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ABSTRACT

This study deals with the use of high-order spectral/hp approximation functions

in the finite element models of various nonlinear boundary-value and initial-value

problems arising in the fields of structural mechanics and flows of viscous incom-

pressible fluids. For many of these classes of problems, the high-order (typically,

polynomial order p greater than or equal to 4) spectral/hp finite element technol-

ogy offers many computational advantages over traditional low-order (i.e., p < 3)

finite elements. For instance, higher-order spectral/hp finite element procedures

allow us to develop robust structural elements for beams, plates, and shells in a

purely displacement-based setting, which avoid all forms of numerical locking. The

higher-order spectral/hp basis functions avoid the interpolation error in the numeri-

cal schemes, thereby making them accurate and stable. Furthermore, for fluid flows,

when combined with least-squares variational principles, such technology allows us to

develop efficient finite element models, that always yield a symmetric positive-definite

(SPD) coefficient matrix, and thereby robust direct or iterative solvers can be used.

The least-squares formulation avoids ad-hoc stabilization methods employed with

traditional low-order weak-form Galerkin formulations. Also, the use of spectral/hp

finite element technology results in a better conservation of physical quantities (e.g.,

dilatation, volume, and mass) and stable evolution of variables with time in the

case of unsteady flows. The present study uses spectral/hp approximations in the

(1) weak-form Galerkin finite element models of viscoelastic beams, (2) weak-form

Galerkin displacement finite element models of shear-deformable elastic shell struc-

tures under thermal and mechanical loads, and (3) least-squares formulations for the

Navier-Stokes equations governing flows of viscous incompressible fluids. Numerical

ii



simulations using the developed technology of several non-trivial benchmark prob-

lems are presented to illustrate the robustness of the higher-order spectral/hp based

finite element technology.
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1. INTRODUCTION

1.1 Background

Over the last few decades, the advances made in computer hardware and mathe-

matical models of physical phenomena, the finite element method (FEM) has evolved

as a versatile computational tool for solving complex engineering problems. At

present, FEM is widely used as a premiere discretization procedure for the numerical

simulation of structural mechanics problems. However, the majority of commercial

finite element software in use today is dominated by lower-order weak-form Galerkin

finite element technology and its variants. Although the weak-form Galerkin pro-

cedure results in an ideal mathematical framework for the numerical analysis of

structures, the use of lower-order finite element technology often necessitates ad-hoc

techniques to stabilize or fix deficiencies like various types of locking associated with

the resulting discrete numerical schemes [84, 85, 88, 83]. This is especially true in

the finite element modeling of structural components, such as beams, plates, and

shells, where lower-order finite elements often require the use of reduced integration

techniques that inevitably require hour-glass control [11]. As a result, reliable, gen-

eral purpose, lower-order finite element technology for structural components still

remains an open area in the numerical discretization of structures.

Although the finite element method has become the dominant method of choice in

the numerical analysis of practical engineering structures, it is yet to receive similar

widespread acceptance in the field of computational fluid dynamics. In the field of

fluid mechanics, much of the success and breakthroughs in the numerical discretiza-

tion of the the Navier–Stokes equations governing flows of viscous incompressible

fluids have come in the context of lower-order finite difference (FD) and finite vol-

1



ume (FV) technology. It is well known that the finite element procedures offer many

advantages over finite difference and finite volume methods. In particular, the fi-

nite element method can routinely deal with complex practical geometries, material

properties, boundary conditions, and possesses a rich mathematical foundation [90].

As a result, there has been a renewed interest in recent years in developing efficient

finite element models of the Navier–Stokes equations.

The majority of finite element models for fluids are based on the weak-form

Galerkin procedure, although the underlying weak form does not ideal variational

setting. Thus, it is well-known that the application of weak-form Galerkin proce-

dure to fluid flows can result in a non-optimal setting for a given finite element

discretization [14, 88]. For instance, the use of the weak-form Galerkin formulation

of the Navier–Stokes equations expressed in terms of velocities and pressure must

satisfy the restrictive discrete inf-sup or Ladyzhenskaya-Babuska-Brezzi (LBB) con-

dition [17] in selecting approximation spaces for the velocity and pressure fields; this

effectively precludes the use of equal degree of lower-order approximations of the

velocity and pressure fields. Even when the LBB condition is satisfied, the finite

element solution may still be plagued with spurious oscillations or wiggles in con-

vection dominated flows (i.e., for high Reynolds number flows) and conservation of

various physical quantities like dilatation, volume, mass etc. may be poor. Stabilized

weak-form Galerkin finite element models, such as the SUPG [41, 18], penalty [82],

and Galerkin least-squares [42] have received considerable attention over the last

few decades and have greatly improved the associated finite element models. Unfor-

tunately, the success of these methods is often intertwined with ad-hoc parameters

that must be fine-tuned for a given flow situation. In addition, they do not result

in a symmetric positive-definite (SPD) coefficient matrix. As with the structures,

for fluid flows, there exists no reliable, general purpose stabilization-free, lower-order
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finite element technology.

1.2 Motivation for the research

As discussed in the previous section, majority of previous works concerned with

efficient finite element models for structures and fluids, predominantly lower-order

(i.e., linear and quadratic) finite element approximations of the field variables have

been employed through the use of weak-form Galerkin formulations. As stated ear-

lier, finite element models based on lower-order approximations are often plagued

with many issues, both in structures and fluid flows, that require the use of ad-hoc

approaches with side effects. The aim of this research is to develop higher-order

finite element technology that uses higher-order spectral/hp approximations of the

field variables for problems of structural mechanics and fluid mechanics, and bring

out the benefits of the least-squares formulations in the finite element analysis of

fluid flow problems.

Variational methods (i.e. methods based on the existence of a functional whose

extremum is equivalent to the weak for of the governing equations) are considered

to produce the “best” approximation to the exact solution of the equations being

solved [87]. For most structural mechanics problems, such a variational setting is

possible; that is, the weak-form Galerkin formulation for the construction of finite

element models is . The issue of numerical locking can be easily alleviated by using

higher-order spectral/hp basis functions without resorting to any ad-hoc approach.

Therefore, we use weak-form Galerkin formulation for all the structural mechanics

problems in this research work.
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A variational setting based on the weak formulation does not exist for the Navier–

Stokes equations expressed in terms of pressure and velocities. Consequently, most fi-

nite element models of the Navier–Stokes equations based on the weak-form Galerkin

procedure do not guarantee minimization of the error in the approximation of the

solution or the differential equation. The least-squares method offer an appealing

alternative to the commonly used weak-form Galerkin procedure for fluids (see for

example Refs. [47, 44, 48, 46, 76, 78, 80]). They not only possess the best approxi-

mation properties but also avoid the restrictive compatibility requirements, that is,

the LBB condition. Also, they always result in a symmetric positive-definite (SPD)

coefficient matrix, so that robust direct and iterative solvers can be employed. How-

ever, previous applications of the least-squares method have often been plagued with

spurious solution oscillations [75] and poor conservation of physical quantities (like

dilatation, mass, volume) [26], primarily due to the use of lower-order approxima-

tions. The least-squares formulation, when combined with high-order spectral/hp

approximation functions, results in a better conservation of the physical quantities,

which in-turn, reduces the instability and spurious oscillations of solution variables

with time. The instability can be further reduced using a iterative penalization

strategy [34, 75], as done in this study.

1.3 Scope of the research

The research work reported in this thesis began at Texas A&M University in the

Summer of 2009, and it is mainly focused on developing a reliable, general purpose,

stabilization-free finite element technology for structures and fluid flows using higher-

order spectral/hp basis functions. The thesis is organized as follows:

• In Section 2, some of the practical and numerical issues involved in developing

a high-order finite element framework using spectral/hp basis functions are
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presented. We show ways to derive higher-order spectral/hp basis functions

and higher-order numerical quadratures to evaluate integrals of such functions.

We generate higher-order finite element grids, including body-fitted grids for

simple two-dimensional curved boundaries. We show ways to implement schur

complement method and also derive a line (or surface) integration method to

handle general traction (flux, outflow) type of boundary conditions. Finally,

higher-order finite element strategies and solution methods using direct and

iterative solvers are discussed. The results presented in this section are taken

from manuscripts that are currently in review for publications in journals [121,

117].

• In Section 3, we develop weak-form Galerkin finite element models for viscoelas-

tic beams using high-order spectral/hp finite element models. The material of

the beam is considered to be linearly viscoelastic while the beam may undergo

von Kármán nonlinear geometric deformations. The beam is modeled using a

higher-order beam theory (HBT) that admits C0 continuous interpolation for

all dependent variables of the theory. The focus of this work is more on the

evaluation of the performance of the high-order spectral/hp approximations

with respect to issues of numerical locking, and not much on the theory or the

mechanics of viscoelasticity. We use the linear viscoelastic constitutive rela-

tions from the works of [50, 22, 72], who used lower-order beam theories (e.g.,

Euler-Bernoulli and Timoshenko beam theories or its variants) and lower-order

finite elements. This work has resulted in two peer-reviewed journal publica-

tions [118, 120].

• In Section 4, we describe higher-order spectral/hp finite element procedures

that allow us to develop robust beam, plate, and shell elements in a purely
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displacement based setting and which avoid all forms of numerical locking. A

weak-form Galerkin finite element model is constructed based on an improved

fist-order shear deformation theory (FSDT), that allows the use of fully three-

dimensional constitutive equations in the numerical implementation. Also,

the formulation allows the use of randomly skewed and curved quadrilateral

elements, a highlight of the present study, which will be useful to represent

complicated shell geometries. The formulation is suitable for the analysis of

geometrically nonlinear response of elastic, isotropic, and functionally graded

shell structures subjected to mechanical and thermal loads. The results pre-

sented in this section are included in a manuscript under preparation for a

journal [119].

• In Section 5, we develop a stress-based least-squares finite element models of the

Navier–Stokes equations governing flows of viscous incompressible fluids using

higher-order spectral/hp basis functions. An iterative penalization approach

is used to improve conservation of physical quantities, and it resulted in a

smooth evolution of primary solution variables. Numerical solutions of several

non-trivial benchmark problems are presented to illustrate the accuracy and

robustness of the developed finite element technology. The work on the fluid

flows has culminated in to peer-reviewed journal publications that are either

published, in review, or currently in preparation [122, 121, 117].

• In Section 6, some conclusions on the research reported in the thesis are pre-

sented and recommendations for future research are made.
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2. ART OF HIGHER-ORDER SPECTRAL/HP FINITE ELEMENT

METHODS: MESH GENERATION, BOUNDARY CONDITIONS, SCHUR

COMPLEMENT METHOD AND LINEAR SOLVERS

In this section, we address some practical and numerical issues that are criti-

cal for a successful implementation of higher-order finite elements for large systems.

To begin with, a brief introduction on the advantages and the necessity to go for

higher-order finite element approximations is presented. Then, we review spectral

interpolation functions and describe ways to implement them in a finite element pro-

gram. Also, higher-order numerical quadrature rules and recursive/iterative schemes

to calculate the integrals are derived. We also show ways to generate higher-order

finite element grids for one-dimension and two-dimension domains including body-

fitted meshes for curved boundaries. The algorithms needed to generate the necessary

data structures to efficiently apply the boundary conditions for large domains are

also presented. A line (or surface) integration method to handle general traction

(flux, outflow) type of boundary conditions is developed. We show the advantages

of schur complement (or static node condensation) method for higher-order finite

elements and discuss ways to implement it. Then, we present some parallel solution

strategies for use with direct and iterative solvers. Finally, a benchmark problem is

tested to demonstrate the robustness of all strategies presented in this section.

2.1 Introduction

Most of the traditional finite element implementations are typically character-

ized by the use of lower-order (i.e., linear or quadratic) elements. High-order finite

elements offer many theoretical and numerical advantages compared to lower-order

finite elements. For structures like beams, plates and shells [118, 120, 119], it is shown
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that, for weak-form Galerkin finite element formulations, the issues of locking can be

alleviated using higher-order elements. There is no need to use reduced or selective

integration techniques and equal-order interpolations can be used for all dependent

variables. In fluid flows, use of higher-order elements with the least-squares method

[87] leads to better mass conservation and stability of field variables with time [75].

Also, the least-squares method results in an un-constrained minimization problem,

as opposed to a saddle-point problem with the weak-form Galerkin method, so the

approximation function spaces for velocity and pressure are not constrained to sat-

isfy the LBB condition [121, 122, 5, 16] and thus equal-order interpolations can be

used for all variables of the mathematical model. The higher-order spectral/hp ele-

ments also result in spectral accuracy ( i.e., exponential convergence with increased

order of approximation) for smooth (C∞) solutions. Higher-order spectral/hp ele-

ments are suited for problems where high resolution in solution is required. For more

on the mathematical treatment of error estimates, convergence, and stability of the

higher-order finite elements, we refer to [104].

Although there are few published works in the literature that use higher-order

finite elements, most of them do not talk about the practical issues encountered

to get those results. Developing an efficient higher-order finite element solver is

not a trivial task as no algorithm can be hard-wired in the code as with the lower-

order elements. Also, generating higher-order shape functions, numerical quadrature,

mesh and boundary conditions data structures is not a trivial task especially for

complicated domains. It demands a more scientific and holistic approach to develop

necessary algorithms and data structures to characterize the mesh and to apply

the boundary conditions. Not many commercial finite element softwares implement

higher-order elements and there are no open-source mesh generators which further

complicates the problem. In this paper, we present some ideas, algorithms, data-
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handling techniques that we developed during the part of this research work and

address certain practical issues that are needed for a successful implementation of

higher-order finite element codes. It must be mentioned that we don’t implement any

automatic mesh adaptive strategies in finite element code and all the higher-order

elements used are of conforming type i.e. no non-matching (hanging) points/nodes

in the mesh. We have successfully developed higher-order finite element solvers with

uniform, graded, skewed and arbitrarily curved quadrilateral elements. With few

changes one can easily extend it to generate higher-order two-dimensional triangular

elements and fully three-dimensional elements. The present work appeals to people

who have experience with lower-order finite element programming and intend to

develop their own programs using higher-order elements.

2.2 Higher-order nodal base functions and quadrature

2.2.1 Spectral nodal base functions

First, we present one-dimension spectral (also called Lobatto) nodal base func-

tions and then, derive them in higher-dimensions. Consider the well-known p’th

order Lagrange interpolation functions lp,i in one-dimension

lp,i = ψi(ξj) =

p+1∏
j=1
j,i

(ξ − ξi)

(ξi − ξj)
(2.1)

where ξj are the evenly spaced nodal points in the canonical interval −1 6 ξ 6 +1.

The above Lagrange polynomials with equally or evenly spaced nodal points are prone

to oscillations (for p > 4), leading to a divergence known as Runge’s Phenomenon.

This behavior tends to grow with the increase in the number of nodal points ξj.

The Runge effect introduces interpolation error into the numerical scheme there-by

making it less accurate and un-stable. In the next few paragraphs we present a
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mathematical definition of the interpolation error.

In one-dimension space, we know that in a general finite element procedure, the

basic idea is to divide the domain into smaller elements defined on a typical interval

a ≤ x ≤ b of an e′th element and approximate the solution function u (x), as-closely-

as desired by a p′th-order polynomial function Pp (x). The polynomial function

can be expressed by specified coefficients or a-priori unknown nodal values ui and

interpolation functions ψi (x) as

u (x) ≈ Pp (x) =
n∑
i=1

uiψi (x) (2.2)

where n = (p+ 1) is the number of nodes in the e′th element. The interpolation

error function is defined as the difference between exact solution and approximate

polynomial function

ε (x) = u (x)− Pp (x) (2.3)

Note ε (xi) = 0, since u (xi) = Pp (xi) at xi the −i′th node. The aim is to achieve

best possible accuracy for a given order of the interpolation function and also ε (x)

should tend to zero in the order p tends to infinity.

lim
p→∞

(
max
a≤x≤b

|u (x)− Pp (x)|
)

= 0 (2.4)

The evenly spaced nodes of the traditional Lagrange interpolation functions, perform

well at lower-orders of the interpolation functions (typically p ≤ 3). However at

higher-orders, the evenly spaced interpolation functions result in oscillations towards

the edges of the canonical interval. These oscillations are referred to as Runge’s

Phenomenon. This will introduce interpolation error into the numerical scheme

there-by making it less accurate and un-stable. In the canonical interval−1 6 ξ 6 +1,
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it can be easily verified (with a simple one-dimension function) that the evenly spaced

nodal points of the traditional Lagrange shape functions leads to the divergence of

the above equation i.e.

lim
p→∞

(
max

−1≤ξ≤+1
|u (ξ)− Pp (ξ)|

)
= ±∞ (2.5)

This problem can be eliminated by choosing un-evenly spaced nodal points of the

spectral (also called Lobatto) interpolation functions. More details on Lobatto and

Lagrange nodal base functions can be found in [104, 51, 121]. To get the Lobatto

interpolation functions and to find their zeros in the canonical interval −1 6 ξ 6 +1,

the below relationship between the Lobatto polynomials Lo (ξ) and the well-known

Legendre polynomials L (ξ) is used.

Lop (ξ) = L
′

p+1 (ξ) (2.6)

The above equation allows the use of well established recurrence relations and other

helpful features of the Legendre polynomials in deriving the expressions for the Lo-

batto interpolation functions. Using these recurrence relations and properties like

“partition of unity”, the final expression for Lobatto interpolation functions can be

easily obtained by doing little math (see [104] for details)

ψi(ξ) =
(ξ − 1)(ξ + 1)Lop−1(ξ)

(p)(p+ 1)Lp(ξi)(ξ − ξi)
=

(ξ − 1)(ξ + 1)L
′
p(ξ)

(p)(p+ 1)Lp(ξi)(ξ − ξi)
(2.7)

The Eq. (2.7) simply represents Lagrange interpolation functions corresponding to

(p−1) intermediate Lobatto nodes ξi. Hence in practice the Lobatto nodal functions

are treated as standard Lagrange nodal interpolation functions with un-evenly spaced
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nodes, given by the zeros of

(ξ − 1)(ξ + 1)L
′

p(ξ) = 0 (2.8)

in the canonical interval −1 6 ξ 6 +1. These set of points {ξi}i=p+1
i=1 are commonly

referred as Gauss-Lobatto-Legendre (GLL) nodes. To find the GLL nodes from Eq.

(2.8), the higher-order Legendre polynomials have to be solved for any arbitrary or-

der. For this, the following three-point recurrence scheme of the orthogonal Legendre

polynomials can be used

Lp+1 (ξ) = [(2p+ 1) ξLp (ξ)− pLp−1 (ξ)]/(p+ 1) (2.9)

The first derivative of the orthogonal Legendre polynomials satisfy the following

recurrence relation

(ξ − 1) (ξ + 1)

p
L

′

p (ξ) = ξLp (ξ)− Lp−1 (ξ) (2.10)

The above recurrence schemes can be easily solved by noting that the first two Leg-

endre polynomials are L0 (ξ) = 1 andL1 (ξ) = ξ. For p 6 2 the GLL nodes are evenly

spaced and coincide with the Lagrange nodes, for p > 2 the GLL nodes are biased

towards the ends of the canonical interval. So in practice Lobatto interpolation func-

tions are simply treated as Lagrange interpolation functions with un-evenly spaced

GLL nodes. Also in the finite element program, instead of using the complicated Eq.

(2.7) of Lobatto interpolation functions, the simple formula of the classical Lagrange

interpolation functions given by Eq. (2.1) is used.

Using the GLL nodes from Eq. (2.9), the one-dimension Lobatto interpolation

functions are plotted in Fig. 2.1(b) for p = 8. For comparision, a plot of the evenly
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spaced one-dimension Lagrange interpolation functions is shown in Fig. 2.1(a). From

Fig. 2.1(b), it is visibly evident that the GLL nodes are biased towards the ends

of the interval. Also, it is evident that Lobatto interpolation functions reach a

maximum value of 1 through out the canonical interval −1 6 ξ 6 +1 and the

Runge’s Phenomenon is not observed. Hence the higher-order spectral/hp functions

will reduce the interpolation errors in a numerical scheme and thus making it more

stable. In two-dimensions, the GLL nodes will be biased towards the element sides as

shown pictorially in Fig. 2.2 for polynomial orders of p = 4 and p = 8. Note, the nodes

are numbered from left to right using a local numbering system that is followed in our

finite element program. For higher-dimensions the Lobatto interpolation functions

can be easily obtained from the tensor product of one-dimension basis functions, for

example, in two-dimensions

ψ (ξ, η) = ψ (ξ)ψ (η) in [ - 1,1]× [ - 1,1] (2.11)

where ψ (ξ) and ψ (η) are given by Eq. (2.1). The Fig. 2.3 shows the plot of Lagrange

interpolation function and Lobatto interpolation function associated with the node

at the center (ξ = 0, η = 0) of the element for p = 8, i.e. ψ41 (ξ, η) (see Fig.

2.2(b)). From the Fig. 2.3, it is visibly evident that both the Lagrange and spectral

Lobbato interpolation functions reach a maximum value of 1 at the element centers

but the evenly spaced Lagrange interpolation function over-shoots and goes beyond

1 at the corners. This is due to the inherent problem of Runge’s Phenomenon with

the evenly spaced Lagrange interpolation functions. In higher-dimensions too, these

oscillations become more pronounced as the order of the polynomial is increased. So

as in one-dimension case, the evenly spaced higher-order two-dimension Lagrange

shape functions introduce interpolation errors in to a numerical scheme.

13



− 1 − 0 .7 5 − 0 .5 − 0 .2 5 0 0 .2 5 0 .5 0 .7 5 1
− 3

− 2

− 1

0

1

2

3

− 1 − 0 .7 5 − 0 .5 − 0 .2 5 0 0 .2 5 0 .5 0 .7 5 1

 

(a)

(b)

i

ξ 

0.75

0.00

− 0.25

0.50

1.00

1.25

0.25

ψ 

i
ψ 

ξ 

Figure 2.1: One-dimensional interpolation functions and nodal locations for a poly-
nomial of order p = 8: (a) Equi-spaced and (b) Spectral (Lobatto).
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polynomial of orders: (a) p = 4 and (b) p = 8.
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2.2.2 Numerical quadrature

There are different Gaussian integration quadratures corresponding to different

sets of orthogonal polynomial basis functions, each with different Gaussian weighting

functions and Gaussian points. For example, we have the Gauss–Chebyshev quadra-

ture for Chebyshev functions, the Gauss–Lobatto quadrature for Lobatto functions,

or the standard and most widely used Gauss–Legendre quadrature for Legendre func-

tions etc. Since the nodal Lobatto functions are similar to evenly spaced Lagrange

interpolations functions we use the standard Gauss–Legendre quadrature through-

out this work. The higher-order elements need higher-order quadrature rules i.e.

higher-order sets of Gauss–Legendre points and weights. Some standard mathe-

matical handbooks [1] give these values, but they are often limited to lower-order

quadratures and are not complete. In Section 4 on functionally graded shells, a

quadrature rule of order ≈ 50 is employed to do the pre-integration through the

thickness of the shell element. The Gauss–Legendre quadrature points {ξi}p+1
i=1 are

the zeros of Legendre polynomial of order ‘p’ in the canonical interval −1 6 ξ 6 +1

and they can be obtained using a recurrence relations as explained previously. Once

the quadrature points are known, the Gauss–Legendre quadrature weights can be

obtained using

wi =
2

(1− ξ2i )
[
L′
p (ξi)

]2 =
2

(1 + p)2
(1− ξ2i )

[Lp+1 (ξi)]
2 (2.12)

Throughout this work a quadrature rule of atleast (p + 1) is used in each direction.

Also, all the integrands are evaluated using full integration rules without resorting to

any selective or reduced integration techniques. The GLL nodes and the quadrature

points and weights can be easily obtained by coding the above mentioned recurrence
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relationships in MATLAB or Maple. It is always safe to use a large precision for all

of them, especially for GLL nodes, to prevent them from overlapping one towards

the corners of the element.

2.3 Higher-order mesh generation

The generation of higher-order two-dimensions mesh is not so straight forward,

especially, for non-rectangular domains or domains with simple curved boundaries.

Also, the application of essential and natural type boundary conditions requires

the development of suitable algorithms and data structures. Before discussing about

them, we mention that all the higher-order mesh related data, like the global positions

of the nodes, the connectivity matrix (which relates the local node numbers of each

element to the unique global node numbers in the mesh), and the global essential

and natural type of boundary conditions for each degree of freedom are specified

in the input file to the finite element program. Although the boundary conditions

are specified at global level in the input file to the finite element program, they

are actually applied at element level (as opposed to the usual tradition of applying

at the global level). Even though converting the global boundary conditions to

element level require additional steps in the finite element program, there are some

advantages which will be explained in the coming sections. For rectangular domains

and shell structures this data (mesh attributes, node locations, connectivity matrix

and global boundary conditions) is entirely generated using MATLAB, but for non-

rectangular domains or domains with simple curves (like a quarter circular plate,

plate with a circular hole) we combine the best of the commercial software programs

like ABAQUS and MATLAB as explained in coming paragraphs.

To generate higher-order grids for non-rectangular domains, first a skeletal mesh

with linear (polynomial of order p = 1) finite elements is designed in ABAQUS and
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then, additional nodes are inserted using a p-refinement MATLAB program. The

advantage of ABAQUS is that, complicated geometries can be easily designed in its

computer aided environment (CAE). The main aim to make a linear mesh is to fix

the elements, their neighbors and the boundaries of the finite element domain. Once

the linear model is drawn in CAE, the ABAQUS job is submitted to write all the

mesh attributes like number of elements, node locations etc. to a text file. This

information will greatly reduce the complexities involved in generating the higher-

order grids. To understand the procedure in detail consider a simple mesh shown in

Fig. 2.4(a). Although the higher-order mesh for this simple geometry can be directly

generated, it is used to keep the illustration simple and understandable. The mesh

has two linear elements (polynomial of order p = 1) across X-axis from [0, 1] and

two in the Y-axis from [0, 1]. The element numbers are shown in the center of

each element in small circles. The unique global node numbers are shown in Blue

and the local element numbers are shown in Red. It is to be noted that ABAQUS

uses an anti-clockwise local node numbering system. Note, different commercial

software programmes (like ABAQUS) have different local numbering systems and

they must be in-tune with the local node numbering system followed in the finite

element program.

The data obtained from the ABAQUS job is given in Fig. 2.4(b). Here, ETYPE

stands for element type which is one more than the polynomial order i.e. (p+1). NE

stands for number of elements in the mesh. ECON stands for element connectivity

matrix; it relates local elemental node numbers to the unique global node numbers.

In ECON (i, j ) matrix, the row-index ‘i ’ represents the element number and the

column-index ‘j ’ represents the local element number. This matrix is very critical

in many aspects of the finite element program. Note, each one of the components

is qualified with ‘abaq.’, so that it can be used as a data structure without having
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Figure 2.4: (a) ABAQUS linear mesh (b) ABAQUS linear mesh attributes (c) Mod-
ified linear mesh and (d) Modified linear mesh attributes
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to handle the individual components. In our finite element program a different local

node numbering system is followed. It is shown in the figure Fig. 2.4(c); observe

that the local element numbering (in Red) is from left to right, as opposed to anti-

clockwise in the ABAQUS mesh. To get the data for this system, all it takes is to

swap the 3’rd column of ‘abaq.ECON’ with the 4’th column in Fig. 2.4(b). This

new data is shown in Fig. 2.4(d); observe that in this figure everything remains the

same as in Fig. 2.4(b) from ABAQUS, except the data in the above said columns

is interchanged. Here, we qualify each one of them with ‘mesh.’ so that it can be

imported directly to MATLAB and used as a data structure.

To apply boundary conditions one more data structure about the sides of the

physical domain is required. It should hold the information about the elements that

are on the boundary of the mesh and also the sides of each element on the boundary.

To do this a local element side numbering system has to be followed. The Fig. 2.5

shows how the nodes and sides are numbered in our finite element program for a

typical two-dimensions master element [−1,+1]× [−1,+1] with ETYPE = 3. It can

be noted that side-1 is plotted in Red for ξ = +1 and side-2 is plotted in Green

for η = +1, side-3 is plotted in Blue for ξ = −1 and side-4 is plotted in Black for

η = −1.

