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ABSTRACT 

 

Over the last few decades, miniaturization of the product became a necessity for 

many industries to achieve successful technological development, satisfy customer 

needs, and stay economically competitive in the market.  Thus, many medical, 

aerospace, and electronic devices tend to decrease in size. Along with the strong demand 

for miniaturization, new cutting-edge micromanufacturing techniques are developing in 

order to produce microcomponents with a smooth surface finish and high dimensional 

accuracy. In the medical industry, some devices require manufacturing of fluidic 

microchannels on biocompatible materials for transportation of exact amount of 

medicine to a defined location. Often such microchannels must be manufactured to 

achieve a high aspect ratio, a submicron surface finish, and an anisotropic controlled 

profile. The fabrication of such channels on biocompatible materials still poses a 

challenge. 

This study developed micromanufacturing technique to produce the microchannels 

and satisfy all the requirements listed above. Computer controlled micromilling on a 

high speed machine system in minimum quantity lubrication was used to remove most 

materials and define a channel pattern.  Microchannels were machined with ball end 

mills of diameters from Ø152µm to Ø198µm on NiTi alloy, 304 and 316L stainless 

steels. Assessment of microchannel was performed with optical microscopy, scanning 

electron microscopy, and white light interferometry.  
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The theoretical surface roughness in ball end milling was derived using geometrical 

approach. The theoretical surface finish model was compared and validated with the 

experimental surface finish data. Meso- and macro-scale milling confirmed the validity 

of the model, but surface finish in micro-scale milling was measured to be a few orders 

of magnitude higher due to size effect and build-up edge. The build-up-edge was 

reduced when using AlTiN coated tools and milling in minimum quantity lubrication. 

The empirical surface roughness model obtained in this study shows the dependence of 

surface finish on chip load in micromilling. In order to further enhance the surface finish 

of milled microchannels additional finishing technique was identified. A separate study 

developed an effective electrochemical polishing technique to remove burrs and enhance 

surface finish of milled microchannels. When applying to 304, 316L stainless steel 

alloys and NiTi alloy, this hybrid technique can repeatedly produce microchannels with 

an average surface finish less than 100nm. 
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NOMENCLATURE 

 

Ad  Axial Depth of Cut (mm) 

D  Diameter of the Tool (mm) 

De  Effective Diameter of the Tool (mm) 

fr Feed Rate (mm/min) 

fsp Spindle Speed Frequency (Hz) 

ft Chip Load (mm/tooth) 

ftooth Tooth Passing Frequency (Hz) 

h Height of Pick in Radial Direction (mm) 

h1 Height of Pick in Axial Direction (mm) 

Hc Height of Cusp (mm) 

hm Critical Chip Thickness (mm)  

hmax Maximum Height of the Feed Mark (mm) 

N Spindle Speed (rpm) 

nt Number of Teeth 

R Radius of the Ball End Mill (mm) 

R0 Tool Radius (mm) 

R1 Radius of the Radial Section of the Tool at Particular Depth (mm) 

Ra Average Surface Roughness (µm) 

Rt Maximum Peak-to-valley Surface Roughness (µm) 

V Cutting Speed (m/min) 
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Ve Effective Cutting Speed (m/min) 

xG Coordinate Of Center of Gravity (mm) 

yG Coordinate Of Center of Gravity (mm) 
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1. INTRODUCTION  

 

Product miniaturization is an essential driving factor for many industries due to 

customer demands and high and efficient technological development. Smaller sizes of 

the components lead to many advantages such as smaller occupied space, lower energy 

consumption, lower material consumption, and better heat transfer due to the lower 

surface to volume ratio [1].  Therefore, many medical, aerospace, optical, 

communicative, automotive, and information devices tend to decrease in size. Along 

with the strong demand for miniaturization, the high dimensional accuracy and high 

surface quality of the miniature components is very often required. The production of 

such components requires cutting-edge micro-manufacturing technologies and 

techniques [2], [3].  

The manufacturing of many medical devices requires utmost precision and state-of-

the-art quality control. In the medical industry fluidic microdevices require 

manufacturing of small channels to transport precise doses of medicine or an exact 

amount of biofluid to prescribed locations. Fabrication of such microchannels on 

biocompatible materials is still a challenge when high aspect ratio, anisotropic profile, 

submicron surface finish, and controlled contour of the channel surface are required. 

Currently, manufacturing techniques such as laser machining and chemical etching are 

used to produce similar types of microchannels. However, a laser cannot produce 

microchannels with controlled anisotropic profile and an isotropic chemical etching 

process cannot produce high aspect ratio channels. In addition, chemical etching requires 
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intricate expensive mask and utilization of unique chemical solution for each material. 

This makes the etching process complex and time consuming.  

Conventional micromilling has the potential to be the most cost effective and 

efficient material removal processes. The micromilling with ball end mills in 

combination with electrochemical polishing can be used to economically manufacture 

fluidic microchannels with minimum surface damage. Depending on a system, 

micromilling could provide reasonable surface roughness, dimensional and geometric 

accuracy, and higher productivity compared to other micromachining techniques. Also, 

different engineering materials such as metal alloys, polymers, ceramics, and composites 

can be machined using similar tooling and procedure [4]. 

Although micromilling has been investigated, there is limited research work using 

microsize ball end mills. This research is part of a larger project to manufacture 

complex, deep, and smooth microchannels for medical applications.  

The main objectives of this research are: 

i. Develop and optimize micromilling techniques to produce complex, deep, and 

smooth microchannels on biocompatible materials. 

ii. Analyze and study surface finish after ball end milling on biocompatible 

materials. 

iii. Identify technique to enhance surface finish of milled microchannels. 

iv. Develop a model to predict surface roughness after ball end milling, validate it 

with experimental data, compare with other models from literature.  

The scope of this research includes: 
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i. Ball end milling with tools of diameters from Ø152µm to Ø9.525mm 

ii. Micromilling of channels on biocompatible materials such as NiTi alloy, CP 

titanium, 304 and 316L stainless steels. 

iii. Modeling of the surface roughness of micromilled surfaces. 
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2. LITERATURE REVIEW 

 

Various nontraditional fabricating processes and techniques have been and are still 

researched to manufacture micro-components, such as LIGA (a photo-lithography 

technique with utilizing of a synchrotron), laser, ultrasonic, ion beam, electron beam, 

and micro-electro discharge machining (EDM) [1], [5]. Laser micro machining is very 

complex and costly process. The disadvantage of the utilization of the laser is that the 

mechanical properties of the machined material can be changed near the heat affected 

zone. Electro discharge machining is another method that can be used for micro 

machining operations. The main drawback of this method is that it causes subsurface 

damage and results in rough surface finish, due to formation of recast layers [6]. 

Lithography-based micro electro mechanical systems (MEMS) process can be utilized to 

produce lower than micrometer size components. The drawback of this technique is that 

it is very slow and expensive, has low productivity, incapable to create complex 

geometries, and can be applied only to a few silicon based materials [3].  

Other traditional manufacturing processes that can be applied to produce miniature 

features are micromilling and microdrilling.  The micro components with sizes 10-

10,000 µm can be created using this method. The micromilling provides lower surface 

roughness and higher dimensional and geometric accuracy comparing to other 

micromachining techniques [7], [8]. Micromilling does not cause surface damage, as 

oppose to EDM and lithographic methods [9]. Also, manufacturing of the 3-dimensional 

complex components can be done using micro mechanical cutting process such micro 
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ball end milling, which is significant for the manufacturing of the microinjection molds 

and dies. Currently, limited research work has been done in the field of mechanical 

machining of micro- and meso-scale components; therefore, this field is of current 

interest for many researchers [1].  

The trends to manufacture smaller and more accurate components has been the same, 

since the early days of manufacturing [10]. In particular, the machining capability and 

accuracy improvement over time for last six decades can be observed in the Figure 1 

[11]. It can be seen from this figure that the accuracy of the different machining 

techniques has been enhancing significantly with time.   

 

 

 

 

Figure 1. Machining Capability over Time [11]. 
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2.1 Microfluidic Channels 

Recently, traditional drug delivery systems (DDS) have been intensively studied. 

Drug delivery systems are used to provide more efficient treatment for the patients by 

delivering precise doses of drug to the human body. Traditional drug delivery methods 

such as oral medication and liquid injection do not provide long drug duration in the 

human body and require repeated drug delivery. In addition, it is still a challenge to 

control precisely drug release rate while delivering drug with traditional methods.    

Recent development in micromanufacturing led to the investigation of new 

nontraditional drug delivery systems with microreservoirs and microchannels (Figure 2). 

In these microdevises, drug is placed in the microreservoirs until it is delivered to the 

body. The size of the microreservoirs can vary from 100µm to 1mm. The microchannels 

are used to release precise doses of drug dissolved in water in prescribed locations when 

the microdevice is engaged in aqueous environment. In this nontraditional drug delivery 

systems drug release rate can be accurately controlled by selecting number, proper 

geometry, and dimensions (length, width, and depth) of the fluidic microchannels [12]. 

In order to provide uniform fluidic flow of the biofluid, the channels should have high 

geometric accuracy and smooth surface finish. In addition, for implantable medical 

devices microchannels should be manufactured on biocompatible materials such 316L 

stainless steel, CP titanium, Nitinol, or PEEK polymers.  

Manufacturing of fluidic microchannels can be done using different manufacturing 

techniques such laser machining, lithography, chemical etching, and micromilling. Laser 

machining cannot be used when controlled anisotropic profile of the channel is required. 
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In addition, channels machined with laser usually have rough surface finish (Figure 3) 

[13].   

 

Figure 2. Microfluidic Drug Delivery Device [12]. 

 

 

 

 

Figure 3. SEM Images of Microchannel Patterns Machined on Anodic Alumina Film 

(Al2O3) with pulsed Nd:YAG Laser. Channel Depth 12μm –15μm, Power Density 

125 mW/cm
2
, Scan Depth 30 μm/s: (a) Microchannels at Regular Intervals; (b) 

Magnified View of a Microchannel; (c) Microchamber; (d) Microchamber with a 

Microchannel [13].  
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Chemical etching process cannot produce high aspect ratio channels and requires 

intricate expensive mask and utilization of unique chemical solution for each material. 

The conventional micromilling in combination with electrochemical polishing can be 

used to economically manufacture fluidic microchannels with minimum surface damage. 

Depending on a system, micromilling could provide reasonable surface roughness, 

dimensional and geometric accuracy, and higher productivity comparing to other 

micromachining techniques.    

 

2.2 Micro vs Macro Machining 

The basic concepts, characteristics, and knowledge about micro mechanical 

machining were adopted and transformed from the macro machining domain. However, 

micro machining has much more challenges and constrains comparing to conventional 

macro machining for which many studies have been done, documented, and standardized 

[1]. For micromachining a lot of research is still to be done, focusing on the machining 

of the dimensions in the range 1 µm – 999 µm [14].  

The challenges associated with micromachining rise from size effect of miniaturized 

cutting tools, work pieces, and overall process. When dimensions of a microtool and 

depth of cut are on the same order of magnitude as the grain size of the machined 

material, anisotropy of grain’s mechanical properties and its crystallographic orientation 

influence the micro cutting process, which is not the case for the conventional macro 

cutting [10]. For conventional macro machining the cutting mechanism takes place when 

material of the workpiece is sheared at the tool tip and removed as a chip. For 



 

9 

 

micromachining the shear process at the tool tip is more complicated and depends on the 

degree of size effect, which is the effect observed when the depth of cut is on the same 

order as cutting edge radius.   

For micro cutting process chip-shear mechanism occurs at the tool edge, as opposed 

to the conventional macro cutting where chip-shear mechanism takes place at the rake 

surface of the tool [15]. In this case of micromachining the rake angle has a high 

negative value, which leads to the serious increase in the shear force on the tool, high 

surface roughness, elastic recovery of the machined surface, and the plowing during 

micromachining [1]. The difference in the macro and micro cutting mechanisms with 

respect to the rake angle can be seen in the Figure 4.  

 

 

 

 

Figure 4. Difference in the Geometry for Macro (a) and Micro Machining (b) [14]. 

 

 

 

 According to Liu et al [7], [8] and Kim et al [16] the larger amount of elastic-plastic 

deformation occurs on the work material during micromachining due to the large rake 

angle, than during macro mechanical machining. The plastic deformation results in more 

difficult separation of the material because material is work-hardened by increased 
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dislocation density. Due to the large rake angle, the rise in the force results in a faster 

wear, an increase in the deflection and vibrations, and a build-up edge formation on the 

micro tools [1].  

Very often, the failure of the micro tools occurs when chip thickness is smaller than 

cutting edge radius, which is about 1-3µm for micro tools [17]. In some sources the 

critical chip thickness was studied and its critical values were suggested. When chip 

thickness is lower than critical chip thickness during micro machining, the cutting 

process does not occur, since material is not removed and is only deformed elastically. 

In other words, depth of cut and chip load during micro machining should be larger than 

the critical chip thickness to provide cutting. The dependence of the chip formation on 

the critical chip thickness is shown in the Figure 5. It is seen from the Figure 5 (a) that 

when uncut chip thickness (h) is lower than critical chip thickness (hm), material of the 

workpiece is not removed and is only deformed elastically [1]. Thus, plowing of the 

cutting edge on the surface of the workpiece occurs, which leads to bad surface 

roughness, faster wear of the tool, and can cause surface defects [18].  

In the case where critical chip thickness (hm) is slightly lower than uncut chip 

thickness (h) cutting occurs by shear process with a little portion of the elastic 

deformation (Figure 5(b)). This cutting mechanism results in real depth of cut being 

lower than required depth of cut, since some portion of the material recovers elastically 

during micro machining. Finally, if critical chip thickness (hm) is smaller than uncut 

chip thickness (h), cutting process occurs with minimum and insignificant elastic 

deformation (Figure 5(c)) [7], [8], [16].  
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Figure 5. Dependence of the Cutting Process on the Critical Chip Thickness (Re – radius 

of tool edge, h – uncut chip thickness, hm  - critical or minimum chip thickness) [1]. 

 

 

 

Several researchers have studied the critical chip thickness. The critical chip 

thickness can be determined using either finite element analysis or experimental results 

[19]. Vogler et al [19] utilized finite element analysis to find critical chip thickness for 

micromachining of steel. According to their study, the critical chip thickness can be 

estimated as 20-30% of the cutting edge radius during micromechanical machining of 

the pearlite and ferrite steel. However, Shimada et al [20] determined that critical chip 

thickness is about 5 % of the tool edge radius during micro machining of the aluminum 

and cooper. It is clear that there is no standard definition for minimum or critical chip 

thickness and a lot of research is still to be conducted in this area.  Liu et al [21] used 

experimental approach in their study to estimate the critical chip thickness for 

micromachining. They concluded that when thrust force increases abruptly, it indicates 

the crossing of the critical value of the chip thickness and shifting form plowing 

predominant forces to shearing predominant forces, which is shown in the Figure 6.  
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Figure 6. Chip Thickness and Force Correlation in Micromachining of Perlite [1]. 

