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ABSTRACT 

 

Unconventional reservoirs are typically characterized by very low permeabilities, 

and thus, the pressure depletion from a producing well may not propagate far from the 

well during the life of a development. Currently, two approaches are widely utilized to 

perform unconventional reservoir analysis: analytical techniques, including the decline 

curve analysis and the pressure/rate transient analysis, and numerical simulation. The 

numerical simulation can rigorously account for complex well geometry and reservoir 

heterogeneity but also is time consuming. In this thesis, we propose and apply an 

efficient technique, fast marching method (FMM), to analyze the shale gas reservoirs.  

Our proposed approach stands midway between analytic techniques and 

numerical simulation. In contrast to analytical techniques, it takes into account complex 

well geometry and reservoir heterogeneity, and it is less time consuming compared to 

numerical simulation. The fast marching method can efficiently provide us with the 

solution of the pressure front propagation equation, which can be expressed as an 

Eikonal equation. Our approach is based on the generalization of the concept of depth of 

investigation. Its application to unconventional reservoirs can provide the understanding 

necessary to describe and optimize the interaction between complex multi-stage 

fractured wells, reservoir heterogeneity, drainage volumes, pressure depletion, and well 

rates. The proposed method allows rapid approximation of reservoir simulation results 

without resorting to detailed flow simulation, and also provides the time-evolution of the 

well drainage volume for visualization. 
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Calibration of reservoir models to match historical dynamic data is necessary to 

increase confidence in simulation models and also minimize risks in decision making. In 

this thesis, we propose an integrated workflow: applying the genetic algorithm (GA) to 

calibrate the model parameters, and utilizing the fast marching based approach for 

forward simulation. This workflow takes advantages of both the derivative free 

characteristics of GA and the speed of FMM. In addition, we also provide a novel 

approach to incorporate the micro-seismic events (if available) into our history matching 

workflow so as to further constrain and better calibrate our models.  
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1. INTRODUCTION 

1.1 Shale Gas Reservoir Development 

Unconventional resources, such as shale gas, have taken a significant share of the U.S. 

energy supply and the world energy market (Holditch 2010). As suggested by Energy 

Information Administration (Fig.1), the shale gas will take up nearly half of the 

traditional energy supply by 2035. The growth of the development of these resources 

have been driven to a large extent by the advances in technologies such as horizontal 

well drilling and multistage hydraulic fracturing (Fig.2, Dong et al, 2013). To optimize 

the production of unconventional reservoirs, such as by bringing down costs, minimizing 

development risk, and increasing production, further technology advancement is needed 

as engineers today still face great challenges in understanding the fundamental 

mechanisms, from the pore scale to the field scale (Zhang et al. 2013). In order to 

reliably estimate unconventional reserves and ultimate recoveries, it is important to 

predict well performance accounting for the relevant reservoir and fracture parameters. 

 
Fig.1 U.S. dry gas production (Tcf/year; EIA, Annual Energy Outlook 2012) 
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Fig.2 Production rapidly increased in the Barnett shale by horizontal wells  

Currently, several types of analytical techniques are widely used for production 

forecasting in shale gas well development, including decline curve analysis (Fetkovich 

1980; Valko and Lee 2010) and pressure/rate transient analysis (Ilk et al. 2010; Song et 

al. 2011; Clarkson et al. 2012).  The methods in decline curve analysis largely involve 

curve-fitting, which is used to forecast production via extrapolation and obtain the 

estimated ultimate recovery (EUR). The experiences gathered by the engineer during the 

field development and the quantity and quality of completion and production data in a 

particular field heavily affect the predictive power. In pressure/rate transient analysis, 

reservoir and fracture parameters are first estimated by identifying flow regimes from 

simplified completion and reservoir models, and well production is predicted with the 

estimated properties. These two techniques are very useful, especially when limited 

subsurface information is available. However, analytical models become inadequate 

when we account for geometric complexity and reservoir heterogeneity through 

integration of geological, geophysical, and engineering data (Zhang et al. 2013).  
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In addition to the analytical methods, numerical simulation has also been utilized to 

perform unconventional reservoir analysis (Cipolla et al. 2009, 2011, 2012; Fan et al. 

2010; Freeman et al. 2009). The advantage compared to analytical methods is that 

numerical simulation can rigorously account for complex fracture geometry, reservoir 

heterogeneity, reservoir compaction, and gas adsorption effects. (Zhang et al. 2013). 

However, numerical simulation can also be very time consuming, especially when high 

levels of grid refinements are used to accurately model complex fracture geometry, flow 

in the vicinity of the hydraulic fractures, and interaction with natural facture networks. 

Due to the high uncertainties associated with the development of unconventional 

reservoirs, it can be difficult and time consuming to calibrate such detailed numerical 

models using well performance data.  

1.2 Fast Marching Method 

In this thesis, we propose a novel approach for unconventional reservoir analysis based 

on the fast marching methods (Datta-Gupta et al. 2011; Xie et al. 2012a, 2012b; Zhang 

et al. 2013). This proposed approach can take more geometric complexity and reservoir 

heterogeneity into consideration compared to analytical methods; it can also help us 

understand the drainage process and well performance without involving detailed 

models and resorting to full numerical simulation. It stands midway between these two 

approaches, serving as a bridge for transition and a screening tool to select models when 

more and more data brought in during the development of a field.  

Unconventional reservoirs are typically characterized by low permeabilities, and thus the 

pressure depletion from a producing well may not propagate far from the well during the 
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life of a development, i.e. the whole depletion process is in transient flow. The concept 

of depth of investigation can help us improve the understanding of unconventional 

reservoirs. We follow the definition of depth of investigation given by the “pressure 

front” propagation as proposed by Lee et al. (2003). The pressure front arrival time at a 

given point in the reservoir corresponds to the maximum in the derivative of the pressure 

response, i.e. the propagation of the peak pressure response corresponding to an impulse 

source or sink. The pressure front propagation equation turns out to be an Eikonal 

equation using a solution based on the high frequency asymptotic approach (Vasco et al. 

2000). This Eikonal equation can be efficiently solved by the fast marching method 

(Sethian 1996, 1999; Xie et al. 2012a, 2012b).  

The front propagation is determined in a single non-iterative calculation, which is 

extremely fast compared to a reservoir simulator. Only seconds are needed to simulate a 

million-cell model. The speed and computational efficiency of our proposed approach 

makes it ideally suited for parameter estimation and model calibration through inverse 

modeling of unconventional reservoir data. After spatially determining the pressure 

fronts, a pseudo-steady state pressure approximation within the moving front can be 

applied to approximate the pressure depletion and well performance (Xie et al. 2012b; 

Zhang et al. 2013). We can compute and visualize the time evolution of the well 

drainage volume and also estimated ultimate recovery (EUR).  
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1.3 Outline of the Thesis 

The objectives of this thesis are threefold. In Chapter 2, we will first introduce the details 

of the concept of depth of investigation and describe how the fast marching method can 

be used to solve the pressure front propagation equation. Then, we will show the 

mathematical derivations for approximating the reservoir pressure depletion and well 

performance using a pseudo-steady state assumption. A simplified approach will be used 

to account for reservoir compaction effect. Drainage volume, stimulated reservoir 

volume and ultimate recovery can be approximated using the proposed method. In 

Chapter 3, a brief overview of automatic history matching methods will be given and 

details of genetic algorithm, one of the evolution methods, will be discussed. Using a 

synthetic multi-fracture reservoir model, the power of our method will be demonstrated 

using an integrated history matching workflow in Chapter 4. We also propose a novel 

method to integrate micro-seismic events into history matching workflow to better 

constrain the model. Micro-seismic data and production data are utilized to calibrate 

fracture/ matrix parameters for improved production forecast. Stimulated reservoir 

volume (SRV) is estimated using the calibrated models. Finally, we will present the 

major conclusions in the application of fast marching method to shale gas reservoir 

model calibration and also recommendations for future study. 
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2. FAST MARCHING METHOD: METHODOLOGY
 

In this section, we discuss and derive the mathematical formulation of pressure front 

propagation equation based on the concept of depth of investigation. Then, we introduce 

a single-pass method, the fast marching method, to solve the Eikonal equation derived 

from the diffusivity equation. Based on a pseudo-steady state assumption, we can 

estimate the reservoir pressure behavior and well production rate using a geometric 

approximation. Also, the specific physical process associated with shale gas reservoir, 

for example, reservoir compaction effects, will be included in fast marching framework.  