Using the data structure ‘mesh’ from Fig. 2.4(d) and the notation from Fig. 2.5,

the colored mesh of Fig. 2.4(c) is shown in Fig. 2.6(a). Note, since it quite obvious

to plot the element sides in color using MATLAB, it is not explained. The ‘sidesets’

data structure in Fig. 2.6(b) can be easily generated from the boundary element

side colors in Fig. 2.6(a). The sideset1, sideset2, sideset3 and sideset4 contain the

information about the element numbers and the element sides for all the boundaries of

the domain. For the present simple mesh, the ‘sidesets’ data structure can be created

manually but for complicated domains it can be directly created in MATLAB. Here,
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Figure 2.5: Elemental side numbering system and color scheme employed.

each one of it is qualified with ‘sidesets.’, so that it can be used as a data structure.

Once the ‘mesh’ and ‘sidesets’ data structures are obtained, they are saved to a ‘.mat’

file in MATLAB. This will serve as the input data to the p-refinement MATLAB

program. This program basically inserts the spectral GLL nodes in to the linear

mesh and generates the higher-order mesh using the transformation of the geometry

given by Eq. (2.13). It also converts the ‘sidesets’ data structure to ‘nodesets’ that

is used to apply the essential type of boundary conditions (see next section).

x =
n∑
i=1

xeiψ
e
i (ξ, η) , y =

n∑
i=1

yeiψ
e
i (ξ, η) (2.13)

The p-refinement program also needs information about the orientation of the

neighboring elements. The Fig. 2.7(a) shows the possible combinations in which the

‘side-1’ of an element can be in contact with sides of a neighboring element. This

indicates if the local co-ordinate systems of the two neighboring elements are oriented

in the same direction or in the opposite direction. Similar combinations are possible

for the other three sides of a element. This information can be compactly represented

using a symmetric matrix, as in Fig. 2.7(b), where +1 represents same orientation
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Figure 2.6: (a) Mesh in color for a polynomial of order p = 1 and (b) Sideset info.

of the local co-ordinate systems and -1 represents the opposite orientation. Due to

space limitations in this work, we only mention the steps involved in the p-refinement

MATLAB program in Fig. 2.8. The p-refinement we results in a similar data as in Fig.

2.4(d), but for the refined mesh. It also generates the ‘nodesets’ data structure that

is used to apply essential type of boundary conditions. The p-refined mesh generated

using these steps is shown in Fig. 2.9 for p = 2. The p-refinement MATLAB code has

the capability to automatically generate complete input files from p = 2 to p = 20.

Using similar ideas a h-refinement MATLAB code is also developed, this will insert

new elements into the mesh instead of nodes.

It must be mentioned that the p-refinement code inserts new GLL nodes on a

straight line joining the two nodes of the initial linear mesh. When a part of the

domain is curved, like a plate with a circular hole, then the higher-order refined mesh

will have straight edges around the hole. To generate a body-fitted mesh around

the circular arc, another strategy is developed. Consider a two-dimensional domain

[−15.5,+25.5]× [−20.5,+20.5] with a circular hole of diameter 1 at the center. The

skeletal linear mesh is generated in ABAQUS and the local node numbering system
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Figure 2.7: (a) Possible combinations of side-1 and (b) Compact representation.

is changed as explained above. The colored mesh is plotted in MATLAB as shown

Fig. 2.10(a). Here, the element and node numbers are suppressed for clarity. But

they can be plotted as shown for the above cases. The ‘sidesets’ data, similar to the

one in Fig. 2.6(b), can always be visually verified by the color of the element sides

on the outer boundaries and on the surface of the hole.

The p-refined mesh around the cylinder is shown in Fig. 2.10(b) for p = 2 (nodes

are shown as dots). It is clear that the mesh is not smooth around the cylinder. In

some cases, like in the flow over cylinder problems, the surface needs to be smooth,

otherwise it will affect the flow characteristics of the fluid. In such cases, the newly

inserted GLL nodes have to be moved from the straight edges back on to the circular

arc. This can be achieved by solving a two-dimensions isotropic, pseudo-elasticity

problem with specified displacements as the boundary conditions on the straight

edges of the hole and zero-displacements on all other boundaries of the domain.

The pseudo-elasticity formulation is a standard procedure (see [11]) that is used

in conjunction with the arbitrary Lagrangian Eulerian (ALE) formulation for the

analysis of fluid-structure interaction (FSI) problems. To prevent excessive distortion

of elements in the model the Young’s modulus of the e’th finite element is specified as
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(I) Loop over number of elements i = 1 .... mesh.NE

(a)  Use the matrix from Fig. 7(b) and the connectivity matrix mesh.ECON, to extract the  neighbor info of each element. 
It should have the neighbor element numbers, contacting sides and theorientation (+1 or -1) of local co-ordinate system.

(II)    Initialize counter to track the global node numbers in the p-refined mesh cntr = 0

(III)   Loop over number of elements i= 1 .... mesh.NE

(a) Use Eq. (8) to insert spectral GLL nodes. Increment the counter cntr for each node inserted. Write the new data 
structure mesh1.ECON, mesh1.X, mesh1.Y. 

(b) Use the data from step (I) to check neighboring elements. If neighbors are already p-refined, then decrease the cntr
by the suitable number of nodes on the contacting sides, if not,   do nothing.

(c) From step (I), if the orientation of local co-ordinate system is +1 then transfer the global node numbers from the 
already p-refined elements directly to mesh1.ECON. If it is -1, transfer the global nodes after reversing.

(d) Using cntr from (b) and mesh1.ECON from (c), modify the global node numbers in mesh1.X and mesh1.Y.

(IV) Use mesh1.ECON from step (III) and extract the global nodes on each ‘sidesets’.  For example it will generate 
‘nodesets.nodeset1’ from ‘sidesets.sideset1’, and it will have global node numbers of the p-refined mesh on that boundary.

(a) For essential type boundary conditions, these ‘nodesets’ can be directly assigned to the degree of freedom that is to      
be constrained on that boundary.

(b) For natural (like traction, flux, outflow) type boundary conditions, there is no need of ‘nodesets’ information,  
just the element number and the local side number are enough. Hence, we can directly use the ‘sidesets’ to apply
these boundary conditions.

 (V)   Write the p-refined data and boundary conditions to create the input file for the finite element program.

Figure 2.8: Steps involved in p-refinement.
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Figure 2.9: p-refined mesh for a polynomial of order p = 2 in color.

24



−15 −10 −5 0 5 10 15 20 25

−20

−15

−10

−5

0

5

10

15

20

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

(b)

(c)

Figure 2.10: (a) Linear ABAQUS mesh (b) p-refined mesh for p = 2 with straight
edges and (c) p-refined mesh with circular hole.

Ee = E0µ(Ω
e)−0.5 where µ(Ωe) is the area of the element and E0 is the non-negative

quantity that is taken arbitrarily. Since for this case the nodes have to be on the circle

of diameter 1, the X and Y displacement values can be calculated and a boundary

value problem can be setup. A weak-form Galerkin finite element formulation is used

for the pseudo-elasticity problem. Solving this finite element problem will move the

nodes evenly and results in a smooth mesh. The mesh obtained is shown in Fig.

2.10(c).

Using the above concepts with the parametric equations, the higher-order grids

for shell structures are generated as in [119]. The parametric equations make it conve-

nient to describe curves and curved surfaces in higher-dimensional spaces. Typically,

the mesh in higher-dimension space is constructed for the un-deformed mid-surface
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of the shell by mapping each nodal position from the parametric space θ̄ ⊆ R2 on to

the nodal locations belonging to the higher-dimension space in R3. The coordinates

of the parametric space θ̄ inR2 are denoted as (θ1, θ2) and for most of the cases, unless

stated otherwise, we take θ̄ ⊆ [0, 1]× [0, 1]. The basic idea is to first create the linear

mesh on a unit square region [0, 1]×[0, 1] ⊆ R2, then do the p-refinement and use the

necessary parametric equations to get the desired shell geometry in higher-dimension

space. To show this an octant of a cylindrical shell is generated as in Fig. 2.11(b).

For this first, the linear colored mesh shown in Fig. 2.11(a) is generated. Then, it is

p-refined to the required level (here p = 2 is used) as shown in Fig. 2.11(b). Then,

the necessary parametric equations are used to map the p-refined nodes into higher-

dimension space to different shell geometries. The parametric equations to generate

a cylindrical surface are

x = R sin
(π
2
θ1

)
y = Lθ2 where (θ1, θ2) ⊆ [0, 1]× [0, 1]

z = R cos
(π
2
θ1

) (2.14)

where R = 300 and L = 300 are the radius and length of the shell required. The

octant mid-surface of the cylindrical shell is shown Fig. 2.11(c). To generate a

hyperboloidal shell with skewed elements, as in Fig. 2.11(d), all it takes is to have an

initial linear mesh with skewed elements. Note, the data structures needed to apply

the shell boundary conditions remain the same as discussed above. The ‘sidesets’

information which is converted into ‘nodesets’ by the p-refinement MATLAB code

is used to apply essential type boundary conditions and point loads on the shells.

Also, the ‘sidesets’ information is used to apply natural type of boundary conditions
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Figure 2.11: (a) Linear mesh (b) p-refined mesh (c) Octant mesh of cylindrical shell
(d) Octant skewed-mesh of hyperboloidal shell.
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like tractions, pressures, displacement dependent loads etc.

Using shell mechanics, vector algebra and the parametric equations in curvilinear

system, the normal and tangential vectors to the mid-surface of the shell can be

easily derived. For a cylindrical shell geometry they are

nx = sin
(π
2
θ1

)
, tx = 0

ny = 0 , ty = 1

nz = cos
(π
2
θ1

)
, tz = 0

(2.15)

Starting with the p-refined mesh shown in Fig. 2.12 along with the parametric equa-

tions from Eq. (2.34) and using the above normal and tangential equations, the

normal and tangential vectors at each node are plotted in Fig. 2.13(a). If parametric

equations of a hyperboloid shell geometry are used, it will result in Fig. 2.13(b).

Using these concepts various higher-order grids with seven parameter continuum

shell elements [119] are generated for thermo-mechanical analysis of fully nonlinear

isotropic, laminated composite and functionally graded elastic shell structures.

28



−1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

46 47 48

49 50 51

52 53

54 55

56 57

58 59

60 61

62 63

64 65

66 67

68 69

70 71

72 73

74 75

76 77

78 79

80 81

82 83

84 85

86 87

88 89

90 91

92 93

94 95

96 97

98 99

100 101

102 103

104 105

106 107

108 109

110 111

112 113

114 115

116 117

118 119

120 121

122 123

124 125

126 127

128 129

130 131

132 133

134 135

136 137

138 139

140 141

142 143

144 145

146 147

148 149

150 151

152 153

x

y

Figure 2.12: A p-refined mesh for p = 2.
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Figure 2.13: (a) Full mesh of cylindrical shell with normals and tangents and (b)
Full mesh of hyperboloidal shell.

30



2.4 Application of boundary conditions

2.4.1 Boundary conditions

So far, we have seen how to convert the ‘sidesets’ information (consisting of

element number and local element side number on the boundary of linear mesh) to

‘nodesets’ information (which consists of global node numbers of the p-refined mesh).

To apply the essential type of boundary conditions, the total number, global node

numbers and the corresponding values are specified in the input file to the finite

element program for each degree of freedom. To apply natural (flux, traction, and

outflow) type of boundary conditions, the total number of elements, the element

number, the local side number (i.e. 1, 2, 3 or 4) and the value are specified in the

input file for each boundary. For example, consider the mesh shown in Fig. 2.14, it

is obtained by doing p-refinement. Assume there are two degrees of freedom (ess1

and ess2) at each node in the finite element model. Also, imagine that on the right-

side of this domain there is a specified natural (traction) boundary condition with a

constant value of 1 in the horizontal direction and on the left-side there is a specified

essential boundary condition with a value of zero for both degrees of freedom. Then

the data in the input file will look like in Fig. 2.14. Note, all this information is

automatically written to a text file by the p-refinement MATLAB program.

Traditionally, in finite element programs which assemble the element matrices into

global full-matrices or banded-matrices (like tri-diagonal, penta-diagonal forms), the

essential type of boundary conditions are imposed at global level. However if sparse

type solvers [74] or element-free solvers are used, it becomes difficult or sometimes

impossible to apply these boundary conditions at global level. In this work the

essential type of boundary conditions are applied at the element level. It has some

numerical advantages and it also becomes easy to implement the schur complement
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// Essential boundary conditions 
~ess1_Number~ 
5 
~ess1_Number_END~ 
 
~ess1_Node_Value~ 
1   0.0 
2   0.0 
3   0.0 
4   0.0 
5   0.0 
~ess1_Node_Value_END~ 
 
// Essential boundary conditions 
~ess2_Number~ 
5 
~ess2_Number_END~ 
 
~ess2_Node_Value~ 
1   0.0 
2   0.0 
3   0.0 
4   0.0 
5   0.0 
~ess2_Node_Value_END~ 
 
// Traction boundary conditions 
~t_Number~ 
2 
~t_Number_END~ 
 
~t_Elem_Side_tx_value_ty_value~ 
3   1   1.0   0.0 
4   1   1.0   0.0 
~t_Elem_Side_tx_value_ty_value_END~ 
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Figure 2.14: Input file with specified essential and natural boundary conditions.

method (to be discussed next). Converting the global boundary node numbers and

the corresponding values for each degree of freedom to the element requires additional

logic in the program. The element level information has the element total, the

local node number and the element value. Also, to apply natural type of boundary

conditions at element level, the element total, element side and the element value is

required for each one of it. A simple MATLAB code given in Fig. A(a) of appendix

A implements this logic.

Once the elemental information of the natural and essential boundary conditions

is obtained, it needs to be applied to the element system of equations. First, a
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strategy to apply the essential type of boundary conditions is presented and next,

the natural type of boundary conditions are presented. If the essential boundary

conditions are applied arbitrarily the symmetry of the element matrix gets disturbed,

which makes the global matrix un-symmetric and thereby difficult to solve. Few

extra algebraic steps are needed to insert the known element value of the essential

type boundary condition without disturbing the symmetry. The steps involved are

explained with a simple example for the the following elemental system of equations

Ke =


10 20 40

20 1 30

40 30 6

 , Fe =


1

2

3

 ⇒


10 20 40

20 1 30

40 30 6




∆e
1

∆e
1

∆e
1

 =


1

2

3


(2.16)

Assume the elemental value of the essential boundary condition is known as ∆e
2 = 10.

The following algebraic operations show how to replace the known value of this

specified boundary condition without affecting the symmetry of the element matrix.


10 20 40

20 1 30

40 30 6




∆e
1

10

∆e
3

 =


1

2

3

 ⇒


10 0 40

20 0 30

40 0 6




∆e
1

10

∆e
3

 =


1

2

3

− 10


20

1

30




10 0 40

20 0 30

40 0 6




∆e
1

10

∆e
3

 =


−199

−8

−297

 ⇒


10 0 40

0 1 0

40 0 6




∆e
1

∆e
2

∆e
3

 =


−19

10

−297


(2.17)

A simple MATLAB code given in Fig. A(b) of appendix A implements this logic.
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2.4.2 Integration along element boundaries

In most of the natural (flux, traction, outflow) type of boundary conditions, it

involves the evaluation of closed-form path (or boundary) integrals like

∮
Γ

() ds (2.18)

In solids these integrals occur in structures with traction loads, pressure loads, dis-

placement dependent loads like hydrostatic loads etc. In fluids these occur in the

evaluation of various fluxes, volumetric/mass flow rates over control volumes (or

surfaces), lift/drag forces on surfaces like airfoils etc. In two-dimensions it leads to

evaluation of line integrals along the edges of the elements and in three-dimensions it

leads to evaluation of surface integrals over the faces of the elements. For lower-order

(p ≤ 2) two-dimensions elements the evaluation of these boundary integrals is easy

and often, they are manually evaluated and hard-wired in the finite element codes.

But the evaluation of these integrals for higher-order elements with un-evenly spaced

nodes is not straight forward and it needs a more general approach.

In this work, general two-dimensional higher-order spectral elements with curved

boundaries are considered. A typical four sided higher-order spectral finite element

is depicted in Fig. 2.15. It is important to note that the unit normal vector n

along the element boundary depends continuously on the given location along the

curve. Although a two-dimensions case is presented, its extension to three-dimensions

analysis is relatively straight-forward and mostly analogous to the present discussion.

In the finite element method it is customary to represent the geometry of the

physical domain in addition to the dependent variables using the standard finite

element interpolation functions. As a result, the positional vector of each node
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Figure 2.15: A typical two-dimensions higher-order spectral element (shown for p =
7).

x = (x, y) within the Eulerian finite element mesh can be expressed by the following

formula that is applicable within a typical finite element

x =

n=(p+1)∑
j=1

xjψj (ξ, η) (2.19)

In the above expressions,ψj (ξ, η) represent the interpolation functions associated

with a given element. The quantities ξ and η are the natural coordinates. It is

important to note that a differential vector in the finite element can be expressed as

dx = dx1 + dx2 = g1dξ + g2dη (2.20)

where a set of linearly independent vectors gj are introduced. These are the covari-

ant basis vectors associated with the parametric description of the geometry of the

element (where ξ and η are the parameters) and are given by the following formulas

g1 =
∂x

∂ξ
=
∂x

∂ξ
ex +

∂y

∂ξ
ey, g2 =

∂x

∂η
=
∂x

∂η
ex +

∂y

∂η
ey (2.21)
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It is important to note that the covariant basis vectors are in general non-orthogonal,

and non-unitary. An important feature of g1 and g2 is that they are point-wise

tangent to curves in Be
2 sketched out by fixing ξ and η respectively.

2.4.3 Unit normal vectors along element boundaries

The boundary value problems arising in the study of continuous bodies typical

require the specification of flux type quantities along at least a portion of the domain

boundary. To prescribe such quantities it is necessary to know the unit normal vector

along the boundary. In this section the general formulas for determining these vectors

along each boundary of a typical finite element are derived. For doing that, the below

sides definition is used (same as in Fig. 2.5) for a typical quadrilateral element:

side− 1 : (ξ = 1, η) side− 2 : (ξ, η = 1)

side− 3 : (ξ = −1, η) side− 4 : (ξ, η = −1)
(2.22)

Before presenting the unit normal vectors, the following formulas for unit vectors

that are tangent to each element sides are provided

t̂(1) = 1√
g2·g2

g2

∣∣∣
ξ=1

=

[(
∂x
∂η

)2

+
(
∂y
∂η

)2
]−1/2 (

∂x
∂η
ex +

∂y
∂η
ey

)∣∣∣
ξ=1

t̂(2) = − 1√
g1·g1

g1

∣∣∣
η=1

= −
[(

∂x
∂ξ

)2

+
(
∂y
∂ξ

)2
]−1/2 (

∂x
∂ξ
ex +

∂y
∂ξ
ey

)∣∣∣
η=1

t̂(3) = − 1√
g2·g2

g2

∣∣∣
ξ=−1

= −
[(

∂x
∂η

)2

+
(
∂y
∂η

)2
]−1/2 (

∂x
∂η
ex +

∂y
∂η
ey

)∣∣∣
ξ=−1

t̂(4) = 1√
g1·g1

g1

∣∣∣
η=−1

=

[(
∂x
∂ξ

)2

+
(
∂y
∂ξ

)2
]−1/2 (

∂x
∂ξ
ex +

∂y
∂ξ
ey

)∣∣∣
η=−1

(2.23)

The unit normal vectors are determined by taking cross products of the above tangent
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vectors with ez and can be expressed as

n(1) = t̂(1) × ez =

[(
∂x
∂η

)2

+
(
∂y
∂η

)2
]−1/2 (

∂y
∂η
ex − ∂x

∂η
ey

)∣∣∣
ξ=1

n(2) = t̂(2) × ez =

[(
∂x
∂ξ

)2

+
(
∂y
∂ξ

)2
]−1/2 (

−∂y
∂ξ
ex +

∂x
∂ξ
ey

)∣∣∣
η=1

n(3) = t̂(3) × ez =

[(
∂x
∂η

)2

+
(
∂y
∂η

)2
]−1/2 (

−∂y
∂η
ex +

∂x
∂η
ey

)∣∣∣
ξ=−1

n(4) = t̂(4) × ez =

[(
∂x
∂ξ

)2

+
(
∂y
∂ξ

)2
]−1/2 (

∂y
∂ξ
ex − ∂x

∂ξ
ey

)∣∣∣
η=−1

(2.24)

2.4.4 Differential arc lengths

To integrate flux like quantities such as traction vectors along an element bound-

ary, it becomes necessary to produce an expression for the differential arc length of

the boundary. It can be shown that the differential lengths of each element side of

Be
2 can be expressed as

ds(1) =
√
dx2 · dx2

∣∣
ξ=1

=

√(
∂x
∂η

)2

+
(
∂y
∂η

)2

dη|ξ=1

ds(2) =
√
dx1 · dx1

∣∣
η=1

=

√(
∂x
∂ξ

)2

+
(
∂y
∂ξ

)2

dξ|η=1

ds(3) =
√
dx2 · dx2

∣∣
ξ=−1

=

√(
∂x
∂η

)2

+
(
∂y
∂η

)2

dη|ξ=−1

ds(4) =
√
dx1 · dx1

∣∣
η=−1

=

√(
∂x
∂ξ

)2

+
(
∂y
∂ξ

)2

dξ|η=−1

(2.25)

2.5 Schur complement method

The high-order methods are memory minimizing when compared to the lower-

order methods of same accuracy. However, compared to low-order methods, they

require more computations per degree of freedom. The memory requirement can be

minimized by using reduction methods, like the schur complement method. It is

also called static node condensation or static node substructuring [101, 24, 51, 90].
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For higher-order elements the number of interior nodes are more than the boundary

nodes (see Fig. 2.16). So if some how these interior nodes are removed from the

global system of equations then the memory requirement can be greatly reduced.

mesh.ETYPE Total Nodes Boundary Nodes Interior Nodes

2 4 4 0

4 16 12 4

8 64 28 36
12 144 44 100

Figure 2.16: Boundary and Interior nodes for higher-order elements

To make this idea clear consider the graded S-duct mesh shown in Fig. 2.17(a).

Note, this mesh is generated in ABAQUS and p-refined to p = 3 as explained in

the previous sections. The nodes are plotted as black dots and the element numbers

and global node numbers are suppressed for clarity. The statically condensed mesh

is shown in the Fig. 2.17(b). All the element interior nodes are removed in this

mesh. In Fig. 2.18(a), the sparsity pattern of a typical mesh (with p = 4 and

randomly numbered elements) is shown and in Fig. 2.18(b), the sparsity pattern of

it’s statically condensed mesh is shown. It is clear that for this mesh, the size of

the shcur complement system is about 30 % of original system. Also, the system of

equations are less dense with the number of non-zeros about 20-22 % of the original

mesh. This greatly reduces the amount of memory required to store the global matrix

which becomes prominent as the discretization of the element is increased. The other

benefit is that it improves the condition number [51] of the matrix and makes the

system less dense and hence robust direct and iterative solvers can be used for faster

convergence.
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The basic idea of schur complement is to eliminate the unknowns corresponding

to the interior nodes using node condensation, so that the overall size of the assem-

bled global system gets reduced considerably. To achieve this a new connectivity

matrix (ECON) needs to be generated for the statically condensed mesh. This can

be achieved by selective numbering of the elemental boundary nodes followed by

numbering the elemental interior nodes on the original mesh as in [51] or by cre-

ating a new node numbering scheme on the statically condensed mesh. Since the

unknowns corresponding to the elemental interior nodes are not coupled to other

elements, it is possible to split the elemental system of equations corresponding to

the components of the interface (or boundary) nodes and the interior nodes. From

this, the unknowns corresponding to the interior nodes can be explicitly removed by

doing suitable algebraic operations. Once this assembled global system is solved, the

unknowns corresponding to the boundary nodes of each element can be extracted

and in turn the unknowns corresponding to the interior nodes can be solved. To

make this idea clear, consider the typical elemental system of equations represented

below

[Ke] {∆e} = Fe (2.26)

where Ke is the sparse but full elemental stiffness matrix (it can be symmetric or

unsymmetric), ∆e is the unknown elemental solution vector and Fe is the elemental

force vector. The above elemental system can be separated in to blocks of matrices

as shown below  [Ke
bb] [Ke

bi]

[Ke
ib] [Ke

ii]


 {∆e

b}

{∆e
i}

 =

 {Feb}

{Fei}

 (2.27)

where Ke
bb is the block of matrix corresponding to the couplings of pure boundary-
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Figure 2.17: (a) S-duct mesh for p = 3 and (b) Statically condensed mesh.
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Figure 2.18: (a) Sparsity pattern of a typical mesh and (b) Sparsity pattern of
statically condensed mesh.

boundary elemental nodes, Ke
ii is the block of matrix corresponding to the couplings

of pure interior-interior elemental nodes, Ke
bi is the block of matrix corresponding to

the couplings of boundary-interior elemental nodes, Ke
ib is the block of matrix corre-

sponding to the couplings of interior-boundary elemental nodes, ∆e
b is the unknown

elemental solution vector corresponding to the boundary nodes, ∆e
i is the unknown

elemental solution vector corresponding to the interior nodes, Feb is the force vector

corresponding to the boundary nodes and Fei is the force vector corresponding to the

interior nodes. The Eq. (2.27) can be solved for ∆e
b by suitable block multiplication

techniques, and the final equation can be written as

[
[Ke

bb]− [Ke
bi] [K

e
ii]

−1 [Ke
ib]
]
{∆e

b} = {Feb} − [Ke
bi] [K

e
ii]

−1 {Fei} (2.28)

From Eq. (2.28), it is clear that to solve for ∆e
b first,

[
[Ke

bb]− [Ke
bi] [K

e
ii]

−1 [Ke
ib]
]
has

to be constructed. This is the schur complement of element matrix Ke, it involves
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matrix-vector operations, matrix-matrix operations and also matrix-inverse opera-

tions which are computationally cheap. To implement the element level static node

condensation in the finite element code, the BLAS (Basic Linear Algebra Subpro-

grams) and Goto BLAS subroutines are used by linking to the LAPACK (Linear Algebra

PACKage) library. The element inverse operations are performed via Gaussian elim-

ination with partial pivoting using the standard LAPACK subroutine dgesv (General

Matrix Factorization and Multiple Right-Hand Side Solve).

[Ke
ii] {∆e

i} = {Fei} − [Ke
ib] {∆e

b} (2.29)

Note, since the evaluation of ∆e
b and ∆e

i involves the inversion of matrices, a blind

increase in the element discretization might lead to increase in the computational

cost for doing these matrix-inverse operations. Hence a balance is needed for optimal

results. The schur complement technique is also well suited for element-by-element

methods in which the unknowns corresponding to the elemental boundary nodes are

solved directly and then the interior unknowns are solved in an element-by-element

fashion. The element-by-element methods and element-free methods are used for

problems where large memory needed for global system equations. You can find

more about these algorithms in the works of Jiang [45].

2.6 Higher-order finite element strategies

2.6.1 An abstract higher-order problem

In this section, an overview of the general steps involved in a higher-order finite

element formulation are presented. Among these, the tasks that are independent

(i.e., which can be executed simultaneously) of other tasks are identified. To explain

these, consider a typical finite element formulation which leads to a set of linear
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algebraic equations for the e′th element of the form

[Ke] {∆e} = {Fe} (2.30)

where [Ke] is the element stiffness matrix, {∆e} is the unknown element solution

vector and {Fe} is the element force vector. In traditional finite element codes, these

equations are assembled to obtain the global stiffness matrix and force vectors as

[K] {∆} = {F} (2.31)

where

[K] =

NE

A
e=1

[Ke] , {F} =

NE

A
e=1

{F e} , {∆} =

NE

A
e=1

{∆e} (2.32)

and A is a symbolic representation of the global finite element assembly operator.

