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ABSTRACT

This dissertation is devoted to the study of self-similar groups and related topics.

It consists of three parts.

The first part is devoted to the study of examples of finitely generated amenable

groups for which every finitely presented cover contains non-abelian free subgroups.

The study of these examples was motivated by natural questions about finiteness

properties of finitely generated groups. We show that many examples of amenable

self-similar groups studied in the literature cannot be covered by finitely presented

amenable groups. We investigate the class of contracting self-similar groups from

this perspective and formulate a general result which is used to detect this property.

As an application we show that almost all known examples of groups of intermediate

growth cannot be covered by finitely presented amenable groups. The latter is related

to the problem of the existence of finitely presented groups of intermediate growth.

The second part focuses on the study of one important example of a self-similar

group called the first Grigorchuk group G, from the viewpoint of profinite groups.

We investigate finite quotients of this group related to presentations and group

(co)homology. As an outcome of this investigation we prove that the the profinite

completion Ĝ of this group is not finitely presented as a profinite group.

The last part focuses on a class of recursive group presentations known as L-

presentations, which appear in the study of self-similar groups. We investigate the

relation of such presentations with the normal subgroup structure of finitely presented

groups and show that normal subgroups with infinite cyclic quotient of finitely pre-

sented groups have such presentations. We apply this result to finitely presented

indicable groups without free sub-semigroups.
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1. INTRODUCTION

The notion of self-similarity has various manifestations in nature, art, physics

and mathematics. Although self-similarity established its place as a central notion in

fractal geometry and dynamical systems long ago, its appearance in algebra is rather

new and starts with the notion of a self-similar group. This class, which has origins in

the theory of automata, caught attention at the end of 1970’s when mathematicians

started discovering examples with unusual properties belonging to this class. Such

examples were either unknown or were not easy to construct. Roughly speaking a

self-similar group is a group of automorphisms of a regular rooted tree which in some

sense inherits the self-similar geometric structure of the tree. Such groups have been

shown to play a central role in various problems in mathematics.

Among these is the celebrated Burnside Problem posed by the British mathe-

matician William Burnside in 1902. He asked whether a group, generated by finitely

many elements each having finite order, needed to be finite. This question, one of

the most influential problems in the history of groups, was eventually answered to

be negative by E.S. Golod [Gol64] using the Golod-Shafarevich construction. Al-

though many researchers hinted at the importance of self-similar groups before, the

first concrete constructions came in the beginning of 80’s. One simple and inge-

nious construction due to R. Grigorchuk [Gri80] sparked the interest in the class of

self-similar groups. This group, known today as the first Grigorchuk Group, serves

as a prototype for the theory of self-similar groups in the years since. In [Gri80]

it was observed that it is a very simple counter example to the Burnside problem.

Its striking property of having intermediate growth was shown in [Gri84], answering

a question posed by John Milnor in [Mil68a] and initiating the study of groups of
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intermediate growth.

Throughout the years, many connections with other areas of mathematics have

been established and problems in diverse fields have been answered with the help of

ideas emanating from the theory of self-similar groups.

It was observed that self-similar groups play an important role in dynamical

systems and ergodic theory. One striking discovery was that such groups appear

naturally in complex dynamics and provide tools for attacking unanswered problems

in this area.

A notion, which has its origins in self-similar groups, is the notion of branching.

This property, which in a sense is dual to self-similarity, led to the introduction of

the class of branch groups which plays an important role in the theory of infinite

groups.

Many problems regarding amenability, a key notion in group theory, have been

answered via examples of self-similar groups. Among these is the problem posed by

M. Day regarding elementary amenable groups [Day57].

Connections to other parts of mathematics such as spectral, algorithmic and com-

binatorial problems, random walks and coding theory have been established through-

out the years. We refer to [GŠ07] and [Gri11a] for nice expositions about self-similar

groups.

In this dissertation, we will touch upon various points of the theory of self-similar

groups. A strong theme is problems regarding presentations of such groups from

different viewpoints. The results are discussed in three main chapters, each having

its own short introduction into the history of the problem under consideration.

The dissertation is organized as follows: Chapter 2 contains preliminaries and

background on various topics related to the material that will be discussed in the

forthcoming chapters. Chapter 3 is devoted to the discussion of the results published
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in [BGDLH13] written in collaboration with Rostislav Grigorchuk and Pierre De La

Harpe. Although most proofs follow the lines of [BGDLH13], various points have

been altered to unify it with the whole of the dissertation. More space has been

devoted to various parts especially to automatically presented groups. Also the

comprehensive appendix of [BGDLH13] is not reproduced here for considerations of

integration and length, but the author encourages interested readers to utilize this

well written appendix. Chapter 4 is related to the results of [Ben12b]. It follows

the structure of [Ben12b] but some proofs have been shortened and some have been

explained in more detail. Also small typos that were undetected in [Ben12b] have

been corrected with clear indications. Chapter 5, is about the results published

in [Ben12a]. It is completely rewritten with more insight into the topic and more

examples. Yet, the proof of main theorem follows the lines of [Ben12a].

3



2. PRELIMINARIES

This chapter contains basics and preliminaries which will be used in the main

parts of the dissertation. The author tried to be as self-contained as possible.

2.1 Rooted trees and their automorphisms

Let X = {0, . . . , d−1} be a finite set. X will serve as an alphabet for our purposes

and the numerical values of its elements are immaterial. We will denote by X∗ the

set consisting of finite sequences (or words) over X, including the empty sequence.

In other words, X∗ is the free monoid generated by X with the binary operation of

concatenation of finite sequences. X∗ has the geometric structure of a regular rooted

tree of degree d: The empty sequence is at the root and sequences of length one are

on the first level, each connected by an edge to the root vertex. In general, each

sequence w ∈ X∗ is connected by an edge to its children {xw | x ∈ X}. This gives

a bijection between X∗ and the vertices of the graph Td we just described. We will

not distinguish between the set of sequences X∗ and the rooted tree Td and use them

interchangeably throughout this thesis. When X = {0, 1}, the resulting tree is called

the binary rooted tree (see Figure 2.1).

Many notions have different wordings whether one thinks X∗ as a set of sequences

or as a graph. For example, each vertex is on a unique level depending on its

(combinatorial) distance from the root vertex. In terms of sequences, the n-th level

consists of sequences of length n which we denote by Xn.

An important associated object is the boundary of the tree ∂X∗. It is the set of

all infinite rays starting from the root vertex and can be identified with the set of

infinite sequences XN. Therefore, the boundary has the structure of a Cantor set.
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Figure 2.1: The binary rooted tree

Let us denote by Aut(X∗) (or Aut(Td) if |X| = d) the group of (graph) auto-

morphism of X∗. In other words, a bijection f on X∗ belongs to Aut(X∗) if it

preserves the incidence relation of vertices. In terms of sequences, this translates

into f preserving prefixes of sequences. From this it follows easily that all automor-

phisms have to fix the root vertex and hence preserve levels of vertices. Therefore

an automorphism permutes the vertices of the same level.

The d-ary rooted tree is a natural self-similar geometric object: Given a vertex

v ∈ X∗ let us denote by vX∗ the subtree hanging down at vertex v (i.e., sequences

starting with v). X∗ and vX∗ are isomorphic via the map φv : w 7→ vw. The

self-similarity of the tree also reflects upon its automorphism group as we shall see

below. First we have a simple but very important definition:

Definition 2.1. Let f ∈ Aut(X∗) and v ∈ X∗. The section of f at the vertex v is

5



the automorphism defined by

fv(w) = (φ−1
f(v) ◦ f ◦ φv)(w) for all w ∈ X∗

in other words, fv is uniquely defined by the equality f(vw) = f(v)fv(w) for all w ∈

X∗.

It is easy to see that the section of an automorphism at a vertex v is indeed an

automorphism of the tree.

Given f ∈ Aut(X∗) where X = {0, . . . , d − 1}, let τf ∈ Sd be the permutation

determined by f by its action on vertices of the first level. It is apparent that f is

uniquely determined by the data (τf ; f0 . . . , fd−1), where τf determines how f acts

on the first level and f0, . . . , fd−1 determine how it acts on the subtrees hanging

down the first level vertices. The following equations are easy to observe from the

definitions:

(fu)v = fuv for all u, v ∈ X∗,

(fg)u = fτg(u)gu for all f, g ∈ Aut(X∗), u ∈ X∗,

τfg = τfτg for all f, g ∈ Aut(X∗).

(2.1)

In the next section we will see algebraic consequences of self-similarity.

2.2 Self-similar groups and groups generated by automata

We refer to the book [Nek05] for a comprehensive source regarding self-similar

groups.

The classical definition of a self-similar group is given only for groups of tree

automorphisms as subgroups which are closed under taking sections of its elements.

We will give here a more general definition which is based on iterated permutational

wreath products. This generality will be used in Chapter 3. Our exposition borrows
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from [Bar13, Nek05]. We begin with basics about permutational wreath products.

Let G and H be two groups and let X be a set on which H acts from the left.

Let GX denote the group of functions f : X → G with finite support. We will write

such a function f as a tuple indexed by X as (fx)x∈X thinking it as an element of the

restricted direct product
∏

x∈X G. There is a natural right action of H on GX (by

automorphisms) given by (fx)x∈X .h = (fh.x)x∈X . The permutational wreath product

corresponding to this data is the semi-direct product:

H oX G := H nGX

The product of two elements in G oX H is given by

(h; (gx)x∈X))(h′; (g′x)x∈X), ) = (hh′; (gh′xg
′
x)x∈X))

If G has a left action on some set Z then H oX G has a natural left action on X ×Z

given by

(h; (gx)x∈X).(y, z) = (h.y, gy.z)

If α : G → G′ is a homomorphism between two groups then there is a natural

homomorphism

1H o α : H oX G −→ H oX G′ (2.2)

given by (h; (gx)x∈X) 7→ (h; (α(gx)x∈X)) where 1H denotes the identity homomor-

phism of H.

The particular situation we will be interested is when X = {0, . . . , d − 1} and

H = Sd where Sd is the symmetric group with its natural left action on X. In

this situation let us write Sd o G for Sd oX G. Denote an arbitrary element by
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(τ ; g0, . . . , gd−1) where τ ∈ Sd and g0, . . . , gd−1 ∈ G.

The iterated permutational wreath products are defined inductively as

Sd on G =


G for n = 0

Sd o (Sd on−1 G) for n ≥ 1.

We have the following associativity of permutational wreath products : for a H-set Y

and a K-set X, the canonical mapping

K oX (H oY G) −→ (K oX H) oX×Y G(
k;
(
hx; (gx,y)y∈Y

)
x∈X

)
7−→

((
k; (hx)x∈X

)
;
(
gx,y
)

(x,y)∈X×Y

)
is an isomorphism of groups (this is standard, see e.g. [Mel95, Chapter 1, Theorem

3.2]). In particular, we have

Sd on G = Sd o (Sd on−1 G) = (Sd on−1 Sd) oG = S
(n)
d nGXd

where S
(n)
d is a subgroup of Sdn defined inductively by

S
(n)
d =


Sd for n = 0

Sd o S(n−1)
d for n ≥ 1.

and acting onto Xn from the left. We write

(τ ; (gv)v∈Xn) with gv ∈ G for all v ∈ Xn and τ ∈ S(n)
d

for a typical element of Sd on G.

Definition 2.2. Let G be a group and d ≥ 2 an integer. A self-similar structure of

8



degree d on G is a homomorphism

Φ : G −→ Sd oG

A self-similar group is a pair (G,Φ). When Φ is clear from the context, we will

simply call G a self-similar group.

If (G,Φ) is a self-similar group, the construction (2.2) gives rise to a sequence of

homomorphisms

Φn : G
Φn−1−→ Sd on−1 G

1dn−1 oΦ−→ Sd on−1 (Sd oG) = Sd on G (2.3)

for n ≥ 2; we write Φ0 = idG and Φ1 = Φ. Note that, if Φ is injective, so is Φn for

all n ≥ 0. It is routine to check that Φm+n is the composition

Φm+n : G
Φn−→ Sd on G

1dn oΦm−→ Sd on (Sd om G) = Sd om+n G (2.4)

for all m,n ≥ 0. The composition of Φn and the quotient map Sd on G −→ S
(n)
d is a

homomorphism

G −→ S
(n)
d , g 7−→ τ (n)

g . (2.5)

Thus, introducing the v-coordinates of Φn(·), we have

Φn(g) =
(
τ (n)
g ; (gv)v∈Xn

)
∈ S

(n)
d oXn G = Sd on G

for all g ∈ G. Note that

τ (n)
g =

(
τ (1)
g ;
(
τ (n−1)
gx

)
x∈X

)
∈ Sd o S(n−1)

d = S
(n)
d (2.6)

9



for all g ∈ G and n ≥ 1.

A self-similar group (G,Φ) of degree d defines a left action of G onto the regular

d-ary tree X∗ = {0, . . . , d − 1}∗ via the homomorphisms (2.5) i.e., for v ∈ X∗ with

|v| = n and g ∈ G we have

g(v) = τ (n)
g (v)

For n ≥ 1 and v ∈ Xn, we have the vertex and level stabilizers

StG(v) =
{
g ∈ G | τ (n)

g (v) = v
}
, StG(n) =

⋂
|v|=n

StG(v) (2.7)

and we have the homomorphisms

Φv : StG(v) −→ G, g 7−→ gv (2.8)

where gv = Φv(g) is the v-coordinate of Φn(g).

Lemma 2.1. With the notation above,

guv = (gu)v, (gh)u = gτh(u)hu ; and (g−1)v =
(
gτg−1 (u)

)−1

Proof. Straightforward from the definitions.

Recall from Definition 2.1 that the section of an automorphism f ∈ Aut(X∗)

at the vertex x ∈ X is an automorphism fx uniquely determined by the equation

f(xv) = f(x)fx(v) for all v ∈ X∗. Hence, given g ∈ G and x ∈ X, v ∈ X∗, |v| = n,

by virtue of equation (2.6) and the action of Sd o Sn−1
d on Xn, we have

g(xv) = τ (n+1)
g (xv) = τ (1)

g (x)τ (n)
gx (v) = g(x)gx(v)

10



Therefore, it follows that the section of the automorphism defined by g at the vertex

x ∈ X is given by the action of gx. This justifies the notational similarities of a

section and of the x coordinate of g ∈ G of its image under Φ.

Observe that the section of an arbitrary element g ∈ G at an arbitrary vertex

x ∈ X belongs to G. This brings us to the classical definition of a self-similar group:

Definition 2.3. Let X = {0, . . . , d − 1}. A subgroup G ≤ Aut(X∗) is called self-

similar if for every g ∈ G and every x ∈ X, the section gx (as in Definition 2.1) is

again an element of G. i.e., G is closed under taking sections.

Note that equations (2.1) show that we have group isomorphism Φ : Aut(X∗) −→

Sd o Aut(X∗) given by

Φ(f) = (τf ; f0, . . . , fd−1)

Hence, Definition 2.3 translates into the following: A subgroup G ≤ Aut(X∗) is self-

similar if the restriction of Φ : Aut(X∗) −→ Sd o Aut(X∗) induces a monomorphism

G −→ Sd oG. Note that, in general this will not be an isomorphism.

We see that every self-similar subgroup G ≤ Aut(X∗) (in the sense of Definition

2.3) gives a self-similar pair (G,Φ) in the sense of 2.2 via the canonical map Φ

described above. We will always consider this canonical self-similarity structure

when the group in consideration is perceived as as a subgroup of the automorphism

group of a rooted tree.

The difference between the two definitions of self-similarity is that the first defi-

nition gives an action onto the tree which may or may not be faithful.

Definition 2.4. A self-similar group (G,Φ) of degree d is called faithful if the action

induced onto the tree X∗ is faithful, where X = {0, . . . , d− 1}.

Note that if (G,Φ) is faithful then necessarily Φ is injective but the converse is

11



not true.

Finitely generated (faithful) self-similar groups can be constructed using the fol-

lowing general idea:

Start with a list of symbols {a1, . . . , an} which will serve as generators. Also let

{σ1, . . . , σn} ⊂ Sd. Consider the system:

a1 = (σ1;w10, . . . , w1(d−1))

a2 = (σ2;w20, . . . , w2(d−1))

. . . . . . . . .

an = (σn;wn0, . . . , wn(d−1))

where wij are words over the alphabet {a1, . . . , an}±. Such a system is called a wreath

recursion and defines uniquely n elements in Aut(X∗) where X = {0, . . . , d − 1},

which again will be denoted by {a1, . . . , an}. Then we can look at the subgroup

G = 〈a1, . . . , an〉 ≤ Aut(X∗) which by construction is clearly a self-similar group.

A special case is when all wij are of length 1. In this case the group obtained

belongs to a special family of self-similar groups, namely the groups generated by

finite automata. The language of automata in the theory of self-similar groups is a

fundamental one. We refer to [GNS00] for a comprehensive source related to groups

generated by automata.

Definition 2.5. A Mealy automaton is a tuple A = (Q,X, τ, λ) where Q is a set

called the set of states, X is the alphabet, τ : Q ×X → Q is a function, called the

transition function, and λ : Q×X → X is a function, called the output function.

A Mealy automaton can be thought as a machine operating on sequences over the

alphabet X. Given a state q ∈ Q, it acts on a sequence w = x1x2x3 . . . xn ∈ X∗ as

follows: Initially the machine is at state q1 = q and x1 is changed to λ(q1, x1) while

12



the state is changed to q2 = τ(q1, x1). Then the machine proceeds to the next letter

x2 changing it to λ(q2, x2) while also changing the current state to q3 = τ(q2, x2) and

continuing in this fashion until all letters of w have been processed. This gives for

each q ∈ Q a transformation q : X∗ → X∗ which is easily seen to preserve prefixes.

If for all q ∈ Q the induced transformation on X∗ invertible then the automaton

is said to be invertible. Hence for an invertible automaton, the set of states define

automorphisms of the rooted tree X∗.

Definition 2.6. A group of automorphisms generated by the states of an invertible

automaton A is called an automaton group.

A priori, the class of (faithful) self-similar groups and groups generated by invert-

ible automata coincide: Given self-similar G ≤ Aut(X∗), one can build an automa-

ton with the set of states as G over the alphabet X where the transition function is

τ : G×X → X is given by τ(g, x) = gx and the output function λ : G×X → X is

given by λ(g, x) = g(x).

A more interesting class is the class of groups generated by finite invertible au-

tomata. In literature the term “automaton group” usually refers to this class. Classi-

fying automaton groups and determining which groups can be realized as automaton

groups is a very active area and there are various publications devoted for these

problems some of which are [BGK+07, BGK+09, BGK+08, SVV11, VV07, VV10].

2.2.1 Contracting self-similar groups

Definition 2.7. A self-similar group (G,Φ) is contracting if there is a finite subset

M⊂ G such that for all g ∈ G, there exists an integer k ≥ 0, such that gv ∈M for

all v ∈ X∗ with |v| ≥ k.
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The smallest such M, namely

N :=
⋃
g∈G

⋂
k≥0

{g ∈ G | ∃ h ∈ G, ` ≥ k, v ∈ X` with hv = g}

is called the nucleus of (G,Φ).

Contracting self-similar groups constitute a very important subclass of self-similar

groups. Almost all interesting properties of self-similar groups are shown via the

contracting property. In contrast, non-contracting groups are usually very hard to

deal with. It has been conjectured that all contracting groups are amenable.

If G is finitely generated, the contracting property translates into length reduction

under taking sections, hence justifying the name contracting :

Proposition 2.1. [Nek05, Proposition 2.11.11] If G is a finitely generated contract-

ing self-similar group then there exists M,n > 0 such that for every g ∈ G and every

v ∈ Xn we have

|gv| ≤
|g|
2

+M

This allows proofs by induction on the length of elements. Various properties,

such as periodicity or intermediate growth, are proven by inductive arguments.

All examples we are going to discuss belong to the class of contracting groups.

Moreover, our examples satisfy the following property:

Definition 2.8. A self-similar group (G,Φ) is self-replicating, if for all g ∈ G and

x ∈ X there is an element h ∈ StG(x) such that hx = g. In other words, for all

x ∈ X the homomorphism Φx defined in (2.8) is onto.

Note that in literature the terminologies fractal or recurrent are also used for the

self-replicating property. This property plays an important role and one use is the

following proposition which will be used in Chapter 3:
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Proposition 2.2. Let (G,Φ) be a contracting self-similar group with nucleus N , as

above.

(i) For g ∈ N and x ∈ X, we have gx ∈ N .

(ii) If (G,Φ) is self-replicating and G is finitely generated, then N generates G.

Proof. For g ∈ N , there exist h ∈ G, k ≥ 0, and v ∈ Xk such that hv = g and

hw ∈ N for all w ∈ X∗ with |w| ≥ k (otherwise, N would not be minimal). Hence

gx = (hv)x = hvx ∈ N for all x ∈ X. This proves (i).