2.1 Depth of Investigation 

Typical characteristic of shale gas reservoir is its extremely low permeabilities, and the 

pressure depletion from a producing well may not propagate far from the well during 

even the lifetime of the development. The boundary effects may never be seen, and all 

production is obtained during the transient flow regime. As a result, the concept of depth 

of investigation, and its application is now not just important for traditional well test 

analysis but also an important parameter to characterize the production of shale gas 

production wells.  

We follow the definition of radius of investigation as given by the pressure ‘front’ 

propagation originally proposed by Lee (1982): the propagation distance of a ‘peak’ 

pressure disturbance for an impulse source or sink. For simplified flow geometries and 

                                                 

 Reprinted with permission from “Fast-Marching Methods for Complex Grids and 

Anisotropic Permeabilities: Application to Unconventional Reservoirs” by Zhang, Y., 

Yang, C., King, M.J., and Datta-Gupta, A. 2013. Paper SPE 163637 presented at SPE 

Reservoir Simulation Symposium, The Woodlands, Texas, 18-20 February. Copyright 

2013 by SPE. 
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homogeneous reservoir condition, the radius of investigation can be calculated 

analytically. For 2D radial flow, the radius of investigation can be derived in field units 

as (Lee et al. 2003) 

tc

kt
r

948
     Eq.1 

For different flow patterns, the analytical solution of radius of investigation can be 

generally written as follows:  

tr       Eq.2 

where r and t are propagation distance and time of the pressure front and   is the 

hydraulic diffusivity defined as )/( tck   .   is a geometric factor related to the flow 

patterns. For instance, for linear, radial, and spherical flow,   is 2, 4, and 6 respectively 

(Kim et al. 2009). However, the well-known formula in pressure transient analysis 

assume homogeneous reservoir properties, and are severely limited for heterogeneous 

and fractured reservoirs, particularly shale gas reservoirs with multistage fractures. 

The Eikonal equation for the pressure front propagation is derived by Vasco et al. (2000) 

and Kulkarni et al. (2000).  They introduced the concept of the diffusive time of flight 

using the asymptotic ray theory from geometric optics and seismology. Similar concept 

was developed earlier in the context of diffusive electromagnetic imaging by Virieux et 

al. (1994). By applying asymptotic expansion to the diffusivity equation, it can be shown 

that in the high frequency limit the pressure front propagation in an isotropic medium 

can be described by the Eikonal equation (detailed derivation of this diffusivity equation 

is sketched  in Appendix A):  
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1)(  x


      Eq.3 

In this equation, the hydraulic diffusivity term ))(/()( tcxxk 


 contains the reservoir 

heterogeneity information and is a function of space (can be a function of time also if we 

consider the time-dependent properties in shale gas reservoirs). Another unknown  )(x


  

is called the diffusive time of flight. Along a ray path,  can be calculated from the 

following integral 


r

drr
0

'
1

)(


     Eq.4 

The ray path should satisfy Fermat’s principle, which means that it is the one which 

minimizes the line integral of  (Sun and Fomel 1998). For the purpose of characterizing 

the pressure front propagation,  is conceptually a measure of distance rather than time 

and is analogous to the radius of investigation. 

The diffusive time of flight  is related to physical propagation time t of the pressure 

front through the following equation (Vasco et al. 2000; Kim et al. 2009): 

t   or 


 2

t     Eq.5 

Through the factor  , we can transform the entire diffusive time of flight field into a real 

pressure front arrival time field. By extending the radius of investigation through 

bringing in reservoir heterogeneity into the formula, we now lost the exact meaning of 

the factor  . In a heterogeneous case, there is no global flow pattern any more, and thus, 

 should be understood in an averaged sense and is related to the geometry of the 
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pressure front which can be of arbitrary shape and changing with time. Methods for 

calculating the factor  in heterogeneous case will be addressed later in Appendix C.  

2.2 Efficient Method to Solve the Eikonal Equation: the Fast Marching Method 

After deriving the pressure front propagation equation in the Eikonal equation form, the 

next step is how to solve this Eikonal equation efficiently. Instead of computing the 

diffusive time of flight by integrating along the pressure trajectories, we introduce a 

class of front tracking methods, called the Fast Marching Method (Sethian, 1999), to 

obtain the values of )(x


 . It is a single-pass method which utilizes the fact )(x


  for the 

first-order PDE depends only on the value of  along the characteristics passing through 

the point x


(Sethian 1996). Thus, the solution of   can be constructed in an orderly one-

pass fashion from smaller values of   to larger values. The basic framework for the fast 

marching method comprises the following steps (Sethian, 1999): 

(1) Label all grid nodes as unknown; 

(2) Assign values (usually zero) to the nodes corresponding to the initial position of 

the propagating front and label them as accepted; 

(3) For each node that is accepted, locate its immediate neighboring nodes that are 

unknown and label them as considered; 

(4) For each node labeled considered, update its value based on its accepted 

neighbors using the minimum of local solutions of Eq. (3) discussed later; 

(5) Once all nodes labeled considered have been locally updated, we pick the node 

which has the minimum value among them and label it as accepted; 

(6) Go to step (3) until all nodes are accepted. 
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         Fig.3 Illustration of FMM in 5-stencil Cartesian grid 

In a 5-stencil Cartesian grid, these steps are illustrated in Fig. 3. We put the initial source 

point for the propagating front and label it as accepted (red solid) as shown in (a). Then 

its immediate neighbors A, B, C, and D are marked as considered (circle), and the 

diffusive time of flight it takes for the pressure front to arrive at these four points are 

updated as shown in (b). The numbers on the lines indicate the diffusive time of 

flight  it takes for pressure to propagate between the two adjacent nodes and the 

numbers inside the circles are the cumulative for the pressure to propagate to these 

nodes from the source. We pick up the smallest one (point A in this case), and make it as 

accepted as show in (c). Then its neighbors E, G and F are added into the considered and 

the for them will be updated as shown in (d).These steps will repeat for the next 
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accepted point (like point D and then point H) as shown in (e) and (f). Basically, each 

time the new accepted point comes from the considered pool and has the smallest value 

of among all the considered points. If more than one point has the same smallest value 

of , we just accept them all at the same time. This process is repeated until the pressure 

front propagates the entire field.  

For 5-stencil Cartesian grid, we can directly update the cumulative value by writing 

Eq.3 in a standard finite difference notation as (Sethian 1996): 

   



1

0,,max0,,max
22
  y

ij

y

ij

x

ij

x

ij DDDD    Eq.6 

Here the standard finite difference operator D  for ±x directions can be written as 

xD jiji

x

ij  

 /)( ,1,   and xD jiji

x

ij  

 /)( ,,1  . Similar equations hold for ±y 

directions. In Eq.6,  values at unknown points are regarded as infinity and the “max” 

function is used to guarantee the “upwind” criteria. Eq. 6 leads to a quadratic equation 

and its minimum positive root gives us the  value at point (i, j). 

Alternatively, for a lattice we can calculate the  values from each of the four quadrants 

(bottom-left, bottom-right, top-left, and top-right) and take the minimum  value 

obtained. To locally calculate the diffusive time of flight it takes for front to propagate 

between two nodes, we can just use the ordinary finite differential form of Eq.3,  

 
 
 

r
xk

cx
x t 


 



     Eq.7 

Up to now, we can obtain a diffusive time of flight  for each grid cell node. According 

to the relationship between and t in Eq.5, we can calculate the physical propagation 
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time t for each grid cell. Viewing from the arrival time map (or even directly from the 

diffusive time of flight map), we can obtain a very intuitive image about how fast each 

part of the reservoir can be drained. Fig.4 gives us the arrival time map for a 2-D 

homogeneous model for two scenarios. For the single vertical well case Fig.4 (a), the 

circular arrival time contour coincides quite well with analytical results (the black circle 

line). From the heterogeneous case, Fig.5, we show the fast marching method can 

accurately capture the high permeability trend.  

 
      (a)               (b) 

Fig.4 Arrival time map for homogeneous case (days): a) vertical well;  

b) vertical well with infinite-conductivity fracture 

 
                   (a)               (b)                                           (c) 

Fig.5 Arrival time map for heterogeneous case (days): a) permeability field (Log10 scale);  

b) vertical well; c) vertical well with infinite-conductivity fracture 
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2.3 Drainage Volume Estimation  

Just as discussed above, we can obtain the pressure front propagation arrival time at each 

grid by applying the fast marching method. When the pressure front arrives at that grid, 

it indicates that this grid is starting to be drained. In other words, all the mesh grids 

which have smaller arrival times (compared to the considered time) have already been 

drained. Therefore, the drainage volume at any time can easily be estimated by summing 

up the pore volumes of the mesh grids within that time contour. 