 

 

 

One more important difference between macro and micromachining is that 

microstructure of the work piece plays more significant role during microcutting process 

than it does during macrocutting. Very often during micromachining, the work piece 

can’t be considered as isotropic material [10], [22]. The microstructure of the work piece 

has a noticeable influence on the formation of the surface, surface finish, and cutting 

forces during micromilling of the multi-phase materials [19], [23]. The cutting 

mechanism of the polycrystalline, single crystal, and amorphous materials is very 

distinctive. During microcutting of the polycrystalline materials the cutting force 

changes significantly when tool cutting edge goes through grain boundary (Figure 7). On 

the other hand, while micromachining the single crystal or amorphous material the 

cutting forces do not change significantly. The influence of the microstructure and 

anisotropy of the grains in the polycrystalline materials can be neglected when the grain 
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size is ten times lower than depth of cut, which is always the case for macro mechanical 

machining [10], [24].   

 

 

 

 

Figure 7. Fluctuation of the Principal Cutting Force Depending on the Grain Boundary. 

Material of the work piece - Al alloy [10]. 

 

 

 

Another significant difference between micromachining and macromachining is a 

tool runout. One of the main reasons for the tool runout lies in the misalignment between 

axis of the tool and the axis of the spindle of the milling machine. For the conventional 

macromachining tool runout is minor issue, since its value is much smaller comparing to 

the tool size and is very often neglected. On the other hand, for the micromachining 

where size of the tool is lower than 1 mm and spindle speed can reach 100,000 rpm the 

tool runout can be a significant problem. Even small deflection of the tool can cause the 

significant increase in the vibrations, accelerated wear, higher surface roughness, and 
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even sudden failure of the microtool during cutting. Therefore, additional attention 

should be given to the control of the tool runout prior to the beginning of the 

micromachining. One of the sources for the runout is tool holder. The utilization of the 

collet-type holders to secure micro tools provides lower value of the runout. The collet is 

a recommended type of tool holder comparing to the set-screw type holder during 

micromilling [1].    

Other common challenges that can be encountered during micromachining are 

difficulties with securing, handling, and setting up microtools and the work pieces on the 

milling machine, difficulties in monitoring and controlling of the process in real time, 

and the lack of the metrology standards [3].  Conventional methods for holding micro 

parts during micro machining operations often can’t be utilized. The forces needed to 

secure the work piece are also very low, since the cutting forces during micromachining 

operations are much lower than during conventional macro machining. Thus, the micro 

parts can be secured using the glue, double-sticky tape or heat activated wax glue [25].    

  

2.3 Micromilling 

Micro end milling is one the most productive and cost efficient micromachining 

processes, that can be used to produce 3-dimensional features with high accuracy and 

precision, smooth surface finish, and high material removal rate. The sizes of the 

tungsten-carbide micro end mills that are currently commercially available are as small 

as 25 µm. The micro end mills are currently used in the industry to produce micro parts 
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for micro molds and dies made of tool steel. Also they are utilized to machine micro 

parts for the medical implants [4].   

The schematic representation of the milling process is shown in the Figure 8. The 

cutting conditions that are controlled during milling operations are depth of cut, chip 

load (feed per flute), and cutting speed. As opposed to macromilling where the optimal 

cutting conditions have long been determined, documented, and can be selected from the 

reference books depending on different factors such as the material of the work piece, 

material of the cutting tool, desired surface finish, or tool life, there are no a standards 

for cutting conditions for micromilling operations. 

 

 

 

 

Figure 8. Schematic Representation of the Milling Process [26]. 

 

 

 

There are two different kinds of depth of cut for micro end milling operations: radial 

depth of cut (Rd) and axial depth of cut (Ad), which are shown in the Figure 8. The depth 

of cut that is used during micromilling varies from a few microns to hundreds 

micrometers depending on the diameter of the tool and material of the work piece. For 

(Rd) 

(Ad) 
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example, Schueler et al [18] performed micro end milling of titanium alloy Ti6A4V with 

tungsten carbide tool Ø48µm using axial depth of cut of 40µm and radial depth of cut 

2µm. Ozel et al [27] used axial depths of cut 40µm, 70µm, and 100µm for slot 

micromilling of the same titanium alloy Ti6A4V with tungsten carbide micro end mill 

Ø381µm.   

The feed in milling operations is usually defined as a feed per tooth or flute, and it is 

called chip load (ft). The units for the chip load are µm/flute or mm/tooth. Chip load is a 

parameter that shows the thickness of the chip removed by one tooth of the tool per one 

revolution. The feed rate is another cutting parameter that can be calculated for end 

milling using following equation [28]: 

         (2.1) 

where 

fr : feed rate (mm/min) 

N : spindle speed (rpm) 

nt : number of teeth 

ft : chip load (mm/flute) 

Cutting speed (V) is a linear speed at which the cutting edge is moving while 

spinning on the outside diameter of the mill. The units of the cutting speed are m/min. 

The relationship between cutting speed, diameter of the milling cutter and spindle speed 

is represented by following equation [28]: 

       (2.2) 

where 
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N : spindle speed (rpm) 

V : cutting speed (mm/min) 

D : diameter of milling cutter (mm) 

The tool is exposed to two cutting forces during slot end milling that are shown in 

the Figure 9. The force Fx is directed in the opposite direction to the feed. The second 

force Fy is directed in the normal direction to the cutting edge. Both forces increase 

when the feed rate increases during end milling. The cutting forces can be determined by 

the direct measurements using different types of dynamometers or can be predicted 

using finite element models [4]. 

Finite element models (FEM) are often utilized to predict cutting forces, chip 

formation, stress state and the temperature at the cutting zone. The prediction of the 

cutting forces for micro milling is an important, since it provides ability to estimate the 

deflection of the microtool. The tool deflection is one of the main reasons for low 

accuracy of the machined part, faster tool wear, and sudden failure of the tools [29]. 

 

 

  

 

Figure 9. Schematic Representation of the Direction of the Cutting Forces during End 

Milling of the Slot [29].    
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Ball end mills, or ball nose milling cutters, are outstanding cutting tools for 

machining of the complex 3-dimensional surfaces using the machine tools with 

computer numerical control (CNC). The ball end milling is frequently utilized to 

produce parts with complex configurations and shapes such as medical implants, molds 

and dies [30]. The configuration and shape of the of the ball nose end mill results in 

effective cutting process and provides ability to cut material from any angle and 

direction. The cutting edge of the tool starts at its tip and evolve into the helical [31]. 

Figure 10 shows a complex 3D statue that was machined on the 5 axis CNC machine 

tool with micro ball end mill [10]. 

 

 

 

 

Figure 10. Micro Statue Machined with Ball End Micro Mill on 5 Axis CNC Machine 

Tool [10]. 

 

 

 

Cutting speed is not constant along the cutting edge of the tool during ball end 

milling process. The magnitude of the cutting speed is close to zero at the tool tip, and it 
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rises in the direction towards the maximum diameter of the tool. When axial depth of cut 

is lower than radius of the ball end mill, the effective diameter (De) of the tool must be 

considered to estimate spindle speed.  The effective diameter in ball end milling is 

shown in the Figure 11.  The effective diameter of the tool depends on two parameters – 

tool radius and axial depth of cut, and can be determined using following equation [31]: 

    √   (    )  (2.3) 

where 

De : effective diameter of the tool (mm) 

R : radius of the ball nose end mill (mm) 

Ad : axial depth of cut (mm) 

 

 

 

 

Figure 11. Effective Diameter De for Ball End Milling.  
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When axial depth of cut is smaller than the radius of the ball end mill, the effective 

cutting speed (maximum cutting speed) should be calculated taking into account 

effective diameter of the tool [31]: 

        (2.4) 

where 

Ve : effective cutting speed (mm/min) 

De : effective diameter of the tool (mm)  

N : spindle speed (rpm) 

When ball nose end mill is used to machine flat surface with tool trajectory in zigzag 

pattern, unmachined stripes will be produced on the flat machined surface. These strips 

or cusps are created between each two neighboring passes of the tool and result in the 

high surface roughness in the direction perpendicular to the feed (Figure 12). The height 

of the cusp (Hc) can be estimated according to the equation [31]: 

     √   (    )  (2.5) 

where 

Hc : height of cusp (mm) 

R : radius of the ball nose end mill (mm)  

Rd : radial depth of cut (mm)  

In contrast to the ball end milling, when flat surface is machined with flat end mill 

the cusps are not created on the machined surface. Therefore, the ball end milling is not 
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recommended for zigzag machining of the flat surfaces when the final product requires 

smooth surface finish.    

 

 

 

 

Figure 12. Cusp Height Hc for Zigzag Ball End Milling of the Flat Surface.  

 

 

 

2.4 Surface Roughness after Micromilling 

Smooth surface is often required on components for many medical and aerospace 

applications. Surface roughness for macromilling operations was understood and could 

be predicted using recommended cutting conditions from many reference books. On the 

other hand, very limited work has been done to understand controlling factors of surface 

roughness in micromilling. Usually conventional macro milling processes do not provide 

smooth surface finish, thus, finishing processes such as grinding and polishing are used 

afterwards. The components that are produced by micromilling processes are very tiny in 

size, therefore, finishing processes are difficult to apply. Rough and finishing milling 

passes and electrochemical polishing can be utilized to provide a smooth surface finish. 

In conventional end milling, surface roughness usually depends on geometry of the tool, 

Ball end mill 

Workpiece 
Hc 

Rd 
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condition of the tool, and cutting conditions. Some cutting conditions, such as feed or 

chip load, have the most significant effect on the surface finish, others, such as depth of 

cut and cutting speed, have less impact. However, the dependence of surface finish on 

cutting conditions in micro milling has not yet been clarified and a lot of research is 

currently conducted in this area [26].   

Shizuka et al [26] conducted a study to determine the effect of feed and depth of cut 

on surface roughness during down-cut micro end milling. In their experiment they 

performed wet micro milling on cold worked mold steel (SLD11) with TiAlN coated 

tungsten carbide end mill with diameter Ø900µm. Different chip loads, axial and radial 

depths of cut were used in their experiment.  The results of the experiments are shown in 

the Figure 13. It is seen from the Figure 13(a) that the surface roughness in micro milling 

does not depend significantly on feed as it does in conventional macro milling.  Also, the 

axial depth of cut does not have an influence on the surface finish (Figure 13(b)). In 

contrast to feed and axial depth of cut, radial depth of cut has the most significant impact 

on the surface roughness, and it increases with radial depth of cut (Figure 13(c)). It can 

be seen from the Figure 13(c) that surface roughness stars to deteriorate when value of 

radial depth of cut rises above the value of tool radius (450 µm). It happens because 

cutting forces increase considerably, which leads to the tool deflection and chatter 

vibrations.  Therefore, according to this study, the radial depth of cut should be 

considered as criterion which causes deterioration of the surface roughness during down 

micro end milling of flat surfaces [26].     
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(a)                                         (b)                                             (c)   

Figure 13. Relationship between Chip Load, Axial Depth of Cut, Radial Depth of Cut, 

and Surface Roughness [26]. 

 

 

 

Tsuda et al [2] investigated the influence of the flood cooling fluid and cutting speed 

on the surface finish during micro milling of Ti6Al4V titanium alloy with tungsten 

carbide flat end mill. During their experiments the surface of the workpiece was covered 

in water-insoluble cutting fluid. The results that they obtained are shown in Figure 14. Rz 

type of surface roughness rises when machined distance increases during dry cutting. In 

contrast, when coolant is applied, the surface finish does not vary significantly with 

machined distance. Also, the surface finish of the workpiece machined with higher 

cutting speed (198 m/min) is better Rz=0.37µm than for surface machined with lower 

cutting speed (51 m/min) Rz= 0.6µm. It can be concluded from the results shown in the 

Figure 14 that the utilization of the higher cutting speed while micromilling of Ti6Al4V 

alloy results in the effective machining process and better surface finish. Also, cooling 

Chip load [µm] 



 

24 

 

fluid should be always applied when smooth surface roughness is needed, since it 

reduces the tool wear and results in better surface finish of machined component [2].    

 

 

 

 

Figure 14. Effect of Cutting Distance on Rz Surface Roughness for Dry and Wet 

Micromilling of Ti6Al4V alloy [2]. 

 

 

 

Ozel et al [27] studied the effect of the cutting speed, feed and depth of cut on the 

surface finish during dry slot micromilling of Ti6Al4V titanium alloy with uncoated 

tungsten carbide and CBN coated flat end micro mills (Ø381µm, Ø508µm, and 

Ø635µm). The results of their study are shown in the Figure 15 [27].  It is seen form the 

Figure 15 (a) that when the cutting speed increases the surface roughness decreases for 

the microtools with diameter Ø508µm and Ø635µm. However, for the tool with 

diameter Ø381µm the correlation between cutting speed and surface roughness is 

reversed.  Figure 15 (b) shows that the effect of the feed on surface finish is less 

significant than effect of the cutting speed. Finally, the minimum depth of cut results in 

the best surface finish, as shown in Figure 15(c). 
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    (a)                                            

 

    (b)          

 

(c) 

Figure 15. Effect of Cutting Speed, Feed, and Axial Depth Cut on the Surface 

Roughness for Dry Micromilling of Ti6Al4V Titanium Alloy [27].  
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Li et al [32] studied the influence of the tool wear on the surface finish during 

micromilling. In their experiment they used Ø100µm micro end mill for dry machining 

of the slots in the copper. The tool wear usually depends on the cutting speed and 

material removal volume. Consequently, the surface roughness is affected by these 

parameters as well. According to their study, surface roughness measured at the bottom 

of the machined slots was significantly affected by the tool wear. The increase of surface 

roughness with increase of machining length is shown in the Figure 16. According to the 

Figure 16 the surface roughness rises from Ra=144nm after machining of 3 slots (Figure 

16 (a)) to Ra=535nm after machining of 90 slots (Figure 16 (c)) as tool wear progresses.  

 

 

 

 

Figure 16. Surface Topography of the Machined Slots: (a) after 3
rd

 Slot Ra=144nm; (b) 

after 45
th

 Slot, Ra=196nm; (c) after 90
th

 Slot, Ra=535nm [32].   

 

 

 

According to the plot in the Figure 16 the change of surface roughness with material 

removal volume can be observed in four stages. At the first stage there is no significant 

tool wear, thus, surface roughness does not vary a lot.  At the second stage surface 

roughness increases promptly from Ra=148.5nm to Ra=345.84nm, which corresponds to 
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the fast wear of the microtool. There is no apparent increase in surface roughness at third 

stage, which means that the wear of the tool does not change significantly – stable stage. 

Finally, at the fourth stage surface roughness raises greatly from Ra=345nm to 

Ra=597.3nm, which conforms to the significant increase in the tool wear and approach 

of the breakage [32]. 

Also, it is worth mentioning, that surface roughness measured along the center line 

of the channel bottom is maximum when tool is new or in a good condition, since there 

is a largest value of the feed rate along the center line (Figure 17(a)). However, as the 

wear of the microtool progresses, it is not the case anymore, and maximum surface 

finish can be observed in any location of the bottom surface, since it starts being affected 

by the wear geometry of the micromill (Figure 17(b) and (c)) [32]. 

Figure 18 shows the effect of the cutting speed, material removal volume, and depth 

of cut on the surface roughness in dry micromilling of OFHC copper with 0.1mm 

diameter tungsten carbide microtool. It is clear from the Figure 18 that cutting speed and 

material removal volume have the greatest effect on the surface roughness. The surface 

roughness does not vary significantly with increase of depth of cut from 6 µm to 20 µm. 