For (ii), we paraphrase [Nek05, Lemma 2.11.3]. Denote by 〈N〉 the subgroup of G

generated by N . Let S be a symmetric finite generating set of G. For all s ∈ S, there

exists ks ≥ 0 such that sv ∈ N for all v ∈ X∗ with |v| ≥ ks. Set k = max{ks | s ∈ S}.

Let g ∈ G and v ∈ X∗ with |v| ≥ k. There exist s1 . . . , sm ∈ S with g = s1 · · · sm,

so that

gv = (s1)v(s2 · · · sm)vs1 = · · ·

= (s1)v(s2)vs1(s3)vs1s2 · · · (sm)vs1···sm−1 ∈ 〈N〉,

where the last inclusion follows from |v| = |vs1| = · · · |vs1 · · · sm−1| ≥ k. In particu-

lar, the image of Φv, as defined in (2.8), is contained in 〈N〉.

If (G,Φ) is self replicating, then Φv is onto for all v ∈ X∗ with |v| ≥ 1. The

conclusion follows.

2.2.2 Examples of self-similar groups

Firstly, the full automorphism group Aut(X∗) (with its canonical structure) is

clearly a self-similar group. In fact, in this case the homomorphism Φ is actually

an isomorphism Aut(X∗) ∼= Sd o Aut(X∗) and hence Aut(X∗) has the form of an

infinitely iterated wreath product of symmetric groups. Another simple example is

the realization of the group of integers as a self-similar group via the wreath recursion

a = (σ : 1, . . . , 1, a) where σ ∈ Sd is the cyclic permutation (01 . . . d − 1). Thus Z
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can be given the structure of a self-similar group of degree d for any d ≥ 2.

A much more interesting example is the so called first Grigorchuk Group G. This

group, introduced in [Gri80], lies at the heart of the study of self-similar groups. G

is the subgroup the automorphism group of the binary rooted tree generated by four

elements denoted traditionally by {a, b, c, d} which are given by the following wreath

recursion:

a = (σ : 1, 1)

b = (e; a, c)

c = (e; a, d)

b = (e; 1, b)

where S2 = {e, σ}. As mentioned before, this particular group has various interesting

properties. We will touch upon some of these properties and refer the reader to

[Gri05, dlH00] for nice expositions about this group.

To begin with, G is a finitely generated infinite 2-group [Gri80], hence a counter

example to the celebrated Burnside Problem which asks whether a finitely generated

periodic group is necessarily finite. Although the first counter examples to the Burn-

side Problem were constructed by Golod and Shafarevich [GŠ64], G is one of the

first “tangible” examples of such groups. More importantly, G is the first example

of a group which has intermediate growth. That is, the size of the balls in its Cayley

graph grows faster than any polynomial but slower than the exponential function

(see Section 2.6). This was an answer to a question posed by J.Milnor [Mil68b]

and has various consequences ( see again Section 2.6). G is also important related

to branching, amenability and recursive presentations, properties which will be dis-

cussed in Sections 2.5, 2.6 and 2.8 respectively. Also its profinite completion Ĝ is an

interesting object with important properties which are discussed in Chapter 4. Let us

also mention that G has uncountably many relatives (hence justifying the name first

16



Grigorchuk group) which will be introduced in Section 2.4. G (and its relatives) have

also interesting properties related to random walks, spectral graph theory, dynamical

systems, algorithmic problems and various other branches of mathematics.

Our next example is the so called Basilica group B. It is a self-similar subgroup

of the binary rooted tree given by the following wreath recursion:

a = (σ; b, 1)

b = (e; a, 1)

This group was introduced in [GŻ02a, GŻ02b]. Its name comes from its rela-

tion to the Julia set of the quadratic polynomial p(z) = z2 − 1 which resembles the

Basilica Cattedrale Pariarcale di San Marco . The relation comes via the identifi-

cation of B as the iterated monodromy group of the polynomial p(z) = z2 − 1 (see

[Nek05, BGN03]). Unlike G, B is torsion free and has exponential growth. The most

important properties of B are related to amenability and random walks which will

be mentioned in Section 2.6 in detail.

The next example we will see is known as the Gupta-Sidki Group and will be

denoted by GS throughout this dissertation. It is the 2-generated subgroup of auto-

morphisms of the ternary rooted tree given by the wreath recursion:

a = (τ ; 1, 1, 1)

b = (e; a, a−1, b)

where τ is the cyclic permutation (012). This infinite 3-group, introduced in [GS83],

shares various properties with G, a major difference being that the growth type of

GS remains unknown.

The next example we will introduce will be denoted by I and is the iterated mon-
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odromy group of the polynomial z2 + i. It is a 3-generated group of automorphisms

of the binary rooted tree given by the wreath recursion

a = (τ ; 1, 1)

b = (e; a, c)

c = (e; b, 1)

This group was studied in detail in [GSŠ07] and was shown to be of intermediate

growth in [BP06].

The Fabrykowski-Gupta group FG is the 2-generated group of ternary tree auto-

morphisms defined by the wreath recursion

a = (τ ; 1, 1, 1)

b = (e; a, 1, b)

It was introduced and studied in [FG85, FG91, BP09] and shown to be of intermediate

growth. Observed to be the iterated monodromy group of a cubic polynomial in

[Nek11].

Our last example is the ternary Hanoi Towers group H. It is the 3-generated

group of automorphisms of the ternary rooted tree given by

a = (τ1,2; a, 1, 1)

b = (τ0,2; 1, b, 1)

c = (τ0,1; 1, 1, c)

where τi,j is the transposition of S3 exchanging i and j. This group was introduced

in [GŠ06] as a model for the well-known Hanoi Towers problem. H is known to have

exponential growth.
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2.3 Topology in the space of marked groups

A marked k-generated group is a pair (G,S) where G is a group with an ordered

set S = {s1, . . . , sk} of (not necessarily distinct) generators of G. The canonical map

between two marked k-generated groups (G,S) and (H,T ) is the map that sends

si to ti for i = 1, 2, . . . , k. Let Mk denote the space of marked k-generated groups

consisting of marked k-generated groups where two marked groups are identified

whenever the canonical map between them extends to an isomorphism of the groups.

There is a natural metric on Mk: Two marked groups (G,S), (H,T ) are of dis-

tance 2−m where m is the largest natural number such that the canonical map be-

tween (G,S) and (H,T ) extends to an isomorphism (of labeled graphs) from the

ball of radius m (around the identity) in the Cayley graph of (G,S) onto the ball

of radius m in the Cayley graph of (H,T ). This makes Mk into a compact, totally

disconnected topological space see [Gri84]. The resulting topology is called by many

names in literature usually associated with the names Cayley or Grigorchuk.

Another description of the topology on Mk is by identifying it with the set of

normal subgroups of the free group Fk and using the idea of furnishing the space of

subgroups of a group with a topology which goes back to Chabauty [Cha50]. Let

Fk be a free group of rank k and X = {x1, . . . , xk} a fixed ordered basis. To every

point (G,S) inMk there corresponds a unique normal subgroup ker πG of Fk where

πG : Fk → G is the canonical surjection sending xi to si, i = 1, . . . , k. It is easily

seen that this gives a bijection from Mk to the set of normal subgroups of Fk. The

latter has a natural topology inherited from the space of all subset of Fk which has

a natural Tychonoff topology. A set of basis elements for this topology are given by
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sets of the form

OA,B = {N C Fk | A ⊂ N and B ∩N = ∅}

where A,B range over finite subsets of Fk. It is also completely metrizable with

the following metric: d(N,K) = 2−m where m is the largest integer such that N ∩

BFk
X (m) = K ∩BFk

X (m) and BFk
X (m) denotes the ball of radius m around the identity

in the Cayley graph of Fk. This topology is usually called the Chabauty topology in

literature. See [Gri84], [Cha00], [CG05], [CSC10] for more on this topology.

Amongst various occasions, one instance where this topology was used in cru-

cial way was in [Gri84] by defining and proving structural results about a family

of 2-groups (see Section 2.4). An important role is played by the following basic

observation which is well known:

Proposition 2.3. Let
(
(Gn, Sn)

)
n≥1

be a converging sequence in Mk; set (G,S) =

limn→∞(Gn, Sn). Let Γ be a finitely presented group; assume there exists a cover

π : Γ� G. Then Γ is a cover of Gn for n large enough.

Proof. Denote as above by (s1, . . . , sk) an ordered free basis of Fk. Let pn : Fk � Gn

and p : Fk � G be the free covers corresponding to (Gn, Sn) and (G,S) respectively.

Set Nn = ker(pn) and N = ker(p). Let (t1, . . . , t`) an ordered generating set of Γ.

Consider the free group F` on an ordered basis U = (u1, . . . , u`) and the free cover

q : F` � Γ defined by q(uj) = tj for j = 1, . . . , `.

Since Γ is finitely presented, there exists a finite subset R ⊂ F` of words v1, . . . , vm

in the letters of U ∪ U−1 such that ker(q) is the normal subgroup of F` generated

by R, namely such that 〈U | R〉 is a presentation of Γ. For j ∈ {1, . . . , `}, choose a

word wj in the letters p(s1), . . . , p(sk) and their inverses such that π(tj) = wj. Let

w̃j be the word in {s1, s
−1
1 , . . . , sk, s

−1
k } obtained by substitution of s±1

i in place of
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p(si)
±1; observe that p(w̃j) = wj = π(tj). Consider the homomorphism

h : F` −→ Fk defined by h(uj) = w̃j (1 ≤ j ≤ `).

Then ph(uj) = p(w̃j) = wj = π(tj) = πq(uj) for all j, so that ph = πq, and therefore

h(R) ⊂ N .

The last inclusion means that the open subset

O′ := {M / Fk : h(R) ⊂M} =
m⋂
i=1

O∅,{h(ri)}

is a neighborhood of N in Mk. Hence, for n large enough, we have Nn ∈ O′ and

therefore h(R) ⊂ Nn.

Denote by 〈〈T 〉〉 the normal subgroup of a group H generated by a subset T ⊂ H.

Let

h1 : Γ = F`/〈〈R〉〉 −→ Fk/〈〈h(R)〉〉

be the cover induced by h, and

h2 : Fk/〈〈h(R)〉〉 −→ Fk/Nn = Gn

that defined by the inclusion 〈〈h(R)〉〉 ⊂ Nn (for n� 1). The composition h2h1 is a

cover Γ� Gn, and this concludes the proof.

2.4 Grigorchuk 2-groups

In this section we will define a family of groups which are in a sense analogue

to G and share many common properties with it. The original definition of these

groups given in [Gri84] is in terms of (Lebesgue) measure preserving transformations

of the unit interval. Here we will take the alternative approach and define them in

21



terms of automorphism of the binary rooted tree. Although these groups are not

necessarily self-similar, as we will see, are closely related to self-similar groups. The

main importance of this family is that it not only provides examples of groups of

intermediate growth, but also provides examples for which the growth function has

a wide range of different behavior. We refer to [BGV13] for a detailed discussion of

growth behavior of groups belonging to this family.

Let Ω denote the Cantor space {0, 1, 2}N of all infinite sequences of 0’s, 1’s and

2’s, with the product topology. Denote by Ω− the countable subspace of eventually

constant sequences, by Ω+ its complement, and by Ω0 the subspace of sequences with

infinitely many occurrences of each of 0, 1, 2; thus

Ω0 ⊂ Ω+ ⊂ Ω = Ω+ t Ω−.

We denote by σ the shift on Ω, defined by (σ(ω))n = ωn+1 for all n ≥ 1.

For each ω ∈ Ω we will define a group Gω ≤ Aut(X∗) where X = {0, 1}. Each

group Gω will be generated by four automorphisms denoted by Sω = {a, bω, cω, dω}.

The action of these generators are as follows: For v ∈ {0, 1}∗

a(0v) = 1v and a(1v) = 0v

bω(0v) = 0β(ω1)(v) cω(0v) = 0ζ(ω1)(v) dω(0v) = 0δ(ω1)(v)

bω(1v) = 1bσω(v) cω(1v) = 1cσω(v) dω(1v) = 1dσω(v)

where

β(0) = a β(1) = a β(2) = 1

ζ(0) = a ζ(1) = 1 ζ(2) = a

δ(0) = 1 δ(1) = a δ(2) = a
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This action defines an embedding into the permutational wreath product

Φω : Gω → S2 n (Gσ(ω) × Gσ(ω))

a 7→ (τ ; 1 , 1)

bω 7→ (e ; β(ω1) , bσ(ω))

cω 7→ (e ; ζ(ω1) , cσ(ω))

dω 7→ (e ; δ(ω1) , dσ(ω))

where S2 = {e, τ}. It is clear from the definitions that we have the following equali-

ties:

Φω(acωa) =
(
bσ(ω), β(ω1)

)
Φω(adωa) =

(
cσ(ω), ζ(ω1)

)
Φω(abωa) =

(
dσ(ω), δ(ω1)

)
a2 = b2

ω = c2
ω = d2

ω = bωcωdω = 1.

(2.9)

It follows from the last line of (2.9) that any element of Gω can be written as

(∗)a ∗ a ∗ · · · a(∗) (2.10)

with ∗ ∈ {bω, cω, dω}, (∗) ∈ {1, bω, cω, dω}, and n ≥ 0 occurrences of a.

Although this does not give a self-similar structure in general, we always have an

embedding Φω : Gω −→ S2 o Gσ(ω) which enables us to adapt many situation suited

for self-similar groups for this family. Note that when ω = 012012012 . . . then the

corresponding group Gω is isomorphic to the first Grigorchuk group G.

A desired property would be that the subset {(Gω, Sω) | ω ∈ Ω} ⊂ M4 is

homeomorphic to Ω via (Gω, Sω) 7→ ω. It can be observed that this is not true and

one needs to replace the countably many groups {Gω | ω ∈ Ω−}, which consists
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of virtually free abelian groups, with appropriate limits. In [Gri84] this family was

slightly modified into a family {G̃ω | ω ∈ Ω} where G̃ω = Gω if ω ∈ Ω+. Regarding

this new family we have the following:

Theorem 2.1.

(i) For ω ∈ Ω, G̃ω is an infinite 3-generated group.

(ii) For ω ∈ Ω+, G̃ω is a 2-group.

(iii) For ω ∈ Ω−, G̃ω is virtually metabelian and of exponential growth.

(iv) For ω ∈ Ω \ Ω− the group G̃ω has intermediate growth.

(v) The mapping Ω −→M4, ω 7−→ (G̃ω, S̃ω) is a homeomorphism onto its image.

(vi) For ω, ω′ ∈ Ω, the groups Gω and Gω′ are isomorphic if and only if ω′ = η(ω)

for some permutation η of {0, 1, 2}.

Proof. i)− v) are proven in [Gri84]. For part vi) see [Nek05, Theorem 2.10.13].

2.5 Branch groups

Another important class of groups of tree automorphisms is the class of branch

groups. We refer to [Gri00, BGŠ03] for comprehensive sources regarding this class.

Definition 2.9. For an automorphism g ∈ Aut(X∗) let supp(g) denote the set

of vertices on which g acts non-trivially, i.e., its support. Given a subgroup G of

Aut(X∗) and a vertex v ∈ X∗, let RistG(v) = {g ∈ G | supp(g) ⊂ vX∗} be the

subgroup consisting of elements of G which act trivially outside the subtree at v.

This subgroup is called the rigid stabilizer of G at v.
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For n > 0 let

RistG(n) =

〈 ⋃
v∈Xn

RistG(v)

〉

be the rigid level stabilizer of level n. Clearly rigid stabilizers corresponding to

distinct vertices of the same level commute. Hence we have

RistG(n) =
∏
v∈Xn

RistG(v)

Definition 2.10. A subgroup G of Aut(X∗) is called a branch group (resp. weakly

branch group) if it acts transitively on the levels of the tree X∗ and the the rigid

level stabilizers RistG(n), n ≥ 1 have finite index in G (resp. are non-trivial).

We remark that such groups are sometimes called geometric branch groups. There

is a more general notion of an algebraic branch group (see [Gri00]).

Definition 2.10 has two immediate algebraic consequences, firstly, every branch

group has trivial center and every non-trivial homomorphic image of a branch group

is virtually abelian [Gri00]. More interestingly, branch groups constitute one of the

tree classes in the classification of just-infinite groups, i.e., infinite groups whose

nontrivial homomorphic images are finite [Gri00].

Definition 2.11. A level transitive self-similar subgroup G ≤ Aut(X∗) is called a

regular branch group over a finite index normal subgroup K if

K × . . .×K ≤ Φ(StG(1) ∩K)

where Φ : G → Sd o G is as before. If K is only nontrivial then G is called a weakly

regular branch group.

It is easy to see that a regular (weakly) branch group is a (weakly) branch group
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in the sense of Definition 2.10. Regarding our examples in Section 2.2 we have:

Theorem 2.2.

1. G is regular branch group over its subgroup K = 〈〈(ab)2〉〉G.

2. B is weakly regular branch over its commutator subgroup B′ but is not a branch

group.

3. I is regular branch group over the subgroup N = 〈〈[a, b], [b, c]〉〉I

4. GS,FG and H are regular branch groups over their commutator subgroups.

Proof.

1. See [dlH00]

2. See [GŻ02a]

3. See [GSŠ07]

4. See [BGŠ03] and [GŠ06]

2.6 Amenable groups

The notion of amenability is perhaps one of the unique notions in mathematics

which has deep connections and applications to a wide and seemingly unrelated

areas. Thus, there is a long list of equivalent definitions of amenability, each being

interesting from a certain point of view. The following is the classical definition for

groups which is due to J. Von Neumann [vN29], it has various versions for other

structures such as graphs, algebras, Banach spaces etc.
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Definition 2.12. A group G is called amenable if there is a finitely additive proba-

bility measure µ defined on all subset of G which is left-invariant i.e.,

µ(E) = µ(gE)

for any subset E of G and any g ∈ G.

Since its introduction, the search for an “algebraic” description of the class of

amenable groups was a driving force behind many developments in modern group

theory. The following basic facts were already observed by Von Neumann:

Theorem 2.3. [vN29]

i) The class of amenable groups AG is closed under the taking subgroups, taking

homomorphic images, taking extensions and taking directed unions.

ii) A free group of rank 2 is not amenable.

Let us denote by NF the class of groups not containing non-abelian free sub-

groups. Also let EG denote the class of elementary amenable groups which is the

smallest class of groups containing finite and abelian groups and is closed under the

operations of part i) of Theorem 2.3. A corollary of Theorem 2.3 are the inclusions

EG ⊂ AG ⊂ NF

Day asked in [Day57] whether any of these inclusions are actually equalities. The

second inclusion was shown to be strict by Olshanskii [Ol′80] by constructing non-

amenable groups for which every proper subgroup is cyclic. The first inclusion was

also shown to be strict by Grigorchuk [Gri84]. The idea relies on group growth:
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Definition 2.13. If G is a group with a finite generating set S, one has a length

function given by |g|S = min{n | g = s1 . . . , sn si ∈ S±}. The growth function of G

with respect to S is given by

γSG(n) = |{g ∈ G | |g|S ≤ n}|

For two monotone functions f1, f2 : N → N, let us write f1 � f2 if there is a

constant C > 0 such that f1(n) ≤ Cf2(Cn) for all n. This induces an equivalence

relation ∼ on such functions, for which f1 ∼ f2 if f1 � f2 and f2 � f1. It is easy

to observe that all growth functions of a group (corresponding to different finite

generating sets) are ∼ equivalent and this allows one to speak about the growth

function γG of a group, meaning the ∼ equivalence class.

There are basically three types of growth for groups: polynomial growth if γG � nd

for some d > 0, exponential growth if γG ∼ en and intermediate growth when neither

of the previous happens.

Theorem 2.4.

i) Groups of subexponential growth are amenable.

ii) The class EG does not contain groups of intermediate growth.

Proof. i) is well known (see [CSC10]). ii) is proven in [Cho80].

Therefore the groups Gω, ω ∈ Ω+ of Section 2.4 provide examples in the class

AG \ EG and are the first examples of such groups. See Section 2.8 for finitely

presented examples in this class.

Motivated by this, Grigorchuk introduced the class SG of subexponentially amenable

groups as the class containing all groups of subexponential growth and is closed un-
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der the operations as in part i) of Theorem 2.3 and asked whether the inclusion

SG ⊂ AG is strict or not.

Theorem 2.5. The Basilica group B belongs to AG \BG.

Proof. The fact that B /∈ SG was proven in [GŻ02a] and amenability of B was shown

in [BV05].

Let us mention that our other examples GS, I,FG,H are amenable by a gen-

eral result proven in [BKN10] which shows that all groups generated by a bounded

automaton are amenable.

2.7 Profinite groups

We refer the reader to [Wil98, RZ10] for comprehensive sources about profinite

groups.

Definition 2.14. Let C be a class of finite groups. A group G is called a pro-C group

if it is an inverse limit of C groups.

