_8416672 9 0.45 0.2483 5.39 2.3 4.1 

CS12-DYTL-USa 

S9_8416672 9 0.45 0.4963 5.09 3.6 4 

CS12-LIYT-USa 

S9_8416672 9 0.45 0.4382 5.15 2.7 3.8 

RCBDb 

S9_8416672 9 0.45 0.1929 5.41 2.4 4.2 

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) 

Spatialc 

S9_8416672 9 0.45 0.1248 5.69 2.6 4.3 

a 
The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using 

model in Eq. (4.4).  
b 
The phenotypic observation used for the GWAS was the BLUP for the hybrid effect from the MET 

model in Eq. (3.3).  
c 
The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using the 

MET model in Eq. (3.3) including AR1 x AR1 terms for row and column effects. 
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Figure 4.5. GWAS results for 500-kernel weight (gr). The phenotypic observation was the BLUPs for the 

CS12-LIYT trial. The red line represents the threshold value after correcting for multiple testing using the 

Meff 

 

 
 

 

 

The effect estimates ranged from 2.3 to 3.6 (g per 500 kernels) and the explained 

3.8 to 4.3% of the phenotypic variation. Despite that, this skyscraper was not significant 

after correcting for multiple testing, this SNP warrants further investigation based on the 

fact that other authors have reported a linkage QTL for 300 kernel weight, named 

q300k21, in the same bin (Goldman et al., 1993, 1994; Schaeffer et al., 2006) and 

because the SNP was consistently detected near significance in all analyses. 
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GWAS for plant and ear height 

Two QTVs for plant height were detected (Figure 4.6). QTV2, was previously 

described for grain yield (Table 4.13 and 4.14) and several studies have reported a QTL 

for height at bin 7.04 (Schön et al., 1994; Veldboom and Lee, 1996a,b). QTV2 has an 

effect that ranges from 5.3 to 5.6 centimetres, and explained 4.6 to 5% of the phenotypic 

variation (Table 4.16). The other SNP, QTV6 at bin 3.05 had an effect that ranged from 

3 to 3.2 centimetre and the percentage of explained 4.7 to 4.8% of the phenotypic 

variation (Table 4.16).  

 

Figure 4.6. GWAS results for plant height (cm). The phenotypic observation was the BLUPs for the 

CS11-DTYL trial. The red line represents the threshold value after correcting for multiple testing using the 

Meff. The arrows point significant SNPs detected by the FDR statistics 
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Table 4.16. GWAS results for plant and ear height (cm). Significant markers associated after correcting 

for multiple testing (SNP), their MAF, FDR adjusted p value of association, p value of the association (-

log10 (p)), allele estimated effect, percentage of variation explained by marker (R
2
), and the assigned 

name of the QTV in this study.  

 

SNP CHR MAF FDR_Adjusted_P Log10 Effect R2 (%) QTV 

Plant height (cm) 

CS11-DYTL-USa 

S7_164955163 7 0.08 0.0429 6.08 5.3 5 QTV2 

S3_168307280 3 0.36 0.0429 5.85 3 4.8 QTV6 

CS11-LIYT-USa 

S3_168307280 3 0.36 0.0577 5.81 3.2 4.7 QTV6 

S7_164955163 7 0.08 0.0577 5.73 5.6 4.6 QTV2 

Ear height (cm) 

CS12-DYTL (average from raw data) 

S2_34433893 2 0.31 0.0391 6.2 3.9 6.3 QTV7 

CS12-DYTL-USa 

S4_173996901 4 0.13 0.0811 5.88 3.8 4.6 QTV10 

SNP CHR MAF FDR_Adjusted_P Log10 Effect R2 (%) QTV 

CS12-LIYT (average from raw data) 

S4_173817044 4 0.14 0.0789 5.69 6.5 5 QTV9 

S4_62573339 4 0.41 0.0789 5.59 4.4 5 QTV8 

CS12-LIYT-USa 

S4_173996901 4 0.13 0.1468 5.62 4.3 4.4 QTV10 

RCBDb 

S4_173817044 4 0.13 0.362 5.23 3.8 4.2 QTV9 

a The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using 

model in Eq. (4.4).  

b The phenotypic observation used for the GWAS was the BLUP for the hybrid effect from the MET 

model in Eq. (3.3). 
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A QTL for plant height has been reported previously in bin 3.05 using a bi-

parental cross between ki3 and CML139 (Bohn et al., 1997). Both QTV2 and QTV6 

were detected in the non-irrigated and in the irrigated trials in 2011 (Figure 4.6).  

