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ABSTRACT 

 

Heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems are 

a major component of worldwide energy consumption, and frequently consist of 

complex networks of interconnected components.  The ubiquitous nature of these 

systems suggests that improvements in their energy efficiency characteristics can have 

significant impact on global energy consumption.  The complexity of the systems, 

however, means that decentralized control schemes will not always suffice to balance 

competing goals of energy efficiency and occupant comfort and safety. 

This dissertation proposes control solutions for three facets of this problem.  The 

first is a cascaded control architecture for actuators, such as electronic expansion valves, 

that provides excellent disturbance rejection and setpoint tracking characteristics, as well 

as partial nonlinearity compensation without a compensation model.  The second 

solution is a hierarchical control architecture for multiple-evaporator vapor compression 

systems that uses model predictive control (MPC) at both the supervisory and 

component levels.  The controllers leverage the characteristics of MPC to balance energy 

efficiency with occupant comfort.  Since the local controllers are decentralized, the 

architecture retains a degree of modularity—changing one component does not require 

changing all controllers.   

The final contribution is a new distributed optimization algorithm that is rooted 

in distributed MPC and is especially motivated by HVAC&R systems.  This algorithm 

allows local level optimizers to iterate to a centralized solution.  The optimizers have no 
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knowledge of any plant other than the plant they are associated with, and only need to 

communicate with their immediate neighbors.  The efficacy of the algorithm is displayed 

with two sets of examples.  One example is simulation based, wherein a building is 

modeled in the EnergyPlus software suite.  The other is an experimental example.  In 

this example, the algorithm is applied to a multiple evaporator vapor compression 

system.  In both cases the design method is discussed, and the ability of the algorithm to 

reduce energy consumption when properly applied is demonstrated. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Rising energy costs and an increasingly competitive economic landscape create a 

need for inventive and practical approaches to improve energy efficiency in large-scale 

systems such as the power grid and intelligent building systems.  Building operations 

account for approximately 40% of US energy usage  and carbon emissions [1, 2], and 

75% of peak electrical demand [3].  Advanced control strategies carry enormous 

potential for payoffs from increased energy efficiency and present new challenges for 

engineers working in this field. 

Commercial building energy systems are interconnected systems, often with 

centralized monitoring, although the sensors are widely distributed and individual 

components are independently controlled.  Thus, the typical building is a “system-of-

systems” with dynamics that evolve on multiple time scales with many varied 

performance objectives. A typical building HVAC system is shown in part in Figure 1.1.  

Multiple “chillers” utilize a refrigerant-based vapor compression cycle to cool a 

secondary fluid (e.g. water), which is pumped to various devices or zones of the 

building, where heat exchangers in the Air Handling Units cool the tertiary fluid, air.  A 

network of fans and ducts then carry the cooled air to the desired locations.  To reject 

waste heat, water is used to transport the heat produced by the condensers to cooling 

towers, where forced air convection removes heat to the outdoor environment. The 

chillers, which use a vapor compression cycle, are the heart of this system; they are 
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themselves interconnected systems consisting of multiple heat exchangers, expansion 

valves, and compressors. Their dynamics are driven by fluctuating pressures of the two-

phase fluid in the heat exchangers, and fluctuating refrigerant mass flow rates through 

the compressor and expansion valve.  

 

 

Figure 1.1: Building HVAC system 
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Standard practice employs separate, independent controllers for each of these 

varied components.  Completely decentralized controllers, particularly proportional-

integral (PI) controllers, are widely used in building systems, but the lack of 

coordination can result in inefficient operation or controllers working against each other, 

leading to “hunting” behavior.  Centralized control, however, is practically impossible to 

implement for large building systems with dozens of widely distributed air handling 

units or evaporators.  The communication requirements are very high for a centralized 

approach, with the possibility of controller failure if the lines of communication fail.  

Additionally, if a component is changed in the system the entire controller must be 

redesigned.  An alternative to a centralized controller handling all of the component-

level actuators is a hierarchical control architecture, which uses a supervisory controller 

to calculate setpoints for lower level controllers.  This can reduce the computational 

load, since the global calculations can generally be made at a lower frequency than what 

the actuators require.  This arrangement still has high communication requirements, 

however, since each controller must retain contact with a central controller.  A preferable 

control approach would be a distributed architecture, where each controller is 

independent of the others but still retains some knowledge of the system as a whole, 

which gives an advantage over completely decentralized controllers. 

An additional consideration of control of building systems is the constantly 

changing nature of the building dynamics.  Components fail, and are replaced with 

different models. Weather creates daily and seasonal changes in operating conditions. 

Buildings age and windows leak.  People come and go; windows and doors are opened 
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and closed.  Rooms are reconfigured.  Occupants change thermostat settings, and 

building operators override system controls.  Maintaining a single highly detailed and 

accurate model of all system behaviors, or updating a centralized controller every time a 

component is replaced or reconfigured is infeasible; this is another reason that 

decentralized, independent control strategies are standard practice. Likewise fully 

communicative distributed control approaches where every subsystem requires perfect 

knowledge of all other subsystems’ dynamics would place unrealistic demands on the 

communication and computation infrastructure.  Determining a modular, flexible control 

approach that still achieves the optimality of a centralized control solution is critical to 

achieving a practical control solution for modern building systems. 

This dissertation provides contributions to the solution of these problems at 

multiple levels.  A novel approach to component control is presented in Chapter III.  A 

hierarchical control structure that benefits from use of the model predictive control 

architecture is given in Chapter IV.  The development of a completely distributed 

optimization is presented in Chapter V, and this approach is demonstrated through 

simulation and experiment in Chapters VI and VII, respectively.   

The rest of this chapter is organized as follows.  First, an overview of the extant 

literature is provided with respect to model predictive control (MPC) and the various 

decentralized and distributed forms of this control architecture.  In particular, the 

cooperative forms of distributed MPC are discussed, since they provide the starting point 

for much of the work presented herein.  The application of MPC to building systems and 

refrigeration cycles is then discussed, and followed with a section on multiple evaporator 
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vapor compression systems.  Finally, a primer is given on the basics of the vapor 

compression cycle and definition of many of the concepts referred to throughout the 

dissertation. 

 
Literature Review 

Model Predictive Control 

The control architecture used throughout this research is model predictive control 

(MPC).  MPC is an overarching term for a suite of control strategies mostly developed in 

industry during the 1970s.  A controller based upon one of these strategies selects 

control inputs via the online optimization of a predefined cost function at discrete time 

intervals.  MPC allows for explicit handling of input, output, and state constraints—if a 

set of control inputs violate a constraint as predicted by the dynamic model, that set of 

inputs is discarded as a possible choice.    MPC is also well suited for multiple-input, 

multiple-output (MIMO) control.  Therefore, closely-coupled dynamics in the plant can 

be controlled with a single controller, whereas a group of single-input, single-output 

(SISO) controllers will frequently interfere with each other.  Furthermore, since the cost 

function can be changed online to match changes in global or external conditions, MPC-

based controllers can have a high level of flexibility in meeting general operational goals 

as the operating conditions change. 

MPC is also referred to as receding horizon control, since the horizon for which 

prediction is performed moves ahead in time at each sampling instant.  There are two 

important horizons in MPC, both of which are expressed in terms of sampling instants.  

The prediction horizon is the span of time for which the plant outputs are predicted.  The 
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control horizon is the number of control inputs that are calculated in the prediction 

computation, and is always smaller than the prediction horizon.  The size of the 

prediction horizon is generally limited by computation speed; it is important to choose 

the control horizon such that the difference between the control and prediction horizons 

is as least as long as it takes for all dynamics in the system to settle out [4]. The primary 

weakness of most advanced control techniques with respect to VCC systems is the same 

as that of classical control: inability to account for constraints explicitly in the controller 

design, leading to a lower level of performance [5].  MPC, on the other hand, can 

explicitly handle constraints, and has been used to solve many control problems in the 

chemical and refining industries [6].  Indeed, these industries specifically developed 

MPC to operate complex multivariable systems near constraints without violating them, 

since the most economic operating conditions in chemical processing are typically at 

intersections of constraints [7].  Academic research followed after successful industrial 

implementation; many of the MPC controllers in wide use are proprietary algorithms [7].   

A very frequently used form of MPC is the Generalized Predictive Control (GPC) 

algorithm proposed by Clarke; this algorithm is perhaps the most widely used in HVAC 

applications [8].  Advancements in the study of stability in the presence of constraints 

and robustness have been made; Mayne provides a useful survey of the work performed 

in [9].  Some work has been done in the field of Robust MPC; the most common 

approach involves the solution of multiple Linear Matrix Inequalities (LMIs), as 

proposed by Kothare [10].  In addition, widely referenced textbooks have been published 

by Camacho [5] and Rossiter [4], and Clarke published a collection of MPC papers 
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describing advances in robustness, stability, and applications [11].  A recent textbook by 

Rawlings and Mayne provides an excellent overview of the current state of the art of 

MPC, including robust and decentralized MPC of large scale systems [12]. 

MPC is a control algorithm grown out of the needs of the process industries, and 

much of the work that continues to advance the field is motivated by these needs. The 

dynamic systems in these industries (e.g., chemical plants) tend to be highly complex 

and nonlinear, making centralized control (as shown in Figure 1.2) unrealistic due to 

modeling complexities and optimization difficulties.  Additionally, infeasibility of the 

state constraints can result in closed-loop unstable behavior [13].  This issue was studied 

by Scokaert and Rawlings  in greater depth in [14].  An early attempt at breaking up 

MPC into smaller, more easily solved problems involved passing information back and 

forth between lower-level, decentralized controllers and a supervisor; the supervisor had 

knowledge of the interaction dynamics between subsystems.  This iteration-based 

process was still suboptimal with respect to the global cost function, but was faster and 

simpler to implement [15]. Another approach proposed by van Antwerp and Braatz 

involved approximating the constraint set of the MPC optimization with an ellipsoid, 

which allowed off-line computation of a suboptimal solution that the on-line MPC 

algorithm scaled as necessary [16].  Further demonstrating the connection between 

constraint feasibility and successful MPC implementation, Scokaert and Rawlings 

showed that suboptimal MPC will stabilize  a nonlinear plant so long as the constraints 

are feasible [17].  
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Figure 1.2: Centralized controller.  The controller calculates the control signals sent to the plant at 
sampling instant k. 
  

 

Decentralized MPC Architectures 

Most of the preceding suboptimal MPC studies assume that the entire plant is 

being controlled by a single controller.  Apart from the tremendous complexities of 

modeling an entire plant, centralized MPC is often not commercially or organizationally 

practical, since many of the individual units in a large dynamic network are maintained 

by different operators or companies [18].   Indeed, the author of [19] argues that the 

tendency of the controls community to seek centralized optimal controllers has proven to 

be unproductive  and should be abandoned in favor of interconnected, decentralized 

approaches.   

Decentralized control is generally defined as a control architecture in which the 

controller regulating each plant in an interconnected system has no awareness of the 

interconnection dynamics between plants, as shown in Figure 1.3.  Interest in 

decentralized control has continued since the 1970s, when the increasing complexity of 

controlled systems sparked interest in the subject, and a need for a scientific approach to 
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the control design was identified [20, 21].  Design of a decentralized control architecture 

is a non-trivial problem, since the actions of one controller will affect the outputs of 

other plants.  Indeed, closing the loop on one plant in the system can have significant 

impact on the open loop dynamics of the other subsystems, such as changing zeros from 

minimum to non-minimum phase [22].  Much of the current research in this field builds 

upon the ideas found in Siljak’s monograph [23].  A recent survey of current research 

directions, especially those involving strongly coupled subsystems, can be found in [24].  

 

 

Figure 1.3: Decentralized control.  Each controller calculates a control signal at sampling instant k 
independent of the other. 
 

 

In decentralized MPC, each subsystem has an individual cost function that the 

controller seeks to minimize.  The interactions with the other subsystems are ignored, 

although in any MPC optimization disturbances must be accounted for in order to 

achieve error-free reference tracking.  For example, the control designer could use the 

generalized approach for disturbance modeling in linear MPC presented in [25].  If the 
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interactions between subsystems are significant, however, decentralized MPC can have 

the same interaction problems as any other decentralized control approach.  Stability 

guarantees can be difficult to develop, although Magni and Scattolini developed a 

contractive constraint that provides stability for nonlinear systems [26].  Therefore 

researchers have developed several techniques for improving the decentralized 

performance while avoiding many of the difficulties of centralized control, although this 

is still an area of open research [27].  

A step up from decentralized MPC is the approach commonly referred to as 

distributed MPC, first proposed by Jia and Krogh in [28].  In this architecture, each 

interconnected subsystems has its own controller and individual cost function to 

optimize.  However, the controllers communicate to each other their predicted control 

inputs and plant outputs (delayed by one time step) as shown in Figure 1.4.  This gives 

each controller a better idea of future disturbances, allowing better prediction and 

therefore better performance.  Stability was guaranteed through the use of a contractive 

constraint.  The same authors also developed a method for bounding the disturbances 

that each subsystem inflicts on the others via constraints [29].  The technique was further 

refined by the authors and others in a widely-cited article wherein iteration is added 

between the subsystems’ controllers [30].  Mercangoz and Doyle further developed the 

distributed MPC controller in [31] by iterating solutions between the controllers based 

upon a distributed decentralized estimation and control structure, and applied this 

approach to the standard “quad-tank” experimental system first detailed in [32].  While 

all of these papers involved breaking the system into subsystems, each with its own 
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quadratic programming algorithm, in [33] the authors took the approach of splitting the 

optimization itself up among the controllers, which then iterated to a solution using a 

feasible direction technique. 

 

 

Figure 1.4: Distributed control.  Each controller calculates the signal at sampling instant k based in 
part upon what the other controllers calculated at the previous sampling time k-1. 
 

 

Venkat et al. observed that in distributed MPC, where each plant minimizes a 

different cost function rather than a shared function, the system can approach a condition 

where the global optimum is not achieved, since the subsystems are each at their own 

local optima and cannot move away without increasing their own cost functions [18].  

This condition is commonly referred to as a Nash equilibrium [34].  The authors 

suggested an approach where all of the distributed controllers are seeking to optimize the 

same cost function, naming this feasible cooperation-based MPC (FC-MPC) [35].  This 

architecture is shown in Figure 1.5.  The solutions to each optimization are 

communicated between controllers and iterated, and the solution is shown to approach 
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the centralized controller’s optimum.  Stability analysis, based upon suboptimal MPC 

theory, is presented in [36].    A detailed treatment of the algorithm can be found in [12], 

and the algorithm was extended to nonlinear systems in [37].  Other cooperative 

algorithms with a focus on agent negotiation and game theory can be found in [38, 39].  

This approach was further developed to allow setpoint tracking (rather than just 

regulation) in [40].  Further research efforts refinements involved breaking the plant into 

subsystems which are grouped into neighborhoods; each controller communicates with 

its neighbors at every time step while communicating with plants in other neighborhoods 

less frequently [41].   

 

 

Figure 1.5: Feasible cooperation-based control.  At each time step k the controllers calculate a 
control signal and communicate the result with the others.  This process is iterated until 
convergence. 
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In [35] the same authors also proposed an architecture where each distributed 

MPC controller has only partial knowledge of the other subsystems’ cost functions; they 

refer to this as partial feasible cooperation-based MPC (pFC-MPC).  The authors 

observe that pFC-MPC is well suited to meeting operational objectives, e.g., tracking a 

local setpoint, even if the resulting system behavior is not globally optimal.  This 

approach is similar to the modular multivariable controller proposed in [42].  Unlike the 

approaches where every subsystem communicates with every other, design of the control 

architecture in this mode requires knowledge of the particular system being controlled.   

Most of the preceding work looks at linear plants, although most large processes 

are inherently nonlinear.  The distributed MPC architecture has also been examined in a 

nonlinear framework as well.  Dunbar and Murray applied the architecture to stabilizing 

the formation of vehicles; this is different from the control systems examined previously 

in that the cost function is the only thing that connects the system, since the dynamics of 

the individual actors are not coupled [43].  A “consistency constraint” is used to ensure 

that the closed loop dynamics do not vary a great deal from the prediction; this ensures 

stability.  The same approach is applied to dynamically coupled systems, in particular a 

pair of van der Pol oscillators, in [44].  Liu et al. developed a nonlinear DMPC approach 

based upon Lyapunov control design in [45].  This architecture is also hierarchical in 

that one controller stabilizes the system and another uses extra available actuators to 

improve the performance.  Another paper on decoupled systems looks at networks of 

nonlinear systems (e.g., vehicle formations and airport camera networks).  In this paper 

each subsystem is assigned a node, and the controller has knowledge of its own plant as 
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well as the neighboring plants [46].  Zhu and Henson observe that many large plants can 

be split into linear and nonlinear elements, and choose this distinction to guide their 

separation into subsystems; their approach varies from the others presented in that the 

MPC optimizations are performed sequentially [47]. 

Another important field of effort in the DMPC arena has been separation of the 

plants and development of the objective functions.  For example, in [48] the authors used 

the Dantzig-Wolfe decomposition to break up the optimization problem; this 

decomposition was used to implement a coordinated decentralized MPC.  A method for 

partitioning large systems based upon graph theory and geared towards MPC was 

reported in [49]; the chosen application for this technique was a drinking water network.  

In [50] a modeling scheme was developed that treated coupling of the subsystem models 

as the tuning parameter.    Survey articles have begun to collect and categorize the 

different approaches to DMPC; a comparison of different optimization methods is given 

in [51], and a recent survey of the state of the art in distributed MPC is presented in [52].   

Many of these DMPC approaches require local knowledge of the interaction and plant 

dynamics of all other subsystems, and do not account for the possibility of different 

interconnection topologies simplifying the architecture.  Regardless of how the plants 

are interconnected, each controller must communicate with every other one.  

Additionally, each DMPC controller generally has a model of each plant in the system.  

If one of the plants is changed or if conditions change so that the linearization (if any) is 

no longer valid, every controller in the network must be changed as well.   
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This creates the potential for research into leveraging particular network 

topologies into more effective, specialized control architectures, since in a typical 

HVAC application there are hundreds of controllers spread out over a very large 

physical area.  Progress is currently being made in this area.  For example, to address the 

problem of serially connected systems, a DMPC scheme specially constructed for this 

topology was presented in [53].  To reduce the communication load between controllers, 

a non-cooperative algorithm that only requires neighbor-to-neighbor communication was 

presented in [54]. 

A recent paper proposed an approach that used the sensitivities of the local cost 

functions to the actions of their neighbors in computing local controller actions [55].  