Throughout our discussion we will be mainly concerned with the case when C is

the class of all finite groups or of finite p-groups where p is a prime number. In these

cases we will talk about the class of profinite groups or the class of pro-p groups.

Let G be a group and let N be a family of finite index normal subgroups of

G which is filtered from below i.e., for every N1, N2 ∈ N , there is N3 ∈ N such

that N3 ⊂ N1 ∩ N2. This property implies that the set {G/N | N ∈ N} forms an

inverse system with respect to the order N1 � N2 if N2 ⊂ N1 and the canonical maps

ϕN2,N2 : G/N2 → G/N1.

Definition 2.15. The completion of G with respect to N is the inverse limit

KN (G) = lim
←−N∈N

G/N
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If C is a class of finite groups and N = {N C G | G/N ∈ C}, then the correspond-

ing completion is called the pro-C completion. In particular, one has the profinite

completion, denoted by Ĝ and the pro-p completion, denoted by Ĝp.

GivenN as above, one can make G into a topological group by consideringN as a

neighborhood basis for the identity element in G. Then one has a natural continuous

homomorphism ι : G → KN (G) which has dense image and is injective if and only

if
⋂
N∈N

N = {1}. In the case when N = {N C G | G/N ∈ C}, the latter condition is

equivalent to G being residually C.

The following well known lemma will be used in the sequel.

Lemma 2.2. Suppose N1 ⊂ N2 are two families of finite index normal subgroups

of G which are filtered from below. Suppose N1 is cofinal in N2, that is, for every

N ∈ N1, there is K ∈ N2 such that K ⊂ N . Then KN1(G) ∼= KN2(G).

Proof. See [RZ10, Lemma 1.1.9]

2.7.1 Aut(Tk) as a profinite group

The automorphism group of the k-ary rooted tree has a natural structure of a

profinite group and this structure can be defined in various ways: Let T [n]
k denote the

finite k-ary tree consisting of levels up to n and Aut(T [n]
k ) denote its automorphism

group. For n > m we have the map ϕnm : Aut(T [n]
k )→ Aut(T [m]

k ) which is given by

restriction to the smaller tree. It is easy to see that Aut(Tk) is isomorphic to the the

inverse limit of the inverse system which is given by {Aut(T [n]
k ), ϕnm} and hence is

a profinite group.

More concretely, one has a natural metric on Aut(Tk): Two automorphisms f and

g are of distance 2−m(f,g), where m(f, g) is the largest natural number such that the

actions of f and g on Tk agree up to level m(f, g). This defines a metric (indeed an

ultrametric) which makes Aut(Tk) into a compact totally disconnected topological
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group. It is not difficult to observe that the topology arising in this way coincides

with the topology defined in the previous paragraph.

Given a subgroup G ≤ Aut(Tk) one has its closure in Ḡ ≤ Aut(Tk) which is a

profinite group containing G as a dense subgroup. Similarly, one can consider the

profinite completion Ĝ of G. In general these two groups are different. However the

following property ensures that these two groups are isomorphic:

Definition 2.16. A group G ≤ Aut(Tk) is said to have the congruence subgroup

property if any finite index subgroup N ≤ G contains the subgroup StG(n) for some

n.

Since all the subgroups {StG(n) | n ≥ 1} are of finite index, the congruence

subgroup property ensures that {StG(n) | n ≥ 1} is cofinal in the set of all finite

index normal subgroups of G and hence by Lemma 2.2 we have Ḡ ∼= Ĝ. Therefore

groups with the congruence subgroup property are particularly interesting since their

profinite completions can be concretely realized as automorphism groups of trees.

More generally, one can discuss other completions of groups G ≤ Aut(Tk), such

as completions with respect to the rigid stabilizers {RistG(N) | n ≥ 1} when the

group is a branch group. A rigorous discussion about different completions of branch

groups can be found in [BSZ12].

2.8 L-Presentations

Immediately after its discovery it was observed that the first Grigorchuk group G

is not finitely presented. An infinite recursive presentation was found by I.Lysenok:

Theorem 2.6. [Lys85]

G =
〈
a, b, c, d | a2, b2, c2, d2, bcd, σi((ad)4), σi((adacac)4), i ≥ 0

〉
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where σ is the substitution given by a 7→ aca, b 7→ d, c 7→ b, d 7→ c.

This discovery led to the following general definition due to L.Bartholdi:

Definition 2.17. An L-presentation (or an endomorphic presentation) is an expres-

sion

〈X | Q | R | Φ〉 (2.11)

where X is a set, Q,R are subsets of the free group F (X) on the set X and Φ ⊂

End(F (X)) is a set of endomorphisms of F (X). The expression (2.11) defines a

group

G = F (X)/N

where

N =

〈〈
Q ∪

⋃
φ∈Φ∗

φ(R)

〉〉

and Φ∗ denotes sub-monoid generated by Φ in End(F (X)). Here X are the gen-

erators, Q the fixed relators, R the iterated relators and Φ the endomorphisms of

the presentation. An L-presentation is called finite X,Q,R,Φ are all finite. It is

called ascending if Q is empty and invariant if the endomorphisms in Φ induce

endomorphisms of the group defined by the presentation. Note that an ascending

L-presentation is invariant and an invariant L-presentation is equivalent to an as-

cending L-presentation where one replaces R by Q ∪R.

It is clear that all finitely presented groups are finitely L-presented. Also a

counting argument shows that there are groups which are not finitely L-presented.

Relations of such presentations with general recursive presentations are discussed in

Chapter 5.

After Lysenok’s presentation for G, examples of L-presentations for various other

groups were found (see [Bar03],[GŻ02b], [GSŠ07]). A general theorem due L.Bartholdi
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asserts that all self-similar, self-replicating regular branch groups have a finite L-

presentation [Bar03].

General and algorithmic properties of L-presentations were investigated in the

papers [Bar03], [Har12a], [Har12b], [Har11].

Knowing a finite L-presentation allows one to embed the group into a finitely

presented group. This idea was firstly utilized in [Gri98] to embed the first Grig-

orchuk group G into a finitely presented group (see Section 5.2). We will explore

such presentations in more detail in Chapter 5.
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3. AMENABLE GROUPS WITHOUT FINITELY PRESENTED AMENABLE

COVERS*

3.1 Introduction

The results presented in this chapter are discussed in the paper [BGDLH13]

written in collaboration with Rostislav Grigorchuk and Pierre De La Harpe.

Let G and H be two groups. Let us call G a cover of H if there exists an

epimorphism G −→ H. The main motivating question behind the results of this

chapter is a variation of the following general question:

Question 1. Given a property P of groups, does every finitely generated group with

property P have a finitely presented cover with property P?

When free groups have the property P or groups with the property P are necessar-

ily finitely presented, this question has a trivially positive answer. Also a non-trivial

result of Shalom [Sha00] states that if P is the Kazhdan’s property (T ) the answer

is again positive.

The main aim of this chapter is to focus on negative answers to Question 1 with

the property P being amenability. More precisely, we will focus on examples of

groups for which every finitely presented cover contains non-abelian free subgroups.

Therefore, the following definition is natural (recall that a group G is called large if

it has a finite index subgroup H which surjects onto a non-abelian free group).

*Amenable groups without finitely presented amenable covers, by M. G. Benli, R. Grigorchuk
and P. De La Harpe, Bulletin of Mathematical Sciences, Volume 3, Issue 01, pp. 73-131, 2012,
Copyright c©2012 Springer Basel AG. Reprinted with the permission of Springer Basel AG.
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Definition 3.1. Let G be a finitely generated group. We will say that G has the

property

(?) if every finitely presented cover of G contains non-abelian free subgroups.

(??) if every finitely presented cover of G is large.

A finitely presented group G has property (?) (resp. (??)) if and only if it con-

tains a non-abelian free subgroup (resp. is large). Therefore Definition 3.1 is more

interesting for finitely generated groups which are not finitely presented. Since large

groups contain non-abelian free subgroups and there are finitely presented groups

which contain a non-abelian free subgroup but are not large (see [EP84, Theorem

6]), property (??) is strictly stronger than property (?).

The following question is one of the main problems left unanswered regarding

growth of finitely generated groups:

Question 2. Does there exists a finitely presented group of intermediate growth?

A possibly easier question is the following:

Question 3. Does there exists a finitely generated group of intermediate growth

which is a quotient of a finitely presented group without non-abelian free subgroups?

or a quotient of a finitely presented amenable group?

This question was investigated for the first Grigorchuk group G in [GdlH01]:

Theorem 3.1. [GdlH01] G has property (??).

The results of this chapter show that almost all known examples of groups with

intermediate growth have the same property and hence are not answering Question

3. Our main result is:
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Theorem 3.2 (Section 3.5). Let G be an infinite finitely generated self-similar group.

Assume that G is contracting, faithful and self-replicating. Let G0 denote a standard

contracting cover of G, as in Definition 3.5.

If G0 has non-abelian free subgroups, then G has property (?).

If G0 is large, then G has property (??).

Hence for self-similar groups with appropriate properties, Theorem 3.2 reduces

the problem of showing property (?) (or (??)) to checking whether the standard

contracting cover G0 (which happens to be finitely presented) has non-abelian free

subgroups (or is large). For all the examples mentioned in Section 2.2 we will see that

this cover is in fact large and hence all of them have property (??). As mentioned

in Section 2.6 some of these groups have intermediate growth and all of them are

amenable. Therefore this gives answers to questions 1 and 3 for these groups.

We extend Theorem 3.1 for the whole family of Grigorchuk groups from Section

2.4:

Theorem 3.3 (Section 3.6). For ω ∈ Ω+, the group Gω has property (??).

It is clear that properties (?) and (??) pass to covers, i.e., if G is a cover of H

and H has property (?) (resp. (??) ) then G has property (?) (resp. (??)). This

together with Theorem 3.3 shows that the following list of groups of intermediate

growth have property (??):

(i) The uncountably many groups of [Ers04], which are finitely generated, of

intermediate growth and not residually finite, each one being a central cover of G.

(ii) The groups of [BE12], which are finitely generated groups of intermediate

growth, with exactly known growth functions, each one being a cover of G.

(iii) Permutational wreath products of the form A oX Gω, where A 6= {1} is a

finite group and Gω is as in Theorem 3.3 [BE11].
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Recall that finitely generated elementary amenable groups cannot have interme-

diate growth, therefore problems 2, 3 do not arise for elementary amenable groups.

As mentioned in Section 2.6, the class AG \ EG is not fully understood and there

are only sporadic finitely presented examples of groups known to be in this class.

One could try to find new examples by looking at finitely presented covers, but our

results show that this does not look very promising.

Let us interpret the properties (?) and (??) in terms of converging sequences in

the space of marked groups:

Lemma 3.1. Let G be a finitely generated group and S a generating set of k elements.

Then G has property (?) (resp. (??)) iff there exists a sequence {(Gn, Sn)}n≥0 inMk

such that

i) limn→∞(Gn, Sn) = (G,S),

ii) each Gn contains non-abelian free subgroups (resp. is large).

Proof. Suppose G has property (?) (resp. (??)). If G is finitely presented one

can take the constant sequence {(G,S)}n≥0. If G is not finitely presented, let

〈s1, . . . , sk | r2, r2, . . .〉 be an infinite presentation of G. Considering the sequence

Gn = 〈s1, . . . , sk | r1, . . . rn〉, by assumption each Gn has non-abelian free subgroups

(resp. is large) and clearly {(Gn, Sn)}n≥0 converges to (G,S).

Conversely, if such sequence {(Gn, Sn)} exists and H is a cover of G, by Lemma

2.3, H coversGn for n large enough. ThereforeH contains non-abelian free subgroups

(resp. is large).

Let us see an example where one can show property (?) relatively easily. Let

G = Z o Z. We have a presentation

G = 〈s, t | [sti , stj ] ∀i, j ∈ Z〉;
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indeed, any element in the right-hand side can be written as

sm1tn1sm2tn2sm3tn3 · · · sm`tn`

= sm1
(
st
−n1)m2

(
st
−n1−n2)m3 · · ·

(
s−n1−···−n`−1

)m`tn1+···n`

for some m1, n1, . . . ,m`, n` ∈ Z, and therefore as

(
st
j1
)i1(stj2)i2 · · · (stjk)iktN

for appropriate i1, j1, . . . , ik, jk, N ∈ Z with t1 < t2 < · · · < tk. It follows that the

natural homomorphism

〈s, t | [sti , stj ] ∀i, j ∈ Z〉 −→ G

is an isomorphism.

Since t−i[s, st
k
]ti = [st

i
, st

i+k
], we have a second presentation

G = 〈s, t | [s, sti ] ∀i ∈ N〉.

For a positive integer n, define

Gn = 〈s, t | [s, sti ], i = 0, . . . , n〉.

Note that limn→∞Gn = G in M2. We have a third presentation

Gn =

〈
s0, . . . , sn, t

∣∣∣∣ [si, sj], 0 ≤ i, j ≤ n,

stk = sk+1, 0 ≤ k ≤ n− 1

〉
.
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Indeed, it can be checked that the assignments

ϕ1 : s 7−→ s0, t 7−→ t

ϕ2 : si 7−→ st
i

, t 7−→ t (0 ≤ i ≤ n)

define, between the groups of the two previous presentations, isomorphisms that are

inverse to each other.

Let Hn be the free abelian subgroup of Gn generated by s0, . . . , sn. Denote by Kn

the subgroup of Hn generated by s0, . . . , sn−1, and by Ln that generated by s1, . . . , sn;

observe that Kn ' Ln ' Zn. Let ψn : Kn −→ Ln be the isomorphism defined by

ψ(si−1) = si for i = 1, . . . , n. Then Gn is clearly the HNN-extension corresponding

to the data (Hn, ψn : Kn
'→ Ln). By Britton’s lemma, Gn contains non-abelian free

subgroups. Now Lemma 3.1 shows that any finitely presented cover of G contains

non-abelian free groups.

Similar finitely presented covering sequence Gn for the first Grigorchuk group G,

obtained by truncating the Lysenok’s presentation of Section 2.8, were investigated

in [GdlH01] to prove Theorem 3.1. More precisely, they have shown that for all n,

Gn is virtually a direct product of finitely generated non-abelian free groups. This

was sharpened in [BdC06] quantitatively and can be further improved:

Theorem 3.4 (Section 3.7). Let G and Gn be as above. For each n ≥ 0, the group Gn

has a normal subgroup Hn of index 22n+1+2 that is isomorphic to the direct product

of 2n free groups of rank 3.

Let us survey some known methods for showing properties (?) and (??).

3.2 The Bieri-Neumann-Strebel invariant

Negative answers to Question 1 for various properties can be obtained via a

theorem due to Bieri and Strebel [BS80, Theorem 5.5 and Corollary 5.6]. We state
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it here in a slightly weaker form for finitely presented covers instead of covers with

the property FP2:

Theorem 3.5. (Bieri-Strebel) Let G be a finitely generated virtually metabelian group

which is not finitely presented. Then G has property (?).

This gives simultaneously a negative answer to Question 1 when the property

P is being solvable, being amenable or not containing non-abelian free subgroups.

The ideas behind Theorem 3.5 in [BS80] were further developed in [BNS87] and

put into a framework which is known as the Bieri-Neumann-Strebel invariant (and

generalizations known as Σ-invariants). These powerful tools are used to answer

various questions related to metabelian groups. We refer to [BGDLH13, Appendix

C] for a very short exposition about this invariant and to [Str12] for an extensive

source. The BNS-invariant can also be used to show property (?) for other groups

which are not necessarily metabelian. For example in [BGDLH13, Corollary C.6 ]

it was observed that the uncountably many 2-generated groups constructed by B.H.

Neumann [Neu37] have property (?). In particular since all the involved groups are

elementary amenable, this shows that none of them is finitely presented. Let us

remark that Theorem 3.5 is no longer true for groups of higher solvability degree.

We also want to remark that for some groups for which Theorem 3.2 applies, the BNS

invariants were computed by Zoran Šunić (unpublished, private communication) and

show that this invariant cannot be used to show these groups have property (?).

3.3 Automatically presented groups

A different method was used by A. Erschler in [Ers07] to prove the following:

Theorem 3.6 (Erschler). The Basilica group B has property (?).

The idea is to introduce the following notion:
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Definition 3.2. Given an invertible automaton (A, τ) over a finite alphabet X, the

automatically presented group G∗(A, τ) generated by the automaton is defined in the

following way: Let F = F (A) be the free group on the set of states of the automaton

(A, τ). let N be the normal subgroup generated by all words w over A ∪ A−1 such

that there exists a level n such that w represents an element in the stabilizer of level

n in G(A, τ) and all sections wv, v ∈ Xn represent the identity in the free group

F (A). Define G∗(A, τ) by the quotient F/N .

Informally, instead of using the automaton to generate a group (as in Section

2.2), we use the automaton to define the relations of a presentation. It is clear from

the definition that G(A, τ) is a homomorphic image of G∗(A, τ). Regarding such

groups Erschler proves the following:

Theorem 3.7. [Ers07, Theorem 1] Let G be an automatically presented group. If G

is not virtually abelian, then any finitely presented cover of G contains non-abelian

free subgroups.

For an automaton (A, τ) the groups G(A, τ) and G∗(A, τ) are in general different

but (as shown in [Ers07]) for the Basilica automaton they coincide and hence Theo-

rem 3.6 is a corollary of Theorem 3.7. As also remarked in [Ers07], for the Grigorchuk

automaton these groups are essentially different and hence a similar result cannot be

deduced for the Grigorchuk group G. Let us prove two small lemmas which can be

used to detect when the groups G(A, τ) and G∗(A, τ) are different for an automaton.

The first lemma is essentially contained in [Ers07].

Lemma 3.2. Let (A, τ) be a finite invertible automaton over the alphabet X. Suppose

there exists two non-identity states g, h and a vertex v ∈ X∗ such that g(v) = h(v) =

v and gv = g, hv = h. Then the subgroup of G∗(A, τ) generated by g and h is free.
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Proof. Let w be a word over {g, h}±. It is clear from the assumptions on g and h

that we have wv = w. Hence if w = 1 in G(A), there is n ∈ N such that w is in the

n-th level stabilizer and wu = 1 freely for all u with |u| = n (and hence for all u with

|u| ≥ n). Let k be large enough, so that |vk| ≥ n. Then w = wvk = 1 freely.

For the automaton generating the Grigorchuk group G one has b111 = b and

c111 = c and also b(111) = c(111) = 111. Therefore, from Lemma 3.2 we see that the

automatically presented group G∗(A, τ) contains non-abelian free groups. Therefore

G∗(A, τ) is not isomorphic to the automaton group G = G(A, τ).

Lemma 3.3. Let (A, τ) be a finite invertible automaton over the alphabet X. Suppose

there exists two non-identity states g, h and a vertex v ∈ X∗ such that g(v) = h(v) =

v and gv = g, hv = 1. Then the semi-group generated by g and hgh in G∗(A, τ) is

free.

Proof. Let w be a nontrivial word in the alphabet {g, hgh} with positive powers. It

is easy to see that wv is obtained from w by deleting the occurrences of the letter

h. If w represents the identity in G∗(A, τ), then there is n ∈ N such that w is in

the n-th level stabilizer and wu = 1 freely for all u with |u| = n (and hence for all

u with |u| ≥ n). Let k be large enough, so that |vk| ≥ n. Then wvk = 1 freely. But

wvk = wv is of the form g`, where ` is the number of occurrences of g in w. Therefore

we have g` = 1 freely, which implies that ` = 0. This means that g does not occur

in w, which is only possible if w is the empty word.

If (A, τ) is the automaton generating the group I of Section 2.2 then one has

b10 = b and c10 = 1. Also b(10) = c(10) = 10. Therefore by the previous lemma

b and cbc generate a free semi-group in G∗(A, τ), in particular it is of exponential

growth. Therefore we see that G∗(A, τ) cannot be isomorphic to I since the latter
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has intermediate growth. For our other examples similar ideas can be used to show

that these groups are different.

In the next section we will see the underlying reason why these differences occur.

3.4 Self-similar covers of self-similar groups

Definition 3.3. Let (G,Φ) and (H,Ψ) be two self-similar groups of degree d. We say

that (G,Φ) is a self-similar cover of (H,Ψ) if there exists an epimorphism π : G→ H

such that the diagram

G
Φ−→ Sd oG

π ↓ ↓ π̂

H
Ψ−→ Sd oH

commutes where π̂ = 1 o π is as defined in equation (2.2) of Section 2.2.

We will show that every contracting, self-replicating self-similar group has a

finitely presented contracting self-similar cover using ideas from [Nek05]. Our ex-

position borrows from [Bar13].

Let (G,Φ) be a self-replicating contracting self-similar group, with nucleus N =

{n1, . . . , n`}. Let S = {s1, . . . , s`} be a finite set given with a bijection sj ↔ nj with

N . Let R be the set of relators in the letters of S of one the forms

si = 1 if ni = 1 ∈ G,

sisj = 1 if ninj = 1 ∈ G,

sisjsk = 1 if ninjnk = 1 ∈ G.