The work of Li et al [32] concludes that tool wear during micromilling has more 

significant effect on the surface finish compared to the macromilling. Thus, cutting 

parameters such as cutting speed and material removal volume should be considered for 

evaluation of the final surface finish, because they are the main parameters that 

determine the progress of the tool wear [32].  
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                                      (a)                                            

 
                                      (b)                        

 
                                      (c)                        

Figure 17. SEM Pictures of the Bottom Surface of the Slots: (a) after 3
rd

 slot; (b) after 

45
th

 slot; (c) after 90
th

 slot [32]. 
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Figure 18. Dependence of Ra Surface Roughness on the Spindle Speed (V, rpm), Depth 

of Cut (DOC, µm), and Material Removal Volume (MR, mm
3
) [32].  

 

 

 

Schueler et al [18] also investigated the surface characteristics during dry slot micro 

end milling of Ti6Al4V and Ti6Al4Nb titanium alloys with tungsten carbide micro end 

mills Ø48µm. They conducted micromachining experiments with three different chip 

loads 0.84µm/tooth, 0.168µm/tooth, and 0.252µm/tooth, and concluded that feed rate 

does not have a significant effect on the surface finish. For these three different cutting 

conditions the average value of the surface roughness of the bottom of the slot was 

approximately Ra=100nm. They also concluded that the surface finish of the side walls 

in the machined slots obtained during down milling is much better than surface finish 

generated during up milling process. Therefore, when low surface roughness of the side 

walls of the slot is desired, finishing down milling passes should be applied.    
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Hamaguchi et al [33] investigated the effect of tool tilting angle on the surface 

roughness in dry micro ball end milling. Four experiments were conducted with four 

different tilting angles of spindle 0°, 15°, 30°, and 45°. Tungsten carbide micro ball end 

mill of diameter Ø200µm was used to machine hardened stainless steel with constant 

spindle speed and chip load, 120,000rpm and 10µm/tooth respectively. The dependence 

of surface roughness on the cutting distance and tilting angle of the spindle is shown in 

the Figure 19.  

 

 

 

 

Figure 19. Dependence of Surface Roughness on Tool Tilting Angle and Cutting Length 

[33].  

 

 

 

According to the Figure 19 the values of surface roughness are very similar for 

machining with tilting angles 15°, 30°, and 45° and they do not change significantly after 

milling of 10m distance. However, the surface roughness with angle 0° decreases after 

6m of machining. They concluded, that the decrease in the surface roughness occurs 

because the center wear progresses at the tip of the ball end mill where the cutting speed 

is close to zero. When center wear appears, the new flat cutting edges are created in the 
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tool geometry. Thus, micro ball end mill starts behave similarly to the flat end mill, 

which results in better surface finish. In general, it can be seen that tilting angle of 

spindle does not significantly affect surface roughness during micro ball end milling 

[33].  

As we can see from discussion above, surface roughness generation depends on 

many factors, such as cutting parameters, utilization of the finishing and rough passes, 

presence of coolant and its type, presence of coating on the tool, geometrical 

characteristics of the tool, presence of wear and build-up edge (BUE), and other 

parameters. A lot of studies have been done in modeling and predicting of the surface 

roughness during macro ball end milling operations. In most of those studies geometrical 

approach has been used to describe surface characteristics. According to the geometrical 

approach the main parameters that affect surface roughness are chip load and tool radius. 

Quintana et al [34] considered geometrical characteristics of the cut for mathematical 

modeling of the surface roughness in ball end milling process. According to their work, 

the maximum height of the mark (hmax) in the feed direction on the machined surface, 

which is shown in the Figure 20, can be estimated using following equation: 

     
  
 

 [         ]
 (2.6) 

where 

hmax : maximum height of the mark (mm) 

ft : chip load (mm/tooth) 

R : radius of the ball end mill (mm) 
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nt : number of flutes 

The plus sign in the denominator of equation (2.6) is used for up milling, and the 

minus sign is used for down milling. According to equation (2.6) when larger chip load 

and smaller tool radius are used, then rougher surface is resulted.  

 

 

 

 

Figure 20. Maximum Height of the Mark (hmax) in the Feed Direction in Ball End 

Milling. 

 

 

 

Other researchers in their work used new ridge method to derive mathematical model 

for predicting the surface roughness after ball end milling. They confirmed validity of 

their model with experimental results. According to their model the maximum height of 

the mark in the feed direction can be estimated as [35]: 

       √     
  (2.7) 

where 

hmax : maximum height of the mark (mm) 

Feed 

hmax 
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ft : chip load (mm/tooth) 

R : radius of the ball end mill (mm) 

According to the work of Jung et al [35] the maximum surface roughness (hmax) after 

ball end milling of the flat surface can be calculated as a sum of heights of scallops 

(Hmax,scallop) and cutters (Hmax, cutter) (Figure 21): 

                              
  
 

  
 
  
 

  
 (2.8) 

where 

hmax : maximum height of the mark (mm) 

R : radius of the ball end mill (mm) 

fp : radial depth of one path (mm) 

ft : chip load (mm/tooth) 

 

 

 

 

Figure 21. Surface Roughness Generation Prediction by Conventional Geometrical 

Model [35]. 
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For slot milling, when only one path is applied, scallops do not form, therefore, 

equation (2.8) can be modified as to obtain following equation [35], [36]: 

     
  
 

  
 (2.9) 

Another geometrical model that can be used for estimation of surface roughness Ra 

during ball end milling is given bellow [37]:    

   
      (   )

 

 
 (2.10) 

where 

Ra : surface roughness (mm) 

ft : chip load (mm/tooth) 

R : radius of the ball end mill (mm) 

All the mathematical models listed above consider only geometrical characteristics 

of the cut to predict surface roughness. Also, it was assumed that the tool is in a good or 

nearly new condition. However, as the tool wear occurs and build-up edge forms during 

machining, it leads to the change of the tool geometry. Thus, the surface roughness starts 

being affected by these changes in tool geometry, and the machined surface becomes 

rougher. Li et al [32] created a model for surface roughness prediction during micro flat 

end milling that includes effect of tool wear. The toolwear progresses with increasing of 

cutting speed and material removal volume, which leads to the deteriorating effect on the 

surface finish. The surface roughness model with effect of wear is given below [32]: 

           (2.11) 
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            (    ) (2.12) 

         
      (2.13) 

where 

KRa     : coefficient that takes into account effect of the wear on surface roughness  

Ra0     : theoretical surface roughness predicted by geometrical model (mm) 

V     : cutting speed (mm/min) 

MR     : material removal volume (mm
3
) 

CRa, m, n : coefficients from Taylor’s model, that are obtained empirically for a 

particular cutting conditions 

Li et al [32] validated their model shown in equations (2.11) - (2.13) and 

experimentally determined coefficients CRa, m, n for micro slot milling of OFHC Copper 

with Ø100µm tungsten carbide flat end mill. The equation (2.13) was modified to the 

following equation: 

            
            (2.14) 

 

2.5 Burr Formation in Micromilling  

The burrs formed during micromilling are very small in size and are much more 

difficult to be removed compared to the larger burrs that form after macromilling. 

Although, deburring techniques such as electrochemical polishing can be utilized to 

remove micro burrs, they require consumption of additional machining time and are 

costly [18].  It is very difficult to prevent burr formation, but it can be reduced when 
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applying proper cutting conditions such as machining in minimum quantity lubrication 

and utilization tools with hard coatings [27].  

Hashimata et al [38] in their study suggested classification for different types of 

burrs that can form during slot milling. The types of burrs depend on their location and 

are shown in the Figure 22. The burrs that are formed at the edge of the slot floor when 

tool enters or exits the work piece are called entrance and exit burrs, respectively. 

Similarly, the burrs that are created on the side edges, in the beginning and the end of the 

slot, are called entrance and exit side burrs, respectively. Finally, the type of burr that is 

formed on the top edge of the channel during slot milling is called top burr.     

 

 

 

 

Figure 22. Types of Burrs Formed during Slot Milling [38]. 

 

 

 

According to Schueler et al [18], all listed above types of burrs form during slot 

micro end milling of Ti6Al7Nb titanium alloy. Figure 23 shows burrs that were formed 
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during slot micro end milling of Ti6Al7Nb with tungsten carbide micro end mill of 

diameter Ø48µm. They observed that the size of the top burrs is much large in 

micromilling compared to macromilling due to the size effect. During slot micromilling 

material is moved towards the top surface of the workpiece by high compressive stress, 

which leads to the formation of the top burrs. The size of the exit and entrance burrs are 

very similar and are smaller than size of the top burrs. However, exit side burrs are 

larger than the entrance side burrs. According to their study, the burr formation and its 

size are not affected by the method of milling – down or up milling, which can be seen 

from Figure 24 [18]. 

 

 

 

 

Figure 23. Types of Burrs Formed during Slot Micro End Milling of Ti6Al7Nb Titanium 

Alloy (Axial Depth 20µm; Cutting Speed 9.05 m/min, Chip load 0.084 µm/tooth) [18].   
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Figure 24. Effect of the Milling Method (Up and Down Milling) on the Burr Formation 

during Slot Micro Milling of Ti-6Al-7Nb (Axial Depth 20µm; Tool Diameter 48µm; 

Cutting Speed 9.05 m/min, Chip Load 0.084 µm/tooth) [18]. 

 

 

 

2.6 Cutting Fluid in Micro Machining 

Cutting fluid is applied during machining to increase tool life, enhance surface 

finish, decrease burr, and build-up edge formation. When properly used, the coolant 

decreases temperature, decreases friction, and removes chips from the cutting zone. As 

opposed to the conventional macro machining, highly pressurized flood coolant cannot 

be used during micromachining, since high pressure of the cutting fluid can affect 

cutting process by deflecting the microtool. Therefore, new cooling technique such as 

minimum quantity lubrication (MQL) is used during micromachining [10].  

MQL is a cooling method where mist is sprayed from the nozzle on the tip of the 

cutting tool. Utilization of the MQL instead of the flood cooling or dry cutting condition 

leads to advantages such as effective wetting, better machined surface quality, lower tool 
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wear and build up edge formation, lower cost, lower environmental pollution, and lower 

health risk of the machinist [39].  Figure 25 shows slots machined on NiTi alloy and tool 

conditions after machining for two milling conditions: (a) cutting with MQL and (b) dry 

cutting. It can be seen form the figure that when MQL is used, the formation of burrs on 

the surface and the formation of the buildup edge on the tool decrease significantly [10]. 

Figure 26 shows how different cooling conditions affect the tool wear. It is obvious that 

the utilization of the MQL results in the lowest tool wear compared to the flood cooling 

and dry cutting conditions [40].    

Other study shows that when minimum quantity lubrication is properly used in 

micromilling of 316L stainless steel, the formation of build-up edge can be decreased 

and tool life can be significantly increased (up to 100 times) compared to dry machining 

(Figure 27) [41].  

 

 

 

 

Figure 25. Slot Micro Milling with MQL and without Coolant (Workpiece – NiTi, Axial 

Depth 10µm; Tool Diameter 400 µm; Cutting Speed 33 m/min, Chip Load 12 µm/tooth) 

[10]. 
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Figure 26. Tool Wear Dependence on the Different Cooling Conditions [40].  

 

 

 

 
 

Figure 27. Effect of Cutting Fluid on Tool Life in Micromilling of 316L Stainless Steel. 

10µm/tooth Chip Load, 0.348mm Axial Depth, 0.558mm Radial Depth, Ø1.016mm Tool 

[41]. 
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2.7 Tool Coatings  

Hard coatings are used on the tools to provide higher hardness and wear resistance of 

the outer layer of the tools. In the most cases the utilization of the coatings leads to more 

efficient cutting process, lower wear, lower burr size, less build-up edge, and smoother 

surface finish. Many types of physical vapor deposition coatings are available for micro 

tools. However, limited studies have been done on their effectiveness during micro 

machining operations. The thickness of the coating layer for micro tools is smaller 

(1.5±0.15µm) than it is for macro tools (2-3µm). The characteristics of different coating 

types are show in the Table 1 [14]. 

 

 

 

Table 1. Coating Characteristics [14]. 

 

 

 

 

Aramcharoen et al [14] investigated the effect of different types of coating such as 

TiN, CrN, TiCN, TiAlN and CrTiAlN on the wear, burr formation, and surface 

roughness during micro end milling of the tool steel with 500µm micro tools. The effect 
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of the coating on the chipping of the tool is shown in the Figure 28. According to their 

results, all types of coating decrease chipping of the tools, and coating TiAlN provides 

lowest chipping. Coating CrN shows low resistivity to chipping, since this kind of 

coating has higher chemical reactivity with tool steel – material of the workpiece. 

 

 

 

 

Figure 28. Effect of the Coating on the Chipping of the Micro Tools when Machining 

Tool Steel [14]. 

 

 

 

The effect of the different coating types on the surface roughness is shown in the 

Figure 29. There is no significant difference in the surface roughness between coated 

and uncoated tools at the beginning of the machining (0-5 mm machined length). 

However, at the end of the machining (after 20 mm machined length) the highest surface 

roughness is observed for the uncoated tools, and TiCN and CrN coated tools, because 

flank wear progresses on the uncoated tool, and the coating is removed from TiCN and 

CrN coated tools. 
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The average width of the burrs formed during micro milling with different coatings 

is shown in the Figure 30. In general utilization of the coating, except TiAlN coating, 

leads to the decrease of the of the burr size [14]. 

 

 

 

 

Figure 29. Effect of the Coating on the Surface Roughness when Machining Tool Steel 

[14]. 

 

 

 

 

Figure 30. Effect of the Coating on the Average Burr Size when Machining Tool Steel 

[14]. 
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3. EXPERIMENTS 

 

The scope of the experiments included:   

i. Developing and optimizing of milling process to fabricate smooth, deep, and 

complex microchannel patterns.  

ii. Analyzing of surface quality of milled channels after ball end milling.   

iii. Identifing technique to enhance surface finish of milled microchannels. 

iv. Developing a model to predict surface roughness after ball end milling, 

validating it with experimental data, and comparing with other models from 

literature.   

Ball end milling of the micro and meso channels were performed on different 

materials at different cutting parameters in minimum quantity lubrication. The 

experimental data was used to derive an empirical surface roughness model and 

compared against theoretical values.  

 

3.1 Materials  

Micromilling experiments were performed on NiTi alloy, 304 stainless steel, and 

316L stainless steel. Mesomilling experiments were performed on 6061-T6 aluminum 

alloy and 36A low carbon steel to complement surface finish data. The properties of the 

materials used for the experiments are given in the Table 2. Chemical compositions of 

alloys are provided in the Table 3. NiTi alloy and 316L stainless steel were selected for 

micromilling experiments because they are biocompatible materials and are often used 
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for medical applications. NiTi alloys are also very often used for medical implants and 

are of current interest for many researchers due to their shape memory effect caused by 

the martensitic phase transformations. Although biocompatible materials were the prime 

focus of the research other engineering materials such as 6061-T6 aluminum alloy and 

36A low carbon steel were machined to complement surface finish data. 

 

 

 

Table 2. Properties of the Materials of the Workpieces [6], [39], [42].  
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6061-T6 260-300 240-276 70-80 13 60 HRB 2.7 580 

304 SS 520-720 210 193 31 92 HRB 8 1450 

316L SS 485 170 193 40 95 HRB 8 1400 

A36 400-550 250 200 20 85HRB 7.8 1400 

NiTi 

(Martensitic) 

103-1100 70-140 21-69 60 50-60 HRC 6.45 1310 
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Table 3. Chemical Composition of Materials [42].  

