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ABSTRACT 

 

Rapid economic evaluations of investment alternatives in the oil and gas industry are typically 

contingent on fast and credible evaluations of reservoir models to make future forecasts. It is 

often important to also quantify inherent risks and uncertainties in these evaluations. These 

ideally require several full-scale numerical simulations which is time consuming, impractical, if 

not impossible to do with conventional (Finite Difference) simulators in real life situations. In 

this research, the aim will be to improve on the efficiencies associated with these tasks. This 

involved exploring the applications of Fast Marching Methods (FMM) in both conventional and 

unconventional reservoir characterization problems.  

In this work, we first applied the FMM for rapidly ranking multiple equi-probable geologic 

models. We demonstrated the suitability of drainage volume, efficiently calculated using FMM, 

as a surrogate parameter for field-wide cumulative oil production (FOPT). The probability 

distribution function (PDF) of the surrogate parameter was point-discretized to obtain 3 

representative models for full simulations. Using the results from the simulations, the PDF of the 

reservoir performance parameter was constructed. Also, we investigated the applicability of a 

higher-order-moment-preserving approach which resulted in better uncertainty quantification 

over the traditional model selection methods. 

Next we applied the FMM for a hydraulically fractured tight oil reservoir model calibration 

problem. We specifically applied the FMM geometric pressure approximation as a proxy for 

rapidly evaluating model proposals in a two-stage Markov Chain Monte Carlo (MCMC) 

algorithm. Here, we demonstrated the FMM-based proxy as a suitable proxy for evaluating 

model proposals. We obtained results showing a significant improvement in the efficiency 
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compared to conventional single stage MCMC algorithm. Also in this work, we investigated the 

possibility of enhancing the computational efficiency for calculating the pressure field for both 

conventional and unconventional reservoirs using FMM. Good approximations of the steady 

state pressure distributions were obtained for homogeneous conventional waterflood systems. In 

unconventional system, we also recorded slight improvement in computational efficiency using 

FMM pressure approximations as initial guess in pressure solvers.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

DEDICATION 

 

To my parents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENTS 

 

I would like to express my utmost gratitude to my advisor, Dr. Datta-Gupta for his 

invaluable suggestions towards the completion of this research. Also, my appreciation goes 

to the MCERI research consortium for the financial support, without which this research 

would not have been completed.  

I am likewise thankful to Dr. King for his insightful advice. It was also a great privilege to 

have Dr. Mallick as a member of my committee. For his encouraging words and moral 

support, I would also like to appreciate Dr. Awoleke. I owe great gratitude to Drs. Jiang Xie 

and Han Park, my senior colleagues and wonderful mentors. 

Finally, to all my colleagues and seniors in the MCERI research group, I express my sincere 

appreciation for good and very useful suggestions that have helped tremendously through 

the completion of this work.  

 

 

 

 

 

 

 

 



vi 
 

NOMENCLATURE 

 

0A   = Zero order pressure amplitude in Fourier domain 

)(rA   = Surface area  2ft  

B   = Formation Volume Factor  STBRB /  

DC , XC  =  Data and parameter covariance matrices 

kC   = Gaussian quadrature  polynomial coefficients  

tc   = Total Compressibility  psi/  

)(tDV   = Drainage volume surrogate ranking parameter  RB  

obsd , simd  = Observed and Simulated data 

fh   = Hydraulic fracture half-height  ft  

)(xk   =  Spatially varying permeability  mD  

mk , fk   = Matrix and fracture permeability  mD   

N   = Number of PDF point discretization 

  |P  = Conditional Probability Distribution 

iP   =  Model Weights 

nP   = Numerical pressure solution at the thn time level 

),( tp x   =  Transient pressure field profile  psi  

),(* tp x  =  Approximate transient pressure field profile  psi  

  |Q   = Proposal distribution in the second stage of two-stage MCMC 
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wQ    = Well Rate  DBBL /  

  |q   =  Proposal distribution in MCMC (first stage of two-stage MCMC) 

S   = Entropy vector 

T   = Transmissibility matrix 

)(rVp   = Radially varying well drainage volume  BBL  

X   = Model parameter vector 

x   = Spatial location  ft  

ix   = Surrogate parameter 

fx   = Fracture half-length  ft   

)(x   = Hydraulic diffusivity 

)(   = t  transformation factor 

   = Markov chain step size 

   = Reservoir forecast error  

   = Fluid viscosity  cp   

   = Frequency in Fourier domain 

)(x   = Spatially varying porosity 

)(X   = Posterior distribution (known within a normalizing constant) 

)(x   = Gaussian quadrature polynomial 

 ,   = MCMC acceptance probability  

)(x   = Diffusivity time of flight  

   = Reservoir performance parameter 
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CHAPTER I 

INTRODUCTION 

 

1.1     Background 

An important task for reservoir engineers is to make reliable forecasts of field performance 

measures such as the cumulative field hydrocarbon production and associated uncertainties. 

Quantifying these uncertainties requires, first characterizing the reservoir including 

understanding the geology, estimating the property distribution such as permeability, porosity, 

water saturation, fault location and geometry and so on (Al-Khalifa, 2004). These estimations are 

assisted using data sets obtained from careful measurements made from the reservoir being 

evaluated. However, the multiscale nature of these data sets and also possibility of measurement 

errors in data, which are common occurrences in real life scenarios, complicates the forecasting 

and uncertainty quantification procedures.    

For decades, stochastic approaches have been an important tool for characterizing uncertainties 

in reservoir geologic models. It usually involves generating multiple equally probable geologic 

models for evaluation based on a specified reservoir performance parameter. With this, the 

variance of the parameter for all the models (a measure of uncertainty), may be assessed. 

Integrating available production data into existing reservoir models, in an approach referred to as 

model calibration or history matching, also helps to further reduce the current level of 

uncertainty (Oliver et al., 2008).  

Ideally, several full scale simulations are required to evaluate all geologic models and to 

integrate production data. However for high resolution geologic models, these procedures get 
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very computationally expensive and most times, impractical. Getting around this has, over the 

years, sprung up an active research area in approximate simulator development. These 

simulators, also known as proxies, are applied in estimating specific reservoir performance 

measures very efficiently. Proxies have been applied extensively to significantly improve the 

efficiencies in geologic model ranking (Graf et al., 2011; Hird and Dubrule, 1998; Idrobo et al., 

2000; Kim and Dobin, 2008; Shook and Mitchell, 2009) and history matching  (Luo et al., 2011; 

Mohaghegh et al., 2012; Srinivasan and Caers, 2000; Yin et al., 2011).  

A new proxy recently applied by Yin et al. (2011) for shale gas model calibration involves the 

application of a drainage volume estimator using the Fast Marching Method (FMM) (Sethian, 

1999). The FMM is a class of front tracking algorithm that has long been applied in wave 

propagation (Fatemi et al., 1995), subsurface and medical imaging. For porous media flow, the 

Eikonal equation can be arrived at by retaining the high frequency terms of the asymptotic 

expansion of the pressure diffusivity equation (Datta-Gupta et al., 2001). The FMM has been 

applied to solving the Eikonal equation to efficiently obtain the diffusive time of flight contours, 

(a measure of pressure front arrival time), leading to a quick method for calculating drainage 

volumes in both homogeneous and heterogeneous reservoirs (Datta-Gupta et al., 2011).  Apart 

from history matching problems, the drainage volume concept has also been applied in 

quantitative well placement (Hosseini et al., 2010) and fracture stage optimization (Sehbi et al., 

2011), in a streamline framework. 