Note that these relators are of length at most 3; they are indexed by a subset of

N tN 2 tN 3.

Definition 3.4. The universal contracting cover of G is the finitely presented group

Gun
0 defined by the presentation with S as set of generators and R as set of relators.
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The assignment πun(si) = ni extends to a group homomorphism

πun : Gun
0 = 〈S | R〉 −→ G, (3.1)

because πun(r) = 1 for any r ∈ R. Note that πun is onto, by Proposition 2.2. We

define finally

π̂un = 1d o πun : Sd oGun
0 −→ Sd oG (3.2)

Remark 3.1. In particular examples, and for simplicity, it is often convenient to

delete from S the generator corresponding to 1 ∈ N , to delete sk if there exist i, j ∈

{1, . . . , `} with nk = ninj, and to delete one generator of every pair corresponding

to {n, n−1} ⊂ N . For example, in Example 3.2, we have N = {1, a±1, b±1, c±1} with

7 elements, and c = a−1b, but S = {a, b} with 2 elements. Note however that, in

Example 3.1, we keep d in the generating set {a, b, c, d} of G0, even though d = bc.

Proposition 3.1. Let (G,Φ) be a self-replicating contracting self-similar group of

degree d, with nucleus N . Assume that G is finitely generated. Let Gun
0 = 〈S | R〉

and πun : Gun
0 � G be the universal contracting cover and the projection of Definition

3.4. Then there exists a homomorphism

ϕun
1 : Gun

0 −→ Sd oGun
0

such that the self-similar group (Gun
0 , ϕ

un
1 ) is contracting, with nucleus S. Moreover

the diagram

Gun
0

ϕun
1−→ Sd oGun

0

πun ↓ ↓ π̂un

G
Φ−→ Sd oG

(3.3)

commutes, i.e., (Gun
0 , ϕ

un
1 ) is a self-similar cover of (G,Φ).
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Proof. Step 1, definition of ϕun
1 Denote by ` the order ofN , and writeN = {n1, . . . , n`},

as above. Let i ∈ {1, . . . , `}. By Proposition 2.2, there exist i0, . . . , id−1 ∈ {1, . . . , `}

and τi ∈ Sd such that

Φ(ni) = (τi;ni0 , . . . , nid−1
).

We set

ϕun
1 (si) = (τi; si0 , . . . , sid−1

) ∈ Sd oGun
0

and we claim that this extends to a group homomorphism ϕun
1 as in (3.3).

Consider a relator as in Definition 3.4, say sisjsk = 1 (shorter generators are

dealt with similarly); hence ninjnk = 1 ∈ G. Choose x ∈ X; recall that X stands

for {0, . . . , d − 1}. There exist p, q, r ∈ {1, . . . , `} and τp, τq, τr ∈ Sd such that the

x-coordinate and the last coordinate of Φ(ninjnk) can be written as

(ninjnk)x = npnqnr and τninjnk = τpτqτr.

Since ninjnk = 1 ∈ G, we have

npnqnr = 1 ∈ G ∀x ∈ X and τpτqτr = 1 ∈ Sd.

Hence ϕun
1 (si)ϕ

un
1 (sj)ϕ

un
1 (sk) = 1 ∈ Gun

0 . The claim is proven.

Step 2: (Gun
0 , ϕ

un
1 ) is a contracting group with nucleus S. For any word w in the

letters of S, we have to show that there exists a vertex v ∈ X∗ such that (w)v ∈ S.

By induction on the word length, and by Lemma 2.1, it is enough to show this for a

word of length 2.
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Let si, sj ∈ S and v ∈ X∗ be such that (ninj)v ∈ N , say (ninj)v = nk. We have

(ni)τ (|v|)nj
(v)

(nj)v = nk in G,

which is a relator of length at most 3. Hence the corresponding relator (sisj)v = sk

holds in S.

It follows that S is the nucleus of the group (G,ϕun
1 ).

Step 3, commutativity of the diagram. This can be checked on the set S of

generators of Gun
0 .

The universal contracting cover (Gun
0 , ϕ

un
1 ) of (G,Φ) is uniquely defined by (G,Φ),

and is contracting. But we believe it need not be self-replicating (even though we do

not know of any specific example). In all cases, (Gun
0 , ϕ

un
1 ) has quotients by finite sets

of relations that are self-replicating contracting covers of (G,Φ), as described in the

Definition 3.5 and Proposition 3.2. Note however that these quotients are no more

uniquely defined by (G,Φ), since choices are involved. In all our examples this latter

modification is not needed since the universal contracting cover of our examples are

already self-replicating.

Definition 3.5. Let (G,Φ) be a self-replicating contracting self-similar group, with

nucleus N = {n1, . . . , n`}; assume that G is finitely generated. Let S = {s1, . . . , s`}

be in bijection with N , and (Gun
0 , ϕ

un
1 ) the universal contracting cover of (G,Φ), as

in Definition 3.4. Let πun : Gun
0 −→ G be as in (3.1).

Let x ∈ X and ni ∈ N . Since the pair (G,Φ) is self-replicating, there ex-

ists1 g(x, ni) ∈ StabG(x) such that (g(x, ni))x = ni. Since πun is onto, there exists

h(x, ni) ∈ Gun
0 such that πun(h(x, ni)) = g(x, ni); moreover, since π̂un is the iden-

1Note that a choice is involved here.
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tity on the permutations of the wreath product, we have h(x, ni) ∈ StabGun
0

(x).

By commutativity of Diagram (3.3), we have πun((h(x, ni))x) = ni. Set w(x, ni) =

(h(x, ni))xs
−1
i ; then w(x, ni) belongs to the kernel of πun.

Again, by commutativity of (3.3), we have (w(x, ni))v ∈ ker(πun) for all v ∈ X∗.

Since (Gun
0 , ϕ

un
1 ) is contracting, the subset

E(x, ni) = {g ∈ Gun
0 | g = (w(x, ni))v for some v ∈ X∗}

of Gun
0 is finite. Define

E =
⋃

x∈X,n∈N

E(x, n) and H = 〈〈E〉〉 ⊂ Gun
0 ,

where 〈〈E〉〉 denote the normal subgroup of Gun
0 generated by E.

A standard contracting cover of G is a quotient group of the form G0 = Gun
0 /H,

with H as above; the image of S in G is a generating set, that we denote again

(abusively) by S. Note that E is a finite subset of Gun
0 , and consequently that G0 is

a finitely presented group.

The epimorphism πun factors through a homomorphism π : G0 −→ G, because

E is a subset of kerπun. It follows from the definition that the restriction of π to the

generating set S of G0 is injective.

The following proposition is the analogue of proposition 3.1 for G0.

Proposition 3.2. Let (G,Φ) be a self-replicating contracting self-similar group of

degree d, with nucleus N . Assume that G is finitely generated. Let G0 and π : G0 �

G be a standard contracting cover of (G,Φ) and its projection to G, as in Definition

3.5.
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Then there exists a homomorphism

ϕ1 : G0 −→ Sd oG0

such that the self-similar group (G0, ϕ1) is contracting and self-replicating with nu-

cleus S. Moreover the diagram

G0
ϕ1−→ Sd o Sd

π ↓ ↓ π̂

G
Φ−→ Sd oG

(3.4)

commutes that is (G0, ϕ1) is a self-similar cover of (G,Φ).

Proof. By construction of the set E, for any element g ∈ E and any x ∈ X, we have

gx ∈ E. Hence the homomorphism ϕun
1 : Gun

0 −→ Sd oGun
0 induces a homomorphism

ϕ1 : G0 −→ Sd o G0. Since (Gun
0 , ϕ

un
1 ) is contracting with nucleus S, the self-similar

group (G0, ϕ1) is contracting with nucleus S.

Let x ∈ X, and ni ∈ N . We continue with the notation of Definition 3.5. By

construction of G0, the relation h(x, ni) = si holds in G0; moreover h(x, ni) is an

element of StabG0(x). This shows that the pair (G0, ϕ1) is self-replicating.

The commutativity of diagram (3.4) can be checked on the generators of G̃0.

3.5 Finitely presented covers of contracting self-similar groups

From here to Corollary 3.1, we keep the same notation as in Definition 3.5 and

Proposition 3.2 for G0, π, and ϕ1, in relation with a given contracting self-replicating

self-similar group (G,Φ), with G finitely generated.

Definition 3.6. For an integer n ≥ 0, define

(i) the homomorphism ϕn : G0 −→ Sd on G0 as in (2.3),
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(ii) its kernel Nn = ker(ϕn) and the quotient Gn = G0/Nn,

(iii) the homomorphism

π̂n = π o 1dn : Sd on G0 −→ Sd on G (3.5)

as in (2.2); note that π̂1 is the π̂ of (3.2).

We have Φnπ = π̂nϕn, i.e. the diagram

G0
ϕn−→ Sd on G0

π ↓ ↓ π̂n

G
Φn−→ Sd on G

(3.6)

commutes. Observe that N0 ⊂ · · · ⊂ Nn ⊂ Nn+1 ⊂ · · · and define

N =
∞⋃
n=0

Nn.

Remark 3.2. As noted in Definition 3.5, the restriction of π to S is injective. More

generally, in Definition 3.6, the restriction of π̂n to the subset (SX
n
; 1) of Sd on G0 =

S
(n)
d nGXn

0 is injective.

Lemma 3.4. Let (G,Φ) be a self-similar group; assume that G is finitely generated

and that (G,Φ) is faithful contracting self-replicating. With the notation above, we

have

N = ker π, namely G0/N = G,

so that

lim
n→∞

Gn = G

in the space of marked groups on |S| generators (in the sense of Section 2.3).
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Proof. Let g ∈ N . Let n ≥ 1 be such that g ∈ ker(ϕn). Then Φnπ(g) = π̂nϕn(g) = 1,

hence g ∈ ker(π) by the faithfulness assumption.

Conversely, let k ∈ ker(π). On the one hand, since (G0, ϕ) is contracting, there

exists n ≥ 0 such that kv ∈ S for all v ∈ Xn. On the other hand, π(k) = 1

implies π(kv) = 1 for all v ∈ Xn; moreover, the S
(n)
d -coordinate of ϕn(k) is 1, by

commutativity of Diagram (3.6). Hence, by Remark (3.2), we have kv = 1 for all

v ∈ Xn, and therefore k ∈ Nn = ker(ϕn), a fortiori k ∈ N .

Remark 3.3. Lemma 3.4 asserts that if one starts with a standard contracting cover

of a faithful, finitely generated, self-similar group (G,Φ), then one obtains a sequence

of groups which converge to G in the appropriate space of finitely generated marked

groups.

In general one can follow the same procedure starting with an arbitrary self-

similar cover of (G,Φ). In this case one will obtain a sequence of groups whose

limit is a cover of G but may not be equal to G. In particular one can start with

a free group of appropriate rank (Fk, Φ̄), where Φ̄ is induced by Φ. The limiting

group is easily seen to be equal to the automatically presented group defined by an

automaton whenever G is defined by an automaton (see Definition 3.2). This gives

another viewpoint of automatically presented groups.

Lemma 3.5. In the situation of the previous lemma, for all n ≥ 1, we have

Nn = ϕ−1
1 (Nd

n−1)

so that ϕ1 : G0 −→ G0 o Sd induces a homomorphism

ψn :


Gn −→ Sd oGn−1

gNn 7−→
(
τ (1)
g ;
(
ϕ1(g)xNn−1

)
x∈X

)
.
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Moreover ψn is injective.

Proof. For g ∈ G, write

ϕ(g) =
(
τ (1)
g ; (gx)x∈X

)
and ϕn(g) =

(
τ (n)
g ; (gv)v∈Xn

)
. (3.7)

Assume first that g ∈ Nn. Thus (gx)v′ = 1 and τ
(n−1)
gx = 1 for all x ∈ X and

v′ ∈ Xn−1. This can be written

ϕn−1(gx) =
(
τ (n−1)
gx ; ((gx)v′)v′∈Xn−1

)
= 1 ∀x ∈ X,

namely gx ∈ Nn−1 ∀x ∈ X. We have checked that ϕ1(Nn) ⊂ Nd
n−1, and Nn ⊂

ϕ−1
1 (Nd

n−1) follows.

Assume now that g ∈ ϕ−1
1 (Nd

n−1), namely that (gx)v′ = 1 and τ
(n−1)
gx = 1 for all

x ∈ X and v′ ∈ Xn−1. This can be written gv = 1 for all v ∈ Xn and τ
(n)
g = 1,

namely g ∈ Nn. Hence ϕ−1
1 (Nd

n−1) ⊂ Nn.

The next theorem is a detailed version of Theorem 3.2.

Theorem 3.8. Let (G,Φ) be a self-similar group; assume that G is finitely gen-

erated and that (G,Φ) is faithful contracting self-replicating. Let G0 be a standard

contracting cover, as in Definition 3.5.

Assume that G0 contains non-abelian free subgroups. Then, for each n ≥ 0, the

group Gn of Definition 3.6 contains non-abelian free subgroups. More generally, every

finitely presented cover of G contains non-abelian free subgroups.

Assume moreover that G0 is large. Then every finitely presented cover of G is

large.

Proof. Let S
(0)
d be the subgroup of Sd of permutations fixing the letter x = 0. For
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n ≥ 1, let Hn be the finite index subgroup of Gn defined by

Hn = ψ−1
n (G

{0,1,...,d−1}
n−1 o S

(0)
d ),

where ψn is as in Lemma 3.5. Projection onto the first coordinate (i.e. the coordinate

x = 0)

p(0)
n : G{0,1,...,d−1}

n o S
(0)
d −→ Gn

defined by

p(0)
n ((gxNn

)
x∈X , τ) = g0Nn

is a group homomorphism. It turns out that the composition

q(0)
n : Hn

ψn−→ ψn(Hn)
p
(0)
n−1−→ Gn−1

defines a group homomorphism from Hn to Gn−1.

Given a generator sNn−1 of Gn−1 (where s is a generator of G0), using the self-

replicating property of (G0, ϕ1) let h ∈ StG0(0) such that ϕ1(h)0 = s. It turns out

that q(0)(hNn) = sNn−1 which shows that q
(0)
n is onto Gn−1. The conclusion is that

for each n ≥ 1, Gn contains a finite index subgroup Hn which maps onto Gn−1.

Therefore, if G0 contains non-abelian free subgroups (respectively is large), by

induction on n, each Gn will contain non-abelian free subgroups (respectively will be

large). Then by Lemma 3.4 and corollary 3.1 below, every finitely presented cover

of G will contain non-abelian free subgroups (respectively will be large).

Corollary 3.1. Let G be as in Theorem 3.8. If G0 contains non-abelian free sub-

groups, then G is infinitely presented.

Proof. Since G0 does contain non-abelian free subgroups, by assumption, and G

52



does not, by [Nek05, Theorem 4.2], G cannot be finitely presented, by the previous

theorem.

Let us apply Theorem 3.8 to the groups mentioned in Section 2.2.

Example 3.1. The first Grigrochuk group G is contracting with nucleus N =

{1, a, b, c, d}. The universal contracting cover of Definition 3.4 has the presentation

G0 = 〈a, b, c, d | a2, b2, c2, d2, bcd〉 ' C2 ∗ V,

where C2 is now the group {1, a} and V the Klein Vierergruppe {1, b, c, d}, isomorphic

to C2 × C2. It is easily seen that the universal contracting cover is self-replicating

and hence is a standard contracting cover in the sense of Definition 3.5.

In general, if A,B are two non-trivial finite groups, then then kernel of the map

A ∗B → A×B is free with basis {[a, b] | a ∈ A \ {1}, b ∈ B \ {1}} (see [Ser03, Page

6]). Hence G0 contains a free group of rank 3 of index 8 hence is large. Therefore

Theorem 3.1 is a particular case of 3.8.

Example 3.2. The Basilica group B is also contracting with nucleus given by N =

{1, a±, b±, (a−1b)±}.

In general there is no known algorithm for deciding whether a given self-similar

group is contracting or not and finding its nucleus. But there is a partial algorithm

due to Y.Muntyan and D.Savchuk implemented into a beautiful GAP package which

can be found at http://www.gap-system.org/Packages/automgrp.html. Let us

demonstrate the functionality of this package for finding the nucleus of the Basilica

group:

gap> B:=AutomatonGroup("a=(b,1)(1,2),b=(a,1)");

< a, b >
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gap> IsContracting(B);

true

gap> FindNucleus(B);

Trying generating set with 5 elements

Elements added:[ a^-1*b, b^-1*a ]

Trying generating set with 7 elements

[ [ 1, a, b, a^-1, b^-1, a^-1*b, b^-1*a ],

[ 1, a, b, a^-1, b^-1, a^-1*b, b^-1*a ],

<automaton> ]

Note that this package uses right hand notation for denoting wreath recursions. It

can also be used to find relations of length at most 3 between the elements in the

nucleus:

gap> FindGroupRelations(B,3);

[ ]

Hence we see that there are no relations of length at most 3 between the elements in

the nucleus. Therefore the universal contracting cover has the presentation

G0 = 〈a, b | ∅〉 ∼= F2.

which again is self-replicating.

Recalling Remark 3.3, this is another proof of the fact that the automatically

presented group defined by the Basilica automaton is isomorphic to the Basilica

group.
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Example 3.3. For the Gupta-Sidki group GS the nucleus is N = {1, a, a−1, b, b−1}

and the universal contracting cover (which is self-replicating)

G0 = 〈a, b | a3, b3〉 ' C3 ∗ C3,

is again large. Therefore GS has property (??).

Example 3.4. For I its nucleus is

N = {1, a, b, c}

and the only non-trivial relators of length ≤ 3 among elements of N are a2 = b2 =

c2 = 1. Hence the universal contracting cover

G0 = 〈a, b, c | a2, b2, c2〉 ' C2 ∗ C2 ∗ C2

is large.

Example 3.5. For the Fabrykowski-Gupta group FG the nucleus is

N = {1, a, a−1, b, b−1}.

The universal contracting cover is

G0 = 〈a, b | a3, b3〉 ' C3 ∗ C3.

It is self-replicating. Hence this group also has property (??).
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Example 3.6. For the Hanoi Towers group H the nucleus is

N = {1, a, b, c}

The universal contracting cover is

G0 = 〈a, b, c | a2, b2, c2〉 ' C2 ∗ C2 ∗ C2

is self-replicating and large. Hence H has property (??).

Let us end this section with two questions:

Question 4. Let (G,Φ) be a faithful, contracting, self-replicating self-similar group.

Assume that G is not virtually nilpotent. Is it true that a standard contracting cover

of G has non-abelian free subgroups? or is large?

Question 5. Let (G,Φ) be a faithful, contracting, self-replicating self-similar group.

Assume moreover that G is a (weakly) branch group. Is it true that a standard

contracting cover of G has non-abelian free subgroups? or is large?

A positive answer will show that all such groups will have property (?) (or (??)).

All our examples are either branch or weakly branch (see Section 2.5). Note that

such groups are never finitely presented by a theorem of Bartholdi [Bar03].

3.6 The analogue of Theorem 3.1 for the Grigorchuk 2-groups

In this section we will prove an analogue of Theorem 3.1 for the Grigorchuk

2-groups of Section 2.4.

We keep the notations of Section 2.4.
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Definition 3.7. Recall we have an injective homomorphism

Φ(1)
ω = Φω : Gω −→ S2 oGσ(ω)

which induces a sequence of homomorphisms
(
Φ

(n)
ω

)
n≥1

defined inductively by:

Φ(n)
ω : Gω

Φ
(n−1)

ω−→ S2 on−1 Gσn−1(ω)

Φ
(1)

σn−1(ω)
o1dn−1

−→ S2 on Gσn(ω)

Lemma 3.6 (contraction in Gω). Let ω ∈ Ω. We keep the notation above.

(i) For each n ≥ 1, the homomorphism Φ
(n)
ω is injective.

(ii) For all g ∈ Gω, there exists an integer n ≥ 1 such that

Φ(n)
ω (g) =

(
τ (n)
g ; (gv)v∈Xn

)
with gv ∈ {1, a, bσn(ω), cσn(ω), dσn(ω)} ∀ v ∈ Xn and τ

(n)
g ∈ S2.

Proof. By induction on the length of g, in the sense of (2.10).

The main theorem of this section is the following:

Theorem 3.9. For ω ∈ Ω+, any finitely presented cover of Gω is large.

Remark 3.4. (1) Let ω ∈ Ω−. Any finitely presented cover of the infinitely presented

group G̃ω contains non-abelian free groups, by Theorem 3.5. As recorded in Theorem

2.1, the group Gω is virtually free abelian, and finitely presented. For example, if ω

is the constant sequence 000 · · · , then Gω is the infinite dihedral group.