For ear height only one significant SNP, QTL7 (bin 2.04) was detected after 

correcting for multiple testing and only in the non-irrigated trial in 2012, it had an 

estimated effect of 3.9 centimetres and explained is 6.3% of the phenotypic variation. No 

QTL have been previously reported for ear height in this bin to our knowledge. Three 

additional skyscrapers were consistently detected across different analyses and the effect 

was strongest in the CS12-LIYT trial (Figure 4.7). These SNPs are worthy of additional 

consideration despite the fact that neither of them was significant after adjusting for 

multiple testing. The authors decided to consider these SNPs as QTL variants based on 

the FDR p value, which was < 0.10 for all these SNPs (Table 4.16). The S4_62573339 

SNP , which was named QTV8, is located in bin 4.05, and it has an allele effect of 4.4 

centimetres and explained 5% of the phenotypic variation (Table 4.16). Although a 

putative transcript is located in the location of QTL8; however, the LD extends around 

100 kb indicating that this transcript may not be the causal gene. 

There is a strong LD in this area, which indicates that this region of the genome 

has been under selection since LD generally decays around 1 to 5 kb in chromosome 

four (Remington et al., 2001; Gore et al., 2009; Yan et al., 2009; Yan et al., 2011; Chia 

et al., 2012). A QTL for plant height, but not ear height has been reported in bin 4.05 by 

different authors (Beavis et al., 1994; Veldboom and Lee, 1994; Veldboom and Lee, 

1996a,b). The S4_173817044 and S4_173996901 are located in bin 4.07; however, they 
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are separated 174 kb apart we decided to consider them two different QTVs. These SNPs 

were named QTV9 and QTV10, respectively. The effect of QTV9 ranges from 3.8 to 6.5 

centimetres, and the percentage of explained phenotypic variation ranges from 4.2 to 

5%. The effect of QTV10 ranges from 3.8 to 4.3 centimetres and the amount of 

phenotypic variation ranges from 4.4 to 4.6%. Similarly to the previous QTL for ear 

height, neither of them has been reported by other authors. Additionally, the LD decay 

around 100 bp in this area of chromosome four and based on the Maize B73 RefGen_v2 

genome, these SNPs seems to be in the promoter regions of different transcripts (Table 

4.14). 

 

Figure 4.7. GWAS results for ear height (cm). The phenotypic observation was the BLUPs for the CS12-

LIYT trial. Arrows point possible significant SNPs based on different analysis 
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GWAS for flowering time traits 

 QTLs for days to anthesis and days to silk (Figure 4.8) were found, with effects 

ranging from 0.5 to 1.8 days and the percentage of explained phenotypic variation range 

from 4.2 to 7.4% (Table 4.17). QTV2, previously reported for grain yield and plant 

height was also detected for days to anthesis and days to silk in the irrigated trial of 2011 

and 2012. Buckler et al., (2009) reported three QTLs for days to anthesis (PZA03624, 

PZA03728, PZA-1744) and four QTLs for days to silk (PHM15501.9, PZA00986.1, 

PZA02722.1, PZA01044.1) on chromosome seven. However, based on the physical 

location and genetic maps distance none of the markers are located in bin 7.04. QTV11 

(bin 8.05) was detected for both traits with effects for days to anthesis of 0.9 days to 

anthesis and 1 day for days to silk of 1 day both explaining 5.8% of phenotypic 

variation. Two different SNPs were found for QTV12 (bin 8.05), S8_123509373 and 

S8_123511933, separated by 2.5 kb. The effect for these QTL variant ranges from 0.5 to 

0.8 and the phenotypic variation ranges from 4.6 to 4.7% (Table 4.17). 

Buckler et al., (2009) reported three QTLs for days to anthesis (PZA00908.2, 

PZB02155.1, PZA00675.1) and three QTLs for days to silk (PHM4711.14, PZB02155.1, 

PHM1834.47) across eight environments for NAM panel. One of the QTL reported is 

located on chromosome eight in bin 8.05 (locus pzb02155), located between position 

123,542,426 and position 125,974,265, which is 30 kb downstream from QTV12. LD 

extends for 3 kb upstream from QTV12 (results not shown); however, downstream from 

the QTV12, there is gap between the markers of 80 kb. As a consequence, this study 

cannot definitively determine if QTV12 and locus PBZ02155.1 are the same QTL or not. 
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QTV9 (bin 4.07) was previously reported for ear height (Table 4.16) and it has had an 

estimated effect that ranges ranged from 1.1 to 0.8 for days to anthesis and the 

percentage of explained phenotypic variation ranges from 4.6 to 4. 9%. The effect for 

days to silk was 1.2 days and the percentage of explained phenotypic variation is 4. 9%. 