Material Chemical composition (weight %) 

6061-T6 0.04-0.35 Cr, 0.15-0.40 Cu, <0.70 Fe, 0.8-1.2 Mg, 0.4-0.8 Si, <0.25 Zn, 

Remainder Al 

304 SS <0.08 C, 17.5-20.0 Cr, 8-11 Ni, <2 Mn, <1 Si, <0.045 P, <0.03 S, 

Remainder Fe 

316L SS <0.03 C, 16.0-18.5 Cr, 10-14 Ni, 2-3 Mo, <2 Mn, <1 Si, <0.045 P, <0.03 S, 

Remainder Fe 

A36  0.25-0.29 C, <0.2 Cu, <1.03 Mn, <0.28 Si, <0.04 P, <0.05 S, 

Remainder Fe 

NiTi 56.0 Ni, <2 Co, 

Remainder Ti 

 

 

 

3.2 Tools 

The experiments were conducted with micro ball end mills that were provided by 

Performance Micro Tool and Swiss-Tek coating. Some WC-Co mills were physical 

vapor deposited (PVD) with AlTiN by Swiss-Tek coating.  The mill size varied from 

Ø152µm to Ø3.175mm. The characteristics of the micro tools are given in Figure 31 and 

Table 4. The mechanical properties of the fine grained tungsten carbide material are 

given in the Table 5.The characteristics of meso tools are provided in the Table 6.  
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Figure 31. Two Flute Micro Ball End Mill [43].  

 

 

 

Table 4. Characteristics of the Micro Ball End Mills [43]. 

Part number TR-2-0060-BN SPS-2-0078-BN 

Material Tungsten carbide Tungsten carbide 

Coating condition Uncoated AlTiN coated 

Number of flutes 2 2 

Cutter diameter (D), mm            
              

   

Flute length (L1), mm        
              

       

Shank diameter (d), mm             
               

   

Total length (L), mm 38.1 (±0.127) 38.1 (±0.127) 

Cutting direction Right Hand Right Hand 

 

 

Table 5. Properties of the Fine-Grained Microstructure Tungsten Carbide (WC) [44]. 

Grain size, 

µm 

Cobalt 

content, 

mass % 

Hardness 
Fracture 

toughness 

(KIC), 

MPam
1/2 

Transverse 

rapture 

strength, 

GPa 

Young’s 

modulus, 

GPa HRA HV 

<0.6 7 94 1930 5.8 4.0 590 

 

 

 

 

 

D 

L1 

d 
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Table 6. Characteristics of the Meso Ball End Mills [45]. 

Part number 
 

07761133 
  

09137530 
 

Material Tungsten carbide Tungsten carbide 

Coating condition Uncoated AlTiN coated 

Number of flutes 4 4 

Cutter diameter, mm 3.175  3.175  

Flute length, mm 12.7  12.7  

Shank diameter, mm 3.175  3.175  

Total length, mm 38.1  38.1  

Tool type Right Hand Right Hand 

 

 

 

3.3 Equipment 

3.3.1 Milling Machine  

The HAAS OM2 milling machine was used to perform micro and meso milling 

experiments. The shank of the tools was mounted in the collet, which is recommended 

type of tool holder during micro milling, since it provides low value of tool runout. The 

HAAS milling machine had air bearing spindle and the three degrees of freedom (X, Y, 

and Z axes), which was sufficient to perform all experiments.  The detailed specification 

is provided in APPENDIX A.1.  

UNIST cool lubricator system was used on the HAAS OM2 milling machine to 

provide micro mist cooling and lubrication of the tool and workpiece during cutting 

process. The minimum quantity lubrication was used in order to increase tool life and 

provide lower surface roughness of machined components. The tool life is increased due 
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to reduction of heat generated in the cutting zone, and due to reduction of the friction 

between the chip and the tool, as well as between the tool and the workpiece. UNIST 

micro mist Coolube 2210 was utilized for all machining experiments. The specification 

of the UNIST cool lubricator system is provided in APPENDIX A.2.       

 

3.3.2 Metrology Equipment 

o Keyence CCD Laser Displacement Sensor LK-G Series 

The Keyence laser displacement sensor was used to measure the height of the washer 

with attached to it a single sided sticky aluminum foil, which was used to set z-offset of 

the micro tool prior to the machining. The laser was selected for the measurements since 

it provided high accuracy and repeatability, which was required for micromachining 

experiments. The resolution of the laser was 0.1 µm. The other reason for using Keyence 

laser is that it is a non-contact measuring tool, which was also required. It was important 

not to bend or not to make even micro dent on the foil attached to the washer while 

measuring its height, because the micro dent would affect the accuracy of setting of z-

offset, and, consequently, the accuracy of the machined channel. While setting z-offset 

of the tool, the micro end mill was moved to make contact with the foil attached to the 

top surface of the washer. Hard piece could not be used instead of the washer with the 

foil, since it was possible to break a fragile microtool with even a slight contact to any 

hard components. Thus, it was required to measure the height of the washer with 

aluminum foil only at its middle, because only this location could prevent the breakage 

of the tool while setting z-offset. In addition, Keyence laser was used to measure runout 
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and vibrations of the microtools. Detailed specification of Keyence CCD laser is 

provided in APPENDIX A.3.  

 

o Olympus STM 6 Optical Microscope 

Olympus STM 6 Optical Microscope was used for the tool wear measurements on 

micro and meso ball end mills, and for the observing the machined surfaces and their  

quality. DP 70 12.5 megapixel camera was installed on the optical microscope, which 

provided ability to take and save optical images. These images were transferred to 

SolidWorks software for further analysis. The resolution of the optical microscope was 

0.1µm, which was a sufficient for all measurements. Depending on the desired 

magnification, different objective lenses in the range 1.25x - 50x were used for the 

measurements. The objective lens and the table of the optical microscope could move 

along three axes (X, Y, and Z). The motion along each axis could be done in coarse or 

fine modes.    

 

o JEOL6400 Scanning Electron Microscope 

Scanning Electron Microscope (SEM) was utilized to observe the surface topography 

of machined micro slots and conditions of micro tools. It provided ability to create 

images with higher magnification than of those with optical microscope. Prior to 

measuring with SEM, the samples were cleaned ultrasonically in alcohol and dried with 

pressurized air in order to remove microchips and residues of oil from the micro mist. 

During measurements the samples were placed in the chamber, in which vacuum was 
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formed using a pump.  The detection of emitted secondary electrons (SE) and 

backscattered electrons (BSE) was used to create SEM images.    

  

o Zygo NewView 100 Interferometer 

Zygo interferometer was used to measure surface finish of the machined micro and 

meso channels. It was selected for surface roughness measurements because of its high 

accuracy. The accuracy on the order of hundredth of micron was required for the 

measurements. The resolution of the interferometer was 0.1 nm. Also, the utilization of a 

non-contact technique for surface roughness measurements was mandatory for micro 

components. In order to provide accurate measurements the surface of the samples had 

to be reflective, which was not an issue, since all materials of the work pieces were 

metals with high reflectivity. Zygo interferometer completely met above mentioned 

requirements.  

The computer with two monitors were installed and connected to the Zygo NewView 

100 microscope. Zygo joystick box was utilized to control direction and motion speed 

along X, Y, and Z axes during measurements. Zygo MetroPro software was used to 

analyze the measured three dimensional surface profiles and provided ability to measure 

different types of surface roughness such as Ra, Rz, and Rt. Also, it provided the 

information about the distribution of the surface heights on three different plots such as 

filled plot, oblique plot, and profile plot. Depending on the necessary magnification three 

sizes of objective lens (2.5x, 5x, and 10x) could be used on the Zygo microscope. 

Bipolar scanning depth (length) could be adjusted in range 10µm -100µm depending on 
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the measured profile. The detailed specification of Zygo NewView 100 interferometer is 

provided in APPENDIX A.4.       

 

o Raytec Rayngers ST Pyrometer 

Raytec Rangers ST pyrometer was used to measure temperature of the aluminum 

block when it was being heated up on the hot plate for gluing the samples to its surface 

with heat activated wax. The utilization of the infrared non-contact thermometer was 

required in order to provide safe measurements, since the temperature of the aluminum 

block was approximately 80°C and the temperature of the hot plate was about 400°C. 

The temperature of the hot surface was measured without touching it with pyrometer by 

detecting the amount of the emitted electromagnetic radiation. The detailed specification 

of the Raytec Rangers ST pyrometer is provided in APPENDIX A.5.         

 

3.4 Procedure 

3.4.1 Tools 

Prior to the machining the conditions of the new micro and meso tools were checked 

using optical microscope in order to detect any manufacturing defects and eliminate their 

effect on the experimental results. The images of each tool were taken using optical 

microscope before and after the experiments in order to keep records of tool conditions. 

Before making any observations using optical microscope, the tools were cleaned 

ultrasonically with isopropyl alcohol for 3-5 minutes and dried with pressurized air. 

Ultrasonic Cleaner Metason 200 was used to remove residues of oil, small pieces of dirt, 
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and small metal particles from the tools. The ultrasonic cleaner generated a high-

frequency voltage that produced ultrasonic waves in the alcohol, and led to the formation 

of the vacuum micro bubbles. When bubbles hit the surface of the tools, they broke and 

released a burst of energy. Due to the high release of energy, the dirt was removed from 

the tools. The specification of Ultrasonic Cleaner Metason 200 is provided in 

APPENDIX A.6.      

After cleaning and observation with the microscope, the tool was mounted in the 

collet of the HAAS OM2 CNC Milling Machine. This had to be done carefully to avoid 

any contact with the tool tip, since any contact could result in its damage or breakage. 

Then, the tool positioning was performed in order to set X, Y, and Z offsets. The 

coordinate system and the positive directions of each axis used for programming on the 

HAAS OM2 CNC milling machine is given in the Figure 32. The positioning of the tool 

along Z axis was critical for micro milling experiments. Z offset had to be set accurately 

and precisely, since it had a direct effect on the consistency of the axial depth of cut. 

Thus, the precise technique was developed and used to set Z-offset of the tool. The 

procedure to set Z offset of the tool was performed as follows: 

1. Flat surfaces of the washer with diameter 15 mm was ground using 

sandpaper in order to remove all burrs and provide flatness.  

2. Single sided sticky aluminum foil was attached to one flat side of the washer. 

Aluminum foil was used because it is electrically conductive, which was 

required.         
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Figure 32. Coordinate System of the Workpiece on the HAAS OM2 CNC Milling 

Machine. 

 

 

 

3.  The point that corresponded to the middle of the washer was marked on the foil 

with a marker.  

4. Keyence Laser Displacement Sensor was used to measure the height of the 

washer at the marked location, as it is shown in the Figure 33. Prior to 

measuring, tuning of the Keyence laser was performed to set the reflectivity of 

the aluminum foil. The height of the washer was measured repeatedly 20 times at 

the same location and the average value was calculated.  

5. The workpiece was mounted in the vise and its top surface was cleaned with 

compressed air. 

6. The metal washer was placed on the top surface of the workpiece.  

Spindle 

Tool 

Workpiece 

Vise jaws 

+Y 

+Z 

+X 

Origin of 

coordinate system 

for the program 
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Figure 33. Schema of Height Measurements with Keyence Laser Displacement Sensor.  

 

 

 

7. Microtool was mounted in the collet of the milling machine.  

8. The tool was moved in X and Y directions using hand jog on the milling 

machine in order to place its tip directly above the marked point at the center of 

the washer. 

9.  The digital multimeter was connected with a wire connector to the aluminum 

foil on the washer and with another wire connector to the shank of the microtool. 

The multimeter was used to measure the resistivity change once the tool touched 

the foil on the washer and closed the circuit. The connection of the multimeter to 

the tool and aluminum foil for Z offset setup is shown in the Figure 34. 

10. Tool was moved downwards slowly, and was rotated manually until it made   

Laser Sensor 

Washer 

Aluminum 

Foil 

Steel Base 
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contact with the aluminum foil at the marked pint. The manual rotation of the 

tool was necessary to provide better contact between the tool tip and the foil and 

in order to prevent bending of the foil. It was not possible to observe this contact 

with the naked eye, but the contact was indicated on the multimeter since the 

resistivity suddenly changed and the multimeter produced the beeping noise.  

11. Z value was highlighted in the “Work Zero Offset” menu in G54 line on the 

display of the HAAS OM2 CNC milling machine, and “Part zero set” button was 

pressed to record current position as a coordinate origin in Z direction.    

12. The value of Z coordinate was read form the coordinate display. The height of 

the washer with aluminum foil was subtracted form that value using numerical 

keypad of the milling machine, since tool was located above the workpiece. 

 

 

 

 

 Figure 34. Setup for the Setting Z Offset of Microtool using Multimeter. 
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High accuracy and precision was not required for setting X and Y offsets, since the 

distance between each new machined channel was 1-2 mm, which was about 10 times 

larger than the diameter of the microtools. Also, the depth of cut was not affected by the 

accuracy in setting X and Y offsets. The procedure to set up X and Y offsets of the tool 

was performed as follows: 

a. The plug gage with diameter 3.175 mm was secured in the collet of the milling 

machine. The plug gage was used instead of the micro tool in order to prevent its 

damage or breakage while setting an offset.  

b. The table of the milling machine was moved to sandwich the rubber washer of 

thickness 2.667mm without deforming it between the workpiece surface and the 

plug gage as it is shown in the Figure 35.  

c. X (or Y) value was highlighted in the “Work Zero Offset” menu in G54 line on 

the display of the HAAS OM2 CNC milling machine, and “Part zero set” button 

was pressed to record current position as a coordinate origin in X (or Y) 

direction. 

d. The value of X (or Y) coordinate was read form the coordinate display. The 

thickness of the rubber washer was added to that value using numerical keypad 

of the milling machine, since the spindle was located on the left side of the 

workpiece for X axis (or in front of the workpiece for Y axis). 
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Figure 35. Setting X and Y Offsets Using the Plug Gage.  

 

 

 

3.4.2 Workpieces  

The samples for micromilling experiments were cut from 0.5-1.0 mm sheets of CP 

titanium, NiTi alloy, 304 and 316L stainless steels using AgieCharmilles wire-type 

electrical discharge machining. Detailed specification of AgieCharmilles wire-type 

electrical discharge machine is provided in the APPENDIX A.7. A simpler shearing 

process was not used to cut samples in order to avoid bending them. Since the tolerance 

of parallelism was extremely critical for micro machining, even small bending of the 

samples could result in large deviation in the depth of cut within the same sample. The 

configuration and dimensions of the stainless steel sample are given in the Figure 36. 

This shape of the sample was selected to provide the ability to mount them while the 

electrochemical polishing operations that followed the micromilling of the channels.  
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Figure 36. Configurations and  Dimensions of the Samples from 304 and 316L Stainless 

Steels used for Micro Milling.  

 

 

 

Since the thickness of the samples was too low to mount them in the vice, first they 

were glued to the larger aluminum block that was preliminary machined using larger 

HAAS VF1 CNC milling machine. The detailed drawing of the aluminum block is 

provided in the APPENDIX B.1. The top surfaces of the block, that the samples were 

glued to, were machined on the HAAS OM2 CNC milling machine, the same machine 

used to perform the micromilling experiments for accuracy and parallelism.  

The samples were glued to the top surface of the aluminum block using heat 

activated wax. The procedure of gluing was performed as follows: 

1. 70% isopropyl alcohol and cotton swabs was utilized to clean the surfaces of the 

block and samples in order to remove oil and create high quality glued joint. 