(2) If we replace “is large” by “contains non-abelian free subgroups” in Theorem

3.9, the resulting statement has a short proof. More precisely:

For any ω ∈ Ω, any finitely presented cover of G̃ω has non-abelian free sub-

groups.
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Indeed, let (ωn)n≥1 be a sequence of eventually constant sequences converging to ω in

Ω. Then G̃ωn is virtually metabelian and infinitely presented for all n ≥ 1 (Theorem

2.1), and (G̃ωn)n≥1 converges to G̃ω. Let E be a finitely presented cover of G̃ω.

Then E is a cover of Gωn for n large enough (Proposition 2.3). Hence Bieri-Strebel

Theorem 3.5 shows that E contains non-abelian free subgroups.

From now on, we assume that

ω ∈ Ω+.

Our strategy for the proof of Theorem 3.9 is to adapt to the present context the

steps of Section 3.5.

The following definition should be compared with Definition 3.6. Note however

that G0 has not quite the same meaning here and there.

Definition 3.8. Set again

G0 = 〈a, b, c, d | a2, b2, c2, d2, bcd〉 ' C2 ∗ V,

as in Example 3.1. Observe that any element of G0 can be written as

(∗)a ∗ a ∗ · · · a(∗) (3.8)

with ∗ ∈ {b, c, d}, (∗) ∈ {1, b, c, d}, and n ≥ 0 occurrences of a (compare with

Equation (2.10).

For i ∈ {0, 1, 2}, set

ϕi(a) = τ(1, 1) for all i ∈ {0, 1, 2}
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and

ϕ0(b) = (a, b) ϕ1(b) = (a, b) ϕ2(b) = (1, b)

ϕ0(c) = (a, c) ϕ1(c) = (1, c) ϕ2(c) = (a, c)

ϕ0(d) = (1, d) ϕ1(d) = (a, d) ϕ2(d) = (a, d).

It is easy to check that these formulas define homomorphisms

ϕi : G0 −→ S2 oG0 (i = 0, 1, 2).

Set ϕ
(1)
ω = ϕω1 and define, inductively for n ≥ 2, homomorphisms

ϕ(n)
ω : G0

ϕ
(n−1)
ω−→ S2 on−1 G0

ϕωn o12n−→ S2 on G0

For n ≥ 1, set

Nω,n = ker(ϕ(n)
ω ) and Gω,n = G0/Nω,n.

We have natural homomorphisms

πω : G0 −→ Gω

π̂ω = π̂ω,1 : S2 oG0 −→ S2 oGσ(ω)

π̂ω,n : S2 on G0 −→ S2 on Gσn(ω)

(Compare with (3.1), (3.2), and (3.5), but note that π̂ω,1 = πω o 12 does not hold

here.)

The next lemma is about diagrams analogous to (3.3) and (3.6). Its proof uses

an argument similar to one in the proof of Proposition 3.1, and will be omitted.
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Lemma 3.7. The diagram

G0
ϕ
(n)
ω−→ S2 on G0

πω ↓ ↓ π̂ω,n

G
Φ

(n)
ω−→ S2 on Gσn(ω)

(3.9)

commutes for each n ≥ 1.

The next lemma is analogous to Step 2 in the proof of Proposition 3.1.

Lemma 3.8 (contraction in G0). For all k ∈ G0, there exists an integer n ≥ 1 such

that

ϕ(n)
ω (k) =

(
τ

(n)
k ; (kv)v∈Xn

)
with kv ∈ {1, a, b, c, d} ∀ v ∈ Xn and τ

(n)
k ∈ S2.

Proof. by induction on the length of k, in the sense of (3.8).

Define now

Nω =
⋃
n≥1

Nω,n

(compare with Definition 3.6). The two following lemmas are appropriate modifica-

tions of Lemmas 3.4 and 3.5; we repeat the proof for the first one, and not for the

second one.

Lemma 3.9. We have

Nω = ker (πω : G0 −→ Gω) , namely Gω ' G0/Nω,

so that

lim
n→∞

Gω,n = Gω
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in the space of marked groups on 4 generators.

Proof. Let g ∈ N . Let n ≥ 1 be such that g ∈ ker(ϕ
(n)
ω ). Since Φ

(n)
ω πω(g) =

π̂ω,nϕ
(n)
ω (g), we have πω(g) = 1 by Lemma 3.6.i.

Conversely, let k ∈ G0. There exists n ≥ 0 such that
(
ϕ

(n)
ω (k)

)
v
∈ {1, a, b, c, d}

for all v ∈ Xn, by Lemma 3.8. Assume that k ∈ ker(πω). Then π̂ω,n(ϕ
(n)
ω (k)) = 1.

As π̂ω,n is injective “on generators” (in a sense similar to that of Remark 3.2), we

have ϕ
(n)
ω (k) = 1, and therefore k ∈ Nω,n ⊂ Nω.

(Note that the hypothesis “ω ∈ Ω+” is necessary for the previous argument. If ωn

were eventually constant, one of bσn(ω), cσn(ω), dσn(ω) would be the identity of Gσn(ω)

for n large enough).

Lemma 3.10. In the situation of the previous lemma, we have for all n ≥ 1

ϕ(1)
ω (Nω,n) ⊂ N2

ω,n−1 ⊂ G0 o S2 and
(
ϕ(1)
ω

)−1
(N2

ω,n−1) ⊂ Nω,n.

It follows that ϕ
(1)
ω : G0 −→ G0 o S2 induces a homomorphism

ψ(n)
ω :


Gω,n −→ S2 oGω,n−1

gNω,n 7−→
(
τ (1)
g ;
(
(ϕωn(g))xNω,n−1

)
x∈X

)
which is injective.

Proposition 3.3. For each ω ∈ Ω+ and n ≥ 0, the group Gω,n is large.

Proof. The group G0 = C2 ∗V has a free subgroup of finite index, indeed a subgroup

isomorphic to F3 of index 8. For n ≥ 1, because of the previous lemma and as in the

proof of Theorem 3.8, there exists a subgroup of index 2 in Gω,n and a homomorphism

from this subgroup onto Gω,n−1. It follows by induction on n that Gω,n is large.
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End of proof of Theorem 3.9. Since Gω,n is large for n large enough, it follows from

Lemma 3.9 and Corollary 3.1 that any cover of Gω is large.

Definition 3.9. For ω ∈ Ω, let Mω denote the kernel of the defining cover F4 � Gω;

in other terms, Mω is the inverse image of Nω by the epimorphism F4 � G0 mapping

the four generators of F4 onto a, b, c, d ∈ G0. For a subset Ψ of Ω, the Ψ-universal

group is the group

UΨ = F4/
⋂
ω∈Ψ

Mω.

For example, U∅ = {1}, and U{ω} = Gω for all ω ∈ Ω.

The terminology is justified by cases that have appeared in the literature, with Ψ

large. For example, let Λ denote the subset of Ω0 of sequences that are concatenations

of blocks 012, 120, 201. Then UΛ has uncountably many quotients (a consequence of

Proposition 2.1.iv); it has intermediate growth, and therefore is amenable (estab-

lished in [Gri11b, Theorem 9.7]).

Suppose that Ψ contains some ω ∈ Ω+. Then any cover of UΨ is a cover of Gω.

Theorem 3.9 implies:

Corollary 3.2. For any Ψ ⊂ Ω such that Ψ ∩ Ω+ 6= ∅, the Ψ-universal group UΨ is

infinitely presented, and any finitely presented cover of it is large.

In particular, this corollary solves the first part of Problem 9.5 in [Gri05], by

showing that UΩ is infinitely presented.

3.7 The first Grigorchuk group

In this section we will prove Theorem 3.4. We will describe a sequence of finitely

presented groups Gn which converge to G. Note however that the sequence we are go-

ing to describe is different from the sequence obtained via the general result obtained

in Section 3.5.
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Recall the Lysenok’s presentation for G discussed in Section 2.8. Let us set

G−1 =
〈
a, b, c, d | a2 = b2 = c2 = d2 = bcd = 1

〉
' C2 ∗ V,

and denote by S the system of four involutions {a, b, c, d} generating G−1.

Elements in G−1 are in natural bijection with “reduced words” of the form

t0at1a · · · atk−1atk

with k ≥ 0, t1, . . . , tk−1 ∈ {b, c, d}, and t0, tk ∈ {∅, b, c, d}. Throughout the remainder

of this section, we use the same symbol to denote an element of G−1 and its image

in any quotient of G−1, in particular in G; thus, S = {a, b, c, d} denotes a set of

generators in G−1 and in any quotient of G−1.

The substitution σ defined by

σ(a) = aca, σ(b) = d, σ(c) = b, σ(d) = c

extends to reduced words, for example σ(abac) = acadacab, and the resulting map

σ : G−1 −→ G−1

is a group endomorphism. Define

u0 = (ad)4 un = σn(u0) ∀n ≥ 0

v0 = (adacac)4 vn = σn(v0) ∀n ≥ 0
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Definition 3.10. For n ≥ 0, define a pair (Gn, S) ∈M4 by

Gn =

〈
a, b, c, d

∣∣∣∣ a2 = b2 = c2 = d2 = bcd = 1

u0 = · · · = un = v0 = · · · = vn−1 = 1

〉

S = {a, b, c, d} ⊂ Gn.

Observe that limn→∞(Gn, S) = (G, S) in M4, and that there are natural surjec-

tions G−1 � Gn � G for all n ≥ 0.

Theorem 3.10. For each n ≥ 0, the group Gn has a normal subgroup Hn of index

22n+1+2 which is isomorphic to the direct product of 2n free groups of rank 3.

Remark 3.5. (i) A weaker result was first established in [GdlH01]: For each n ≥ 0,

Gn contains a subgroup of finite index isomorphic to the direct product of 2n copies

of finitely generated non-abelian free groups. This by itself implies that any finitely

presented cover of G contains non-abelian free subgroups.

(ii) The result of [GdlH01] was improved in [BdC06]: For each n ≥ 0, the group

Gn has a normal subgroup Hn of index 2αn , where αn ≤ (11 · 4n + 1)/3, and Hn is a

subgroup of index 2βn in a finite direct product of 2n non-abelian free groups of rank

3, where βn ≤ (11 · 4n − 8)/3− 2n.

(iii) Our proof of Theorem 3.10 is split in several lemmas, until 3.16.

Define first

B0 = 〈〈b〉〉G0 ,

Ξ0 = 〈b, c, d, aba, aca, ada〉G0 ,

D0 = 〈a, d〉G0 ,

Ddiag
0 = 〈(a, d), (d, a)〉G0 .
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It is easy to check that Ddiag
0 ∩ (B0×B0) = {1}, and that Ddiag

0 normalizes B0×B0.

The assignment

b 7→ (a, c) aba 7→ (c, a)

c 7→ (a, d) aba 7→ (d, a)

d 7→ (1, b) aba 7→ (b, 1)

extends to a group homomorphism ψ0 : Ξ0 −→ G0 × G0 [GdlH01, Proposition 1].

For each n ≥ 0, define now

Nn = 〈〈u0, . . . , un, v0, . . . , vn−1〉〉G0 ; observe that Nn ⊂ Ξ0;

Gn = G0/Nn and πn : G0 � Gn the canonical projection;

Bn = 〈〈b〉〉Gn = πn(B0);

Ξn = 〈b, c, d, aba, aca, ada〉Gn = πn(Ξ0);

Ddiag
n = 〈(a, d), (d, a)〉Gn×Gn ;

σn : Gn−1 −→ Gn, gNn−1 7−→ σ(g)Nn (for n ≥ 1 only).

For the definition of the homomorphism σn, note that σ(Nn−1) ⊂ Nn.

Lemma 3.11 ([GdlH01], Lemma 3). Let B0 denote the normal subgroup of G0 gen-

erated by b. Then:

(i) B0 is of index 8 in G0;

(ii) B0 is generated by the four elements

ξ1 := b, ξ2 := aba, ξ3 := dabad, ξ4 = adabada;

(iii) B0 has the presentation 〈ξ1, ξ2, ξ3, ξ4 | ξ2
1 = ξ2

2 = ξ2
3 = ξ2

4 = 1〉;

(iv) B0 contains Nn for all n ≥ 1.
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Lemma 3.12 ([GdlH01], mostly Proposition 10). (i) The kernel and the image of

the homomorphism ψ0 are given by

ker(ψ0) = 〈〈u1, v0〉〉Ξ0 ,

Im(ψ0) = (B0 ×B0) oDdiag
n of index 8 in G0 × G0.

(ii) For n ≥ 1, the homomorphism ψ0 induces an isomorphism

ψn : Ξn
'−→ (Bn−1 ×Bn−1) oDdiag

n−1 <8 Gn−1 × Gn−1

where <8 indicates that the left-hand side is a subgroup of index 8 in the right-hand

side.

Set K0 = 〈〈(ab)2〉〉G0 ; observe that K0 ⊂ B0.

Lemma 3.13. (i) The subgroup K0 is of index 2 in B0. It is generated by

t = (ab)2 v = (bada)2 w = (abad)2

Moreover K0 contains Nn for n ≥ 1.

(ii) The group K0 is a free group of rank 3.

Proof. (i) This follows from [dlH00, Page 230]. Since B0 contains Nn and each un, vn

is a fourth power, necessarily Nn is contained in K0.

For (ii), see [BdC06, Proposition 4], where the proof uses Kurosh’s Theorem.

Alternatively one can use the Reidemeister-Schreier method to find a presentation

for K0 and see that it is indeed free of rank 3.
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Lemma 3.14. If g is an element of Bn−1 then

ψn(σn(g)) = (1, g) and ψn(aσn(g)a) = (g, 1).

Proof. For the generators of Bn−1 that are images of those of Lemma 3.11 for B0,

we have

ψn(σn(b)) = ψn(d) = (1, b),

ψn(σn(aba)) = ψn(acadaca) = (d2, aba) = (1, aba),

ψn(σn(dabad)) = ψn(cacadacac) = (ad2a, dabad) = (1, dabad),

ψn(σn(adabada)) = ψn(acacacadacacaca) = (1, adabada),

and this shows the first equality. The second follows because, if ψn(h) = (h0, h1),

then ψn(aha) = (h1, h0).

Let Kn = K0/Nn. It is a normal subgroup of Gn contained in Bn.

Lemma 3.15. Let n ≥ 1.

(i) We have σn(Kn−1) ⊂ Kn ⊂ Bn.

(ii) If Hn−1 is a subgroup of Kn−1, then ψ−1
n (Hn−1 ×Hn−1) ⊂ Kn.

Proof. (i) Let t, v, w be now the canonical images in Kn of the elements of K0 denoted

by the same symbols in Lemma 3.13. On the one hand, we have ψn(σn(t)) = (1, t)

by Lemma 3.14. On the other hand, we have

ψn(w) = ψn(aba)ψn(d)ψn(aba)ψn(d) = (cc, abab) = (1, t)

by the definitions of ψn and w. Hence σn(t) = w ∈ Kn by Lemma 3.12.ii.

Let g1 ∈ Gn−1. From the definition of ψn, we see that the composition Ξn −→ Gn−1
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of ψn with a projection onto one of the factors is onto. Hence there exists g ∈ Ξn

and g0 ∈ Gn−1 such that ψn(g) = (g0, g1). We have as above2 ψn(σn(tg1)) = (1, tg1)

and

ψn(wg) = ψn(w)ψn(g) = (1, t)ψn(g) = (1, tg1),

and therefore σn(tg1) = wg. Since Kn is a normal subgroup of Gn containing w, we

have σn(tg1) ∈ Kn for all g1 ∈ Gn−1. The inclusion σn(Kn−1) ⊂ Kn follows, because

Kn−1 is generated by t as a normal subgroup of Gn−1.

(ii) Let (h0, h1) ∈ Hn−1 ×Hn−1. We have

ψ−1
n (h0, h1) = aσn(h0)a σn(h1)

by Lemma 3.14, and the right-hand side is in Kn by (i).

Set H0 = K0. For n ≥ 1, define inductively

Hn = ψ−1
n (Hn−1 ×Hn−1).

The definition makes sense by Lemma 3.15.ii. The following lemma finishes the proof

of Theorem 3.10.

Lemma 3.16. Let n ≥ 0, and the notation be as above.

(i) Hn is a normal subgroup of Gn contained in Kn.

(ii) The group Hn is a direct product of 2n free groups of rank 3.

(iii) Its index is given by [Gn : Hn] = 2(2n+1+2).

Proof. For n = 0, the three claims follow from Lemmas 3.11 and 3.13. We suppose

now that n ≥ 1 and that the lemma holds for n− 1.

2Remember that th = h−1th.
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(i) The group Hn is clearly normal in Ξn, by Lemma 3.12.ii. To show that Hn is

normal in Gn, it suffices to check that aHna ⊂ Hn, because Gn is generated by Ξn (of

index 2 in Gn) and a. Let h ∈ Hn. Let h0, h1 ∈ Hn−1 be defined by ψn(h) = (h0, h1).

Then ψn(aha) = (h1, h0) ∈ Hn−1 ×Hn−1, and therefore aha ∈ Hn.

(ii) This is a straightforward consequence of the isomorphism Hn ' Hn−1×Hn−1,

see again Lemma 3.12.

(iii) By the induction hypothesis, we have

[(Bn−1 ×Bn−1) oDdiag
n−1 : Hn−1 ×Hn−1]

=
[Gn−1 × Gn−1 : Hn−1 ×Hn−1]

[Gn−1 × Gn−1 : (Bn−1 ×Bn−1) oDdiag
n−1]

=
22n+2 × 22n+1

23
= 22n+1+1.

Thus the commutative diagram

Gn Gn−1 × Gn−1

| |

2 23

| |

ψn : Ξn

∼=−→ (Bn−1 ×Bn−1) oDdiag
n−1

| |

2(2n+1+1) 2(2n+1+1)

| |

Hn −→ Hn−1 ×Hn−1

shows that Hn has index 2(2n+1+2) in Gn.

The proof of Theorem 3.10 is now complete.
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4. PROFINITE COMPLETION OF THE FIRST GRIGORCHUK GROUP*

4.1 Introduction

The results presented in this chapter are published in the paper [Ben12b]. As it

was mentioned on various occasions, the first Grigorchuk group G possesses various

properties which makes it an important object to study. Similarly, its profinite

completion Ĝ is interesting from the perspective of profinite groups. Recall that the

Grigorchuk group is a 2- group, therefore its pro-2 completion Ĝ2 coincides with its

profinite completion Ĝ. Also due to the congruence subgroup property these coincide

with its closure in Aut(T2):

Theorem 4.1. [Gri85] G has the congruence subgroup property.

As mentioned in Section 2.7, this gives a concrete description of Ĝ as a compact

and topologically finitely generated subgroup of the automorphism group of the

binary rooted tree. Moreover, we will see that the congruence subgroup property

is used in a crucial way in the proof of Theorem 4.2 since it allows one to work with

the congruence quotients G/StG(n), n ≥ 1 instead of arbitrary quotients.

Let us mention some properties of Ĝ. First of all it is a just-infinite branch group

[Gri00]. It has the following universal property: Ĝ contains any countably based

pro-2 group as a subgroup. Here countably based means that the group is an inverse

limit of countably many finite 2-groups. Another important property is that Ĝ has

finite width, that is, its lower central factors have bounded width [BG00]. Moreover

*Profinite completion of Grigorchuk’s group is not finitely presented, by Mustafa Gökhan Benli
International Journal of Algebra and Computation, Volume 22, Issue 05, 2012, Copyright c©2012
World Scientific Publishing Company. Reprinted with the permission of World Scientific Publishing
Company.
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in [BG00] it was shown that Ĝ is a counter example to a conjecture about just-infinite

pro-p groups of finite width.

The group Ĝ and its subgroups were studied on various occasions. In [Gri05,

Šun11] it was given a combinatorial description in terms of so called forbidden pat-

terns in the automorphism group of the binary rooted tree. In [AdlHKŠ07] it was

investigated with relations to pro-soluble completions of groups and also a combi-

natorial condition was given for an automorphism g ∈ Aut(T2) to belong to Ĝ. A

similar condition was used in [Leo10] to show that Ĝ contains the closure of an au-

tomaton group W for which the underlying semigroup has no torsion. Also in [BS10]

an automaton group Gt called the twisted twin of Grigorchuk group was investigated

and was shown to have the same closure as G in Aut(T2) but is not isomorphic to G.

Our aim in this chapter is to investigate the presentation problem of Ĝ in the

category of profinite groups.

4.2 Profinite presentations

The classical notion of a presentation has a natural profinite (or more generally

a pro-C) analogue:

Let F be a discrete free group and F̂ be its profinite completion. It can be

observed that F̂ is in fact a free profinite group, i.e., a free object in the category of

profinite groups (see [Wil98, Chapter 5]).

Definition 4.1. A (profinite) presentation of a profinite group G, is an exact se-

quence

1 −→ N −→ F̂ −→ G −→ 1

where F is a (discrete) free group. G is said to be finitely presented (as a profinite

group) if it has a presentation where F has finite rank and N is the closed normal

subgroup of F̂ generated by a finite subset R.