No QTLs have been reported for this bin in previous studies. QTV13 has an effect of 0.6 

for days to anthesis and 0.8 for days to silk. The amount of phenotypic variation 

explained is 4.2 for days to anthesis, and 4.3 for days to silk (Table 4.17). 

 

Figure 4.8. GWAS results for days to anthesis and days to silk. The phenotypic observation was the 

BLUPs for the CS12-LIYT trial. Arrows point significant SNPs after correcting for multiple testing using 

FDR or effective number of independent test (Meff). 
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Table 4.17. GWAS results for days to anthesis and days to silk. Significant markers associated after 

correcting for multiple testing (SNP), their MAF, FDR adjusted p value of association, p value of the 

association [-log10 (p) ], allele estimated effect, percentage of variation explained by marker (R
2
), and the 

assigned name of the QTV in this study.  
 

Days to anthesis 

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) QTV 

CS12-DYTLa 

S7_164955163 7 0.07 0.0006 8.03 1.8 7.4 QTV2 

CS12-LIYTb 

S8_131176630 8 0.26 0.0088 6.85 0.9 5.8 QTV11 

S4_173817044 4 0.14 0.0314 5.91 0.8 4.9 QTV9 

S8_123509373 8 0.37 0.0314 5.78 0.6 4.7 QTV12 

S7_164955163 7 0.08 0.0314 5.65 1.8 4.6 QTV2 

S8_123511933 8 0.38 0.0314 5.59 0.5 4.6 QTV12 

S3_1775697 3 0.41 0.0571 5.25 0.6 4.2 QTV13 

RCBDa 

S7_164955163 7 0.07 0.0026 7.37 1.6 6.4 QTV2 

S8_131176630 8 0.27 0.0563 5.74 0.9 4.6 QTV11 

S4_173817044 4 0.14 0.0563 5.74 1.1 4.6 QTV9 

Days to silk 

CS12-DYTLa 

S7_164955163 7 0.07 0.0006 8.01 1.8 7.4 QTV2 

CS12-LIYTa 

S8_131176630 8 0.26 0.0092 6.82 1 5.8 QTV11 

S4_173817044 4 0.14 0.0304 5.91 1.2 4.9 QTV9 

S8_123509373 8 0.37 0.0304 5.8 0.8 4.8 QTV12 

S7_164955163 7 0.08 0.0304 5.63 1.3 4.6 QTV2 

S8_123511933 8 0.38 0.0304 5.61 0.8 4.6 QTV12 

S3_1775697 3 0.41 0.0529 5.29 0.8 4.3 QTV13 

RCBDa 

S7_164955163 7 0.07 0.0029 7.33 1.6 6.4 QTV2 

a
Phenotypic observation for the GWAS was the average for days to anthesis or days to silk  
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This study did not find any significant QTL variants for ASI despite that multiple 

analysis we run using the average for the raw data, and the MET analysis described in 

Eq. (4.3) and (4.4). 

Buckler et al. (2009) study was the most powerful to date for flowering time 

QTV detection, and many of the QTV were not shared between studies, it raises 

questions if this differences observed was because the use of different germplasm, 

different environments, or the use of a tester. If germplasm differences causes the 

observed differences this suggests that the hypothesis of multiple variants on common 

genes may play a role more in temperate than tropical germplasm. If different 

environments are the cause, this suggests that local testing is critical. If the use of a tester 

than this suggests that for the most relevance to crop improvement, only testcrossed 

hybrids should be used in GWAS. 

 

GWAS for aflatoxin resistance 

Although this study was primarily designed to detect natural variation for 

aflatoxin resistance, none of the SNPs above a MAF of 5% were found to be significant 

for aflatoxin accumulation in any of the environments. The GWAS did not find any 

significant QTLs for the transformed data after correcting for multiple testing (Figure 

4.9). Three skyscrapers consistently appeared for the irrigated trials CS11-LIYT and 

CS12-LIYT, and the combined MET analysis (Table 4.19). SNP: S3_185272026 (bin 

3.06) had an allele effect of 0. 0 (ng g−1) and explained 6.06% of phenotypic variation 