2. Aluminum block was placed on the top surface of the Waage Electric Stove hot 
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plate with the side prepared for gluing facing up. The aluminum block was 

heated up to the temperature 60-80°C. The Raytec Rayngers ST pyrometer was 

used to measure temperature of the top surface of the block as it is shown in the 

Figure 37.  

 

 

 

  

Figure 37. Temperature Measurements with Pyrometer while Gluing with Heat 

Activated Wax.   

 

 

 

3. Uniform layer of mounting quartz type sticky wax P/NMWM070 was applied on 

the hot top surface of the block by touching it with hard wax. The wax was 

melting and transforming from the solid state to the viscous liquid state at 

temperature 60-80°C. The final uniform thickness of the wax on the top surface 

of the block was approximately 0.5 mm.  

Hot plate 

Pyrometer Distance between 

pyrometer and top 

surface of the 

block is 6-8 inches  Aluminum block 
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4. The samples were placed in desired location on the top of the block using the 

tweezers. 

5. After all of the samples were aligned, the block was removed from the hot plate. 

6. The weight was applied on the top surfaces of the samples in order to squeeze 

them together. 

7. The block with samples was left for 2 hours at room temperature to let wax 

solidify.     

8. Residue of the wax was removed from the top surfaces of the samples using 

acetone and cotton swabs. 

The parallelism of the top surface of the workpiece was measured with dial indicator 

when it was place on the parallel bars and secured in the vise on the HAAS OM2 CNC 

milling machine. The schematic representation of the parallelism measurements is 

shown in the Figure 38. The measured value of the parallelism was lower than 0.020 

mm, which was sufficient to guarantee the necessary accuracy for both micro and 

mesomilling experiments. 

Larger aluminum and low carbon steel samples for meso milling experiments were 

preliminarily machined on the lager HAAS VF1 CNC milling machine to the 

dimensions 75mm x 40mm x 18mm and 75mm x 50mm x 13mm respectively. Sharp 

edges on the samples were deburred using the file. Preliminarily machining was 

performed to guarantee low tolerance of parallelism of the samples.  
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Figure 38. Schematic Representation of Parallelisms Measurements. 

 

 

 

3.4.3 Micromist 

It was important to set the micro mist direction properly to provide effective micro 

machining and generate high quality surface. Thus, before the beginning of each 

machining experiment, the coolant nozzle was set according to the angles that are shown 

in the Figure 39 and Figure 40. This set-up provided maximum contact surface between 

the coolant spray and the cutting tool. The coolant nozzle was directed at the tip of the 

tool, and located 30 mm away from it. The angle θ, which was between Z axis of the 

milling machine and nozzle, was set to 60°. The angle ϕ, which was between X axis of 

the milling machine and the nozzle, was set to 55° [6].    
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Figure 39. Coolant Nozzle Positioning (Front View) [6]. 

 

 

 

 

Figure 40. Coolant Nozzle Positioning (Top View) [6]. 
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3.4.4 Tool Vibration and Runout Measurements 

Tool runout measurements were performed in order to check spindle and tool runout 

and feasibility of the milling machine for the experiments. The Keyence displacement 

laser was used to measure deflection of the microtool. The laser was connected to the 

data acquisition card DAC National Instruments NI USB-6008, which provided 

sampling rate 10kHz. Set-up of the tool runout measurements is shown in the Figure 41. 

Data was collected using LabVIEW software for three different conditions: (1) rotating 

spindle without machining, (2) machining with depth of cut 0.038mm, and (3) 

machining with depth of cut 0.076mm. Tungsten carbide micro ball end mill Ø 152µm 

with two flutes and CP titanium workpiece were used for machining. The cutting 

conditions for the experiments are given in the Table 7. The CNC code that was utilized 

for the experiment is provided in the APPENDIX C.4.  After raw data was collected, fast 

Fourier transform (FFT) plots were built to provide better visualization of the frequency 

spectrum.   

  

 

 

Table 7. Cutting Conditions for Runout Measurements. 

Depth of  cut, 

µm 

Cutting speed, 

 m/min 

Chip load,  

µm 

Spindle speed,  

rpm 

Feed rate, 

mm/min 

38 
13 0.05 27500 2.7 

76 

38 
13 0.1 27500 5.5 

76 

38 
20 0.05 41904 4.2 

76 

38 
20 0.1 41904 8.4 

76 
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Figure 41. Set-up of the Tool Runout Measurements on HAAS OM2 Micromilling 

Machine with Keyence Displacement Laser: (1) Keyence Laser; (2) Micro Ball End Mill 

Ø0.152mm; (3) Coolant Nozzle; (4) Workpiece.  

 

 

 

3.4.5 Micromilling  

Prior to the milling experiments, every micro and meso tool was examined using 

optical microscope according to the procedure described in the section 3.4.1. The 

examinations of the tools were done to detect any manufacturing defects and prevent 

their effect on the experimental results. The number was assign to each tool to keep 

tracking of the tools. The collet of the milling machine was cleaned with pressurized air. 

Tool was mounted in the collet avoiding of any contacts with the fragile tip of the tool. 

The workpiece was placed on the parallel bars and tightened in the wise. The tool-

workpiece positioning was performed according to the procedure described in the 

section 3.4.1. The coolant nozzle orientation was set as it was described in the section 

3.4.3.  UNIST cool lubricator system was turned on before start of the milling. The paper 

was placed in front of the coolant nozzle in order to check the presence of the micromist.  

1 

2 3 
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Prior to each machining experiment, milling machine was warmed up using warm up 

program which is provided in the APPENDIX C.1. The warming up was performed in 

order to decrease wear of the spinning parts of the spindle. 

The schematic representation of micro milling experiments is shown in the Figure 

42. Two perpendicular slots were milled on a specimen at particular cutting conditions. 

The slot length was set at 12 mm for 304 stainless steel and 316L stainless steel, and 8 

mm for NiTi alloy. Each pair of cross slots was machined with a new tool.  The tool 

trajectories were drawn using SolidWorks software. CNC programs were written for 

each experiment according to the tool trajectories. The CNC programs for all 

experiments are provided in the APPENDIX C.  The correctness of each program was 

validated by plotting a trajectory graph on the coordinate display screen of the CNC 

milling machine.  

 

 

 

 

Figure 42. Schematic Representation of Micromilling Experiments. A Tool Starts at 

Position #1 and Moves to #2, Lifts up and Restarts at #3 and #4.  

Tool Feed  

Ball end mill Spindle 

rotation 

Workpiece 
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 The various cutting conditions used in the micromilling experiments are shown in 

the Table 8. Cutting conditions used for mesomilling of 6061-T6 aluminum alloy and 

36A low carbon steel are given in the Table 9. The recommended cutting speed and chip 

loads for mesomilling were selected from the machinery’s book depending on the 

material of the workpiece and the cutting tool [46]. All milling experiments were 

performed with micromist coolant to provide better surface quality and longer tool life. 

The same cutting speed and various different chip loads were used for the same work 

piece material. The experiments with same cutting conditions were repeated for the 

uncoated and AlTiN coated tools.  

 

 

 

 Table 8. Cutting Conditions for Micromilling of NiTi Alloy, 316L and 304 Stainless 

Steels. 
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316L 

and 304 

stainless 

steels 

0.152 Uncoated 30 50000 24 0.05 12 

0.152 Uncoated 30 50000 24 0.1 12 

0.152 Uncoated 30 50000 24 0.2 12 

0.152 Uncoated 30 50000 24 0.3 12 

0.198 AlTiN 30 38377 24 0.05 12 

0.198 AlTiN 30 38377 24 0.1 12 

0.198 AlTiN 30 38377 24 0.2 12 

0.198 AlTiN 30 38377 24 0.3 12 

NiTi 

alloy 

0.198 AlTiN 30 38377 24 0.05 8 

0.198 AlTiN 30 38377 24 0.1 8 

0.198 AlTiN 30 38377 24 0.2 8 

0.198 AlTiN 30 38377 24 0.3 8 
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Table 9. Cutting Conditions for Mesomilling of 6061-T6 Aluminum Alloy and A36 Low 

Carbon Steel. 
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6061-T6 

aluminum 

alloy 

3.175 Uncoated/AlTiN 100 6020 60 5 10 

3.175 Uncoated/AlTiN 100 6020 60 10 10 

3.175 Uncoated/AlTiN 100 6020 60 20 10 

3.175 Uncoated/AlTiN 100 6020 60 30 10 

3.175 Uncoated/AlTiN 100 6020 60 50 10 

3.175 Uncoated/AlTiN 100 6020 60 80 10 

3.175 Uncoated/AlTiN 100 6020 60 100 10 

A36 low 

carbon 

steel 

3.175 Uncoated/AlTiN 50 3009 30 5 20 

3.175 Uncoated/AlTiN 50 3009 30 15 20 

3.175 Uncoated/AlTiN 50 3009 30 40 20 

3.175 Uncoated/AlTiN 50 3009 30 70 20 

 

 

 

3.4.6 Surface Roughness Measurements  

The optical microscope and scanning electron microscope (SEM) were utilized to 

observe the surface topography of the machined microchannels. In order to obtain the 

complete image with the full depth of field from the optical microscope, the digital 

image stitching was utilized. Prior to the observation with the microscope, machined 

channels were cleaned ultrasonically with Isopropyl alcohol for 3-5 minutes and dried 

with pressurized air in order to remove residue of oil and chips. The optical microscope 

images were imported into SolidWorks software and scaled for further dimensional 

analysis of the surface.  
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The surface finish along machined channels was measured with a Zygo white light 

interferometer, which provided three dimensional surface profiles. Before the start of the 

measurements, bipolar scanning depth (length) was set to 100 µm. The objective lens 

was moved up or down in order to focus the channel surface and find fringes on the 

bottom surface of the channel. The tilting knobs were used to align the channel bottom 

surface horizontally, since even small deviation from horizontal line would lead to the 

incorrect measurements. The light intensity was adjusted in order to obtain complete 

scanning image without black spots.  

Two different types of measurements were performed: (1) along the center line of the 

channel; and (2) at the side wall of the channel, 60-70 µm away from the center line. Ra 

type of surface roughness was measured along the line 0.9 mm (Figure 43 (a)). The 

measurements were repeated in the different locations of the same channel 10 times and 

the average value of surface roughness was calculated. In order to determine effects of 

tool wear and build-up edge on surface finish, it was measured at the beginning of the 

first channel and at the end of the last channel, machined with the same cutting tool and 

cutting conditions. The distribution of surface height was provided on three different 

plots – filled plot (Figure 43 (a)), oblique plot (Figure 43 (b)), and profile plot (Figure 43 

(c)).      
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(a) 

 

(b) 

 

 

(c) 

Figure 43. Surface Roughness (Ra) Measurements using Zygo White Light 

Interferometer: (a) Filled Plot; (b) Oblique Plot; (c) Profile Plot. 304 Stainless Steel, 

Coated ϕ0.198 mm Ball End Mill, 24m/min, 0.05 µm/tooth, Average Ra=0.18µm. 
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3.4.7 Tool Wear and Build-Up Edge  

The tool wear and build-up edge (BUE) on the tools were observed using optical and 

scanning electron (SEM) microscopes. For better observation of the tool wear with SEM 

microscope the build-up edge was removed by chemical etching of the tools. The Figure 

44 (a) shows SEM picture of the tool that was etched for 9 minutes and Figure 44 (b) 

shows the tool with BUE that was not etched. Specific chemical solutions were utilized 

for chemical etching of the tools after machining of different materials.  The 

compositions of chemical solutions used for chemical etching of the tools after 

machining of 304 stainless steel and CP titanium are shown in the Table 10 [6]. The 

tools were etched by swabbing them with cotton swabs saturated in chemical solutions 

for 9 minutes. 

 

 

 

 

Figure 44. SEM Images of the Micro Ball End Mills Ø152µm: (a) after Etching for 9 

min. 24 m/min, 0.1µm/tooth, MQL, after 966 mm of CP Titanium; (b) without Etching. 

24m/min, 0.2µm/tooth, MQL, after 12 mm of 304 Stainless Steel and 12 mm of 316L 

Stainless Steel.  

 

 

BUE 

UU 
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Table 10. Solutions for Chemical Etching of 304 Stainless Steel and CP Titanium.  

Material Chemical Fraction [%] Etching time [min] 

CP titanium 

Hydrofluoric acid 4 

9  Nitric acid 20 

Distilled water 76 

304 stainless steel 

Hydrochloric acid 50 

9 Glycerol 33 

Nitric acid 17 

 

 

 

3.4.8 Micromilling of High Aspect Ratio Channels  

Four channels with different aspect ratios were machined on 304 stainless steel and 

316L stainless, and six channels with different aspect ratios were machined on NiTi 

alloy (Table 11). The length of all channels was set to 3.5mm. New AlTiN coated tool of 

diameter Ø198µm was used to machine each material. The same cutting conditions were 

used to machine all channels. The cutting conditions are provided in the Table 11. CNC 

programs for all experiments are provided in APPENDIX C.   

In order to examine the profiles and the quality of milled microchannels, the samples 

were sectioned in the direction perpendicular to the channels using wire type EDM. Prior 

to the observation and measurements with optical microscope, the cut surface was 

ground and polished in order to enhance the surface quality and remove burrs left after 

electrical discharge machining.  
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Table 11. Cutting Conditions for Micromilling of High Aspect Ratio Channels. 

Channel 

# 

Workpiece 

material 

Depth 

of cut, 

µm 

Cutting 

Speed, 

m/min 

Chip 

load, 

µm/flute 

Total 

channel 

depth, 

µm 

Aspect 

ratio 

1 
304 SS 

316L SS 

NiTi 30 24 0.1 

60 0.3:1 

2 120 0.6:1 

3 180 0.9:1 

4 210 1.1:1 

5 
NiTi 

300 1.5:1 

6 420 2.1:1 

 

 

 

Prior to the grinding, the metal samples were placed in the rubber mold facing down 

with the surface where it was sectioned, and epoxy mixture was poured into the mold 

and left to solidify for 24 hours. Then, the bottom and top surfaces of the solidified 

epoxy were ground on the Handiment grinding machine to make them parallel to each 

other. Parallelism of the surfaces was required to provide accurate measurements with 

optical microscope. The abrasive papers with 320, 400, and 600 grits were used 

consecutively to grind the sample. Before starting the grinding with the new abrasive 

paper, the sample was thoroughly washed with water in order to flush away any particles 

that might have remained on the ground surface from the previously used abrasive paper. 

Buehler polishing machine was used to polish the microscrateches left after the grinding. 