Zhang et al (2013) have extended the fast marching method to unstructured grids and 

corner point grids. Thus, this kind of efficient drainage volume estimation method can be 

easily applied to very complex field scale reservoir models. For illustrative purposes, we 

show the results of drainage volume for a heterogeneous reservoir, shown in Fig.6, from 

Zhang et al (2013). The reservoir permeability field and hydraulic fracture geometry are 

shown in Fig.6 (a) and (b) respectively. The diffusive time of flight is calculated and 

shown in Fig.6 (c), which is then transformed into real arrival time. Fig. 6 (d) and (e) 

show the drainage volume at times 1 month and 30 years.  

This time-evolution of drainage volume contains quite useful information about which 

part of the reservoir is drained very quickly and which part is left behind. One potential 

and very promising application of this technique is well placement optimization or 

hydraulic fracture optimization by optimizing the drainage volume for the economic 

lifetime of reservoirs. As the diffusive time of flight (or arrival time) can be calculated 

very efficiently using fast marching method, this technique is very suitable for this kind 

of optimization, even when large number of realizations are proposed.   
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                    (a)            (b) 

 
(c) 

      
                                  (d)                                                                      (e) 

Fig.6 A synthetic example of a heterogeneous reservoir with five transverse hydraulic fractures: 

a) heterogeneous permeability field; b) the geometry of five transverse fractures; c) calculated 

 diffusive time of flight map; d) drainage volume in 1 month; e) drainage volume in 30 years 

Another application of the drainage volume calculation is to estimate the stimulated 

reservoir volume (SRV). For shale gas reservoirs, the production mainly comes from the 
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stimulated reservoir region because producing from the matrix will become very slow 

and might not be economical. Due to the characteristic that the permeabilities within the 

stimulated reservoir regions are generally higher than that of the matrix, the pressure 

front propagates much slower in the matrix compared to the stimulated reservoir regions. 

In particular, when we check the drainage volume evolution with time, we see the curve 

flattens out, which suggests the drainage volume has reached the boundary of the 

enhanced permeability zone.  

We illustrate this idea with a single fracture from a multistage fractured horizontal well 

in an unconventional reservoir. In this example, the reservoir is characterized with three 

permeability regions: the effective fracture permeability, an enhanced permeability (10
-2

 

to 10
-3

 md) region near the fracture and the matrix permeability (10
-4

 to 10
-5

 md) as 

shown in Fig.7 (a). From the arrival time of pressure front calculated using the fast 

marching method as shown in Fig.7(b), we can determine the drainage volume at 

different times, Fig.7(c). At approximately 100 days the curve flattens out which 

indicates that the drainage volume has reached the boundary of the enhanced 

permeability zone. The drainage volume at this time is essentially the pore volume 

corresponding to the stimulated reservoir volume (SRV). Subsequently, the drainage 

volume reaches the total reservoir pore volume as shown by the second plateau in Fig.7 

(c), but only after orders of magnitude more time. 
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Fig.7 Top view of a single fracture from a multistage fractured horizontal well: a) permeability 

 field; b) arrival time of pressure front; c) drainage volume versus time in log-log scale 

2.4 Geometric Approximation Based on Drainage Volume Calculation 

As discussed in previous section, the fast marching method is able to calculate the 

drainage volume pV  as a function of diffusive time of flight  . According to the 

relationship between t and , we can easily obtain the drainage volume as a function of 

time, )(tVp . Then a geometric approximation can be used to calculate the well 

production rate, and well bottom-hole pressure and average pressure within the drainage 

volume (Xie et al. 2012a, 2012b).  

2.4.1 Geometric Pressure Approximation for Constant Rate Production 

We start with expressing the diffusivity equation in terms of fluid flux for radially 

symmetric flow, given as 

r
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We use the change of variable, 

drrAdVp  )(      Eq.9 
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and the chain rule 
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We can now express the diffusivity equation using the drainage volume as the spatial 

coordinate, 
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     Eq.11 

The geometric approximation for the pressure solution is obtained from the following 

two approximations: 

 The Darcy flux is negligible beyond the drainage volume, which means that the 

drainage volume acts as a moving no flow boundary. 

 Within the drainage volume, the pressure is well approximated by a pseudo-

steady state solution. 

Then Eq.11, can be simplified as follows at well: 
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The pressure drop within a small time increment can be obtained by 
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2.4.2 Geometric Rate Approximation for a Constant Pressure Drop 

We start with Darcy’s law for radial flow, 
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Again, using a change of variable 

drrAdVp  )(      Eq.15 

and the chain rule 
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We can express the Darcy’s law using the drainage volume as the spatial coordinate, 

p
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   Eq.17 

Now, the pressure and Darcy flux are expressed in terms of drainage volume in the 

above equation. Permeability k  is the averaged permeability over the surface area, 

A along the boundary of the drainage volume and so is the porosity . Notice that the 

drainage volume is considered as a new spatial variable in this formulation. We could 

have equivalently chosen to treat the diffusive time of flight as the spatial variable. 

The Darcy flux in Eq.17 can be approximated as the production rate at the well location 

multiplied by a dimensionless flux along the drainage volume as follows (Winestock and 

Colpitts 1965),  

),(),( tVqqtVq pDwellp      Eq.18 

Substituting Eq.18 into Eq.17, rearranging for pressure change and integrating withV , 
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In principle, the integral should be taken till the boundary of the system. However, in 

practice, the dimensionless flux is sufficiently small beyond the depth of investigation, 
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and thus, this integral can be restricted over this finite moving boundary. As the well is 

being produced under a constant bottom hole flowing pressure, the pressure drop p can 

be considered to be specified, resulting in the calculation of the well rate. 

We now make a few assumptions and observations to quantify the dimensionless flux, 

Dq in Eq.18 (Nordbotten et al. 2004), 

1) Pseudo-steady state conditions exist inside the drainage volume. We can rewrite 

the diffusivity equation in terms of drainage volume just as in previous section,  
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   Eq.20 

Under pseudo-steady state, the left hand side of Eq.20 remains a constant. Thus 

the dimensionless flux Dq must be a linear function of drainage volume. 

ppD VbaVq )(     Eq.21 

2) Inner boundary Darcy flux, wellqtq ),0( , which leads to 1)0( Dq ; Outer 

boundary Darcy flux 0),( tVq p , which gives 0)( pD Vq . 

With these assumptions, we can formulate the dimensionless flux as  
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Substituting Eq.22 into Eq.19, rearranging equation to obtain expression for well rate, 
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The production rate is in reservoir conditions; the oil or gas formation volume factor is 

needed to convert to standard conditions. In Eq.23, the integral can be approximated by 

finite summations shown as Eq.24. For convenience, we take the simulation time 

interval as discrete interval because the drainage volumes for previous time steps 

(step 1~1 n ) are ready for time step n .  
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In Eq.24, the drainage volume )(tVp  is calculated from the fast marching calculations 

corresponding to time step n . Taking the last term ( ni  ) in right hand side of Eq.24 as 

an example(i.e. considering the contribution of the shadowed red area sketched in Fig.8); 

the surface area A  is the outer surface of the drainage volume npV , (equals to )(tVp ) and 

can also be estimated during the drainage volume calculations. The permeability and 

porosity are arithmetically averaged properties within the shadowed red area and the 

incremental drainage volume is the shadowed red area, expressed as 1,,  npnpp VVdV .  

 
  Fig.8 Illustration of calculating the integral with finite summation 
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In gas reservoirs, the gas viscosity and compressibility can be strongly dependent on the 

reservoir pressure. To account for these effects, pseudo-pressure and pseudo-time are 

commonly used in well test analysis (Lee et al. 2003). We just give the equation here 

and the details of the derivation can be found in the Appendix B.  
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Where pseudo-time pt and pseudo-pressure )( pm are defined as, 
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2.5 Reservoir Compaction Effect 

For shale gas reservoirs, there are many complex physics involved, such as adsorption 

and desorption, Knudsen diffusion, and reservoir compaction (Javadpour et al. 2007). 

The reservoir compaction caused by pressure depletion can be quite significant and it 

would be desirable to incorporate this effect into the fast marching framework. We 

describe here a simplified approach to handle compaction effects and leave other 

complex physics for future exploration. 

For pressure calculations using the geometric approximation, we use a series of time 

steps for the integration of Eq. 23. The pressure front location for each time is given by 

the fast marching solution with the original reservoir properties without compaction. 