In this chapter, we first review the concept of the asymptotic solution of the pressure diffusivity 

equation which leads to the Eikonal equation. Next, the study objectives and outline of this thesis 

will be discussed. 
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1.2     The Asymptotic Solution to the Pressure Diffusivity Equation 

Pressure diffusion in porous media may be modeled by the well-known pressure diffusivity 

equation given as (Lee et al., 2003): 

      ),()(),()( tpk
t

tp
ct xxxx 




     (1.1) 

where ),( tp x represents the spatial distribution of the pressure response in the porous media, 

)(xk and  x represent the spatial distribution of permeability and porosity and  and tc denote 

the fluid viscosity and medium total compressibility. In the Fourier domain Eq. (1.1) becomes: 

  ),(~)(),(~)(),(~)()( 2  xxxxxx pkpkpict     (1.2) 

The asymptotic solution method here has been extensively used in geometric optics and 

seismology (Virieux et al., 1994). The method exploits an analogy between a propagating 

pressure front and a propagating wavefront. For diffusive pressures, an asymptotic expansion 

follows if we consider a solution in terms of inverse powers of i (Datta-Gupta et al., 2001): 

   
 










0

)( )(),(~
k

k

ki

i

A
ep


  xx x     (1.3) 

where )(x is the ‘phase’ of the wave representing the geometry of a propagating front. It is 

called the diffusive time of flight – a measure of pressure front arrival time. Also, )(xkA  is 

pressure amplitude at thk order. A solution of the above form can be interpreted on physical 

grounds based on the scaling behavior of diffusive flow. The high frequency solution is given by 

the initial terms of the asymptotic series and will correspond to the propagation of a ‘pressure  
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front’. We, therefore, consider a solution of the form; 

    )(
0 )(),(~ xxx  ieAp      (1.4) 

Inserting Eq. (1.4) into Eq. (1.2), and collecting the terms of the highest order in i , that is

 2i , the result is the Eikonal equation given as: 

1)()(  xx      (1.5) 

where )(x  is the diffusivity given by: 

tc

k




)(
)()(

x
xx      (1.6) 

From Eq. (1.5) the diffusivity can be interpreted as the speed function in the Eikonal equation. 

This means that the speed of pressure front propagation is governed by the diffusivity in Eq. 

(1.6) which is a function of both reservoir and fluid properties. Therefore the diffusive time of 

flight )(x calculated by solving Eq. (1.5), qualifies as a dynamic measure of reservoir 

performance and will be applied in the efficient calculation of drainage volumes using a Fast 

Marching Method (FMM) for geologic model ranking and uncertainty quantification in the next 

chapter of this thesis. 

1.3 Study Objectives and Thesis Outline 

The objective of this work is to investigate the applicability of Fast Marching Methods (FMM) 

in rapid hydrocarbon reservoir forecasts under uncertainty. We apply the FMM concept in the 

ranking of multiple geologic models as well as in the tight oil reservoir model calibration 

problem, the details of which are presented in Chapters II and III of this thesis. We also 
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investigated the application of the FMM concept to enhance the computational speed in pressure 

field calculations for both conventional and unconventional reservoirs. Details of this will, 

however, be presented in the Appendix A section of this thesis.       
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CHAPTER II 

RAPID GEOLOGIC MODEL RANKING AND UNCERTAINTY 

QUANTIFICATION USING FAST MARCHING METHODS 

 

The focus in this chapter is on the application of Fast Marching Methods (FMM) as a tool for 

quickly ranking geologic models in order to reveal inherent uncertainties for educated decision 

making on ‘green’ asset development options. Here, we rank all reservoir model realizations 

based on the field cumulative oil production (FOPT) in the primary recovery phase over a certain 

period of time. To speed up the process, the drainage volume was estimated for each model 

using the FMM and then applied as a surrogate parameter for the FOPT. In the model selection 

process, we discretize the probability distribution function (PDF) of the surrogate parameter to 

obtain three models used to approximate the final PDF of the FOPT.   

2.1   Introduction 

Significant uncertainties exist in petroleum exploration investment decisions which can be 

primarily tied to uncertainties in subsurface model parameters. Uncertainties abound in the 

spatial distribution of static and dynamic properties such as porosity, permeability, phase 

saturations, phase contacts, fault structures, facies distribution, and so on. These uncertainties 

may be reduced as more data such as well log, well test, production and seismic data get 

integrated into existing geologic models (Hu et al., 1999). However, these data sets typically are 

either of low resolution (well test and seismic data) or too local and sparse (well logs) to remove 

substantial amount of uncertainties (Shook and Mitchell, 2009). Moreover, these data sets are 

often times very limited, especially at the initial stages of ‘green’ field development plans.  
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Geostatistical methods have widely been adopted as an important tool in geologic modeling and 

uncertainty quantification (Hu et al., 1999; Journel, 1990). This generally involves generating 

multiple equi-probable realizations of models that satisfy the (limited) available information. 

Ideally, all models are evaluated by running full simulations, and inherent uncertainties 

quantified based on a specific reservoir performance parameter. The downside of this rigorous 

Monte Carlo approach is the prohibitive computational expense for real life scenarios. 

Getting around this problem has instigated evaluating geologic models using 

algorithms/simulators which approximate models responses and thus, lead to computationally 

efficient means of ranking these models (Deutsch and Srinivasan, 1996). These approximate 

schemes have evolved over time, starting from the Dykstra-Parsons method of characterizing 

and ranking model permeability heterogeneities (Johnson Jr, 1956).  Alabert and Modot (1992) 

proposed a ranking method based on connected pore volumes around the wells, but this method 

was later shown in a waterflood system to give poor correlations with oil recovery factor which 

was the measure of reservoir performance (Saad et al., 1996). Hird and Dubrule (1998) on the 

other hand, proposed the drainable Hydrocarbon Pore Volume (HCPV) concept based on a 

Resistivity Index (RI) method which was well correlated with ultimate recovery. This method 

has been acclaimed useful for primary recovery ranking purposes (Shook and Mitchell, 2009).  

On the secondary recovery ranking methods, Hirsch and Schuette (1999) proposed a ranking 

approach looking at the permeability connectivity from the graph theory perspective, using a 

shortest path algorithm. Kim and Dobin (2008) similarly in the graph theory framework, 

considered a Fast Marching Method (FMM); taking the absolute permeability-porosity ratio as 

the speed function. These methods pay more attention to static properties and so are only limited 

to very simple cases. Recent advances in streamline simulation (Datta-Gupta and King, 2007) 
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has however helped in incorporating more realism to ranking models for waterflood projects. 

Idrobo et al. (2000) and Mishra et al. (2000) applied thresholds to the convective time-of-flight 

contour to estimate volumetric sweep efficiency, VE which was used as a surrogate parameter 

for ranking multiple geologic models. Similarly, Shook and Mitchell (2009) proposed a model 

ranking approach that uses the VE as the surrogate parameter which was however calculated 

using only the dynamic flow capacity.  

 The probability distribution functions (PDF) of the surrogate performance parameter can be 

obtained from the model ranking process, as suggested by Deutsch and Srinivasan (1996), and 

these have proved useful in representing the PDF of the main reservoir performance parameter. 

In most cases, the two PDF should be reasonably similar if the ‘proxies’ adopted for ranking are 

sufficiently good. The reservoir performance parameter PDF  can be approximated by careful 

selection of certain models which preserve important characteristics of the distribution (Deutsch 

and Srinivasan, 1996). This concept was adopted by Idrobo et al. (2000)  and Mishra et al. 

(2000) in selecting three representative models from the VE distribution for full scale simulations. 