First the sample was polished with the polishing solution with particle size of 1µm, and 

then with polishing solution with particle size of 0.3µm. The polishing solutions were 

made by mixing deagglomerated alumina with distilled water. After the polishing the 
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sample was cleaned ultrasonically with isopropyl alcohol for 3-5 minutes and dried with 

pressurized air.     
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4. RESULTS AND DISCUSSIONS 

 

4.1 Tool Vibration and Runout Analysis 

Fast Fourier transform (FFT) data was generated from measured laser displacement 

data. It provided detailed frequency spectra and showed the dynamics of a milling 

system (Figures 45-47). Two primary peaks on each FFT plot corresponded to the 

spindle speed frequency (fsp) of 466.3 Hz and the tooth passing frequency (ftooth) of 932.6 

Hz. Spindle speed frequency was calculated as following: 

    
 

  
 
             

          
                   (4.1) 

Tooth passing frequency was calculated as following: 

                                            (4.2) 

where 

fsp : spindle speed frequency (Hz) 

ftooth : tooth passing frequency (Hz) 

N : spindle speed (rev/min) 

nt : number of teeth  

Other peaks that appear on the plots could be due to harmonic vibration, or laser and 

MQL system noises, or result of the utilization of the data acquisition card at low 

sampling rate. In the Figure 45 the spindle speed peak for the rotating spindle without 

machining corresponded to the runout of the spindle and tool combination. The 

amplitude of the spindle speed peak increased by 90% while milling at 0.038 mm depth 
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of cut (half of tool radius) compared to its amplitude for rotating of the spindle without 

machining (Figures 45 and 46). The amplitude of the spindle speed peak increased more 

significantly by 240%, when depth of cut was equal to the tool radius of 0.076 mm 

(Figure 47). The tooth passing peak amplitude dominated others in free rotation without 

milling, but reduced when a tool was engaged during machining. Tool deflection, due to 

cyclic milling, and forces in an interrupted milling operation, therefore, are the primary 

concerns for this machining system.  Depths of cut lower than half of the tool radii were 

subsequently utilized for all machining experiments. 

 

 

 

 

Figure 45.  Frequency Spectrum of Tool and Spindle Runout. Rotating Spindle without 

Machining, Ball End Mill ϕ0.152 mm, Spindle Speed 27238 rpm. 
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Figure 46. Frequency Spectrum of Tool and Spindle Runout. Milling CP Titanium, Ball 

End Mill ϕ0.152 mm, Spindle Speed 27238 rpm, Feed Rate 2.7 mm/min, Depth of Cut 

38 µm, MQL. 

 

 

Figure 47. Frequency Spectrum of Tool and Spindle Runout. Milling CP Titanium, Ball 

End Mill ϕ0.152 mm, Spindle Speed 27238 rpm, Feed Rate 2.7 mm/min, Depth of Cut 

76 µm, MQL. 
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4.2 Theoretical Surface Roughness Modeling 

In this section theoretical surface roughness in ball end milling was derived using 

geometrical approach. The theoretical surface finish model was compared and validated 

with the experimental surface finish data. While deriving this model the following 

assumptions were made:  

I. The depth of cut and chip load are larger than the cutting edge radius of the tool, 

therefore, plowing of the tool cutting edges on the machined surface does not 

occur and does not affect surface roughness. 

II. The cutting edge of the tool is sharp. 

III.  The build-up-edge is not present on the tool, thus, surface roughness is not 

affected by cutting speed.  

Figure 48 shows surface profile of the channel bottom formed after ball end milling 

at extremely low depth (OB1), which corresponds to the particular perpendicular tool 

section of radius R1. Tool makes contact with the workpiece and starts cutting at point 1, 

then it moves the distance of 6 chip load distances to point 2. The distance between two 

peaks formed on the machined surface (CB) is equal to two chip loads (2ft), as it was 

determined with simulation of surface formation in ball end milling in SolidWorks and 

confirmed experimentally (APPENDIX F and G). The circular segment CAB of radius R 

describes surface profile of the channel bottom and is a base contour for surface 

roughness calculation (Figure 48 (b)).  
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(a) 

 

(b) 

Figure 48. Surface Profile of the Channel Formed after Ball End Milling at Particular 

Depth OB1: (a) 3D View; (b) Section View. 
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Define variables used in the derivation of the theoretical model: 

h : height of the peak in radial direction (mm) 

ft : chip load (mm/tooth) 

R1 : radius of the radial section of the tool at the particular depth OB1 (mm) 

h1 : height of the peak in axial direction (mm) 

x,y : coordinates of the circle of radius R0 (mm)  

R0 : tool radius (mm) 

R : radius of the circular segment CAB (mm) 

xG, yG : coordinates of center of gravity of the area ABD (mm) 

 

Ra : arithmetic average surface roughness (mm) 

The radius R can be calculated using other parameters shown in the Figure 48 

according to the following steps: 

a) The height of the peak in radial direction h is calculated as following: 

     √  
    

  (4.3) 

b) Figure 49 shows perpendicular section of the channel (A1B1C1) with respect to 

Cartesian coordinate system. The height of the peak in axial direction h1 is 

calculated using equation of the circle:  

         
  (4.4) 

c) According to the coordinate system shown in the Figure 49, the coordinates of 

the point A(x,y) are: 

       (4.5) 
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  √  
    

     (4.6) 

 

 

 

 

Figure 49. Perpendicular Section of the Channel (A1B1C1).  

 

  

 

d) When equations (4.5) and (4.6) are substituted into equation (4.4), the height of 

the peak in axial direction h1 (or peak-to-valley surface roughness Rt) is 

calculated as following: 

       √  
  (    )  √  

    
  (4.7) 

e) The radius R of the circular segment CAB (Figure 48 (b)), that describes surface 

profile at channel bottom, is calculated using properties of the chord and the 

sagitta of the circle as following: 

  
(   )

 

   
 
  
 

 (4.8) 
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 (4.9) 

Figure 50 shows surface profile formed by ball end mill at the channel bottom along 

the distance equal to six chip loads (6ft). Contour CAB is a machined surface. The point 

G is a center of gravity of the area of machined surface ABD. The line L goes through 

center of gravity G and is a base line for Ra surface roughness calculation.  

 

 

 

 

Figure 50. Surface Profile Formed by Ball End Mill at the Channel Bottom. 

 

 

 

Theoretical Ra surface finish was derived according to the following steps: 

1) Two additional variables θ and φ are defined in order to simplify derivation 

(Figure 50): 

        (
  
 
) (4.10) 
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        (
(     

 )   

 
) (4.11) 

 

2) According to the coordinate system shown in the Figure 50, the coordinate of 

center of gravity xG at point G is: 

      (4.12) 

3) Area ABD can be divided into horizontal strips with extremely small width. The 

coordinate of center of gravity yG at point G is estimated from equation: 

    ∫    ∫  [     ( 
    )   ]  

  

  

 
 

 
  
  (4.13) 

4) Area ABD can be calculate as following: 

   ∫ [  (     )   ]  
  

 

       
 (  

 

 
     ) (4.14) 

5) When equations (4.14) is substituted into equation (4.13), the coordinate of 

center of gravity yG is than calculated as following: 

   
  
 

  

 

     (  
 
      )

 (4.15) 

6) The absolute values of /yi-yG/ are used to calculate arithmetic average surface 

roughness as following: 

   ∑
|     |
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 )    (4.18) 

Figure 51 shows theoretical surface roughness prediction given by equation (4.18), 

theoretical model from the literature [37], and experimental surface roughness data 

obtained after milling of aluminum alloy 6061-T5 with WC-Co ball end mill with two 

flutes of diameter Ø9.525mm. The theoretical surface roughness model agrees with the 

model form the other study given by following equation [37]: 

         
  
 

 
 (4.19) 

The theoretical model predicts surface finish quiet well when chip load is larger than 

50µm. However, when chip load is lower than 50µm the experimental surface roughness 

values are much higher than predicted by theory and are similar (0.27-0.31µm Ra) for 

different chip loads (5µm/tooth-25µm/tooth). The contribution of the chip load is not 

truly reflected at low chip loads, because when the chip thickness becomes lower than 

tool edge radius, which was approximately 20-25 µm, more elastic deformations occur at 

machined surface and the surface finish worsens. This agrees with another study that 

found that when uncut chip thickness (chip load) is lower than cutting edge radius are 

used, the plowing of the cutting edge on the surface occurs and material is not removed 

by shearing mechanism and is deformed elastically, which leads to bad surface finish 

and faster tool wear [1].  
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(a) 

 

(b) 

Figure 51. Validation and Comparison of Theoretical Ra Model with Experimental Data: 

(a) Plot with Standard Linear Scale; (b) Plot with log Scale.  
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mathematical models have not yet been validated for micro ball end milling, and it is not 

clear whether they are suitable for micromachining operations. Also, other studies need 

to be conducted in order to include other parameters that affect surface roughness, such 

as build up edge (BUE), utilization of coated tools, and utilization of rough and finishing 

passes.     

 

4.3 Surface Roughness  

Surface roughness was measured along the center line at the bottom of each 

machined microchannel. The average value of surface roughness Ra was calculated form 

10 values measured at the center line of the same channel. The average surface finish 

was in range 0.1-1.5µm Ra
 
for all machined materials (304 stainless steel, 316L stainless 

steel, and NiTi alloy) as expected for poly-grain cutting tools and polycrystalline 

materials. Surface roughness was increasing with chip load for all micromilling 

experiments (Figure 52-54) as it does during macromilling, but it contradicts with 

another study that found feedrate, and therefore chip load, does not affect surface finish 

[26]. It is postulated that a wrong combination of large tool edge radius and shallow 

depth of cut could smear the surface and does not truly reflect the contribution of chip 

load. Surface finish data along a channel axis is tabulated in the APPENDIX D.1.  
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Figure 52. Average and Range of Surface Finish due to Chip Load Variation. 

V=24m/min, Ad=0.03mm, MQL, after Machining 12 mm on 304 Stainless Steel. 

 

 

 

 

 

Figure 53. Average and Range of Surface Finish due to Chip Load Variation. 

V=24m/min, Ad=0.03mm, MQL, after Machining 12mm on 304 and 12mm on 316L 

Stainless Steels. 
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Figure 54. Average and Range of Surface Finish due to Chip Load Variation. 

V=24m/min, Ad=0.03mm, MQL, after Machining 12mm on 304, 12mm on 316L 

Stainless Steels, and 8 mm on NiTi Alloy. 
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was largest at that diameter. Figure 57 shows SEM images of coated ball end mill after 

machining of 24 mm of stainless steel and 8 mm of NiTi alloy. Although no abrasive 

tool wear and significant build-up edge are seen, its coating layer is chipped off along 

the cutting edges.  
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(a) (b) 

Figure 55. SEM Image of Uncoated Ø152µm Ball End Mill, V=24m/min, 

ft=0.1µm/tooth, MQL, after Machining 12 mm on 304 Stainless Steel and 12 mm on 

316L Stainless Steel: (a) Cutting End of the Mill; (b) Cutting Edge. 

 

 

 

 

 

(a) (b) 

Figure 56. SEM Image of Uncoated Ø152µm Ball End Mill, V=24m/min, 

ft=0.2µm/tooth, MQL, after Machining 12 mm on 304 Stainless Steel and 12 mm on 

316L Stainless Steel: (a) Cutting End of the Mill; (b) Cutting Edge. 
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(a) (b) 

Figure 57. SEM Image of Coated Ø198µm Ball End Mill, V=24m/min, ft=0.1µm/tooth, 

MQL, after Machining 12mm on 304 Stainless Steel, 12 mm on 316L Stainless Steel, 

and 8 mm on NiTi Alloy: (a) Cutting End of the Mill; (b) Cutting Edge. 

 

 

 

The BUE on the uncoated tools increased effective cutting edge radius, generated 

more burrs, work-hardened the machined subsurface, and worsened the surface finish.  

On the contrary, a better surface finish resulted from machining with coated tool since 

BUE was absent when micromilling 304, 316L stainless steels, NiTi alloy (Figure 58). 

This is in agreement with another experimental study that found micromilling Ti6Al4V 

in dry condition promotes BUE and worsens surface finish [2].  

The milling direction also affected the surface integrity of a microchannel. Referring 

to Figure 42, a cutter was programmed to mill a channel from points 1-2 then 3-4. The 

combination of tool rotation direction and tool feed direction provided down milling on 

the right side of the moving tool and up milling on its left side. Down milling generated 

fewer burrs and resulted in better surface finish as compared to up milling as seen in 

Figure 58, which is in agreement with another study that investigated that down milling 

Chip off 
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is recommended when low surface roughness is desired [18]. The excessive and non-

uniform burrs pose a challenging task to remove them after micromilling.  

 

 

 

 

(a) (b) 

 

(c) (d) 

Figure 58. SEM Images of Milled Microchannels in 304 Stainless Steel, V=24m/min, 

ft=0.1µm/tooth, MQL: (a) Center of Channels, Uncoated Tool Ø152µm; (b) End of 

Channel, Uncoated tool Ø152µm; (c) Center of Channels, Coated Tool Ø198µm; (d) 

End of Channels, Coated Tool Ø198µm. 
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After milling with both coated and uncoated tools, the scratching parallel lines 

formed away from the center of the channel on the side walls (Figure 58) due to missing 

WC grains on the tool cutting edges. These defects, found on the cutting edges of the 

new coated and uncoated microtools, are shown in the Figure 59. 

The geometric accuracy of the microchannels machined with uncoated tools was 

lower than for those machined with coated tools. Figure 58 (c) shows that the 

microchannel milled with uncoated tool was not straight at its end. However, the channel 

machined with coated tool was straight along its full length (Figures 58 (b) and (d)). The 

progressive wear and the formation of the build-up edge on the uncoated tool resulted in 

the more excessive cutting force at the one cutting edge than at another, which led to the 

bending and deflection of the tool during machining. When the tool was moving up in Z 

direction at the end of the slot, the magnitude of the cutting force decreased and elastic 

deformation of the tool was recovered, which led to the deviation from straightness of 

the slot at its end. 

Figure 60 shows that surface finish also depended on the machined length. Because 

tool wear progressed and BUE formed on the tools, the surface roughness was increasing 

with machined length while micromilling 304 stainless steel with uncoated tools with the 

same chip load (0.3µm/tooth). On the other hand, surface finish did not change 

significantly with machined distance while micromilling with coated tools, since tools 

had no BUE and wear that could worsen the surface finish.  
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Figure 59. Defects on the Cutting Edges of Uncoated Tool Ø152µm. 

  

 

 

 

Figure 60. Effect of Machined Length on Surface Finish of Milled Microchannels, 

ft=0.3µm/tooth, V=24m/min, Ad=0.03mm, 304 Stainless Steel, MQL.  
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Surface finish values measured along the center line of milled mesochannels were 

higher than those measuring 60-70µm away from it for both machined materials 6061-

T6 aluminum alloy and A36 low carbon steel (Figure 61 and 62). The cutting speed at 

the tip of the ball end mill was zero, which could lead to the faster center wear of the 

tool tip. When center wear progressed, the new flat cutting edges were created in the tool 

geometry, which resulted in the generation of the rougher surface finish at the center of 

the channel.  

The surface roughness was increasing with chip load as it did for micromilling 

experiments. Its average values were similar in the channels machined with both coated 

and uncoated tools, since there were no effects of tool wear and BUE on the surface 

formation. Both coated and uncoated tools had no wear and BUE after machining 10mm 

of 6061-T6 aluminum alloy and 20mm of 36A low carbon steel (Figure 63). Figure 64 

shows how the surface finish at the channel center was worsening with increase of chip 

load while mesomilling of 6061-T6 aluminum alloy. The distance between marks at the 

channel center was equal to two chip load distances. Milling direction also affected the 

surface finish on the side walls of the channel. Referring to Figure 64, the combination 

of tool rotation direction and tool feed direction provided down milling on the right of 

moving tool and up milling on its left. Down milling resulted in better surface finish on 

the right side wall as compared to up milling on the left. Surface finish data along a 

channel axis and at the side wall is tabulated in the APPENDIX D.2.  
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Figure 61. Effect of Chip Load and Measuring Location on Surface Finish of Milled 

Mesochannels. V=60m/min, Ad=0.1mm, MQL, after Machining 10mm on 6061-T6 

Aluminum Alloy. 