This required that each subsystem have knowledge of its neighbors’ dynamics, however, 

since the sensitivity was calculated with respect to the neighbors’ inputs. 

Research into the area of decentralized MPC in all its varieties is still an active 

field.  As such, the terminology used in each of the cited papers is not always the same, 

and can lead to some confusion when surveying the literature.  Surveys of this field of 

research, including proposed classification schemes, can be found in [27, 56]. 

 

MPC & HVAC 

Many researchers have used MPC-based approaches to control airflow in the air 

handling units of large building cooling systems.  These approaches have either used an 

MPC algorithm to directly control the system actuators as in [57], or used an MPC 

algorithm to set gains for local PID controllers as in [58] and [59].  Another approach is 
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to use an MPC algorithm to perform controller self-tuning, whether for commissioning 

or to adapt to changing conditions, as done by MacArthur in [60] and Dexter in [61].  

Sousa et al. used MPC with fuzzy logic to control water valves in radiative heating 

systems [62].  He et al. extended this fuzzy model approach to the control of an HVAC 

air handling unit (AHU), such as that found in a large building HVAC system [57].   Xi 

and Poo developed a learning algorithm, combined with nonlinear MPC, to control a 

variable air volume (VAV) AHU [63].  Yuan and Perez used MIMO MPC to control a 

VAV AHU without the usual “controller sequencing” frequently used in industrial 

practice [64].  Finally, Huang et al published a series of papers applying LMI-based 

robust MPC to VAV control [65-68]. 

Given that the disturbances that HVAC systems endure are somewhat predictable 

(e.g., weather changes, outside temperature, building occupancy), MPC is particularly 

well suited to take advantage of this knowledge.  Indeed, given that MPC is an 

optimization algorithm, it is also well suited to improve energy efficiency while meeting 

comfort demands.  For example, Paris et al used an MPC controller to augment a 

standard PID controller; this MPC controller had knowledge of predicted weather data 

and adjusted the PID controller’s output accordingly, improving energy efficiency and 

disturbance rejection [69].  Privara uses weather data as well, but used a MIMO MPC 

controller to control the building heating system explicitly, improving efficiency over 

the standard PID approach [70].  This paper also proposed some system identification 

techniques well suited to this application.  May-Ostendorp et al used MPC to control the 

window openings in a mixed-mode building to reduce energy consumption [71].  Frieire 
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et al developed an MPC controller that balances energy consumption with predicted 

mean vote (PMV), a widely used occupant comfort measurement [72]. 

Some work has been done on controlling the refrigeration cycle itself with MPC.  

Leducq et al. applied a MIMO MPC algorithm to a single-evaporator water chiller 

system using a nonlinear model, controlling cooling and temperatures using compressor 

speed and water flow [73].  Changenet et al. developed a modeling technique to build an 

MPC controller that uses the EEV to regulate superheat, and in a later paper adapted this 

technique to the control the condenser pressure, thus minimizing the disturbances the 

superheat controller need to reject [74, 75].   

Distributed MPC is also beginning to be applied to HVAC problems, including 

building systems control [76].  Morosan et al explored muti-zone building heating using 

a DMPC approach, and comparing it with centralized MPC [77].  An interesting facet of 

this work is the incorporation of building occupancy expectations into the MPC 

algorithm.  The same authors decomposed the DMPC problem into a linear 

programming algorithm for a similar control application in [78].  Additionally, the 

application of DMPC to a multi-case refrigeration system was presented in [79].  Given 

the complex nature of HVAC systems, the application of distributed MPC promises to 

be a fruitful research area. 

 

Multiple Evaporator Systems 

This research will involve a variable refrigerant flow (VRF) system with multiple 

evaporators.  These systems have not been implemented widely in the United States, 
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despite their popularity elsewhere and their potential for energy savings over traditional 

water loop based configurations [80].  VRF systems carry their own set of controls 

challenges; due to the cross-coupled dynamics of VCC systems, single-input single-

output (SISO) control approaches are severely limited, as shown in [81].  A simulation 

comparison was performed by Aynur, showing that a VRF system can give significant 

energy efficiency improvements over a VAV system in the same building; these ranged 

from 27% to 57% improvement for the building studied [82].  Previous research efforts 

from the Thermo-Fluids Control Laboratory at Texas A&M proposed a hierarchical 

MPC approach borrowed from the chemical industry, where a supervisory controller 

selected cooling and pressure setpoints for local MPC controllers to meet; the 

particularities of VCC systems were leveraged to improve the controller design [83, 84].  

In their research into multiple-evaporator systems, Choi and Kim showed that using the 

EEVs and compressor in combination to modulate the capacity of each evaporator can 

result in better operating efficiencies, although each EEV has a strong effect on the other 

evaporator [85].  Park et al. also explored this combination, calculating optimum EEV 

for a given compressor speed and load ratio [86].  In neither case is the design of a 

dynamic controller considered, although they reference the work of Fujita, who 

investigated using a PID loop with an EEV and variable speed compressor to control 

superheat and cooling capacity in a multi-evaporator system.  Asada and He explored 

using feedback linearization in a PI loop controlling the compressor speed with a 

multiple-evaporator system, although simulation results only were presented [87].  Kim 

et al. investigated using MPC to control a multiple evaporator heat pump; in this case, 
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the EEV was used to control the evaporator temperature.  This method was shown to 

have performance improvements over using PI loops [88].  Shah et al. performed 

modeling work of a multi-evaporator system and explored control techniques; as 

expected, a MIMO approach was found to be superior to SISO techniques for control, 

due to the complexity of system dynamics [89].  Chiou et al. applied fuzzy control 

techniques to energy savings for small scale household air conditioners with multiple 

evaporators, and found better temperature regulation than could be had with traditional 

on/off techniques [90].  A recent survey of the various VRF configurations currently 

used and their benefits is presented in [91].  Wang provides a survey of supervisory and 

optimal control techniques used in the HVAC industry [92].  
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A Primer on Vapor Compression Cycles 

Much of the research in this dissertation is applied to multiple-evaporator VCC 

systems.  In typical building systems in the United States, chilled water or air is ducted 

to various areas to perform the required air conditioning.  In contrast, VRF systems, 

which are widely used in Europe and Asia, use a variable speed compressor (or bank of 

compressors) to deliver the refrigerant directly to evaporators servicing the different 

areas.  The cooling delivered to each zone can be varied based upon its specific cooling 

needs.  This approach has the potential for energy efficiency improvements by avoiding 

losses associated with extensive ducting, and by using variable speed compressors and 

fans to deliver only the cooling required.  Multi-evaporator systems also find application 

in supermarket refrigeration, where each cooling case has its own evaporator and can be 

regulated to the appropriate temperature for different foodstuffs—milk, frozen goods, 

etc.  Refrigerated trucks also use this approach for similar reasons.  Luxury automobiles 

can also use this technology so that each passenger can adjust the temperature to 

improve his individual comfort.   

Figure 1.6 is a schematic of an example system with n evaporators. The pressure-

enthalpy (P-h) diagram for a two-evaporator system is given in Figure 1.7.  Each region 

with a separate evaporator is designated as a zone; regulation of the various zones’ 

temperatures is the main control objective.  These zones are generally subject to heat 

disturbances that tend to increase the temperature of the zone.  Examples include heat 

generated by computer equipment in a server room, opening a milk case door, or an 

increase in the outside air temperature.  Heat is removed from the zone by the VCC 
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process; this heat transfer is referred to as cooling.  The working fluid used in the cycle 

is a refrigerant, e.g. R134a. 

 

 

Figure 1.6: Schematic of a multiple evaporator vapor compression system. 
 

 

 

Figure 1.7: Pressure-enthalpy diagram for two evaporator system 
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The cycle progresses as follows.  Low-temperature, low-pressure refrigerant 

vapor, carrying the heat energy absorbed from the zones by the evaporators, is 

compressed to a high pressure, high temperature vapor (process 1-2).  The refrigerant 

then passes through a condenser, where heat energy is rejected to the outside air (process 

2-3).  A condenser fan is used to move air across the condenser to aid in this process.  

This high-pressure liquid refrigerant is then distributed to each of the expansion valves, 

which meter the refrigerant to the evaporators.  In the process of metering, the 

refrigerant is expanded to a low-pressure, low-temperature two-phase fluid (processes 3-

4, 3-5).  As refrigerant passes through the evaporator, it absorbs heat from the zone and 

evaporates to a low-pressure, low-temperature vapor; an evaporator fan moves the air to 

aid in the heat transfer process.  Additionally, a discharge valve can be placed at the end 

of any evaporator to allow operation at higher pressures than others, e.g., to cool 

vegetables with one evaporator and frozen foods with another.   

If the evaporator is operating correctly, the refrigerant will be completely 

evaporated, and the temperature at the evaporator exit will be higher than the entrance; 

this temperature difference is referred to as superheat, and is an important condition in 

VCC control.  Another signal of note is the rate at which the evaporator removes heat 

from the zone; this is referred to as cooling, measured in kW.  In practice, evaporator 

superheat is measured as a temperature differential (Equation 1.1) and cooling on the 

refrigerant side of the heat exchanger (Equation 1.2) is calculated based on temperature 

measurements and a refrigerant mass flow rate that is measured directly or calculated 
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from temperature sensors and manufacturer data.   The terms used in these two equations 

are defined in Table 1.1. 

 

    
n n n

ro sath T Ts    (1.1) 
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Table 1.1: Superheat and Cooling Nomenclature 
 

 

 

 

 

 

 

 

 

 

 
nsh  Superheat of the nth evaporator, °C 

 
n

roT  R134a outlet temperature of nth evaporator, °C 

  
n

satT  R134a saturation temperature at nth evaporator pressure, °C 

 
nq Cooling at the nth evaporator, kW 

   n
refm  Mass flow of R134a for nth evaporator, kg/sec 

 
n

oh  Enthalpy of R134a at nth evaporator exit, kJ/kg 

 
n

ih  Enthalpy of R134a at nth evaporator inlet, kJ/kg 
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CHAPTER II 

EXPERIMENTAL APPARATUS 

 

Overview 

Justification and Organization 

The experimental system used for the research presented in this dissertation is a 

custom-built, small-scale three-evaporator water chiller.  This system is intended for 

dynamic model validations, control development, fault detection, and other research for 

the Thermo-Fluids Control Laboratory.  These uses and the desire for modularity and 

flexibility were the primary considerations during the process of component selection 

and system construction.  This chapter first gives an overview of the flow logic and 

construction of the primary (refrigerant) system and the secondary (water) system.  

Details of the individual components for the primary and secondary loops are presented.  

The sensors used in the system are described.  Finally, the software and data acquisition 

systems are detailed.  Wiring schematics for the electrical and electronic components can 

be found in the Appendix.  Figure 2.1 is a photo of the entire system. 
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Figure 2.1: Experimental apparatus 
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Primary System 

The refrigerant or “primary” side of the system uses R-134a as the working fluid, 

which flows through copper tubing.  Where possible, Swagelok brand compression 

fittings were used to join the tubing together, since they are reusable (although new 

ferrules must generally be purchased) and are less prone to leakage than SAE 45° flare 

fittings.  For some components, such as at the compressor inlet and outlet ports, soldered 

connections were required.  In general 1/4” tubing is used for lines carrying liquid, and 

3/8” or 1/2” tubing is used for gas lines and lines carrying two-phase fluid (i.e., from the 

expansion valves to the evaporators).  A liquid receiver is installed at the end of the 

condenser to ensure that saturated liquid is fed to the expansion valves.  There is a 

bypass manifold for the receiver so that tests with refrigerant subcooling can be 

conducted if desired.  Manual shutoff valves are used throughout the system to 

reconfigure the refrigerant flow as desired.  These valves also allow retention of 

refrigerant while sections of the system are being worked upon.  Vapor compression is 

provided by a variable speed compressor, and the refrigerant expansion is controlled 

with electronic expansion valves.  The heat exchangers (condenser and evaporators) are 

all shell-in-tube style that use water as the secondary fluid.  Figure 2.2 is a schematic of 

the primary side of the system.  Component descriptions are provided later in the 

chapter; additionally, the Appendix contains a complete table of the schematic reference 

numbers (A2, MV8, etc.) and a description of the role played by each. 
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Figure 2.2: Primary (refrigerant) loop 
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Secondary System 

Water is used as the “secondary” working fluid in the heat exchangers.  There are 

three 50 liter water tanks that represent separate cooled zones.  Water from these tanks is 

pumped separately to the appropriate evaporator and back to the zone, just like in a real 

air conditioner.  A tank system containing 260 liters of water serves as the heat sink, 

representing the outside air of an air conditioning system; this water is fed into the 

condenser.  Figure 2.3 is a schematic of these components.  There is a separate water 

chiller loop that is tied into the building’s chilled water supply so that thermal energy 

can be removed as needed from the condenser supply water. 

Since each of the heat exchangers has its own isolated water supply, temperature 

control of a set of rooms or zones can be simulated.  Additionally, there are a set of 

individually controlled pumps that pump water from the condenser tank into each of the 

evaporator tanks.  This allows for simulating disturbances due to outside air temperature, 

leaky windows, etc.  Use of this disturbance can also be used to keep the water 

temperature in the evaporator tank constant despite the cooling effect of the evaporator; 

this is useful when carrying out system identification experiments on the VCC system.  

Since the amount of water in the evaporator tank must remain constant, overflow lines 

allow excess water to be returned to the condenser tank.  Additional disturbances can be 

created with immersion water heaters; this simulates internal loads such as people, 

electronic equipment, lights, etc.  Figure 2.4 shows a schematic of the overflow 

disturbance system; photos are shown in Figure 2.5. 
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Figure 2.3: Secondary loop schematic 
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Figure 2.4: Disturbances and heat rejection system schematic 
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Figure 2.5: Water tank photo 
 

 

Primary Loop Components 

Heat Exchangers 

The four heat exchangers—three evaporators and one condenser—installed in the 

system provide the interface between the primary and secondary loops and are the means 

by which thermal energy is transferred within the system.  These heat exchangers are all 

shell-in-tube style heat exchangers, manufactured by Packless Industries.  Refrigerant 

passes through the inner loop, made of copper, while the water being chilled or heated 

passes through an outer loop made of steel tubing.  The condenser is rated for 1.5 ton 

systems, and the evaporators are rated for ½ ton apiece.  Figure 2.6 shows photos of the 

evaporators and of the condenser. 
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Figure 2.6: Heat exchangers 
 
 

 

Refrigerant Expansion Valves 

The expansion valves used in the system are electric expansion valves (EEVs) 

manufactured by Sporlan.  Each valve is controlled by a Sporlan IB interface board.  

These boards accept a 4-20 milliamps (mA) command signal from the user and position 

the valve proportionally according to the signal using the step motor integral to the valve 

assembly.  They have a resolution of 1596 steps at 200 steps per second, for a total travel 

time of approximately 8 seconds from completely open to completely closed.  Figure 2.7 

is a photo of the electronic expansion valves.  Wiring details can be found in the 

Appendix. 
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In addition to the EEVs, the third evaporator has an auxiliary selectable 

expansion device for model validation or other experimental purposes not related to the 

research presented in this thesis.  This valve is a prototype Silicon Expansion Valve 

(SEV) manufactured by Microstaq.  In order to use this valve, a bypass valve on the 

inside of the evaporator support structure must be opened and the EEV on evaporator 3 

completely shut.  This valve is currently not wired into the system, although similar 

valves were used in the data taken in Chapter III.  Figure 2.8 shows a photo of the valve 

as well as the bypass line. 

 

Figure 2.7: Electronic expansion valves (EEVs) 
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Figure 2.8: Auxiliary expansion device manifold 
 

 

Compressor 

The compressor for the system is a Sierra model manufactured by Masterflux.  

This is a scroll-type variable speed compressor that uses a 48V DC power supply and is 

designed to operate with R134a refrigerant.  This voltage is fed into a compressor 

control module included by the manufacturer, which accepts control signals from the 

user and regulates the compressor speed.  The control module allows for a manual 

switch to turn the power on and off, outputs a tachometer signal, the current consumed, 

and accepts a 0-5 volt signal to control compressor speed.  The compressor speed varies 

from 1800 to 6500 RPM.  Total compressor capacity is approximately 1.5 tons of 

cooling. 

 



 

35 

 

Miscellaneous Safety Components 

A liquid line receiver made by Henry Technologies is placed at the end of the 

condenser.  This receiver serves as a safety measure to ensure that only liquid is fed into 

the expansion valves, thus decreasing the risk of choking the valves.  Using a receiver 

also ensures that the liquid will be saturated rather than subcooled, which enables some 

assumptions with regards to enthalpy calculations and system conditions.  For some 

experiments, a liquid receiver is not desirable; therefore, a bypass manifold consisting of 

manual shutoff valves is also included.  These manual shutoff valves are also installed at 

various places in the system; this allows one of the evaporators to be shut off, or for a 

section of the primary loop to be closed off while another section is being worked on.  

This way the majority of the refrigerant in the system can be stored in the liquid receiver 

while the system is being worked on, resulting in a minimum of refrigerant loss.  Figure 

2.9 is a photo that displays the compressor, receiver, and shutoff valves. 

As an additional safety measure, a filter/drier is placed in the refrigerant flow 

stream after the liquid receiver manifold in order to protect the expansion devices.  In 

order to provide real-time visual information to the researcher running the system, a 

sight glass is also located here to allow the operator to verify that only liquid refrigerant 

is being passed to the valves.  Figure 2.10 is a photo of these components. 
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Figure 2.9: Photo of compressor, liquid receiver, and manual shutoff valve 
 

 

 

Figure 2.10: Filter drier with sight glass 
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Secondary Loop Components 

Water Pumps 

The water flow for each evaporator is controlled by a DC-powered water pump 

manufactured by Swiftech for water-cooled computers.  These pumps can pump up to 

1.5 gallons per minute (gpm) at 12V, and the flow can be varied by varying the supply 

voltage.  An amplifier circuit was built for each pump; this circuit accepts a 4-20 mA 

control signal from a DAQ system and converts it to a 6-12 VDC power signal.   