These simulations provided the Recovery Factor,
FR for the selected models and these were used 

in constructing the PDF of 
FR  for all the ensemble of models. In their work, two PDF 

discretization schemes were considered: the P5-P50-P95 and P10-P50-P90. That is, the 5th, 50th 

and 95th percentiles of the surrogate parameter distribution are selected for full simulation in the 

first scheme while the 10th, 50th and 90th percentiles are selected for the second. These pre-

defined PDF discretization methods work well under Gaussian assumptions. However, the 

approach is inadequate when distributions are non-Gaussian and  tend to under-estimate 

moments of the original distribution (Miller and Rice, 1983). These authors proposed a Gaussian 

quadrature approach for approximating a PDF in which N  points are selected and their 
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corresponding weights calculated simultaneously such that the first 12 N moments of the PDF 

are preserved. This approach has gained wide applicability in geotechnical reliability (Christian 

and Baecher, 1999) and many other engineering fields. 

The objective of this chapter is twofold: First, we propose a new way of rapidly ranking multiple 

geologic models under primary depletion using the drainage volume as the surrogate parameter. 

These drainage volumes are estimated by solving the Eikonal equation (Xie, Gupta, et al., 2012) 

which results from the asymptotic expansion of the pressure diffusivity equation (Datta-Gupta et 

al., 2001; Vasco et al., 2000)  as shown in Chapter I. For each model, the drainage volume was 

computed in seconds using the Fast Marching Method (FMM) (Sethian, 1996, 1999). Second, 

the Gaussian quadrature (higher-order-moment-preserving PDF discretization) approach which 

is applied as a model selection method is compared with the traditional model selection methods.    

2.2 Methodology 

2.2.1   Drainage Volume Calculation using Fast Marching Methods 

Recall from Chapter I the Eikonal equation derived from the pressure diffusivity equation: 

1)()(  xx      (1.5) 

where )(x  is the diffusivity given by: 

tc

k




)(
)()(

x
xx       (1.6) 

The Eikonal equation may be solved using a class of front tracking methods called the Fast 

Marching Methods (Xie, Gupta, et al., 2012) to obtain a scalar field of the diffusive time of flight
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)(x . In 2-D Cartesian grids, Eq. (1.5) is discretized using a simple five-point upwind finite 

difference scheme to obtain: 

                                   12)0,,,,max(2)0,,,,max( 





 y
jiD

y
jiDx

jiDx
jiD           (2.1) 

where D is the gradient approximated with a 1st order finite difference scheme given by: 

along x-direction:  
x

jijix
jiD




 ,1,

,


 ; 
x

jijix
jiD




 ,,1

,


  and  (2.2a) 

along y-direction:  
y

jijiy
jiD






 1,,
,


 ; 

y

jijiy
jiD






 ,1,
,


    (2.2b) 

As an illustration, consider a two dimensional domain shown in Fig. 2.1. Assuming the   values 

are known at points C and D (that is the pressure front has just reached these points), to obtain 

the  value at black colored node Eq. (2.1) can be written as: 

    


 1
22



























yx

DC     (2.3) 

Thus,  can be calculated very efficiently. It can be observed that the upwind finite difference 

approximation of the FMM algorithm possess a causality relationship, which means that the 

value at each node depends only on smaller adjacent values.  
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Figure 2.1: Illustration of two dimensional upwind finite difference calculation (Xie, Gupta, et al., 2012) 

 

Generally in the FMM algorithm, all nodes are characterized as accepted, neighbor and far away 

depending on the progress of calculations. At the start of the algorithm, starting nodes are 

labeled accepted and assigned zero   values. All adjacent nodes are labeled neighbor and the 

rest of the nodes in the domain are labeled as far away. The far away nodes are assigned 

values of infinity. The following steps are carried out to calculate the   values for the whole 

field: 

 Using the known   values in the accepted nodes calculate the   values for all adjacent 

neighbor nodes using the approach described in Eq. (2.1) to (2.3). 

 Pick the node with the least   value and label it accepted, then label all its adjacent points 

(some of which were initially categorized as far away) neighbor. 

 Repeat the first two steps until all nodes have been labeled accepted.   

The FMM algorithm runs very efficiently and the )(x contours are obtained for large number of 

nodes in seconds. To improve the accuracy along diagonal directions however, we adopt the 

Multi-Stencil Fast Marching (MSFM) method proposed by Hassouna and Farag (2007), which 

uses eight stencils on the Cartesian grid.  
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 With the assumption that the contours )(x are coincide with pressure contours, the radius of 

investigation is defined and the drainage volume can be estimated at any time t  as follows (Xie, 

Gupta, et al., 2012): 

 














kji

kji

kjikji
n

tVtDV

,,

2
,,

,,,, 2
)(


    (2.4)   

where n  represents the number of dimensions of the domain, kjikjiV ,,,,   is the pore volume of 

grid cell ),,( kji  and  is the Heaviside function given as: 






;0
;1

)(  t  








t

t
     (2.5) 

In other words, we sum up the pore volume of the grid cells within the radius of investigation at 

a time t of interest. The drainage volume provides a clear measure of the connected volume 

between the reservoir and the wells. The main advantage of this approach is the speed at which 

the drainage volumes are calculated using the FMM. The drainage volume calculations for an 

ensemble of 200 models considered in the 2-D case (presented later in this chapter) took about 

30 seconds on a simple personal computer. On the same computer, the same ensemble of models 

required more than 3 hours for full-scale finite difference simulation. In this work, we 

demonstrated the possibility of fast drainage volume calculations using the FMM for multiple 

model realizations in 2-D and 3-D synthetic cases. For each case, the PDF of the drainage 

volumes was discretized using approaches discussed in the following section.     

 

 



13 
 

2.2.2   Model Selection for Multiple Realizations 

The idea here is to approximate the true PDF of the actual reservoir performance parameter 

with few representative models selected from the PDF of the surrogate parameter x . Using the 

cumulative density function (CDF) constructed from the PDF of x , specific percentiles, 

corresponding to certain models may be selected for full simulation. These models are normally 

weighted in the eventual reconstruction of the PDF of after full simulations. In most PDF point 

discretization routines, these weights are calculated such that the first few moments of the 

distribution are preserved by the selected models. In this work, we consider two approaches for 

model selection: First, the traditional method whereby pre-determined percentiles are first 

obtained from the CDF of x , then their corresponding weights calculated (Mishra et al., 2000); 

and second, a Gaussian quadrature approach which simultaneously selects appropriate models 

and calculates their corresponding weights (Miller and Rice, 1983).    

The Traditional Approach 

This approach has become a standard for geologic uncertainty quantification in field 

development projects (Idrobo et al., 2000; Mishra et al., 2000). Two popular forms are the P5-

P50-P95 and the P10-P50-P90 methods; the latter being more popular. This simply means that,  

the 5th, 50th and the 95th percentiles are selected from the CDF of x in the first method, and the 

10th, 50th and the 90th percentiles in the second as shown in Fig. 2.2. Calculating the weights iP  

requires solving the following set of equations (Mishra et al., 2000): 

           1
3

1


i

iP       (2.6) 
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             xExP
i

ii 


3

1

     (2.7) 

          xExxP
i

ii

2
3

1

2 var 


    (2.8) 

For the purpose of this work, x  in these equations refers to the drainage volume of each model 

at a specific time It is worth noting that the first and second order moments are preserved by 

Eqs. (2.7) and (2.8) while Eq. (2.6) only ensures that all weights sum up to unity. 

 

 

 

 

 

                                                                                                                   
      (a)                               (b) 

 

Figure 2.2: Traditional model selection Schemes: (a) P5-P50-P90 and (b) P10-P50-P90 schemes 
 

The Gaussian Quadrature Approach 

The traditional method gives good results (approximated PDFs similar to true PDFs) under the 

assumptions that the probability distributions of interest are Gaussian. However, higher order 

moments normally need to be preserved in model selection method to sufficiently approximate 

non-Gaussian distributions. To solve this problem, the Gaussian quadrature approach was 

proposed. According to (Rosenblueth and Hong, 1987), using Gaussian quadrature, it is possible 
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to find N  percentiles that replace the PDF of a random variable X while simultaneously 

matching 12 N  of its moments. The approach as described by (Miller and Rice, 1983) is 

presented as follows.  