 

 

 

 
 

Figure 62. Effect of Chip Load and Measuring Location on Surface Finish of Milled 

Mesochannels. V=30m/min, Ad=0.05mm, MQL, after Machining 10mm on A36 Low 

Carbon Steel. 
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Figure 63. Absence of BUE and Tool Wear on the Cutting Edges of the Uncoated Ball 

End Mill Ø3.175mm, MQL, after Machining 10mm on 6061-T6 Aluminum Alloy and 

20mm on 36A Low Carbon Steel. 

 

 

 

 

(a)  (b) (c) 

 

(d) (e) (f) 

Figure 64. Optical Microscope Images of the Channel Center Milled in 6061-T6 

Aluminum Alloy with Uncoated Tool Ø3.175mm, V=60m/min, Ad=0.1mm, MQL: (a) 

ft=0.005mm/tooth; (b) ft=0.01mm/tooth; (c) ft=0.02mm/tooth; (d) ft=0.03mm/tooth; (e) 

ft=0.05mm/tooth; (f) ft=0.08mm/tooth. 
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4.4 Empirical Surface Roughness Modeling 

As we can see from discussion above, varying feed rate (or chip load) significantly 

changes the surface finish in ball end milling. The theoretical surface finish in 

conventional macro ball end milling was given by [37]: 

         
  
 

 
 (4.20) 

where 

Ra : average surface finish (mm) 

ft : chip load (mm/tooth) 

D : diameter of ball end milling tool (mm) 

In order to normalize the effect of tool diameter and investigate only a chip load 

effect on surface finish with different tool sizes, equation (4.20) can be modified by 

multiply the tool diameter on both sides to obtain:  

             
  (4.21) 

Plotting the produce of D·Ra against ft should be a straight line on log-log scale. 

Experimental surface finish data in micro ball milling, however, fitted to the following 

empirical equation: 

            
    (4.22) 

The Figure 66 shows comparison between theoretical surface finish models and 

experimental surface finish data obtained in macro, meso, and micro milling. The 

theoretical model derived in the section 4.2 (equation (4.18)) agrees with theoretical 

model obtained in the previous study (equation (4.21)). Both theoretical models predict 



 

98 

 

surface roughness in macro and meso-scale milling, when chip load is above 100µm. 

However, the experimental surface roughness in micromilling is much higher than 

predicted by theory due to size effect, tool edge sharpness effect, smearing of the chips, 

tool wear, and formation of build-up edge.  

 In order to further enhance surface finish of milled microchannels additional 

finishing technique can be used. A separate study developed an effective electrochemical 

polishing technique that can be used to remove burrs, work hardened layer, and enhance 

surface finish. Hybrid micromilling and polishing processes allow fabrication of 

microchannels on polycrystalline Nitinol, 304, and 316L stainless steels with surface 

finish consistently less than 100 nm Ra (Figure 65).  

 

 

 

 

(a) (b) 

Figure 65. Micromilling Following by Electrochemical Polishing of 316L Stainless 

Steel: (a) Micromilled Channel with AlTiN Coated Ø0.198mm Tool, 24 m/min, 0.1 

µm/tooth, MQL; (b) Polished Microchannel, 1.25A, 400s.  
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 Figure 66. Theoretical Model Verification and Comparison with Experimental Ra Data 

in Micro, Meso, and Macro Ball End Milling. 
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4.5 High Aspect Ratio Channels 

The depths and the aspect ratios of the microchannels milled on NiTi alloy, 304 and 

316L stainless steel are provided in the Table 12. Figure 67 (a-d) shows the surface 

profiles of milled microchannels on 304 stainless steels with aspect ratios 0.5:1, 0.8:1, 

1.1:1, and 1.2:1. The profiles of all machined channels are very similar to the profiles of 

the tool cutting edges and have a consistent geometry. Figure 68 (a-b) shows the surface 

profiles of milled microchannels on NiTi alloy with aspect ratios 1.6:1 and 2.2:1. 

Although, these channels have a consistent geometrical profile at the bottom, the width 

of the channel is not constant along the axial depth of the channel. The width is larger at 

the upper part of the channels than it is at the bottom. This could be explained by the 

geometry and dimensions of the microtool used to machine the channels, which is shown 

in the Figure 69. When the tool was engaged in the material deeper than 300µm, the 

conical part of the microtool started participating in the cutting process and resulted in 

the deviation from the constant width of the channel along its depth. However, this 

experiment showed that the channels with even higher aspect ratio can be machined 

providing accurate and consistent geometric profile, if microtools with longer flute 

length are used. The additional optical microscope images of the high aspect ratio 

channels milled in 316L stainless steel and NiTi alloy are provided in APPENDIX H.      
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Table 12. Aspect Ratios of the Microchannels. 

Channel # 
Workpiece 

material 

Tool diameter, 

µm 

Channel depth, 

µm 
Aspect ratio 

1 
304 SS 

316L SS 

NiTi 

198 

95 0.5:1 

2 155 0.8:1 

3 215 1.1:1 

4 245 1.2:1 

5 
NiTi 198 

315 1.6:1 

6 435 2.2:1 

 

 

 

 

(a)                                                                     (b) 

 

(c)                                                                    (d) 

Figure 67. Profile of the Microchannels with Aspect Ratios: (a) 0.5:1; (b) 0.8:1; (c) 

1.1:1; (d) 1.2:1. AlTiN Coated Tool Ø198µm, ft=0.1µm/flute, V=24m/min, Ad=0.03mm, 

304 Stainless Steel, MQL. 
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(a)                                                                     (b) 

Figure 68. Profile of the Microchannels with Aspect Ratios: (a) 1.6:1; (b) 2.2:1. AlTiN 

Coated Tool Ø198µm, ft=0.1µm/flute, V=24m/min, Ad=0.03mm, NiTi Alloy, MQL. 

 

 

 

 

Figure 69. Side View of the AlTiN Coated Ø198µm Ball End Mill. 

 

 

 

Figure 70 shows microchannel profile that was machined with excimer laser on 

nickel super alloy (Figure 70 (b)) and microchannel profile that was machined with ball 

end mill on NiTi alloy (Figure 70 (a)). The microchannel machined with ball end mill 
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has a more accurate and well defined profile compared to the laser machined 

microchannel. Also the surface finish of the micromilled channel is much smoother.  

 

 

 

 

  (a)                                                                     (b) 

Figure 70. Profiles of the Microchannels Machined with: (a) AlTiN Ball End Mill 

Ø198µm, ft=0.1µm/flute, V=24m/min, Ad=0.03mm, NiTi Alloy, MQL; (b) Ultrashort 

Excimer Laser, Nickel Super Alloy. 
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5. CONCLUSIONS 

 

The fabrication of microchannels on biocompatible alloys such as 304, 316L 

stainless steels, and NiTi alloy using micro ball end milling and electrochemical 

polishing are presented.  

This study shows: 

1. Build-up-edges (BUE) and tool wear worsen surface finish and increases burr 

formation on the milled microchannels.  

2. Formation of BUEs and wear of the tool are minimized with AlTiN coated tool 

and micromilling in minimum quantity lubrication. 

3. Down milling produces fewer burrs and results in better surface finish than up 

milling. Therefore, more burrs and rougher surface finish are generated on one 

side of the channel than on another. 

4. The theoretical surface finish model to predict surface finish in ball end milling is 

derived, validated with experimental data, and compared to other model from 

literature. Derived theoretical surface roughness model agrees with theoretical 

model obtained in the published literature and is applicable for macro/meso scale 

milling when chip load is lower than 100µm. However, the experimental surface 

roughness in micromilling is much higher than predicted by theory due to size 

effect, tool edge sharpness effect, smearing of the chips, tool wear, and formation 

of build-up edge.  
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5. Empirical surface roughness model derived in this study shows the dependence 

of surface finish on chip load in micromilling. 

6. Ball-end milled microchannels can be effectively polished by electrochemical 

polishing technique. Hybrid micromilling and polishing developed in this study 

allow fabrication of microchannels on polycrystalline 304, 316L stainless steels, 

and nitinol with surface finish consistently < 100nm Ra. 

7. The microchannels with high aspect ratios, and accurate and consistent geometric 

profile can be effectively machined with micro ball end mills using multiple tool 

passes. In this study the channels with aspect ratio up to 2.2:1 were successfully 

machined. The higher aspect ratio can be achieved when using ball end mills 

with longer flute length.  
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6. RECOMMENDATIONS 

 

1. Theoretical model to predict surface finish in ball end milling should be extended 

to flat end milling.  

2. Although, this research showed that utilization of AlTiN coated  tools resulted in 

better surface finish and generation of a fewer burrs, the coating layer on the 

tools was chipped off along the cutting edges after machining relatively short 

distance (32 mm). Therefore, the adhesion of the coating on the tool should be 

investigated and the means to improvement the quality of the adhesion should be 

recommended.      

3. The effect of the anisotropy of grain’s mechanical properties and grain’s 

crystallographic orientation on surface roughness in micromilling should be 

investigated.  

4. The effect of the dynamics and vibrations of the microtool on surface finish 

should be investigated   
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APPENDIX A 

EQUIPMENT  

A.1 HAAS OM2 specifications. 

 

 

 

Table A. 1 HAAS OM2 Milling Machine Specification [47]. 

Travels S.A.E. Metric 

X axis  12’’ 305 mm 

Y axis 10’’ 254 mm 

Z axis  12’’ 305 mm 

Table  S.A.E. Metric 

Length 20” 508 mm 

Width  10’’ 254 mm 

Max weight on table 150 lb 68 kg 

Spindle S.A.E. Metric 

Taper ISO/20 ISO/20 

MAX speed 50000 rpm 50000 rpm 

MIN speed 1000 rpm 1000 rpm 

Feed rates S.A.E. Metric 

Rapids on X, Y, and Z 757 in/min 19.2 m/min 

MAX cutting 500 in/min 12.7 m/min 

Accuracy S.A.E. Metric 

Positioning  - ±0.005 mm 

Repeatability - ±0.003 mm 

General S.A.E. Metric 

Air required 1 scfm, 40-70 psi 28 L/min, 2.8-4.8 bar 

Machine weight 1500 lb 680 kg 
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Figure A. 1 HAAS OM2 CNC Milling Maching [47]. 

 

 

 

A.2 UNIST Cool Lubricator System 

The Cool Lubricator System is used to provide micro mist during cutting process. The 

micro mist flow can be adjusted using an air metering screw, a pulse generator and a 0.2-

1.0 cc stroke liquid metering pump. The amount of droplets of the coolant per cycle can 

be set in the range from 0.1 to 3.0 droplets per cycle. The number of cycles can be 

adjusted in the range from 5 to 200 cycles per minute. The capacity of the coolant 

reservoir of the Cool Lubricant System is 10 ounces, which is about 9000 drops of 

coolant. The amount of coolant in the micro mist can be adjusted using a knob on the 

metering pump. The flexible plastic nozzle with magnetic base is attached to the spindle 

of the milling machine and can be adjusted to control the direction of the micro mist 

flow [48].      
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Cooluble 2210 was used as a lubricant for the experiments. This lubricant has great 

cooling and lubricating properties. The polar properties of the Cooluble provide 

formation of the uniform lubricating layer with strong bonds at the metal surface. It 

reduces friction in the cutting zone by 50 % compared to regular mineral oils, which 

leads to better surface finish and longer tool life. Cooluble 2210 is natural and non-toxic 

coolant without petroleum products. Thus, it has no hazards for the people who work in 

the machine shop and results in a very low environmental pollution [48].     

 

 

 

 

Figure A. 2 UNIST Cool Lubricator System [6]. 
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A.3 Keyence CCD Laser Displacement Sensor LK-G Series 

Keyence laser can be used for high accuracy measurements of 2D dimensions or 

displacements of the spinning or vibrating objects with high frequency. The surface of 

the measured object can vary from highly reflective to completely dull.  LK navigator 

software is used with the laser in order to set laser intensity depending on the surface 

reflectivity of the measured component [6].  

 

 

 

Table A. 2 Keyence CCD Laser Specification [39]. 

Sampling speed, KHz 50 

Measuring range, mm 150±40 

Working distance (between laser and object), mm  152 

Resolution, µm 0.1 

 

 

 

A.4 Zygo NewView 100 Interferometer 

Zygo interferometer is utilized to analyze three dimensional surface topography and 

measure surface roughness. It is used to measure diverse types of surfaces such as 

polished surfaces, macro and micro machined surfaces, and more. Also, measurements 

can be conducted for different materials such as metals, ceramics, polymers, and 

composites. However, in order to provide accurate measurements it should be used only 

for highly reflective surfaces and materials.   
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Figure A. 3 Zygo NewView 100 System. 

 

 

 

Table A. 3 Zygo NewView 100 System Specification. 

Vertical travel 130 mm 

Camera size 640 x 480 pixels 

Vertical resolution 0.1 nm 

Scanning depth (height)  10 µm – 100 µm 

Working distance 11.1 mm 

Objective Lens 2.5x, 5x, 10x  
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A.5 Raytec Rangers ST Pyrometer 

The pyrometer is noncontact infrared thermometer that is used to accurately measure the 

temperature of the surface form a distance in dangerous or difficult to reach places, or in 

cases when no-contact temperature measurements are required.      

 

 

 

Table A. 4 Raytec Rangers ST Pyrometer Specification [49]. 

Accuracy (at ambient temperature) ±1°C 

Repeatability ±1°C 

Response time 500 mSec 

Ambient operating range 0 to 50°C 

Measured temperature range -32 to 600°C 

Display resolution 0.1°C 

 

 

 

A.6 Ultrasonic Cleaner Metason 200 

Ultrasonic cleaner is used for effective cleaning of pores and cavities, removing debris 

and chips after grinding, polishing or machining.    

 

 

 

Table A. 5 Ultrasonic Cleaner Metason 200 Specification [50]. 

Output power 140 W 

Tank dimensions (W x D x H) 290 x 240 x 150 mm 

Tank capacity 9.5 l 

Overall dimensions (W x D x H) 400 x 395 x 370 mm 

Weight 9.6 kg 
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A.7 CUT 20P AgieCharmilles Wire EDM 

The electrical discharging machine is used to cut through pieces from metal sheets with 

brass wire (electrode). Wire with diameter from 0.15 mm to 0.30 mm can be utilized on 

this machine. During cutting new wire is continuously feeding through the work piece 

which prevents wear of the wire to affect the precision of the machining and provides 

constant size of cut. The dimension of the table of the wire EDM is 350x250x250 mm 

[51]. EDM provides low surface roughness and prevents from bending of the workpiece 

during machining, which is important for preliminarily machining of the work pieces for 

further micromachining.      

 

 

 

 
Figure A. 4 AgieCharmilles Wire EDM [51]. 

 

 

http://www.gfac.com/javasc
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Table A. 6 AgieCharmilles Wire EDM Specification [51]. 

Machine dimensions, mm 2500 x 2500 x 2200 

Total weight, kg  3000 

X, Y, Z travel, mm 350 x 250 x 250 

U, V travel, mm   90 x 90 

MAX workpiece dimensions, mm 900 x 680 x 250 

MAX workpiece weight, kg 400 

Wire diameters, mm 0.15-0.3  

Best surface finish Ra, µm <0.25 
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APPENDIX B 

TECHNICAL DRAWINGS 

B.1 Technical Drawing of Aluminum Block for Securing of Small Samples during 

Micromilling. 