(Table 4.18). This SNP corresponds to transcript GRMZM2G399433, which is highly 
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expressed in the pericarp, embryo and endosperm, the silks and the cob during flowering 

and post-flowering (Sekhon et al., 2011). A QTL for aflatoxin and Aspergillus ear rot 

resistance has been reported in bin 3.06 (Paul et al., 2003; Warburton et al., 2010; Xiang 

et al., 2010). Paul et al., (2003) reported a significant QTL in bin 3.06 for aflatoxin 

resistance. These results were further corroborated by Xing et al., 2010 who reported 

two QTLs: MQTL11 (molecular markers zmm16, umc165a, TB-3Li) and MQTL12 

(molecular markers IDP4468, K3L, Bnlg197) in bin 3.06 associated with Aspergillus ear 

rot resistance.  

 

Figure 4.9. GWAS results for aflatoxin (ng g−1). The phenotypic observation was the BLUPs for the 

CS12-LIYT trial. Arrows point skyscrapers found by this analysis that might be potential QTVs. 
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Table 4.18. GWAS results for aflatoxin level (ng g−1). Plausible significant markers associated after 

correcting for multiple testing (SNP), their MAF, FDR adjusted p value of association, p value of the 

association [-log10 (p) ], allele estimated effect, percentage of variation explained by marker (R
2
), and the 

assigned name of the QTV in this study.  
 

SNP CHR MAF FDR_adjusted_P Log10 Effect R2 (%) 

CS11-LIYTa (log10 [aflatoxin + 10]) 

S4_17376432 4 0.32 0.2 5.48 -0.03 5.27 

S5_197707198 5 0.15 0.24 5.1 0.03 4.85 

CS12-LIYT (log10 [aflatoxin + 10]) 

S3_185272026 3 0.3 0.34 5.11 -0.2 6.06 

CS12-LIYTa (log10 [aflatoxin + 10]) 

S4_17376432 4 0.32 0.23 5.43 -0.07 5.69 

RCBD (log10 [aflatoxin + 10]) 

S5_197707198 5 0.15 0.27 5.22 0.05 4.98 

S4_17376432 4 0.32 0.27 5.05 -0.04 4.79 

a 
The phenotypic observation used for the GWAS was the BLUP for the hybrid effect obtained using 

model in Eq. (4.4). 

 

 

 

The SNP: S3_185272026 (bin 4.03) had an allele effect ranges from 0.07 to 0.03 (ng 

g−1) and explained phenotypic variation ranging from 5.3 to 5.7%. The transcript 

GRMZM2G013546 correspond to this SNP marker and is highly expressed in the 

pericarp and the husk of maize (Sekhon et al., 2011). Warburton et al., (2009) reported 

the markers phi029 and marker umc1970. These markers were identified in a progeny 

between a highly susceptible line Va35 and the highly resistance line Mp313E (Brown et 

al., 1999; Willcox et al., 2013). Further evidence of the presence of a significant QTL in 

this bin comes from a recent meta-analysis study that names these markers as mqtl1 and 

mqtl2. After building a consensus map the study found that these markers extended from 

bins 4.02 to 4.04, which seems to contain six QTL for the three diseases (Mideros et al, 

2013 under review). Multiple QTL for ear rot resistance have been reported in bin 4.03 
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for resistance to ear rot diseases such as Fusarium and Gibberella ear rot (Wisser et al., 

2006; Xiang et al., 2010). 

The other skyscraper, SNP: S5_197707198 (bin 5.06) corresponds to the 

transcript GRMZM2G057789, which is highly expressed in the silks during the R1 stage 

(Sekhon et al., 2011). Xiang et al., (2010) reported a QTL responsible for ear rot 

resistance in the same bin 5.06, and a QTL is also reported by Mideros et al., (2013 –

under review).   

 

Major findings of this study 

Several candidate gene or GWAS analysis have now been performed in different 

plant species (Neale and Savolainen, 2004; Breseghello and Sorrells, 2006; González-

Martínez et al., 2007; Murray et al., 2009; Weber et al., 2009; Atwell et al., 2010; 