The same model pump is used to pump warm condenser tank water into the 

evaporator tank.  This might be done to model outside air disturbances or regulate 

evaporator tank water temperature.  These pumps are controlled digitally (on/off) and are 

set up to run at full speed only.   The condenser pump is a larger model than the 

evaporator pumps, and is run constantly with the system.  Later system modifications 

might include building an amplifier control circuit for this pump so that a variable speed 

condenser fan can be simulated.  In addition, ¾” PVC ball valves are used throughout as 

shutoff valves for the water supply.  Figure 2.11 includes photos of the water pumps. 
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Figure 2.11: Water pump photos 
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A final DC pump is used to move water through an outside heat exchanger to 

dump heat outside of the system.  This heat exchanger is connected to the chilled water 

supply of the building.  An AC pump is used in series with the chilled water line to 

provide the necessary boost to the chilled water supply.  Both of these pumps are 

controlled digitally by the DAQ system to keep the condenser water supply temperature 

constant, usually at 30° C for the tests displayed in this thesis.  This arrangement is 

shown in Figure 2.12.  

 

 

Figure 2.12: Condenser water chiller 
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Transducers 

Thermocouples 

Temperature measurements are made with type T thermocouples immersed in the 

tested fluid.  These thermocouples have ungrounded sealed tips and are of the low-noise 

variety.  The thermocouples are immersed in the measured fluid; a Swagelok tube fitting 

grips the shaft of the thermocouple, sealing the measured fluid from the air.  The 

thermocouples are wired into a thermocouple terminal board with built-in cold junction 

compensation; this board is connected to a PCI thermocouple board on the computer. 

Pressure Transducers 

Pressure measurements of the refrigerant are made using sealed stainless steel 

diaphragm-type pressure transducers manufactured by Cole-Parmer.  A transducer with 

maximum pressure of 300 psi is used to measure pressure at the outlet of the condenser, 

and a transducer with maximum pressure rating of 100 psi is used at the inlet of the 

compressor (suction pressure).  All of these transducers output a 1-5 V signal 

proportional to the pressure, which is fed into the data acquisition boards without 

processing. 

Refrigerant Flow 

The transducers used to measure refrigerant flow are volumetric turbine-style 

flowmeters manufactured by McMillan.  These transducers output a 0-5V signal, which 

is fed directly into the data acquisition board without signal conditioning.  Photos of the 

three refrigerant-related transducers are shown in Figure 2.13. 



 

41 

 

 

Figure 2.13 Refrigerant cycle transducers 
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Current Transducer 

The current consumed by the compressor is measured with a current transducer 

made by CR Magnetics.  This transducer uses the Hall Effect to measure DC current 

passing through the wire to the compressor electronics; it outputs a 0-5V signal 

proportional to the current.  Figure 2.14 shows the location of this transducer. 

 

 

Figure 2.14: Current transducer and 48VDC power supplies 
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Power Components 

The compressor is powered by two 800 Watt DC power supplies.  These power 

supplies accept a 208VAC supply and output up to 16 amps at 48 VDC each.  They are 

connected in parallel to deliver the power needed to run the compressor and are 

individually switched.  They are indicated in Figures 2.14 and 2.15. 

Power supplies for the transducers and signal conditioning equipment are also 

used.  A 24VDC power supply is used to power the pressure, refrigerant flow, and 

compressor current transducers.  Multiple 12 VDC power supplies are used to power the 

water pumps and cooling fans for the system power electronics.  A 5V DC power supply 

is used to power the signal conditioning modules. 

 Each Sporlan Interface Board (IB)—one for each EEV—is powered by an 

individual 24 VAC transformer.  Per the manufacturer’s recommendation, metal oxide 

varistors (MOVs) are placed across the 120V AC power supply (from the mains) and 

ground to protect the boards.  As an additional measure of safety, fuses are installed on 

the primary windings of the transformers.  Wiring schematics for the EEVs and for all 

components are included in the Appendix, as well as tabulated data on each component. 
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Figure 2.15: Location of power electronics. 
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Data Acquisition 

The data acquisition (DAQ) system consists of three on-board DAQ boards 

installed on a PC.  Temperature measurements are performed using the type T 

thermocouples detailed earlier and recorded and logged using a Measurement 

Computing thermocouple board, model PCI-DAS-TC.  This board includes cold junction 

compensation and is capable of handling sixteen thermocouples.  For this system 

arrangement, all sixteen thermocouples are used.  Analog output signals to control 

compressor speed, valve positions, et cetera, are output by a Measurement Computing 

PCI-DDA-08 board.  This is a 12-bit board that has up to eight channels of analog 

output. Other sensor measurements (pressure, refrigerant flow, and current) are logged 

using a National Instruments E-Series board, model number E-6023.  This board has 

eight channels when connected in differential mode.  It also has eight channels of digital 

output and two channels of analog output. 

An Analog Devices signal conditioning backplane is also used in the system.  All 

analog output channels are processed through optical isolators.  These isolators serve the 

dual purpose of separating the analog output board from the high-powered system 

electronics, thus protecting the PC, and they also convert the PC output signals into the 

appropriate signals for the various actuators (e.g., 0-5 VDC to 4-20 ma for the EEVs).  A 

photo of the signal conditioning components is shown in Figure 2.16. 
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Figure 2.16: Signal conditioning equipment. 
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Software 

The data logging and control functions are performed with WinCon 5.0, a 

software package by Quanser that provides a convenient interface with MatLab and 

Simulink.  A Simulink model is created and compiled into a program that WinCon 

executes in real time.  Additionally, gains and many other parameters can be varied 

while the program is running, which is very convenient when tuning controllers or 

performing experiments.  Unfortunately, the selection of available DAQ boards that 

WinCon supports is very limited.  A set of drivers for the thermocouple board and the 

analog output board was developed by the Alleyne Research Group at the University of 

Illinois at Urbana-Champaign; these drivers were modified and implemented for the 

experimental PC.  The analog input boards are supported by WinCon, so no driver 

development was required for these boards.  Later upgrades to the experimental system 

should likely include an upgrade to Quanser’s Quarc program, which offers greater 

flexibility and ease of use when compared to WinCon. 
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CHAPTER III 

CASCADED CONTROL OF EVAPORATOR SUPERHEAT 

 

The Introduction to this dissertation presented the physics of superheat.  

Examining superheat control in terms of the signals available for measurement and their 

relative dynamics leads to the new control architecture presented in this chapter.   

As previously discussed, the difference between the refrigerant temperatures at 

the inlet and outlet of the evaporator is referred to as evaporator superheat.  In standard 

superheat control techniques, this difference is the controlled output, and is regulated 

with an expansion valve that meters the refrigerant into the evaporator.  This valve can 

have mechanical feedback, such as the thermostatic expansion valve.  This work uses 

electronic feedback and control with the electronic expansion valve (EEV).  A high level 

of superheat is generally undesirable, since this condition implies the evaporator is being 

starved and not being used to its full capacity.  Also, the high superheat means that more 

of the heat transfer is occurring in a gas-to-gas manner, which is less efficient than heat 

transfer through evaporation.  Conversely, too low a level of superheat runs the risk of 

flooding the evaporator and passing liquid into the compressor.  Thus a balance between 

efficiency and safety must be struck through effective regulation. 

Examination of the behavior of the two temperatures being compared in the 

superheat calculation suggests that they can be controlled independently of each other.  

For example, Figure 3.1 shows how different disturbances affect the different signals.  In 

part (a) the compressor speed is step decreased, resulting in a significant change in 
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evaporator saturation temperature.  Figure 3.1(b) shows how a step increase in the 

evaporator water pump speed results in an increase in the outlet temperature (and hence 

superheat) without affecting the inlet temperature, which is strictly a function of the 

evaporator pressure.  Since a richer information stream can lead to better control, a 

controller that uses both of these signals without the additional complexity of a model-

based approach is desirable; the cascaded control architecture features these 

characteristics.  

 

 

Figure 3.1: Evaporator inlet and outlet refrigerant temperatures in the presence of disturbances.  (a) 
Step decrease in compressor speed. (b) Step increase in water flow (secondary fluid). 
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Cascaded Superheat Control  

The cascaded controller combines two control loops: a high-gain proportional 

control loop that uses the valve position to regulate evaporator pressure to a setpoint, and 

an outer control loop that generates a pressure setpoint for the inner controller to meet.  

Refer to Figure 3.2 for a block diagram.  The inner controller should have as high a gain 

as possible to ensure fast control action.  The outer controller is generally a proportional-

integral (PI) or proportional-integral-derivative (PID) controller, and is tuned to change 

slowly.  In this way the inner loop handles “internal” disturbances that occur in the vapor 

compression system itself, e.g. compressor speed changes or evaporator 

shutdown/activation in a multiple evaporator system.  The outer loop will change the 

inner setpoint to respond to slower changes, such as changes in the temperature of the 

zone being controlled.  Successful implementation of this architecture requires a fast-

acting expansion valve; since many electronic expansion valves generally have delays 

and slew rate limits, this is an important consideration in selecting components.  The 

next section displays a set of simulations demonstrating the importance of actuator 

selection for this particular architecture. 

 

Figure 3.2: Cascaded control architecture. 
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Simulation of Actuator-Evaporator Dynamics 

Standard commercially available electronic expansion valves (EEVs) use a 

stepper motor with a needle valve to meter refrigerant, which will have a maximum rate 

of change (slew rate) and a delay between the signal and the response of the motor.  In 

order to examine the effects of these limitations on the response of the valve in a 

cascaded control loop, simulations were performed with a nonlinear evaporator and EEV 

model.  A cascaded control loop was used to control superheat with EEV position.  Slew 

rate limits and delay were added to the model as detailed later.  While actuator saturation 

is a factor—valves cannot open past 100% or close past 0%—proper sizing of the valve 

prevents saturation from being a problem in system operations, and is therefore not 

explored here. 

In general, the dynamics of vapor compression systems are highly nonlinear and 

complex; a complete discussion of first-principles modeling is outside the scope of this 

thesis, but reviews can be found in [93-96].  The plant model used in the following 

simulations is a nonlinear moving boundary model generated using techniques detailed 

in [97-99]. 

For the first set of simulations, shown in Figure 3.3, the effects of slew rate limits 

are examined during a step increase in the compressor speed.  Superheat is controlled 

using the cascaded control architecture.  The gains in the PI and proportional controllers 

were optimized for disturbance rejection using a gradient-descent method [100].  To 

establish the best case scenario, no slew rate limit was placed upon the valve during the 

optimization.  For the next two simulations, slew rate limits of 12 and 6% per second 
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were imposed on the valve with the same controller.  The simulations show that 

moderate slew rate limitations do not impact the response of the controller, but for a 

severe limitation of 6% per second, the closed loop system is rendered unstable. 

Experience indicates that commercially available EEVs can have slew rates from 5% to 

20% per second, with delays up to one second. 

For the second set of simulations, shown in Figure 3.4, the same cascaded 

controller is used on an EEV with an input/output delay between the controller and the 

actuator.  This simulates a common effect in stepper-motor driven EEVs.  Delays of 0.1, 

0.5, and 1.0 seconds are used, along with the baseline case of no delay.  The disturbance 

for this case is a step decrease in compressor speed.  The delays have a stronger effect 

upon the success of the controller, although they do not render the plant closed loop 

unstable.  For a delay of greater than 0.5 s, the systems exhibits nonlinear limit cycle 

behavior.  
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Figure 3.3: Disturbance rejections for actuators under rate limits. (a) no limit, (b) 12% per s, and (c) 
6 % per s. 
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Figure 3.4: Disturbance rejection in the presence of I/O delays. (a) no delay, (b) 0.1 s delay, (c) 0.5 s 
delay, and (d) 1.0 s delay. 
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A final set of simulations was run with a system that had both a slew rate limit of 

15% per second and an I/O delay of 0.5 seconds imposed upon the actuator.  In order to 

gain a better grasp of the limitations imposed by these nonlinearities, the controller gains 

were re-optimized with the limitations in place.  The disturbance rejection response of 

this system is superimposed on the response of an ideal system with instantaneous 

response and no delay, seen in Figure 3.5.  Even though the limited actuator case is 

optimized, it still responds more slowly than the ideal case, suggesting that standard 

EEVs may have difficulty implementing the cascaded control architecture.  The 

optimized gains for these two situations are shown in Table 3.1.  Note in particular that 

the inner feedback gain KF is significantly smaller for the limited case; the pressure 

regulating inner controller will not be as aggressive in seeking the setpoint, resulting in 

worse performance for the control architecture.  The next section details a set of 

experiments carried out to evaluate the performance of different actuators under the 

cascaded control regime. 

 

Table 3.1: Comparison of Controller Gains 

Actuator KP KI KD KF 

Ideal EEV 16.68 2.27 0.0004 7.16 

Limited EEV 14.61 0.718 -1.39 1.45 
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Figure 3.5: Optimized disturbance rejection for limited and ideal actuators. (a) superheat response, 
and (b) actuator effort 
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speed varies with the engine speed through both vehicle speed changes and gear 

changes. 

The suitability of three different actuators for use in cascaded control will be 

evaluated using a standard automotive test cycle adapted from the FTP-SCO3 test 

protocol and designed to simulate the vehicle and engine speed during a short commute.  

The compressor speed profile is shown in Figure 3.6.  To counteract the effects of these 

disturbances, the expansion valve is used to regulate evaporator superheat.  These tests 

are conducted on the experimental test bed described in Chapter II.   

 

Figure 3.6: Compressor speed profile, severe automotive test 
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HVAC&R expansion device.  The valve itself is thermally actuated silicon and accepts a 

pulse width modulating (PWM) signal and opens from 0% to 100% based upon the 

command signal, and thus from the operator’s perspective behaves exactly like an EEV.    

However, the SEV design features few moving parts, an extremely small device size, 

and a response time measured in milliseconds rather than seconds.  Additionally, since 

the valve is manufactured from a silicon wafer, there is no risk of fatigue failure, 

provided the chip is properly fabricated.  A photo of the valve’s internal components is 

shown in Figure 3.7; the silicon wafer is indicated in the photo.   

 

 

Figure 3.7: MEMs based Silicon Expansion Valve prototype (SEV) 
  

 

The final actuator tested is a hybrid electro-mechanical expansion valve (HEV), 

first presented in [101].  This device features a mechanical expansion valve that 
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regulates the evaporator pressure with a mechanical diaphragm; the pressure setpoint is 

adjusted by varying the force applied to the top of the diaphragm, customarily by turning 

a set screw.  The set screw is replaced with a linear stepper motor attached to the valve; 

the stepper motor’s position is controlled by a computer signal.  By using a PID 

controller to track superheat by changing the mechanical pressure setpoint, the HEV 

becomes an implementation of the cascaded control architecture.  A schematic of the 

HEV arrangement is given in Figure 3.8. 

 

 

Figure 3.8.  Hybrid expansion valve design. 
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All three actuators will be tested in the presence of the automotive-style 

compressor speed disturbances.  The EEV and SEV will be set up with a purely 

electronic cascaded control architecture.  See Figure 3.9.  Table 3.2 shows the tuned 

controller gains for each of the control configurations.  The EEV has a slew rate limit of 

12.5% per second, a delay of approximately 1.0 s, and a rated capacity of 1.75 kW.   

 

 

Figure 3.9: Control architectures 
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Table 3.2: Controller Gains 

Control Loop KP KI KD KF 

HEV (Figure 3.9a) 1.5010(a) 0.20 0.10 N/A 

SEV/Cascaded (Figure 3.9b) 9.60 2.00 0.25 4.00 

EEV/Cascaded (Figure 3.9c) 1.00 2.50 2.00 0.22 

 

 

Evaluation Criteria 

 In order to quantify the performance of the controllers, the following 

characterizations are used.  First, the root mean square error ( RMSe ) gives a measure of 

the deviation from the setpoint is calculated thus: 

  2

1

n

i setiRMSe sh sh n


   (3.1) 

In this equation shi is the superheat at sample instant i, shset is the superheat setpoint, and 

n is the total number of sample points.  The maximum absolute error ( MAe ) is calculated 

to give the maximum deviation from setpoint over all sample points: 

 max
i set

i
MAe sh sh   (3.2) 

 

Experimental Results 

With the compressor speed profile given in Figure 3.6, the responses of the HEV with 

PID control, the SEV with cascaded control, and the EEV with cascaded control are 

shown in Figure 3.10.  Results are quantified in Table 3.3. 
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Table 3.3: Drive Cycle Results Comparison 

Actuator Figure 
RMSe  MAe  

HEV 3.10(a) 0.41 1.44 

SEV 3.10(b) 0.66 3.97 

EEV 3.10(c) 1.45 9.04 

 

 

Figure 3.10: Disturbance rejection, automotive compressor profile for different actuators. (a) 
HEV—refer to Figure 3.9(a), (b) SEV with cascaded control—refer to Figure 3.9(b), (c) EEV with 
cascaded control-based emulation—refer to Figure 3.9(c). 
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These tests show that a cascaded control loop can successfully be implemented 

with either a mechanical hybrid system (the HEV) or a MEMS-based expansion valve.  

However, since EEVs are widely available and MEMS-based SEV’s are a new 

technology, the question arises whether the EEV can be used in this new emulation 

architecture instead of the SEV.  Unfortunately, the EEV-based emulation (Figure 

3.10(c)) performs markedly worse than the SEV based emulation (Figure 3.10(b)). 

Indeed, the controller almost loses superheat completely in two different instances.  As 

indicated by the earlier simulations, the limitations upon the EEV electronics and 

hardware prevent the EEV from responding fast enough to the internal disturbances to 

effectively serve as an HEV emulator.   

To provide further evidence that these limitations are the cause of the problem, 

an additional test was run with these same limitations artificially imposed upon the SEV 

(Figure 3.11). When the EEV’s actuator performance limitations are placed upon the 

SEV, it is unable to perform as needed.  Given that the performance is worse than the 

EEV based emulation suggests that the rate limits and delays may be overestimated, but 

the principal result holds: actuator limitations can prevent achieving the best 

performance possible from a cascaded control loop architecture.  The results suggest that 

for cascaded control the actuator must have the near-instantaneous response of a 

mechanical diaphragm (as in the HEV), or the high bandwidth performance of a MEMS-

based actuator. 

While the HEV does exhibit slightly better performance, the emulation approach 

with the SEV has several advantages.  First, the valve embodiment is significantly 
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reduced in size; the bulky stepper motor and associated electronic hardware can be 

eliminated.  Second, the SEV has no risk of diaphragm failure due to metal fatigue or 

motor failure; thus the increased control effort required over that of the HEV does not 

have a negative impact on using the SEV as a possible embodiment of the hybrid control 

approach.  Third, the complete electronic configuration gives the flexibility to apply 

advanced control techniques (e.g. predictive control, nonlinear control, etc.) to this 

cascaded configuration, if desired, which is not possible using a mechanical feedback 

loop. 