This is because physically the pressure front should propagate monotonically outwards 

and will not move backwards. Therefore, we assume that the pressure fronts are the 

same with and without the compaction effects. However, in the presence of compaction, 
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the pressure drop p  during the time interval t should be calculated using an effective 

drainage volume )(, tV effp instead of the original drainage volume )(tVp . The effective 

drainage volume should consider the change of reservoir properties because of the 

compaction effects. Due to the decrease of reservoir permeability and porosity (and 

hence changes in diffusivity, ) during pressure depletion, the effective drainage volume 

should be smaller than the original drainage volume.  

To account for this, we run the fast marching again from the beginning to time t  with 

the updated reservoir properties to get the effective drainage volume. Here, we can 

simply use a permeability multiplier, for example, a function of reservoir pressure as in 

Fig.9, to represent this compact effect. 
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Fig.9 Permeability multiplier due to reservoir compaction as a function of reservoir pressure 

The pressure drop is now calculated as 

)(, tVc
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p
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This pressure drop will be applied to all the cells behind the pressure front. Once the 

pressure field is updated, the reservoir properties are also updated using a specified 

compaction model. We then move on to the next time step and repeat the procedure.  

Fig.10 illustrates the idea of the effective drainage volume to account for the compaction 

effects. Solid lines show the pressure front at successive time steps 1t , 2t , and 3t . With 

the compaction effects, the drainage volumes given by the pore volumes enclosed by the 

dashed lines in the figure are used instead. The dashed line is obtained by a FMM 

solution at each time step with updated reservoir properties. 

 

Fig.10 Illustration of the geometric approximation with and without the compaction effects 

Fig.11 shows the influence on pressure response if we take the compaction effect into 

consideration. The synthetic reservoir model contains a horizontal well intersected by 

five hydraulic fractures, Fig.11a). The reservoir properties are listed in Table 1. We 

apply the geometric approximation to compute the well bottom-hole pressure under rate 
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constraints. As shown in Fig.11b), the effective drainage volume, which is smaller, 

results in a larger pressure drop so as to maintain the same flow rate.  
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(a)                                                                                         (b) 

Fig.11 a) Illustration of the reservoir model; b) Comparison of bottom-hole pressure calculated 

 using the FMM approach with and without reservoir compaction effects. 

Table 1. Properties for synthetic horizontal well with five stage fractures 

Property Value 

Reservoir dimension (ft) 2505×4005×75 

Fracture  half length (ft) 
400, 300, 450, 400, 

350 

Reservoir porosity 0.15 

Gas viscosity (cp) 0.015 

Initial reservoir pressure (psi) 5000 

Matrix permeability (md) 0.0007 

Fracture permeability (md) 10 

Reservoir Temperature, T (˚F) 175 

Total compressibility (psi-1) 2×10-4 

Production Rate(Mscf/day) 200 
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2.6 Comparison with Finite Difference Simulator 

To obtain confidence with our proposed approach, we compare the simulation results 

given by our method with finite difference simulator (CMG here) results (Fig.12-13). In 

Fig.12, it is the well bottom-hole pressure response for model shown in Fig.11. The 

model parameters are the same in Table 1. We also demonstrate a synthetic shale oil 

model, which has a hydraulic fracture associated with an enhanced permeability region 

in homogenous reservoir (Fig.13 a). Parameters for the synthetic reservoir model are 

listed in Table 2. The model is constant bottom-hole constrained, and production rate is 

calculated. The constant c=2 and 4 in Fig.13 b) are the transformation geometric factor 

between the diffusive time of flight and physical time for linear and radial flow 

separately. As in this case, both early linear flow and bilinear flow exist, we roughly take 

the geometric factor for linear and radial flow as boundary of the rate approximation. In 

both cases, the FMM and CMG have exactly the same reservoir properties and inputs. 

We can observe that the FMM simulation results agree with the results obtained by finite 

difference reservoir simulator.  
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Fig.12 Well bottom-hole pressure calculated by the FMM approach compared with the reference 

 solution obtained by finite difference reservoir simulator 
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Fig.13 a) a hydraulic fracture with enhanced permeability region in homogeneous reservoir 

 (permeability field); b) rate calculated by the FMM approach compared with CMG result 

Table 2. Properties for synthetic one stage fracture with EPA 

Property Value 

Reservoir dimension (ft) 800×500×1 

Grid Size 2×2×75 

Fracture  half length (ft) 500 

Reservoir porosity 0.2 

Oil viscosity (cp) 0.35 

Initial reservoir pressure (psi) 5000 

Matrix permeability (md) 0.0005 

Fracture permeability (md) 10 

Total compressibility (psi-1) 3×10-5 

BHP control (psi) 2000 
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3. MODEL CALIBRATION METHOD: GENETIC ALGORITHM 

Matching the history data and calibrating the reservoir models are essential to predict 

future behavior with confidence and to perform computer experiments on methods of 

managing the reservoir (Oliver and Chen 2011). By calibrating the reservoir models, we 

mean adjusting the values of the model parameters such that the mathematical model of 

the reservoir can reproduce the observed behavior as close as possible. It generally 

involves an inverse problem, the history matching process. 

3.1 Overview of Methods for History Matching 

There is a number of ways to calibrate the model by matching history data. Initially, 

model calibration or history matching has commonly been conducted on a single 

deterministic model by a tedious and time consuming trial-and-error approach. In 

manual history matching, a structured approach is widely used where the sequence of 

scales of adjustments has been from global, then to flow units (regions), followed by 

local changes in model parameters (Cheng et al. 2008). The quality of manual history 

matching result heavily depends on the experience of the reservoir engineers. And for 

large fields, this process becomes close to impossible to investigate relationships 

between the model responses and variations of different reservoir parameters.  

The past decade has seen remarkable progress in the ability to generate simulation 

models to match large amounts of production data by assisted history matching methods. 

It is similar to manual history matching, except computers and software tools are 

employed to adjust the reservoir parameters rather than direct intervention of reservoir 

engineers. Assisted history matching can be treated as a minimization problem, whose 
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objective generally includes a predefined data misfit function and penalty terms to match 

the observed response. There are several approaches to such minimization (Yang and 

Watson 1987; Bissell et al. 1992; Reynolds et al. 1996; Oliver et al 1997; Datta-Gupta et 

al. 2001; Cheng et al. 2008) and they can be broadly classified into three categories: 

gradient-based, sensitivity-based, and derivative-free (or direct search) methods, 

respectively.  

The gradient-based methods, such as Gauss-Newton method, are intuitive as long as a 

mathematical minimization of the objective function is well defined. But they generally 

converge slowly (Bissell et al. 1992) and easy to lead to the nearest local minimum from 

the starting point instead of the global minimum (Williams et al. 2004; Landa et al. 

2005). Sensitivity-based methods, such as LSQR, are attractive because of faster 

convergence compared to the gradient-based methods. However, an integral and 

computational expensive part of the sensitivity-based history matching is the 

computation of sensitivity coefficients, which are the partial derivatives of the 

production response with respect to the reservoir parameters of interest. The streamline-

based generalized travel-time inversion (GTTI) technique has proven to be an effective 

method for calculating the parameter sensitivities (Datta-Gupta et al. 2001; Cheng et al. 

2005). It can analytically compute the parameter sensitivities involving 1D integration 

along streamlines, which can be generated from either a streamline or a finite-difference 

simulator.   

Most of the history matching approaches generally start with a single initial geological 

model and give a deterministic final model, which might not capture the reservoir 
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uncertainty appropriately if the initial model is far from representative. On the other 

hand, the solution to a history-matching process in reservoir simulation studies is not 

unique and multiple solutions are common. Derivative-free global search algorithms are 

preferred to local search as it can avoid the problem of converging to local optimum and 

also quantify the uncertainty of our matching result. The simulated annealing (SA) 

(Ouenes et al. 1994), Markov chian Monte Carlo (MCMC) (Sambridge and Mosegaard 

2002; Ma et al. 2008), Ensemble Kalman Filter (EnKF) (Zafari and Reynolds 2005) and 

genetic algorithms (GA) (Holland 1992; Cheng et al. 2008) have proven to be effective 

for derivative-free history matching. The problem of derivative-free approach is that it 

requires numerous flow simulations, which could be computationally prohibitive for 

large field-scale models. Apart from the advances in parallel computing and faster 

computer processing speed, we can utilize surrogate models to improve the performance 

of derivative-free approaches.  

3.2 Genetic Algorithm 

Genetic algorithm is one extensively applied method for derivative-free assisted history 

matching (Schulze-Riegert et al. 2002; Williams et al. 2004; Cheng et al. 2008; Yin et al. 

2011).  The genetic algorithm imitates the biological principles of evolution---survival of 

the fittest. Solutions are represented as binary strings of 0’s and 1’s (Yin et al. 2011). 