The boundary conditions are usually applied to these matrices at global level and

then solved. Instead, as explained above, they are applied at element level to facil-

itate the implementation of the schur complement method. After static node con-

densation, assume the linear algebraic equations for the e′th element corresponding

to the element boundary nodes be represented as

[
K̄e

] {
∆̄e
b

}
=

{
F̄e

}
(2.33)

where
[
K̄e

]
is the statically condensed element stiffness matrix,

{
∆̄e
b

}
is the unknown

elemental solution vector corresponding to the boundary nodes and
{
F̄e

}
is the stat-

ically condensed element force vector. The global system of equations are setup by
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combining these statically condensed element equations into the following expression

[
K̄
] {

∆̄
}
=

{
F̄
}

(2.34)

where [
K̄
]
=

NE

A
e=1

[
K̄e

]
,

{
F̄
}
=

NE

A
e=1

{
F̄ e

}
,

{
∆̄
}
=

NE

A
e=1

{
∆̄e
b

}
(2.35)

The element-level equations of a particular element are completely independent of

the equations associated with any other element in the mesh. So, the element-level

operations of constructing, applying boundary conditions and static node condensa-

tion to form
[
K̄e

]
and

[
F̄e

]
, can be performed concurrently (in parallel) as:

(I) Loop over all finite elements: e = 1,NE (parallel)

• Numerically evaluate element coefficient matrix [Ke] and force vector {F e}

• Apply essential and natural boundary conditions to [Ke] and {F e}

• Perform static node condensation to construct [K̄e] and {F̄ e}

• Assemble components of [K̄e] into the global sparse coefficient matrix [K̄]

and {F̄ e} into the global force vector {F̄}

Even after condensing out the interior nodes through static node condensation,

for large scale simulations involving higher-order finite elements, it becomes imprac-

tical (in terms of memory) to construct a full or banded coefficient matrix
[
K̄
]
. To

reduce this memory requirement, the global coefficient matrix
[
K̄
]
is represented

in compressed sparse row (CSR) or compressed sparse column (CSC) format. This

sparse vector storage format is based on storage by row and column indices. Parallel

construction of the global finite element system in compressed sparse formats, in a

manner that is both fast and memory efficient, is a far-less trivial task. To keep
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the present discussion brief, in step (II) below, we only present the steps involved in

efficient parallel global assembly operator A, for the case when the global coefficient

matrix
[
K̄
]
is sparse (i.e., populated primarily by zeros). The complete details on

how to generate compressed sparse row (CSR) and compressed sparse column (CSC)

formats of the global coefficient matrix
[
K̄
]
will be presented in our up-coming pa-

per [74]. There are some good open-source libraries like PETSc (Portable, Extensible

Toolkit for Scientific Computation - http://www.mcs.anl.gov/petsc/) which can also

be used to accomplish the same.

(II) Sort global coefficient matrix [K̄] into compressed sparse column (CSC) or

compressed sparse row (CSR) form (parallel)

• Sort column (or row) indices of each row (or column) of [K̄] in non-

decreasing order

• Sum repeated entries of [K̄] to enforce compatibility of primary variables

• Remove “numerical” zeros from sparse matrix [K̄]

After the above step, solve the statically condensed system of equations by linking to

either direct or iterative solvers. This step can be done in parallel or serial depending

on the solver selected.

(III) Solve global system of equations for all element boundary degrees of freedom

using an appropriate linear solver library to get
{
∆̄
}
of Eq. (2.34) (parallel)

• Link to direct solvers

• Link to iterative solvers

After step (III), solve for degrees of freedom corresponding to interior nodes of each

element as shown below:
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(IV) Loop over all finite elements: e = 1,NE (parallel)

• Extract boundary degrees of freedom
{
∆̄e
b

}
for each element from

{
∆̄
}

and solve for interior degrees of freedom
{
∆̄e
i

}
• Rearrange

{
∆̄e
i

}
and

{
∆̄e
b

}
of each element to get solution vector {∆e}

• Assemble element solution {∆e} to get global solution {∆} of Eq. (2.31)

The steps (I)-(IV) briefly summarize the critical steps in an abstract higher-order

finite element implementation that is used in this research work.

2.6.2 Parallel processing paradigm

Having identified the parallel and serial tasks in the higher-order finite element

methodology, we focus on parallel strategies for efficient implementation of those

tasks. The most commonly used and highly evolved parallel computing environments

are the shared-address-space architectures (OpenMP paradigm) and the distributed-

address-space architectures (MPI paradigm). Although, the Message Passing Inter-

face (MPI) is more general and uses relatively cheap distributed memory, its imple-

mentation is complicated owing to the need to exchange messages across switches of

a network for communication. Considerable code and algorithm changes are needed

to incorporate MPI to parallelize a program. On the other hand, for shared-address-

space architectures the communication is implicitly specified since all the processors

have access to the same pool of shared memory. Hence, most of the programming

techniques for shared-address-space machines focus on concurrency and synchroniza-

tion thus simplifying the program.

The OpenMP paradigm is an Application Programming Interface (API) that sup-

ports multi-threading which can be simply interpreted as a Fork-Join model. In this

model, the program begins as a single process on the master thread which executes
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sequentially until a “parallel region” is encountered. Then the master thread forks

(spawns) into a team of parallel threads which execute the statements in the “parallel

region” concurrently. After threads complete the work in the “parallel region”, they

synchronize before terminating to join back into the master thread. The section of

the code that is meant to run in parallel, is marked with pre-processor directives

which will spawn the parallel threads before the section is executed. Using just 3 or

4 simple and limited set of pre-processor directives in code, complicated tasks can

be accomplished on shared memory machines. Also, these pre-processor directives

are additions to the source code that can be ignored by a non OpenMP compiler.

Serial and parallel versions share the same source code - the serial compiler simply

overlooks the parallel code additions. Addition of a directive does not break the

serial code. New serial code enhancements outside parallel regions will not break the

parallel program. Hence changing serial code to OpenMP parallel code need no big

modifications. The OpenMP parallel code can still run in serial and hence it is easy

to debug. The other feature of OpenMP, is the capability to incrementally parallelize

a serial program (very different from MPI which typically requires an all or nothing

approach). Both task and data parallelism can be easily achieved. The number

of threads can be assigned by the runtime environment based on environment vari-

ables or in the code using functions. These OpenMP pre-processor directives are very

portable and is available in various programming languages like Fortran, C/C++.

Also, it has a public forum for API and an active support (http://openmp.org). The

OpenMP functions are included in a header file labeled omp.h for C/C++.

The main crux in the implementation of the OpenMP philosophy lies in the re-

alization of the implicit communication between the threads. In OpenMP paradigm,

the threads read and write shared variables, and hence there is no need for explicit

communications with messages. If threads need to use local variables to do work that
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does not need to be globally visible outside the “parallel region”, the variables can be

declared as private. Each thread will have its own copy of the private variable from

the processor. This means threads can “cache” their data; not required to maintain

exact consistency with real (main) memory all of the time. The cache is a small

memory nearer to the processor and acts as a low-latency, high-bandwidth storage

and hence more efficient. When all threads must view a shared variable identically,

programmer is responsible for ensuring that the variable is FLUSHed by all threads

to the shared memory pool to get the latest value.

For the steps (I)-(IV) in the previous subsection, the OpenMP parallelization is

achieved with appropriate placement of pre-compiler directives prior to parallelizable

for-loops using the C/C++ specific OpenMP syntax #pragma omp parallel for as

shown in Fig. 2.19 (Note, the steps (I)-(IV) are marked on the left side of the figure).

This syntax marks the beginning of the “parallel region” and the loop encountered

immediately is executed in parallel. The code becomes serial immediately after the

end of the loop. As a side-note, in the beginning of Fig. 2.19, we use the OpenMP syn-

tax to do re-initialization of solution vector to zero. Here the variable “i” is a shared

variable and it resides in the shared main memory pool. This is not efficient, as the

main memory has greater latency compared to cache memory. Since no other OpenMP

threads will have access to the loop indices, a local copy of the variable “i” can be

created using private clause in #pragma omp parallel for private(n) as shown

for steps (I) and (IV) in Fig. 2.19. In these steps, the variable “n” is local for each

thread and it resides in the cache memory instead of the shared main memory. The

variables that are not explicitly declared as private are by default treated as shared.

Another case of importance is synchronization, especially when different threads are

working on different parts of a shared array. To ensure that all threads in a team have

a consistent view of this array object, the syntax #pragma omp flush [(list)] can
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be used. In the absence of a list, all visible variables are flushed. With these simple

pre-compiler statements the OpenMP based finite element code can be easily devel-

oped.

The numerical implementation is done using IBM’s AIX v11.1 compiler with

OpenMP support on an IBM Cluster-1600 with IBMs 1.9 GHz RISC Power5+ pro-

cessors. Each node is a symmetric multi-processor (SMP) system with 16 processors

and 25 GB of usable shared memory. The number of threads can be assigned by

the runtime environment based on environment variables or in code using necessary

functions. In this work, we use both interactive and batch modes to run the finite

element code and the threads are assigned at run time using environment variables.

In Fig. 2.20, we present a batch job file for the above IBM cluster that is designed

to run on 8-processors using OpenMP paradigm. The typical parameters (like number

of processors, wall-clock time etc.) that are usually changed are highlighted in color.

Note, we include commands like module load umfpack and module load gotoblas

in the batch job file to link to UMFPACK and BLAS. Also, as comments at the bottom,

we mention IBM’s compilation directives starting with xlC_r for ESSL and UMFPACK

subroutines. The final thing to be noted in the compilation directive is the aggressive-

ness of the optimization. The common compiler option -Ox (x = 0,1...5) specifies

the level of aggressiveness. The greater the aggressiveness level, the more the code

will be changed. Hence, one must use caution with x > 3, as it could change the

results. Throughout the present work we fix the aggressiveness level at x = 3. The

-O3 optimizations include loop permutation, loop tiling, loop skewing, loop reversal,

unimodular transformations, forward substitution, and expression simplification.
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//--------------------------------------------------------------------- 
//  
// Begin file 
//  
//--------------------------------------------------------------------- 
 
// Standard C++ header files 
 
// OpenMP header file 
#include <omp.h> 
 
// User defined header files 
#include "fluid.h" 
#include "umfpackSolve.h" 
 
// Function to solve the finite element equations using Schur 
complement 
void fluid_f_schur(fluid_c_mesh & mesh, schurComp & schur, 

sparseMatrix & sparseMat, fluid_c_material & 
material, fluid_c_boundary & boundary, gen_interp2D 
& sfL2D, gen_interp2DS & sfL2DS, fluid_c_femSol & 
solution) 

{ 
 //--------------------------------------------------------------- 
 //  
 // Solve for variables at boundary nodes 
 //  
 //--------------------------------------------------------------- 
 
 // Declaration of integers 
 int n, schurBI; 
 
 // Re-initialize delU to zero 
 // solution.initializeU(); 

int Equations = mesh.NN*mesh.DFPN; 
      #pragma omp parallel for 
 for ( int i = 0 ; i < Equations ; i++ ) { 
  U[i] = 0.0; 
 } 
 
 
 // Set Schur condition to element boundary degrees of freedom 
 schurBI = 0; 
 
 // Loop over each element to build finite element equations 
      #pragma omp parallel for private(n) 
 for ( n = 0 ; n < mesh.NE ; n++ ) { 

fluid_f_elMat(mesh, sparseMat, material, boundary, sfL2D, 
              sfL2DS, solution, n, schur, schurBI); 

 } 
 
 // Re-arrange sparse system of equations into compressed-row form 
 sparseMat.sort(); 

 // Call UMFPACK library to solve linear algebraic equations 
 umfpackSolve(sparseMat.get_equations(),   
                   sparseMat.get_k_pointer(), sparseMat.get_k_j(),  
                   sparseMat.get_k_value(), sparseMat.get_f_value(),  
                   sparseMat.get_x_value()); 
 
 // Update boundary nodes of delU 
 solution.populateUboundary(schur, sparseMat.get_x_value()); 
 
 //--------------------------------------------------------------- 
 //  
 // Solve for variables at interior nodes 
 //  
 //--------------------------------------------------------------- 
 
 // Set Schur condition to element interior degrees of freedom 
 schurBI = 1; 
 
 // Loop over each element to build finite element equations 
      #pragma omp parallel for private(n) 
 for ( n = 0 ; n < mesh.NE ; n++ ) { 
  fluid_f_elMat(mesh, sparseMat, material, boundary, sfL2D,  
                          sfL2DS, solution, n, schur, schurBI); 
 } 
 
 // End of function 
 return; 
} 
 
//--------------------------------------------------------------------- 
//  
// End of file 
//  
//--------------------------------------------------------------------- 

(I)

(II)

(III)

(IV)

Figure 2.19: A simple OpenMP paradigm C++ code for steps (I)-(IV).
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#-------------------------- Job file: openMP.job -------------------------- 
#@ shell                = /bin/ksh 
#@ comment              = 8-proc OpenMP Job 
#@ initialdir           = /scratch/vallala/the_iter_lid_p9_b50_g10_npc8 
#@ job_name             = openMP 
#@ error                = $(job_name).o$(schedd_host).$(jobid).$(stepid) 
#@ output               = $(job_name).o$(schedd_host).$(jobid).$(stepid) 
#@ job_type             = parallel 
#@ resources            = ConsumableCpus(8) ConsumableMemory(8500mb) 
#@ wall_clock_limit     = 3:00:00 
#@ node                 = 1 
#@ total_tasks          = 1 
#@ notification         = error 
#@ queue 
# 
 
# Copy executable and input files to temporary directory 
cd $TMPDIR 
cp $LOADL_STEP_INITDIR/fem.out . 
cp $LOADL_STEP_INITDIR/fluid-input.inp . 
 
# Link to UMFPACK and BLAS 
module load umfpack 
module load gotoblas 
 
# Set OpenMP parameters for analysis 
export OMP_NUM_THREADS=8 
export OBJECT_MODE=64 
export OMP_DYNAMIC=FALSE           # Most common but not always 
export MALLOCMULTIHEAP=HEAPS:8 
export AIXTHREAD_SCOPE=S 
 
# Run executable file 
./fem.out 
# /usr/local/bin/jobinfo 
 
# Copy solution text files back into parent directory 
cp fluid-solution.out       $LOADL_STEP_INITDIR 
cp fluid-summary.out        $LOADL_STEP_INITDIR 
cp fluid-ls-functional.out  $LOADL_STEP_INITDIR 
cp fluid-timer.out          $LOADL_STEP_INITDIR 
 
# USEFUL INFORMATION: 
 
# Compile (ESSL): xlC_r -qsmp=omp -q64 -O3 –lesslsmp -L$GOTOBLAS_LIB -lgoto64 – 

           lpthread -lm *.cpp 
 
# Compile (UMFPACK): xlC_r -qsmp=omp -q64 –O3 -I$UMFPACK_INC -L$UMFPACK_LIB – 
                     lamd -lumfpack -L$GOTOBLAS_LIB -lgoto64 -lpthread -lm    
                     *.cpp 
 
# To submit a job:      llsubmit openmp.job 
# To check job status:  llq -u userid 
# To cancel a job:      llcancel jobNumber 
#-------------------------- Job file: openMP.job -------------------------- 
 

Figure 2.20: An OpenMP batch job file.

51



2.6.3 A note on direct and iterative solvers

Since the global coefficient matrix is stored in compressed sparse column (CSC)

or compressed sparse row (CSR) format, the solver step (III) can be linked to ei-

ther direct or iterative solvers. Also, it will be shown in the next section that the

least-squares formulation always yields symmetric positive-definite (SPD) coefficient

matrix and hence, robust direct and iterative solvers can be used. In the problems of

finding the root of an equation (or a solution of a system of equations), an iterative

method uses an initial guess to generate successive approximations to a solution. In

the case of a system of linear equations, the two main classes of iterative methods

are the stationary iterative methods (splitting), and the more general non-stationary

(Krylov subspace) methods. In splitting iterative methods, the operator A of the

linear system of equations Ax = b, is usually decomposed into one of the diagonal

component D, the remainder component R, the upper triangular component U, the

lower triangular component L etc. and the linear system is transformed to form a

approximating “correction equation”, which is solved repeatedly until the error in

the result (residual) is less than the tolerance limit. While these methods are simple

to derive, implement, and analyze, convergence is only guaranteed for a limited class

of matrices. Some of the examples of stationary iterative methods are the Jacobi

method, the Gauss–Seidel method and the successive over-relaxation method.

On the other hand, the Krylov subspace methods work by forming (spanning) a

basis (the Krylov subspace) of the sequence of successive matrix powers times the

initial residual (the Krylov vector sequence). The approximations to the solution are

then formed by minimizing the residual over the subspace formed. If the operator

A of the linear system of equations Ax = b is self-adjoint, it can be solved by the

conjugate gradient method (CG) and the eigenvalue system, Ax = λx, can be solved
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by the Lanczos iterative method. If A is non self-adjoint, the linear system can

be solved by the bi-conjugate gradient method (Bi-CG), the generalized minimal

residual method (GMRES) etc. and the eigenvalue system by the Arnoldi iterative

method. Since these methods have a basis, in the absence of round-off errors, these

methods converge in N iterations, where N is the system size. Even for the Krylov

subspace methods, the rate of convergence is not very satisfactory.

The rate of convergence of the linear system of equations Ax = b depends on

the condition number of the operator A, lower the number, faster the convergence

rate. All the Krylov subspace methods presented above will have faster convergence

if applied to preconditioned system formed from Ax = b by applying various precon-

ditioners. The classical preconditioners for any linear operator A, are derived from

the stationary (splitting) iterative methods mentioned above and can be easily incor-

porated in Krylov subspace methods. The preconditioned Krylov subspace methods

can be considered as accelerations of stationary iterative methods. Depending on the

splitting method, one can have Jacobi preconditioner or a Symmetric Gauss-Seidel

(SGS) preconditioner, etc.

For a SPD coefficient matrix, preconditioned conjugate gradient (PCG) methods

are optimal choice. The convergence rate is strongly dependent on the condition num-

ber of the (preconditioned) coefficient matrix. The IBM’s ESSL and Parallel ESSL

libraries, provide a good number of these iterative solver subroutines. Both ESSL

and Parallel ESSL libraries support 32-bit and 64-bit Fortran, C and C++ serial,

OpenMP and MPI parallel applications running under AIX and Linux operating sys-

tems. We have successfully linked our finite element program with the subroutine

dsris (Iterative Linear System Solver for a General or Symmetric Sparse Matrix

Stored by Rows). This subroutine solves a general or symmetric sparse linear system

of equations, using an iterative algorithm with or without preconditioning.
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Although the iterative methods are cheap and suited for large scale problems

they are slow and the preconditioner determines the number of iterations. Also,

convergence is not always guaranteed. These short-comings can be overcome using

direct methods, which are better suited for small to medium-large-scale problems.

The solution is always guaranteed and unique. In the absence of roundoff errors,

direct methods would deliver an exact solution by solving the linear system of equa-

tions Ax = b by any one of Gaussian elimination, LU factorization, QR method, Block

algorithms or the more advanced multi-frontal solvers. Since we implement the schur

complement method to eliminate all interior degrees of freedom, the memory required

for the coefficient matrix is significantly reduced. Hence in this work we use direct

solvers for relatively large problems (up to 0.5X10^6 degrees of freedom). To solve a

sparse system by a direct method, one must use both the factorization and the solve

subroutines. The factorization subroutine should be followed by the corresponding

solve subroutine; that is, the output from the factorization subroutine should be used

as input to the solve subroutine. The IBM’s ESSL library also provides subroutines

for direct solvers like dgsf (General Sparse Matrix Factorization Using Storage by

Indices, Rows, or Columns) and dgss (General Sparse Matrix or Its Transpose Solve

Using Storage by Indices, Rows, or Columns). However, in the current study we use

a more advanced library called UMFPACK, which has a set of subroutines for solving

sparse linear systems directly using the unsymmetric multi-frontal method and direct

sparse LU factorization. It is a very robust and highly optimized direct serial solver

suited for small to medium-large-scale problems. The solver step can also be easily

linked to other advanced external libraries like MUMPS, PARDISO, PETSc etc. which

may have serial/parallel, direct/iterative solvers for Fortran, C/C++.
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2.7 Notation, finite element formulation and numerical results

2.7.1 Notation

Before proceeding to describe the high-order finite element problems utilized in

this research, we find it prudent to introduce some standard notation. We assume

that Ω is an open bounded subset of Rnd, where nd denotes the number of spatial

dimensions. The boundary of Ω is denoted by Γ = ∂Ω = Ω̄−Ω, where Ω̄ represents

the closure of Ω. A typical point belonging to Ω̄ is denoted as x. We employ the

customary designations for the Sobolev spaces Hs(Ω) and Hs(Γ) where s > 0. The

corresponding norms are given as ∥ · ∥Ω,s and ∥ · ∥Γ,s. Likewise the inner products

associated with these spaces are denoted as ( · , · )Ω,s and ( · , · )Γ,s respectively. The

product spaces Hs(Ω) = [Hs(Ω)]nd are constructed in the usual way.

2.7.2 Weak formulations

In this research we are concerned with the variational or weak formulation of

boundary and initial boundary-value problems. We construct these weak formu-

lations based upon either the classical weak form Galerkin formulation and also

through the use of the least-squares method. Weak formulations typically involve

integral statements over Ω and Γ that are in a generalized sense equivalent to the

original set of partial differential equations and natural boundary conditions associ-

ated with a given system. Such problems may be stated as follows: find u ∈ V such

that

B(w,u) = F(w) ∀ w ∈ W (2.36)

where B(w,u) is a bilinear form, F(w) is a linear form, and V andW are appropriate

function spaces (e.g., the Sobolev space H1(Ω)). The quantity u represents the set of

independent variables (associated with the variational boundary value problem), and
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w represents the corresponding weighting or test function. Unlike classical solutions

that are defined unambiguously point-wise, weak solutions exist with respect to test

functions and are therefore understood in the context of distributions.

2.7.3 Abstract least-squares method

We consider the following abstract boundary-value problem:

L(u) = f in Ω (2.37a)

u = up on ΓD (2.37b)

g(u) = h on ΓN (2.37c)

where L is a nonlinear first-order spatial partial differential operator, u is the inde-

pendent variable, f is the forcing function and up is the prescribed essential boundary

condition. The Neuman boundary condition is expressed in terms of the operator g

and the prescribed function h. We assume that the function g is linear in u and that

the problem is well-posed.

In the least-squares method, we construct an unconstrained convex least-squares

functional J whose minimizer corresponds with the solution of equation (B.2). To

maintain practicality [9, 10, 76, 78, 80] in the numerical implementation, we construct

the least-squares functional in terms of the sum of the squares of the L2 norms of

the abstract equation residuals

J (u; f ,h) =
1

2

(
∥L(u)− f∥2Ω,0 + ∥g(u)− h∥2ΓN,0

)
(2.38)

The abstract minimization principle associated with the least-squares method may
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be stated as follows: find u ∈ V such that

J (u; f ,h) 6 J (ũ; f ,h) for all ũ ∈ V (2.39)

where the function space V is defined as

V =
{
u : u ∈ H1(Ω), u = up on ΓD

}
(2.40)

The necessary condition for minimization requires that the first variation of J (u; f ,h),

denoted as G(u, δu), be identically zero. Carrying out the minimization principle

with the aid of the Gâteaux derivative yields

G(u, δu) = δJ (u, δu; f ,h) =
d

dε
J (u+ εδu; f ,h)

∣∣∣
ε=0

= (∇L(u) · δu,L(u)− f)Ω,0 + (g(δu), g(u)− h)ΓN,0 = 0

(2.41)

where the symbolic derivative (or gradient) operator ∇ acts with respect to the in-

dependent variable u. The linear vector space of kinematically admissible variations

W is of the form

W =
{
δu : δu ∈ H1(Ω), δu = 0 on ΓD

}
(2.42)

The least-squares based based weak formulation, therefore, is to find u ∈ V such

that equation (2.41) holds for all δu ∈ W .

2.7.4 Least-squares finite element formulation of a boundary-value problem

In the following example all the above strategies like the higher-order mesh gener-

ation, ‘sidesets’ and ‘nodesets’ generation for essential type of boundary conditions,

line integrals for natural type of boundary conditions, schur complement method

and others are put to test. We attempt to solve the isothermal, incompressible,
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steady-state Navier–Stokes flow over a cylinder in two-dimensions.

The dimensionless Navier–Stokes equation in terms of the primitive variables of

pressure p and velocity u can be written as

∇ · u = 0 in Ω (2.43a)

(u · ∇)u+∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω (2.43b)

u = uP on Γu (2.43c)

n̂ · σ = tP on Γt (2.43d)

where Re is the Reynolds number, f is the dimensionless resultant body force due to

agents like gravity, magnetic effects etc., uP is the dimensionless prescribed velocity

on the boundary Γu, t
P is the dimensionless prescribed traction on the boundary Γt, n̂

is the outward unit normal to the boundary Γt and σ is the total stress tensor (Cauchy

stress). It must be noted that the parts of boundary with prescribed velocities and

tractions satisfy Γ = Γu ∪Γt and ∅ = Γu ∩Γt. The Cauchy stress can be represented

in terms of primitive variables from the constitutive relation as below

σ = −pI+ 1

Re

[
(∇u) + (∇u)T

]
(2.44)

To develop the finite element equations, the least-squares formulation is used instead

of the traditional weak-form Galerkin formulation. For more on the least-squares

formulations and its advantages see Section 5. The second-order system of equations

(5.1a) - (5.1d) are recast as a first-order system by introducing stress tensor, T =[
(∇u) + (∇u)T

]
, as an auxiliary variable. Note, the stress tensor is symmetric. The

stress-based first-order system can be written as
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∇ · u = 0 in Ω (2.45a)

(u · ∇)u+∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω (2.45b)

T =
[
(∇u) + (∇u)T

]
in Ω (2.45c)

u = uP on Γu (2.45d)

n̂ ·T = TP on ΓT (2.45e)

For the above stress-based first-order system the outflow boundary conditions can

be imposed in a strong sense, using the components of symmetric stress tensor or

in a weak sense, through the least-squares functional as done in Section 5. In the

present work it is applied in a weak sense and is explained in the next section. The

least-squares functional for the above system of equations can be setup by taking the

sum of the squares of the residual equations in L2-normed function space as

J (p,u,T; f) = 1
2

(
∥∇ · u∥20 +

∥∥(u · ∇)u+∇p− 1
Re
∇ ·T− f

∥∥2

0
+∥∥∥T−

[
(∇u) + (∇u)T

]∥∥∥2

0

) (2.46)

The least-squares minimization problem is to find p(x),u(x),T(x) ∋ J (p,u,T; f) ≤

J
(
p̃, ũ, T̃; f

)
∀
(
p̃, ũ, T̃; f

)
∈ X, i.e., seek (p, u,T) suchthatJ (p,u,T; f) is mini-

mized over X, where X is

X =
{
(p, u, T) ∈ H1

0 (Ω)× H1 (Ω)× H1 (Ω)
}

(2.47)

After suitable linearizations by Newton’s Method, the variational problem corre-
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sponding to above least-squares functional can be written as

B
((
p̃, ũ, T̃

)
,
(
p, u, T

))
= F

(
p̃, ũ, T̃

)
∀
(
p̃, ũ, T̃

)
∈ X (2.48)

where the bi-linear and linear forms are given as

B
((
p̃, ũ, T̃

)
,
(
p,u, T

))
=

∫
Ω

{(
(u0 · ∇) ũ+ (ũ · ∇)u0 +∇p̃− 1

Re
∇ · T̃

)
·(

(u0 · ∇)u+ (u · ∇)u0 +∇p− 1
Re
∇ ·T

)
+(

(∇ · ũ) · (∇ · u)
)
+
(
T̃−

[
(∇ũ) + (∇ũ)T

])
·(

T−
[
(∇u) + (∇u)T

])}
dΩ

(2.49)

F
(
p̃, ũ, T̃

)
=

∫
Ω

(
(u0 · ∇)u0 + f

)
·
(
(u0 · ∇) ũ+ (ũ · ∇)u0 +∇p̃− 1

Re
∇ · T̃

)
dΩ

(2.50)

The above bi-linear and linear forms can be explicitly written as



K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66





p

ux

uy

Txx

Txy

Tyy



=



F1

F2

F3

F4

F5

F6



(2.51)
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2.7.5 Outflow boundary conditions

Here we discuss in detail about the outflow boundary condition, its contribution

to the least-squares functional and a method to evaluate it. The outflow boundary

conditions is typically given by

t̂ = n̂ · σ̃ = 0 (2.52)

where σ̃ is the pseudo Cauchy stress tensor defined as σ̃ = −pI + (1/Re)∇u. In

two-dimensions cartesian coordinate system the Eq. (5.13) becomes

t̂ =
(
−pn̂iδij + 1

Re
n̂i

∂uj
∂xi

)
ej

t̂x = −pn̂x + 1
Re

(
n̂x

∂ux
∂x

+ n̂y
∂ux
∂y

)
t̂y = −pn̂y + 1

Re

(
n̂x

∂uy
∂x

+ n̂y
∂uy
∂y

) (2.53)

When the outflow boundary condition is applied in a weak sense, the least-squares

functional in Eq. (2.46) needs to be modified as (see the underlined term)

J (p,u, T; f) = 1
2

(
∥∇ · u∥20 +

∥∥(u · ∇)u+∇p− 1
Re
∇ ·T− f

∥∥2

0
+∥∥∥T−

[
(∇u) + (∇u)T

]∥∥∥2

0
+
∥∥t̂− n̂ · σ̃

∥∥2

0,Γoutflow

) (2.54)

Using the Eq. (2.53) the contribution of the outflow boundary condition to the above

least-squares functional can be written as

Jout (p,u) =
1

2

∫
Γout

∥∥∥∥t̂+ (
pn̂− 1

Re
n̂ · ∇u

)∥∥∥∥2

0

ds (2.55)
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The first variation of the above functional becomes

δJout =

∫
Γout

[(
δpn̂− 1

Re
n̂ · ∇δu

)
·
(
pn̂− 1

Re
n̂ · ∇u

)
+

(
δpn̂− 1

Re
n̂ · ∇δu

)
· t̂
]
ds

(2.56)

The terms of the above equation can be separated into bi-linear and linear forms as

Bout

(
(p̃, ũ) , (p,u)

)
= Fout

(
(p̃, ũ)

)
(2.57)

which can be explicitly expressed as

Bout

(
(p̃, ũ) , (p,u)

)
=

∫
Γout

(
p̃n̂− 1

Re
n̂ · ∇ũ

)
·
(
pn̂− 1

Re
n̂ · ∇u

)
ds

Fout

(
(p̃, ũ)

)
=

∫
Γout

(
1
Re
n̂ · ∇ũ− p̃n̂

)
· t̂ds

(2.58)

In two-dimensions, the above becomes

Bout

(
(p̃, ũ) , (p, u)

)
=

∫
Γout

{[
p̃n̂x − 1

Re

(
n̂x

∂ũx
∂x

+ n̂y
∂ũx
∂y

)]
[
pn̂x − 1

Re

(
n̂x

∂ux
∂x

+ n̂y
∂ux
∂y

)]
+[

p̃n̂y − 1
Re

(
n̂x

∂ũy
∂x

+ n̂y
∂ũy
∂y

) ]
[
pn̂y − 1

Re

(
n̂x

∂uy
∂x

+ n̂y
∂uy
∂y

)]}
ds

Fout

(
(p̃, ũ)

)
=

∫
Γout

{
t̂x

[
1
Re

(
n̂x

∂ũx
∂x

+ n̂y
∂ũx
∂y

)
− p̃n̂x

]
+

t̂y

[
1
Re

(
n̂x

∂ũy
∂x

+ n̂y
∂ũy
∂y

)
− p̃n̂y

]}
ds

(2.59)

The additional components from this to the finite element coefficient matrices and
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force vectors of Eq. (5.10) are given by

K11
ij =

∫
Γout

ψiψjds, K12
ij = −

∫
Γout

nx

Re
ψiNjds

K13
ij = −

∫
Γout

ny

Re
ψiNjds

K21
ij = −

∫
Γout

nx

Re
Niψjds, K22

ij =
∫
Γout

1
Re2

NiNjds

K31
ij = −

∫
Γout

ny

Re
Njψjds, K33

ij =
∫
Γout

1
Re2

NiNjds

F 1
i = −

∫
Γout

(
t̂xn̂x + t̃yn̂y

)
ψids, F 2

i =
∫
Γout

t̂x
Re
Nids

F 3
i =

∫
Γout

t̂y
Re
Nids

where Ni = n̂x
∂ψi

∂x
+ n̂y

∂ψi

∂y

(2.60)

Note, the line integration techniques discussed in section D are used to evaluate these

integrals and the values of t̂x and t̂y are specified in the input file as shown in Fig.