 

 

Figure 3.11: Superheat regulation with SEV when EEV’s limitations are imposed.  Compressor 
profile is the same as that of Figure 3.6. 
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cascaded control architecture successfully controls these systems as well, as is shown in 

the next two tests performed on the experimental system. 

For the first test, shown in Figure 3.12, the compressor speed is increased and 

then decreased.  Even though the evaporator dynamics are coupled, the cascaded 

controllers are able to successfully reject the disturbances to superheat, which has a 

setpoint of 8°C.   

An important operating characteristic of VCC systems is pull down time, which 

is how long it takes the evaporators to reach an operating pressure.  The faster that pull 

down is achieved, the faster the system is able to start cooling effectively; a fast pull 

down time means the compressor is consuming power for a shorter duration, and 

therefore implies a more energy efficient operating cycle.  Due to the inner pressure 

control loop, cascaded controllers are particularly successful at achieving a fast pull 

down time.  Figure 3.13 shows the pull down for the three-evaporator system (superheats 

and evaporator pressure).  The controllers successfully bring the systems to their steady 

state operating conditions quickly, allowing the system to begin cooling rapidly. 
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Figure 3.12: Step disturbance to three evaporator system (a) Evaporator 1 superheat, (b) 
Evaporator 2 superheat, (c) Evaporator 3 superheat, (d) compressor speed disturbance. 
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Figure 3.13: Pull down test results (a) Evaporator superheats (b) Evaporator and condenser 
pressures 
 

 

 

 

 

 

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20
(a)

S
H

 (
 o C

)

 

 

Evap 1

Evap 2
Evap 3

0 20 40 60 80 100 120 140 160 180 200
200

300

400

500

600

700

800

900
(b)

P
re

ss
ur

es
 (

kP
a)

 

 

Evap Pressure

Condenser Pressure



 

68 

 

Nonlinearity Compensation 

An additional benefit to the cascaded approach to superheat control is that it also 

partially compensates for system nonlinearities without a priori knowledge of the 

system’s characteristics or a mathematical model.  This is a significant improvement, 

since EEVs in general are not a linear actuator, and the ability to compensate for system 

nonlinearities can lead to better performance over a wide range of operating conditions 

without techniques such as gain scheduling.   

Inspection of refrigerant mass flow as a function of valve position for a typical 

EEV reveals a nonlinear relationship, as shown in Figure 3.14(a).  Figure 3.14(b) shows 

superheat responses to EEV step changes for high refrigerant flow and low refrigerant 

flow conditions.  Clearly, the response is much different for the EEV at high and low 

flow conditions.  This is caused by the same step change causing different changes in 

flow depending on the valve position.  This nonlinearity in the EEV means that adequate 

superheat control is much more difficult to achieve for this device, and illustrates why a 

gain scheduling approach based upon the different flow conditions is frequently used.  

Alternatively, the controller can be “de-tuned,” sacrificing performance for stability over 

all operating regions due to smaller control gains; however, this risks losing superheat 

during system transients.    Using a static inversion mapping between command signal 

and valve position [102], refrigerant flow was linearized, similar to the work presented 

in [103].  This resulted in a much smaller difference in step response for the different 

conditions, although differences in dynamic response are still evident.  See Figure 3.15. 



 

69 

 

 

Figure 3.14: Nonlinearity of response for EEV. (a) Mass flow as function of valve position (static 
valve map) and (b) Superheat response to step change in valve position for high and low flows. 
 

 

 

Figure 3.15: Linearized valve response. (a) Mass flow as function of valve position (static valve map) 
and (b) Superheat response to step change in valve position for high and low flows.  Note the 
difference in speed of response, even though steady state response is very similar. 
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This result suggests that if the refrigerant flow is a linear function of valve 

command, the resulting superheat response will be substantially linearized.  This may 

render the use of gain scheduling unnecessary, since robust control techniques can then 

be employed without unacceptable decreases in control performance.  However, since 

EEVs will not in general be linear in flow characteristics, and since mass flow 

measurements may not be available for development of static inversion maps, a method 

for linearizing the flow (and hence the superheat response) is needed that only requires 

more basic measurements such as pressure and temperatures.  The cascaded control 

approach proposed herein meets these requirements. 

 

Modeling as a Nonlinear Feedback System 

To analyze the nonlinearity compensation of the cascaded control architecture, 

the system is modeled as shown in Figure 3.16.  As before, the inner, “fast” loop uses a 

proportional controller with gain KF that seeks to regulate the evaporator pressure to a 

setpoint (PSET) generated by an outer, “slow” controller C(s); this pressure setpoint is 

chosen by the controller C(s) to regulate evaporator superheat to a user-defined setpoint.  

However, the relationship between valve position u and mass flow m is treated as a 

nonlinear gain function KM(v), and is a characteristic of the actuator used.  The transfer 

functions G(s) and H(s) are the dynamic relationships from mass flow to superheat and 

pressure, respectively.   
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Figure 3.16: Cascaded control loops with transfer functions and nonlinear gains. 
 

 

The fast inner loop block diagram can be reduced to a transfer function Q(s): 
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Assuming stability allows invocation of the Final Value Theorem [104], which gives a 

value for the steady state gain of Q: 
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Thus, if the steady state gains of G and H vary in the same direction as mass flow 

changes, e.g., they both decrease with increasing mass flows, then the variation of Q(0) 

as mass flow changes will be minimized as K(v) becomes larger.  Experimental 

evaluation of the same EEV used earlier gave the following result, shown in Figure 3.17. 
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Figure 3.17: Steady state values of transfer functions.   (a) H(s)—mass flow to pressure and (b) 
G(s)—mass flow to superheat.  Both are shown as functions of refrigerant flow. 
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Figure 3.18: Steady-state Superheat Gain as a function of flow for EEV and Cascaded Loop 
 

 

A final comparison is given in Figure 3.19.  Both cases show improved linearity 

over the original nonlinear EEV’s step response; the HEV is much more linear in its 

response, as is expected due to its higher internal gain.  

 

 

Figure 3.19.  Superheat step responses at low and high flows.  (a) HEV and (b) cascaded control with 
EEV. 
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This chapter presented a local control architecture for use with individual 

components in an HVAC&R network; namely, the expansion valves that control 

evaporator superheat.  This architecture has been shown to provide improved control of 

superheat under various conditions, and is implementable in a variety of ways, including 

in a multiple evaporator system.  Further details can be found in [101, 105, 106].  An 

additional benefit is the significant linearization of evaporator dynamics that can be 

implemented without a priori knowledge of the system model or the valve’s flow 

characteristics; this can make implementation of effective superheat control in a large 

networked HVAC system much easier as well.  More discussion of this linearization can 

be found in [107, 108].   
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CHAPTER IV 

HIERARCHICAL MPC OF MULTIPLE EVAPORATOR SYSTEMS 

 

The previous chapter explored a technique for controller design at the component 

level; with the implementation of good component control, higher level hierarchical and 

system-level controls become easier to achieve.  This chapter looks at the system level 

and presents a control architecture for treating a multiple evaporator vapor compression 

cycle (ME-VCC) as a network of several logically divided subsystems.  This architecture 

achieves system-level improvements in energy efficiency without the need for a 

centralized controller and the corresponding system model, which would be highly 

complex and difficult to obtain for systems with many evaporators spread over a large 

physical area.  The control scheme is a two-level hierarchy that uses model predictive 

control (MPC) for the supervisory controller and the evaporator controllers; the pressure 

control is achieved with proportional-integral control.  This is a refinement and 

improvement on the control scheme originally proposed in [109].   

The chapter is organized as follows.  First a general method for describing the 

system-level optimum is developed.  Then the gains from the various actuators to the 

system outputs are explored, with the goal of dividing the ME-VCC system into a 

network of subsystems.  A suite of local controllers is developed with this knowledge; 

these controllers take advantage of characteristics of the components and the model 

predictive control (MPC) algorithm to provide superior system control with reduced 

actuator effort.  The control architecture is then applied to the experimental system; the 



 

76 

 

design process is covered in detail.  Finally, the experimental results are presented and 

discussed. 

 

System Optimum and the Supervisory Controller 

This control architecture has a hierarchical structure wherein a supervisory 

controller generates setpoints for lower level controllers to meet.  The lower level 

controllers in turn control the system actuators at the component level.   

The supervisory controller is an MPC controller that chooses a control profile 

over Nu time steps that minimizes a cost function based upon the dynamics of the 

controlled plant over Ny time steps.  This control profile consists of setpoints for the 

lower level controllers.  A generalized version of the cost function is presented in this 

section; a specific example of how the cost function can be developed for a particular 

system is presented in the Controller Design section.  Note that this cost function defines 

the system-level optimum for the purposes of this work; that is, the system is said to be 

at the optimal condition when the cost function is minimized. 

The dynamics of the cooling zone temperature are much slower than the 

dynamics of the vapor compression system.  In common experience, a VCC system can 

achieve reasonable setpoints (pulldown) on the order of 1-2 minutes if the controllers are 

well tuned, while cooling a room by several degrees can take 10-20 minutes.  This time 

scale separation allows separation of the control functions, and ensures that the proposed 

hierarchy of controllers is a feasible design choice. 
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Figure 4.1: Supervisory controller and relationship to multi-evap cooling system with n zones. 
 

 

The supervisory controller treats a VCC system with n evaporators as a MIMO 

plant whose inputs are evaporator pressure, superheat, and cooling rate setpoints.  See 

Figure 4.1.  The outputs are the zone temperatures, which are set (e.g., with a thermostat) 

by the user or occupant of the zone, and the system’s power consumption, which does 

not track a setpoint, but plays an  important role in the supervisor’s calculation, as will 

be seen later.  The ith zone can be represented as a discrete-time dynamic system thus: 

 1 ( , , )i i i i i
k k k kT f T q d   (4.1) 

If iTset is the user-defined setpoint for zone temperature i, the error at time k is then: 

 i i i
k set ke T T   (4.2) 

For a system with n zones, an error vector can therefore be constructed for time step k: 

 1 Tn
k k ke e e     (4.3) 

Since the supervisor must balance zone temperature setpoint tracking with 

energy consumption, a means of expressing the instantaneous system operating 
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efficiency at sample time k must also be developed.  A common way of expressing the 

efficiency of VCC cycles is the Coefficient of Performance (COP), defined as the ratio 

of cooling performed by the system to the total work input required by the system [110].  

Since COP increases with increasing efficiency, and the controller is seeking to 

minimize a cost function, the inverse COP (ICOP), designated
1
, is used: 

 
min 1 i

1 1 1

1

( , , , , ) ( , , )
n nn i i i

comp k k k k fan k ki i
k n i

ki

w p sh sh q w p sh q

q
   




  


 

 (4.4) 

The relationships for power consumption by the compressor ( compw ) and the 

evaporator fans ( fanw ) are polynomial functions of evaporator pressures, superheats, and 

cooling rates and are developed experimentally or from manufacturer data.  The 

compressor power term is dependent on the evaporator superheats, the total system 

cooling, and the minimum evaporator pressure, min
kp , which corresponds to the suction 

pressure at the compressor.  (Refer to the vapor compression cycle primer in Chapter I).  

By the merits of its construction, the ICOP function can be easily modified if the system 

components are changed.  For example, each evaporator can have a different fan, 

although a different polynomial function fanw  is required for each.  This gives a degree 

of flexibility and modularity to the supervisory controller. 

The last ingredients for the cost function are vectors for the controller inputs and 

changes in inputs are presented: 

 1 1 1 Tn n n
k k k k k k ku p q sh p q sh     (4.5) 



 

79 

 

 1k k ku u u     (4.6) 

  1

T

p k k Nuu u u  
   (4.7) 

Thus, at time k, the supervisor controller chooses the profile pu


 that minimizes: 

    
1

1

k Ny k Nu
T T

k j e j j j j
j k j k

J e e u u 
  


  

          (4.8) 

The next section examines the dynamics of a multiple evaporator system in order to 

develop a local set of control architectures to track the setpoints generated by the 

supervisory controller. 

 

Local Control Architecture and Dynamic Analysis 

The preceding section detailed the development of a supervisory controller that 

specified the cooling rate, superheat, and pressure for each evaporator in a multiple 

evaporator system.  This section will use dynamic analysis tools and reasoning based 

upon the physical construction of the system to motivate the local architecture design 

decisions.  

Multiple evaporator-based systems are by nature spatially distributed, since the 

evaporators are operating in physically separate cooling zones and the compressor and 

condenser are often outside or in an uncooled space.  The independent system variables 

to be controlled are evaporator cooling, evaporator superheat (a measure of effective use 

of the heat exchanger), and the evaporator pressures.  Since each evaporator has its own 

expansion valve, fan or pump, and optional discharge valve, using these actuators to 

control the evaporator’s operating condition is a logical choice.  Additionally, the 
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compressor can be used to control the suction pressure, which will be the same pressure 

as any evaporator without a discharge valve.        

 

Dynamic Analysis 

To ensure that the proposed architecture is generalizable, the dynamics of a 

variety of multi-evaporator systems were analyzed.  Using a finite control volume 

approach [96], a simulation model was developed for a multi-evaporator air conditioning 

system with two evaporators.  The model was linearized [111] about high and low 

capacity operating conditions to obtain a suite of single-input, single-output (SISO) 

models. Additionally, a set of experimentally identified linear models was created of an 

experimental multi-evaporator water chiller using standard system identification (ID) 

techniques [112].  The details of the system identification can be found in [109].  Despite 

the differences among these systems, their normalized frequency responses exhibit 

common trends. 
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Expansion valves are traditionally used solely to regulate superheat.  Figure 4.2 

shows, however, that the dynamic response of refrigerant side cooling to EEV changes is 

nearly as strong and notably faster, since changes in EEV opening alters refrigerant flow 

rate virtually immediately. 

 

Figure 4.2: EEV position to Pressure, Cooling, and Superheat for experimentally derived and 
simulated systems. 
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The fan (Figure 4.3) also has a strong response to superheat.  Given that these 

two actuators (EEV and fan) are spatially co-located for each evaporator, coordinating 

their actions to jointly regulate superheat and cooling is a logical choice both spatially 

and dynamically, and can be repeated for each cooling zone.  Using an MPC-based 

controller here will allow system constraints to be respected; in particular, superheat can 

be restricted to a band and allowed to float within this band.  This control design is 

discussed in more detail in the following section. 

 

Figure 4.3: Fan position to Pressure, Cooling, and Superheat for experimentally derived and 
simulated systems. 
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The compressor has a consistently strong effect on evaporator pressure (Figure 

4.4), motivating this particular input/output pairing.  Although compressor speed also 

affects superheat, the compressor is generally located far from the evaporators in a VRF 

system.  If the algorithm controlling the EEV and fan is either slow acting or allows 

deviations from setpoint, which the MPC controller will do, the effect of the compressor 

on superheat will not cause the controllers to fight each other, essentially decoupling of 

the effect of compressor action on the evaporator superheat. 

 

Figure 4.4: Compressor speed to Pressure, Cooling, and Superheat for experimentally derived and 
simulated systems. 
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Controller Architecture 

Figure 4.5 shows the control architecture proposed in this paper for a system with 

n evaporators like that in Chapter I.  The actuators are electronic expansion valves 

(EEVs) and variable speed fans (FAN) for each evaporator, as well as a variable speed 

compressor (RPM).  Additionally, any evaporator that needs to operate at a higher 

pressure (i.e., evaporate at a higher temperature) will have an electronic discharge valve 

(DV).  Measurements will be taken of the zone temperatures, the refrigerant 

temperatures at the inlet and outlet of each evaporator, the evaporator pressures, and the 

refrigerant flow into each evaporator.  Although refrigerant flow is considered to be an 

expensive measurement, virtual sensors can successfully be used to estimate this flow 

[113]. 

 

Figure 4.5: Control architecture 
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At the local level, the EEV and fan for each evaporator will be coupled with an 

MPC based controller to track an evaporator cooling rate setpoint.  This controller will 

also regulate superheat so that it stays within a constrained band, e.g., between 6 and 12 

°C.  This approach is very different from the way that evaporators are generally 

controlled, in that the controller does not seek explicitly to track a superheat setpoint, 

and is only possible due to exploitation of the capabilities of MPC.  Strict regulation of 

superheat to a setpoint is unnecessary, as long as superheat stays above a minimum value 

to protect the compressor.  However, excessive superheat is undesirable, since a high 

superheat implies that a great deal of heat transfer is occurring when the refrigerant is in 

a gaseous state, which is much less energy efficient than the heat transfer that occurs 

during refrigerant evaporation.  If the superheat band is set correctly, the controller and 

evaporator will deliver a steady amount of cooling and operate in a safe yet efficient 

manner. 

The remaining actuators are used to control the evaporator pressures.  The 

compressor speed is set by a proportional-integral-derivative (PID) controller to regulate 

the suction pressure.  Separate PID controllers use the discharge valves to regulate the 

pressure in the evaporators as appropriate.   

Since the controller for each evaporator is separate, evaporators can be added or 

removed, or equipment changed, without affecting the other evaporators.  This adds an 

element of modularity to the control architecture that is highly desirable but not possible 

with completely centralized control.  The proposed local control architecture thus gives 

each zone its own independent control package, with the compressor responding to the 
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cooling demands placed on the system as a whole.  However, another level of control is 

needed to allocate cooling capacity to the different evaporators in order to regulate the 

zone temperatures.  Thus the architecture also includes the supervisory controller 

detailed earlier to regulate the cooling zone temperatures and the energy efficiency of the 

entire system.   

 

Controller Design for an Experimental Testbed 

As detailed in Chapter II, the experimental system features three 1.5 kW capacity 

evaporators, each cooling a different 50 liter water tank that serves as a zone.  There is a 

single condenser, with a variable speed compressor with a maximum cooling capacity of 

5.58 kW.  The reader should note that this system will mimic a system where the 

refrigerant evaporation directly cools the air in the room or cabin, and not a system 

where chilled water is used to cool the air in the various cooling zones.  The other 

actuators are electronic expansion valves (EEVs) at the inlet of each evaporator and 

variable flow water pumps (WPs) to regulate water flow through the evaporators 

(analogous to variable speed fans in an air-based system).  High and low side pressure 

measurements are available, as well as refrigerant mass flow, water temperature 

measurements at the inlet and outlet of each heat exchanger, and refrigerant temperature 

measurements at each point of the thermodynamic cycle.  The system does not have 

discharge valves at the outlet of the evaporators, so only the suction pressure will be 

regulated.  Also, the supervisory controller will only calculate one superheat setpoint for 
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all three evaporators.  The next sections will detail how the generic architecture 

presented earlier is applied to this experimental testbed. 