The fitness of each individual is evaluated based on their performance, measured as a 

fitness function. The genomes or chromosomes, which are the full binary string 

containing all variables, start from a randomly generated population and multiple 

individuals are stochastically selected to be directly manipulated through crossover and 
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mutation, to generate a new generation. For genetic algorithm, crossover is the dominant 

operator while mutation is mainly used for keeping the genetic diversity of the 

population (Cheng et al. 2008). Commonly, the algorithm terminates when a satisfactory 

fitness level or the maximum number of generations has been reached. 

3.2.1 Basic Concepts of Genetic Algorithm 

In genetic algorithm, the parameters are generally expressed as binary strings of 0’s and 

1’s, called genotype. When evaluating their fitness, the binary strings should be decoded 

into phenotype and then, the objective function can be calculated. Imitating the 

biological principles of evolution (the survival of the fittest), the parameter sets with 

smaller data misfit have larger fitness.  

 

Fig.14 The basic cycle of genetic algorithms 



 

31 

 

To start with, a diverse set of models comprising the initial population is created either 

randomly or within an experimental design framework (e.g. Latin hypercube sampling or 

space filling strategy). The objective function of the current population is calculated, and 

then fitness values are assigned to each sample according to their objective values. The 

genetic algorithm selects a percentage of the population based on the value of fitness for 

breeding a new generation. The selection process is stochastic and random in nature.  

Genetic operators, mutation and/or crossover, are then utilized to reproduce a new 

generation. This process is repeated, as shown in Fig. 14 (Weise 2008).  

3.2.2 Basic Operators: Crossover and Mutation 

Crossover is the key process of creating new samples, or offspring, by recombining old 

samples. It is assumed that recombination of fitter parents will reproduce well and even 

better performing offspring, thus accomplishing the major objective of increasing the 

fitness function. This operator randomly chooses locations and exchanges the 

subsequences before and after those locations between two parameter vectors. There are 

typically three types of crossover operation, as shown in Fig.15: single-point crossover, 

multi-point crossover, and uniform crossover. For single-point crossover, one single 

position is randomly chosen and parents swap their binary bits with each other; in multi-

point crossover, genome are partitioned into several segments and each of these 

segments (except for the first segment) take a crossover probability to swap with the 

same segment of the other genome; and for uniform crossover, each pair of bits form 

two parents will take a probability to swap. Generally speaking, the uniform crossover 

introduces diversity faster than multi-point or single-point crossover.  
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Fig.15 a) single-point crossover; b) multi-point crossover; c) uniform crossover 

Mutation imitates “asexual” influences to a genome by, for example, environmental 

change. It is a key component to introduce new diversity to the generation though 

mutation is commonly paradoxical because most of them are harmful or at most neutral 

(Sawyer et al. 2007). This operator randomly flips some of the bits in binary form 

parameters (Fig.16). Mutation can occur at each bit position in a string with some 
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probability, which is usually very small. The mutation step typically follows crossover 

for each combined sample of string. For an optimization process, most of the hill 

climbing is via crossover while occasional mutation forces trial over all space, providing 

chances to find the global optima.  

 

Fig.16 Uniform mutation 

3.2.3 GA Based GLOBAL Software 

GLOBAL software is a C++ based code, which can automatically adjust the input 

parameters for commercial reservoir simulators, like Eclipse, CMG, UTCHEM etc. It 

has used the genetic algorithm, one of the evolutionary algorithms, for calibrating global 

parameters. The flowchart is shown in Fig.17. In order to more effectively select the 

large amount of samples proposed by genetic algorithm, a proxy model is used.  

To start with, experimental design is used to generate a response surface to guide the 

history-matching process (calculating sensitivity of each parameters is also an option in 

GLOBAL). Then GA generation are initialized or updated, and genetic operations are 

implemented. Instead of evaluating each sample by running simulation, the proxy checks 

it before going to the simulation step. The proxy check process estimates the objective 

function value from the response surface. Only the samples, whose estimated values 

satisfy the fitness criteria, will proceed to simulation; and that fails to pass the proxy 

check are discarded, making the genetic algorithm work more efficiently. After 

evaluating one whole generation, a converge criteria is checked. If it is satisfied, we can 
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exit and use final models for cluster analysis or locally update these models. If the 

convergence is not satisfied, then these evaluated samples are added into the proxy pool, 

thus proxy is updated, and then the GA process is repeated until convergence or 

satisfactory reservoir models are found. 

 

                           Fig.17 Flowchart of GA with proxy 
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4. INTEGRATED WORKFLOW: APPLICATION
 

In this chapter, we apply our integrated workflow to a horizontal well with multistage 

hydraulic fractures in a shale gas reservoir. This example is designed after a real field 

case. The fast marching method is applied to approximate the reservoir response and the 

genetic algorithm approach is utilized here to modify reservoir parameters to match 

reference results. In addition, synthetic microseismic events are included to constrain 

parameter ranges for model calibration. The power and utility of this integrated 

workflow has been illustrated through this synthetic shale gas reservoir application.  

4.1 Model Setup and Workflow  

In our synthetic models, four hydraulic fractures are included (Fig. 18), constrained by 

four stages of synthetic seismic events (Fig. 19). The reservoir has about 0.3 million 

grids, and is constant bottom hole pressure (1000psi) constrained, as it is most of the 

cases in field practice in unconventional reservoir development. More details of the 

properties setting can be found in Table 3.  

We have three kinds of permeabilities in this model: fracture permeability, matrix 

permeability and enhanced region permeability. We use a set of reference parameters to 

generate one year ‘observed’ gas production rate with fast marching method. The genetic 

algorithm varies the three types of permeabilities and the geometrical parameters 

associated with these four fractures to match the reference data. Then the uncertainty of 

                                                 

 Reprinted with permission from “Integration of Shale Gas Production Data and 

Microseismic for Fracture and Reservoir Properties Using Fast Marching Method” by 

Xie, J., Yang, C., Gupta, N., King, M. J., and Datta-Gupta, A., 2012. Paper SPE 161357 

presented at SPE Eastern Regional Meeting, Lexington, Kentucky, 3-5 October. 

Copyright 2013 by SPE. 
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the reservoir parameter and performance are examined. After obtaining calibrated 

parameters, performance and stimulated reservoir volume (SRV) can also be estimated.  

Table 3. Properties for synthetic horizontal well with multistage fractures 

Property Value Unit 

Reservoir 

 

Size 2640 2280 50 ft
3
 

Grid number 264 228 5 --- 

Porosity 0.042 --- 

Initial pressure 3000 psi 

Temperature 275 
o
F 

Fluid 

Viscosity 0.03 cp 

Total compressibility 5.0E-4 psi
-1

 

Gas expansion factor 1.404 Mscf/bbl 

Well/Fracture 

Bottom hole pressure 1000 psi 

Fracture number 4 --- 

History matching time 365 day 

        

Fig.18 Sketch of model: horizontal well with              Fig.19 Four stages synthetic seismic-events 

            4 hydraulic fractures 
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Fig.20 Integrated workflow for GA and FMM 

Our workflow details of using a modified genetic algorithm to adjust shale gas reservoir 

and fracture parameters to calibrate the model can be found in Fig. 20. First, key 

parameters are identified using sensitivity analysis. Latin Hypercube Sampling (LHS), 

with a space filling design, is used to construct an initial generation. Unlike simple 

random sampling, the LHS can ensure a full coverage of the range of each variable by 

maximally stratifying each marginal distribution. Microseismic events are incorporated 

to construct a heterogeneous permeability field. Then, each member of the GA 

population is evaluated by running the simulation, based on fast marching method and 

geometric approximation method. This process is repeated and generations are updated 
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until the convergence criteria are satisfied or after obtaining satisfactory results. With the 

matched models, we can check the uncertainty of parameters or reservoir response, and 

the estimated SRV. 

4.2 Integration of Micro-seismic Events 

Microseismic mapping measurements have recently been utilized to help interpreted 

large scale complex hydraulic fracture propagation, especially in unconventional 

reservoirs (Maxwell et al. 2002; Cipolla et al. 2011, 2012). The nature of fracture 

complexity must be clearly understood to select the best stimulation strategy and 

completion design. Cipolla et al (2011) recently proposed two main complex hydraulic 

fracture models to better understand hydraulic fracture complexity, namely 

unconventional fracture model (UFM) (Fig.21) and wire-mesh model (Fig.22).  