In this approach, the first thk  order moments of a PDF )(xp  may be approximated with only N

points on the PDF weighted by iP  using the following set of equations: 

     







N

i

k

ii

kk
xPdxxpxxE

1
)( ; for 12,...,2,1,0  Nk   (2.9) 

This generates a set of 12 N  moment equations in which both iP  and ix are unknown for all k . 

The steps followed to solve for the unknowns are outlined below: 

 First, we can define an arbitrary polynomial 





N

k

k
ki

N

i
xCxxx

0
1

)()( , setting 1NC  

and 0)( ix  ],1[ Ni ; where N is the number of PDF discretization points. 

 Let us consider the first 1N  equations of Eq. (2.9) which describes the first N  moments. 

In other words, the equation )1( k defines the thk moment equation. We can be multiply 

each equation by the corresponding kC as described below: 

0C      1... 000
22

0
11  xExPxPxP NN   

1C      111
22

1
11 ... xExPxPxP NN      

      :          :        :               :      : 

NC      NN
NN

NN xExPxPxP  ...2211    (2.10) 
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 Adding column-wise the system of equations in Eq. (2.10) we obtain the following: In other 

words, the equation )1( k defines the thk moment equation. We can be multiply 

     
 













 N

k

k
k

N

i

ii

N

i

N

k

k
iki xECxPxCP

011 0

)(       (2.11) 

Note that the last term of Eq. (2.11) represents the Right Hand Side (RHS) of the equation 

obtained from the previous step and the first two terms represent the Left Hand Side (LHS) 

which vanishes by the definition of the polynomial )(x . Therefore, from the first 1N  

equations of Eq. (2.9), we obtain the following equation: 

           0...1
1

0
0

0




N
N

N

k

k
k xECxECxECxEC   (2.12) 

 We can repeat the second and third steps for equations from the nd2  to thN )2(   equations 

of Eq. (2.9) to obtain: 

        0... 12
1

1
0

0

1  



 N
N

N

k

k
k xECxECxECxEC   (2.13) 

 This is continued until the last set of 1N  equations of Eq. (2.9); that is from the thN )1(   

to the thN )12(   equation to obtain: 

             0... 121
1

1
0

0

1  



 N
N

NN
N

k

Nk
k xECxECxECxEC   (2.14) 

 Noting that 1NC  by definition, these result in a NN  system of equations with kC as the 

unknowns. Therefore we can obtain the coefficients kC of the polynomial )(x . 

 Then, the discretization points in the PDF ix  can be obtained as the roots of )(x . 

 Substituting ix ’s into the linear system in Eq. (2.9), we obtain the corresponding weights iP . 
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2.2.3   Uncertainty Quantification and Forecasts  

Once the models have been selected and their corresponding weights calculated, full simulations 

are run for each selected realization iR  to obtain the field performance parameter )( iR of 

interest with which the forecast is made. The forecast of the reservoir performance parameter

)( iR typically requires calculating the mean and standard deviation (a measure of uncertainty) 

of   as follows (Mishra et al., 2000): 

  



N

i

ii RPE
1

)(     (2.15) 

   
2/1

1

2)()(








 


N

i

ii ERP     (2.16) 

2.2.4   Workflow 

A graphic description of proposed method for geologic model ranking and uncertainty 

quantification is presented in Fig. 2.3. The drainage volume (DV), which was considered the 

surrogate measure of reservoir performance, was calculated for each realization using the FMM. 

A distribution of the DV was then generated from which a few models were selected and their 

corresponding weights calculated using each of the methods previously described. Full 

simulations were performed on the selected models using the ECLIPSE® to determine the 

measure of reservoir performance i  which, for the purpose of the study, was the field-wide 

cumulative oil production (FOPT). Using the calculated weights, uncertainties in the forecast 

were quantified. The forecasts were also compared with Monte Carlo results to validate the 

accuracy of the new model ranking and uncertainty quantification method.   

 



18 
 

 

Figure 2.3: The general workflow 
 

2.3   Illustration 1: A 2D Example 

In this case 200 geostatistical realizations were generated using Sequential Gaussian Simulation 

(Remy, 2005), varying both permeability and porosity. The reservoir was discretized into 

110125  Cartesian grids each of size 100100100  ft. The reservoir permeability with log-

scale average value of approximately 1.2 and porosity with average value of approximately 21%, 

as shown in Fig. 2.4(a), both having o45  azimuthal trend.   

The reservoir has uniform initial pressure of 4000 psi and four producers, each maintained at 

1000 psi bottom hole pressure and arranged as shown in Fig. 2.4. The goal here was to rank all 

models based on the FOPT over a period of 30years of primary production.  The FMM was 

applied to calculate the drainage volumes of each model in the ensemble and a threshold 

pressure front arrival time of 100days was applied on the drainage volume for the purpose of 
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ranking the models.  The choice of the cut-off time here is based on the inception of significant 

interference among the wells as depicted in Fig. 2.4 (c). To confirm the suitability of the 

drainage volume at the specified cut-off time, the rank correlation with the FOPT after 30 years 

of production (obtained by running full simulations for all models) was calculated to be 0.92 as 

shown in Fig. 2.5. With a value close to 1 the suitability of the surrogate parameter was 

confirmed. 

Model selections were made for full simulation using the methods discussed: the P5-P50-P95, 

P10-P50-P90 and the Gaussian quadrature. Full simulation was run on all selected models using 

the ECLIPSE® reservoir simulator to obtain the FOPT up to a period of 30 years. Then 

uncertainties were quantified from the results of the simulations by estimating the mean and 

standard deviation of the FOPT obtained using Eqs. (2.15) and (2.16). Fig. 2.6 (a) through (c) 

compare the forecast results obtained from the proposed ranking methodology, using the three 

model selection methods, with those from the Monte Carlo method. In each of the plots, the 

mean and standard deviation of the FOPT obtained through Monte Carlo simulation is labeled as 

the ‘True mean’ and ‘True STD’ respectively while the ‘Calculate mean’ and ‘Calculated STD’ 

labels respectively represent the mean and standard deviation of the FOPT obtained using the 

newly proposed model ranking and uncertainty quantification methods. From these plots it clear 

that the Gaussian Quadrature method resulted in the best uncertainty forecast of the FOPT 

compared with the traditional methods. For more objective inference, the errors between the 

estimated mean mean  and standard deviation std  and those obtained by Monte Carlo simulation 

ware quantified for each of the methods. The calculations were carried out using Eq. (2.17) and 

(2.18).  
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Figure 2.4: (a) Permeability, (b) Porosity and (c) Diffusive time of flight profiles for one 2D model 
 
 

 

 
 

Figure 2.5: Rank correlation plot between DV and FOPT for the 2-D case 
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Here .)(
est

E  and .)(
est

 respectively refer to the estimated mean and standard deviation while 

MC
E )( and 

MC
)( refer to the true (Monte Carlo) mean and standard deviation respectively.  
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                                            (a)                                                  (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (c) 

 
Figure 2.6: Cumulative oil production forecasts for the 2D case using (a) the P5-P50-P95 method,  

(b) the P10-P50-P90 method and (c) the Gaussian quadrature method 
   

The results of the error calculations are displayed in Table 2.1 which clearly reveals the superior 

forecast obtained with the Gaussian Quadrature method for the 2-D case. Also, the P5-P50-P95 

method gave better results than the P10-P50-P90 method. 
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 Table 2.1:  Error quantification for the 2D Case 

  P5-P50-P95 P10-P50-P90 GAUSSIAN QUAD. 

mean  1.4359 1.1171 0.2829 

std  6.1282 33.0077 6.4712 

 
 
 
2.4   Illustration 2: A 3D Example 

We applied the proposed ranking methodology to a 3D synthetic heterogeneous reservoir. An 

ensemble of 100 geostatistical realizations of both permeability and porosity were generated 

using Sequential Gaussian Simulation (Remy, 2005) using a synthetic well log data set. The 

reservoir was uniformly discretized into 1112085  Cartesian grids, each with dimension 

252525  ft. In addition to the assumptions made for the 2D case, gravity was ignored here.  