 

Supervisory Controller 

The zone temperature dynamics are modeled with a first order lumped 

capacitance discrete time model with an input disturbance; in this model the output is the 

cooling zone temperature, the input is the evaporator cooling rate, and the disturbance is 

heat transfer into the cooling zone from parasitic heat losses or gains.  For the ith zone, 

which is cooled by the ith evaporator, the model is defined as: 

  1    
i i i is s

k k k k

t t
T T u d

mc mc     (4.9) 

In this equation, Tk is the cooling zone temperature at sampling instant k, ts is the sample 

period, m is the mass of the water being cooled (50 kg), and c is the specific heat of 

water (4.186 kJ/kg/K).  The input uk is the evaporator cooling in kW, and the exogenous 

disturbance dk is generated by an immersion heater; an observer [104] is used to estimate 

the size of the disturbance in kW, and this is fed to the supervisory controller.  The 

observer is described by the following dynamical system: 
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In this equation i x is the state of the ith zone’s estimator and i
estd is the estimate of the 

disturbance.  Since all three zones are identical, and use the same observer gains, all 

three can use the same estimator. 

For the supervisory MPC controller, a set of matrices are developed by recursive 

substitution of the dynamic state matrices [5, 114], resulting in the following predicted 

temperature profile i
pT


that corresponds with a control profile i
pu


:  

 i i i i i i i
p k p kT F T H u K d  
 

 (4.11) 

With the following definitions for prediction matrices: 
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 (4.12) 

Note that although the cooling zones have been modeled with simple lumped 

capacitance assumptions, the proposed approach is extendable to more complex dynamic 

models of the cooled spaces, if necessary.  For example, higher order models that better 

describe the particular space being cooled can be used.  Disturbances to the room 

temperature such as outside heat load or parasitic heat losses between cooling zones can 

also be modeled to better reflect the system, although in this demonstration they are 

treated as an exogenous input. 
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 The ICOP formula for the experimental system was developed using steady-state 

data.  To obtain this data, the system was slowly walked through its operating range as 

defined by the compressor speed and a superheat setpoint fed to the superheat 

controllers.  This was repeated at different water flow rates through the evaporators.  See 

Figure 4.6.   

 

Figure 4.6: Compressor/EEV walkthrough pattern.  This is repeated for several different water flow 
rates through the evaporators to get a complete compressor map. 
 

 

The following polynomial formula for water pump power was used: 

 0.275 0.15 0.025wp wp wpw u u    (4.12) 

This will take the place of fan work in the ICOP equation, since the experimental system 

uses water pumps instead of air fans.  The input signal wpu represents the voltage sent to 

the DAQ system to control the pump speed, and ranges from 2.25 to 5V.  This 

corresponds to a voltage supply at the pump of 6 to 12 V, with sufficient current to drive 
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the pump (approximately 1.5 amperes at maximum).  Note that this formula is assumed 

for the purposes of demonstration of the architecture and does not correlate with the 

actual power draw of the pump.   

The data, plus the defined fan power, is fed into Equation (4.4).  A least squares 

fit results in the following formula for ICOP at time k: 

   1
, , ,

0.00 0.002 0.002 0.152

0.002 0.0853 0.035 2.34 40.86

0.002 0.035 0.0292 2.19

T T

k k k

k k total k total k total

k k k

p p p

q q q

sh sh sh

 

         
                     
                  

 (4.13) 

Using the gains given in Table 4.1, the cost function solved by the centralized controller 

becomes: 
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Table 4.1: Supervisory Controller Parameters 
 

Constraints 
Signal Minimum Value Maximum Value 

Superheat (°C) 6 12 
Cooling per Evaporator (kW) 0.55 1.2 

Total Cooling (kW) n/a 3.5 
Suction Pressure (kPa) 300 425 

 
Controller Parameters 

Sample Time (s) 300 
Control Horizon (time steps) 5 

Prediction Horizon (time steps) 15 
 

Weights 

Error, e  0.0075 (baseline) 

Slew rate,   0.0005 

ICOP,   1 

 

Local MPC Controllers  

The local MPC controllers were implemented using the MatLab MPC Toolbox 

[115].  Each controller is assigned to an evaporator, which is modeled as a two-input, 

two-output discrete linear time invariant plant.  The inputs for each plant are the EEV 

position (v) and evaporator water pump speed (f), and the outputs are cooling (q) and 

superheat (sh).  The dynamic models are experimentally identified using linear system 

identification techniques [112] and take the following form: 
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The matrices for the three evaporator models are given below: 

 

 1 1 10.86 0.11 0.02 0.001 0.53 0.48
, ,

0.27 0.76 0.04 0.002 8.60 1.61
A B C

      
             

 (4.16) 

 

 2 2 20.76 0.07 0.01 0.002 0.65 0.25
, ,

0.08 0.96 0.004 0.001 8.33 18.28
A B C

     
             

 (4.17) 

 

 3 3 30.70 0.26 0.04 0.002 0.48 0.56
, ,

0.17 0.82 0.03 0.0003 11.18 14.35
A B C

      
             

 (4.18) 

 

The controller minimizes the following cost function, modified from [115] to 

reflect the actual inputs and outputs.  Note that no weight is placed upon the superheat 

error.  This means that the controller will ignore the superheat setpoint unless the model 

predicts that superheat will exceed the specified constraints. 
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This control law meets the requirements of the architecture; it tracks a cooling 

setpoint (weighted by Q) generated by the supervisory controller and keeps superheat in 

a band; additionally, weights are placed to keep the EEV and fan actuators (v and f, 

respectively) from moving too quickly, unless the superheat constraint is violated.  The 

controller parameters, weights, and constraints for the local controllers are given in 

Table 4.2. 

 

Table 4.2: Local Controller Details 
 

Constraints 
Signal Minimum Value Maximum Value 

Superheat (°C) 6 12 
Cooling (kW) 0.5 1.2 

EEV (%) 0 100 
WP (%) 0 100 

 
Controller Parameters 

Sample Time (s) 8 
Control Horizon (time steps) 3 

Prediction Horizon (time steps) 12 
 

Weights 

Cooling, q  1 

Superheat, sh  0 

Change in EEV, v  0.2 

Change in WP, f  0.2 
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Experimental Results 

Baseline Test   

For the first test shown, the entire control system was run to bring the water 

temperature in the three zones down to a desired setpoint as shown.  During this test, an 

immersion heater was used to inject a disturbance into the plant, which simulates the 

load that a room or conditioned space would encounter due to lights, electronics, people, 

etc.   

Figure 4.7 displays some of the functionality of the control architecture.  At the 

beginning of the experimental run, the zone errors are all approximately 3 °C; as the 

water is chilled, the error decreases.  As this occurs, the cooling setpoints are decreased 

by the supervisor, resulting in an asymptotic approach to a final steady state temperature.  

Note that all zones display a steady state error, which the supervisor controller accepts as 

a tradeoff between zone setpoint tracking and energy consumption.  The cooling also 

approaches the value of the disturbance by the end of the test, allowing steady state 

temperatures to be reached.  Figure 4.8 shows the superheat during this experimental 

run.  Note that the local evaporator controllers do not attempt to track the setpoint, but 

allow the superheat to float in a band of 6 to 12 °C as required. 
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Figure 4.7: Baseline test temperatures, cooling, and disturbances  
 

 

 

Figure 4.8: Baseline test superheats 
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Setpoint Tracking and Disturbance Rejection 

The following figures demonstrate the setpoint tracking and disturbance rejection 

characteristics of the supervisory controller.  Figure 4.9 shows how the system can 

successfully increase the zone temperature as well as decrease it as shown earlier; in the 

event of a step increase in setpoint, the controller brings the zone’s cooling to the 

minimum allowable; since this is smaller in magnitude than the disturbance, the zone’s 

temperature increases to a new steady state condition; furthermore, the steady state 

temperature is still higher than the setpoint rather than the lower; this is a result of the 

controller seeking to maximize energy efficiency.  Otherwise, the supervisor might allow 

the system to settle at the same error, but lower than the setpoint.   

 

 

Figure 4.9: Setpoint increase 
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For the test in Figure 4.10, an additional disturbance was added to the zone (i.e., 

another heater was turned on).  As the disturbance estimator notes this and informs the 

supervisor, the supervisor re-calculates the new optimum, resulting in a larger tolerated 

steady state error for the same setpoint and system conditions. 

 

 

Figure 4.10: Disturbance increase 
 

 

 

 

 

 

0 1000 2000 3000 4000 5000 6000 7000
20

22

24

26

28
Evaporator 2

Z
on

e 
2 

T
em

ps
 (

 o C
)

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

Time (s)C
oo

lin
g 

an
d 

D
is

tu
rb

an
ce

 (
kW

)

Original steady state error

Disturbance

Cooling

S-S error under increased disturbance



 

98 

 

Figure 4.11 also shows how a step decrease in the setpoint results in the 

supervisor permitting more cooling to the evaporator in question, until the same steady 

state error is reached above the new setpoint.  The cooling and superheat are presented 

as well; note how the local MPC controller performs a demand shedding function by not 

always meeting the cooling setpoint after 1500s, since to do so would require the EEV to 

open further, decreasing superheat past the allowable value. 

 

 

Figure 4.11: Setpoint step decrease 
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Efficiency Weights in Supervisory Controller 

As noted earlier, the supervisory controller in Test 1 allowed a steady state error 

of approximately 0.75 °C in the cooling zone temperature.  Two more tests were run 

using the same test conditions but with different weights upon the error.  Figure 4.12 

shows the zone 3 temperature for each of the three runs superimposed on each other for 

comparison.  As the weight on tracking error increases, the supervisor permits a smaller 

steady state error.   

 

 

Figure 4.12: Steady state errors for three different error weights 
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Figure 4.13 shows the instantaneous power consumption of the system and the 

cumulative energy consumption during the three tests; the higher the error weight, the 

compressor tends to spin faster (to provide more cooling) and consumes more power. 

 

 

Figure 4.13: Power Consumption and Energy Consumption 
 

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

0.5

1

1.5

P
ow

er
 C

on
su

m
ed

 (
kW

)

(a)

 

 

Q = 0.00375  Q = 0.0075 Q = 0.0150

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

2000

4000

6000

E
ne

rg
y 

C
on

su
m

ed
 (

kJ
)

Time (s)

(b)

 

 

Q = 0.00375  Q = 0.0075 Q = 0.0150



 

101 

 

Energy Efficiency 

Earlier tests have shown that the supervisor successfully brings zone 

temperatures to a temperature near the setpoint, balancing the desires of the user with 

maximizing system operating efficiency.  To examine the behavior of the supervisor 

from another perspective, a test was run to allow the controller to move the system from 

a randomly chosen operating point to a more energy efficient one, holding the 

temperature error constant.  At the start of this test, the zones were allowed to come to 

the steady state temperature errors associated with the error weights, although the 

compressor speed is tracking a random setpoint.  Then the supervisory controller was 

activated at approximately 190 seconds, which calculated an optimal pressure setpoint 

for the compressor to track.  Since the zones were already at the steady state 

temperature, the cooling rates and disturbance are already matched and the controller 

didn’t change them.  As the supervisor seeks to optimize the setpoints, it brings the 

system to a more efficient operating condition, as shown in Figure 4.14.     
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Figure 4.14: Efficiency seeking behavior  
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This chapter refined a novel control architecture for multiple evaporator cooling 

systems.  The architecture is a flexible, two-level structure that uses model predictive 

control methods at both levels to achieve the respective goals of each controller.  The 

supervisory controller seeks to regulate the temperatures of different zones serviced by 

the same vapor compression cycle, while maximizing energy efficiency in the process.   

This control architecture, however, still requires a supervisory controller with 

knowledge of the system as a whole.  The next step in successfully distributing the 

control of HVAC systems is for a control architecture that successfully achieves a 

system-level optimum through communication between individual agents, rather than a 

supervisor.  A control approach is presented in the next chapter that meets this 

description. 
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CHAPTER V  

THEORY OF NEIGHBOR COMMUNICATION OPTIMIZATION 

 

The research presented in this dissertation is motivated in part by a need for 

effective control of the large, spatially distributed networks of components that comprise 

building HVAC&R systems.  These systems generally feature a suite of local level 

dynamic controllers that control individual components to track setpoints generated by 

agents acting further up a hierarchy.  This is very similar to the structure frequently 

found in chemical plants, where higher-level optimizers generate setpoints for valves 

and other equipment to achieve commercially optimal operations.  The work presented 

in this chapter is a novel method of calculating setpoints that achieve an overall, 

centralized optimum without a centralized optimizer.  Instead, the optimization is 

distributed among local subsystem optimizers.  These optimizers have knowledge of 

their own subsystem only, and communicate costs and outputs to their immediate 

neighbors only.  By judicious construction of the local cost functions, the optimizers can 

iterate to the steady state conditions that correspond to the minimal cost of a system-

wide cost function.  The method builds upon distributed MPC and leverages the 

structure frequently found in HVAC systems, wherein the output of one plant acts as a 

disturbance to others.   

The rest of the chapter is organized as follows.  Mathematical preliminaries and 

definitions of the various terms used throughout the chapter are presented.  Then the cost 

functions for the local controllers are given, and the algorithm is detailed.  Proofs for 
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stability of the optimization and convergence to the centralized optimum are presented.  

Examples of the application of the algorithm will be presented in following chapters. 

 

Preliminaries 

For the purposes of this discussion, two plants or subsystems are “neighbors” if the 

output of one acts as a disturbance to the other.  The “upstream” neighbor disturbs the 

“downstream” neighbor.  See Figure 5.1.  Each of the plants is assumed to be described 

as a linear time invariant, discrete time dynamical system: 

 
, , ,

,

,

i i i u i i v i i d i i

i y i i

i z i i

x A x B u B Bv

y C x

z C x

d   







 (5.1) 

With state variables xi, control inputs ui, inputs from upstream systems vi, regulated 

outputs yi, and outputs to downstream systems zi.  Additionally, reference signals are 

denoted ri and error signals are defined as: 

  i i ie r y   (5.2) 

For notational simplicity, the superscript + will be used to signify the value at the next 

iteration or sample, e.g., time k+1, where k is the current sampling instant.   
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Figure 5.1: Upstream and downstream plants. 
 

 

The Neighbor Communication Optimization (NC-OPT) architecture calculates 

the predicted steady state optimum for each of the plants; in the following discussion an 

over-bar will be used to indicate the steady state value of a discrete-time signal, e.g. iy .  

The predicted steady state outputs for the ith plant are thus: 



 

107 

 

 
     1 1 1

, , , , ,

,

,

, ,

i i i i

y i i y i i

y i i u i y i i v i y i i

y i

d

i

iC I A B C I A B C Iy u v d

M u N v P d

A B
             

 
  


 (5.3) 

 
     1 1 1

, , , , ,

,

,

, ,

i i iz i i u i z i i v i

z i i z

i z i i i

i i i

d

z i

C I A B C I A B Cz u v d

M u N v P

I A

d

B
                




 
 (5.4) 

 

For a network consisting of p interconnected systems, define the following 

stacked vectors. 

Control Inputs:  

 1

TT T
pu u u     (5.5) 

Inputs from Upstream Systems:  

 1

TT T
pv v v     (5.6) 

Regulated Outputs: 

  

 1

TT T
py y y     (5.7) 

Exogenous, Uncontrolled Disturbances: 

 1

TT T
pd d d     (5.8) 

Reference Signals: 

 1

TT T
pr r r     (5.9) 

Error Signals: 
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 1

TT T
pe e e     (5.10) 

Outputs to Downstream Systems: 

 1

TT T
pz z z     (5.11) 

Define the following block diagonal matrices: 

    
,1 ,1 ,1

, , ,

0 0 0

, ,

0 0 0

y y y

y p y p y p

M N P

M N P

     
            
          

y y yM N P    (5.12) 

 

    
,1 ,1 ,1

, , ,

0 0 0

, ,

0 0 0

z z z

z p z p z p

M N P

M N P

     
            
          

z z zM N P    (5.13) 

Thus we can define the entire system’s steady state condition with the following 

relationships: 

 
y u v d

z u v d

  

  
y y y

z z z

M N P

M N P
 (5.14) 

 

In order to capture the interconnections between the plants, define an 

interconnection matrixof size v zn n , where nv and nz are the sizes of the v and z

vectors, respectively: 

 v z  (5.15) 

The interconnections are defined such that v zn n .  Since every output iz  is a 

disturbance iv  to one other plant, the interconnection matrix consists of columns with a 
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single non-zero entry equal to 1 in each column.  Thus the columns are an orthonormal 

basis in vn , making   an orthogonal matrix, so 1T    . This matrix defines the 

following steady state relationships: 

    1 1

v z

I u I d

u d

 

 

     

 
z z z zN M N P

W X

 (5.16) 

The local optima are determined by quadratic cost functions.  These functions 

place weight upon the error ( ie ) and input selected by the optimizer ( iu ) using positive 

symmetric matrices Qi and Si, respectively: 

 T T
i i i i i i iJ e Qe u S u   (5.18) 

Stacking the local cost function matrices gives the centralized weight matrices: 

 
1 10 0

,

0 0n n

Q S

Q S

   
       
      

Q S   (5.19) 

This allows definition of the centralized cost function: 

 T TJ e e u u Q S  (5.20) 

This is the cost function that defines the system-level optimum.  The operating 

conditions that yield a minimum of this function is referred to as the “centralized 

optimum” in the following chapters.  Note that even though the cost matrices are block 

diagonal, optimizing each individual cost independently will not yield the minimum, 

since interconnections must be taken into account in order to find this optimum.  This 

idea is explored in more detail in the next section.   
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Neighbor Communication Optimization (NC-OPT) 

Centralized and Decentralized Cost Functions  

Equation (5.20) defines the centralized cost function whose minimum is the 

centralized or “Pareto” optimum.  The objective of the NC-OPT architecture is to 

achieve this optimum with a distributed set of optimizers that have no knowledge of the 

other plants’ dynamics, and only communicate with their immediate upstream and 

downstream neighbors.  Substituting the steady state prediction equations (5.14) and 

(5.16) into the centralized cost function (5.20) yields: 

 

   

    

     

2

T T

TT

TT T

T

J e e u u

u u

r d u

d - r d - r

 

     
     

    

y y y y

y y y y

y y y y

Q S

S + M N W Q M N W

P + N X Q M + N W

P + N X Q P + N X

 (5.21) 

In general, distributed optimizers will reach an equilibrium position that is not on 

the Pareto optimal surface.  In order for distributed optimizers to achieve the centralized 

optimum, each optimizer must solve the same cost function, and must have accurate 

information about the actions of the other optimizers to account for cross-coupling 

effects.  As noted in the literature review, earlier distributed model predictive control 

(MPC) approaches use controllers with an interaction model of all the other plants and 

communication with every other controller, iterating to the Pareto solution. 