71



The following is well known:

Lemma 4.1. If 1 → N → F → G → 1 is a presentation of a discrete group G,

then 1 → N̄ → F̂ → G → 1 gives a presentation for the completion of Ĝ, where N̄

denotes the closure of N in Ĝ under the identification of G with a subgroup of Ĝ.

Proof. Let ι : G → Ĝ, j : F → F̂ be the canonical maps and let π : F → G be

the quotient map defined by the presentation. By the universal property of profinite

completions, there is a continuous map φ : F̂ → Ĝ such that φ ◦ j = ι ◦ π. φ is

surjective since its image is compact and contains the dense subset ι(G) of Ĝ. It is

easy to see that ker(φ) = lim
←−HCfF

NH/H which is equal to the closure N̄ by [RZ10,

Corollary 1.1.8].

It follows that the profinite completion of a finitely presented group is a finitely

presented profinite group. However the converse of this fact is not true (see [Lub05]).

Two finitely generated residually finite groups, one finitely presented the other not,

can have isomorphic profinite completions. In general we have the following defini-

tion:

Definition 4.2. A group theoretic property P is called a profinite property whenever

for two groups G1 and G2 we have Ĝ1
∼= Ĝ2 and G1 has the property P , then G2 has

property P .

Examples of profinite properties include being virtually nilpotent or having a

certain subgroup growth. These can be easily seen since the set of finite index

normal subgroups of a group G are in bijection with the set of open normal subgroups

of its completion Ĝ (see [RZ10, Proposition 3.2.2]). More interestingly, a result of

Lackenby [Lac10] shows that being large and finitely presented is a profinite property.

Examples of properties which are not profinite include being residually finite, which
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is easily seen since Ĝ ∼= Ĝ×H where H is an infinite simple group. Also a result of

Aka [Aka12] shows that the Kazhdan’s property (T) is not a profinite property.

4.3 Presentation problem for Ĝ

Our main theorem of this chapter is the following:

Theorem 4.2. Ĝ is not finitely presented as a profinite group.

This theorem follows from the following well known cohomological criterion for

finite presentability of pro-p groups:

Theorem 4.3. [Wil98, Page 242] A finitely generated pro-p group G is finitely pre-

sented (as a pro-p group) if and only if H2(G,Fp) is finite.

and the following result due to Lubotzky:

Theorem 4.4. [Lub01] A finitely generated pro-p group is finitely presented as a

pro-p group if and only if it is finitely presented as a profinite group.

Hence Theorem 4.2 is a consequence of the following theorem whose proof is

presented in Section 4.4.3.

Theorem 4.5. H2(Ĝ,F2) is infinite.

The proof of Theorem 4.5 follows from various intermediate results which bear

significance themselves for other reasons. A step-by-step scheme can be summarized

as follows:

1. Finding presentations for the finite quotients Gn = G/StG(n) (Theorem 4.6).

2. Using these presentations for computing the multipliers M(Gn) = (C2)2n−2 and

the cohomology groups H2(Gn,F2)2n+1 (Theorem 4.8 and Lemma 4.24).
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3. Using Lemma 4.24 and the fact that G is a regular branch group to show that

H2(Ĝ,F2) is infinite (Section 4.4.3).

Also as byproduct we show in Theorem 4.10 that the presentations found in Theo-

rem 4.6 are independent and moreover exhibit minimal presentations for each Gn in

Theorem 4.11.

We will discuss these steps and also intermediate results in subsections:

Presentations, Schur multipliers and independence of relators

At the first step we have the following theorem whose proof is given in Section

4.4.1:

Theorem 4.6. For n ≥ 3 we have

Gn =
〈
a, b, c, d | a2, b2, c2, d2, bcd, u0, . . . , un−3, v0, . . . , vn−4, wn, tn

〉
where

ui = σi((ad)4), vi = σi((adacac)4), wn = σn−3((ac)4), tn = σn−3((abac)4)

and σ is the substitution given by

σ =



a 7→ aca

b 7→ d

c 7→ b

d 7→ c

Recall that given a group G, the Schur multiplier of G (denoted by M(G)) is the
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second integral homology group H2(G,Z). If G is given by a presentation F/R ∼= G

where F is a free group, the Hopf’s formula (obtained first by Schur for finite groups

and generalized to infinite groups by Hopf) gives

M(G) ∼= R ∩ F ′/[R,F ]

Hence the abelian group R∩F ′/[R,F ] is independent of the presentation of the group.

If the given presentation is finite (i.e., F has finite rank and R is the normal closure

of finitely many elements {r1, . . . , rm} in F ), then it is easy to see that the abelian

group R/[R,F ] is generated by the images of {r1, . . . , rm} and hence its subgroup

R ∩ F ′/[R,F ] is a finitely generated abelian group. Therefore the Schur multiplier

of a finitely presented group is necessarily finitely generated. The converse of this is

not true. Baumslag in [Bau71] gave an example of an infinitely presented group with

trivial multiplicator. For generalities about Schur multipliers of groups see [Kar87].

The computation of the Schur multiplier of G using the Lysenok’s presentation

was done in [Gri99]:

Theorem 4.7. [Gri99] M(G) ∼= (C2)∞.

Using similar ideas we prove an analogue for the finite groups Gn via the presen-

tations found in Theorem 4.6:

Theorem 4.8. For all n ≥ 1 we have M(Gn) ∼= C2n−2
2 .

The proof of Theorem 4.8 is presented in Section 4.4.2.

If one wants to talk about independence of relators of a presentation 〈X | R〉 one

could talk about two notions1:

1I am indebted to P. De La Harpe for pointing out this important distinction.
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1. For any r ∈ R the canonical map 〈X | R− {r}〉 → 〈X | R〉 is not an isomor-

phism.

2. For any r ∈ R, 〈X | R− {r}〉 and → 〈X | R〉 are not isomorphic.

Clearly 2 implies 1 but in general the converse is not true as witnessed by a

non-hopfian group. But for hopfian groups these notions coincide. Therefore for

hopfian groups one can talk about a presentation having independent relators which

means verbally that removal of any relator changes the isomorphism type of the

presentation. Another outcome of [Gri99] was the independence of the relators in

the Lysenok’s presentation:

Theorem 4.9. [Gri99] The relator’s in the Lysenok’s presentation for G are inde-

pendent.

Similarly we obtain the analogue for the presentations found in Theorem 4.6:

Theorem 4.10. The relators in the presentations of Gn for n ≥ 3 found in Theorem

4.6 are independent.

The proof of Theorem 4.10 will be presented in Section 4.4.2.

4.3.1 Minimality of presentations and deficiency

Definition 4.3. If G is a group, let d(G) denote the minimal number of generators

required to generate G. The minimal number m such that G has a presentation

with m relators will be denoted by r(G). The deficiency of G (denoted by def(G))

is defined to be the minimal difference m − t such that G has a presentation with

t generators and m relators. A presentation G = 〈x1, . . . , xt | r1, . . . , rm〉 is called

minimal if t = d(G) and m = r(G).

Regarding minimal presentations, the following question is open (see [Gru76]):
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Question 6. Does every finite group have a minimal presentation?

A related question is the following, which again is open:

Question 7. Does every finite group have a presentation realizing its deficiency with

d(G) number of generators?

It is clear that an affirmative answer to question 7 gives an affirmative answer

to question 6. Rapaport [Rap73] proves that the second question has a positive

answer for nilpotent groups. Also Evans [Eva93] gives an affirmative answer for

finite solvable groups. Lubotzky [Lub01] gives an affirmative answer for question 7

in the category of profinite groups (see Section 4.2).

Therefore the groups Gn being finite 2-groups have minimal presentations. Theo-

rems 4.6 and 4.8 allow us produce a minimal presentation for these groups. It relies

on the following well known inequality:

Lemma 4.2. For a finite group G we have d(M(G)) ≤ def(G).

Proof. Given a presentation G = 〈x1, . . . , xt | r1, . . . , rm〉 = F/R of a finite group G,

we have the quotient map

R/[R,F ]→ R/(R ∩ F ′)

whose kernel is the Schur multiplier M(G). But R/(R ∩ F ′) ∼= RF ′/F ′ which is free

abelian of rank t because R has finite index in F . Hence

d(M(G)) = d(R/[F,R])− t ≤ m− t

and since M(G) does not depend on the presentation we have d(M(G)) ≤ def(G).
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Theorem 4.11. For n ≥ 3 we have

Gn =
〈
a, b, c | a2, b2, c2, (bc)2, u0, . . . , un−3, v0, . . . , vn−4, wn, tn

〉
where

ui = σi((abc)4), vi = σi((abcacac)4), wn = σn−3((ac)4), tn = σn−3((abac)4)

and σ is the substitution given by

σ =


a 7→ aca

b 7→ bc

c 7→ b

and this presentation is minimal and realizes the deficiency def(Gn) = 2n− 2.

Proof. The presentations found in Theorem 4.6 contain the relator d = bc. Hence

applying Tietze transformations we get the asserted presentations. By Theorem 4.8

we have d(M(Gn)) = 2n− 2. By Lemma 4.2 and counting generators and relators in

the above presentation we get def(Gn) = 2n− 2.

We have Gab3
∼= (C2)3 and Gn maps onto G3. Also Gab ∼= (C2)3 and G maps onto

Gn. These show that Gabn ∼= (C2)3 and d(Gn) = 3. Hence the above presentation

realizes the deficiency with minimal number of generators. Therefore it is necessarily

minimal.

4.4 Proofs of the theorems

4.4.1 Presentations for Gn

The aim of this section is to prove Theorem 4.6.
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Let Γ = 〈a, b, c, d | a2, b2, c2, d2, bcd, (ad)4〉 and let us denote by π : Γ −→ G the

canonical surjection. Consider the subgroup Ξ = 〈b, c, d, ba, ca, da〉Γ which is the lift

of the first level stabilizer StG(1) to Γ.

We have a homomorphism

ϕ̄ : Ξ −→ Γ× Γ

b 7→ (a, c)

c 7→ (a, d)

d 7→ (1, b)

ba 7→ (c, a)

ca 7→ (d, a)

da 7→ (b, 1)

which is analogous to ϕ : StG(1) −→ G × G. (The fact that ϕ̄ is well defined can be

checked by first finding a presentation for Ξ using Reidemeister-Schreier process and

checking that it maps relators to relators.)

Given w ∈ Ξ let us write ϕ̄(w) = (w0, w1) which is consistent with the section

notation of tree automorphisms. Recall the substitution σ given by

σ =



a 7→ aca

b 7→ d

c 7→ b

d 7→ c

It is easy to check that given w ∈ Ξ one has

ϕ̄(σ(w)) = (v, w)
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and v ∈ 〈a, d〉Γ ∼= D8 where the latter denotes the dihedral group of order 8. Since

all ui, vi, wi, ti (for appropriate index i) are 4-th powers (as elements of Ξ) and D8

has exponent 4, we have the following equalities:

ϕ̄(ui) = (1, ui−1)

ϕ̄(vi) = (1, vi−1)

ϕ̄(wi) = (1, wi−1)

ϕ̄(ti) = (1, ti−1) (4.1)

Let Ω = Ker(π) so that G = Γ/Ω. It is known (for example see [dlH00]) that Ω is a

strictly increasing union Ω =
⋃
n Ωn , Ωn ⊂ Ωn+1. The subgroups Ωn can be defined

recursively as follows:

Ω1 = Ker(ϕ̄) and Ωn = {w ∈ Ξ | w0, w1 ∈ Ωn−1} for n ≥ 2.

It is known that Ωn = 〈〈u1, . . . , un, v0, . . . .vn−1〉〉Γ (see [Gri98]). The subgroups Ωn

are related to the ”branch algorithm” which solves the word problem in G (See

[Gri05]). Roughly speaking Ωn consists of elements for which the algorithm stops

after n steps.

Similarly, we have subgroups Υn of Γ such that Gn = G/StG(n) ∼= Γ/Υn where

Υn+1 ⊂ Υn and
⋂
n Υn = Ω. Hence StG(n) = Υn/Ω. A recursive definition for Υn is

as follows:

Υ1 = Ξ and Υn = {w ∈ Ξ | w0, w1 ∈ Υn−1} for n ≥ 2.
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We will prove Theorem 4.6 by showing that for n ≥ 3 we have

Υn = 〈〈u1, . . . , un−3, v0, . . . , vn−4, wn, tn〉〉Γ .

This will be done by induction on n and the case n = 3 follows from the following 3

lemmas:

Lemma 4.3. We have G3
∼= (C2 o C2) o C2 which has the presentation

〈
x, y, z | x2, y2, z2, [x, xy], [y, yz], [x, xz], [x, yz], [y, xz]

〉
(4.2)

where x = ada, y = c, z = a.

Proof. Direct inspection of the action of a, c, ada on the tree consisting of the first 3

levels (See [dlH00] page 226).

Lemma 4.4. Presentation (4.2) is equivalent to

G3 =
〈
a, b, c, d | a2, b2, c2, d2, bcd, (ad)4, (ac)4, (adac)4

〉
(4.3)

Proof. Follows from the following equations and applying Tietze transformations to

(4.2).

[x, xy] = [ada, cadac] = (adac)4

[y, yz] = [c, aca] = (ca)4

[x, xz] = [ada, d] = (ad)4

[x, yz] = [ada, aca]

[y, xz] = [c, d]
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Lemma 4.5. Presentation (4.3) is equivalent to

G3 =
〈
a, b, c, d | a2, b2, c2, d2, bcd, (ad)4, (ac)4, (abac)4

〉
and hence Υ3 = 〈w3, t3〉#Γ .

Proof. Follows from the following equalities:

(adac)4 = (adacadac)2 = (adcacacdac)2 = (abacabac)2 = (abac)4

where in step 3 we use the equality aca = cacac.

Recall that G is regular branch over the subgroup K = 〈〈(ab)2〉〉G.

Lemma 4.6. StG(3) ≤ K and hence for n ≥ 4 we have

ϕ(StG(n)) = StG(n− 1)× StG(n− 1)

and therefore for n ≥ 4

ϕ̄(Υn) = Υn−1 ×Υn−1.

Proof. A proof of the fact StG(3) ≤ K can be found in [dlH00, Page 230]. Since

G is a regular branch group over K (i.e K × K ≤ ψ(K)) we get the remaining

equalities.

Proof of Theorem 4.6: We have to show that for n ≥ 3 we have

Υn = 〈〈u1, . . . , un−3, v0, . . . , vn−4, wn, tn〉〉Γ
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Now induction on n, equations (4.1) and the fact ϕ̄(Υn) = Υn−1 ×Υn−1 show that

Υn = Ker(ϕ̄) 〈〈u2, . . . , un−3, v1, . . . , vn−4, wn, tn〉〉Γ

But Ker(ϕ̄) = Ω1 = 〈〈u1, v0〉〉Γ, as mentioned earlier, from this we obtain

Υn = 〈〈u1, . . . , un−3, v0, . . . , vn−4, wn, tn〉〉Γ .

4.4.2 Computation of the Schur multipliers of Gn

This section is devoted to the proofs of theorems 4.8 and 4.10. The ideas are

analogous to [Gri99] with slight modifications where needed.

Let F be the free group on {a, b, c, d} and for n ≥ 3 let

Kn =
〈〈
a2, b2, c2, d2, bcd, u0, . . . , un−3, v0, . . . , vn−4, wn, tn

〉〉
where ui, vj, wn are as in Theorem 4.6. By Theorem 4.6 we have F/Kn

∼= Gn. Note

that Kn is defined for n ≥ 3, hence we will always assume that the index n ≥ 3

throughout the reminder.

As mentioned before, the Schur multiplier can be found using Hopf’s formula by:

M(Gn) ∼= Kn ∩ F ′/[Kn, F ]

Recall the substitution σ mentioned on various occasions. Interpreting it as an

endomorphism of F , we have the following basic fact which will be used in the

remainder:
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Lemma 4.7.

Kn+1 ⊂ Kn

σ(Kn) ⊂ Kn

σ([Kn, F ]) ⊂ [Kn, F ]

Proof. The first inclusion follows from the fact that Gn+1 maps onto Gn. The images

of generators of Kn under σ clearly lie in Kn+1 and hence the second inclusion follows

from the first one. Finally the third inclusion follows directly from the second.

For computational reasons we need to change the relators in presentation of

theorem 1 slightly to the ones given in the next lemma. The rationale behind this

will be apparent when we will do computations modulo the subgroup [Kn, F ].

Lemma 4.8. 2 Kn = 〈〈B1, B2, B3, B4, L, U0, . . . , Un−3, V0, . . . , Vn−4,Wn, Tn〉〉 where

B1 = a2, B2 = b2, B3 = c2, B4 = bcd

L = b2c2d2(bcd)−2

Ui = σi((ad)4a−4d−4), Vi = σi((adacac)4a−12c−8d−4)

Wn = σn−3((ac)4a−4c−4), Tn = σn−3((abac)4a−8b−4c−4)

Proof. Let K ′n be the subgroup on the right hand side. Clearly Bi, L ∈ Kn. Also

since U0, V0 ∈ Kn and σ(Kn) ⊂ Kn we see that Ui, Vi are elements of Kn. We have

Wn = wnσ
n−3(a−4c−4) ∈ Kn

2Ui was written incorrectly in [Ben12b, Page 13]
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similarly Tn ∈ Kn. The reverse inclusion can be shown similarly using σ(K ′n) ⊂

K ′n.

Let ≈ denote equivalence modulo [Kn, F ].

Lemma 4.9. In the group Kn/[Kn, F ] we have the equalities

L2 ≈ U2
i ≈ V 2

i ≈ W 2
n ≈ T 2

n ≈ 1

Proof. Observe that x2, [x, y] ∈ Kn where x, y ∈ {b, c, d}± and therefore we have

1 ≈ [x2, y] = [x, y]x[x, y] ≈ [x, y]2

for any x, y ∈ {b, c, d}±. Hence moving elements of the form x2 and [x, y] we get

L = b2c2d2d−1c−1b−1d−1c−1b−1 ≈ dcbd−1c−1b−1 = dcb[d, c]c−1d−1b−1

≈ [d, c]dcbc−1[d, b]b−1d−1 ≈ [d, c][d, b]dcb[c, b]b−1c−1d−1 ≈ [d, c][d, b][c, b]

therefore, since Kn/[Kn, F ] is abelian we have L2 ≈ 1.

U2
0 = (ad)4a−4d−4(ad)4a−4d−4

≈ a−1d−1a−1d−1a−1d−1a−1d−1a−1aadadadad

= [a, (ad)4] = [a, u0] ≈ 1

By virtue of Lemma 4.7 it is enough to show U2
0 ≈ V 2

0 ≈ 1.
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Note that (cacada)4 = ((adacac)4)(cac)−1
= v

(cac)−1

0 ∈ Kn.

V 2
0 = (adacac)4a−12c−8d−4(adacac)4a−12c−8d−4

≈ (cacada)−4(adacac)4

= (cacada)−4ada(cacada)4(ada)−1

= [(cacada)4, (ada)−1] ≈ 1

Since σ([Kn, F ]) ⊂ [Kn.F ] we see that U2
i = V 2

i ≈ 1 for every i.

For Wn, a similar calculation (like the one for U0) gives the following:

W 2
n ≈ [σn−3(a), σn−3((ac)4)] = [σn−3(a), wn] ≈ 1

Also similar computation (like the one for V0) shows that T 2
n is conjugate to

[σn−3(d), σn−3((baca)4)] ≈ 1

Recall that C denotes the infinite cyclic group.

Lemma 4.10. In Kn/[Kn, F ] we have 〈B1, B2, B3, B4〉 ∼= C4.

Proof. We have the quotient map

Kn/[Kn, F ] −→ Kn/(Kn ∩ F ′)

and the right hand side is a free abelian group since

Kn/(Kn ∩ F ′) ∼= KnF
′/F ′ ≤ F/F ′ ∼= C4
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Now B1, B2, B3, B4 are mapped onto the vectors

(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 1, 1, 1)

respectively. Linear independence of these vectors proves the assertion.

Lemma 4.11. We have the following isomorphism:

Kn/[Kn, F ] ∼= C4 ×Mn

where C4 is freely generated by B1, B2, B3, B4 and is isomorphic to Kn/(Kn ∩ F ′)

and Mn is the torsion part generated by {L,Ui, Vi,Wn, Tn}, which is an elementary

abelian 2-group isomorphic to (Kn ∩ F ′)/[Kn, F ].

Proof. We have the split exact sequence of abelian groups

1→ (Kn ∩ F ′)/[Kn, F ]→ Kn/[Kn, F ]→ Kn/(Kn ∩ F ′)→ 1

From the previous lemma we have Kn/(Kn ∩ F ′) ∼= C4. Hence

Mn
∼= (Kn ∩ F ′)/[Kn, F ]

and is elementary abelian 2-group by Lemma 7.