Four identical, vertical and fully penetrating producers were placed in the single phase oil 

reservoir as shown in Fig. 2.7. The reservoir and well bottom hole pressure pressures were 

maintained similar to the 2-D case. Here also, the overall objective was to rank all models based 

on the field-wide cumulative production (FOPT) over a period of 15years.  The FMM was 

applied to calculate the drainage volumes of each model in the ensemble and a threshold 

pressure front arrival time of 25 days was applied on the drainage volume for the purpose of 

ranking the models.  The choice of the cut-off time here is also based on the inception of 

interference similar to the 2-D case. To confirm the suitability of the drainage volume at the 

specified cut-off time, the rank correlation with the FOPT at the end of the depletion period was  
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Figure 2.7: (a) Permeability, (b) Porosity and (c) Diffusive time of flight profiles for one 3D model  

 

 
 

Figure 2.8: Rank correlation between DV and FOPT for the 3-D case 
 

calculated to be 0.94 as shown in Fig. 2.8. This confirmed the suitability of the selected 

surrogate parameter. The models were ranked based on the drainage volume distribution and 

model selections made for full simulation using the methods discussed. Full simulation was run 

for all selected models using the ECLIPSE commercial reservoir simulator to obtain the FOPT 

up to a period of 15 years. Then uncertainties in FOPT were likewise calculated using the 

expressions in Eqs. (2.15) and (2.16).  
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Forecast results obtained using the three model selection methods are compared with those from 

the Monte Carlo method as shown in Fig. 2.9 (a) through (c). In each of the plots, the legends 

take the same form as for the 2-D case. As was done in the 2-D case, the errors between the 

estimated mean mean  and standard deviation std and those obtained by Monte Carlo simulation 

were also quantified for each of the methods using Eqs. (2.17) and (2.18). The results of this 

calculation are presented in Table 2.2. Again, from this table and from the plots, the superiority 

of the Gaussian Quadrature method of forecast is noticeable.  

 

Table 2.2:  Error quantification for the 3D Case 

 

P5-P50-P95 P10-P50-P90 GAUSSIAN QUAD. 

mean  3.9937 0.5667 0.1936 

std  69.6799 41.1586 5.0127 

 
 
 
2.5   Discussion 

The improved performance of the Gaussian quadrature method in both cases considered could be 

attributed to the inherent simultaneous model selection and weights calculation approach 

involved, which are constrained on the preservation of the first 12 N moments of the drainage 

volume distribution. It precludes the pre-determined choice of percentiles for model selection as 

in the P5-P50-P95 and P5-P50-P95 methods. The two traditional methods can, nevertheless be 

applied with reasonable accuracy in many instances. However it is still fuzzy to a priori choose 

one of the two traditional model selection methods to give the best forecast in any scenario. 
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                                      (a)                                                                   (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   (c)    
 

Figure 2.9: Cumulative oil production forecasts for the 3D cases using (a) the P5-P50-P95 method, 
 (b) the P10-P50-P90 method and (c) the Gaussian quadrature method 

 

Furthermore for the Gaussian quadrature method, there are no ground rules for deciding the 

number of point discretization N required to perform the uncertainty quantification. It was 

observed in this work that 3, 4 and 5 points discretization give good results. For values of 6 and 

above however, the system of equation solved often becomes ill-conditioned; a situation that will 

result in bad forecasts. 
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For both 2-D and 3-D cases, the uncertainty analysis has been summarized in Fig. 2.10. Here, we 

show the P10, P50 and P90 plots of the FOPT for the 2D and 3D cases. We also compare the 

performances of the model selection methods in predicting the true percentiles at few chosen 

time steps. In each case, and at every time steps desired, true percentiles were obtained by 

substituting the Monte Carlo mean 
MC

E )( and standard deviation 
MC

)(  originally obtained 

into the inverse standard normal cumulative distribution function.  

Since Gaussianity was assumed for the traditional model selection methods, the same procedure 

was followed in calculating the P10, P50 and P90 values of FOPT at each time step. Here 

however, the corresponding estimated mean .)(
est

E   and standard deviation .)(
est

  were 

applied in the calculation. For the Gaussian quadrature method, the estimated mean .)(
est

E   and 

standard deviation .)(
est

 as well as the estimates of the skewness .)(
est

skew  and kurtosis 

.)(
est

kurt  were included in the percentile evaluations. These extra parameters were estimated 

using the following equations: 

   
  

 3
1

3

. |)(

|)()(
)(

est

N

i

estii

est

ERP

skew











     (2.19) 

  

 4
1

4

. |)(

|)()(
)(

est

N

i

estii

est

ERP

kurt











     (2.20) 

The superiority of the Gaussian quadrature approach can also be observed from Fig. 2.10. For 

both 2D and 3D cases, the percentiles obtained using the Gaussian quadrature method gave the 

closest match with true percentiles.  
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                  2D CASE                                                  3D CASE 

 

 

       

 

 

 

 

 

 

        

 

 

 

 

 

 

        

 

 

 

 

 

 Figure 2.10: Uncertainty analysis plots 
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2.6     Summary 

In this chapter, we have introduced a new rapid approach to ranking geologic models under 

primary depletion for uncertainty quantification using the drainage volume as the surrogate 

measure of the cumulative oil recovery (FOPT). The drainage volume of each model, as 

demonstrated for both 2D and 3D problems, can be quickly estimated using a class of front 

tracking algorithm known as the Fast Marching Methods (FMM). The constructed probability 

distribution functions (PDF) of the drainage volume can be point-discretized, allowing the 

selection of 3 models for full simulations to eventually construct the PDF of the FOPT. 

Three model selection methods were also compared. It was shown that, due to its inherent 

capability of preserving higher order moments, the Gaussian quadrature method performs better 

than the traditional P5-P50-P95 and P10-P50-P90 approaches which may fail for non-Gaussian 

distributions.   
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CHAPTER III 

RAPID TIGHT RESEVOIR MODEL CALIBRATION USING              

FAST MARCHING METHODS 

 

In this chapter we focus on an important task in hydrocarbon reservoir management – reservoir 

model calibration, commonly known as history matching. The general idea is to integrate all 

available credible data and prior information into existing reservoir models so as to reduce the 

level of uncertainty and non-uniqueness in the models for improved and better refined forecasts. 

However, this process is inherently time consuming and computationally expensive especially 

for large reservoir models. It gets particularly difficult for unconventional and tight sands where 

simulation models are often set up with finer grids.  

The goal in this chapter is to demonstrate the applicability of Fast Marching Methods (FMM) as 

a proxy in a two-stage Markov Chain Monte Carlo (MCMC) algorithm for multistage transverse 

hydraulic fracture models in unconventional oil reservoirs. We apply FMM to screen new 

models proposed in the search algorithm based on their responses. Due to the computational 

efficiency of FMM, unacceptable models are quickly screened out and valuable simulation time 

is saved. We also attempted to further exploit the speed of FMM in reservoir pressure field 

calculation. We applied FMM to obtain an estimate of the full field pressure profile and input 

this as an initial guess in matrix solvers. For the purpose of continuity however, the details of 

this are presented in Appendix A of this thesis. 
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3.1 Introduction 

The World’s unconventional resources are vast and current research work predicts more 

technically recoverable reserves than have been published hitherto (Dong et al., 2012; Holditch, 

2006). More activities are therefore expected in the area of tight reservoir development for the 

next few decades (Holditch, 2006).  This is made possible by advanced technologies in 

horizontal drilling and multistage transverse hydraulic fracturing. These hydraulic fractures serve 

as the major highway for fluid transport between the tight rock matrix to the well bore. In most 

cases, unconventional reservoirs contain natural fractures which tend to open up during 

hydraulic fracturing jobs, thereby creating very complex fracture networks. Of course, the step 

preceding any reservoir model calibration process is the development of a reasonably efficient 

and reliable forward model. However, creating accurate numerical models to represent these 

reservoir systems can be challenging and expensive.  