The central idea in the NC-OPT approach is that every plant only communicates 

with its immediate neighbor, and each optimizer has no knowledge of any plant other 

than its own.  Each optimizer communicates to its downstream neighbors its locally 
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optimal output; additionally, it communicates to its upstream neighbors the additional 

operating cost created by the upstream disturbances (which are outputs of the upstream 

plants).  Since, after sufficient iteration, the local plants will take into account the effects 

of their own actions on the network as a whole, the optimizers are solving the centralized 

cost function and the Pareto optimum will be reached.  In practice, the optimizers will 

often be paired with local component dynamic controllers; thus, the NC-OPT inputs 

calculated by these optimizers will be setpoints for the lower level controllers to meet. 

The local cost function that is minimized for the ith plant is as follows: 

    

 

, , , , , ,

, , , ,

, ,

, , , ,

2

2 2

2 2 2

T T T
i i i i i i i i i

T T T T T T T
i i i i i i ii y i y i i z i i y i i i y i y i i

y i i y i y i z i i

i y i y i i

i y i y i i y

i i

T T T T
i i i i

T T
i

T T T T T
i i i yii y i

J e Q e u S u z

r Q r Q r Q Q Sd P P d P d P d u M M u

M d P M u

v N N v

r Q Q M

Q

Q Qd P Qu N rN M N







  

          
     


   , ,i z i i

T
i N v

  
 

  

 (5.22) 

 

The first two terms of (5.22) comprise the standard decentralized cost function, 

with knowledge of disturbances coming from upstream (refer to (5.1)).  The term i  

represents the costs imposed on the immediate downstream plants by the ith plant’s 

outputs iz .  These costs are communicated to it by the downstream neighbors.   

Equation (5.22) is the cost function that the local, distributed optimizers minimize.  The 

increase in cost of this function due to a change of the upstream disturbances is 

designated i , a linear function of iv , iu , and i : 
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, , , , , , , ,2 2 2 2

i

y i y i i y i y i

i
i

T T T T
i z i y i yi i i i ii ii y i

v

N u N N v N N N

J

Q M Q Q r Q P d









    
 (5.23) 

This is the term that each local optimizer will pass to its upstream neighbors to inform 

them of the costs imposed by their actions.  The distribution of downstream costs is 

described using the same  matrix defined earlier, thus: 

 
1 1

T

p p

 


 

   
        
      

   (5.24) 

The algorithm is detailed next. 

 

Algorithm 

The global optimization is distributed among the individual plants; in order to 

achieve a global optimum, an iterative approach is required.  At predetermined time 

intervals (optimizer sampling rate), the algorithm proceeds thus for a given number of 

iterations, cmax: 

Step 0.  Initialize variables for optimizer iteration (not plant) step j=0.  Each optimizer 

assigns initial values to iv , iu , and i ; these are generally the last held value from the 

previous set of iterations.  If this is the very first calculation (i.e., the plant’s t=0 as 

well), these variables are set to zero.   
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Step 1.  (Iterations start here).  Each optimizer communicates its stored iz  value to its 

downstream neighbor; this becomes iv  for the downstream plant.  Similarly, pass the 

value stored in each i  to the upstream plants, which becomes i  for the upstream 

neighbors.  This creates the following update laws: 

 T     (5.25) 

 v z   (5.26) 

 

Step 2.  Each optimizer calculates the optimal solution to its cost function 

argmin( )QP
i iu J per (5.22).    

 

Step 3.  Calculate each updated optimum iu  as a convex combination of QP
iu  and the 

previous value of iu .  This is the iu for iteration step j+1.  For tuning parameter [0,1)w

: 

 (1 ) QP
i i iu wu w u     (5.27) 

 

Step 4.  Calculate the predicted outputs z  using the new iu   (iteration j+1) and the last 

known iv  (from iteration j): 

 , , ,i z i i z i i z i iz M u N v P d     (5.28) 
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Step 5.  Calculate the  terms to pass to upstream neighbors.  From equation (5.23): 

      , , , , , , , ,2 2 2 2y i y i i y i y i i
T

z i y i y
T T T T

i i i i i y ii i i iN M u N N vQ Q Q r QN N N P d        (5.29) 

 

Step 6.  Check iteration count.  If the maximum number of iterations has been reached, 

stop and progress to step 7.  If not, repeat steps 1 through 6. 

 

Step 7.  Apply the final values of the calculated iu terms to the plants.  The values of iu  

might be actuator positions, but most likely will be setpoints passed to lower-level 

dynamic controllers.   Repeat process at predetermined intervals (optimizer sampling 

rate). 

  



 

115 

 

Stability and Convergence of Information Dynamics 

Stability 

The dynamics of the information passed between controllers as described above 

can be modeled as a discrete-time state space system with the setpoint vector r as a 

disturbance, along with exogenous disturbances d and the (bounded) results of the 

optimizers ,QP NCu  as the “control” input.  From equations (5.25)-(5.29): 
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 (5.30) 

 

Since the state matrix of the above system is lower block triangular, its 

eigenvalues are the same as the eigenvalues of the matrices along its diagonal.  In order 

for the above system to be bounded-input bounded-output stable, therefore, the 

eigenvalues of the matrix  zN  must lie within the unit circle of the complex plane.  This 

can be physically interpreted as a low-gain requirement from upstream disturbances to 

outputs going downstream; i.e., z v  is “small”. 
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Inside the constrained space the solution to the quadratic programming (QP) 

problem QP
iu can be found by solving 0i idJ du  for iu : 
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u Y Q rM N Y

Y Q

v P d M

M M S





   

 

 (5.31) 

 

Since all matrices in (5.31) are block diagonal, the matrices and vectors in the solution 

(5.31) can be stacked to obtain the following matrix equation: 

 , 0.5QP NC T T T Tu r v d   y z y y yY Q Y Y Q YPM M N QM  (5.32) 

 

Substitution of (5.32) into (5.30) and rearranging terms changes the state matrix of the 

information transfer dynamics within the constraint space to: 
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 (5.33) 

 

Once again, the eigenvalues of the state matrix dictate the stability of the above system’s 

equilibrium point.  Recall that the scalar term w is used as a tuning parameter for the 

algorithm; namely, as w approaches 1, the convergence is slowed down.  Examination of 

the state matrix in (5.33) shows that as w gets closer to 1, the matrix becomes closer to 

the state matrix in (5.30).  Thus as w increases, the eigenvalues can be driven inside the 

unit circle, ensuring that convergence is possible as long as   1  zN . 
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Convergence to Centralized Optimum 

The goal of the NC-OPT approach is for the distributed optimizers to converge to 

the Pareto optimal given a sufficient number of iterations.  The preceding section gave 

conditions on the state matrix of the information dynamic systems for convergence to a 

stable equilibrium point inside the constrained space ofu ; in this section, we show that 

this equilibrium point is the same as that generated by the centralized optimizer. 

Recall from (5.21) that the centralized cost function expands to: 
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 (5.34) 

 

Calculating 0CdJ du   gives a relationship between the optimal u (designated OPTu ) 

and the setpoint r and disturbance d when the optimum is inside the constraint space: 
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u

r d
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y y y y

y y y y

S + M N W Q M N W

M + W N Q P + X N
 (5.35) 

 

Now examine the cost functions minimized by the NC-OPT optimizers.  Recall 

that calculating 0i idJ du    gives the following, where arg min( )QP
i iu J : 
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 (5.36) 

Stacking equation (5.36) for all subsystems results in: 
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 (5.37) 

 

This gives the relationships between the optimal values of u and the disturbances 

coming into the plant (setpoints, upstream outputs, costs, etc.).  Now examine the final 

values of these terms as the information system dynamics convergence to steady state.  

These dynamics (5.30) collapse to the following steady-state relationships: 
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 (5.38) 

 

Substituting (5.38) into (5.37) above yields: 
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Rearranging terms: 
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 (5.40) 

Comparison of (5.40) to (5.35) shows that the relationship between the optimal u  and 

the setpoint r and disturbance d for the NC-OPT case converges to the same as the 

centralized case.  Note that the algorithm is able to do this even though the local 

controllers are solving different cost functions. 

 

Soft Uncoupled Input Constraints 

If a soft, uncoupled constraint is applied to each optimizer, then the local cost 

functions will have an extra term ( )i ig u  which is a nonlinear, differentiable function of

iu : 

 ( )T T T
i i i i i i i i i i iJ e Qe u S u z g u     (5.41) 

Define a stacked vector of these scalar functions thus: 

 1 1g( ) ( ) ( )
T

p pu g u g u     (5.42) 

Applying the same treatment as earlier results in a slightly different version of (5.35): 
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 (5.43) 

Since the constraints on u u are uncoupled, 0i j ig u    and the derivation for the NC-

OPT case again results in the same cost as the centralized case.  
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CHAPTER VI 

NC-OPT SIMULATION 

 

 The previous chapter presented an algorithm for networked systems that 

calculated a centralized optimum via iteration between local optimizers.  In this chapter 

the NC-OPT algorithm is applied to a model of a 9-zone building with an HVAC 

system, and the steps to designing and implementation of the method are discussed.  The 

chapter is organized as follows.  First, the building is presented, including a discussion 

of modeling software.  A division of the system into a network of subsystems is 

proposed, and the details of extracting linear models from the nonlinear system are 

presented.  The controller design is detailed.  Finally, the results of a series of 

simulations over a day in July are presented.  Of particular note is that the NC-OPT 

algorithm is capable of selecting setpoints for not only zone temperatures, but also for air 

supply and chilled water temperature reset, and this capability is highlighted as well. 

 

Modeling a Building Using EnergyPlus 

The building model for use in these simulations was created in a program 

available from the U.S. Department of Energy called EnergyPlus [116].  This program 

allows users to model a building, complete with an HVAC system, and thoroughly 

analyze its behavior and characteristics for a wide range of situations.  Since EnergyPlus 

is more of a software engine and does not feature a user-friendly “front end”, other 

programs must be used in conjunction with it for efficient work flow.  The freeware 
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program SketchUp allows the user to model the building in 3-D, including fenestrations 

[117].  The software suite OpenStudio links SketchUp and EnergyPlus to each other, 

allowing for an easier workflow in setting up the building [118]. 

In order to create and run an NC-OPT controller with the building, more software 

packages are required.  The simulation software Simulink, part of the MatLab suite, 

provides the base for programming the NC-OPT controller.  A Simulink S-function was 

coded in the programming language C to generate the NC-OPT calculations, given the 

plant outputs and disturbances, as well as the user-desired setpoints.  In order to interface 

the code with the model, the Building Controls Virtual Test Bed (BCVTB) software 

engine was used; this was developed at the Lawrence Berkeley National Laboratory in 

Berkeley, CA and is freely available for download [119].  This engine is also not 

especially user friendly, but the MLEP software from the University of Pennsylvania 

provides a front end that allows a Simulink block representing the EnergyPlus model to 

be dropped into a Simulink block diagram [120].  Figure 6.1 shows the workflow of 

using the collection of software to carry out the simulations in this chapter. 
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Figure 6.1: Workflow for setting up simulations 
 

 

The building used in the simulations has nine zones, each corresponding to a 

different room; views of the building in SketchUp are shown in Figure 6.2.  This 

building features a ring of offices around a central atrium, with two of the offices joined 

by a small hallway.  There is a second-floor room over one side of the building.   
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Figure 6.2: Views of simulation building. (a) Front view, (b) First floor (Zones 1-8), (c) Second floor 
(Zones 8 and 9).  Note that Zone 8 is an atrium that spans both floors.  Zone 4 is a small hallway 
between the offices in Zones 3 and 5. 
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The HVAC system is modeled using the HVAC System Templates capability in 

EnergyPlus.  Rather than define each and every node and component in the HVAC 

system, the templates allow the modeler to quickly assemble a basic system for 

simulation.  While this places some limitations on the complexity of the system that is 

used, the templates are sufficient for the presentation in this dissertation.  The HVAC 

system for the simulation building features a 20 kilowatt electric water chiller that 

provides chilled water via a loop to a variable air volume (VAV) ventilation system.   

The temperature of this chilled water is regulated to a user-defined setpoint fed into the 

chiller model.  The VAV system uses the chilled water to cool air returning from the 

zones; a variable speed fan keeps a constant pressure head in the ducting that supplies 

the zones.  Additionally, the VAV system uses a chilled water coil to regulate the air 

supply temperature to a setpoint.  Each zone has its own VAV terminal, which has a 

damper that opens and closes to regulate the temperature in each room according to 

setpoints defined by the occupant; thus, as the dampers open, the VAV system fan must 

spin faster, consuming more power.  In the simulation, the building is in Tampa, Florida, 

and the simulations are carried out during the first week of July.  Figure 6.3 shows a 

basic schematic of the control signals. 
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Figure 6.3: HVAC system components 
 

 

Figure 6.4 shows how the subsystems are broken out into a network topology.  

Each of the zones is a subsystem.  Since each zone’s damper affects the fan power 

consumption of the VAV system, the damper positions are treated as disturbances to that 

system.  Additionally, due to heat transfer between zones, the zone temperatures are also 

disturbances, but only between immediate neighbors.  The air supply temperature is 

treated as a disturbance to the zones, since a higher air supply temperature may require 

more air flow to achieve the desired cooling.  This temperature is also a disturbance to 

the chiller.  The chilled water temperature is a disturbance to the VAV system.  

Exogenous, uncontrolled disturbances include the heat load in each zone as well as the 

outside air temperature. 
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Figure 6.4: Network topology for the NC-OPT architecture as applied to the simulation system. 
 

 

Subsystem Models 

As mentioned in the previous section, each zone is a subsystem in this controller 

design.  The subsystem accepts a zone temperature setpoint as its input iu  from the local 

optimizer.  Its tracking outputs are the zone temperature; the optimizer modulates the 

setpoint requested by the user or occupant and balances that desired temperature with the 

energy consumption required.  The energy consumption information is communicated to 

the local controller via the NC-OPT communication, since the local zone optimizers by 

design have no knowledge of system energy consumption.  The outputs iz  that act as 

disturbances to its downstream neighbors are the zone temperature (to the other rooms) 

and the predicted steady-state VAV damper position (to the VAV system).  The 

disturbances from the upstream plants are the air supply temperature and the zone 
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temperatures of the neighboring zones.  The exogenous disturbances are the outside air 

temperature and the sensible zone cooling, which represents heat load in the zone.  

Figure 6.5 is a typical zone block diagram. 

 

 

Figure 6.5: Block diagram for typical zone 
 

 

The VAV system is also a subsystem.  In this case, the input is an air supply 

temperature setpoint from the local optimizer; the optimizer will balance power 

consumption with tracking the design setpoint (air supply temperature reset).  Its 

tracking outputs are the air supply temperature and the predicted power consumption of 

the fan.  In order to minimize fan power consumption, the setpoint for power will be set 

to zero.  The outputs that act as downstream disturbances are the air supply temperature 

(to the zones and to the chiller).  Its exogenous disturbance is the outside air temperature.  

The block diagram is shown in Figure 6.6. 
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Figure 6.6: VAV subsystem 
 

 

The last subsystem is the chiller.  Its outputs are chilled water temperature and 

power consumption; as with the VAV subsystem, a setpoint of 0 for power will seek to 

minimize power consumption for the chiller.  It accepts a chilled water temperature 

setpoint; the local optimizer is thus calculating a chilled water temperature reset.  The 

subsystem’s exogenous disturbance is the outside air temperature.  Its upstream 

disturbance is the air supply temperature, and the chilled water temperature is also a 

disturbance to the VAV system.  The block diagram of the subsystem shown in Figure 

6.7. 

 

 

Figure 6.7: Chiller subsystem 
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Once the network topology and the local subsystems were selected, the steady 

state models were developed.  A baseline simulation was run first.  The model was run 

for a simulation that lasted 8 days of simulation time, from July 1 to July 8.  The 

setpoints fed to the model for this baseline test (and the corresponding outputs) are 

treated as the system origin.  The setpoints used for the baseline were 22°C for the zone 

setpoints; 10°C for the air supply temperature, and 6°C for the chilled water supply.  To 

obtain the gains that the NC-OPT matrices consist of, a series of simulations were run 

wherein the setpoints were changed one at a time.  For example, a simulation was run 

with a setpoint of 23°C sent to zone 1; all other setpoints were kept at the origin.  The 

damper position from the baseline test was subtracted from the damper position during 

the new test; a least squares fit was used to find the gain from the change in temperature 

to the change in damper position.  This process was repeated for all of the inputs and 

ouputs.  To find the gain from the outside temperature to the various outputs, the average 

temperature was used for the baseline, since the same weather profile was used for all 

simulations.  Additionally, extra simulations were run with different interior heat loads, 

so that the gain from sensible zone cooling to the various outputs could be found.  The 

models are given in the following equations.   

Once the models are found, weights must be selected.  Apart from the error and 

actuator weights in Q and S, the two main parameters that the designer must tune are the 

convergence parameter w and the number of times the optimizers communicate per 

iteration cycle (cmax).  The time step between optimizations must also be selected.  The 

next section explores the effects of the different parameters. 
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Subsystem 1 (Zone 1): 
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Subsystem 2 (Zone 2): 
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Subsystem 3 (Zone 3): 
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Subsystem 4 (Zone 4): 
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Subsystem 5 (Zone 5): 
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Subsystem 7 (Zone 7): 
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Subsystem 8 (Zone 8): 
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Subsystem 10 (VAV system): 

 

1

10
10

10,2 911

1
40

10
9

49

0 01 0

0.0021 0.0032

1 0 0 0

1 0 0 0

AS

out
fan

CW

AS

AS
CW

a

Ty
u T

W Nz ay

T

a
z T

u
a

z T
T

 
                               
 

 
          
                      
                  

 

 





    


2
10,2 10 [2.33 1.77 1.36 0.70 1.35 1.68 2.31 1.71 2.17 0.43]

outT

Nz 






 (6.10) 

 

 

Subsystem 11 (Chiller): 
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Simulations 

NC-OPT Iterations 

The first parameter to be examined is the convergence weight w.  This term acts 

to help stabilize the information dynamics as the local optimizers find a solution.  The 

presence of this term results in a convex combination of the previous time step and the 

previous time step’s calculated input.  This style of iteration is referred to as a Gauss-

Seidel algorithm [121].  Figure 6.8 shows the convergence of three different 

convergence weights to the centralized optimum solution.  The iterations begin with 
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each setpoint at the system origin detailed earlier; i.e., no chilled water or air supply 

temperature resets, and no modulation of the zone temperatures.  The local optimizers 

converge to the centralized solution with relatively little iteration, depending upon the 

convergence term w, which is a design parameter in the NC-OPT algorithm.  For this 

particular system, a small convergence term (and hence a fast convergence) is useable, 

which allows for a stable convergence in less than 5 iterations.  For all of the following 

simulations, a weight of 1.0 is placed on the chilled water and air supply temperature 

errors, with a weight of 100 placed on the power consumption by the VAV fan and the 

water chiller.  The weights upon the zone errors are varied in the simulations; for the 

iterations shown in Figure 6.8 and 6.9 a weight of 0.1 is used. 