Lemma 4.12. The elements L,U0,W3, T3 are independent in M3.

Proof. Clearly M3 maps to the abelian group

Q3 = F ′/([K3, F ]γ5(F )F (2))

The result follows from the next lemma.

87



Lemma 4.13. Q3 has the following presentation:

Generators:

• [a, b], [a, c], [a, d], [b, c]

• [a, x, y], x 6= y, x, y ∈ {b, c, d}

• [a, x, y, z], x 6= y, y 6= z and (x, y, z) is not a permutation of (b, c, d) where

x, y ∈ {b, c, d} and z ∈ {a, b, c, d}

Relations:

• commutativity relations

• [a, b]8 = [a, c]4 = [a, d]4 = [b, c]2 = 1

• [a, b, c]4 = [a, b, d]4 = [a, c, b]2 = [a, c, d]2 = [a, d, b]2 = [a, d, c]2 = 1

• [a, x, y, z]2 = 1

Moreover, the the images of L,U0,W3, T3 in Q3 are [b, c], [a, d]2, [a, c]2 and [a, b, c]−2

respectively.

Proof. ( ≈ denotes equivalence modulo [K3, F ]γ5(F )F (2) throughout this proof)

Since a2, b2, c2, d2 ∈ K3, using standard commutator calculus and the fact that

γ5(F ) appears in the denominator of Q3, it is easy to see that Q3 is generated by

elements of the form

• [x, y], x 6= y. x, y ∈ {a, b, c, d}

• [x, y, z], x 6= y, x, y, z ∈ {a, b, c, d}

• [x, y, z, w]. x 6= y, x, y, z, w ∈ {a, b, c, d}
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Before beginning calculations, we wish to write two equalities which will be frequently

used in the remainder 3:

[x, yz] = [x, z][x, y][x, y, z] (4.4)

[xy, z] = [x, z][x, z, y][y, z] (4.5)

Clearly, in Q3 we have the following relations:

[x,Bi] = [x, L] = [x, U0] = [x,W3] = [x, T3] = 1 x ∈ {a, b, c, d}

Using these we will further reduce the system of generators. Firstly, from equation

(4.4) we have:

[x, a]2[x, a, a] = [x, a2] ≈ 1, x ∈ {b, c, d}

Hence

[x, a, a] ≈ [a, x]2 (4.6)

and we can omit the generators [x, a, a] where x ∈ {b, c, d}. Since

[x, a, y] = [a, x][y, [a, x]][x, a] ≈ [y, [a, x]] = [a, x, y]−1 (4.7)

we also can omit generators [a, x, a] and [x, a, y] where x, y ∈ {b, c, d}. Next, again

using equation (4.4) we have

[x, y]2[x, y, y] = [x, y2] ≈ 1 x ∈ {a, b, c, d}, y ∈ {b, c, d}
3Equation (4.5) was written incorrectly in [Ben12b, Page 16, eqn (4.6)]
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Hence

[x, y, y] ≈ [y, x]2 (4.8)

and therefore the generators [a, y, y] where y ∈ {b, c, d} can be omitted.

Since [x, y] ∈ K3 for x, y ∈ {b, c, d}, we also omit generators of the form [x, y, a].

Using equations (4.7), (4.6) and (4.5) we have

[a, x, a, y] ≈ [[x, a, a]−1, y] ≈ [[a, x]−2, y] ≈ [[a, x]−1, y]2 = [x, a, y]2

which enables us to omit generators of the form [a, x, a, y] where x ∈ {b, c, d} and

y ∈ {a, b, c, d}.

Similarly, using equations (4.8) and (4.5) we have

[a, x, x, z] ≈ [[x, a]2, z] ≈ [[x, a], z]2 = [x, a, z]2

which enables us to omit generators of the form [a, x, x, z] where x ∈ {b, c, d} and

where z ∈ {a, b, c, d}.

The following equation holds:

[x, yzt] = [x, zt][x, y][x, y, zt]

= [x, t][x, z][x, z, t][x, y][x, y, t][x, y, z][x, y, z, t] (4.9)

Substituting x = a yields the omission of the generators of the form [a, y, z, t] where

(y, z, t) is a permutation of (b, c, d). Similarly, substituting different letters into

equation (4.9) we get the following identities:

1 ≈ [b, bcd] ≈ [b, c][b, d]

90



1 ≈ [c, bcd] ≈ [c, d][c, b]

1 ≈ [d, bcd] ≈ [d, b][d, c]

Which yield the identities [c, d] ≈ [b, c] ≈ [d, b]. Thus [c, d] and [b, d] can be omitted

from the system of generators. Hence Q3 has the asserted set of generators. We

proceed to showing it has the asserted relators.

Using equation (4.8) we have [b, c]2 ≈ 1. Using similar calculations as in Lemma

4.9 we get (note that (ab)8 ∈ K3) :

1 ≈ [a, (ad)4] ≈ [a, d]4

1 ≈ [a, (ac)4] ≈ [a, c]4

1 ≈ [a, (ab)8] ≈ [a, b]8

We have

1 ≈ [x, (ad)4] ≈ [x, [a, d]2] = [x, [a, d]]2[[x, [a, d]], [a, d]] ≈ [x, [a, d]]2 ≈ [a, d, x]−2

hence [a, d, b]2 = [a, d, c]2 ≈ 1. Similarly

1 ≈ [x, (ac)4] ≈ [a, c, x]−2

1 ≈ [x, (ab)8] ≈ [a, b, x]−4

yield [a, c, b]2 ≈ [a, c, d]2 ≈ 1 and [a, b, c]4 ≈ [a, b, d]4 ≈ 1. Finally

1 ≈ [a, x, y, z2] ≈ [a, x, y, z]2[a, x, y, z, z] ≈ [a, x, y, z]2
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where x, y ∈ {b, c, d} and z ∈ {a, b, c, d}.

Let us show that the images of L,U0,W3, T3 in Q3 are [b, c], [a, d]2, [a, c]2 and

[a, b, c]−2 respectively:

By Lemma 4.9, L ≈ [d, c][d, b][c, b] ≈ [b, c]. Also similar to earlier computations

we have;

U0 ≈ [a, d]2

W3 ≈ [a, c]2

T3 = (abac)4a−8b−4c−4 = abacabacabacabacabaca−8b−4c−4

≈ [a, b]b−1c−1a−1bac[a, b]b−1c−1a−1bac

= ([a, b][b, ac])2

= ([a, b][b, c][b, a][b, a, c])2

≈ [b, a, c]2 ≈ [a, b, c]−2(by equation 4.7)

Therefore

1 ≈ [a, T3] ≈ [a, [a, b, c]−2] ≈ [a, [a, b, c]]−2 ≈ [a, b, c, a]2

Similarly

1 ≈ [x, T3] ≈ [x, b, c, a]2

Now the following argument finishes the proof of the lemma:

It is clear that all relations of Q3 can be derived from the relations

[x,Bi] = [x, L] = [x, U0] = [x,W3] = [x, T3] = 1, x ∈ {a, b, c, d}

together with relations of the form y = 1 where y ∈ γ5(F ) or y ∈ F (2).
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The relations y ∈ γ5(F ) can be disregarded by omitting the generators of commu-

tator length 5 or more from the generating system. The relations y ∈ F (2) translate

to commutativity relations among generators. Finally above computations show that

one can further reduce the generating set to the one asserted in the lemma. Also the

calculations imply that the relations are equivalent to the system of relators given

in the lemma. Hence Q3 has the given presentation, and clearly L,U0,W3, T3 are

independent in Q3.

Lemma 4.14. The elements L,U0, U1, V0 are independent in Mn where n ≥ 4.

Proof. Mn maps to the abelian group Qn = F ′/([Kn, F ]γ5(F )F (2)). The result is a

corollary of the next lemma.

Lemma 4.15. Qn has the following presentation:

Generators:

• [a, b], [a, c], [a, d], [b, c]

• [a, x, y], x 6= y, x, y ∈ {b, c, d}

• [a, x, y, z], x 6= y, y 6= z and (x, y, z) is not a permutation of (b, c, d) where

x, y ∈ {b, c, d} and z ∈ {a, b, c, d}

Relations:

• commutativity relations

• [a, b]16 = [a, c]8 = [a, d]4 = [b, c]2 = 1

• [a, b, c]8 = [a, b, d]8 = [a, c, b]4 = [a, c, d]4 = [a, d, b]2 = [a, d, c]2 = 1
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• [a, x, y, z]2 = 1

Moreover the the images of L,U0, U1, V0 in Qn are [b, c], [a, d]2, [a, c]4 and [a, d]2[a, c, d]2

respectively.

Proof. Most of the proof is similar to the proof of Lemma (4.13). Additionally we

only need to show that the relations:

[x, U1] = . . . = [x, Un−3] = [x, V0] = · · · = [x, Vn−4] = [x,Wn] = [x, Tn] = 1

are consequences of the given system of relators.

Let ∼= mean equality in F ′ modulo the subgroup [Kn, F ]F (2). Using equation

(4.8) we have:

[a, c]2 ∼= [a, c, c]−1

Also using equation (4.4)

1 ∼= [a, c, c2] ∼= [a, c, c]2[a, c, c, c]

which implies

[a, c, c]−2 ∼= [a, c, c, c]

and hence

U1
∼= [a, c]4 ∼= [a, c, c]−2 ∼= [a, c, c, c]

which yields U1 ∈ γ4(F ) mod [Kn, F ]F (2). Therefore [x, U1] ∈ γ5(F ) mod [Kn, F ]F (2).

It follows that relations of the form [x, U1] are consequences of previous relations.

Since σ(γ5(F )) ≤ γ5(F ) and σ(F (2)) ≤ F (2), we also see that relations of the form

[x, Ui] where i = 2, . . . , n− 3 are consequences of previous relations.
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For V0 we have:

V0 = (adacac)4a−12c−8d−4

= (ad)2(ac)2[(ac)2, ad](ac)2(ad)2(ac)2[(ac)2, ad](ac)2a−12c−8d−4

≈ [a, d]2[a, c]4[[a, c], ad]2

≈ [a, d]2[a, c]4[a, c, d]2[a, c, a]2[a, c, a, d]2

≈ [a, d]2[a, c]4[a, c, d]2[c, a, a]−2[a, c, a, d]2

≈ [a, d]2[a, c]4[a, c, d]2[a, c]4[a, c, a, d]2

≈ [a, d]2[a, c, d]2

hence

[x, V0] ≈ [x, [a, d]2[a, c, d]2] ≈ [x, [a, d]]2[a, [a, c, d]]2 = [a, d, x]2[a, c, d, x]2

is a consequence of previous relations.

For V1 we get:

V1 = (acacacabacab)4(aca)−12b−8c−4

∼= ((ac)4ab[ab, ac][[ab, ac], ab])4(aca)−12b−8c−4

∼= (ac)16(ab)8[[ab, ac], ab]4(aca)−12b−8c−4

∼= [c, a, a, a, a][b, a, a, a]

therefore V1 ∈ γ4(F ) mod [Kn, F ]F (2) hence relations of the form [x, Vi] where
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i = 1, . . . , n− 4 are consequences of previous relations.

W4 = (acab)4(aca)−4b−4

∼= ([a, c][c, ab])2

∼= [a, c]2([c, b][c, a][c, a, b])2

∼= [c, a, b]2

But by equation (4.4),

1 ∼= [c, a, b2] ∼= [c, a, b]2[c, a, b, b]

therefore

W4
∼= [c, a, b, b]−1

hence Wn = σn−4(W4) ∈ γ4(F ) modulo [Kn, F ]F (2) and relations [x,Wn] follow from

the previous relations.

Finally, for T3 from previous computations we get:

T3
∼= [a, b, c]−2

using

1 ∼= [[a, b], c2] ∼= [a, b, c]2[a, b, c, c]

we get

T3
∼= [a, b, c]−2 ∼= [a, b, c, c]

hence Tn = σn−3(T3) ∈ γ4(F ) modulo [Kn, F ]F (2) and relations [x, Tn] follow from

the previous relations.
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Let P = 〈a2, b, c, d, ba, ca, da〉F be the lift4 of StG(1) to F and let

ψ : P → Γ× Γ

be the homomorphism similar to ϕ̄.

Lemma 4.16. We have Ker(ψ) = 〈〈B1, B2, B3, B4, L, U0, U1, V0〉〉

Proof. Restatement of [Gri99] lemma 11.

Lemma 4.17. For n ≥ 4 the following isomorphism holds:

Kn/([Kn, F ]) ∼= C4 × C4
2 × ψ(Kn)/ψ([Kn, F ])

where the factor C4 is generated by B1, B2, B3, B4 and C4
2 is generated by

L,U0, U1, V0.

Proof. Let

ψ∗ : Kn/[Kn, F ]→ ψ(Kn)/ψ([Kn, F ])

be the homomorphism induced by ψ. Then by Lemma 4.16 we have:

Ker(ψ∗) = (Ker(ψ))[Kn, F ]/[Kn, F ]

= 〈B1, B2, B3, B4, L, U0, U1, V0〉Kn/[Kn,F ]

∼= C4 × C4
2

Hence from Lemma 4.11 the result follows.

Lemma 4.18. We have:

ψ(Ui) = (1, Ui−1)

4Note that the generator a2 is missing here in [Ben12b, Page 20]
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ψ(Vi) = (1, Vi−1)

ψ(Wn) = (1,Wn−1)

ψ(Tn) = (1, Tn−1)

for i ≥ 1 and n ≥ 4.

Proof. We have

ψσ



a 7→ (d, a)

b 7→ (1, b)

c 7→ (a, c)

d 7→ (a, d)

Hence the image of π1ψσ lies in the subgroup 〈a, d〉Γ and π2ψσ is the identity map.

Since 〈a, d〉Γ has exponent 4 we get the asserted equalities.

Let

Θn = 〈〈U1, . . . , Un−3, V0, . . . , Vn−4,Wn, Tn〉〉Γ

so that Γ/Θn
∼= Gn.

Lemma 4.19. The following relations hold:

ψ(Kn) = Θn−1 ×Θn−1

ψ([Kn, F ]) = ([Θn−1,Γ]× [Θn−1,Γ])Ψ

where Ψ ≤ Γ × Γ is the subgroup consisting of elements of the form (w−1, w) w ∈

Θn−1.

Proof. Similar to [Gri99] lemma 14.
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Lemma 4.20. We have the isomorphism:

ψ(Kn)/ψ([Kn, F ]) ∼= Θn−1/([Θn−1,Γ])

and the generators ψ(Ui), ψ(Vi), ψ(Wn), ψ(Tn) are mapped to the generators

Ui−1, Vi−1,Wn−1, Tn−1 respectively.

Proof. By Lemma 4.19, ψ(Kn)/ψ([Kn, F ]) is isomorphic to

(Θn−1 ×Θn−1)/(([Θn−1,Γ]× [Θn−1,Γ])Ψ) (4.10)

Since (1, x)−1(x, 1) = (x, x−1) ∈ Ξ, (4.10) is generated by elements of the form (1, x)

where x ∈ {U1, . . . , Un−4, V0, . . . , Vn−5,Wn−1, Tn−1}. It is easy to check that the map

(1, x) 7→ x

gives an isomorphism between (4.10) and Θn−1/([Θn−1,Γ]).

Lemma 4.21. W3, T3 are independent in Θ3/([Θ3,Γ])

Proof. The proof is analogous to the proof of lemma (4.13) and is omitted.

Lemma 4.22. For n ≥ 4, U1, V0 are independent in Θn/([Θn,Γ])

Proof. The proof is analogous to the proof of lemma (4.14) and is omitted.

Lemma 4.23. For n ≥ 4 we have

Θn/([Θn,Γ]) ∼= C2
2 ×Θn−1/([Θn−1,Γ])
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where U1, V0 are generators of the factor C2
2 and the images of elements

U2, . . . , Un−3, V1, . . . , Vn−4,Wn, Tn

are generators of the second factor.

Proof. Similar to the proof of lemma (4.17) using lemma (4.22).

Proof of Theorem 4.8. We need to show that for n ≥ 3 we have

H2(Gn,Z) ∼= (C2)2n−2

We claim that for n ≥ 3

Θn/([Θn,Γ]) ∼= C2n−4
2

The case n = 3 follows from lemma (4.21). Assume it holds for n > 3. Then by

lemma (4.23)

Θn+1/([Θn+1,Γ]) ∼= C2
2 ×Θn/([Θn,Γ])

and the claim follows from the induction hypothesis. Hence

Kn/([Kn, F ]) ∼= C4 × C2n−2
2

and the result follows from lemma (4.11) and Hopf’s formula.

Proof of Theorem 4.10. Let K̄n = Kn/[Kn, F ] and let Ḱn denote its quotient
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K̄n/ 〈B2
1 , B

2
2 , B

2
3 , B

2
4〉. We have the following homomorphism:

K̄n −→ Ḱn

a2 7→ B1

b2 7→ B2

c2 7→ B3

d2 7→ B3B2L

ui 7→ Ui

vi 7→ Vi

wn 7→ Wn

tn 7→ Tn

Hence any dependence among the initial relators will produce dependence among

generators of Ḱn.

4.4.3 Computation of H2(Ĝ,F2)

This subsection is devoted to the proof of Theorem 4.5. It is well known (see for

example [Kar87]) that for a finite abelian group A one has

H2(G,A) ∼= (G/G′ ⊗ A)× (M(G)⊗ A)

Using this, we have :

Lemma 4.24. For n ≥ 3 H2(Gn,F2) ∼= C2n+1
2 .

Proof. As mentioned before we have Gn/G ′n ∼= (C2)3. Since by Theorem 4.8 M(Gn) ∼=

C2n−2
2 and C2 ⊗ C2

∼= C2 it follows that H2(Gn,F2) ∼= C2n+1
2 .
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Lemma 4.25. For natural numbers n, k with n ≥ 3, let

qn,k : Gn+k → Gn

be the canonical quotient map. Then, there is N ∈ N such that for all n, k the

dimension of the kernel of the induced map

qn,k∗ : H2(Gn,F2)→ H2(Gn+k,F2)

is bounded above by N .

Proof. We have an exact sequence

1→ Ker(qn,k)→ Gn+k → Gn → 1 (4.11)

and clearly Ker(qn,k) ∼= StG(n)/StG(n + k). The sequence (4.11) induces the five

term exact sequence (See [Wei94])

0 → Hom(Gn,F2)
α−→ Hom(Gn+k,F2)

β−→ Hom(Ker(qn,k),F2)Gn

∂−→ H2(Gn,F2)
qn,k∗−−−→ H2(Gn+k,F2)

where Hom(Ker(qn,k),F2)Gn is the set of all homomorphisms invariant under the

action of Gn on Ker(qn,k) by conjugation. Since, Gn and Gn+k have the same abelian-

ization α is an isomorphism. Therefore, β is the zero map and hence ∂ is an injection.

As noted earlier, for n ≥ 4 we have StG(n) ∼= StG(n− 1)×StG(n− 1). Therefore,

Ker(qn,k) ∼=
StG(n)

StG(n+ k)
∼=

StG(3)

StG(k + 3)
× . . .× StG(3)

StG(k + 3)

The action of G (and hence of Gn) by conjugation on this decomposition agrees
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with the action to the corresponding level of the tree. Since the action of G is

level transitive, it follows that the conjugation action of Gn on the factors of the

above decomposition is transitive. Hence any homomorphism belonging to the

group Hom(Ker(qn,k),F2)Gn is uniquely determined by its values in the first fac-

tor of this decomposition. But StG(3) is finitely generated, hence the dimension of

Hom(Ker(qn,k),F2)Gn is no more than a fixed number and in particular independent

of k and n.

Lemma 4.26. Suppose {Gi, ϕij | i, j ∈ I} is a direct system consisting of finitely

generated elementary abelian p-groups. Suppose also that the sequence dim(Gi) is

monotone increasing and there is a uniform bound N such that dim(Ker(ϕij)) ≤ N .

Then the direct limit lim−→ Gi is infinite and hence isomorphic to (Cp)
∞ where Cp is

the cyclic group of order p.

Proof. Recall that the direct limit can be defined as the disjoint union
⊔
Gi factored

by the equivalence relation:

gi ∼ gj ⇐⇒ ∃k ≥ i, j such that ϕik(gi) = ϕjk(gj)

Suppose that lim−→ Gi has M elements. Select i large enough so that dim(Gi) > NM .

So for large j we have

|Gi : Ker(ϕij)| ≥
dim(Gi)

N
>
NM

N
= M

which shows that the direct limit has more than M elements.