2.14.

2.7.6 Numerical results

To test all the above strategies a standard benchmark problem of flow past a

circular cylinder in a long channel is considered. The cylinder is of unit diameter

and is at the center of the finite domain Ω = [−15.5,+25.5]×[−20.5,+20.5] as shown

in Fig. 2.10(a). The mesh has 501 quadrilateral finite elements. For this mesh the

horizontal velocity is specified as 1.0 at the inflow (left), top and bottom boundaries

and the vertical velocity as 0 on these three boundaries. A no-slip boundary condition

is imposed on the surface of the cylinder. And the outflow boundary condition is

imposed in a weak-sense through the least-squares functional on the outflow (right)

boundary of the domain. The value of Reynolds number and the placement of

the computational boundaries in relation to the cylinder are critical as the flow

pattern depends on them. At low Reynolds number (5 < Re < 46.1), the flow

of an incompressible, newtonian fluid past a circular cylinder is stationary and its
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pattern is characterized by a pair of symmetric vortices on the downstream of the

cylinder. The size of these standing vortex layers is proportional to the Reynolds

number. As the Reynolds number reaches a critical value (Re > 46.1), the standing

vortex layers become unstable and flow can no longer be treated as two-dimension

problem. A Reynolds number of Re = 40 is used for all the cases in this work. In

finite element program we utilize the OpenMP parallel paradigm to setup the global

linear system of equations in compressed sparse column (CSC) or compressed sparse

row (CSR) formats for the statically condensed mesh [74]. The program can easily

link to any external solver libraries like UMFPACK, PARDISO, MUMPS, ESSL etc. and

the global system of equations for the statically condensed mesh can be solved using

a variety of direct/iterative, serial/parallel solvers from any of these libraries. The

current test problem is solved using UMFPACK, which is a serial direct solver on a

cluster at the Texas A&M Supercomputing Facility. The hardware specifications are

IBM Cluster-1600 with IBM’s 1.9 GHz RISC Power5+ processors. Each node is a

symmetric multi-processor (SMP) system with 16 processors and 25 GB of usable

shared memory.

In Fig. 2.21(a), the crown region of cylinder is shown in yellow for a polynomial

of order p = 2. This region has 8 elements numbered 101, 100, 99, 98, 37, 38, 39, 40.

To assess the conservation of continuity equation on this region, the absolute value

of the below

Q =
∑

Qe =

∮
Γe

n̂ · u ∂Γe (2.61)

is calculated for each of the elements in the crown region. Note, the above equation is

obtained by applying the divergence theorem to the continuity equation and is eval-

uated using the line integral methods discussed in section D. The problem is solved

with different polynomial orders of p = 3, 5 and 7 each with 4659, 12775 and 24899
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nodes respectively. In Fig. 2.21(b), the values of total solution error εall, errors in

pressure εp, horizontal velocity εux , vertical velocity εuy , the least-squares functional

J , and the volumetric flow rate imbalance Q are plotted for p = 3, 5 and 7. Note,

all these values decrease exponentially with increase in the polynomial order, this is

called spectral convergence. This is another advantage of the least-squares method

coupled with higher-order spectral/hp basis functions. In Figs. 2.21(c) and 2.21(d),

the pressure and vertical velocity contours are shown along with the streamtraces of

symmetric vortices downstream the cylinder.
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Figure 2.21: (a) Crown region (shown for mesh with p = 2) (b) Various error mea-
sures (c) Pressure contours and (d) Vertical velocity contours.
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3. HIGHER-ORDER SPECTRAL/HP FINITE ELEMENT FORMULATIONS

OF BEAMS WITH VISCOELASTICITY∗

In this section, we develop a finite element model for efficient nonlinear analy-

sis of the mechanical response of viscoelastic beams is presented. The principle of

virtual work is utilized in conjunction with the third-order beam theory to develop

displacement-based, weak-form Galerkin finite element model for both quasi-static

and fully-transient analysis. The displacement field is assumed such that the third-

order beam theory admits C0 Lagrange interpolation of all dependent variables and

the constitutive equation can be that of an isotropic material. Also, higher-order

interpolation functions of spectral/hp type are employed to efficiently eliminate nu-

merical locking. The mechanical properties are considered to be linear viscoelastic

while the beam may undergo von Kármán nonlinear geometric deformations. The

constitutive equations are modeled using the Prony exponential series with general n-

parameter Kelvin chain as its mechanical analogy for quasi-static cases and a simple

two-element Maxwell model for dynamic cases. The fully discretized finite element

equations are obtained by approximating the convolution integrals from the viscous

part of the constitutive relations using a trapezoidal rule. A two-point recurrence

scheme is developed that uses the approximation of relaxation moduli with the Prony

series. This necessitates the data storage for only the last time step and not for the

entire deformation history.

∗Part of the numerical results reported in this section appear in the article “A spectral/hp
nonlinear finite element analysis of higher-order beam theory with viscoelasticity” by V. P. Vallala,
G. S. Payette and J. N. Reddy, Int. J. Appl. Mech., vol. 4, pp. 43–57, 2012. Copyright (2012) World
Scientific.
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3.1 Introduction

The phrase “viscoelastic behavior” refers to a spectrum of mechanical character-

istics that are not exhibited either by pure viscous or pure elastic bodies. It is a

combination of these two extremes in relative proportions. Many engineering mate-

rials (like bio-polymers, alloys, amorphous glass, metals at high temperatures) fall

in this continuous spectrum of all possible properties from one extreme to the other,

which makes it more important to study these materials. The theory of viscoelastic

behavior is long been established, the reader can refer to [58] for a materials per-

spective and standard texts of Lockett [60], Flügge [31], Christensen [23], Findley

[30] and Reddy [93] for a continuum perspective. Within the continuum purview

there are analytical methods like integral transforms, Laplace transforms and cor-

respondence principle, etc. to study the mechanical response of structures made of

viscoelastic materials. But as with many analytical methods they are limited to sim-

ple cases of geometry and loading. In such scenarios numerical techniques like the

finite element method becomes very useful in testing and predicting the properties

of a material without actually fabricating them. Numerical methods can be used to

obtain approximate solution with desired accuracy.

Many researchers have used the finite element method to study viscoelastic mate-

rials [112, 69, 40, 35, 36, 96]. The main difficulty with the viscoelastic finite element

models is the approximation of convolution integrals that come from viscoelastic

constitutive equations. Most of these finite element models try to circumvent the

problem with the time dependent convolution integrals by transforming them to a set

of discrete algebraic equations in space. Taylor and Oden [112, 69] used recurrence re-

lations such that only the deformation history from last few iterations is needed to be

stored instead of entire deformation from beginning. The other popular methods in
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literature are Laplace transform approach by [22, 2, 113], Fourier transform method

by [21], anelastic displacement formulation by [115, 70], and Golla-Hughes-McTavish

(GHM) method by [62, 63, 7, 6]. For more on this refer [72].

Most of the viscoelastic finite element models in the literature use lower-order

theories for beams, plates or shells. Johnson et al. [50] reviewed the history integral

form of Maxwell solid and derived a new differential constitutive law for it. The

Prony series is used to express relaxation moduli and, as a result, the time dependent

linear viscoelastic constitutive equations were expressed as set of ordinary differential

equations in terms of displacements to obtain the finite element stiffness coefficients.

Many of these finite element formulations are restricted to small deformations. As

a result they don’t account for geometric nonlinearity effect at large loads. In the

present study we present quasi-static and fully-transient spectral/hp finite element

analysis for linear viscoelastic beams based on higher-order shear deformation theory

with the von Kármán nonlinear strains [88].

The section is organized as follows. We first review the kinematic assumptions

that form the basis for each of the three beam theories considered in the present study.

An effective strain tensor (a simplification of the Green–Lagrange strain) is then

introduced along with the assumed linear viscoelastic constitutive model. The finite

element formulation for each beam theory is then derived from the principle of virtual

displacements, or equivalently through the use of the weak-form Galerkin procedure.

In the fully discretized finite element models, the convolution integrals (emanating

from the viscoelastic constitutive equations) are temporally approximated using the

trapezoidal rule in conjunction with a two-point recurrence formula. We conclude the

section by presenting numerical results for quasi-static and fully transient verification

benchmark problems. We shown that all forms of locking may be avoided through

the use of either: (a) low-order finite elements with selective employment of full
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and reduced numerical integration strategies or (b) fully integrated finite elements

constructed from high-order polynomial interpolation functions of both Lagrange

and Hermite type. The main ideas and some numerical results are taken from our

published journals Ref. [118, 120].

3.2 Assumptions and strain-displacement relations

For the deformation of the beam the standard strain measure of Green–Lagrange

strain E, is widely used in solid mechanics. The non-zero components can be ex-

pressed as

EXX =
∂u

∂X
+

1

2

[(
∂u

∂X

)2

+

(
∂w

∂X

)2
]

(3.1)

EXZ =
1

2

(
∂u

∂Z
+
∂w

∂X
+
∂u

∂X

∂u

∂Z

)
and EZZ =

1

2

(
∂u

∂Z

)2

(3.2)

Under the assumptions of large transverse displacements, small strains and small

to moderate rotations (< 15◦), we can omit the underlined terms from the above

equation. Thus the Green–Lagrange strain tensor becomes the reduced strain tensor

E ≈ ε [Reddy, 2004]. The nonzero components of this reduced Green–Lagrange

strain tensor are given by

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

εxz =
1

2

(
∂u

∂z
+
∂w

∂x

)
(3.3)

For the continuous deformation of beam we use material or Lagrangian description.

All quantities that describe the motion, like displacements, rotations are measured
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in the initial or undeformed configuration. Hence the coordinates (x,y,z) used in

Eq.(3.3) above and throughout this paper represent the material coordinates. The

equations of motion are derived from the principle of virtual work, which is expressed

in terms of quantities (like virtual displacements) measured in the undeformed con-

figuration. Since all the displacements and strains are measured in the undeformed

configuration we use second Piola–Kirchhoff stress tensor, denoted by σ, for the

stress measure.

3.3 A review of higher-order beam theories

Beam theories based on the assumed form of the displacement field are most

popular. In these theories, the displacements are expanded in increasing powers of

the thickness (or height) coordinate. The word “order” refers to the power of the

thickness coordinate in the power series expansion of the displacement field. To make

this clear, a review of beam theories is presented below.

The simplest and oldest beam theory is the Bernoulli–Euler beam theory (BET)

Kirchhoff [53]. It is based on the kinematic assumptions that straight lines per-

pendicular to the plane of the undeformed beam remain straight and inextensible,

and rotate such that they always remain perpendicular the axis of the beam after

deformation. These assumptions, known as the Kirchhoff hypothesis, amounts to ne-

glecting both transverse shear and transverse normal strains [88, 91]. The assumed

displacement field is of the form

u(x, z, t) = u0(x, t) + zθx(x, t), w(x, z, t) = w0(x, t) (3.4)
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where

θx = −∂w0

∂x
(3.5)

and z is the coordinate perpendicular to the undeformed midplane of the beam,

and (x) is the coordinate lying in the plane. The theory does not qualify to be

called first-order because the first-order terms, θx is not independent of w0. Finite

element models of BET require C1-continuity, that is, continuity of the transverse

displacement w0 as well as its derivatives - slopes θx, and the development of BET

finite elements that satisfy all completeness and compatibility requirements is cum-

bersome.

The simplest first-order shear deformation theory (FSDT) is based on the dis-

placement expansion

u(x, z, t) = u0(x, y, t) + zθx(x, y, t), w(x, z, t) = w0(x, t) (3.6)

where θx is the rotation of a transverse normal line

θx =
∂u

∂z
(3.7)

The first-order theory is based on the first two assumptions of the Kirchhoff hypoth-

esis, and the normality of the assumption is not invoked, making the rotation θx to

be independent of (u0, w0). As a result the transverse shear strain γxz is nonzero but

independent of z. This lead to the introduction of shear correction factors in the

evaluation of the transverse shear forces. The finite element models of the theory

require only C0-continuity, i.e., the variables of the theory (u0, w0, θx) be continuous

between elements; however, they can exhibit spurious transverse shear stiffness even

72



in pure bending, known as the shear locking, as the beam becomes thin. The spuri-

ous transverse shear stiffness stems from an interpolation inconsistency that prevents

the Kirchhoff conditions of Eq. (3.5) from being satisfied as the beam becomes thin.

The shear locking phenomenon can be alleviated by using a reduced integration to

evaluate transverse shear stiffness terms in the element stiffness matrix or by using

higher-order approximations of the displacement field. Although the reduced inte-

gration solution is the most economical alternative, the process allows some elements

to exhibit spurious displacement modes, i.e., deformation modes that result in zero

strain at the Gaussian integration points.

Second-order and higher-order theories relax the Kirchhoff hypothesis further by

allowing the straight lines normal to the midplane before deformation to become

curves. However, most published theories still assume inextensibility of these lines.

Second-order theories are not popular because of the fact that they too require shear

correction factors and while not improving over FSDT.

The third-order theories assumes a cubic expansion of the displacement field

which is optimal because it gives quadratic variation of transverse shear strain and

stress, and require no “shear correction factors” compared to the FSDT beam theory,

where the transverse shear strain and stress are constant through the beam height.

Several third-order theories have been developed by different researchers, and some

of them are claimed to be new whereas they are not new, as pointed by Reddy

[84, 92], but only disguised in the form of the displacement expansions used. Various

third-order theories developed over the years differ from each others in several ways.

The final equations developed depend on (1) the displacement field, (2) the strain-

displacement relations (linear or nonlinear, if nonlinear, nature of the nonlinearity

included - small strain but large displacements and rotations or moderate rotations,

etc.), and (3) equilibrium (or equations of motion) adopted.
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In the present analysis we employ a cubic expansion of the displacement field on

the similar-lines of the third-order beam theory by Reddy [87, 92, 84]. For a beam

of rectangular cross-section, the displacement field is assumed to be of the following

u (x, z, t) = u0 (x, t) + zϕx (x, t)− z3c1 θx (x, t)

w (x, z, t) = w0 (x, t) (3.8)

where c1 = 4/3h2, and h is the height of beam. The non-zero strain components

of the Green–Lagrange strain tensor resulting from the displacement field Eq. (3.8)

can be expressed as

εxx =
∂u0
∂x

+
1

2

(
∂w0

∂x

)2

+ z
∂ϕx
∂x

− z3c1

(
∂θx
∂x

)
γxz = ϕx +

∂w0

∂x
− c2z

2θx (3.9)

where c2 = 3c1 = 4/h2, and we have retained the von Kármán nonlinear terms in

the above equations. The main advantage of the present higher-order beam theory

(HBT) over lower-order beam theories is that the HBT allows for C0 continuity and

also gives quadratic variation of the transverse shear strain through the thickness of

the beam. Thus, there is no need for a shear correction factor as with the Timoshenko

beam theory.

3.4 Linear viscoelastic constitutive relations

A material is said to be linearly viscoelastic, if stress is proportional to strain

at a given time and linear superposition principle holds (Boltzmann’s superposition

principle). Considering the strains associated with relaxation and recovery and using

the ideas of linearity, for isothermal deformation in one-dimension, the constitutive
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equation relating the nonzero components of the second Piola–Kirchhoff stress tensor

σ to the Green–Lagrange strain tensor ε components can be expressed as

σxx (x, t) = E (0) εxx (x, t) +

∫ t

0

Ė (t− s) εxx (x, s) ds

σxz (x, t) = G (0) γxz (x, t) +

∫ t

0

Ġ (t− s) γxz (x, s) ds (3.10)

where E(t), G(t) are the extensional, shear relaxation moduli and Ė(t− s), Ġ(t− s)

are derivatives with respect to (t − s). By an appropriate change of variables and

integrating by parts the above equations can be cast in the form of Boltzmann

superposition integrals. The specific forms of E(t) and G(t) will depend upon the

material model employed. In this study, we express the relaxation moduli in terms

of the Prony series of order n as

E (t) = E0 +
n∑
l=1

Ele
− t

τE
l , G (t) = G0 +

n∑
l=1

Gle
− t

τG
l (3.11)

The time derivative of the relaxation moduli can be expressed as

Ė (t) = −
n∑
l=1

El
τEl
e
− t

τE
l , Ġ (t) = −

n∑
l=1

Gl

τGl
e
− t

τG
l (3.12)

It is important to note that in the integral constitutive equations given by Eq. (3.10)

we assume that a discontinuity exists in the response only at t = 0.
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3.5 Weak forms and semi-discrete models

3.5.1 Galerkin weak formulation of HBT

To construct the finite element model, we begin with the principle of virtual work

applied to a typical beam structure in undeformed configuration, which is given as

∫
V

(ρδu · ü+ δε : σ − ρδu · b) dV −
∫
Γσ

δu · tds = 0 (3.13)

Over a typical beam element, the above is equivalent to the following four weak forms

(see Reddy [90]):

0 =

∫ xb

xa

(
I0 δu0 ü0 +

∂δu0
∂x

Nxx − I0 δu0 f

)
dx

− δu0 (xa)Q1 − δu0 (xb)Q5 (3.14)

0 =

∫ xb

xa

(
I0 δw0 ẅ0 +Nxx

∂δw0

∂x

∂w0

∂x
+Qx

∂δw0

∂x
−I0 δw0 q

)
dx

−Q2δw0 (xa)−Q6δw0 (xb) (3.15)

0 =

∫ xb

xa

[
δ θ

(
−I4 c1 ϕ̈+ I6 c

2
1 θ̈

)
− Pxx c1

∂δθ

∂x
− Rx c2 δθ

]
dx

+Q3 δθ (xa) +Q7 δθ (xb) (3.16)

0 =

∫ xb

xa

[
δϕ

(
I2 ϕ̈− I4 c1 θ̈

)
+Mxx

∂δϕ

∂x
+Qx δϕ

]
dx

−Q4 δϕ (xa)−Q8 δϕ (xb) (3.17)

Note we drop the subscript x on variables θx and ϕx for simplicity. The variational

problem for the HBT can be stated as: find (u0, w0, θ, ϕ) ∈ H1 (Ω) × H1 (Ω) ×

H1 (Ω)×H1 (Ω) for all (δu0, δw0, δθ, δϕ) ∈ H1 (Ω)×H1 (Ω)×H1 (Ω)×H1 (Ω) such

that the equations Eqs. (3.14)-(3.17) hold true, where, Hm (Ω) is the Sobolev space

of order m and Ω = [xa, xb]. The constants used in the above equations are defined
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as follows:

Ii = ρDi = ρ

∫
Ae

zi dA (3.18)

The internal stress resultants Nxx,Mxx, Pxx, Qx, and Rx for the HBT are defined as

follows:
Nxx

Mxx

Pxx

 =

∫
Ae


1

z

z3

σxx dA,

 Qx

Rx

 =

∫
Ae

 1

z2

σxz dA (3.19)

The secondary variables Qi are defined as follows:

Q1 = − Nxx|x=xa , Q5 = Nxx|x=xb , Q2 = − Qx|x=xa , Q6 = Qx|x=xb

Q3 = − c1Pxx|x=xa , Q7 = c1Pxx|x=xb , Q4 = −Mxx|x=xa , Q8 = Mxx|x=xb (3.20)

3.5.2 Semi-discrete finite element models

Since the assumed kinematic displacement requires only the continuity of the primary

variables across the element boundaries and not its derivatives, i.e. C0 continuous,

we take the following equal-order interpolation functions for all primary variables

u0 (x, t) =

p∑
j=1

∆
(1)
j (t)ψj (x), w0 (x, t) =

p∑
j=1

∆
(2)
j (t)ψj (x),

θx (x, t) =

p∑
j=1

∆
(3)
j (t)ψj (x), ϕx (x, t) =

p∑
j=1

∆
(4)
j (t)ψj (x) (3.21)

where ∆
(1)
j ,∆

(2)
j ,∆

(3)
j ,∆

(4)
j are the generalized displacements at the nodes and ψj are

the one-dimensional nodal spectral interpolation functions.

Substituting Eq. (3.21) in to the weak forms in Eqs. (3.14)-(3.17) yields the
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semi-discrete finite element model of the HBT beam element. The finite element

equations can be expressed as

[M ]
{
∆̈
}
+ [K] {∆}+

t∫
0

[
K̃
]
{∆(s) } ds = {F} (3.22)

The components in the above equation are explicitly given as

M11
ij =

∫ xb

xa

I0ψiψjdx,M
12
ij = 0,M13

ij = 0,M14
ij = 0

M21
ji = 0,M22

ij =

∫ xb

xa

I0ψiψjdx,M
23
ij = 0,M24

ij = 0

M31
ij = 0,M32

ij = 0,M33
ij =

∫ xb

xa

I6c
2
1ψiψjdx,M

34
ij =

∫ xb

xa

−c1I4ψiψjdx

M41
ij = 0,M42

ij = 0,M43
ij =

∫ xb

xa

−c1I4ψiψjdx,M 44
ij =

∫ xb

xa

I2ψiψjdx (3.23)

K11
ij =

∫ xb

xa

E (0)D0
dψi
dx

dψj
dx

dx, 2K12
ij = K21

ji =

∫ xb

xa

E (0)D0
∂w0

∂x

dψi
dx

dψj
dx

dx

K22
ij =

∫ xb

xa

[
1

2
E (0)D0

(
∂w0

∂x

)2

+G (0)D0

]
dψi
dx

dψj
dx

dx

K23
ij = K32

ji =

∫ xb

xa

−G (0)D2 c2
dψi
dx

ψjdx,

K24
ij = K42

ji =

∫ xb

xa

G (0)D0
dψi
dx

ψjdx

K33
ij =

∫ xb

xa

E (0)D6 c
2
1

dψi
dx

dψj
dx

dx+

∫ xb

xa

G (0)D4 c
2
2ψiψjdx

K34
ij = K43

ji =

∫ xb

xa

−E (0)D4 c1
dψi
dx

dψj
dx

dx +

∫ xb

xa

−G (0)D2 c2ψiψjdx

K44
ij =

∫ xb

xa

E (0)D2
dψi
dx

dψj
dx

dx+

∫ xb

xa

G (0)D0ψiψjdx (3.24)
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K̃11
ij =

∫ xb

xa

Ė (t− s)D0
dψi
dx

dψj
dx

dx

2K̃12
ij = K̃21

ji =

∫ xb

xa

Ė (t− s)D0
∂w0 (x, s)

∂x

dψi
dx

dψj
dx

dx

K̃22
ij =

∫ xb

xa

(
1

2
Ė (t− s)D0

∂w0

∂x

∂w0 (x, s)

∂x
+ Ġ (t− s)D0

)
dψi
dx

dψj
dx

dx

K̃23
ij = K̃32

ji =

∫ xb

xa

−Ġ (t− s)D2c2
dψi
dx

ψjdx

K̃24
ij = K̃42

ji =

∫ xb

xa

Ġ (t− s)D0
dψi
dx

ψjdx

K̃33
ij =

∫ xb

xa

Ė (t− s)D6 c
2
1

dψi
dx

dψj
dx

dx+

∫ xb

xa

Ġ (t− s)D4 c
2
2ψiψjdx

K̃34
ij = K̃43

ji =

∫ xb

xa

−Ė (t− s)D4 c1
dψi
dx

dψj
dx

dx+

∫ xb

xa

−Ġ (t− s)D2 c2ψiψjdx

K̃44
ij =

∫ xb

xa

Ė (t− s)D2
dψi
dx

dψj
dx

dx+

∫ xb

xa

Ġ (t− s)D0ψiψjdx (3.25)

All other terms in Eqs. (3.24, 3.25) are zeros. The force terms are

F 1
i =

∫ xb

xa

I0f ψidx+ ψi (xa)Q1 + ψi (xb)Q5

F 2
i =

∫ xb

xa

I0q ψidx+Q2ψi (xa) +Q6ψi (xb)

F 3
i = −Q3ψi (xa)−Q7ψi (xb)

F 4
i = Q4ψi (xa) +Q8ψi (xb) (3.26)

3.6 Full discretization : recurrence formulas and time approximations

3.6.1 Quasi-static time discretization: recurrence formula

In order to derive fully discretized finite element equations, we start with the par-

titioning of the time interval [0 , T ] ⊂ R (region of interest) into set of N non-
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overlapping subintervals such that

[0 , T ] =
N∪
k=1

[tk , tk+1] (3.27)

The final solution is obtained by repeatedly solving an initial value problem within

each subregion [tk , tk+1], with the known values of solution at t = tk as initial condi-

tions. From the Eq. (3.22) it is clear that the semi-discrete finite element equations

have contributions from elastic and viscous parts of the constitutive relations. The

elastic part is simple and with in each subinterval, it can easily be fully descritized

using well know schemes like Newmark or its variants [68]. However, the contribution

from viscous part is in the form of convolution integrals, hence full discretization is

not so straight forward. In order to solve the problem in each subinterval, we can

approximate these convolution integrals using two-point (trapezoidal rule) or three-

point (simpson’s rule) formulas. But a direct temporal integration from here, results

in a computationally unattractive solution procedure which requires the storage of

the entire deformation history. It also becomes a main bottle neck for storing them

especially when the computational memory scarce. Another negative aspect is that,

when N is large, much of the computational time expended to get solution at a

subinterval, goes into the evaluation of the convolution integrals.