 

 

 

 

Figure B. 1 Technical Drawing of Aluminum Block. 
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APPENDIX C 

CNC G-CODES  

C.1 Spindle warm-up program: 

O02026 (NSK 20 MIN SPINDLE WARM-UP)  

M03 S10000  

G04 P120.  

M03 S20000  

G04 P180.  

M03 S25000  

G04 P180.  

M03 S30000  

G04 P180.  

M03 S35000  

G04 P180.  

M03 S40000  

G04 P180.  

M03 S50000  

G04 P180.  

M05  

M30  

 

C.2 Program for micromilling of 304 and 316L stainless steels: 

O10003  

(Ra Milling Dimitry)  

(Milling with ball end mill of the cross 9/19/2012)  

N40 G00 G17 G40 G90 G21  

(STANDARD START-UP SETTINGS)  

N45 T1  

(IDENTIFIES TOOLING)  

N50 G54 G01 Z25. F100.  

N55 X0. Y0.  

(COORDINATES SET IN LINE G54 IN OFFSETS)  

(MUST SET ZEROES)  

N60 S38377 M03  

(SETS SPINDLE SPEED AND TURNS ON CLOCK-WISE)  

N65 G01 Y2.  

N70 Z2.  

N75 Z-0.03 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N80 G91 G01 Y3. F23.  
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(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 2.7 MM/MINUTE)  

N85 G90 Z2.  

(TOOL MOVES IN +Z DIRECTION)  

N90 G91 X-1.5 Y-1.5  

(MOVES INCREMENTAL DISTANCE IN -X and -Y DIRECTION with 2.7 

MM/MINUTE)  

N95 G90 Z-0.03 F1.3  

N100 G91 X3. F23.  

N105 G90 Z2.  

N110 G90 X0. Y25. F100.  

N115 Z-0.03 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N120 G91 G01 Y3. F23.  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 2.7 MM/MINUTE)  

N125 G90 Z2.  

(TOOL MOVES IN +Z DIRECTION)  

N130 G91 X-1.5 Y-1.5  

(MOVES INCREMENTAL DISTANCE IN -X and -Y DIRECTION with 2.7 

MM/MINUTE)  

N135 G90 Z-0.03 F1.3  

N140 G91 X3. F23.  

(MOVES INCREMENTAL DISTANCE IN +X DIRECTION with 2.7 MM/MINUTE)  

N145 G90 G01 Z25. F100.  

(TOOL MOVES IN +Z DIRECTION)  

N150 M30  

 

C.3 Program for micromilling of NiTi alloy: 

O10004  

(Ra Milling Dimitry NiTi)  

(Milling with ball end mill of the cross 2/04/2013)  

N40 G00 G17 G40 G90 G21  

(STANDARD START-UP SETTINGS)  

N45 T1  

(IDENTIFIES TOOLING)  

N50 G54 G01 Z25. F100.  

N55 X0. Y0.  

(COORDINATES SET IN LINE G54 IN OFFSETS)  

(MUST SET ZEROES)  

N60 S38377 M03  

(SETS SPINDLE SPEED AND TURNS ON CLOCK-WISE)  

N65 Z2.  

N70 Z-0.03 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  
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N75 G91 G01 Y4. F23.  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 2.7 MM/MINUTE)  

N80 G90 Z2.  

(TOOL MOVES IN +Z DIRECTION)  

N85 G91 X+2. Y+4.  

(MOVES INCREMENTAL DISTANCE IN +X and +Y DIRECTION with 2.7 

MM/MINUTE)  

N90 G90 Z-0.03 F1.3  

N95 G91 y+4. F23.  

N100 G90 G01 Z25. F100.  

(TOOL MOVES IN +Z DIRECTION)  

N105 M30  

 

C.4 Program for runout measurements while micromilling of CP titanium: 

O10002  

(Milling Dimitry for vibration)  

(Milling with ball end mill 1 row 4/27/2012)  

N40 G00 G17 G40 G90 G21  

(STANDARD START-UP SETTINGS)  

N45 T1  

(IDENTIFIES TOOLING)  

N50 G54 G01 Z25. F100.  

N55 X0. Y0.  

(COORDINATES SET IN LINE G54 IN OFFSETS)  

(MUST SET ZEROES)  

N60 G01 X3. Y-3.  

N65 Z-0.038 F100.  

N70 G04 P30. (Pauses tool 20s and I take measurments1)  

N75 G01 Z-0.076 F100.  

(LOWERS TOOL TO Z AT 100 MM/MINUTE)  

N80 G04 P30. (Pauses tool 20s and I take measurments2)  

N85 S27238 M03  

(SETS SPINDLE SPEED AND TURNS ON CLOCK-WISE)  

N90 G04 P30. (Pauses tool 20s and I take measurments3)  

N95 Z-0.038 F100.  

N100 G04 P30. (Pauses tool 20s and I take measurments4)  

N105 G91 G01 Y11. F2.7  

(MEAUSURMENTS5)  

N110 G04 P1.5  

N115 G90 G01 Z-0.076 F1.3  

N120 G04 P1.5  

N125 G91 G01 Y3. F2.7 (MEASURMENTS6)  

N130 G90 G01 Z25. F100.  
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(TOOL MOVES IN +Z DIRECTION)  

N135 M30  

 

C.5 Program for mesomilling of 6061-T6 aluminum alloy: 

O10004  

(Ra validation Milling Dimitry)  

(Meso Milling with ball end mills of aluminum 10/29/2012)  

N40 G00 G17 G40 G90 G21  

(STANDARD START-UP SETTINGS)  

N45 T1  

(IDENTIFIES TOOLING)  

N50 G54 G01 Z25. F200.  

N55 X0 Y-3.5 

(COORDINATES SET IN LINE G54 IN OFFSETS)  

(MUST SET ZEROES)  

N60 S6020 M03  

(SETS SPINDLE SPEED AND TURNS ON CLOCK-WISE)  

N65 Z-0.1 

(LOWERS TOOL TO Z)  

N70 G90 Y10. F120.4  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 120.4 

MM/MINUTE)  

N75 G90 Z25. F200.  

(TOOL MOVES IN +Z DIRECTION)  

N180 M30  

 

C.6 Program for mesomilling of A36 low carbon steel: 

 

O10004  

(Ra validation Milling Dimitry)  

(Meso Milling with ball end mills of aluminum 10/29/2012)  

N40 G00 G17 G40 G90 G21  

(STANDARD START-UP SETTINGS)  

N45 T1  

(IDENTIFIES TOOLING)  

N50 G54 G01 Z25. F200.  

N55 X0 Y-3.5 

(COORDINATES SET IN LINE G54 IN OFFSETS)  

(MUST SET ZEROES)  

N60 S3009 M03  

(SETS SPINDLE SPEED AND TURNS ON CLOCK-WISE)  

N65 Z-0.05 

(LOWERS TOOL TO Z)  
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N70 G90 Y20. F120.4  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 120.4 

MM/MINUTE)  

N75 G90 Z25. F200.  

(TOOL MOVES IN +Z DIRECTION)  

N180 M30  

 

C.7 Program for micromilling of high aspect ratio channels: 

 

O10006  

(Milling High aspect ratio Dimitry)  

(Milling with ball end mill 4/06/2013)  

N40 G00 G17 G40 G90 G21  

(STANDARD START-UP SETTINGS)  

N45 T1  

(IDENTIFIES TOOLING)  

N50 G54 G01 Z20. F100.  

N55 X0. Y0.  

(COORDINATES SET IN LINE G54 IN OFFSETS)  

(MUST SET ZEROES)  

N60 S38377 M03  

(SETS SPINDLE SPEED AND TURNS ON CLOCK-WISE)  

N65 G01 Y2.  

N70 Z2.  

N75 G90 Z-0.03 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N80 G91 G01 Y3.5 F7.7  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 7.7 MM/MINUTE)  

N85 G90 Z-0.06 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N90 G91 G01 Y-3.5 F7.7  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 7.7 MM/MINUTE)  

N95 G90 Z-0.09 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N100 G91 G01 Y3.5 F7.7  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 7.7 MM/MINUTE)  

N105 G90 Z-0.12 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N110 G91 G01 Y-3.5 F7.7  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 7.7 MM/MINUTE)  

N115 G90 Z-0.15 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N80 G91 G01 Y3.5 F7.7  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 7.7 MM/MINUTE) 
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N120 G90 Z-0.18 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N125 G91 G01 Y-3.5 F7.7  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 7.7 MM/MINUTE)  

N130 G90 Z-0.21 F1.3  

(LOWERS TOOL TO Z AT 1.3 MM/MINUTE)  

N135 G91 G01 Y3.5 F7.7  

(MOVES INCREMENTAL DISTANCE IN +Y DIRECTION with 7.7 MM/MINUTE) 

N140 G90 Z2.  

(TOOL MOVES IN +Z DIRECTION)  

N145 G90 G01 X0. Y0. Z20. F100.  

(TOOL MOVES IN +Z DIRECTION)  

N150 M30  
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APPENDIX D 

RAW SURFACE FINISH DATA  

D.1 Measured surface finish after micromilling 

 

 

 

Table D. 1 Measured Surface Finish after Micromilling  

Material Tool 
V  

[m/min] 

ft  

[µm/tooth] 

Ra  

Center  

[µm] 

304 

Uncoated 

Ø0.152 

mm 

 

24 

0.05 0.16 

0.1 0.32 

0.2 0.25 

0.3 0.47 

AlTiN 

Coating 

Ø0.198 

mm 

24 

0.05 0.18 

0.1 0.25 

0.2 0.20 

0.3 0.35 

316L 

Uncoated 

Ø0.152 

mm 

 

24 

0.05 0.39 

0.1 0.68 

0.2 1.32 

0.3 1.40 

AlTiN 

Coating 

Ø0.198 

mm 

24 

0.05 0.39 

0.1 0.26 

0.2 0.40 

0.3 0.38 

NiTi 

AlTiN 

Coating 

Ø0.198 

mm 

24 

0.05 0.10 

0.1 0.12 

0.2 0.24 

0.3 0.26 

 

 

 

 



 

128 

 

D.2 Measured surface finish after mesomilling 

 

 

 

Table D. 2 Measured Surface Finish after Mesomilling.  

Material Tool V [m/min] ft [µm/tooth] Ra Center [µm] Ra Side wall [µm] 

6061-T6 

Uncoated 

Ø3.175 

mm 

 

60 

5 0.33 0.18 

10 0.33 0.24 

20 0.37 0.28 

30 0.38 0.49 

50 1.63 0.60 

80 2.91 1.35 

100 4.34 1.73 

AlTiN 

Coating 

Ø3.175 

mm 

 

60 

5 0.31 0.25 

10 0.37 0.37 

20 0.75 0.45 

30 1.08 0.79 

50 1.48 1.10 

80 3.34 1.64 

100 4.46 2.07 

A36 

Uncoated 

Ø3.175 

mm 

 

30 

5 0.50 0.22 

15 0.41 0.32 

40 0.98 0.64 

70 2.33 1.63 

AlTiN 

Coating 

Ø3.175 

mm 

30 

5 0.60 0.36 

15 0.53 0.37 

40 1.44 1.26 

70 2.63 1.79 
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APPENDIX E 

FFT PLOTS FOR TOOL RUNOUT ANALYSIS  

E.1 FFT for feed rate 2.7mm/min and spindle speed 27238rpm. 

 

 

 

 

Figure E. 1 FFT, Stationary Spindle. 

 

 

 

 

Figure E. 2 FFT, Rotating Spindle without Machining, Ball End Mill ϕ0.152 mm, 

Spindle Speed 27238 rpm. 
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Figure E. 3 FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 27238 

rpm, Feed Rate 2.7 mm/min, Depth of Cut 38 µm, MQL. 

 

 

 

 

Figure E. 4. FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 27238 

rpm, Feed Rate 2.7 mm/min, Depth of Cut 76 µm, MQL. 
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E.2 FFT for feed rate 5.4mm/min and spindle speed 27238rpm. 

 

 

 

 

Figure E. 5 FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 27238 

rpm, Feed Rate 5.4 mm/min, Depth of Cut 38 µm, MQL. 

 

 

 

 

Figure E. 6 FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 27238 

rpm, Feed Rate 5.4 mm/min, Depth of Cut 76 µm, MQL. 
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E.3 FFT for feed rate 4.2mm/min and spindle speed 41904rpm. 

 

 

 

 

Figure E. 7 FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 41904 

rpm, Feed Rate 4.2 mm/min, Depth of Cut 38 µm, MQL. 

 

 

 

 

Figure E. 8 FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 41904 

rpm, Feed Rate 4.2 mm/min, Depth of Cut 76 µm, MQL. 
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E.4 FFT for feed rate 8.4mm/min and spindle speed 41904rpm. 

 

 

 

 

Figure E. 9 FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 41904 

rpm, Feed Rate 8.4 mm/min, Depth of Cut 38 µm, MQL. 

 

 

 

 

Figure E. 10 FFT, Milling CP Titanium, Ball End Mill ϕ0.152 mm, Spindle Speed 41904 

rpm, Feed Rate 8.4 mm/min, Depth of Cut 76 µm, MQL. 
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APPENDIX F 

SOLIDWORKS SIMULATIONS FOR SURFACE ROUGHNESS ANALYSIS 

 

 

 

 

Figure F. 1 SolidWork Simulation of Surface Formation in Ball End Milling with Tool 

Ø9.525,  Depth of Cut 1mm , Chip Load 0.254mm/tooth. 

 

 

 

 

Figure F. 2. SolidWorks Simulation of the Tool Cutting Edges Motion (Top View).  

Chip load 0.254mm/tooth, Diameter of Tool Section 1mm.       
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APPENDIX G 

SURFACE PROFILE RAW DATA OBTAINED WITH ZYGO INTERFEROMETER 

 

 

 

Figure G. 1 Raw Surface Profile Data at Channel Bottom. Chip Load 254µm/tooth, 

Cutting Speed 15m/min,  6061-T6.   

 

 

 

 

Figure G. 2 Raw Surface Profile Data at Channel Bottom. Chip Load 127µm/tooth, 

Cutting Speed 15m/min,  6061-T6.   
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Figure G. 3 Raw Surface Profile Data at Channel Bottom. Chip Load 51µm/tooth, 

Cutting Speed 15m/min,  6061-T6. 

 

 

 

 

Figure G. 4 Raw Surface Profile Data at Channel Bottom. Chip Load 25.4µm/tooth, 

Cutting Speed 15m/min,  6061-T6. 
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APPENDIX H 

HIGH ASPECT RATIO CHANNELS 

 

(a)                                                                    (b) 

 

(c)                                                                    (d) 

Figure H. 1 Profile of the Microchannels with Aspect Ratios: (a) 0.5:1; (b) 0.8:1; (c) 

1.1:1; (d) 1.2:1. AlTiN Coated Tool Ø198µm, ft=0.1µm/flute, V=24m/min, Ap=0.03mm, 

316L Stainless Steel, MQL. 
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(a)                                                                    (b) 

 

(c)                                                                    (d) 

Figure H. 2 Profile of the Microchannels with Aspect Ratios: (a) 0.5:1; (b) 0.8:1; (c) 

1.1:1; (d) 1.2:1. AlTiN Coated Tool Ø198µm, ft=0.1µm/flute, V=24m/min, Ap=0.03mm, 

NiTi Alloy, MQL. 

 