 

Fig.21 Unconventional facture model (UFM) workflow 
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It is required for UFM workflow to generate natural facture network or discrete fracture 

network (DFN) based on geological, geophysical, and/or log-based data. Fracture 

treatment data and earth model are input and fracture geometry is generated using a 

DFN. Then, the generated fracture geometry is then compared to the microseismic event 

pattern for consistency. The UFM net pressure should be consistent with the treatment 

data. The uncertainty in microseismic events locations and the possibility that some 

events are induced by stress or poroclastic effects should also be taking into account. If 

the model net pressure is not consistent with actual measurements, or UFM fracture 

geometry is not consistent with microseismic event patterns, the UFM input parameters 

are attuned and another DFN realization is selected. The modification of UFM input 

parameters will be dictated by the availability and reliability of data, typically maximum 

horizontal stress and mechanical properties of the nature fractures.  

 

Fig.22 Wire-mesh model workflow 
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The major difference between the Wire-mesh and UFM is that the Wire-mesh model 

does not require DFN. The Wire-mesh model is pretty straight forward. The fracture 

treatment data and Earth model information are input into the Wire-mesh model. Three 

major parameters, maximum horizontal stress, fracture spacing and roughness factor, are 

calibrated to make the predicted complex fracture geometry consistent with the physics. 

The basic shape of microseismic events can be matched by adjusting the maximum 

horizontal stress and actual net pressure can be matched through modifying fracture 

spacing and roughness factor.  

Inspired by and analogous to the UFM and wire-mesh model described by Cipolla et al 

(2011, 2012), we proposed our method of modeling complex fracture network (Fig.23). 

Instead of comparing the complex fracture geometry induced by fracture treatment data 

and Earth model with microseismic pattern and net pressure, we simply start with the 

microseismic events describing the density of natural fractures. We have a primary 

fracture and an associated ellipsoid stimulated region in each fracture stage. First, the 

primary fracture in each stage is defined, following the orientation of the microseismic 

cloud of that stage. Considering the uncertainty of microseismic event locations and the 

chance that some events are induced by stress or poroclastic effects, the fracture half-

length fx  and the size of the stimulated region are not fixed and can be calibrated to 

match the reservoir performance. We define the ellipsoid of the stimulated region with 

three axes a ,b and c . The effect of stimulated region does not heavily depend on the 

specific shape of the region, but the actual stimulated reservoir volume matters more. In 

order to reduce the number of calibration parameters, some additional constraints are 
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applied. The axis in z  direction, c , is fixed at twice the reservoir thickness to represent 

a fully penetrated fracture. The minor axis, b in horizontal plane can vary within a 

specified range, while the major axis a  is constrained from fracture half length (we 

assume bxa f  ). By using this relationship, we can ensure that the SRV extends 

beyond the fracture half-length.  

  
Fig.23 Proposed workflow to integrate microseismic information, a) microseismic events;  

b) a DFN model; c) generated heterogeneous permeability field 

The microseismic events beyond the ellipsoid are discarded to account for unreliable 

microseismic events far away from perforation. The DFN model is used to generate 

natural fracture network around each microseismic event within the ellipsoid. The 

natural fractures follow certain geostatistical properties (mean and standard deviation for 

fracture length and height) but are assumed to be orthogonal and with fixed azimuths. 

The fracture properties (permeability, height and length) are then assigned to each 
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simulation grid to calculate a property,  khlI . The effective permeability in the 

stimulated region is then linearly distributed from the property: maximum value 

corresponds to enhanced permeability Ek , and minimum value corresponds to matrix 

permeability Mk . The result is a heterogeneous permeability field constrained to 

microseismic events inside the ellipsoid. Notice that all the four facture stages share the 

same value of enhanced permeability Ek and fracture permeability Fk .  

Fig. 24 shows an example of a generated permeability field according to the approach 

we described above. If we filter out the matrix part, Fig. 25 gives us an idea of 

stimulated regions. It is worth mentioning that our SRV is actually less that the volume 

of the ellipsoid because part of grid within the ellipsoid, which has the same value with 

matrix permeability, is treated as matrix.  Further, along with other properties, the 

generated permeability field can be input into our forward model, fast marching method 

and geometric approximation, to obtain simulation results (Fig.26): arrival time map (a), 

drainage volume versus time (b), and production rate versus time (c).   

  

Fig.24 Genearted permeability field           Fig.25 Visualization of the stimulated region 
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                                 (a)                                                                    (b) 

 
(c) 

Fig.26 Simulation results for FMM and geometric approximation: a) Arrival time (days);  

b) Drainage volume vs time(log-log scale);  c) Production rate vs time(semi-log scale) 

4.3 Parameter Estimation and Calibration Results 

The parameters to be estimated via history matching and the associated uncertainties are 

listed in Table 4. They are the permeabilities for the matrix, the enhanced region, the 

fracture, and also, the fracture half-length and the minor axes associate with these 

fractures. A uniform distribution assumption is applied to these parameters. The 

observation data is generated from the reference parameter set, which is also shown in 
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Table 4. The horizontal well is modeled at a constant bottom-hole pressure (BHP) of 

1000 psi. The first year gas production data is utilized to calibrate the model parameters 

and an additional four year well performance prediction is made. As discussed above, 

the fast marching method and the geometric approximation method are applied to 

simulate the rate response. The objective function, i.e. the misfit, for history matching is 

defined as the sum of the squared differences of production rate between the simulation 

results and the reference.  

Table 4. History matching parameters ranges and the reference values 

Uncertainty Variables Base Low High Reference 

Matrix permeability (kM) 12E-5 md 8E-5 md 15E-5 md 10E-5 md 

Enhanced permeability (kE) 0.022 md 0.005 md 0.05 md 0.02 md 

Fracture permeability (kF) 2.4 md 0.5 md 4.0 md 2.50 md 

Fracture1 half length (XF1) 390 ft 300 ft 530 ft 400 ft 

Fracture2 half length (XF2) 600 ft 400 ft 800 ft 650 ft 

Fracture3 half length (XF3) 600 ft 350 ft 700 ft 550 ft 

Fracture4 half length (XF4) 320 ft 250 ft 450 ft 300 ft 

Ellipsoid1 minor axis (b1) 180 ft 150 ft 250 ft 200 ft 

Ellipsoid2 minor axis (b2) 260 ft 200 ft 300 ft 250 ft 

Ellipsoid3 minor axis (b3) 230 ft 200 ft 300 ft 250 ft 

Ellipsoid4 minor axis (b4) 190 ft 170 ft 230 ft 200 ft 

 

Fig.27 Sensitivity analysis of history matching parameters 
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A sensitivity analysis is performed with one-year simulation to evaluate the relative 

influence of various parameters. The sensitivity results are showed in a tornado plot 

(Fig.27). The line in the middle, approximately has a value of 7, shows the objective 

function of the base model. We vary one parameter at a time, keeping others at the base 

values, and rerun the simulation. High (yellow) and low (dark green) correspond to the 

impact of high and low bounds of each parameter. From the sensitivity results, we can 

easily identify that the fracture permeability and enhanced region permeability have the 

most significant influences, followed by the half-lengths of the four fractures. The 

matrix permeability has the least influence. This is due to the short simulation time 

period during which the pressure disturbance has not reached the matrix yet.  

 

Fig.28 Simulation results with initial eighty models (green) compared to reference model (red): 

 a) in semi-log scale; b) in log-log scale 

The genetic algorithm is carried out for 15 generations and each generation has 80 

realizations. The gas production rate for the first generation is shown in Fig. 28, both 

semi-log and log-log plots. The red dots indicate the results for the reference model, and 
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the green lines correspond to the initial models. It is easy to notice the wide range of 

predictions from the initial models, indicating large parameter uncertainties. After 15 

generations, the misfits for all members versus generation number are plotted in Fig.29. 

Clearly, a decreasing trend of the objective function can be observed (considering that 

the value of misfit is in logarithmic form).   

 

Fig.29 The objective function versus generation number 

 

Fig.30 Selected fifty models (green) compared to reference model (red), a) in semi-log scale;  

b) in log-log scale 
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We select the best 50 models with a misfit cut-off as shon by the horizontal line and plot 

the well gas production rate for these models in Fig. 30. The reference data is matched 

quite well and uncertainties reduce significantly compared to the initial models. The 

effectiveness in model calibraiton can also be explaind by comparing the initial and the 

updatd fracture permeability, enhanced region and matrix permeability after history 

matching. These resutls are summarized in boxplot of permeability in Fig. 31. These 

permeabilities are normalized to be range between zero and unity here. The range of 

model parameters in the final population is indicated by the blue box with reference 

indicated by the triangle. The red line stands for the median. After hitory matching of the 

first year production data, the uncertainty range of the fracture and enhanced 

permeability converge to the reference with very narrow uncertainty ranges. That’s 

because they are very sensitive to the produciton response (shown from the sensitivity 

analysis). The uncertainty range of the matrix permeability didn’t reduce so much; it is 

because this parameter can not be well calibrated within just one year simulation. 