To circumvent these issues, we develop a recurrence scheme for two-point (trape-

zoidal rule) formula that can be used to approximate the convolution integrals with

in each subinterval. The two-point recurrence scheme requires the storage of the gen-

eralized displacements and a set of internal variables evaluated at the Gauss points,

from the previous time step only. A similar three-point simpson’s scheme can also

be developed which requires the storage from last two time steps as in [69]. Using
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these ideas the convolution integral appearing in Eq. (3.22) can be expressed as

tN∫
0

[
K̃
]
{∆(s) } ds =

N−1∑
k=1

tk+1∫
tk

[
K̃
]
{∆(s) } ds (3.28)

In order to develop the recurrence formulation the following multiplicative decom-

position of the relaxation moduli [102] is used. These equations hold true as the

relaxation moduli can be expressed in terms of the Prony series within each subin-

terval.

Ė (tk+1 − s) =
n∑
l=1

e−∆tk/τ
E
l Ėl (tk − s)

Ġ (tk+1 − s) =
n∑
l=1

e−∆tk/τ
G
l Ġl (tk − s) (3.29)

where ∆tk = tk+1 − tk . Using the above, the Eq. (3.28) can be expressed in index

notion at an arbitrary time step t = ts as

Xi (ts) =
s−1∑
k=1

tk+1∫
tk

K̃ij∆j (s) ds �
n∑
l=1

NGP∑
m=1

αmX̄
lm
i (ts) (3.30)

where Einstein’s summation convention on repeated indices is implied. As noted

previously, Gauss quadrature is employed in evaluation of K̃ij, resulting in the sum-

mation over m (where NGP is the number of Gauss points). The quantity X̄ lm
i

assumes the following possible forms for extensional and shear moduli

X̄ lm
i (ts) = e

−∆ts−1

τE
l X̄ lm

i (ts−1)−
∆ts−1

2

El
τEl

(
e
−∆ts−1

τE
l fmi (ts−1) + fmi (ts)

)
(3.31)

X̄ lm
i (ts) = e

−∆ts−1

τG
l X̄ lm

i (ts−1)−
∆ts−1

2

Gl

τGl

(
e
−∆ts−1

τG
l fmi (ts−1) + fmi (ts)

)
(3.32)
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Note to get the above expressions, we replaced convolution integrals with in each

subinterval with a two-point trapezoidal rule. Also, the specific forms of αm and

fmi (ts) depend on components of K̃ij. In Eq. (3.30), even though there are (s − 1)

time steps of k to get to time t = ts, the above equations just need the values of

solution {∆(ts)} and internal variables X̄ lm
i (ts−1) from k = ts and k = ts−1. There

is no need to store these values for all the (s − 1) time steps. Thus the above

equations represent recurrence formulas in terms of the internal variables X̄ lm
i (ts)

with X̄ lm
i (t1 = 0) = 0.

Using Eqs. (3.31),(3.32) results in the following quasi-static fully-discretized

equations for generalized displacements at the current time step

[
K̄
]
s
{∆(ts)} = {F}s −

{
Q̃
}
s

(3.33)

the above in expanded form is given as



[
K̄11

] [
K̄12

] [
K̄13

] [
K̄14

]
[
K̄21

] [
K̄22

] [
K̄23

] [
K̄24

]
[
K̄31

] [
K̄32

] [
K̄33

] [
K̄34

]
[
K̄41

] [
K̄42

] [
K̄43

] [
K̄44

]


s



{∆1 (ts)}

{∆2 (ts)}

{∆3 (ts)}

{∆4 (ts)}


=



{F 1}

{F 2}

{F 3}

{F 4}


s

−



{
Q̃1

}
{
Q̃2

}
{
Q̃3

}
{
Q̃4

}


s

(3.34)
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where the stiffness matric is given by

K̄11
ij =

∫ xb

xa

(
E (0) +

∆tN−1

2
Ė (0)

)
D0

dψi
dx

dψj
dx

dx

2K̄12
ij = K̄21

ji =

∫ xb

xa

(
E (0) +

∆tN−1

2
Ė (0)

)
D0

∂w0

∂x

dψi
dx

dψj
dx

dx

K̄22
ij =

∫ xb

xa

[
1

2

(
E (0) +

∆tN−1

2
Ė (0)

)
D0

(
∂w0

∂x

)2

+

(
G (0) +

∆tN−1

2
Ġ (0)

)
D0

]
dψi
dx

dψj
dx

dx

K̄23
ij = K̄32

ji =

∫ xb

xa

−
(
G (0) +

∆tN−1

2
Ġ (0)

)
D2 c2

dψi
dx

ψjdx

K̄24
ij = K̄42

ji =

∫ xb

xa

(
G (0) +

∆tN−1

2
Ġ (0)

)
D0

dψi
dx

ψjdx

K̄33
ij =

∫ xb

xa

(
E (0) +

∆tN−1

2
Ė (0)

)
D6 c

2
1

dψi
dx

dψj
dx

dx+

∫ xb

xa

(
G (0) +

∆tN−1

2
Ġ (0)

)
D4 c

2
2ψiψjdx

K̄34
ij = K̄43

ji =

∫ xb

xa

−
(
E (0) +

∆tN−1

2
Ė (0)

)
D4 c1

dψi
dx

dψj
dx

dx

+

∫ xb

xa

−
(
G (0) +

∆tN−1

2
Ġ (0)

)
D2 c2ψiψjdx

K̄44
ij =

∫ xb

xa

(
E (0) +

∆tN−1

2
Ė (0)

)
D2

dψi
dx

dψj
dx

dx+

∫ xb

xa

(
G (0) +

∆tN−1

2
Ġ (0)

)
D0ψiψjdx

(3.35)

and the force vector Q̃ is given by

{
Q̃1

}
=

{
1Q̄1

}
+
{
2Q̄1

}
{
Q̃2

}
=

{
1Q̄2

}
+
{
2Q̄2

}
+
{
3Q̄2

}
+
{
4Q̄2

}
+
{
5Q̄2

}
{
Q̃3

}
=

{
1Q̄3

}
+
{
2Q̄3

}
+
{
3Q̄3

}
+
{
4Q̄3

}
+
{
5Q̄3

}
{
Q̃4

}
=

{
1Q̄4

}
+
{
2Q̄4

}
+
{
3Q̄4

}
+
{
4Q̄4

}
+
{
5Q̄4

}
(3.36)

All other components of matric in Eq. (3.34) are zeros. The right hand side of Eq.

(3.36) are presented in Appendix B.
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3.6.2 Fully-transient time approximation: Newmark’s scheme

There are many numerical schemes in literature [68, 125, 37] to convert the second-

order differential equations in time to algebraic equations. We use the popular New-

mark scheme from [90] for the generic time differential equation in variable {u}

[K] {u}+ [C] {u̇}+ [M ] {ü} = {F} (3.37)

subjected to initial conditions

{u (0)} = {u0} , {u̇ (0)} = {v0} (3.38)

where
[
M

]
denotes the mass matrix,

[
C
]
the damping matrix,

[
K
]
the combined

stiffness matrix due to quasi-static time discretization of viscoelastic terms, and
{
F
}

the effective force vector due to the same. In the present study, we have
[
C
]
= 0,

but is included for completeness. The Newmark parameters α and γ (= 2β) that

determine the stability and accuracy of the scheme are taken as α = γ = 1/2.

This makes it a stable constant-average acceleration method. The time-discretized

equations can be written as

[
K̂
]
s+1

{u}s+1 =
{
F̂
}
s,s+1

(3.39)
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where

[
K̂
]
s+1

= [K]s+1 + a3 [M ]s+1 + a6 [C]s+1{
F̂
}
s,s+1

= {F}s+1 + [M ]s+1 {A}s + [C]s+1 {B}s

{A}s = a3 {b}s = a3 {u}s + a4 {u̇}s + a5 {ü}s

{B}s = a6 {u}s + a7 {u̇}s + a8 {ü}s (3.40)

and

a3 =
1

β (∆t)2
, a4 = a3∆t, a5 =

1

γ
− 1 (3.41)

The calculation of
[
K̂
]
and

{
F̂
}

requires the knowledge of the initial conditions

{u}0 , {u̇}0 , and {ü}0 . In practice, we do not know the value of {ü}0 . As an

approximation, it can be calculated from (we assume that the applied force is zero

at t = 0):

{ü}0 = [M ]−1 ({F}0 − [K] {u}0 − [C] {u̇}0) (3.42)

However, the initial guess for displacement and velocity are taken to be {u}0 =

0 {u̇}0 = 0, respectively, and the applied force is zero at t = 0, hence the initial

condition for acceleration becomes {ü}0 = 0. So, Eq. (3.42) is not used. At the end

of each time step, the new velocity vector {u̇}s+1 and acceleration vector {ü}s+1 are

computed using

{ü}s+1 = a3
(
{u}s+1 − {u}s

)
− a4 {u̇}s − a5 {ü}s

{u̇}s+1 = {u̇}s + a2 {ü}s + a1 {ü}s+1

a1 = α∆t, a2 = (1− α) ∆t (3.43)
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The assembly, imposition of boundary conditions, and the solution procedures are

the same as in static problems. The integrals in Eqs. (3.33),(3.39) are evaluated using

Gauss quadrature rules. In our implementation, Gauss-Legendre rules are used with

the nodal spectral basis, and full integration is used to evaluate all the integrals.

3.7 Numerical results and discussion

The fully discretized finite element equations are nonlinear due to inclusion of

the von Kármán strains in the formulation. For our formulation we solve the equa-

tions iteratively using Newton-Raphson linearization procedure [9]. The linearized

equations are of the form

{
∆(r)

}
s
=

{
∆(r−1)

}
s
−

[
T̄
]−1

s

([
K̄(r−1)

]
s

{
∆(r−1)

}
s
+
{
F (r−1)

}
s
−
{
Q̃(r−1)

}
s

)
(3.44)

where
{
∆(r)

}
s
represents the solution at the r′th iteration and time t = ts . The

tangent stiffness matrix
[
T̄
]
s
in the Eq. (3.44) is defined using Einstein’s summation

notation as

T̄ij =
n∑
1

K̄ij +
∂K̄im

∂∆j

∆m +
∂Q̃i

∂∆j
(3.45)

All quantities in Eq. (3.45) comprising the tangent stiffness matrix are formulated

using the solution from (r − 1)′th iteration. It is important to note that all the

partial derivatives are taken with respect to the solution of the current time step.

Applying the Newton’s method to the fully-discretized HBT beam equations results

in the following components of tangent stiffness matrix
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T̄ 11
ij = K̄11

ij , T̄ 12
ij = 2K̄12

ij , T̄ 13
ij = 0, T̄ 14

ij = 0

T̄ 21
ij = K̄21

ij , T̄ 23
ij = K̄23

ij , T̄ 24
ij = K̄24

ij ,

T̄ 22
ij = K̄22

ij +

∫ xb

xa

D0

{(
E (0) +

∆tN−1

2
Ė (0)

)[
∂u0
∂x

+

(
∂w0

∂x

)2
]

+
∆tN−1

2
Ė (∆tN−1)

[
∂u0 (x, tN−1)

∂x
+

1

2

(
∂w0 (x, tN−1)

∂x

)2
]}

dψi
dx

dψj
dx

dx

+
n∑
l=1

NGP∑
m=1

e
−∆tN−1

τE
l

(
3X̄ lm

i (tN−1) +
4X̄ lm

i (tN−1)
) dψj (xm)

dx

T̄ 31
ij = K̄31

ij , T̄ 32
ij = K̄32

ij , T̄ 33
ij = K̄33

ij , T̄ 34
ij = K̄34

ij

T̄ 41
ij = K̄41

ij , T̄ 42
ij = K̄42

ij , T̄ 43
ij = K̄43

ij , T̄ 44
ij = K̄44

ij (3.46)

3.7.1 Element locking

As mentioned above, the nonlinear finite element equations are linearized using New-

ton’s procedure and the equations are solved using iterative scheme. Since a nonlinear

beam becomes stiff with load, total load is divided into several smaller load steps

with the solution of each step being used for the next one. For all the problems in

the present study, five load steps are utilized with a maximum of 20 iterations at

each load step. However, all problems in this study converged within 4 iterations for

a tolerance of ε = 10−6. At the first load step, the initial guess vector for the solution

is chosen to be the zero vector. This condenses out nonlinear terms and solution is

linear. At each subsequent iteration the solution vector from the previous iteration

is used as the new guess vector. And at each new load step, the converged solution

from the previous load step is used as the initial guess vector. At each time step

following t = 0, the finite element equations are solved iteratively using the Newton
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procedure without the employment of load steps. The finite element formulations

and procedures developed are tested for quasi-static, fully-transient cases and the

solutions match with lower-order beam theory results from [72, 22].

The lower-order beam theories like the Euler-Bernoulli (EBT) suffer from mem-

brane locking while Timoshenko (TBT) suffers from both shear and membrane lock-

ing [84, 87]. These effects are important if the beam bending is nonlinear with load.

As the displacements u0 and wo are coupled, the beam undergoes axial displace-

ment without any axial forces. Selective or reduced integration techniques are used

to eliminate them to a certain extent. The lower-order HBT elements used in this

study do suffer from membrane and shear locking in the thin-beam limit. However,

they are reduced with the use of higher-order spectral interpolation functions for all

the primary variables. In particular, we introduce the following full integration HBT

elements: HBTLN, HBTQD, HBTCB and HBTQI, which each have 2, 3, 4 and 6

nodes, respectively.

3.7.2 Material properties

For the present analysis, we utilize a viscoelastic material model based on the

experimental findings of Lai and Bakker [57] for a glassy amorphous polymer material

(PMMA). The Prony series parameters for the viscoelastic relaxation modulus given

in Table 3.1 were calculated by Payette and Reddy [72] from the published compliance

parameters [57]. Although the finite element formulation places no restriction on the

relationship between E(t) and G(t), for the present analysis we adopt the approach

taken by Chen [22] and assume that the shear and relaxation moduli are related by

G (t) =
E (t)

2 (1 + ν)
(3.47)
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where ν is Poisson’s ratio of the material, which is assumed to be time-independent

and equal to ν = 0.4 [55].

Table 3.1: Viscoelastic moduli of PMMA.

E0 205.7818Ksi
E1 43.1773Ksi τE1 9.1955 x 10−1 s
E2 9.2291Ksi τE2 9.8120 x 100 s
E3 22.9546Ksi τE3 9.5268 x 101 s
E4 26.2647Ksi τE4 9.4318 x 102 s
E5 34.6298Ksi τE5 9.2066 x 103 s
E6 40.3221Ksi τE6 8.9974 x 104 s
E7 47.5275Ksi τE7 8.6852 x 105 s
E8 46.8108Ksi τE8 8.5142 x 106 s
E9 58.6945Ksi τE9 7.7396 x 107 s

3.7.3 Quasi-static: loading and boundary conditions

A viscoelastic beam of uniform rectangular cross section 1 in × 1 in, and length

L = 100 in, with material properties given in Table 3.1 is used for analysis. The

computational domain is reduced by taking advantage of the symmetry about x =

L/2. At t = 0 the beam is subjected to a time invariant uniform vertical distributed

load q = 0.25 lbf/in. For the HBT, we consider 10 HBTLN elements (11 nodes), 5

HBTQD elements (11 nodes), 3 HBTCB elements (10 nodes) and 2 HBTQI elements

(11 nodes). Apart from the above finite elements, p and h refinement studies are

done to make sure that the solution is converged. Three sets of boundary conditions

considered in the analysis are:
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(i) Hinged at both ends:

w0 (0, t) = u0 (L/2, t) = ϕx (L/2, t) = 0 (3.48)

(ii) Pinned at both ends:

u0 (0, t) = w0 (0, t) = u0 (L/2, t) = ϕx (L/2, t) = 0 (3.49)

(iii) Clamped at both ends:

u0 (0, t) = w0 (0, t) = θx (0, t) = ϕx (0, t) = 0

u0 (L/2, t) = θx (L/2, t) = ϕx (L/2, t) = 0 (3.50)

Each of the above finite elements and boundary conditions are chosen to demonstrate

the geometric nonlinear capabilities of the finite element models that cannot be

captured by the uncoupled linear formulation.

In Table 3.2, we present numerical results for quasi-static beam deflection using

cases (i)-(iii) for the HBT finite elements. A constant time step ∆t = 1.0 s has been

employed with a total simulation time of 1800 s. Results for the high-order HBT

(HBTCB and HBTQI) finite elements are in excellent agreement, but differ largely

from HBTLN element, which as expected, suffers excessively from shear locking [89].

To make sure that the solution of HBTQI element is fully converged h refinement

studies are done on HBTQI element keeping all other parameters constant. The

numerical results presented in Table 3.2 for the HBTQI element can be obtained

with only one element. As expected the HBTQI elements are most optimal in terms

of computational cost due to less number of global nodes than other elements.

Graphical results for HBTQD and HBTQI elements are provided in Fig. 3.1. As
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Table 3.2: Quasi-static finite element results for the maximum deflection wmax of
a viscoelastic beam under uniform distributed load q with three different sets of
boundary conditions.

Time,t HBTLN HBTQD HBTCB HBTQI

Hinged-hinged beam
0 0.7979 7.1931 7.3281 7.3496
200 0.9426 8.4586 8.6555 8.6826
400 0.9581 8.5937 8.7982 8.8260
600 0.9677 8.6760 8.8854 8.9136
800 0.9753 8.7420 8.9552 8.9837
1000 0.9817 8.7981 9.0146 9.0434
1200 0.9873 8.8465 9.0659 9.0950
1400 0.9922 8.8887 9.1107 9.1399
1600 0.9965 8.9258 9.1500 9.1795
1800 1.0003 8.9586 9.1849 9.2145

Pinned-pinned beam
0 0.6923 1.2466 1.2465 1.2470
200 0.7874 1.3257 1.3256 1.3260
400 0.7971 1.3337 1.3335 1.3340
600 0.8030 1.3385 1.3384 1.3388
800 0.8077 1.3424 1.3422 1.3426
1000 0.8117 1.3456 1.3455 1.3459
1200 0.8151 1.3485 1.3483 1.3487
1400 0.8181 1.3509 1.3507 1.3511
1600 0.8207 1.3530 1.3529 1.3533
1800 0.8230 1.3549 1.3547 1.3552

Clamped-clamped beam
0 0.1469 0.8941 0.9102 0.9109
200 0.1734 0.9820 0.9987 0.9997
400 0.1763 0.9909 1.0076 1.0086
600 0.1780 0.9962 1.0130 1.0140
800 0.1794 1.0005 1.0173 1.0183
1000 0.1806 1.0041 1.0209 1.0220
1200 0.1816 1.0072 1.0241 1.0251
1400 0.1825 1.0099 1.0268 1.0278
1600 0.1833 1.0123 1.0292 1.0302
1800 0.1840 1.0144 1.0313 1.0323
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expected, the deflection steadily increases, then approaches a zero slope, for it to

reach an equilibrium or a long-time constant value. This behavior is called creep

under constant load. From the figure we can clearly see for the case of hinged-

hinged beam the values of deflection for a HBTQD element are less compared to

the values for a HBTQI element. This shows that there is still a small locking in

HBTQD element compared to HBTQI element. The hinged-hinged beam has no end

constraints on the axial displacement, so it will not develop significant axial strains

due to transverse deflections. But pinned-pinned and clamped-clamped beams are

constrained from axial motion at x = 0 and x = L/2. As a result, these develop

axial strains and offer resistance to transverse deflection of the beam. This resistance

increases with load making them more stiffer. Hence hinged-hinged beams have larger

transverse deflections than other two cases. Also at t = 0, the results coincide with

the instantaneous elastic solution where Young’s modulus is given as E = 535.4Ksi.

Next we investigate the creep and recovery behavior of the viscoelastic constitu-

tive model using a time dependent load. An important characteristic is that the beam

should eventually return to its original configuration once the loads are removed.

To demonstrate that the finite element models capture this effect we consider the

clamped-clamped case presented above subjected to a quasi-static transverse load

q(t) = q0

{
H(t)− 1

τ(β − α)
[(t− ατ)H(t− ατ)− (t− βτ)H(t− βτ)]

}
(3.51)

where q0 = 0.25 lbf/in ,τ = 1800 s and H(t) is the Heaviside function. The param-

eters 0 ≤ α ≤ β ≤ 1 are constants. Equation Eq. (3.51) represents a load function

that is constant in 0 < t < ατ and then linearly decreases to zero from t = ατ to

t = βτ . For t > βτ , the load is maintained at zero. In Fig. 3.2, we present numerical

results for various values of α and β , where we have employed a constant time step
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Figure 3.1: Quasi-static maximum vertical deflection wmax, of viscoelastic beam
under uniform distributed load q.
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of ∆t = 1.0 s with two HBTQI elements. As expected each of the curves in the figure

follow a path of delayed recovery from t = ατ to t = βτ and then to its original

configuration as t tends to infinity once the applied load is removed.
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Figure 3.2: Quasi-static maximum vertical deflection wmax, of clamped-clamped
beam under time-dependent transverse loading q(t) .

We also consider the effect that shear strain has on the transverse deflection of

viscoelastic beams. To this end we modify the original thin beam problems by letting

L = 10 in , q = 25 lbf/in and t = 1.0 s. All other parameters are kept the same as in

the previous examples. In Table 3.3, we present numerical results for the transverse

deflection of clamped-clamped and pinned-pinned beams using HBTQD, HBTCB

and HBTQI elements.
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Table 3.3: Effect of transverse shear strain on the maximum quasi-static vertical
deflection wmax of a viscoelastic beam under uniform distributed load q.

Maximum vertical Deflection wmax
clamped-clamped pinned-pinned

Time,t HBTQD HBTCB HBTQI HBTQD HBTCB HBTQI

0 0.0164 0.0165 0.0165 0.0736 0.0737 0.0737
200 0.0194 0.0195 0.0195 0.0864 0.0865 0.0865
400 0.0197 0.0198 0.0198 0.0878 0.0878 0.0878
600 0.0199 0.0200 0.0200 0.0886 0.0887 0.0887
800 0.0201 0.0202 0.0202 0.0893 0.0893 0.0893
1000 0.0202 0.0203 0.0203 0.0898 0.0899 0.0899
1200 0.0203 0.0204 0.0205 0.0903 0.0904 0.0904
1400 0.0204 0.0206 0.0206 0.0908 0.0908 0.0908
1600 0.0205 0.0206 0.0206 0.0912 0.0912 0.0911
1800 0.0206 0.0207 0.0207 0.0915 0.0915 0.0915

3.7.4 Fully-transient: loading, initial and boundary conditions

For this we consider a simple two-element Maxwell model studied by Chen [22]. It

consists of a linear spring and a linear viscous dashpot connected in series as shown

in the inset of Fig. 4.3. The Prony series parameters are E1 = 9.8 × 107N/m2,

η = 2.744 × 109N - sec/m2, with the modulus time constant as τEl = η/E1. The

relaxation modulus in the Prony series is given by E (t) = E1e
−t/τEl . The material

density and Poisson ratio are taken as ρ = 500 kg/m3, ν = 0.3 respectively. A

simply supported viscoelastic beam of length L = 10m, breadth b = 2m and height

h = 0.5m is considered. The computational domain is reduced by taking advantage

of the symmetry about x = L/2 . The beam is subjected to a uniformly distributed

vertical load q(t) = q0H(t)N/m where q0 = 10. For this analysis, we consider 2

HBTQI elements (11 nodes) with boundary conditions as given in Eq. (3.48). The

initial conditions are taken as {u}0 = {u̇}0 = {ü}0 = 0. For Newmark’s scheme we
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take α = 0.5 and γ = 0.5, which gives a stable scheme (i.e.,there is no restriction

on the value of the time step used). The total time is taken as 20.0 s with the

number of time steps as 500. The Fig. 4.3 shows the dynamic response of the beam

for viscoelastic and elastic cases with different values of damping coefficients. As

expected, the dynamic response of the viscoelastic beam disappeared and reached a

steady state after certain period due to damping. Also, as the damping coefficient is

increased the beam deflection decreased.
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4. A GEOMETRICALLY NON-LINEAR ANALYSIS OF ISOTROPIC AND

FUNCTIONALLY GRADED SHELL STRUCTURES UNDER THERMAL

AND MECHANICAL LOADS

In the history of finite element analysis of structures, the shells have long been a

fascinating and a complicated area of research. Shells are three-dimensional bodies

in which one geometric dimension is significantly smaller in comparison to the other

two dimensions. Hence, they can be easily fabricated into complicated shapes and

geometries and actually have very little material volume. In spite of this, the shell

structures can sustain large loads. However, even small changes in loadings, bound-

ary conditions or geometry can result in unpredictable deformations of the structure.

This behavior makes it difficult to mathematically describe shell deformation geome-

tries and also to analyse them using numerical models.

In this section, we consider large deformation analysis of isotropic and func-

tionally graded (FG) elastic shell structures subjected to mechanical and thermal

loadings. Functionally Graded Materials (FGMs) are usually bi-phasic, composite

materials, microscopically inhomogeneous, in which the mechanical properties vary

smoothly and continuously through the thickness from one interface to the other

[54]. The gradation of the material properties through the thickness is assumed to

vary continuously according to a power-law distribution based on the volume fraction

of the constituents. Due to smooth variation of the material properties, the FGMs

avoid severe stress concentrations, changes in displacement distributions and other

singularities that are typically exhibited by composites at interfaces of lamina due

to abrupt transitions in material compositions and properties. They are typically

made from isotropic components, such as metals and ceramics and are designed to
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maximize the strength and toughness properties of the former and the thermal and

corrosion resistance attributes of the latter. Hence, they are used in turbines, oil

refineries, nuclear reactors, semiconductor packaging industry and high temperature

aerospace environments.

Many of the recent developments in the area of locking-free shell element for-

mulations have been in the context of lower-order elements and mixed variational

principles. It is well-known that the standard displacement-based lower-order shell

elements become too stiff and suffer from various forms of locking. The locking

phenomena arises due to inconsistencies in representing the transverse shear energy

and membrane energy. The dominant trend to overcome locking in lower-order fi-

nite element formulations of shells is to use ad-hoc techniques like assumed natural

strain elements (Dvorkin and Bathe [28] and Hinton and Huang [38]) and the en-

hanced assumed strain elements (Simo and Rifai [103]). Alternate to the lower-order

mixed formulations, the use of high-order interpolations have been proposed for the

analysis of shells. In recent years, the higher-order finite element formulations are

implemented by Pontaza and Reddy [77, 79] (using least-squares finite element for-

mulations) and Arciniega and Reddy [4, 3] (using tensor-based weak-form Galerkin

finite element formulations). In the present work, we utilize isoparametric approxi-

mation to describe the mid-surface of a given shell element using higher-order spec-

tral/hp quadrilateral finite elements in a purely displacement based setting. This

constitutes an important departure from the tensor-based shell finite element formu-

lation proposed previously in the work of Arciniega and Reddy [4, 3], where a chart

was employed to insure exact parameterization of the shell mid-surface. The use of

high-order spectral/hp interpolants in the numerical implementation naturally leads

to a finite element model that is completely locking free. Also, the use of high-order

polynomial expansions in the parameterization of a given element geometry also al-
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lows for extremely accurate approximations of arbitrary shell geometries. It also,

allows us to freely adopt skewed and arbitrarily curved quadrilateral shell elements

in actual finite element simulations.