Quesada et al., 2010; Pasam et al., 2012; Larsson et al., 2013). These studies have 

reported on average fewer associations than linkage mapping based studies even for 

genes involved in domestication events. Although many maize association mapping 

studies have been conducted (Wilson et al., 2004; Weber et al., 2009; Krill et al., 2010) 

there have been no previous reports of mapping in a hybrid testcross background. This 

study found 13 QTV and other potential associations which were nearly significant after 

correcting for ~50,000 tests; several of these QTVs have been reported by other studies 

suggesting association mapping in a diverse set of germplasm using testcrosses is 

consistent and relevant. The detection power of association mapping is affected by 

several factors such as the sample size, population structures, the extend of the LD, the 
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magnitude of the effect and the quality and density of the SNP markers used (Remington 

et al., 2001; Yu et al., 2006; Pongpanich et al., 2010; Yan et al., 2011). The results here 

clearly highlight the importance of sample size to be able to detect genes of small effect, 

likely the genetic basis for complex trait such as drought tolerance and aflatoxin 

resistance. Yan et al., (2011) reported that using a population of 500 individuals in 

GWAS can detect associations that explain 3% of the phenotypic variation or more. 

Increasing the sample size to 1500 genotypes can detect associations that explain 1% of 

the phenotypic variation but is not practical given the resources needed with replication. 

Similar results have been obtained for QTL mapping, where it has been shown that 

increasing the number of individuals is more efficient than increasing the number of 

replications (Schön et al., 2004).  The importance of the sample size was well-

exemplified by the results obtained for aflatoxin where no significant associations were 

detected after correcting for multiple testing. The experiment was highly unbalanced 

between the trials with only 193 hybrids shared across all three locations, and 218 

hybrids were shared among the CS trials. This unbalance in the hybrids between the 

trials could be another reason that even with high heritability values, GWAS failed to 

identify associations that explain around 5% of the phenotypic variation for some traits 

such as ear height (Table 4.16). One of the largest challenges to detecting significance is 

the issue of multiple testing, an ongoing area of research.  
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Future work 

Two different approaches can be used to exploit this germplasm and the QTVs 

that were detected. The first approach involve the validation of the QTV with the highest 

significant p values (-log10 [p]) in the inbred lines that produce the highest yielding 

hybrids. Near isogenic lines (NIL) could be generated for this QTV under these “elite” 

genetic backgrounds. These NILs would be crossed to the most elite material and the 

effect of these alleles should be evaluated under multiple genetic backgrounds and 

environments. It is expected that the effect will not be as background and context 

specific (environment, genetic background) as might be observed for QTL in a narrow 

diversity bi-parental linkage population. Depending on the magnitude of the effect and 

the results, a marker assisted selection could be implemented. 

Other possible option to validate the effect of the QTVs that will not involve the 

generation of NILs is to validate the effect of the QTVs in the most genetically similar 

maize inbred lines that carry different alleles for the specific locus. First individuals with 

the “good” QTV allele should be identified and then genetic distance can be used to find 

partner lines with the “bad” QTV allele.  Both of the maize inbred lines should be 

testcrossed to Tx714 and evaluated under different environments. Based on these results, 

the validation could be expanded to other genetic backgrounds to determine the effect of 

the QTV. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

This dissertation covered two different projects that use historical datasets and 

maize diversity to characterize trends and find methods to increase grain yield in the 

state of Texas. The first project found that Texas is divided into two major growing 

regions: the High Plains and the rest of Texas by a number of agronomic factors. This 

was corroborated by the analysis of this data, where grain yield, plant height and ear 

height differed significantly between the High Plains and the rest of Texas. The analysis 

of the genotypic BLUPs showed that grain yield has not substantially increased in the 

last 11 years in Texas, which further corroborated the trend observed in the USDA data 

for Texas and specifically for dryland and partial irrigated maize producing counties.  

Despite USDA data showing that irrigated maize producing counties have increased 

similarly to other production zones in the Midwest, the genetic yield potential has 

generally remained stable for the last 11 years. This study demonstrates that data 

collected on an annual basis is valuable in retrospective meta-analyses to give insight 

into traits, patterns and processes that can suggest hypotheses for improved regional 

yield.  

The second project used a maize diversity panel to identify genomic regions 

associated with grain yield, aflatoxin resistance and important agronomic traits. This 

study found that there is useful variation in diverse germplasm for aflatoxin resistance 

and drought tolerance. Additionally, this diverse germplasm when testcross to an elite, 
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although older, Texas line has the potential to out yield the commercial hybrids. The 

ZmLOX4 genes were associated with days to anthesis and days to silk, while the 

ZmLOX5 genes were associated with plant and ear height. This study also found 13 

QTVs for grain yield, plant and ear height, days to anthesis and days to silk 

demonstrating the utility of GWAS. Once these QTVs are validated, they will be useful 

for molecular improvement of Southern maize germplasm and, if cloning is pursued, for 

understanding the basic biology of improvement of these traits. 
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