 

Fig.31 Permeability (fracture, enhanced and matrix) uncertainties: a) initial range;  

b) updated range 
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Fig.32 CDF plot of total fracture half-length                    Fig.33 CDF plot of Ff kx  

We also estimate the fracture half lengths in each stage during the calibration. Instead of 

examining the individual stage fracture half lengths which are likely to vary 

considerably, we compare the total fracture half lengths from all stages and plot the 

cumulative distribution functions (CDFs) for the initial models (green) and the updated 

models (blue) as shown in Fig.32. The total fracture half length of the reference model is 

1,900 ft as shown by the red vertical line. From these results, we can clearly see the 

reduced uncertainty in updated models as indicated by the reduced range and spread of 

the updated distribution compared to the initial distribution of total fracture half lengths. 

The mean and standard deviation of total fracture half-length for the updated 50 models 

are 1836 ft , and 116 ft respectively. This result compares very favorably to the reference 

model. In Fig.33, We have also shown the cumulative distribution of the composite 

quantity,
Ff kx , which is closely related to the flow across the fracture surfaces. The 
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results are shown in the same format in Fig. 32, and the reduction in uncertainty is even 

more significant here.  

 

Fig.34 Four year predictions with updated models, a) in semi-log scale; b) in log-log scale 

To further assess quality of model calibration and the associated uncertainties, additional 

four-year simulation is carried out to predict the well production performance (Fig.34). 

Green lines stand for history matching period and blue curves indicate prediction period. 

All of prediction lines give a gas rate interval of 0.1 – 0.2 dMscf / at the end of the fifth 

year.  These suggest a very small range of gas production rate due to the model 

calibration. However, there are unresolved uncertainties. For example, the matrix 

permeability, which is not well constrained during the synthetic history matching 

process because the flow in first year is mainly inside the stimulated region. As the 

pressure front reaches the boundary of the stimulated region, matrix permeability plays a 

more and more important role in predicting the production rate. In future application, if 
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matrix permeability is as well calibrated as fracture and enhanced region permeability, 

we can obtain performance prediction with much more confidence.  

4.4 Stimulated Reservoir Volume Estimation 

From our drainage volume calculations, we can estimate the stimulated reservoir volume 

(SRV). As shown in Fig.7 (c), the first plateau in the drainage volume plot indicates the 

pore volume corresponding to the SRV. For this application, we plot drainage volume 

versus time in log-log scale for the reference and the fifty updated models in Fig.35. 

Because of the permeability heterogeneity in the stimulated region, we can only see the 

curves bending here instead of forming a distinct plateau. The inflection point in Fig.35, 

where we see a reversal in concavity is an indication of the SRV pore volume. The two 

dark green lines give us an estimate of the range of the SRV pore volume. 

 

Fig.35 Drainage voule vs time (log-log scale)       Fig.36 CDF plot of SRV pore volume 

The CDFs of the SRV pore volume for the initial and updated models along with that of 

the reference model are plotted in Fig. 36. The SRV pore volume of the reference model 

is 5.534 MMcf . After history matching, the range of the updated SRV pore volume is 
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considerably reduced compared to that of the initial model as shown in Fig.36. The mean 

and standard deviation of the SRV pore volume from the updated models are 5.559 and 

0.367 MMcf respectively.  

As the total SRV matters more than the specific combination of half-lengths of the four 

fracture stages, we are less likely to come up with a very specific shape of these 

fractures, as long as the total stimulated reservoir volume is well calibrated.  In Fig.37, 

The SRV shape of reference model is compared to the stimulated reservoir volumes of a 

selected set of the updated models. We can see that the SRV of each fracture stage can 

vary a lot while the total SRV pore volume is reasonably constrained. The reduced 

uncertainty in the estimated fracture parameters and the SRV leads to improved 

production forecasting and reserve estimation. 

   
the reference model   

 

  
Fig.37 SRV comparison, the reference versus four updated models 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This thesis demonstrates a novel approach to calculate drainage volume and well 

performance in shale gas reservoirs using fast marching method (FMM) combined with 

a geometric pressure approximation. This methodology can account for complex fracture 

geometry and reservoir heterogeneity. The genetic algorithm, a derivative-free direct 

search approach, is applied in our reservoir model calibration workflow. The power and 

utility of our approach has been illustrated using history matching of a shale gas well 

performance data. We have integrated microseismic events into a history matching 

workflow to calibrate fracture/matrix parameters for improved production forecast and 

estimate the SRV regions using calibrated models.  

The main findings from this integrated workflow can be summarized below: 

 The pressure front propagation in reservoirs follows an Eikonal equation 

obtained from an asymptotic solution of the diffusive equation. This Eikonal 

equation can account for reservoir heterogeneity, and be solved efficiently by 

applying a fast marching method (FMM). The fast speed of FMM makes it 

ideally suited for parameter calibration via inverse modeling.  

 This algorithm provides a diffusive time of flight distribution away from the 

source, showing the ‘depth of investigation’ of the pressure front at all flow 

times. It extends the idea of radius of investigation, which is generally limited to 

homogeneous reservoirs with simple flow geometry.  
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 By adding up all the cell pore volumes behind the pressure propagation front, we 

can estimate the drainage volume of a well. It can also be easily visualized, 

describing how drainage volume increases with time after converting the 

diffusive time of flight into physical time with a proposed relationship.  

 Based on the drainage volume provided by the FMM, a geometric approximation 

approach can be applied to estimate the reservoir performance, both well 

production rate under constant pressure constraint and well pressure behavior 

with constant rate constraint. 

 Using FMM combined with geometric approximation, the stimulated reservoir 

volume (SRV) and estimated ultimate recovery (EUR) can be approximated. This 

is helpful for fracture design and other optimization problem.  

 Some specific physics associated with shale gas reservoir, like reservoir 

compaction effects, can be taken into consideration.  

 A stochastic global search approach based upon the genetic algorithm can 

decrease the possibility to converge to a local minimum. It works more 

effectively to match the global parameters when combining with a proxy model 

for the fitness function. 

 Microseismic events have been utilized to help interpret large scale complex 

hydraulic fracture propagation. Here, microseismic information is utilized to 

constrain our factures. We also proposed a method to interpret microseismic 

information into heterogeneous permeability field. 
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5.2 Recommendations 

All the proposed approaches, fast marching method, geometric approximation, 

integration of microseismic information, and model calibration via genetic algorithm, 

can help us better understand and investigate the performance of shale gas reservoirs. 

The results obtained are very encouraging. However, there is still scope for further 

investigation and improvements: 

 Extend the application to more complex grid systems, such as variable grid size, 

local grid refinement and corner point grids, especially accurate calculation for 

the grids with large aspect ratio.  

 Additional studies at high reservoir property contrast situation, for example, early 

time of pressure propagating from fracture to matrix.  

 More physics of shale gas reservoir should be investigated and taken into 

consideration apart from reservoir compaction, like adsorption and desorption, 

Klinkenberg slippage, and Knudsen diffusion. 

 More comprehensive and robust comparison with finite difference method based 

commercial simulator is still needed to increase our confidence. 

 As for the genetic algorithm, it is also necessary to investigate how to reduce the 

possibility for generation collapse. 