Here, we consider an improved first-order shear deformation theory with seven

independent parameters for large deformation analysis of thin and thick isotropic

and functionally graded elastic shell structures subjected to thermal and mechanical

loadings. These models naturally circumvents the need for a rotation tensor in

the kinematical description and allows us to use fully three-dimensional constitutive

equations in the numerical implementation. As a result, complex material models

may be adopted without the need for quasi-projection onto the plane-stress subspace.

In this model, the transverse displacement is expanded up to a quadratic term, which

essentially mitigates Poisson locking when three-dimensional constitutive equations

are adopted [12]. Some of the notable early works on this is done by Sansour [99]

and Bischoff and Ramm [12, 13]. The application of higher-order finite element

formulations for the thermoelastic analysis of functionally graded shells with finite

deformations are very limited [3].

The non-linear incremental equilibrium equations, resulting from the application

of the principle of virtual work, are set using a total Lagrangian formulation, where

the nodal displacements are referred to the initial structure configuration. The solu-

tion of the non-linear equation system is accomplished using the incremental/iterative

Newton’s method as well as some modified forms of it, like the arc-length methods

for “snap-through” phenomena, where the classical Newton’s method is not suitable

to obtain the full structure equilibrium path (see [94, 95, 25, 56]).
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4.1 Assumed seven-parameter displacement field

The mathematical background utilized in the following derivation is given in the

books of Naghdi [67, 66], Bathe [20] and Wempner [124] and recently in the works of

Reddy [4, 73]. The displacement of a material point from the reference configuration

to the current configuration may be expressed in the usual manner as (see Fig. 4.1)

u(X, t) = x(X, t)−X (4.1)
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Figure 4.1: The displacement of a material point from reference configuration to the
current configuration.

As done by Sansour, Bischoff, Ramm and Reddy in [99, 12, 13, 4, 73], we restrict the

Taylor series approximation for u to the following seven-parameter expansion, so that

the resulting mathematical model is consistent with three-dimensional solid mechan-

ics [20]. The displacement field is considered as a linear expansion of the thickness
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coordinate around the mid-surface. The transverse displacement is parabolic through

the thickness of the shell

u(ξi) = u(ξα) + ξ3
h

2
φ(ξα) + (ξ3)2

h

2
ψ(ξα) (4.2)

Note, in the above equation and throughout this section, the Latin indices (i, j)

belong to the three-dimensional space ranging from 1 to 3 and the Greek indices

belong to the mid-surface (α, β) ranging from 1 to 2. The generalized displacements

u, φ and ψ may be expressed as

u(ξα) = ui(ξ
α)Êi, φ(ξα) = φi(ξ

α)Êi, ψ(ξα) = Ψ(ξα)n̂(ξα) (4.3)

The quantity u represents the mid-plane displacement and φ is the so-called dif-

ference vector (which gives the change in the mid-surface director). The seventh

parameter Ψ is included to circumvent spurious stresses in the thickness direction,

caused in the six-parameter formulation by an artificial constant normal strain (a

phenomena referred to as Poisson locking [12]). The configuration of the shell can be

uniquely expressed in terms of the displacement vector u of the mid-surface together

with the difference vector φ and the additional variable Ψ, or by seven independent

components of these vectors.

The position vector of the deformed shell at the current time t can be obtained

by substituting the Eq. (4.2) into Eq. (4.1), which on rearrangement yields

x = X+ u = x+ ξ3
h

2
ˆ̄n+ (ξ3)2

h

2
Ψn̂ (4.4)

where x = X+ u (a point on the deformed mid-surface) and ˆ̄n = n̂+ φ (a pseudo-

director associated with the deformed mid-surface). It is important to note that
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unlike n̂; the director ˆ̄n is in general neither a unit vector nor is it normal to the de-

formed mid-surface. We define the finite element approximation of the displacement

field given by Eq. (4.2) as

u(ξi) =
n∑
k=1

ψk(ξ
1, ξ2)

(
uk + ξ3

h

2
φk + (ξ3)2

h

2
Ψkn̂(ξα)

)
(4.5)

where n̂(ξα) is the finite element approximation of the unit normal defined within a

given element as

n̂ =
n∑
k=1

ψk(ξ
1, ξ2)n̂k (4.6)

4.2 Isoparametric characterization of shell geometry

The characterization of a shell structure is done in two steps, one by the definition

of the geometry of mid-surface and next by specifying the stretch in the thickness

direction. For the first step, in previous applications of higher-order finite element

formulations to shell structures, Arciniega and Reddy [4, 3] have employed a chart

to insure exact parameterization of the shell mid-surface. However, in this work we

dispense with the idea of exact parametrization of mid-surface and instead use the

isoparametric characterization of the mid-surface as

X = ϕe(ξ1, ξ2) =
n∑
k=1

ψk(ξ
1, ξ2)Xk in Ω̂e (4.7)

within a given element, where X represents a point on the approximate mid-surface

and ψk are the two-dimensional spectral/hp basis functions. Next in the second step,

the fully three-dimensional geometry of the undeformed configuration of a typical
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shell element can be obtained by

X = Φe(ξ1, ξ2, ξ3) = ϕe(ξ1, ξ2) + ξ3
h

2
n̂ =

n∑
k=1

ψk(ξ
1, ξ2)

(
Xk + ξ3

h

2
n̂k

)
(4.8)

where ξ3 ∈ [−1,+1] and n̂ is the finite element approximation of the unit normal

defined within a given element by Eq. (4.10). Thus the present formulation requires

as input the three-dimensional coordinates of the shell mid-surface (X) as well as

a set of directors (i.e., unit normal vectors (n̂) to the mid-surface), for each node

in the shell finite element model. As a result, the actual shell mid-surface as well

as the unit normal to the shell mid-surface, are each approximated using the stan-

dard spectral/hp finite element interpolation functions within a given shell element.

The use of high-order polynomial expansions in the parametrization of a given ele-

ment geometry also allows for extremely accurate approximations of arbitrary shell

geometries.

To describe the various kinematics of deformation of shells it is necessary to

establish curvilinear basis vectors. In Fig. 4.2(a), we show the side view of three-

dimensional geometry of the undeformed configuration of a typical shell element.

Here, we identify a point O on the mid-surface of the shell and a point A directly

above O in the direction of the unit normal n̂. At each point, like O, on the mid-

surface of a given element we define a set of covariant basis vectors

aα =
∂X

∂ξα
≡ X,α (4.9)

these are tangent to the mid-surface (see Fig. 4.2(b)) and are linearly independent

and thus form a local curvilinear basis. The normal vector a3 may be defined as

a3 = a1 × a2. We see that for each (ξ1, ξ2) ∈ Ω̂e (Ωe is mid-surface), the vectors ai
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define a basis for R3. In the current work, we will be largely unconcerned with a3

and instead utilize a finite element approximation of the unit normal defined within

a given element as

n̂ =
n∑
k=1

ψk(ξ
1, ξ2)n̂k (4.10)

At any point in the shell element, like A, we define a set of covariant basis vectors

gi =
∂X

∂ξi
≡ X,i (4.11)

Using Eq. (4.8) allows us to express the shell basis vectors as

gα = aα + ξ3
h

2
n̂,α, g3 =

h

2
n̂ (4.12)

In Figure 4.2(c) we provide an illustration of the vectors aα and gα at points O and

A respectively, in a typical shell element.
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Ê

O

A

X
X

h

3ξ

2
a

η

1
X

2
X

3
X

1
Ê
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Ê

2
Ê
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Figure 4.2: (a) Side-view (b) Mid-surface (c) Isometric-view of a typical shell finite
element in the reference configuration. The basis vectors aα and gα as well as the
finite element representation of the unit normal n̂ are also shown.
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4.3 Strain measure

Here we use the Lagrangian description and all the kinematic variables are re-

ferred with respect to the initial configuration that the body occupies at time t = 0.

Since the Green–Lagrange strain measure is suited for material description we intro-

duce the strain tensor E as (see Reddy [93])

E =
1

2

(
C− I

)
=

1

2

(
FT · F− I

)
=

1

2

(
u,i · gj + gi · u,j + u,i · u,j

)
gigj

(4.13)

where F = (∇0x)
T is the deformation gradient, ∇0 is the material gradient operator,

and C = FT · F, is the right Cauchy-Green tensor that is symmetric and positive

definite (see Reddy [93]). Hence the strain becomes a symmetric tensor by definition.

The strain tensor E appearing in Eq. (4.13) can be expanded in terms of the thickness

coordinate ξ3 as

Eij(ξ
m) = ε

(0)
ij + ξ3ε

(1)
ij +HOT (4.14)

In the present formulation we neglect all covariant components ofE that are quadratic

and higher-order terms in ξ3 (see Eq. (4.14)).

4.4 Functionally graded shells

For functionally graded structures, we assume that the shell is composed of two

isotropic constituents, mainly ceramics and metals. The ceramic constituent pro-

vides heat and corrosion resistance while the metallic constituent provides strength,

toughness and ductility necessary to prevent fractures due to high-temperature gra-

dients. In bi-phasic FGMs (see Fig. 4.3(a)), the properties are assumed to vary

smoothly through the thickness of the shell. We also assume a rule of mixtures
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based on the Voigt-model [107]. In such cases, the composite modulus is given by

the weighted average of the moduli of the constituents, that varies with respect to

the shell thickness coordinate ξ3 as

E(ξ3) = (E+ − E−)f+(ξ3) + E− (4.15)

where

f+(ξ3) =

(
ξ3 + 1

2

)n

(4.16)

The quantities E− and E+ constitute the moduli at the bottom (ξ3 = −1) and top

(ξ3 = +1) surfaces of the shell respectively and f+ is the volume fraction of the

phase at top (ξ3 = +1) surface of the shell. The Eq. (4.15) constitutes a power-law

variation of E through the shell thickness ( see Reddy [86, 81]). In Eq. (4.16), n

is the constant volume fraction exponent in the range 0 ≤ n ≤ ∞. The value of

n = 0 represents a purely ceramic shell. Conversely, we have a purely metallic shell

as n→ ∞ (see Fig.4.3(b)).
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Figure 4.3: (a) Functionally graded shell and (b) Variation of volume fraction func-
tion f+ through thickness for different values of power-law index n.

4.5 Thermal analysis

Here we consider the thermal analysis of the shell by imposing constant surface

temperatures at the top and bottom surfaces of the FGM shell. The variation of

temperature is assumed to occur in the thickness direction only. To determine the

thermal stresses, the temperature distribution across the thickness of cylinder should

be obtained. The differential equation governing the steady-state heat transfer in a

FG shell can be expressed in the natural co-ordinate system as a function of ξ3 as

follows:

− ∂

∂ξ3

(
K(ξ3)∂T (ξ1, ξ2, ξ3)

∂ξ3

)
= 0 (4.17)

with T (ξ1, ξ2,+1) = TTop(ξ
1, ξ2) and T (ξ1, ξ2,−1) = TBot(ξ

1, ξ2). As with the

Young’s moduli of FG shell, the thermal conductivity K is assumed to vary as

K(ξ3) = (K+ −K−)f+(ξ3) +K− (4.18)
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and f+ is the volume fraction of the phase at top (ξ3 = +1) surface of the shell given

by Eq. (4.15).

Due to the dependency of the thermal conductivity coefficient on the thickness co-

ordinate ξ3, the Eq . (4.17) becomes non-linear and it yields a non-linear temperature

distribution in the thickness direction of the shell element. Hence, there is no closed-

form solution to it and the solution is usually obtained by a polynomial series as

given in [43, 59]. Taking the first seven terms of the series, the thermal distribution

across the thickness of shell is given by

T (ξ3) = TBot +
TTop − TBot

D

5∑
j=0

1

(jn+ 1)

(
K− −K+

K−

)j (
1 + ξ3

2

)(jn+1)

(4.19)

where

D =
5∑
j=0

1

(jn+ 1)

(
K− −K+

K−

)j

(4.20)

Once the temperature variation along the thickness of the shell is obtained the ther-

mal analysis can be performed easily by including the thermal strains as shown in

the next section.

4.6 Thermo-elastic constitutive equations

The temperature field imposed on the FGM shell gives rise to additional thermal

strains. The thermal strains due to the temperature gradient is given by

ε(T) = α∆T (4.21)

where α is the second-order tensor of the coefficients of the thermal expansion of the

material. And ∆T = T (ξ3) − T0, where T (ξ
3) is the solution from Eq . (4.17) and

T0 is the assumed stress-free temperature of T0 = 0 ◦C. For an isotropic Hookean
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material, in an arbitrary curvilinear system the components of strain tensor and

thermal-expansion tensors can be represented as (see [124])

ε
(T)
kl = αgkl∆T (4.22)

note, in the above the matrix representation of the thermal conductivity tensor is

diagonal and gkl = gk · gl are the covariant components of the Riemannian met-

ric tensor G in the reference configuration. For a FGM, the coefficient of thermal

conductivity is assumed to vary as

α(ξ3) = (α+ − α−)f+(ξ3) + α− (4.23)

and f+ is the volume fraction of the phase at top (ξ3 = +1) surface of the shell given

by Eq. (4.15).

In this study the materials are assumed to be perfectly elastic throughout the

deformation and the Poisson’s ratios ν is assumed to be constant. Also, all the

material properties are considered to be temperature independent. Using these ma-

terial properties and treating an un-coupled displacement-temperature behaviour,

the stress-strain relation can be written as

S = � : (E− ε(T)) (4.24)

where S is the second Piola Kirchhoff stress tensor, E is the Green-Lagrange strain

tensor given by Eq. (4.14), ε(T) is the thermal strain tensor given by Eq. (4.22)

and � = Cijklgigjgkgl is the fourth-order elasticity tensor. For isotropic materials,

the fourth-order elasticity tensor is a function of thickness co-ordinate ξ3 and is a
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function of only two independent parameters as

Cijkl = λgijgkl + µ(gikgjl + gilgjk) (4.25)

The Lamé parameters λ and µ are related to the Young’s modulus E and Poisson’s

ratio ν by the following expressions

λ =
νE

(1 + ν)(1− 2ν)
(4.26a)

µ =
E

2(1 + ν)
(4.26b)

Although � depends on only the Lamé parameters, the 21 contravariant components

associated with the matrix [Cijkl] are in general distinct from one another. For the

homogeneous case, the Young’s modulus and Poisson’s ratio are constant throughout

the shell structure. As in the homogeneous case, functionally graded shells may also

be described using Eq.(4.25) if the Lamé parameters are taken as functions of ξ3.

4.7 Weak-form Galerkin implementation

The finite element framework is based on the principle of virtual work. The

virtual work statement is nothing but the weak-form of the equilibrium equations

and it is valid for linear and nonlinear stressstrain relations. Our analysis is restricted

to static cases, therefore we omit the inertial terms. The principle of virtual work

may be stated as follows: find Φ ∈ V such that for all δΦ ∈ W the following weak

statement holds

G(δΦ,Φ) = δW I(δΦ,Φ) + δWE(δΦ,Φ) ≡ 0 (4.27)
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The quantities δW I and δWE are the internal and external virtual work, respectively.

These quantities may be defined with respect to the undeformed configuration as

δW I =

∫
B0

δE : SdB0 (4.28a)

δWE = −
∫
B0

δu · ρ0b0dB0 −
∫
Γσ

δu · t0ds (4.28b)

where ρ0 is the density, b0 is the body force and t0 is the traction vector (which are

all expressed with respect to the reference configuration). Evaluation of the internal

virtual work statement for the eth element of the discrete problem yields

δWe
I =

∫
Be
0

(δε(0) + ξ3δε(1)) : � : (ε(0) + ξ3ε(1) − ε(T))dBe0

=

∫
Ω̂e

∫ +1

−1

(
δε

(0)
ij + ξ3δε

(1)
ij

)
Cijkl

(
ε
(0)
kl + ξ3ε

(1)
kl − ε

(T)
kl

)
Jdξ3dΩ̂e

=

∫
Ω̂e

[
Aijklδε

(0)
ij ε

(0)
kl + Bijkl

(
δε

(0)
ij ε

(1)
kl + δε

(1)
ij ε

(0)
kl

)
+ Dijklδε

(1)
ij ε

(1)
kl

+ (T)Aijklδε
(0)
ij g

kl + (T)Bijklδε
(1)
ij g

kl

]
dΩ̂e

(4.29)

where
∫
Ω̂e ( · )dΩ̂e =

∫ +1

−1

∫ +1

−1
( · )dξ1dξ2. The quantities Aijkl, Bijkl and Dijkl are

the contravariant components of the effective extensional, bending and bending-

extensional coupling fourth-order stiffness tensors respectively and (T)Aijkl, (T)Bijkl

are the corresponding components from the thermal loads. These contravariant com-

ponents may be determined as

{Aijkl,Bijkl,Dijkl} =

∫ +1

−1

{1, ξ3, (ξ3)2}CijklJdξ3 (4.30a)

{(T)Aijkl, (T)Bijkl} =

∫ +1

−1

−α∆T{1, ξ3}CijklJdξ3 (4.30b)
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where J is the determinant of the Jacobian. In the computer implementation, we

perform the above integration numerically using the Gauss-Legendre quadrature rule

(with 50 quadrature points taken along the thickness direction). Finally, we linearize

the internal virtual work terms using Newton’s method.

4.8 Numerical results

In this section, numerical results obtained by the model developed herein are

presented for various standard shell benchmark problems. We employ Newton’s

method in the solution of the resulting equations. To facilitate a numerical solu-

tion for problems involving very large deformations, we further imbed the iterative

Newton procedure within an incremental load stepping algorithm. A convergence

criterion of 10−6 is adopted in all numerical examples. Highly accurate numerical

results are obtained using the proposed higher-order shell formulation without the

need for ad-hoc fixes (e.g., reduced integration, enhanced natural strain, assumed

natural strain, or mixed interpolation). To show the robustness of the proposed

shell formulation, all numerical examples are tested using skewed and/or arbitrarily

curved quadrilateral shell elements.

4.8.1 Cantilevered strip plate under end shear force

Here, we consider deformation of a isotropic cantilevered strip plate under end

shear distributed load q as shown in Fig. 4.4, where L = 10, b = 1 and h = 0.1.

The isotropic problem with E = 1.2× 106 and ν = 0.0 has been considered by many

authors (see for example Refs. [71, 98, 114, 110, 108, 109]).

For the analysis, we employ regular and skewed finite element meshes consisting of 4

elements, with the p-level taken as 4. Each numerical simulation is conducted using

the incremental/iterative Newton procedure with 50 load steps. In Fig. 4.5, we plot

the undeformed and various deformed mid-surface configurations for uniform and
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Figure 4.4: Geometry of cantilever strip plate under vertical end shear force.

skewed meshes for different shear loading stages of q. Clearly, both structures with

uniform and skewed meshes undergo very large deformations which are qualitatively

quite similar. For quantitative analysis, in Fig. 4.6, we plot the computed axial and

transverse deflections vs. the distributed shear loading q of the plate tip using uniform

and skewed meshes. The calculated deflections are in excellent agreement with the

numerical results reported by Sze et al. [109]. They used ABAQUS, a commercial

finite element package, which utilizes a bi-linear element with hourglass stabilization.

4.8.2 Annular slit plate under end shear force

Here, the beautiful benchmark problem considered by many in Refs. [19, 15, 8,

100, 108, 109] for isotropic case is analysed. This problem consists of a slit can-

tilevered annular plate as shown in Fig. 4.7 that is subjected to a line shear load q

at its free end.

We take Ri = 6, Ro = 10 and h = 0.03. The material is isotropic with E = 21× 106

and ν = 0.0 with qmax = 0.8. We employ uniform and arbitrarily curved quadri-

lateral shell elements consisting of 4 elements with the p = 8. Solutions obtained

with the p ≤ 4 are too stiff and suffer from locking. Each numerical simulation

114



Y

X

Z

Y

X

Z

(a) (b)

Figure 4.5: Mid-surface configurations at vertical shear force (q = 0.0, 0.4, 1.2, 2, 4
and 5) for (a) Uniform regular mesh (b) Skewed irregular mesh.
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Figure 4.6: Tip deflections vs. shear load q for (a) Uniform regular mesh (b) Skewed
irregular mesh.
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Figure 4.7: Geometry of annular slit plate under vertical shear force.

is conducted using the incremental/iterative Newton procedure with 80 equal load

steps. In Fig. 4.8, we show the undeformed and various deformed mid-surface config-

urations for uniform and curved meshes at different stages of applied load. Clearly,

both structures with uniform and skewed meshes undergo very large deformations

which are qualitatively quite similar. For quantitative analysis, the transverse tip

deflections vs. the net applied force P = (Ro −Ri)q at three characteristic points of

A, B and C are shown in Fig. 4.9 for uniform and curved meshes. The computed

deflections agree very well with the tabulated displacement values reported by Sze

et al. [109]. Clearly, both structures with uniform and curved meshes undergo very

large deformations corresponding to maximum net applied force of P = 3.2. The

results from uniform and curved meshes are qualitatively quite similar, this proves

the robustness of the present formulation.

Next, we analyze a metal-ceramic functionally graded annular plate with the

same geometry and mesh as in the above case. The metal (aluminum) is taken

as the bottom material and the ceramic (zirconia) as the top constituent, with the
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Figure 4.8: Mid-surface configurations at P = 0.16, 0.32, 0.64, 1.28, 1.92, 2.56 and
3.20 for (a) Uniform regular mesh (b) Curved irregular mesh.
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Figure 4.9: Tip deflections at points A, B and C vs. shear force P for (a) Uniform
regular mesh (b) Curved irregular mesh.
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elastic properties given below

E− = 70 GPa, E+ = 151 GPa

ν− = 0.3, ν+ = 0.3
ll (4.31)

Here we consider a maximum distributed force of qmax = 20. As in the previous case

the computations are performed by the NewtonRaphson method with 80 equal load

steps. For quantitative analysis, the transverse tip deflections vs. the net applied

force P at two extreme characteristic points of A and C are shown in Figs. 4.10

and 4.11 using uniform and curved meshes. All the load steps converged within 2-4

non-linear iterations. As expected, the bending response of FG annular plate lies in

between the fully ceramic and fully metal shells. The computed deflections match

exactly with the reported values by Arciniega and Reddy [4]. It is clear that the

plate undergoes large deformations corresponding to maximum load of P = 80. The

results from uniform and curved meshes for FG plate are qualitatively quite similar,

this proves the robustness of the present formulation.
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Figure 4.10: Tip deflections at point A vs. shear force P for (a) Uniform regular
mesh (b) Curved irregular mesh.
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Figure 4.11: Tip deflections at point C vs. shear force P for (a) Uniform regular
mesh (b) Curved irregular mesh.
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4.8.3 Thermoelastic analysis of a FG cantilever beam

In this example, we consider deformation of a FG cantilever beam subjected to

two different thermal loading conditions as shown in Fig. 4.12, where the normalized

length, thickness, and width of the beam are L = 1, b = 0.05 and h = 0.01.

L

b
1
X

3
X

2
X

h TopT

BotT

Figure 4.12: Geometry of cantilever strip plate under vertical end shear force.

The normalized thermal and mechanical properties of the bottom and top con-

stituents of the FG beam are

E− = 100× 106, E+ = 300× 106

α− = 5× 10−6, α+ = 2× 10−6

K− = 50× 10−6, K+ = 7× 10−6

ll (4.32)

The cantilever beam is subjected to through-the-thickness varying thermal fields of

TTop = TBot = 50 and TTop = −TBot = 50. The beam considered stress free at a

normalized temperature of T = 0. For the analysis, we employ uniform regular finite

element mesh consisting of 4 elements, with the p-level taken as 4. The transverse

and axial deflections variation with the volume fraction exponent n are plotted in
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Figs. 4.13 and 4.14. These results match with the reported values reported in Refs.

[65, 64].
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Figure 4.13: Horizontal and vertical tip deflections vs. 1/(n+ 1).

4.8.4 Thermoelastic analysis of a clamped FG circular plate

In this example, we consider deformation of a FG circular plate subjected to a

through-the-thickness thermal gradient, which is a quadratic function of the radius

as follows:

TTop (r) = −TBot (r) = TC

[
1−

( r
R

)2
]

(4.33)

where r is the radial parameter, 0 < r ≤ R, and TC = 100 0C. The beam considered

stress free at a normalized temperature of T = 0 0C. Here the radius and thickness

of the plate are R = 1.0m and h = 2mm. The thermal and mechanical properties
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Figure 4.14: Horizontal and vertical tip deflections vs. 1/(n+ 1).

of the bottom and top constituents of the FG plate are

E− = 100 MPa, E+ = 300 MPa

α− = 5 /0C, α+ = 2 /0C

K− = 50 W/m0C, K+ = 7 W/m0C

ν− = 0.3, ν+ = 0.3

ll (4.34)

Since a circular plate is symmetric about its axis, all numerical simulations are con-

ducted using one quarter of the physical domain and invoking appropriate symmetry

boundary conditions as shown below in Fig. 4.15.

For the analysis, we employ non-uniform finite element mesh consisting of 8 elements

along the radial direction, with the p-level taken as 5. Solutions obtained with

lower-order elements are too stiff and suffer from locking. The normalized transverse

displacement variation with the radius is shown in Fig. 4.16. These results match

with the reported values reported in Refs. [65, 64].
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Figure 4.15: Quarter FG plate with symmetric boundary conditions.
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Figure 4.16: Normalized transverse tip deflections vs. radius.
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4.8.5 Pull-out of an open-ended cylindrical shell

In this example, we consider the mechanical deformation of an open-ended cylin-

der, shown in Fig. 4.17, subjected to two pull-out point forces P . Unlike the previous

example, in this problem we apply the loads such that the shell undergoes very large

displacements and rotations. As a result, this problem constitutes a severe test of

shell finite element formulations and has been addressed in Refs. [15, 100, 108, 109, 4]

among others. The following material properties are used in the analysis of isotropic

shell

E = 10.5× 106, ν = 0.3125 (4.35)

The geometric parameters are taken as: L = 10.35, h = 0.094 and R = 4.953 (where

we have taken R as the radius of the undeformed mid-surface as opposed to the

radius of the inner surface of the shell).

L

h
R

A

D

C

B

P

Free edge

Free edge

P 3X

2X

1X

Uniform octant mesh

Figure 4.17: Pull-out of an open-ended cylindrical shell.
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Symmetry in the geometry, material properties and loading allow us to construct

the numerical model using only an octant of the actual open-ended cylinder. For

the numerical model we employ a 2 × 2 mesh (with the p-level taken as 8) of the

shell octant containing points A, B, C and D. Solutions obtained with the p ≤ 4

are too stiff and suffer from locking. The incremental/iterative Newton procedure

is adopted using a total of 80 equal load steps. For this example, all the load

steps converged within 1-4 non-linear iterations. In Figs. 4.18(a)-4.18(d) we show

the undeformed and various deformed mid-surface configurations for the open-ended

cylindrical shell pull-out problem using uniform, skewed and curved meshes. The

overall deflections and rotations are clearly quite large, especially for the final shell

configuration (i.e., the case where P = 40,000). The mechanical response of the

shell has two different characteristic regions: in the beginning the deformation is

initially bending dominated; however, next as the load is intensified, the membrane

forces clearly play an increasingly significant role, resulting in a pronounced very

stiff response of the shell structure. The radial deflections vs. the net applied pulling

force P are shown in Figs. 4.19(a)-4.19(c) using uniform, skewed and curved meshes

for points A, B and C. The computed deflections are in excellent agreement with

results of Sze et al. [109] and also Arciniega and Reddy [4].

Next, we analyze a metal-ceramic functionally graded shell with the same geom-

etry and mesh as in the above case. The metal (aluminum) is taken as the bottom

material and the ceramic (zirconia) as the top constituent, with the elastic properties

given below

E− = 70 GPa, E+ = 151 GPa

ν− = 0.3, ν+ = 0.3
ll (4.36)

As in the previous problem due to symmetry only an octant of the actual open-

ended cylinder is used for analysis. For the numerical model we employ a 2 × 2
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Figure 4.18: Uniform, skewed and curved mid-surface configurations at (a) P = 0
(b) P = 5000 (c) P = 20000 (d) P = 40000.
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Figure 4.19: Radial deflections at points A, B and C vs. pull-out force P for (a)
Uniform, (b) Skewed and (c) Curved meshes.
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mesh (with the p-level taken as 8) of the shell octant containing points A, B, C and

D. Solutions obtained with the p ≤ 4 are too stiff and suffer from locking. The

incremental/iterative Newton procedure is adopted using a total of 80 equal load

steps. For this example, all the load steps converged within 2-5 non-linear iterations.