Figure 6.9 displays how one of the zones (Zone 2) iterates to a new zone 

temperature as the cost information from its downstream neighbors is communicated to 

the optimizer.  The components of the vector 2 are shown in 6.9(a); these are costs 

calculated by each of Zone 2’s neighbors using the function for  and passes to the Zone 

2 optimizer.  The costs coming from the different zones are positive, since a warmer 

zone 2 temperature means that the zones would require more cooling to match their 

setpoints.  Also, the cost values coming from the VAV system are negative, since a 

higher zone temperature would require less cooling, and the VAV fan would consume 

less power. 



 

137 

 

 

Figure 6.8: Iterations from user-desired setpoints to centralized optimum. 
 

 

 

Figure 6.9: Zone 2 iterations.  (a) Penalties on output 2z  calculated by zones 1,3, and 8, and the 

VAV system.  (b) Zone 2 temperature setpoint over iterations 
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Temperature Regulation in Dynamic Simulations 

Figure 6.10 shows the temperatures for three of the nine zones for three different 

simulations (Zones 1, 4, and 6).  These are chosen as representative behavior for all of 

the zones.  The environmental conditions of the simulations are identical in each case, 

and are the same weekday in July.  Each of the simulations was run with a different 

weight on the zone temperature error.  A higher error implies that less deviation from the 

user-desired temperature will be tolerated, but at the cost of higher energy consumption.  

All simulations presented herein use parameters of w = 0.75 and cmax = 25, and the 

optimizers recalculate every 30 minutes. 

The temperature setpoints increase during the hottest part of the day, since more 

power will be consumed to cool the zones at that time.  This information is 

communicated to the zones from the optimizers for the VAV and chiller.  As expected, 

the higher error weights result in closer adherence to the user-desired setpoints, although 

some zones react more strongly to changes in error weight than others.  While most of 

the zones increase their temperatures as the weight goes down, Zone 4 behaves in the 

opposite manner: as its weight decreases, the zone temperature goes down instead of up 

as the others do.  This is due to the geometry of the building—by reducing its 

temperature, zone 4 acts as a heat sink, reducing the cooling required by the other zones. 

The behavior of the VAV system and chiller optimizers is shown in Figure 6.11.  Only 

the results for zone error weight of 0.1 are shown, since the other weights yielded similar 

results (within a few percent).  The air supply temperature is reset by a very small 

amount (approximate 0.25 °C), but the chilled water temperature is modulated 
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significantly—as the day becomes warmer, the optimizer goes up to the limit of 10°C.  

Thus the NC-OPT architecture is not only choosing room temperatures, but also the 

temperatures of the chilled water and air supply. 

 

 

Figure 6.10: Temperatures for different weights for zones (a) 1, (b) 4, and (c) 6. 
 

 

 

Figure 6.11: Temperatures for (a) Air supply and (b) Chilled water.  
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Energy Savings 

The next two figures show the improvement in overall energy consumption using 

the NC-OPT algorithm as structured.  Both the fan power and chiller power consumption 

are shown in Figure 6.12 for the simulations presented.  As the zone error weight 

decreases, the chiller power consumption also decreases from the baseline case; 

however, the fan power actually increases for all but the most extreme case, i.e., a 

weight of 0.01.  Figure 6.13, however, shows that the consumption for the entire system 

does indeed decrease as zone error weight decreases; for some cases, the fan works 

harder to deliver the cooling but the increase is more than offset by the decrease in 

chiller power consumption.  Thus the components, through cooperation and iteration, 

reach a system-level optimum without a centralized controller.   

 

 

Figure 6.12: Power consumption for different weights for (a) the VAV system fan and (b) the chiller. 
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Figure 6.13: Total system power consumption for several different weights. 
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CHAPTER VII  

NC-OPT DESIGN AND EXPERIMENTS 

 

Another demonstration of the NC-OPT control approach is now given by 

application to the experimental system.  A schematic of the system is given in Figure 

7.1, labeled with the signals used throughout this chapter.  The measurements, actuators, 

and disturbances are indicated on the figure and described in Table 7.1.   

 

 

Figure 7.1: Experimental system schematic 
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Table 7.1: Signals in Figure 7.1 
 
Actuators   

Actuator Name Description 
Schematic 
Designation 

  

Compressor 
Compressor speed 
(RPM) 

a1   

EEV 1, EEV 2, EEV 3 
Electronic 
Expansion Valve 
(%) 

a2, a3, a4   

WP 1, WP 2, WP 3 
Evaporator Water 
Pump (%) 

a5, a6, a7   

   
Sensors/Outputs   

Output Signal Description 
NC-OPT 
Output 

User Setpoint 
NC-OPT 
Input 

Pe 
Suction pressure 
(kPa) 

y1 r1 u1 

W 
Compressor power 
draw (kW) 

y2 r2 N/A 

sh1, sh2, sh3 
Evaporator 
Superheats (°C) 

y3, y4, y5 r3, r4, r5 u2, u3, u4 

T1, T2, T3, 
Zone Temperature 
(°C) 

y6, y8, y10 r6, r8, r10 N/A 

DT1, DT2, DT3 
Water Temperature 
Drop (°C) 

y7, y9, y11 r7, r9, r11 u5, u6, u7 

   
Exogenous Disturbances   

d1, d2, d3 
Heat load disturbance 
to Zone 1, 2, 3 

d1, d2, d3   
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Network Topology 

The first step in applying the NC-OPT algorithm is dividing the networked 

system into individual subsystems.  In this application, the subsystems are demarcated 

by the individual actuators, creating a network of single-input systems.  Each of these 

systems has a single actuator that is dynamically controlled with a proportional-integral 

(PI) controller.  Thus, as before, the iu terms that the local optimizers are calculating are 

actually setpoints for these lower level controllers.  Since the controllers are PI, a zero 

steady state error can be assumed from the controller reference setpoint to the regulated 

output.  Therefore, many of the gains become zero.  This simplifies the interconnection 

model greatly, since the controllers will reject disturbances from the upstream plants, 

assuming the actuators do not saturate.  Figure 7.2 shows the network toplogy for the 

system as actually implemented; as a comparison, Figure 7.3 shows the interconnection 

for the system if a non-integrating control were used, such as a proportional controller or 

if the NC-OPT algorithm  was calculating steady-state actuator positions.   

In this control architecture, the compressor speed is used to control the suction 

pressure, the EEVs are used to control evaporator superheats, and the water pumps are 

used to control the water temperature drop, which is defined here as the temperature 

drop of the water as it passes through the evaporator.  The specific models and local 

structure are detailed next. 
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Figure 7.2: Network Topology of Experimental system, as implemented 
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Figure 7.3: Network topology for system without integral control 
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Models 

Compressor and condenser   

The compressor in this system is a variable speed model, so an electronic 

controller specifies the rotational speed of the compressor in rotations per minute 

(RPM).  The water pump that pushes water through the condenser only operates at a 

single speed, although in some systems this pump (or fan in an air-based system) has 

variable speed capacity.  In these cases, an extra subsystem could be added to the 

architecture controlling this pump or fan. 

The first subsystem (plant 1) is the combination of these two components.  The 

pressure at the compressor inlet, referred to as the suction pressure, is strongly affected 

by the compressor speed, so the compressor is used to regulate the suction pressure to a 

setpoint.  The compressor power consumption is also an output of this subsystem, 

although it is not directly controlled with a lower level controller.  Since it is part of the 

y vector, the NC-OPT algorithm will take this consumption into account when 

calculating its inputs iu to the system, subject to the error weight iQ .   

Since the compressor controller has an integrator, any disturbances to the suction 

pressure will be compensated for in the steady state model.  Additionally, since the 

effect of changes in superheat is small due to the presence of a maximum in the effect of 

superheat on efficiency [122], the effect of superheat on power is ignored in this model.  

The block diagram for the dynamical subsystem is presented in Figure 7.4.  The steady 

state model simplifies to: 
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Figure 7.4: Subsystem 1 Block Diagram 
 

 

Evaporators 

The evaporators in a VCC system function by absorbing thermal energy from a 

zone into the refrigerant; this heat transfer process is referred to as cooling, and is 

measured in kilowatts (kW).  Refrigerant is metered into the evaporator by the electronic 

expansion valve (EEV).  Likewise, the variable speed water pump (WP) pumps water 

from the zone through the secondary passage of the evaporator and returns the chilled 

water back into the zone.  (Note that in an air-based system this function would be 

performed by a fan blowing air across the evaporator coils.)  For the purposes of this 
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application of the NC-OPT algorithm, these fluid flow control functions are split up by 

zone and by fluid.   

Thus subsystems 2 through 4 are plants that have evaporator superheat as the 

output.  An EEV with a PI controller regulates the superheat; the setpoint for the PI 

controller is the input for the subsystem.  A block diagram is given in Figure 7.5.  The 

EEVs at the evaporator inlets are used to regulate superheat to a setpoint; this removes 

all steady state disturbances and collapses the model to the following: 
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 (7.2) 

 

 

Figure 7.5: Typical block diagram, evaporators (subsystems 2-4). 
 

 

Zones 

Subsystems 5 through 7 are the zones themselves; these plants have the water 

pump speed (expressed as a percentage of full speed) as the input and water temperature 

drop and zone temperatures as the regulated outputs.  Heat load is the disturbance for 

these plants, and is generated by an immersion heater placed in the water tank.  The 

evaporator cooling is the signal fed downstream.  Since these are steady state models, 
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the predicted temperature is unchanging; therefore, disturbance heat load (energy going 

into the zone) must equal the evaporator cooling capacity (energy going out of the zone).  

This means that the gain of the heat load disturbance to cooling capacity is 1.  The same 

Kalman filter used in Chapter IV estimates the size of the heat load disturbance and 

feeds that information into the local optimizers.  Figure 7.6 gives the block diagram for 

the subsystems.  The signals are summarized in Tables 7.2 and 7.3.  The steady state 

models used by the optimizers are: 
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Figure 7.6: Typical block diagram, zones (subsystems 5-7). 
 

 

Table 7.2: Output Signals 
 
Regulated Output Signal Plant # y#/r # Error weight 

Qi: 

Origin value 

(y0) 

Suction Pressure 1 1 0.01 410 

Compressor Power 1 2 1000 0.4893 

Evaporator 1 Superheat 2 3 0.25 8 

Evaporator 2 Superheat 3 4 0.25 8 

Evaporator 3 Superheat 4 5 0.25 8 

Zone 1 Temperature 5 6 1.00 22.5 

Zone 1 Water Temperature Drop 5 7 0.75 4 

Zone 2 Temperature 6 8 1.00 21.5 

Zone 2 Water Temperature Drop 6 9 0.75 4 

Zone 3 Temperature 7 10 0.05 21.7 

Zone 3 Water Temperature Drop 7 11 0.75 4 
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Table 7.3: Input Signals 
 
Input Signal Plant # u # Value 

weight Si: 

Origin value 

(u0) 

Actuator 

Suction Pressure Setpoint 1 1 0.0 410 Compressor 

Evap 1 Superheat Setpoint 2 2 0.0 8 EEV 1 

Evap 2 Superheat Setpoint 3 3 0.0 8 EEV 2 

Evap 3 Superheat Setpoint 4 4 0.0 8 EEV 3 

Zone 1 Temp. Drop Setpoint 5 5 0.0 4 WP 1 

Zone 2 Temp. Drop Setpoint 6 6 0.0 4 WP 2 

Zone 3 Temp. Drop Setpoint 7 7 0.0 4 WP 3 

 

 
Illustration of Convergence—Simulation 

To illustrate the convergence behavior of the controllers, a simulated test case is 

shown in the following figures.  The models and setpoints are fed into the algorithm and 

the controllers iterate from the origin of the linear system model.  Figure 7.7 compares 

the value of the centralized cost function over the iterations to the Pareto minimum; 

again, the NC-OPT cost gets quite close within 25 iterations.  The centralized cost for 

the decentralized optima is also indicated in the figure for comparison.  Figure 7.8 shows 

the convergence of the setpoints to the centralized optimum.  The abscissa on each graph 

is the iteration count; the various ordinates are the setpoints fed to the local controllers.  

While over 100 iterations are needed to converge to the centralized optimum, the 

deviations from the optimal setpoint are relatively very small after 25 to 50 iterations—

typical uncertainty on a temperature measurement, for example, is 0.5°C.   
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These observations suggest that full convergence in one time step is probably not 

necessary for this application.  This highlights that if the dynamics of the physical plants 

are slow relative to the sample time of the optimizers, then a low number of iterations 

will not necessarily impact the performance of the setpoint calculation.  This concept is 

explored in the first data set in the following section. 

Another important point is that the local NC-OPT optimizers are not solving the 

same cost function as a centralized controller, but still converge to the same optimum.  

This is demonstrated in Figure 7.9, for the same condition as the earlier two figures.  The 

cost function solved by subsystem 1 (compressor) after the iterations have converged is 

superimposed over the centralized cost function. 

 

 

Figure 7.7: Centralized Cost converging to minimum 
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Figure 7.8: Simulation Convergence: Inputs converging to centralized 
 

 

Figure 7.9: Centralized and NC-OPT cost functions around centralized optimum. 

0 50 100 150
380

390

400

410

420

Pressure Setpoint
P

se
t (

kP
a)

Iterations

0 50 100 150
7.5

8

8.5

T
SH

 1 SetpointT S
H

 s
et

 (
 o C

)

0 50 100 150
7.5

8

8.5

T
SH

 2 Setpoint

Iterations
0 50 100 150

7.5

8

8.5

T
SH

 3 Setpoint

0 50 100 150

4

4.5

5

5.5

T 1 Setpoint


T se

t (
 o C

)

0 50 100 150

4

4.5

5

5.5

T 2 Setpoint

Iterations
0 50 100 150

4

4.5

5

5.5

T 3 Setpoint

360 380 400 420 440 460
0

100

200

300

400

500

P
set

 (kPa)

C
os

t 
F

un
ct

io
n 

V
al

ue

Min Max

Centralized Cost Fn.

 Optimal P
set

Local NC-OPT Cost Fn.



 

155 

 

Experiments 

Comparisons of Iteration Number Effects during a Setpoint Change 

The first two experimental tests show the basic function of the NC-OPT 

architecture.  The same suite of optimizers and controllers was used for both tests, with 

an optimizer time step of 300 seconds.  In the first case the optimizers iterated 5 times 

every time step, and in the second case they iterated 250 times per time step.  For both 

tests, the user-desired Zone 1 temperature setpoint ( 6r ) was decreased from 22°C to 

20°C.   

Figure 7.10 compares the setpoints for temperature drop (a) and superheat (b) 

calculated by the optimizers.  In the case with 250 iterations, the centralized optimum is 

achieved in the first pass, while with 5 iterations per cycle the steady state setpoints are 

not reached for a long time.  The two cases do converge to the same values eventually.  

Since the dynamics of the zone itself are driven by the superheat and temperature drop 

values but are considerably slower than that of the VCC system, the higher number of 

iterations may not be necessary, as is shown in Figure 7.11.  This figure shows the 

dynamic response of Zone 1 temperature for the two cases.  Despite the slower setpoint 

convergence, there is very little difference between the two dynamic responses of the 

zone temperature.  Thus, even if a large number of iterations are required for 

convergence to an optimum value, slow plant dynamics may allow for a smaller number 

of iterations per time step. 
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Figure 7.10: Inputs for both tests, compared 
 

 

 

Figure 7.11: System performance, compared 
 

 

Disturbance Rejection 

The next experimental run presented demonstrates the disturbance rejection 

aspect of the NC-OPT architecture, as well as its ability to tradeoff setpoint tracking 

criteria.  For the test, the heat load disturbance to Zone 3 ( 3d ) was increased from 

approximately 0.55 to 0.75 kW; the output of the Kalman filter is shown in Figure 7.12.  
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The local controllers respond by lowering the temperature drop setpoint ( 7u ) as seen in 

Figure 7.13(a), which results in increased water flow from the pump.  A slight decrease 

in the superheat setpoint ( 4u ) also results, as shown in Figure 7.13(b).  These two 

changes result in more refrigerant flow, and hence more evaporator cooling capacity. 

 

 

Figure 7.12: Estimated disturbance 
 

 

 

Figure 7.13: Changing input setpoints (ui) for (a) superheat and (b) temperature drop.  User-desired 
setpoints (ri) are also shown. 

0 500 1000 1500 2000 2500 3000 3500

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
st

im
at

ed
 D

is
tu

rb
an

cc
e 

(k
W

)

Time (s)

0 500 1000 1500 2000 2500 3000 3500
7

7.5

8

8.5

9
(a)

E
va

p 
3 

S
up

er
he

at
 (

 o C
)

0 500 1000 1500 2000 2500 3000 3500
3

3.5

4

4.5

5
(b)

Z
on

e 
3 

T
em

pe
ra

tu
re

 D
ro

p 
( o C

)

Time (s)



 

158 

 

The increased disturbance load means that the system must provide more 

cooling, and thus consume more power.  Since the compressor power consumption is 

one of the user-defined setpoint ( 2r ), and since a reduction in power consumption 

implies the zone temperatures will settle at a higher value, there will be a trade-off 

between tracking the zone temperature setpoints and the power consumption of the 

compressor.  Figure 7.14 shows how the compressor speed increases to deliver the 

necessary cooling, as well as the power consumption over the process.  Figure 7.15 

shows how the zone temperature increases over the process; the accepted steady-state 

error in the presence of the larger disturbance is larger than the original case.  The 

model-predicted steady-state temperature that would result if the setpoints had remained 

unchanged under the new disturbance is also shown as a reference.  Thus the NC-OPT 

architecture can be used to balance the comfort demands of the user with the energy and 

cost reduction desired by building or system operators.  This idea is shown further in the 

next experimental data set. 
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Figure 7.14: (a) Compressor speed and (b) power consumption. 
 