Two major approaches that have been adopted for modeling such complex fractured systems are 

the Dual Porosity/Dual Permeability (DPDK) and the Discrete Fracture Network (DFN) 

approaches. Warren and Root (1963) introduced the Dual Porosity as the ‘sugar cube model’ for 

modeling single phase fractured reservoirs. This was extended by (Kazemi et al., 1976) for 

multiphase flow in fractured reservoirs. Hill and Thomas (1985) later came up with the more 

robust Dual Permeability concept which was able to handle finite conductivity fractures. Both 

the Dual Porosity (Du et al., 2010; Du et al., 2011) and the Dual Permeability (Novlesky et al., 

2011) concepts have been popular choices for hydraulically fractured tight reservoirs. However 

these methods only give good solutions for a large number of highly connected small-scale 

fractures, as argued by Moinfar et al. (2011). The DFN approach, on the other hand has shown 

great promise in overcoming the downsides of the DPDK approach (Karimi-Fard et al., 2003; 
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Moinfar et al., 2012; Monteagudo and Firoozabadi, 2004). Attempts have also been made to 

create a hybrid of the two approaches (Johns et al., 2013). The DFN approach however quickly 

gets very complicated and computationally difficult as the scale of the problem increases, posing 

a great challenge for history matching.  

In many cases today, history matching problems are based on simplified, yet realistic models 

which reasonably account for the flow complexities occurring in hydraulically fractured 

reservoir systems. One of such simplifications involves assuming that all flow is linear and 

perpendicular to the planar hydraulic fractures and does not extend beyond the tip of the 

fractures (Ambrose et al., 2011; Bello and Wattenbarger, 2010; Virieux et al., 1994). This allows 

modeling hydraulic fracture systems as high permeability planes within a box-shaped Simulated 

Reservoir Volume (SRV) with a constant induced permeability value. Gildin et al. (2013) later 

showed that a permeability distribution that varies linearly or exponentially with the distance 

from the hydraulic fracture better reproduces production data. These models and other variants 

have been a commonplace in tight reservoir forecasting approaches using pressure and rate 

transient analyses (Bello and Wattenbarger, 2010; Samandarli et al., 2011; Thompson et al., 

2011). Analytical history matching approaches are, however, overly simplistic and may not be 

predictive by nature. Also, like other deterministic approaches, they do not provide range of 

uncertainties useful for prudent decision making. 

Simple numerical models are now being applied to set up more realistic hydraulic fracture 

models which incorporate more flow physics and geomechanics for the purpose of less 

expensive history matching schemes (Cipolla et al., 2009). Uncertainties can also be accounted 

for and further reduced by integrating microseismic and production data into these models 

(Cipolla et al., 2010; Cipolla et al., 2011; Mayerhofer et al., 2006). Rigorously accounting for 
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uncertainties in history matching workflows typically requires probabilistic and/or heuristic 

approaches including data assimilation via Ensemble Kalman Filter (EnKF) approaches 

(Aanonsen et al., 2009), population based algorithms (Hajizadeh et al., 2010) which recently 

gained wide popularity and rigorous sampling algorithms such as the Markov Chain Monte 

Carlo (MCMC) (Hastings, 1970). The MCMC method, which is used to generate complex 

posterior distributions of calibrated models, requires several simulations; a lot of which may be 

rejected. For large or complex models such as hydraulic fracture systems the approach becomes 

impractical. To solve this problem, a two-stage MCMC algorithm was designed to screen model 

proposals in the first stage using a fast approximate simulator referred to as the proxy (Efendiev 

et al., 2005; Efendiev et al., 2006; Ma et al., 2008). The success of this algorithm, of course 

hinges on a consistent and reasonably accurate proxy. 

A Fast Marching Method (FMM)-based proxy was recently applied by Yin et al. (2011)  in a 

Genetic Algorithm (GA) approach to a synthetic shale gas model calibration problem. The non-

uniqueness of the problem was reduced by constraining each proposed model’s drainage volume, 

calculated using FMM (Xie, Gupta, et al., 2012), to the microseismic-data-defined drainage 

volume. The FMM has also been applied as a forward model to quickly estimate production 

response using the geometric pressure approximation method (Xie, Yang, et al., 2012). The 

validity of the forward FMM model was however not verified with more accurate conventional 

finite difference simulator results. 

In this work, we demonstrate the applicability of the FMM geometric pressure approximation as 

a suitable proxy in a two-stage MCMC algorithm for integrating production data into a synthetic 

tight reservoir model. In this problem, hydraulic fractures were represented as elliptical planes, 

each surrounded by an induced ellipsoidal high permeability region (Ge and Ghassemi, 2011).  
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In the two-stage MCMC algorithm, model proposals were screened in the first stage using the 

FMM proxy based on their production responses. Only screened and potentially acceptable 

models proceed to the second stage where full simulations are carried out. Due to the speed of 

proxy evaluations, the two-stage MCMC was expected to be more efficient compared to the 

standard (single-stage) MCMC.   

3.2 Methodology 

In this section, we first provide the formulation of the geometric pressure approximation based 

on drainage volume estimated using FMM (Xie, Gupta, et al., 2012). This served as the proxy 

used to screen model proposals during the history matching process. Second, we pose the inverse 

problems formulation in the Bayesian framework. Here, the mathematical details guiding both 

the single stage MCMC and the two-stage MCMC algorithms will be described. Finally, we 

describe the history matching problem to which these concepts were applied.   

3.2.1 Proxy Construction  

The geometric pressure approximation formulation (Xie, Gupta, et al., 2012) starts from 

expressing the diffusivity equation given by: 
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in terms of the Darcy flux Q  given by: 
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Therefore Eq. (3.1) can be written as: 
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where rhrA 2)(   refers to the curved surface area for cylindrical flow (with 22 yxr  ) and 

24)( rrA  refers to the curved surface area for spherical flow (with 222 zyxr  ). The 

pore volume is also expressed in terms of the surface area )(rA : 
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And this is substituted into Eq. (3.3) to give: 
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For the geometric pressure approximation, the following assumptions are made: 

 The Darcy flux is negligible outside the drainage volume, that is  0Q  as )(rVV pp  and 

wQQ  as 0pV ; and 

 The steady state solution provides a good approximation of the pressure within the drainage 

volume, that is: 
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Applying the boundary conditions in the first assumption and substituting Eq. (3.6) into Eq. 