For quantitative analysis, the radial deflections u3 vs. the net applied pulling force

P is shown in Fig. 4.20 using uniform, skewed and curved meshes for point A. In

Fig. 4.21, we show the the radial deflections u2 vs. the net applied pulling force P for

point B using uniform, skewed and curved meshes. Finally in Fig. 4.22, we show the

the radial deflections u2 vs. the net applied pulling force P for point C using uniform,

skewed and curved meshes. As expected, in all these cases the deformation response

of FG shell lies in between the fully ceramic and fully metal shells. The computed

deflections match exactly with the reported values by Sze et al. [109] and Arciniega

and Reddy [4]. The results from uniform, skewed and curved meshes for FG plate

are qualitatively quite similar, this proves the robustness of the present formulation.
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Figure 4.20: Radial deflection at point A vs. pull-out force P for (a) Uniform, (b)
Skewed and (c) Curved meshes.
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Figure 4.21: Radial deflection at point B vs. pull-out force P for (a) Uniform, (b)
Skewed and (c) Curved meshes.
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Figure 4.22: Radial deflection at point C vs. pull-out force P for (a) Uniform, (b)
Skewed and (c) Curved meshes.
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5. HIGHER-ORDER SPECTRAL/HP LEAST-SQUARES FINITE ELEMENT

FORMULATIONS FOR VISCOUS INCOMPRESSIBLE FLUID FLOWS

In this section, we present least-squares finite element models for viscous, isother-

mal, incompressible Navier–Stokes equations using stress-based first-order system

[45] and higher-order spectral/hp approximations. The higher-order spectral/hp ba-

sis functions avoid the interpolation error in the numerical schemes, thereby making

them accurate and stable. For fluid flows, when combined with least-squares varia-

tional principles, the higher-order spectral/hp finite element technology allows us to

develop efficient finite element models that always yield a symmetric positive-definite

(SPD) coefficient matrix and hence, robust direct or iterative solvers can be used.

Also, the use of higher-order spectral/hp finite element technology results in a better

conservation of various physical quantities (e.g., dilatation, volume, and mass). How-

ever, due to lack of velocity and pressure coupling, the least-squares formulation in its

standard form is un-stable and results in a poor evolution (with spurious oscillations)

of primary variables with time. To overcome this we introduce an iterative penaliza-

tion scheme, on the similar lines of [34, 75], for the transient pressure-velocity-stress

first-order system of Navier–Stokes equations. Finally, numerical solutions of several

non-trivial benchmark problems will be discussed.

5.1 Introduction

Although, the finite element method has become the dominant method of choice

in the numerical analysis of structures, it is yet to receive such a widespread accep-

tance in the field of computational fluid dynamics. In the realm of fluid mechanics,

much of the success and breakthroughs, in the numerical discretization of the incom-

pressible form of the Navier–Stokes equations have come in the context of low-order
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finite difference and finite volume technology. It is well known, however, that finite

element procedures offer many advantages over finite difference and finite volume

methods∗. In particular, the finite element method can naturally deal with complex

regions, complicated boundary conditions and possesses a rich mathematical founda-

tion [90]. As a result, there has been a renewed interest in recent years in developing

efficient finite element models for the incompressible Navier–Stokes equations.

The majority of finite element models for fluids are based on the weak-form

Galerkin procedure. It is well-known, however, that application of this method can

lead to a non-optimal setting for a given finite element discretization [14, 88]. For

instance, application of the Galerkin method to the incompressible Navier–Stokes

equations leads to a finite element implementation in terms of the velocity and pres-

sure which must satisfy the restrictive discrete Ladyzhenskaya-Babuska-Brezzi (LBB)

condition [17]; this effectively precludes the use of equal, lower-order, interpolation of

the velocity and pressure variables in the numerical implementation. Even when the

LBB condition is satisfied, the finite element model may still be plagued by spurious

oscillations in convection dominated flows and also conservation of various physical

quantities (like dilatation, volume, mass etc.) is poor. Stabilized Galerkin based

finite element formulations such as the SUPG [41, 18], penalty [82] and Galerkin

least-squares [42] have received considerable attention over the last few decades and

have greatly improved the discrete setting for the finite element analysis of fluid

flow problems. Unfortunately, the success of these methods is often intertwined with

ad-hoc parameters that must be fine-tuned for a given flow problem. In addition,

such formulations do not result in a symmetric positive-definite (SPD) coefficient

matrix. As with the structures, for fluid flows, there is no reliable, general purpose

∗In fact, the finite volume method can be viewed as the finite element model based on the
subdomain method.
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stabilization-free, low-order finite element technology.

5.2 Least-squares finite element formulation

5.2.1 The incompressible Navier–Stokes equations

Here, we consider viscous, isothermal, incompressible Navier–Stokes fluid flows.

The problem may be stated in non-dimensional form as follows: find the velocity

u(x, t) and pressure p(x, t) such that

∇ · u = 0 in Ω (5.1a)

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω (5.1b)

u = uP on Γu (5.1c)

n̂ · σ = tP on Γt (5.1d)

where Re is the Reynolds number, f is the dimensionless resultant body force due to

agents like gravity, magnetic effects etc., uP is the dimensionless prescribed velocity

on the boundary Γu, t
P is the dimensionless prescribed traction on the boundary Γt, n̂

is the outward unit normal to the boundary Γt and σ is the total stress tensor (Cauchy

stress). It must be noted that the parts of boundary with prescribed velocities and

tractions satisfy Γ = Γu ∪ Γt and ∅ = Γu ∩ Γt. From the constitutive relation, the

Cauchy stress can be represented in terms of primitive variables as

σ = −pI+ 1

Re

[
(∇u) + (∇u)T

]
(5.2)

Although, the least-squares method can be viewed as a special case of the weighted-

residual method, it has its own standing as a true variational method since it involves

the minimization of a functional. Also, the weighted-residual methods may or may
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not have a corresponding functional whose first variation is equivalent to the gov-

erning equations. Variational methods (i.e. methods based on the existence of a

functional whose extremum is equivalent to the governing equations) are consid-

ered to produce the “best” approximation to the exact solution of the equations

being solved. Most solid/structural mechanics problems allow the construction of a

quadratic functional (based on energy considerations) whose extremum would pro-

vide the basis for the construction of associated finite element models. Unfortunately,

such a functional does not exist for the Navier–Stokes equations when expressed in

terms of primitive variables. Consequently, most finite element models of the Navier–

Stokes equations based on the weak-form Galerkin formulation does not guarantee

minimization of the error in the approximation of the solution nor in the differential

equation.

If traditional weak-form Galerkin formulation is used to construct the functional

for the above Navier–Stokes equations in terms of its primitive variables of pressure

p and velocity u, then the minimization of the functional with the solution results

in a saddle point problem i.e. it is minimum with respect to velocity vector and

maximum with respect to scalar pressure at any local or global minima. Hence, the

choice of approximation function spaces for velocity and pressure are constrained to

satisfy this compatibility condition, which is popularly known as LBB condition. To

circumvent the saddle point problem and to get close to the variational principles,

many have implemented methods like Streamline Upwind Petro Galerkin (SUPG),

Lagrange multiplier methods, Penalty methods, Galerkin Least-Squares methods

and other stabilized methods. But these methods are ad-hoc, problem-dependent

and require an arbitrary choice of parameters. Also, the coefficient matrices are non-

positive-definite due to the absence of pressure variable in the continuity equation

and for nonlinear equations, if the coefficient matrix is non-symmetric it increases
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the computational cost.

The least-squares method gives a more general, flexible and robust formulation

procedure than the stabilized models based on weak-form Galerkin formulations.

However, if the least-squares formulation is directly applied to the above second-

order Navier–Stokes equations in terms of its primitive variables of pressure p and

velocity u, then C1 continuous approximations functions have to be used, where as,

for weak-form Galerkin formulation only C0 continuous functions are required due

to weakening by the integration-by-parts. Because of this C1 continuity requirement

the least-squares formulations lost their appeal in 1970’s. Recently Surana and others

have started applying least-squares method directly to second-order Navier–Stokes

equations in terms of its primitive variables pressure p and velocity u using C1 contin-

uous approximations functions [106]. But generating C1 continuous approximations

functions in higher-dimension spaces for higher-order elements and un-structured

meshes is complicated. Analogous to hp-finite element frame work they call this as

hpk -frame work.

Bo-nan Jiang introduced auxiliary variables like the vorticity, stresses, dilation,

velocity gradients to reduce the second-order Navier–Stokes equations in terms of its

primitive variables of pressure p and velocity u to first-order system of equation, so

that C0 continuous functions can be used Refs. [47, 44, 48, 46]. However, Bo-nan

Jiang used lower-order finite elements, which results in collocation least-squares finite

element method, hence reduce or under integration is used to get accurate solutions.

Auxiliary variables introduced will increase the degree-of-freedoms per node in the

finite element model and so the computation cost. But the post-processing cost can

be reduced if suitable auxiliary variables are used. It is important to note that al-

though all least-squares finite element models based on first-order equations obtained

from auxiliary variables like the vorticity, stresses, dilation, velocity gradients show
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spectral convergence, it is not possible a-priori to show that every first-order system

is norm-equivalent.

5.2.2 The stress-based first-order system

To over come the C1 continuity and to allow the use of practical C0 basis functions

in the numerical implementation, we introduce the symmetric stress tensor, T =[
(∇u) + (∇u)T

]
as an auxiliary variable. Using this, the second-order Navier–Stokes

problem statement can be recast as the equivalent first-order problem statement: find

the pressure p(x, t), velocity u(x, t) and stress T(x, t) such that

∇ · u = 0 in Ω (5.3a)

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∇ ·T = f in Ω (5.3b)

T =
[
(∇u) + (∇u)T

]
in Ω (5.3c)

u = uP on Γu (5.3d)

n̂ ·T = TP on ΓT (5.3e)

5.2.3 Time discretization and standard L2-norm least-squares formulation

Adopting a space-time decoupled formulation, the above system of equations are

first discretized in time and then in space to solve the transient flow simulation

problems. For time discretization, we use backward difference (BDF1 and BDF2)

and the α-family time approximation schemes given in Fig. 5.1.

Using these time discretization schemes, the time derivative of velocity field, at

t = ts+1, can be replaced as shown in Eq. (5.4), where ūs is the history vector and
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Figure 5.1: Time discretization schemes of (a) BDF1 (b) BDF2 (c) α-Family and (d)
Constant and history vector.

λ0 is a constant, the specific forms are given in Fig. 5.1(d).

u̇s+1 = λ0 us+1 − ūs

= 1
∆t

(λ0∆tus+1 −∆t ūs)
(5.4)

The standard least-squares functional associated with the above first-order stress-

based Navier–Stokes system can be constructed by taking the sum of the squares of

the L2 norms of the residual equations. At time step t = ts+1, the algebraic differ-

ential equation in time, allows us to define the associated least-squares functional
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as

J (p,u,T; f) =
1

2

(
∥∇ · u∥20 +

∥∥∥∥ 1

∆t
(λ0∆tus+1 −∆tūs) + (u · ∇)u+∇p− 1

Re
∇ ·T− f

∥∥∥∥2

0

+
∥∥∥T−

[
(∇u) + (∇u)T

]∥∥∥2

0
+
∥∥t̂− n̂ · σ̃

∥∥2

0,Γoutflow

)
(5.5)

Note in the above, the outflow boundary condition given by t̂− n̂ · σ̃ = 0, is applied

in a weak sense using the least-squares functional (see the underlined term), where t̂

is the traction vector at the outflow section and σ̃ = −pI+ (1/Re)∇u is the pseudo

Cauchy stress tensor.

The least-squares minimization problem is to find variables p(x, t),u(x, t),T(x, t) ∋

J (p,u,T; f) ≤ J
(
p̃, ũ, T̃; f

)
∀
(
p̃, ũ, T̃; f

)
∈ (x, t), i.e. seek (p,u,T) such that J (p,u,T; f)

is minimized over x, where x is

x =
{
(p,u, T) ∈ H1 (Ω)×H1 (Ω)×H1 (Ω)

}
(5.6)

The variational problem (after linearizing by Newton’s Method) corresponding to

above least-squares functional can be written as

B
((
p̃, ũ, T̃

)
,
(
p,u,T

))
= F

(
p̃, ũ, T̃

)
∀
(
p̃, ũ, T̃

)
∈ (x, t) (5.7)
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where the bi-linear form is explicitly given as

B
((
p̃, ũ, T̃

)
,
(
p,u,T

))
=

∫
Ω

{
(∇ · ũ) · (∇ · u) + ∆t

(
λ0ũs+1 + (u0 · ∇) ũ

+ (ũ · ∇)u0 +∇p̃− 1

Re
∇ · T̃

)
·∆t

(
λ0us+1

+ (u0 · ∇)u+ (u · ∇)u0 +∇p− 1

Re
∇ ·T

)
+
(
T̃−

[
(∇ũ) + (∇ũ)T

])
·
(
T−

[
(∇u) + (∇u)T

])}
dΩ

+

∫
Γout

(
p̃n̂− 1

Re
n̂ · ∇ũ

)
·
(
pn̂− 1

Re
n̂ · ∇u

)
ds

(5.8)

From the above it clear that the bi-linear form is symmetric and positive definite

(SPD) and the linear form is given as

F
(
p̃, ũ, T̃

)
=

∫
Ω

[
∆t

(
λ0ũs+1 + (u0 · ∇) ũ+ (ũ · ∇)u0 +∇p̃

− 1

Re
∇ · T̃

)
·∆t

(
ūs + (u0 · ∇)u0 + f

)]
dΩ

+

∫
Γout

( 1

Re
n̂ · ∇ũ− p̃n̂

)
· t̂ds

(5.9)

In two-dimensions, the bi-linear and linear forms can be represented as



K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66





p

ux

uy

Txx

Txy

Tyy



=



F1

F2

F3

F4

F5

F6



(5.10)
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5.2.4 Modified least-squares formulation with iterative penalization scheme

In weak-form Galerkin methods, stabilized methods and penalty methods the

pressure (or its test function) plays the role of the Lagrange multiplier making con-

tinuity equation ∇ · u = 0 at all times and space. This kind of coupling eludes the

above standard least-squares formulation. If the traditional penalization method is

used to enforce the divergence-free condition (continuity equation), it results in ill-

conditioning due to the requirement of high penalty parameters. It in-turn leads to

numerical locking due to difference in contributions from viscous and penalty terms.

Due to this, the evolution of primary variables is poor with time and is often as-

sociated with spurious oscillations. However, the coupling can be introduced into

the least-squares formulation using the following iterative penalization strategy from

[34, 75].

pk+1 = pk − γ [∇ · u] ⇒ ∆p

γ
= ∇ · u (5.11a)

⇒
∫
Ωe

∆p

γ
dΩe =

∮
Γe

n̂ · u dΓe (5.11b)

pk+1 = pk − γ

[
1

2
tr(T)

]
⇒ ∆p

γ
=

1

2
tr(T) (5.11c)

here k + 1 is the current iteration number and γ is the penalty parameter. The

advantage is that it requires small magnitudes (5− 40) of penalty parameter. Using

Eq. (5.11c) in momentum equation (5.3b), the pressure variable and the continuity

equation can be eliminated from the system of equations. The modified least-squares

functional associated with the new set of equations at current time t = ts+1 and
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current iteration k + 1 becomes:

J (u,T; f) = 1
2

(∥∥ 1
∆t

(λ0∆tus+1 −∆tūs) + (u · ∇)u− γ∇
[
1
2
tr(T)

]
− 1

Re
∇ ·T− f+∇pk

∥∥2

0

+
∥∥∥T−

[
(∇u) + (∇u)T

]∥∥∥2

0
+
∥∥t̂− n̂ · σ̃

∥∥2

0,Γoutflow

)
(5.12)

From the above modified least-squares functional the bi-linear and linear forms can

be obtained as discussed above. Due to small penalty parameters, the contributions

of viscous and penalty terms are comparable and it avoids ill-conditioning. This

improves conservation of physical quantities like dilatation, mass, volume etc. and

the stability of the numerical scheme. Also, due to improved coupling, the time

evolution of variables is smooth and without any spurious oscillations. Once the

solution is obtained, the pressure p can be post-computed using the above iterative

relation. The above bi-linear and linear forms can be explicitly written as



K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55





ux

uy

Txx

Txy

Tyy


=



F1

F2

F3

F4

F5


(5.13)
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The pressure p comes into the outflow boundary term from the pseudo Cauchy stress

equation σ̃ = −pI+(1/Re)∇u. It can be eliminated using Eq. (5.11a) or Eq. (5.11c)

as

σ̃ = −pI+ (1/Re)∇u

⇒ t̂ = n̂ · σ̃ = n̂ ·
(
−pI+ 1

Re
∇u

)
but pk+1 = pk − γ [∇ · u] = pk − γ

[
1
2
tr(T)

]
⇒ t̂ = n̂ ·

(
−pkI+ γ [∇ · u] I+ 1

Re
∇u

)
= n̂ ·

(
−pkI+ γ

[
1
2
tr(T)

]
I+ 1

Re
∇u

)
(5.14)

The contributions from the outflow terms to the stiffness matrix components is eval-

uated using the detailed procedure discussed in Section 2.

There are many ways in which the iterative penalization can be introduced in to

the least-squares finite element formulation. Instead of using Eq. (5.11c) to elimi-

nate pressure, as we did above, it can be directly introduced into the least-squares

functional in a global discrete sense. The Eq. (5.11a) can also be directly introduced

into the least-squares functional in a global discrete sense or it can be introduced by

eliminating the pressure variable p from the system of equations. The Eq. (5.11b),

which is obtained by taking integration over an an e′th element and applying diver-

gence theorem, can also be introduced into the least-squares functional in a local

integral sense as

J (p,u,T; f) = 1
2

(∥∥(u · ∇)u+∇p− 1
Re
∇ ·T− f

∥∥2

0
+
∥∥∥T−

[
(∇u) + (∇u)T

]∥∥∥2

0

∥∇ · u∥20 + w

∥∥∥∥∮
Γe

n̂ · udΓe −
∫
Ωe

∆p
γ
dΩe

∥∥∥∥2

0

(or)w
∥∥∥∆p

γ
−∇ · u

∥∥∥2

0

)
(5.15)

where w is the suitable weighing parameter typically used for non-dimensionalizing

or normalizing the above. No matter how the iterative penalization is introduced, it
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always all requires small magnitudes of the penalty parameter. With small penalty

parameters the contributions of viscous and penalty terms are comparable and it

avoids numerical locking. This leads to better mass conservation and stability ( i.e.

time evolution of variables) for non-stationary flows. There is no numerical evidence

to suggest that one form works better than the other. Since, we are implementing

the stress-based least-squares finite element formulation in this work, we use Eq.

(5.11c) in the global discrete sense and also eliminate the pressure p from the system

of equations.

5.3 Numerical results

In this section, the above stress-based least-squares finite element formulation is

tested with a number of non-trivial benchmark problems for both stationary and

transient flows. First, the spectral convergence of the higher-order spectral/hp least-

squares formulation is verified for steady-state flow using lid-driven cavity problem.

Next, the results are presented for flow over a backward-facing step, and flow past a

circular cylinder at low Reynolds number with outflow boundary conditions. Non-

linear convergence for a given numerical simulation is declared once the relative Eu-

clidean norm of the solution residuals, ∥∆k+1 −∆k∥/∥∆k+1∥, is less than 10−4. All

reported numerical results have been obtained using a penalty parameter of γ = 10.

5.3.1 Steady-state simulations

5.3.1.1 Lid-driven cavity flow problem

The “lid-driven” cavity is a standard test problem in the computational fluid

dynamics. The problem is characterized by a unit square cavity of Ω = [0, 1]× [0, 1]

(see Fig. 5.2) in which the driving force for the flow is the shear created by the lid.

The fluid contained inside a square cavity is set into motion by the upper wall which

is sliding at constant velocity from left to right. The Dirichlet boundary conditions

144



of ux = uy = 0 are prescribed on the left and right side-walls of the square cavity and

uy = 0 on the lid surface. A regularized hyperbolic tangent ux velocity distribution

is prescribed on the lid as given below:

ux = upx(x) =

 tanh(50x) 0 6 x 6 0.5

− tanh(50x− 50) 0.5 < x 6 1.0
(5.16)
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0

0 .2 5

0 .5
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Figure 5.2: Lid-driven cavity element mesh.

The plot of the above distribution is shown in Fig. 5.3. As seen in the figure, it

allows for a smooth transition from the no-slip boundary condition on the side-walls
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to the lid velocity on the top. The high-order finite elements are sensitive to such

singularities at the corners of the lid-driven surface and can lead to an ill-posed

problem if it is not taken care of.
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Figure 5.3: Regularized hyperbolic tangent ux velocity distribution.

The finite element mesh in Fig. 5.2, has 20 × 20 non-uniform elements with

adequately graded elements towards edges of the square cavity, so as to capture the

flow circulations and transitions at the corners of the cavity. The Reynolds number

is taken as 5× 103, to achieve this, a load-stepping scheme is used, where, we start

with Re = 200 and march towards Re = 5× 103 in a total of 25 equal load steps. At

each load-step, the converged solution from the previous step is used as the initial

guess. The penalty parameter is fixed as 10 for all the simulations. The problem is

solved using spectral/hp elements of orders p = 5, 7, 9. All the problems typically
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converged in 2 or 3 non-linear iterations at all load steps.

The interplay of viscous and pressure forces makes the fluid to turn in the square

cavity. The magnitude of these forces depends on the Reynolds number and when

they outbalance one another it leads to a hierarchy of eddies, the large clockwise-

rotating primary (at the geometric center of the cavity), and several small eddies such

as the counter-clockwise rotating secondary eddies, the clockwise rotating tertiary

eddies, at the three relevant corners of the square cavity: bottom left, bottom right,

and top left. These can be seen in Fig. 5.4(a), where the streamlines are shwon

along with pressure contour plots. The horizontal and vertical velocity contours are

shown and in Figs. 5.4(b) and 5.4(c). These results match qualitatively very well

with the published results of Jiang et al. [49]. To measure the spectral convergence

of the higher-order least-squares formulation, we plot the total error in solution

εall, the total least-squares functional Jall, and the least-squares functional of the

momentum equation Jmom in Fig. 5.4(d) for polynomial orders p = 5, 7, 9. Finally,

to qualitatively measure the performance of the present formulation, the ux velocity

profiles along x = 0.5 are shown in Fig. 5.5(a) and the uy velocity profiles along

y = 0.5 are shown in Fig. 5.5(b) for Re = 200, 1000, 2000, 3200 and 5000 and

compared with those of Jiang et al. [49]. These results perfectly match with the

published results from the literature.

5.3.1.2 Flow over a backward facing step

As a second example, we consider a more rigorous example of steady-state fluid

flow over a two-dimensional backward facing step at Reynolds number of 800. We uti-

lize the simplified (truncated) step configuration proposed in the benchmark solution

of Gartling [32]. The geometry of the domain, mesh and the boundary conditions

are shown in Fig. 5.6(a). The computational domain for the problem is taken as
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Figure 5.5: (a) ux-velocity profiles along x = 0.5 and (b) uy-velocity profiles along
y = 0.5.

Ω = [0, 30]× [−0.5, 0.5] and is discretized into a set of 40 rectangular finite elements,

with 20 elements along the channel length and 2 along the channel height. The

dimensions of the domain are selected so that the flow is completely evolved, stable

and the end effects (due to termination of the problem to a geometrically finite com-

putational domain) do not corrupt the integrity of the numerical solution. As can

be seen in Fig. 5.6(a), the majority of the elements are positioned within 15 units

of the channel inlet. This ensures the accurate resolution of primary and secondary

circulation zones downstream of the step.

The velocity vector at the inlet is assumed to be horizontal as given by the

parabolic expression ux = upx(y) = 24y(0.5−y) on 0.0 6 y 6 0.5 and ux = upx(y) = 0.0

on −0.5 6 y 6 0.0. The components of the velocity are taken to be zero along all

solid surfaces (except on outflow) in accordance with the no-slip condition. The

outflow boundary condition is enforced in a weak sense, by including the expression

t̂− n̂ · σ̃ = 0 in the definition of the least-squares functional, where pseudo traction
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vector on the outflow boundary is taken to be t̂ = 0.

As with the previous example, we start with Re = 50 and march towards Re = 800

with an increment of 50 in a total of 16 load steps. At each load-step, the converged

solution from the previous step is used as the initial guess. The penalty parameter is

fixed as 10 for all the simulations. The problem is solved using spectral/hp elements of

orders p = 6, 8, 10, 12. In Figs. 5.6(b), 5.6(c), 5.6(d) and 5.6(e), we plot the pressure

contours, horizontal velocity contours, vertical velocity contours and the streamtraces

over the entire domain. These plots qualitatively match with the previous results

from the literature. Also, it can be seen that the flow is characterized by a primary

separation and a recirculation zone which is directly behind the step and on the

bottom-wall of the channel extending up to 6.1 units. A secondary flow separation

and recirculation zone is also present on the top-wall of the channel that develops

around 4.9 units downstream of the step and extends to approximately x = 10.5.

These primary and secondary zone values match exactly with the numerical and

experimental results from the literature. To do a qualitative analysis, in Figs. 5.7(a)

and 5.7(b), we compare the components of the velocity vector along x = 7 and x = 15

with the results reported by Gartling [32], where a weak form Galerkin finite element

model was employed. Also, in Fig. 5.7(c), we plot the pressure variation along the

bottom-wall of the domain and compare with Pontaza [80]. The converged results

are in excellent agreement with the published data.

To measure the conservation of various physical quantities, we make use of the

incompressibility condition. The constraint that the density within a moving volume

of fluid remains constant, the mass continuity equation simplifies to:

∇ · u = 0 (5.17)
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which means that the divergence of velocity field vanishes everywhere in the domain.

Physically, this is equivalent to saying that the local volume dilation rate is zero.

To see how well it is satisfied in each element of the domain, we numerically post-

compute the normalized local volume dilation rate (De) over the closed surface of

each element

De =
1

µe

∮
Γe

n̂ · u ∂Γe (5.18)

Note, the above equation is obtained by using divergence theorem to Eq. (5.18) over

each element and normalizing with the factor µe, which in two-dimensions is the

element area and in three-dimensions is the element volume. In Fig. 5.8, we plot the

normalized local volume dilation rate for each element in the mesh for p = 6, 10, 12.

The flow over a backward facing step is a difficult problem to simulate and with the

present mesh discretization, it usually requires high polynomial orders (p ≥ 10) of

interpolation to get accurate solution. However, from Fig. 5.8(a), it is clear that even

at (p = 6), the present iterative penalization scheme results in a better conservation

of local volume dilation rate over the entire domain (i.e. better conservation). As

the polynomial order is increased, it further strictly enforces the continuity equation

as can be noted from Figs. 5.8(b) and 5.8(c). As expected, for the elements in the

primary separation and recirculation zones and the secondary flow separation and

recirculation zones, the conservation of local volume dilatation rate is relatively poor.

By plotting the local element volume dilatation rate, the elements in the mesh can

be flagged for further h-refinement or p-refinement.

5.3.1.3 Low Reynolds flow past a cylinder

Here we consider a steady two-dimensional flow of an incompressible fluid past a

circular cylinder. The cylinder is of unit diameter and is at the center of the finite

domain Ω = [−15.5,+25.5]× [−20.5,+20.5] as shown in Fig. 5.9. The mesh has 501
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Figure 5.8: Local volume dilatation rates for (a) p = 6 (b) p = 10 and (c) p = 12.

quadrilateral finite elements, with body-fitting mesh around the cylinder. The value

of Reynolds number and the placement of the computational boundaries in relation

to the cylinder are critical as the flow pattern depends on them. At low Reynolds

number (5 < Re < 46.1), the flow of an incompressible, newtonian fluid past a

circular cylinder is stationary and its pattern is characterized by a pair of symmetric

vortices on the downstream of the cylinder. The size of these standing vortex layers is

proportional to the Reynolds number. As the Reynolds number reaches the critical

value (Re >= 46.1), the standing vortex layers become unstable and flow can no

longer be treated as two-dimensional flow. A Reynolds number of Re = 40 is used

for all the cases in this work.