 

 

Figure 7.15: Tradeoff between setpoint tracking and power consumption. 
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Energy Savings 

While improved component design has a large effect on system energy 

consumption, better control of existing control architectures can provide cost savings for 

a reduced capital investment.  This fact is one of the important drivers behind this 

research.   

In this particular implementation of NC-OPT, the compressor power is treated as 

a setpoint ( 2r ).  The previous data set showed that the system seeks to keep power 

consumption close to a desired setpoint, but balances this with the zone temperature 

(comfort) needs of the users.  In order to cause the system to actually seek to minimize 

power consumption, the setpoint 2r  can be set to zero.  While a power consumption of 

zero is obviously not feasible, this setpoint value turns the setpoint tracking problem into 

an optimization with respect to power consumption. 

Two different startup tests were run, wherein the system is turned on and allowed 

to come to steady state values.  For one of the tests, the standard power setpoint of 0.37 

kW is used; for the other, a power setpoint of zero.  Figure 7.16 shows that the 

optimizers settle on a higher suction pressure setpoint for the new case, resulting in a 

slower compressor speed and thus a reduction of approximately 20% in compressor 

power consumption. 

The resulting zone temperature results are given in Figure 7.17.  Zones 1 and 2 

have large error weights, so the resulting change in zone temperature is small.  However, 

since the error weight on zone three is much smaller compared to the other evaporators, 

tracking performance for this zone temperature is significantly degraded.  This displays 
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the flexibility of the approach—the weights can be assigned to different ones, permitting 

a degree of load shedding by the system if necessary to achieve power consumption 

reduction. 

 

 

Figure 7.16: (a) Pressure, (b) compressor speed, and (c) power comparisons for two different power 
setpoints 
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Figure 7.17: Zone temperature tracking comparisons 
 

 

Alternate Designs 

 As discussed earlier, the use of integrating controllers at the local level has 

significant advantages when implementing the NC-OPT architecture; the zero steady-

state tracking error exhibited by a PI or PID controller when the actuators do not saturate 

allows many of the interconnection gains to become zero, simplifying the network 

topology considerably (compare Figures 7.2 and 7.3).  However, the NC-OPT 

architecture is flexible enough that application using other local level controllers is 

theoretically possible. For the subsystems chosen for this experimental system non-

integrating controllers were not suitable, but a brief discussion is presented for 

completeness. 

 

Actuator Position-Based NC-OPT 

 One attempt involved having the NC-OPT optimizers calculate the steady-state 

value of the actuators themselves; i.e. compressor speed and valve positions.  These 

0 2000 4000 6000
19

20

21

22

23

24

25

26

Z
on

e 
T

em
pe

ra
tu

re
s 

( o C
)

Time (s)

(a)

Zone 1

0 2000 4000 6000
19

20

21

22

23

24

25

26
(b)

Time (s)

Zone 2

0 2000 4000 6000
19

20

21

22

23

24

25

26
(c)

Time (s)

Zone 3

 

 

75%

0%



 

163 

 

actuator positions become the inputs that are fed into the systems.  The corresponding 

block diagrams are shown in Figure 7.18. 

 

 

Figure 7.18: Subsystem block diagrams for actuator position-based NC-OPT. 
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 For this implementation, the eigenvalues of the matrix product  zN are outside 

the unit circle on the complex plane, so the information dynamics will not converge, 

regardless of the value of the convergence term w.  Figure 7.19 shows the variation in 

the spectral radius of the state matrix (5.33) as the convergence value changes.  The 

spectral radius is the maximum absolute value of the eigenvalues of the matrix; since it 

is always greater than 1 for all w, there is no value of w that will cause the system to 

converge. 

 

 

Figure 7.19: Spectral radius of information dynamics state matrix. 
 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

S
pe

ct
ra

l R
ad

iu
s

Convergence Term w



 

165 

 

Proportional Control-Based NC-OPT 

 The other implementation considered was a suite of proportional controllers.  

The structure of the block diagrams would be the same as the PI-controlled case, with 

different controllers (Figures 7.4, 7.5, and 7.6).  However, since proportional controllers 

tolerate a steady state error, the disturbance rejection from the other plants’ outputs 

would not be complete.  Thus the interconnection matrix is the same as the actuator-

based NC-OPT and the network topology is the same as well (see Figure 7.3). 

 An important characteristic of proportional controllers is that the steady state 

error grows smaller as the controller gain grows larger.  This implies that the 

interconnection gains represented by  zN grow smaller as the proportional controller 

gains grow larger, since the disturbance rejection qualities improve with an increased 

controller gain.  This creates a connection between the dynamics of the subsystem under 

local control and the behavior of the NC-OPT information dynamics, and can possibly 

serve as another design parameter when implementing the NC-OPT architecture.  For the 

experimental system used here, however, in order to achieve convergence of the 

information dynamics the controller gains must be so large that the plant dynamics are 

rendered closed-loop unstable.   

Each of the local controllers were tuned with a proportional controller.  At these 

controller gain values the information dynamics were unstable due to the interconnection 

gain.  To decrease this interconnection gain, the controller gains were increased by a 

multiplier.  Figure 7.20 shows the spectral radius of the matrix product  zN as the 

multiplier ranges from 0 to 10.  While using a sufficiently large multiplier will allow the 
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information dynamics to converge, the controller gains are so large that the controlled 

systems are unstable.  This connection between the two sets of dynamics creates another 

aspect to the NC-OPT design problem worthy of further study. 

 

 

 

Figure 7.20: Spectral radius of matrix as proportional control gains are increased. 
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CHAPTER VIII 

CONCLUSION 

  

The research presented in this dissertation has the ultimate goal of reducing the 

energy consumption of air conditioning and refrigeration systems.  While improvements 

in system-level and component design are often the first avenue manufacturers and 

building managers take to reduce the energy consumption of these systems, improving 

the control of these components has a strong role to play.  This is especially true if better 

control can be coupled with existing components and systems to improve efficiency 

while retaining comfort, health, and safety with a minimal increase in capital 

expenditures.   

The work presented herein explored this problem in three different ways.  The 

first was at the component level, with the use of cascaded control of evaporator 

superheat.  This approach allows for tighter control of superheat in the presence of 

disturbances.  As superheat control is improved, a lower setpoint can be employed safely 

without risking liquid refrigerant being passed to the compressor.  Also, the combination 

of better response and nonlinearity compensation makes this local control architecture a 

useful tool for controlling complex variable refrigerant flow systems. 

The next control technique presented was a hierarchical approach specifically for 

the control of multiple evaporator vapor compression systems.  This technique leverages 

the capabilities of model predictive control (MPC) to reduce expansion valve wear by 

allowing superheat to float inside a band.  The optimal control aspects of MPC also 
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allow the control system to and balance energy usage with occupant comfort in air 

conditioning systems, or with food safety in refrigeration applications.  This architecture 

also allows for an element of modularity in the control system, since each local 

subsystem is self-contained.  This approach still requires a system-level supervisor, 

however.  

In contrast, the final control architecture presented in this dissertation, referred to 

as neighbor communication optimization (NC-OPT),  relies on communication only 

between “neighbor” subsystems, and subsystems require no knowledge of other systems’ 

dynamics or cost functions.  An interconnection matrix guides the communications 

between optimizers.  This is a key departure from other recent distributed MPC 

approaches that require that all subsystems communicate with each other, contain 

models of other subsystem dynamics, and use a common system-level cost function to 

achieve Pareto optimality.  An important implication of this is a high level of 

modularity: an alteration to a particular subsystem does not require any changes to 

neighboring controllers.  Additionally, the construction of the controllers is intuitive and 

builds upon basic controls knowledge, which is an important practical aspect for 

inclusion in building systems.  Another feature is that this approach allows for the 

iteration and communication between neighboring subsystems to be decoupled from the 

implementation of the control action.  In essence, the discrete-time dynamics describing 

the NC-OPT algorithm can evolve separately from (or simultaneously with) the 

dynamics of the controlled system. 
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Future Work 

Cascaded Control 

The cascaded control architecture was applied to an expansion valve in this work.  

Future studies should explore the effects of this architecture with different components; 

for example, control of compressor or fan speeds.  Additionally, model information can 

be implemented to develop optimal gains for cascaded controllers; better knowledge of 

the limitations and usefulness of this approach should be obtainable through optimality 

studies. 

 

Hierarchical Control of Multi-Evap Systems 

There are also opportunities to improve the implementation of the hierarchical 

control architecture presented in Chapter IV.  For example, the efficiency of the system 

is dependent upon the cooling zone temperature, although this was ignored in the current 

ICOP function for simplicity.  As mentioned earlier, the architecture could also take 

advantage of more complete models of the zones.  Different applications can also be 

explored, such as a system requiring radically different zone temperatures (e.g., a 

combination refrigerator/freezer); this will most likely require the use of discharge 

valves at the exit of higher pressure evaporators. 
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Neighbor-Communication Optimization  

While the calculation of setpoints alone is useful for many applications where the 

optimizer is coupled with existing dynamic controllers, the extension of the approach to 

calculate the optimal dynamic path of the system is an important future direction for this 

work.  Additional developments and designs for the architecture for specific systems 

would also be useful, such as the implementation of coupled constraints.  Development 

of the interconnection matrix for large, complicated systems with hundreds of 

components remains an open challenge; judicious use of adaptive algorithms might 

provide a solution to this problem.   

From a purely theoretical perspective, developing a scheme to ensure robust 

stability of the information dynamics is a possibly fruitful line of inquiry.  

Characterizing the interactions between plant controller dynamics and the information 

system remains an open problem.  One possibility along these lines is simultaneous 

optimization of the local control gains and the information dynamics.  Finally, further 

development of the algorithm to include stability proofs for hard constraints and 

nonlinear cost functions and models would also be a welcome development. 

Future work in the use of NC-OPT in building systems will include the 

application of the NC-OPT algorithm to include more elements of building controls, 

such as humidity and outside air control.  Implementation on an actual building on the 

Texas A&M campus is also in development, including integration with existing building 

control systems. 
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APPENDIX 

 

Fig. A.1 Sensor wiring schematics 
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Fig. A.2 Compressor power wiring 
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Fig. A.3 120VAC wiring 
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Figure A.4: Water Pump Amplifier Circuit 
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Table A.1: Experimental System Transducers 

 

 

 

Table A.2: Experimental System Power Components 

 

 

 

Table A.3: Experimental System Signal Conditioning Modules 

 

 

 

 

 

Description Qty Mfr. Part Number
Operating 

Range
Output

Listed 
Accuracy, +/-

Thermocouples 16 Omega GTMQSS-062U-6 -270-400 °C TC 0.5 °C
Suction Pressure 1 Cole-Parmer 07356-03 0-100 psig 1-5 V 1.0% FS

Condenser Pressure 1 Cole-Parmer 07356-04 0-300 psig 1-5 V 1.0% FS
Refrigerant Flow 3 McMillan 102-6-E-Q-B4-NIST 100-1000 mL/min 0-5 V 3.0% FS

Compressor Current 1 CR Magnetics CR5210 0-50 amps DC 0-5 V 1.0% FS

Description Qty Mfr. Part Number Components Powered Rating

Transformer, 24 VAC 3 White Rodgers T40-24M1 Provides power for EEVs 40VA
Power Supply, 48 VDC 2 Cotek 800S-P048 Compressor; requires 208VAC suuply 800W
Power Supply, 24 VDC 1 Traco TML 15124C Sensors 15W
Power Supply, 12 VDC 1 TDK-Lambda LS150-15 Evaporator Water Pumps 150W

Power Supply, 12 VDC 1 TDK-Lambda LS100-12
Condenser Water Pumps, Cooling Fans, 
Disturbance Pumps, Water Chiller Pump

100W

Power Supply, 5 VDC 1 Traco TML 15105C Signal Conditioning 15W

Signal Mfr. Part Number Input Output
EEV 1 Dataforth SCM5B39-01 0-5V 4-20 ma
EEV 2 Dataforth SCM5B39-01 0-5V 4-20 ma
EEV 3 Dataforth SCM5B39-01 0-5V 4-20 ma
WP 1 Dataforth SCM5B39-01 0-5V 4-20 ma
WP 2 Analog Devices 5B39-01 0-5V 4-20 ma
WP 3 Analog Devices 5B39-01 0-5V 4-20 ma

Compressor Omega OM5-IV-10B-C -10 to +10V 0-5V
Unused Omega OM5-IV-10B-C -10 to +10V 0-5V
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Table A.4: Actuators 

 

 

 

Table A.5: Miscellaneous components 

 

 

 

 

Actuator Mfr. Model No. Range Control Signal
Compressor Masterflux SIERRA03-0982Y3 1800-6500 RPM 0-5 VDC; Manual switch

EEV Sporlan SEI 0.5-10'-S 0-100% 4-20 mA
Evaporator Water Pump Swiftech MCP350 0-100% 4-20 mA
Condenser Water Pump Swiftech MCP655 ON/OFF Manual switch

Chiller Water Pump Swiftech MCP655 ON/OFF 0/5V Digital
Disturbance Water Pump Swiftech MCP350 ON/OFF 0/5V Digital

Description Qty Manufacturer Part Number

Evaporator 3 Packless Ind. COAX-2051-H-07-51
Condenser 1 Packless Ind. COAX-2151-H-08-110

Condenser Chiller 1 Packless Ind. COAX-2301-J-10-144
Manual Shutoff Valve, 1/4" 9 Mueller A14833
Manual Shutoff Valve, 3/8" 4 Mueller A14835

Liquid Receiver 1 Henry Technologies S-8060
Sight Glass 1 Emerson AMI 1FM2
Filter Drier 1 Alco EK-032

Condenser Water Tanks 2 Tamco 6314
Evaporator Water Tanks 3 Tamco 6305

Thermocouple Board 1 Measurement Computing PCI-DAS-TC
Analog Output Board 1 Measurement Computing PCI-DDI-08
Analog Input Board 2 National Instruments E-6023

PRIMARY LOOP

SECONDARY LOOP

DATA ACQUISITION BOARDS
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Table A.6 Schematic reference, part 1 

 

Schematic 
Reference

Description Abbrev. Item Type

A1 Compressor K Actuator
A2 Evap 1 Expansion Valve EEV1 Actuator
A3 Evap 2 Expansion Valve EEV2 Actuator
A4 Evap 3 Expansion Valve EEV3 Actuator
A5 Evap 3 Auxiliary Valve SEV Auxilary
A6 Condenser Water Pump WP1 Actuator
A7 Evap 1 Water Pump WP2 Manual
A8 Evap 2 Water Pump WP3 Actuator
A9 Evap 3 Water Pump WP4 Actuator
A10 Zone 1 Disturbance Pump WP5 Actuator
A11 Zone 2 Disturbance Pump WP6 Actuator
A12 Zone 3 Disturbance Pump WP7 Actuator
A13 Water Chiler Pump WP8 Actuator
M2 Liquid Receiver LR Miscellaneous
M3 Filter Drier FD Miscellaneous
M4 Condenser Water Chiller CWC Miscellaneous

MV01 Compressor Inlet Shutoff KI Manual
MV02 Liquid Receiver Inlet Shutoff LRI Manual
MV03 Liquid Receiver Bypass Valve LRB Manual
MV04 Liquid Receiver Outlet Shutoff LRO Manual
MV05 High Pressure Side Access Valve E1-1 Manual
MV06 Evap 1 Inlet Shutoff (EEV) E1-I Manual
MV07 Evap 1 Discharge Shutoff E1-O Manual
MV08 Evap 2 Inlet Shutoff (EEV) E2-I Manual
MV09 Evap 2 Discharge Shutoff E2-O Manual
MV10 Evap 3 Inlet Shutoff (EEV) E3-I Manual
MV11 Evap 3 Auxilary Valve Bypass E3-B Manual
MV12 Evap 3 Discharge Shutoff E3-O Manual
MV13 Low Pressure Access (Suction/Fill) K-1 Manual
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Table A.7 Schematic reference, part 2 

 

  

 
 

Schematic 
Reference

Description Abbrev. Item Type

MWV01 Zone 1 Pump Supply MWV1 Water Flow
MWV02 Zone 2 Pump Supply MWV2 Water Flow
MWV03 Zone 3 Pump Supply MWV3 Water Flow
MWV04 Condsenser Pump Supply MWV4 Water Flow
MWV05 Zone 1 Disturbance Choke MWV5 Water Flow
MWV06 Zone 2 Disturbance Choke MWV6 Water Flow
MWV07 Zone 3 Disturbance Choke MWV7 Water Flow

S01 Suction Pressure Sensor PERO1 Transducer
S02 Evap 1 Refrigerant Mass Flow E1 Transducer
S03 Evap 2 Refrigerant Mass Flow E2 Transducer
S04 Evap 3 Refrigerant Mass Flow E3 Transducer
S05 Condenser Pressure PCRO Transducer
S06 Compressor Current Draw KCUR Transducer
T01 Condenser Refrigerant Inlet Temperature TCRI Thermocouple
T02 Condenser Refrigerant Outlet Temperature TCRO Thermocouple
T03 Evap 1 Refrigerant Inlet Temp. TERI1 Thermocouple
T04 Evap 1 Refrigerant Outlet Temp. TERO1 Thermocouple
T05 Evap 2 Refrigerant Inlet Temp. TERI2 Thermocouple
T06 Evap 2 Refrigerant Outlet Temp. TERO2 Thermocouple
T07 Evap 3 Refrigerant Inlet Temp. TERI3 Thermocouple
T08 Evap 3 Refrigerant Outlet Temp. TERO3 Thermocouple
T09 Condenser Water Inlet Temperature TCWI Thermocouple
T10 Condenser Water Outlet Temperature TCWO Thermocouple
T11 Evap 1 Water Inlet Temp. TEWI1 Thermocouple
T12 Evap 1 Water Outlet Temp. TEWO1 Thermocouple
T13 Evap 2 Water Inlet Temp. TEWI2 Thermocouple
T14 Evap 2 Water Outlet Temp. TEWO2 Thermocouple
T15 Evap 3 Water Inlet Temp. TEWI3 Thermocouple
T16 Evap 3 Water Outlet Temp. TEWO3 Thermocouple