(3.5), the following is obtained: 
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Solving for pressure requires transforming from the diffusive time of flight )(x obtained from 

FMM to pressure front arrival time )(t . In homogeneous flow media, the t transformation is 

given simply as t  ; where 2 , 4 and 6 for linear, radial and spherical flow regimes 

respectively (Ertekin et al., 2001). For cases like the hydraulic fractured reservoir systems where 

flow regimes continually change with time, the t transformation takes the form (Zhang et al., 

2013): 
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Plotting )(ln pV  versus )ln( , it is easy to verify that Eq. (3.8) reduces to the t

transformation expression for the homogeneous cases. Finally, the bottom hole pressure (BHP) 

of a producer constrained at rate wQ  can be obtained: 
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Pressure profile with respect to time and space of the entire reservoir due to rate constrained 

wells (producers or injectors) can also be estimated by applying Eq. (3.10) in a superposition 

approach. This method is presented in Appendix A of this thesis. 
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3.2.2 Bayesian Approach to Inverse Problems 

In the Bayesian framework, inverse (history matching) problems are approached 

probabilistically. This technique relies mainly on the Bayes’ theorem given as: 

     obsP dX |     )(| XXd PP obs     (3.11) 

where  Xd |obsP  and )(XP  respectively represent the Likelihood and Prior probability 

distribution functions (PDF) while  obsP dX |  is referred to as the posterior PDF. In reservoir 

model calibration problems, the idea is to update prior models X  distributed in the prior PDF 

using current data obsd  such as well BHP or flow rate data, distributed in the Likelihood PDF to 

obtain the posterior PDF. Assuming the prior model and the data errors follow Gaussian 

distribution, then the posterior distribution can be expressed as (Oliver et al., 2008): 
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Defining a measure of history match referred to as misift given as: 
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where DC and XC respectively are the data and model parameter covariance matrices while simd  

represents the calculated model response. The first term on the RHS of Eq. (3.13) is referred to 

as the Likelihood while the second term measures the deviation from the prior. For multi-

dimensional problems as we have in reservoir history matching, the posterior PDF however gets 
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too complicated to estimate in closed form. Complicated PDFs like this are usually estimated 

using efficient sampling methods such as the Metropolis-Hastings Markov Chain Monte Carlo 

(MCMC) algorithm. This algorithm was designed to run an ergodic Markov chain through the 

parameter space and, with sufficiently long chain, eventually converge to a stationary 

distribution )|( obsP dX , describing the posterior PDF. The amount of time (iterations) it takes 

for the Markov chain to converge to a stationary distribution is referred to as the burn-in time

burnn . This approach helps to obtain an ensemble of reservoir models that are constrained to both 

data and prior information in a probability distribution, and therefore offers the advantage of 

accounting for uncertainties in history matching solutions.  

The Single Stage MCMC Algorithm 

This algorithm which was introduced by  (Hastings, 1970) involves the following steps: 

 At state nX , generate a propose a new state X from a proposal distribution  nq XX |  

 For the proposal X , calculate the posterior probability )(X (given as the RHS of Eq. 

(3.12)). The likelihood term in )(X requires full-scale numerical simulation.  

 Accept the proposal X with probability: 
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 Thus XX 1n with probability ),( XXn  and nn XX 1  with probability ),(1 XXn . 

In this problem, proposals are generated using the random walk sampler expressed as: 

 nXX       (3.16) 
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where 0 refers to the step length and  is a vector of random numbers sampled from a 

uniform distribution. It can be shown (Hastings, 1970) that for symmetric proposal distributions 

like was applied in this work, Eq. (3.16) reduces to: 
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These steps are usually repeated iteratively for sufficient burnnn   until sufficient samples are 

collected from the posterior distribution. This MCMC algorithm remains a powerful technique 

for sampling complicated posterior PDFs like those encountered in history matching problems. 

However, going by the typical acceptance rates (less than 30%), it becomes computationally 

prohibitive to implement this algorithm for large (many cell) reservoir models. 

The Two-Stage MCMC Algorithm 

To circumvent the inefficiency of the single stage MCMC method, the two stage MCMC 

algorithm was designed (Efendiev et al., 2005). In this approach, a fast model evaluator (proxy) 

is used to screen model proposals in the first stage. Based on its response, as determined by the 

proxy, a model proposal may either be rejected or proceed to the second stage where full 

simulations are run to evaluate the proposal. The algorithm involves the following steps:   

 At state nX , generate a propose a new state 'X from a proposal distribution  nq XX |'  

 Estimate the posterior probability )|'()'(*
obsP dXX  of the proposal 'X . Here the FMM 

proxy model is used for the likelihood calculation. 

 Calculate first stage acceptance probability: 
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 Thus 'XX   with probability )',(1 XXn and nXX  with probability )',(1 1 XXn  

 If accepted, calculate the posterior probability )(X of the proposal X . At this stage, a 

numerical simulator is used for computing the likelihood.   

 Calculate second stage acceptance probability: 
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where the instrumental distribution )|( nQ XX  is given by: 

  )()|()',(1)|()',()|( 11 XXXXXXXXXXXX Xn
dqqQ nnnnn     (3.20) 

 Finally XX 1n  with probability ),(2 XXn  and nn XX 1  with probability 

),(1 2 XXn  

In the above algorithm, if the trial proposal 'X  is rejected in the first stage, then no full-scale 

simulation is required. If it is otherwise accepted, Eq. (3.20) represents the proposal distribution 

from which X is effectively sampled from. Computing )|( nQ XX  and )|( XXnQ  by the integral 

equation of Eq. (3.20) is however not required in this algorithm as it has been shown (Efendiev 

et al., 2005; Ma et al., 2008) that Eq. (3.19) naturally reduces to: 
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In essence, the first stage only serves as a filter to avoid full (and costly) simulations for poor 

proposals. The comparative performances and efficiencies of both single and two stage MCMC 



40 
 

algorithms were evaluated using the final acceptance rates. The acceptance rate was simply 

defined as the ratio of the new accepted proposals to the total number of proposals of the 

Markov Chains in both algorithms. Also we adopted the maximum entropy criterion in the 

convergence diagnostics of each Markov chain. The entropy measure S  is calculated as the 

expectation value of the logarithm of un-normalized posterior values )(X mathematically 

expressed as (Maucec et al., 2007): 

   )(log)(log)( XXXXS   d     (3.22) 

From Eq. (3.22), the entropy S of the posterior distribution is approximated using a Monte Carlo 

integration. A high and relatively stable value of the negative entropy calculated in Eq. (3.22) 

signifies a convergence of the Markov chain to a stationary distribution.  

3.2.3 Problem Description 

Here, we illustrate the application of these concepts with a synthetic hydraulic fractured reservoir 

model calibration. We considered a tight oil reservoir discretized into 11150150   square grid 

cells, each ft10 in dimension. The reservoir was developed with a horizontal well with four-

stage transverse hydraulic fractures equally spaced ft250 apart as shown in Fig. 3.1.  

Model Assumptions 

Regarding the model construction, the following simplifying assumptions were made:  

Hydraulic fractures can be effectively modeled for reservoir simulation with transverse high 

permeability symmetric elliptical planes as shown in Fig. 3.1 (a). The hydraulic fracture  
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 half-length fx is given by half of the entire major axis length of the ellipse, while the height 

fh2 is given by the entire length measured along its minor axis as labeled in Fig. 3.1 (b). 

 The local stimulated rock volume around a fracture stage may be represented by an 

ellipsoidal Enhanced Permeability Area (EPA) (Ge and Ghassemi, 2011) as shown in Fig.  

3.1 (c). This can be a reasonable assumption for hydraulic fracture models especially in the 

absence microseismic and/or reliable fracture density data (Du et al., 2011). Essentially for 

this problem, each fracture stage was modeled as a single elliptical fracture plane at the 

center of an ellipsoidal EPA. 

 All fracture permeabilities fk , enhanced permeabilities ek are similar for all fracture stages. 

Also the rock matrix is homogeneous in terms of permeability mk and porosity .  

 Lastly, reservoir fluid is single phase oil. Also, pressure effects on permeability are 

negligible. 