For this mesh, the horizontal velocity is specified as ux = 1.0 at the inflow (left)

and ux = u∞ top and bottom boundaries, where u∞ is the free-stream velocity and
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Figure 5.9: (a) Finite element mesh and (b) Close-up mesh with nodes for p = 2.

is taken as unity. Since the top and bottom surfaces are far from the cylinder, such

boundary conditions do not influence the flow and hence do not affect the numerical

solution. The vertical velocity is specified as uy = 0.0 on all these three boundaries.

A no-slip boundary condition of ux = uy = 0.0 is imposed on the surface of the

cylinder. As in the previous problem the outflow boundary condition is enforced in

a weak sense in the least-squares functional. The problem is solved with different

polynomial orders of p = 3, 5, 7 each with 4659, 12775 and 24899 nodes respectively.

In Fig. 5.10, we show the pressure and vertical velocity contour plots at Re = 20

and Re = 40. The streamlines are also shown highlighting the size of the circulation

regions. It is clear that the length of the streamtraces is proportional to the Re. For

Re = 40, our numerical calculations predict the wake region to extend 4.50 cylinder

radii downstream of the cylinder. This is in excellent agreement with the numerical

results reported by Kawaguti and Jain [52].
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In Fig. 5.11, we plot the post-computed values of normalized local volume dilation

rate (De) over the closed surface of elements around the cylinder for p = 3, 5, 7. As

expected, for elements around the cylinder (especially on the crown and upstream

region) the conservation of local volume dilatation rate is relatively poor. However,

the improvement is particularly noticeable for these elements with p-refinement.

5.3.2 Non-stationary simulations

5.3.2.1 Transient lid-driven cavity flow

In this section, the transient lid-driven cavity flow problem, characterized by a

unit square cavity of Ω = [0, 1] × [0, 1], is analyzed. A 14 × 14 non-uniform graded

mesh similar to Fig. 5.2 is used with the corner elements of 0.01× 0.01 dimensions.

The polynomial order p = 7 is used with total 196 elements and 9801 nodes. The

pure-velocity Dirichlet no-slip boundary conditions, ux = uy = 0, are prescribed on

the left and right side-walls of the square cavity, uy = 0 on the lid surface and a

regularized hyperbolic tangent ux velocity distribution is prescribed on the lid as

given below:

ux(x) = upx(x) =

 tanh(50x) 0 6 x 6 0.5

− tanh(50x− 50) 0.5 < x 6 1.0
(5.19)

The horizontal velocity ux of the lid driven surface also varies in time according to

a hyperbolic tangent distribution as given by ux(x, t) = upx(x)tanh(t). This problem

has been solved for the penalty parameter of 10 and Reynolds number of 5000.

Initial velocity conditions are taken to be zero everywhere. A uniform time step

size of △t = 0.2 with a total of 600 time steps are employed for the finite element

simulation. Since the BDF2 time integration scheme is non-self-starting, we employ

the BDF1 formula for the first 4 time steps and then use BDF2 for the rest.
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The interplay of viscous and pressure forces makes the fluid to turn in the square

cavity. The magnitude of these forces depends on the Reynolds number and when

they outbalance each other it leads to a hierarchy of eddies, the large clockwise-

rotating primary (at the geometric center of the cavity), and several small eddies such

as the counter-clockwise rotating secondary eddies, the clockwise rotating tertiary

eddies, at the three relevant corners of the square cavity: bottom left, bottom right,

and top left. In Fig. 5.12, we plot the pressure contours in the square cavity at

different times. In Fig. 5.13, we plot the time history of streamlines in the entire

domain. The streamlines start close to the lid at the right corner and gradually

grow to occupy the entire square domain with time until the flow reached steady-

state. At steady state, there is one primary vortex, three first vortices, at the left

and right bottom corners and the top left corner; two second vortices appear at

the left and right bottom corners. These vortices and their centers match well with

the benchmark values of Ghia et al. [33]. The steady-state horizontal and vertical

velocity contours are shown and in Figs. 5.14(a) and 5.14(b). These results match

qualitatively very well with the published results of Jiang et al. [49]. Finally, to

qualitatively measure the performance of the present formulation, the steady-state

ux velocity profiles along x = 0.5 are shown in Fig. 5.14(c) and the steady-state uy

velocity profiles along y = 0.5 are shown in Fig. 5.14(d) and compared to Jiang et al.

[49]. These results perfectly match with the published results from the literature.

5.3.2.2 Transient flow over backward facing step

In the present example, we wish to investigate the temporal behavior of the

two-dimensional flow over a backward-facing step at Re = 800. Again we employ

the simplified (truncated) step configuration. The computational domain is taken

as Ω = [0, 20] × [−0.5, 0.5] and is discretized into a set of 200 rectangular finite
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Figure 5.12: Time history of pressure contours.
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Figure 5.13: Time history of streamtraces.
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elements, with 40 elements along the channel length and 5 along the channel height.

The boundary and initial conditions are taken from the works of Gresho et al. [17]

and Pontaza and Reddy [4]. The prescribed velocity vector at the inlet is assumed

to be ux = upx(y, t) = 24y(0.5− y)[tanh(t)] + uIx(y)[1− tanh(t)] on 0.0 6 y 6 0.5 and

ux = upx(y, t) = uIx(y)[1−tanh(t)] on −0.5 6 y 6 0.0. Here, uIx(y) = 3(0.5−y)(0.5+y)

is the Poiseuille flow observed infinitely far downstream at steady state. This inlet

condition, allows for a smooth but quick transition from Poisuille flow to flow over

a backward-facing step, thus avoiding any singularities. The initial conditions are

taken as ux = uIx(y) and uy = 0 everywhere in the computational domain. The

components of the velocity are taken to be zero along the top and bottom surfaces in

accordance with the no-slip condition. The outflow boundary condition is imposed

in a weak-sense through the least-squares functional on the outflow (right) section of

the domain. The polynomial order of p = 7 is used with a total of 10116 nodes. A

uniform time step size of △t = 0.2 and with a total of 500 steps is employed for the

finite element simulation. As in the previous example, we employ the BDF1 formula

for the first 4 time steps and then use BDF2 for the rest.

In Fig. 5.15, we plot the time history of streamtraces over the entire domain. It

can be seen that the flow history is characterized by a series of primary and secondary

separation zones along the top and bottom walls of the channel. At steady-state,

most of the small eddies vanish except a primary separation zone on the bottom-

wall extending up to 6.1 units beyond the step and a secondary separation zone

on the top-wall that develops at 4.9 units downstream of the step and extends to

approximately x = 10.5. These primary and secondary zone values are in excellent

agreement with the numerical and experimental results from the literature [32]. In

Fig. 5.16, the time history of pressure contours is shown. The color profiles indicate

the gradients of pressure over the entire domain at any instant of time. As time
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progresses the pressure contours become more distributed and smooth.

As in the steady-state example, we show the time history of numerically post-

computed values of the normalized local volume dilation rates (De) for each element

in the mesh in Fig. 5.17. The magnitude of the dilation rate represents, how well the

continuity equation is satisfied over the element. As expected, when the primary and

secondary eddies begin to form at top and bottom walls, the conservation is relatively

poor in the order 10−4. But, as time progresses it improves and at steady state it

reaches an order of 10−6 over the entire domain. Further, to qualitatively measure

this conservation, we plot the mass flow rates at sections x = 5 and x = 10 with time

in Figs. 5.18(a) and 5.18(b). In the beginning, there are some small fluctuations, but

they slowly die-out as time progresses till steady-state is reached.
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Figure 5.15: Time history of streamtraces over the domain.
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Figure 5.16: Time history of pressure contours over the domain.
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Figure 5.17: Time history of dilatation rate of each element over the domain.

The lack of pressure and velocity coupling in the least-squares formulation results

in unrealistic temporal chaotic behavior, resulting in an erroneous prediction of the

flow in long-term. In such cases, either the simulation diverges or the field variables

fluctuate with time if at all it converges to a steady state [75]. To investigate this

behavior, we probe the time history of uy velocity at points (10,0) and (13,0) in the

domain as in Figs . 5.19(b) and 5.19(a). As it is evident, the formulation results

in a nice evolution of the solution variables with time and the simulation smoothly
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Figure 5.18: (a) Time history of mass flow rates at section x = 5 and (b) Time
history of mass flow rates at section x = 10.

reaches the steady-state. Also, no erroneous fluctuations in the velocity field are

observed.

5.3.2.3 Transient flow past a cylinder at Re = 100

Here we consider the case of Re = 100, for which a transient simulation is nec-

essary. The cylinder is of unit diameter and is at the center of the finite domain

Ω = [−15.5,+25.5]× [−20.5,+20.5] as shown in Fig. 5.9. The mesh has 501 quadri-

lateral finite elements, with body-fitting mesh around the cylinder. Initially the fluid

is at rest and the horizontal velocity is gradually increased using the hyperbolic tan-
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Figure 5.19: (a) Time history of vertical velocity at (10, 0) and (b) Time history of
vertical velocity at (13, 0).

gent function in time as ux = u∞tanh(t) at inflow (left), top and bottom boundaries,

where u∞ is the free-stream velocity and is taken as unity. The vertical velocity is

specified as uy = 0 on all these three boundaries. A no-slip boundary condition of

ux = uy = 0 is imposed on the surface of the cylinder. The outflow (right) bound-

ary condition is once again enforced in a weak sense by including the expression

t̂− n̂ · σ̃ = 0 in the definition of the least-squares functional, where pseudo-traction

vector on the outflow boundary is taken to be t̂ = 0. A uniform time step size of

△t = 0.1 with a total of 2500 time steps is used for the finite element simulation.

As in the previous problem, we use the BDF1 formula for the first 4 time steps and
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then use BDF2 for the rest. The problem is solved using polynomial order of p = 5

with a total of 12775 nodes. At each time step the solution converged in only 2 or 3

nonlinear iterations.

In Fig. 5.20, we show the contour plots of pressure p, horizontal velocity ux, and

vertical velocity uy, at an instant of t = 200.

(a)

(b)

(c)

Figure 5.20: Instantaneous contour plots at t = 200, of (a) Pressure (b) Horizontal
velocity and (c) Vertical velocity.

We probe the time history of uy velocity at points (1,0) and (2,0) downstream the

cylinder and plot in Figs. 5.21(a) and 5.21(b). The formulation results in a correct

evolution of solution variables with time and the simulation smoothly reaches the
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steady-state. Also, no erroneous fluctuations in the field variables are observed.
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Figure 5.21: (a) Time history of velocity uy at points (1,0) (b) Time history of
velocity uy at points (2,0).

Next in Figs. 5.22(a) and 5.22(b), we plot the normalized local volume dilation rates

(De) for each element in the mesh for p = 5 at time instants of t = 220 and t = 240.

These figures, show that the local volume dilatation rate is conserved for all the

elements in the space and at all times.
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6. CONCLUSIONS

6.1 Summary

In this study, applications of high-order spectral/hp approximation functions in

the finite element models of various of nonlinear boundary-value and initial-value

problems arising in the fields of structural mechanics and flows of viscous incom-

pressible fluids are presented. The high-order spectral/hp formulations offer several

theoretical and computational advantages. For structures, the higher-order spec-

tral/hp finite element procedures allow us to develop robust structural elements for

beams, plates, and shells in a purely displacement-based setting, which avoid all

forms of numerical locking. For fluid flows, when the high-order spectral/hp proce-

dures are combined with least-squares variational principles, such technology allows

us to develop efficient finite element models that always yield a symmetric positive-

definite (SPD) coefficient matrix, and thereby robust direct or iterative solvers can

be used. Also, the least-squares formulations circumvent the infimum-supremum

or the Ladyzhenskaya–Babuska–Brezzi (LBB) condition [121, 122, 5, 16] and equal-

order interpolations can be used for all field variables of the formulation. When

the spectral/hp approximations are used with iterative penalization methodology,

they results in a better conservation of physical quantities like dilatation, volume,

and mass and in stable evolution of variables with time for transient flows. Both

in structures and fluid flows, the higher-order spectral/hp basis functions avoid the

interpolation error in the numerical schemes, thereby making them accurate and sta-

ble. It is shown that ad hoc stabilized methods or tricks used to alleviate numerical

locking and spurious solution oscillations in low-order finite elements may be largely

circumvented by (a) employing high-order spectral/hp finite element technology and
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(b) constructing the finite element model for a given physical phenomenon in the

context of a true variational setting (i.e., the minimization of a quadratic functional

via the potential energy considerations for structures and least-squares principles for

fluid flows). Finally, it is amply illustrated that the unconstrained minimization plus

high-order spectral/hp finite element technology offers a highly attractive numerical

setting, avoiding the need for ad-hoc approaches that are problem dependent.

6.2 Concluding remarks

In Section 2, a framework for efficient implementation of higher-order spectral/hp

finite element formulations is developed. The recursive/iterative relations to generate

higher-order basis functions and numerical quadratures are presented. We generated

higher-order spectral/hp grids for general two-dimension domains and domains with

simple curved boundaries. Simple and efficient algorithms to generate necessary data

structures to apply natural and essential type of boundary conditions are presented.

A general method to perform line (or surface) integration along the boundaries of

the element to apply natural type of boundary conditions is derived. The schur com-

plement method to condense the element interior nodes is discussed. We presented

an abstract higher-order finite element problem and identified the tasks that can be

done in parallel. Then, we discussed the ways to find the solutions for large scale

problems by linking to serial/parallel, direct/iterative solver libraries. Finally, we

presented a numerical example to validate all these methods. The ideas presented in

this work are very generic and can be easily adopted to any programming language.

They can also be easily extended to higher-dimension finite element codes.
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To begin with in Section 3, higher-order spectral/hp finite element technology

is applied to one-dimension beam problems. A fully-discretized weak-form Galerkin

finite element model for linear viscoelastic beam based on the higher-order beam

theory (HBT) with the von Kármán geometric nonlinearity is developed. The beam

is capable of undergoing moderate rotations and small strains (i.e., von Kármán

geometric nonlinearity). The Higher-Order Beam Theory (HBT) admits C0 con-

tinuous interpolants for all the dependent variables. A recurrence scheme is devel-

oped such that history data need only be stored from the previous time step. The

performance of the high-order spectral/hp finite element technology with-respect-to

issues of numerical locking is investigated using a variety if thick and thin beams

and with different loading and boundary conditions. Both quasi-static and fully-

transient problems have been considered. Various non-trivial benchmark examples

are considered to demonstrate the capabilities of the developed finite element model

in alleviating both membrane and shear locking.

In Section 4, higher-order spectral/hp finite element procedures that allow us to

develop robust structural elements for beams, plates, and shells in a purely displace-

ment based setting and which avoid all forms of numerical locking are developed. A

weak-form Galerkin finite element model is constructed based on an improved fist-

order shear deformation theory (FSDT) with seven independent parameters, that

allows the use of fully three-dimensional constitutive equations in the numerical

implementation. The actual shell mid-surface and the unit normal to it are each

approximated using the standard spectral/hp finite element interpolation functions.

The present formulation requires as input the three-dimensional coordinates of the

shell mid-surface as well as a set of directors (i.e., unit normal vectors to the mid-

surface), for each node in the shell finite element model. Hence, the formulation

allows the use of randomly skewed and curved quadrilateral elements, which will be
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useful to mesh complicated shell geometries. The terms of virtual work statement

are carefully separated to do through-thickness numerical integration at each quadra-

ture point of the mid-surface and hence no thin-shell approximations are imposed

in the numerical implementation. The formulation is extended for the analysis of

geometrically non-linear response of elastic, isotropic and functionally graded shell

structures subjected to mechanical and thermal loadings. Various non-trivial bench-

mark problems are implemented to demonstrate that the proposed shell element is

free of all forms of numerical locking even for large geometric deformations.

In Section 5, a stress-based least-squares finite element model of the steady-

state and non-stationary incompressible Navier–Stokes equations is developed using

higher-order spectral/hp basis functions. The least-squares formulation circumvents

the infimum-supremum or the Ladyzhenskaya-Babuska-Brezzi (LBB) condition and

hence equal-order interpolations are used for all the primary variables. However, the

standard L2-norm least-squares formulation of the first-order stress-based Navier–

Stokes equations lack the velocity and pressure coupling and results in a poor evo-

lution (with spurious oscillations) of primary variables with time. To overcome this

an iterative penalization scheme is introduced on the similar lines of [34, 75], for the

transient pressure-velocity-stress first-order system of Navier–Stokes equations. It

also results in a better conservation of physical quantities (like dilatation, volume,

mass) and stable evolution of variables with time for transient flows. Finally, numer-

ical solutions of several non-trivial benchmark problems are presented to verify the

same.

6.3 Recommendations

The encouraging results from the application of higher-order spectral/hp finite

element procedures opens several interesting and challenging areas of future work.

176



In particular the following tasks require attention.

• In Section 3, further studies can be carried out to fully understand the behavior

under dynamic loadings and also with large strain capabilities. In particular,

the current formulation may be modified in the context of a corotational [116]

finite element formulation. It is also a research interest to combine the present

formulation with non-local theories of Eringen [29] and gradient theories of

Yang et al. [126] and Srinivasa and Reddy [105] for viscoelastic beams. Fi-

nally, extension of the present work to viscoelastic plates and shells is awaiting

attention.

• In Section 4, the proposed formulation can be extended to do the dynamic and

buckling studies of shell structures under mechanical and thermal loadings.

Although, we used isotropic elastic material model, it can be applied to a

more realistic material models like Cauchy elastic, hyperelastic, viscoelastic,

elasto–plastic, and so on. Also, it would be of great interest to investigate how

the higher-order shell element performs in the context of continuum damage

evolution and fracture in shell structures.

• In Section 5, since the least-squares principle proved successful for Navier–

Stokes equations, which are not derivable from variational principles. Similar-

ity, it would be interesting to numerically investigate other equations like the

Langevian equation [97]. For these type of equations, the weighted-residual in-

tegral statements used in the development of conventional weak-form Galerkin

finite element models are not meaningful (i.e. they are not statements of mini-

mization of error due to the approximation of the field variables) when applied

to the Langevian equation. Since the higher-order formulation results in a
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better conservation of physical quantities, it would of great engineering impor-

tance to apply these methods for the analysis of flow through porous media,

Darcy’s flow and reservoir simulation. Also since the iterative penalization

strategy [34, 75] results in a better evolution of primary variables like pressure

and velocity, it can be applied to multi-phase fluid flow reservoir simulations.

• The higher-order spectral/hp formulations avoid interpolation errors in the

numerical schemes and make them more accurate and stable. For typical engi-

neering structures like beams, plates and shells it avoids all kinds of numerical

locking. For fluid flows, the combination of higher-order spectral/hp technology

with least-variational principles and iterative penalization schemes resulted in

better conservation of physical quantities (like dilatation, volume, mass) and

also in better evolution of primary variables like pressure and velocity. These

in-turn make the numerical schemes more accurate and stable. Due to the

improved stability and accuracy of numerical schemes for fluids and structures,

the proposed higher-order spectral/hp formulations can be extended to study

coupled fluid-structure interaction (FSI) problems [111] and moving-domain

Arbitrary Lagrangian Eulerian (ALE) problems [39, 27]. They can be used in

monolithic or staggered FSI schemes given in [123, 61].
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APPENDIX A

The Matlab code to (a) Generate element level B.C.’s and (b) Apply essential B.C.’s.

%------------------------------------------------------------------- 
%  
% Determine total number of boundary conditions (element- wise) and  
% pointers to element boundary conditions 
%  
%--------------------------------------------------------------------- 
  
% Initialize elemental total quantities 
ess1E_Total   = 0; 
ess2E_Total   = 0; 
tE_Total      = 0; 
  
% Initialize pointers to boundary conditions 
ess1E_Pointer   = zeros(mesh.NE+1,1); 
ess2E_Pointer   = zeros(mesh.NE+1,1); 
tE_Pointer      = zeros(mesh.NE+1,1); 
  
ess1E_Pointer(1,1)   = 1; 
ess2E_Pointer(1,1)   = 1; 
tE_Pointer(1,1)      = 1; 
  
% Determine number of boundary conditions 
for j = 1:1:mesh.NE 
    % Initialize pointers 
    ess1E_Pointer(j+1,1)   = ess1E_Pointer(j,1); 
    ess2E_Pointer(j+1,1)   = ess2E_Pointer(j,1); 
    tE_Pointer(j+1,1)      = tE_Pointer(j,1); 
     
    for i = 1:1:mesh.ETYPE*mesh.ETYPE         
        % Number of ess1 boundary conditions 
        for k = 1:1:boundary.ess1_Number 
            if ( mesh.ECON(i,j) == boundary.ess1_Nodes(k,1) ) 
                ess1E_Total          = ess1E_Total + 1; 
                ess1E_Pointer(j+1,1) = ess1E_Pointer(j+1,1) + 1; 
            end 
        end         
  
        % Number of ess2 boundary conditions 
        for k = 1:1:boundary.ess2_Number 
            if ( mesh.ECON(i,j) == boundary.ess2_Nodes(k,1) ) 
                ess2E_Total          = ess2E_Total + 1; 
                ess2E_Pointer(j+1,1) = ess2E_Pointer(j+1,1) + 1; 
            end 
        end         
    end 
     
    % Number of traction boundary conditions 
    for k = 1:1:boundary.t_Number 
        if ( j == boundary.t_Elements(k,1) ) 
            tE_Total          = tE_Total + 1; 
            tE_Pointer(j+1,1) = tE_Pointer(j+1,1) + 1; 
        end 
    end 
end 

%------------------------------------------------------------------- 
%  
% Create pointers to the boundary conditions for each element 
%  
%------------------------------------------------------------------- 
  
% Initialize quantities 
ess1E_Nodes   = zeros(ess1E_Total,1); 
ess2E_Nodes   = zeros(ess2E_Total,1); 
tE_Sides      = zeros(tE_Total,1); 
  
% Initialize quantities 
ess1E_Values   = zeros(ess1E_Total,1); 
ess2E_Values   = zeros(ess2E_Total,1); 
txE_Values  = zeros(tE_Total,1); 
tyE_Values  = zeros(tE_Total,1); 
  
% Initialize counters 
i1 = 1; i2 = 1; i3 = 1; 
  
% Determine number of boundary conditions 
for j = 1:1:mesh.NE 
    for i = 1:1:mesh.ETYPE*mesh.ETYPE         
        % Number of ess1 boundary conditions 
        for k = 1:1:boundary.ess1_Number 
            if ( mesh.ECON(i,j) == boundary.ess1_Nodes(k,1) ) 
                % Assign values 
                ess1E_Values(i1,1) = boundary.ess1_Values(k,1); 
                ess1E_Nodes(i1,1)  = i; 
                % Update counter 
                i1 = i1 + 1; 
            end 
        end         
  
        % Number of ess2 boundary conditions 
        for k = 1:1:boundary.ess2_Number 
            if ( mesh.ECON(i,j) == boundary.ess2_Nodes(k,1) ) 
                % Assign values 
                ess2E_Values(i2,1) = boundary.ess2_Values(k,1); 
                ess2E_Nodes(i2,1)  = i; 
                % Update counter 
                i2 = i2 + 1; 
            end 
        end         
  
    end 
     
    % Number of traction boundary conditions 
    for k = 1:1:boundary.t_Number 
        if ( j == boundary.t_Elements(k,1) ) 
            % Assign values 
            txE_Values(i3,1) = boundary.tx_Values(k,1); 
            tyE_Values(i3,1) = boundary.ty_Values(k,1); 
            tE_Sides(i3,1)   = boundary.t_Sides(k,1); 
             
            % Update counter 
            i3 = i3 + 1; 
        end 
    end 
end 

%------------------------------------------------------------------- 
%  
% Store all boundary condition data using a Matlab data structure 
%  
%--------------------------------------------------------------------- 
  
% ess1 boundary conditions 
boundaryElem.ess1E_Total   = ess1E_Total; 
boundaryElem.ess1E_Pointer = ess1E_Pointer; 
boundaryElem.ess1E_Nodes   = ess1E_Nodes; 
boundaryElem.ess1E_Values  = ess1E_Values; 
  
% ess2 boundary conditions 
boundaryElem.ess2E_Total   = ess2E_Total; 
boundaryElem.ess2E_Pointer = ess2E_Pointer; 
boundaryElem.ess2E_Nodes   = ess2E_Nodes; 
boundaryElem.ess2E_Values  = ess2E_Values; 
  
% Traction boundary conditions 
boundaryElem.tE_Total   = tE_Total; 
boundaryElem.tE_Pointer = tE_Pointer; 
boundaryElem.tE_Sides   = tE_Sides; 
boundaryElem.txE_Values = txE_Values; 
boundaryElem.tyE_Values = tyE_Values; 

%------------------------------------------------------------------- 
%  
% Apply essential boundary conditions to element equations 
% mesh.DFPN =2 (DFPN: Degree of Freedom Per Node)  
% KE() : Element Stiffness Matrix 
% FE() : Element Force Vector 
% 
%------------------------------------------------------------------- 
  
% Essential boundary conditions: ess1 
val1 = boundaryElem.ess1E_Pointer(n,1); 
val2 = boundaryElem.ess1E_Pointer(n+1,1) - 1; 
  
for i = val1:1:val2 
    % Temporary constants 
    j  = mesh.DFPN*boundaryElem.ess1E_Nodes(i,1) - 1; 
    c1 = KE(j,j); 
    % Modify element matrix and force vector 
    KE(j,:) = zeros(1,mesh.DFPN*mesh.ETYPE*mesh.ETYPE); 
    FE      = FE - boundaryElem.ess1E_Values(i,1)*KE(:,j); 
    KE(:,j) = zeros(mesh.DFPN*mesh.ETYPE*mesh.ETYPE,1); 
    KE(j,j) = c1; 
    FE(j,1) = c1*boundaryElem.ess1E_Values(i,1); 
end 
  
% Essential boundary conditions: ess2 
val1 = boundaryElem.ess2E_Pointer(n,1); 
val2 = boundaryElem.ess2E_Pointer(n+1,1) - 1; 
  
for i = val1:1:val2 
    % Temporary constants 
    j  = mesh.DFPN*boundaryElem.ess2E_Nodes(i,1); 
    c1 = KE(j,j); 
    % Modify element matrix and force vector 
    KE(j,:) = zeros(1,mesh.DFPN*mesh.ETYPE*mesh.ETYPE); 
    FE      = FE - boundaryElem.ess2E_Values(i,1)*KE(:,j); 
    KE(:,j) = zeros(mesh.DFPN*mesh.ETYPE*mesh.ETYPE,1); 
    KE(j,j) = c1; 
    FE(j,1) = c1*boundaryElem.ess2E_Values(i,1); 
end (a)(b)

% End of subroutine 
end 
  %-------------------------------------------------------------------

 % 
 % End of subroutine

 % 
 

%
-------------------------------------------------------------------
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APPENDIX B

The components of the viscoelastic force vector Q̃ on the where right hand side of

Eq. (3.36) are given by

1Q̄1
i =

∆tN−1

2

∫ xb

xa
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i (tN) introduced in the above equations can be expressed as
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2X̄ lm
i (tN) = −∆tN−1

4

El
τEl
D0

dψi (xm)

dx

dψj (xm)

dx

(
e
−∆tN−1

τE
l

∂w0 (xm, tN−1)

∂x
∆

(2)
j (tN−1)

+
∂w0 (xm, tN)

∂x
∆

(2)
j (tN)

)
Wm + e

−∆tN−1

τE
l

2X̄ lm
i (tN−1) (B.2b)
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4X̄ lm
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9X̄ lm
i (tN) = −∆tN−1

2

El
τEl
D6 c

2
1

dψi
dx

dψj
dx

(
e
−∆tN−1

τG
l ∆

(3)
j (tN−1) + ∆

(3)
j (tN)

)
Wm

+ e
−∆tN−1

τG
l

9X̄ lm
i (tN−1) (B.2i)
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