 Sensitivity based approach (the sensitivity of drainage volume or diffusive time 

of flight with respect to reservoir properties) might be developed to be applied to 

history matching. 
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NOMENCLATURE 

A   area along the pressure front, ft
2 
[m

2
] 

 

kC    pressure amplitude at the k-th order in Fourier domain 

 

D    standard difference operator 

 

 h   reservoir thickness, ft  

 

 i and j   grid index 

 

 k   permeability, md 

 

 Fk    fracture permeability, md 

 

 Ek    permeability in enhance region, md 

 

 Mk    matrix permeability, md 

 

 M   mass of gas, lbm [kg] 

 

)( pm    pseudo-pressure, psi [kPa] 

 

)(~ pm    pseudo-pressure in Fourier transformed domain, psi [kPa] 

 

 p   pressure, psi [kPa] 

 

p    reservoir average pressure, psi [kPa] 

 

p~    pressure in Fourier transformed domain, psi [kPa] 

 

ip    initial reservoir pressure, psi [kPa] 

 

wfp    well bottom hole pressure, psi [kPa] 

 

p    pressure drop, psi [kPa] 

 

scp    standard condition pressure, psi [kPa] 

 

 q   total gas rate SCF/D [m
3
/d] 
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resq    gas rate at reservoir condition SCF/D [m
3
/d] 

 

wellq    well gas rate SCF/D [m
3
/d] 

 

Dq    dimensionless gas rate 

 

 r   radius of investigation, ft 

 

R    universal gas constant, ft
3 

psi/[R
 
lb-mol]

 

 

 T   reservoir temperature, 
o
F 

 

 Tsc   standard condition temperature, 
o
F 

 

 t   time, hr [day] 

 

pt    pseudo-time, hr [day] 

 

pV    pore volume, ft
3 

 

effpV ,    effective pore volume, ft
3 

 

v


   Darcy velocity, ft
3
/second 

 

x


   spatial coordinate vector, ft [m] 

 

 x   x-coordinate direction 

 

fx    fracture half-length, ft 

 

 y   y-coordinate direction 

 

Z   compression factor, fraction 

 

    hydraulic diffusivity, md/ [cp • psi
-1

] 

 

 geometric factor 

 

    mathematical constant, 3.141592… 
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tc    total compressibility, psi
-1 

 

μ   viscosity, cp [Pa • s] 

 

ρ   gas density, lbm/cu ft [kg/m
3
] 

 

 porosity, fraction 

 

τ diffusive time of flight, hr  

 

    time in Fourier transformed domain 
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APPENDIX A 

ASYMPTOTIC SOLUTION OF THE DIFFUSIVE EQUATION 

The asymptotic method has been widely applied in various disciplines such as optical, 

medical and geophysical imaging (Virieux et al. 1994). We can take an analogy between 

a propagating pressure front and a propagating wave front since many concepts have 

their counterparts in petroleum engineering (Datta-Gupta and King. 2007). Vasco et al 

(2000) gives a high frequency asymptotic solution of the diffusivity equation for an 

impulse source or sink.  

The transient pressure response in a heterogeneous permeable medium is governed by 

the diffusive equation, 

)),()((
),(

)( txpxk
t

txp
cx t


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
  ................................................................ (A.1) 

In the above expression, we have spatially variable porosity )(x


 , permeability )(xk


, and 

constant fluid viscosity , total compressibility tc . By applying a Fourier transform of 

Eq.(A.1), it can be expressed as the following in the frequency domain. 
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We can obtain an asymptotic solution for Eq. (A.2) if we consider a solution in terms of 

inverse powers of i  
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 where, )(x


 is the propagation time of the pressure ‘front’, defined as ‘diffusive time of 

flight’, and )(xCk


is the pressure amplitude at the k-th order. 
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The above expression of asymptotic solution is the sum of an infinite number of 

functions )(xCk


. Fortunately, the first few terms in the series can generally interpret 

important physical quantities. By substituting Eq.(A.3) into Eq.(A.2), we can obtain a 

new form with an infinite number of terms, and each term will contain i  to some 

order. We may consider the sets of terms for any given order. If we consider the highest 

order in i , those of order  2i , we will obtain the expression corresponding to 

the propagation of a ‘pressure front’, which can be expressed as 
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Assuming that )(0 xC


and are non-vanishing, we obtain 

1)()(  xx

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where, )(x


 stands for diffusivity and is defined as, 
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Eq.(A.5) is in the form of widely known as Eikonal Equation. It suggests that the 

pressure ‘front’ propagates in the reservoir with a velocity given by the square root of 

diffusivity. The pressure ‘front’ propagation depends on reservoir and fluid properties, 

and independent of flow rate. Besides, the diffusive time of flight, )(x


 has unit of square 

root of time, which is consistent with scaling behavior of pressure diffusion. 
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APPENDIX B 

DERIVATION OF EQUATIONS FOR HIGHLY COMPRESIBLE 

SHALE GAS FLOW 

In this section, we show the details of derivations for the shale gas flow. Compared to 

water and oil, the specialty with high compressible gas flow is that properties, such as 

porosity, compressibility, and viscosity, are highly depends on pressure. The basic idea 

is express the pressure p and time t in the format of pseudo-pressure )( pm and pseudo-

time pt  respectively, and then re-derive all the flow equations in that pseudo format. We 

will discuss how to derive the diffusive equation, solve the diffusive equation in shale 

gas reservoir utilizing fast marching method, and derive the flow rate based on the 

drainage volume given by FMM.  

B.1 Diffusive Equations 

According to the conservation of mass, we have the governing equation given by 

Eq.(B.1).  

t
xv
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 )()(


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Where,  , v


, )(x


  and  indicate the density, velocity, and spatially variable porosity 

respectively. Combining the equation of state of gas, Eq.(B.2), and Darcy’s law. 

Eq.(B.3), the Eq.(B.1) can be expressed as Eq.(B.4), 
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where, M is the mass, R is the universal gas constant, T is the temperature, 

)( pZ is the compressibility factor, )( p is viscosity, )(xk


is permeability. 
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According to the definition of compressibility )( pct , Eq.(B.5), we can derive the 

formula in Eq.(B.6), 
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If we take the pseudo-pressure )( pm and pseudo-time pt in the format of Eq.(B.7) and 

Eq.(B.8), and substitute them into Eq.(B.4), we can obtain the ultimate formula for the 

diffusive equation shown in Eq.(B.9). 
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B.2 Solution of Diffusive Equation 

Similar to the derivation in Appendix A, by applying a Fourier transform of Eq.(B.9), it 

can be expressed as the following, Eq.(B.10), in the frequency domain 
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We can obtain an asymptotic solution for Eq. (B.10) if we consider a solution in terms of 

inverse powers of i  
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Follow the same derivation steps, we can obtain the Eikonal Equation shown in Eq.(B.12) 
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where, )(x


 stands for diffusivity and is defined as, 
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The difference is that )(x


 describes the propagation front of the pseudo-pressure )( pm . 
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B.3 Expression for Gas Flow Rate 

Based on the equation of state, shown in Eq.(B.2), we can obtain the transformation 

relationship of rate between reservoir condition and standard condition in Eq.(B.14) 
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The rate in reservoir condition can be given by Darcy’s law, Eq.(B.15). Then the rate in 

standard condition can be expressed as in Eq.(B.16), where we combining the  pseudo-

pressure )( pm , Eq.(B.7), also. 
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After obtaining the rate equation in Eq.(B.16), we found it’s quite similar with the Eq.14 

in Chapter 2. Just follow the same steps in Chapter 2, we can finally derive the rate 

equation based on the calculation of drainage volume shown in Eq.(B.17). 
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APPENDIX C 

TRANSFORMATION FROM DIFFUSIVE TIME OF FLIGHT τ TO 

PHYSICAL TIME t 

Through Eq.5 in Chapter 2, we can transform the entire diffusive time of flight field into 

real pressure front arrive time field by the geometric factor   related to flow pattern. 

Such as for linear flow, radial flow and spherical flow, the geometric factor   is 2, 4, 

and 6 respectively.  

In a heterogeneous case, there is no global flow pattern anymore; quite often one flow 

regime is dominant during a certain time period, and then gradually changes to another 

flow regime. Thus,  should be understood in an averaged sense and is related to the 

geometry of the pressure front which can be of arbitrary shape and changing with time. 

This means we lost the exact meaning of the factor  . After verifying with well-known 

flow pattern, we propose the following formula to calculate the geometric factor  , 






ln

)(ln
2)(

d

Vd p
  ............................................................................................. (C.1) 

In the following, we run the cases for simple 1,2,3-dimensiton homogeneous reservoir. 

We present the relationship between the pore volume (drainage volume) and the 

diffusive time of flight  in Fig.38-40 respectively, and the results show great agreement 

with Eq.(C.1). Summary and comparison is given in Table 5.  
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Fig.38 Relationship between pore volume and diffusive time of flight (1-dimension) 

 

Fig.39 Relationship between pore volume and diffusive time of flight (2-dimension) 
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Fig.40 Relationship between pore volume and diffusive time of flight (3-dimension) 

Table 5. The pore volume with diffusive time of flight for different flow regime 

Flow Type pV  )(np fV   Slope in loglog Plot 
rC  

Linear dzdyr 2  dzdy  2  1 2 

Radial hr  2  h 2  2 4 

Spherical 
3

3
4 r  35.1

3
4    3 6 

We also show a more complex synthetic model, which has two barriers in the middle, 

shown in Fig.41. This gives us a radial flow at the beginning, then linear flow, followed 

by approximate radial flow. Based on the proposed relationship in Eq.(C.1), the diffusive 

time of flight can be transformed to physical time t according to Eq.(C.2). 
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Fig.41 More complex synthetic model, a) diffusive time of flight map; b) relationship between 

pore volume and diffusive time of flight 

 