Proof of Theorem 4.5: The following is well known: (See [Wil98, Page 178] )

103



If G is the inverse limit of the inverse system {Gi, φij} then

Hn(G,Fp) ∼= lim−→Hn(Gi,Fp)

i.e., Hn(G,Fp) is the direct limit of the direct system {Hn(Gi,Fp), φ∗ij} where φ∗ij is

the inflation map induced by φij. Hence

H2(Ĝ,F2) ∼= lim
−→

H2(Gn,F2)

Now lemmas 4.24 and 4.25 show that the hypotheses of Lemma 4.26 are satisfied

and therefore H2(Ĝ,F2) ∼= (C2)∞.
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5. INDICABLE GROUPS AND ENDOMORPHIC PRESENTATIONS*

This chapter is concerned with results published in the paper [Ben12a]. As already

mentioned in the introduction and Chapter 4, L-presentations play an important role

in the study of self-similar groups. The result that will be presented in this chapter

suggests that such presentations could play also a role outside of the realm of self-

similar groups.

5.1 Introduction

It is a well known fact that finite index subgroups of finitely presented groups

are also finitely presented. More generally, finite index subgroups of a group usually

share many properties of the group itself. But once the subgroup is of infinite index,

various possibilities occur. For example, a finitely generated group may have a

subgroup which is not finitely generated. Classical examples are non-abelian free

groups with their commutator groups or the wreath products of the form A o B

where both A,B are nontrivial finitely generated groups with B infinite. It may also

happen that a finitely presented group contains a finitely generated subgroup which

is not finitely presented, even if the subgroup has cyclic quotient. A classical example

(see [BR84]) is when G = F2 × F2 and H ≤ G is the kernel of the homomorphism

F2 × F2 → Z which sends each generator to 1.

In this chapter we will investigate exactly this situation. We will look at normal

subgroups of finitely presented groups which have infinite cyclic quotient. The main

result is the following:

*Indicable Groups and Endomorphic Presentations, by Mustafa Gökhan Benli, Glasgow Math-
ematical Journal, Volume 45, Issue 02 (May 2012), pp. 335-344, Copyright c©2011 Glasgow Math-
ematical Journal Trust. Reprinted with the permission of Cambridge University Press.
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Theorem 5.1. Let G be a finitely presented group containing a finitely generated

normal subgroup H such that the quotient G/H is cyclic. Then H has an ascending

finite L-presentation with at most two free group endomorphisms, and the endomor-

phisms induce automorphisms of H.

This theorem has the following significance: It is not difficult to observe that

a finitely generated subgroup of a finitely presented group must be recursively pre-

sented. The celebrated Higman embedding theorem [Hig61] states that the converse is

also true. Namely, any recursively presented group can be embedded into a finitely

presented group. This gives a complete picture (in terms of presentations) of the

structure of finitely generated subgroups of finitely presented groups.

Related to the Higman embedding theorem one can ask the following question:

Does a recursively presented group embed as a normal subgroup into a finitely pre-

sented group? Interestingly, it was pointed out to the author by Mark Sapir that

the first Grigorchuk group could not be embedded in this way. Here is M.Sapir’s

argument:

Proposition 5.1. Let G be a normal subgroup of a finitely presented group H. As-

sume that G has trivial center and locally finite outer automorphism group Out(G).

Then G is finitely presented.

Proof. Given h ∈ H let fh denote the automorphism x 7→ xh of G. Let φ : H →

Out(G) denote the composition of the canonical map H → Aut(G), sending h to fh,

with the projection Aut(G) → Out(G). Let ZH(G) denote the centralizer of G in

H and note that it is a normal subgroup of H. We claim that kerφ = G · ZH(G).

One inclusion is clear, for the other let h ∈ ker(φ). This means that fh ∈ Inn(G)

and there exists g ∈ G such that fh = fg. This shows that g−1h ∈ ZH(G) i.e.,

h ∈ G · ZH(G). Since Out(G) is locally finite, we see that H/ ker(φ) is finite and
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hence ker(φ) is finitely presented. Since G has trivial center we have G∩ZH(G) = {1}

and therefore ker(φ) ∼= G× ZH(G). ZH(G) (being a homomorphic image of ker(φ))

is finitely generated. Therefore, since ker(φ) is finitely presented, we obtain that G

must be finitely presented.

Corollary 5.1. The first Grigorchuk group G cannot be embedded into a finitely

presented group as a normal subgroup.

Proof. As mentioned in the introduction, G is not finitely presented and has trivial

center. Also, a result of Sidki and Grigorchuk [GS04] states that Out(G) is elementary

abelian 2-group of infinite rank and hence locally finite. Therefore by Proposition

5.1, G cannot be embedded into a finitely presented group as a normal subgroup.

This shows that even a finitely L-presented group may fail to be a normal sub-

group of a finitely presented group. Therefore, finitely generated normal subgroups

of finitely presented groups must have very special kind of recursive presentations.

To this extend we have the following definition:

Definition 5.1. An invariant L-presentation 〈X | R | Φ〉 is called an AL- presenta-

tion if the endomorphisms φ ∈ Φ induce automorphisms of the group defined by the

presentation.

The reason for having this definition is the following:

Proposition 5.2. If a group has a finite AL-presentation, then it can be embedded

into a finitely presented group as a normal subgroup.

Proof. Let G = 〈X | R | Φ〉 be a finite AL-presentation and let Φ = {φ1, . . . φn}.

Let Q =
⋃
φ∈Φ∗ φ(R). By assumption, φi induces an automorphism ϕi of G where

i = 1, . . . , n. Form the HNN extension with the data (G,ϕ1 : G → G) to obtain a

107



group G1 = 〈X, t1 | Q, xt1 = φ1(x), x ∈ X〉. Next, form the HNN extension with the

data (G1, ϕ2 : G→ G) to obtain G2 = 〈X, t1, t2 | Q, xt1 = φ1(x), xt2 = φ2(x), x ∈ X〉.

Continuing this process we obtain the group

Gn =
〈
X, t1, t2, . . . , tn | Q, xti = φi(x), x ∈ X, i = 1, . . . , n

〉
Let r = x1 . . . xm ∈ R where xi ∈ X± and φ = φj1 . . . φjs ∈ Φ∗ where jk ≤ n. We

have φ(r) = φ(x1) . . . φ(xm) which is equal to (x1 . . . xm)tj1 ...tjs = rtj1 ...tjs = 1 in Gn

using the relators of the form xtj = φj(x) in Gn. Therefore, Gn has the presentation

Gn =
〈
X, t1, t2, . . . , tn | R, xti = φi(x), x ∈ X, i = 1, . . . , n

〉
and hence is finitely presented. Now G is a normal subgroup of Gn. To see this we

only need to verify that xtj
−1 ∈ G whenever x ∈ X and j ≤ n. Let y ∈ G be such

that ϕj(y) = x. This shows that φj(y) = x and hence xtj
−1

= y.

This proposition was indicated in [Ben12a] without a proof. Our proof above

follows the lines of [Har12b, Proposition 5.2].

Theorem 5.1 now can be thought as a partial converse to Proposition 5.2. It is

natural to ask to what extend Theorem 5.1 can be generalized:

Question 8. Is it true that a finitely generated normal subgroup of a finitely presented

group has a finite AL-presentation?

A positive answer to Question 8 would give a characterization of finitely gen-

erated normal subgroups of finitely generated groups as groups which have finite

AL-presentation.
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At the time of writing this dissertation R. Hartung’s pre-print [Har12b] contains

the following generalizations of Theorem 5.1:

Theorem 5.2. [Har12b] If H is a finitely generated normal subgroup of a finitely

presented group G such that H splits over G, or G/H is abelian of torsion-free rank

at most 2, then H has finite AL-presentation.

5.2 Application to indicable groups

Recall that a group is called indicable if it can be mapped onto the infinite cyclic

group. Indicable groups play an important role in the study of orderable groups,

amenability and bounded cohomology. Recall the Lysenok presentation of the first

Grigorchuk group introduced in the introduction:

G =
〈
a, b, c, d | a2, b2, c2, d2, bcd, σi((ad)4), σi((adacac)4), i ≥ 0

〉
where σ is the endomorphism induced by a 7→ aca, b 7→ d, c 7→ b, d 7→ c.

It can be observed from the above presentation that σ induces a homomorphism

σ̃ : G → G. It is also true that σ̃ is injective (see [Gri98]). Therefore we can form the

HNN extension G̃ corresponding to the data (G, σ̃ : G → ˜σ(G)) and one can observe

that G̃ is finitely presented with the following presentation:

G̃ =
〈
a, b, c, d, t | a2, b2, c2, d2, bcd, (ad)4, (adacac)4, at = aca, bt = d, ct = b, dt = c

〉
G̃ was the first example of a finitely presented amenable group which is not

elementary amenable.

G̃ is a finitely presented group which is indicable. Since it is amenable it does

not contain any non-abelian free subgroups. Also, by construction it is an ascending

HNN extension of a finitely generated group. All these properties are in alignment
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with the following theorem due to Bieri and Strebel [BS78]:

Theorem 5.3. A finitely presented indicable group which does not contain non-

abelian free subgroups is an ascending HNN extension with a finitely generated base

group.

A natural question was raised by Grigorchuk in [Gri05] regarding this alignment:

Question 9. Is it true that a finitely presented indicable group which does not contain

a non-abelian free subgroup is an ascending HNN extension with a base group having

finite L-presentation?

Question 2, which is the motivating question behind [Ben12a], remains open. But

with the weaker assumption when the group does not contain free sub-semigroups

of rank at least 2, we can answer it positively. The crucial point is that when the

group does not contain free sub-semigroups, the kernel of any epimorphism onto the

infinite cyclic group is itself finitely generated, allowing us to apply Theorem 5.1. To

see this we will need some auxiliary lemmas:

Lemma 5.1. [LMR95] If a group G does not contain a free sub-semigroup of rank

2, then for all a, b ∈ G the subgroup
〈
ab
n | n ∈ Z

〉
is finitely generated.

Lemma 5.2. [Ros76] Let G be a finitely generated group such that for all a, b ∈ G,

the subgroup
〈
ab
n | n ∈ Z

〉
is finitely generated. If H is a normal subgroup of G such

that G/H is solvable, then H is finitely generated.

The following is a corollary of the previous lemmas and Theorem 5.1:

Theorem 5.4. Let G be a finitely presented indicable group not containing any free

sub-semigroups of rank 2. Then G has the form of a semi-direct product HoZ where

H has a finite AL-presentation.
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5.3 Schur multipliers of finitely L-presented groups

Recall, from previous chapters, that the Schur multiplier M(G) of a group G is

the homology group H2(G,Z) and can be calculated using the Schur-Hopf formula

M(G) =
R ∩ F ′

[F,R]
where F/R is any presentation of G. As mentioned earlier, if G is a

finitely presented group then its Schur multiplier is a finitely generated abelian group.

A natural question is to ask what special structure (if any) do Schur multipliers of

finitely L-presented groups have.

A theorem proven by L.Bartholdi in [Bar03] asserts that the Schur multiplier of

a finitely L-presented group is necessarily a direct sum of finitely generated abelian

groups. Unfortunately it turns out that this theorem is false. To see this we will give

an example of a group G which is finitely L-presented and for which M(G) = Z[1
2
].

I am grateful to Ian Agol for providing this example with all the details.

Example 5.1. Let G be the Baumslag-Solitar group BS(1, 2) =
〈
a, b | ab = a2

〉
. Let

K be the kernel of the homomorphism onto Z induced by a 7→ 0, b 7→ 1. Clearly

K =
〈
ab
k | k ∈ Z

〉
∼= Z[1

2
]. Let H be the amalgamated free product G ?K G. We

have the following Mayer-Vietoris sequence (see [Bro82, Corollary 7.7])

H2(G,Z)⊕H2(G,Z)
α−→ H2(H,Z)

β−→ H1(K,Z)
δ−→ H1(G,Z)⊕H1(G,Z)

It is well known that H2(G,Z) = {0} (see for example [Rob10]). Also Z[1
2
]
δ−→ Z2 is

the the zero map because its domain is 2 divisible and its range is not. Therefore β

is an isomorphism, and hence H2(H,Z) ∼= Z[1
2
]. Clearly H has the presentation

H =
〈
a, b, c | ab = a2, ac = a2, ab

k

= ac
k

, k ∈ Z
〉
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from which an AL-presentation directly follows:

H =
〈
a, b, c | ab = a2, ac = a2 | φ

〉
where φ : a 7→ a2, b 7→ b, c 7→ c. Clearly φ induces an automorphism and H embeds

into the finitely presented group H o Z which has the presentation

〈
a, b, c, t | ab = a2, ac = a2, bt = b, ct = c, at = a2

〉
It turns out that the Schur multiplier cannot be used to distinguish finite L-

presentations from general recursively presented groups. Consequently one may con-

sider the following question:

Question 10. Are there recursively presented groups which are not finitely L- pre-

sented?

5.4 Proof of Theorem 5.1

This section is devoted to the proof of Theorem 5.1.

Let G be a finitely presented group and H a finitely generated normal subgroup

such that G/H is infinite cyclic. Suppose that for t ∈ G we have G/H = 〈tH〉, then

G has the form of a semi direct product G = H o 〈t〉.

From Neumann’s Theorem [Bau93, Page 52] it follows that G has a presentation

of the form

G = 〈t, a1, . . . , am | r1, . . . , rn〉

where

H = 〈〈a1, . . . , am〉〉

and expt(rk) = 0 for k = 1, . . . , n. Consequently, the set T = {ti | i ∈ Z} is a right
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Schreier transversal for H in G. Following the Reidemeister-Schreier process for H,

we can take the elements

aj,i = t−iajt
i j = 1, . . . ,m i ∈ Z

as generators for H and the words

rk,i = ρ(t−irkt
i) k = 1, . . . , n i ∈ Z

as relators, where ρ is the rewriting of t−irkt
i as a word in the aj,i’ s. So, H has the

presentation

H = 〈aj,i (j = 1, . . . ,m i ∈ Z) | rk,i (k = 1, . . . , n i ∈ Z)〉 (5.1)

Each rk is a word of the form

rk =

nk∏
s=1

t−lsazst
ls

where azs ∈ {aj, j = 1, . . . ,m}± and nk ∈ N, ls ∈ Z. Therefore we have

rk,0 = ρ(rk) = ρ(

nk∏
s=1

t−lsazst
ls) =

nk∏
s=1

azs,ls

and

rk,i = ρ(t−irkt
i) =

nk∏
s=1

azs,ls+i i ∈ Z (5.2)

Let F be the free group over the set {aj,i | j = 1, . . . ,m, i ∈ Z}. Let s denote

automorphism of F sending aj,i to aj,i+1. Clearly s induces on H the automorphism

h 7→ t−1ht. Since by assumption H is finitely generated, we can select a big enough
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natural number N with the following properties:

• H = 〈aj,i | j = 1, . . . ,m, |i| ≤ N〉

• Each word rk,0 is a word in {aj,i | j = 1, . . . ,m, |i| ≤ N}±

So, each aj,i can be represented by a word in the finite generating set {aj,i | j =

1, . . . ,m, |i| ≤ N}±.

For each aj,i we will recursively construct a word γ(aj,i) in this new finite gen-

erating set such that γ(aj,i) represents aj,i in H. For aj,i with |i| ≤ N we simply

define γ(aj,i) to be aj,i. Pick γ(aj,N+1) and γ(aj,−(N+1)) two words in {aj,i | j =

1, . . . ,m |i| ≤ N}± representing aj,N+1 and aj,−(N+1) in H, respectively.

For i ≥ N + 1 we define γ(aj,i+1) recursively as follows: Assume that γ(aj,i) has

already been defined, let

γ(aj,i+1) = γ(s(γ(aj,i)))

(for a word w, we define γ(w) as the word obtained by applying γ to each letter of

w). Note that s(γ(aj,i)) is a word in {aj,i | j = 1, . . . ,m, |i| ≤ N + 1}± and for these

letters γ(aj,i) is already defined, therefore we can apply γ to s(γ(aj,i)).

Similarly, for i ≤ −(N + 1) we define γ(aj,i−1) as

γ(aj,i−1) = γ(s−1(γ(aj,i)))

Defining γ as above gives the following equalities in the free group F :

γ(aj,i+1) = γ(s(γ(aj,i))) for i ≥ −N (5.3)

γ(aj,i−1) = γ(s−1(γ(aj,i))) for i ≤ N (5.4)
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Lemma 5.3. H has the following presentation with finitely many generators

〈aj,i, j = 1, . . . ,m, |i| ≤ N | γ(rk,i), k = 1, . . . , n, i ∈ Z〉 .

Proof. This follows by Tietze transformations, but we will explicitly construct an

isomorphism between these presentations. In order to avoid confusion we denote

elements in the asserted presentation with bars and set

H =
〈
aj,i, j = 1, . . . ,m, |i| ≤ N | γ(rk,i), k = 1, . . . , n, i ∈ Z

〉

We will show that H ∼= H using the presentation (5.1) of H. For this, define

ϕ : H −→ H

aj,i 7→ γ(aj,i)

We have ϕ(rk,i) = γ(rk,i) = 1 in H. So ϕ maps relators of H to relators in H and

hence is a well defined group homomorphism. Conversely, define

ψ : H −→ H

aj,i 7→ aj,i

Since γ(aj,i) = aj,i in H we have

ψ(γ(rk,i)) = γ(rk,i) = rk,i = 1 in H

which shows that ψ is a well defined group homomorphism. Finally the following
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equalities show that ϕ and ψ are mutual inverses:

(ϕ ◦ ψ)(aj,i) = ϕ(aj,i) = γ(aj,i) = aj,i

(where the last equality is true since |i| ≤ N in this case.)

(ψ ◦ ϕ)(aj,i) = ψ(γ(aj,i)) = γ(aj,i) = aj,i in H.

Hence H is isomorphic to H.

Let Fr be the free group over the set {aj,i | j = 1, . . . ,m |i| ≤ N}. Define two

endomorphisms η and τ of Fr as follows:

η(aj,i) = γ(s(aj,i)) = γ(aj,i+1)

and

τ(aj,i) = γ(s−1(aj,i)) = γ(aj,i−1)

where γ is as above. Note that η and τ induce the automorphisms s and s−1 of H

respectively.

Lemma 5.4. In Fr we have the equality

γ(rk,i) =

 ηi(rk,0) if i ≥ 0

τ−i(rk,0) if i < 0

Proof. Suppose i ≥ 0. We use induction on i.
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If i = 0, γ(rk,0) = rk,0 by choice of γ and the natural number N . Suppose the

equality holds for i. Then

ηi+1(rk,0) = η(ηi(rk,0))

= η(γ(rk,i)) (by induction hypothesis)

= η(γ(
∏
azs,ls+i)) (using equation (5.2))

=
∏
η(γ(azs,ls+i))

=
∏
γsγ(azs,ls+i)

=
∏
γ(azs,ls+i+1) (using equation (5.3), since |ls| ≤ N)

= γ(
∏
azs,ls+i+1)

= γ(rk,i+1)

A similar argument with induction on −i (and using equation (5.4)) shows the re-

quired identity for i < 0.

Lemma 5.5. H has the following ascending finite AL-presentation:

〈aj,i (j = 1, . . . ,m |i| ≤ N) | rk,0 (k = 1, . . . , n) | {η, τ}〉

Proof. Again not to cause confusion we denote the asserted presentation with bars

and set

H = 〈aj,i (j = 1, . . . ,m |i| ≤ N) | rk,0 (k = 1, . . . , n) | {η, τ}〉

where η, τ are endomorphisms of the free group Fr analogous to η and τ . More

precisely:

η(aj,i) = η(aj,i)
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τ(aj,i) = τ(aj,i)

We will show that H ∼= H and we will use the presentation of H

〈aj,i(j = 1, . . . ,m |i| ≤ N) | γ(rk,i)(k = 1, . . . , n i ∈ Z)〉

which was found in Lemma 5.3. To this end define

φ : H −→ H

aj,i 7→ aj,i

We have

φ(γ(rk,i)) = γ(rk,i) =

 ηi(rk,0) if i ≥ 0

τ−i(rk,0) if i < 0

by Lemma 5.4. Hence φ is a well defined group homomorphism. Conversely define:

χ : H −→ H

aj,i 7→ aj,i

To show that χ is well defined, we need to prove that for all f ∈ {η, τ}∗ and for all

k = 1, . . . , n we have

χ(f(rk,0)) = 1 in H

This is true since η and τ (and hence f) induce isomorphisms on H. This shows that

χ is a well defined group homomorphism. Clearly φ and χ are mutual inverses.
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[Leo10] Yurĭı G. Leonov. On the closure of the first Grigorchuk group. Ukr.

Mat. Visn., 7(1):39–48, 135, 2010.

[LMR95] P. Longobardi, M. Maj, and A. H. Rhemtulla. Groups with no free

subsemigroups. Trans. Amer. Math. Soc., 347(4):1419–1427, 1995.

[Lub01] Alexander Lubotzky. Profinite presentations. J. Algebra, 242(2):672–

690, 2001.

127



[Lub05] Alexander Lubotzky. Finite presentations of adelic groups, the congru-

ence kernel and cohomology of finite simple groups. Pure Appl. Math.

Q., 1(2, part 1):241–256, 2005.
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