History Matching Problem Set-up 

We considered updating the prior hydraulic fracture model using the well bottomhole pressure 

(BHP) data. The horizontal well was assumed to have produced oil at a constant rate

DBBLQw /100  for 360 days. Fig. 3.2 (a) shows the (target) reference model whose response is 

shown figure 3.2 (c) as the observed data plotted together with the response of the base model 

shown in Fig. 3.2 (b). The idea here is to perform a probabilistic search for all models that give 

minimum misfit between their respective responses and the observed data. In other words, we 

attempt to reduce the uncertainties in the reservoir model parameters in order to improve the 

predictive capacity of the updated models. 
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(a)      (b) 

  

 

                                       
      (c) 

 

Figure 3.1: Hydraulically fractured reservoir model description showing (a) hydraulic fracture 
model with (b) an expanded view and (c) Enhanced Permeability Area (EPA) 

 

Model Parameterization 

Table 3.1 shows the list of parameters used in the history matching problem. For each 

parameter, the reference, high, low and base values are also presented. Parameters describing the 

dimensions of the ellipsoidal EPA’s are assumed to be directly related to the fracture 

dimensions. The ellipsoid major axis length a  (along fracture main axis), minor axis length b  

(perpendicular to fracture plane) and the third axis length c (along the vertical direction) were 

expressed in terms of the fracture parameters as follows: 

    fhc 2 ;  fxb 4.0 ;  bxa f     (3.23) 

𝑥𝑓 

ℎ𝑓 
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Figure 3.2: History matching problem set-up showing (a) the reference model, 
(b) the starting (base) model and (c) the simulated responses of both models 
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  Table 3.1: List of model parameters 

   
 

History Matching Algorithm Implementation 

Both the single stage and two stage MCMC algorithms were implemented as described in the 

previous section. Fig. 3.3 shows a diagrammatic representation of the two stage algorithm. In the 

first stage, trial proposals are evaluated by estimating the response FMMsim dd   using the FMM-

based geometric pressure approximation proxy as described earlier. As shown in Fig. 3.4, proxy 

approximations of the BHP response do not deviate significantly from simulation responses for 

the reference and both extreme cases. This demonstrates the suitability of the FMM geometric 

pressure approximation as a good proxy for this problem.  
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Figure 3.3: The two-stage MCMC algorithm flow chart 
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   (a)      (b) 

    

     

 

 

 

 

 

(c)      (d) 

     

    

 

 

 

 

 

 

 

 

   (e)      (f) 

 

Figure 3.4: Logarithm of )(x contours and cross plots comparing pressure calculations 
between proxy and finite difference for the reference model [(a) and (b)], the 
lower extreme model [(c) and (d)] and the higher extreme model [(e) and (f)] 
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After first stage evaluations, all trial models are passed to the second stage and only proposals 

accepted in the first stage are evaluated with full simulations. All simulations in the second stage 

for this problem were carried out using the ECLIPSE® commercial software to obtain the model 

responses ECLsim dd  . The following were assumed for the terms required for the posterior 

calculation: 

 Data (white) noise is assumed to be uncorrelated so that DC  could be represented by a 

diagonal matrix. For this problem IC 2000D

2psi , where I is an identity matrix. 

 All 11 parameters are uncorrelated so that XC is a diagonal matrix with each diagonal 

element defined by one-sixth of the range of corresponding parameter. prX was defined by 

the arithmetic average of the high and low values of the parameters. 

3.3 Results and Discussion 

In this section, history matching results using the single stage MCMC algorithm will be 

presented first; then the results obtained using the two-stage MCMC algorithm will be presented.  

Single Stage MCMC Results 

The single stage MCMC algorithm was run over 1500 iterations, (requiring 1500 full 

simulations). The value of the calculated misfit at each state of the Markov chain is plotted in 

Fig. 3.5 (a). Also the acceptance rate at each state is plotted in Fig. 3.5 (b). As can be observed 

from these figures, the burn-in period for this Markov chain took 500 iterations. In other words, 

500 full simulations were required for the chain to converge to a stationary distribution, after 

which the chain begins to sample from the desired posterior distribution. The overall acceptance 

rate for this chain settled at 12%, which means that 88% of the simulations were wasted.  
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The quality of the history match is pictorially presented in Fig. 3.6. Responses of 100 models 

randomly sampled within the range of uncertainty in the prior distribution are plotted in Fig. 

3.6(a). Also 100 calibrated model responses, sampled from the posterior distribution by the 

Markov chain after the burn-in time, are plotted in Fig. 3.6 (b). In both plots, BHP responses 

were plotted to cover both the history period of 360 days (plotted in green) and the forecast 

period of another 360 days (plotted in blue). It is easy to see that the calibrated models provide 

excellent matches of the history. At the same time good prediction of future field performance.  

Parameter uncertainty plots (boxplots) of prior and calibrated models are also shown in Fig. 3.6 

(c) and (d) respectively. In these plots, each parameter value was normalized by the range of that 

parameter. The interval between the whiskers of each boxplot represents the entire range of 

uncertainty for the parameter represented. The upper and lower edges of each box represent 

the75th and 25th percentiles respectively of the conditional distribution of each parameter.   
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Figure 3.5: Single stage MCMC performance showing plots of the (a) misfit and  

(b) acceptance rate with iterations 
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Figure 3.6: History matching results using the single stage MCMC algorithm showing 
(a) initial spread in responses, (b) final spread in responses, and boxplots depicting 

(c) initial parameter uncertainty and (d) final parameter uncertainty 
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The middle red lines are the respective medians of each parameter distribution while the green 

triangles represent the reference model parameters. The history matching method effectively 

reduces the parameter uncertainties as shown in Fig. 3.6 (d) compared with the prior 

uncertainties shown in Fig. 3.6 (c). Also, the median values of each calibrated model parameter 

distribution closely matched the respective reference parameter values except for the matrix 

permeability Mk and fracture permeability fk . Poor approximation of the Mk distribution can be 

attributed to its extremely low value which prevents sufficient propagation of the pressure front 

into the matrix within the historical period. On the other hand, a reason for the poor 

approximation of the fk distribution is the typically high values of fk , implying negligible 

pressure drop within fractures so that multiple fk values could match historical data.  

Regarding the efficiency of the single stage MCMC algorithm, each full simulation took 80 

seconds on the average and therefore, about 31 hours was required for the Markov chain to both 

converge to the desired period distribution and to thereafter sample at least 100 models from the 

distribution. The two-stage MCMC algorithm was implemented to reduce the time required and 

therefore, to improve the overall efficiency of the history matching process. 

Two-Stage MCMC Results           

As shown in Fig. 3.7 (a) only a total 500 full simulations needed to be run in the two-stage 

MCMC since bad proposals are mostly “filtered” off using the FMM-based proxy. Also the 

burn-in period took less than 200 iterations after which more 160 models were sampled from the 

posterior distribution out of which the last 100 samples were extracted for uncertainty analysis.  
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Figure 3.7: Two-stage MCMC performance showing plots of the (a) misfit and  
(b) acceptance rate with iterations 

 

As shown in Fig. 3.7 (b) the acceptance rate for this algorithm settled at over 60% which is 

about 5 times what was obtained with the single stage MCMC algorithm. It is worthy of note 

here that these plots only show the misfits and acceptance rates versus the number of required 

full simulations. Unlike in the single stage algorithm, number of MCMC iterations here is more 

than the number of simulations.  

Here likewise, the quality of the history match using the two-stage MCMC algorithm was 

studied. The graphic details of the uncertainty analysis are shown in Fig. 3.8. Color coding and 

graphical symbols in these plots have similar meaning as in the plots for the single stage MCMC 

results. From Fig. 3.8 (b), it is clear that the two stage MCMC method sampled credible models 
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0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5

Number of Simulations

lo
g

(M
is

fi
t)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Simulations

A
c
c
e

p
ta

n
c
e
 R

a
te



52 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                        (a)        (b) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                              (c)         (d) 

 

Figure 3.8: History matching results using the two-stage MCMC algorithm showing 
(a) initial spread in responses, (b) final spread in responses, and boxplots depicting 

(c) initial parameter uncertainty and (d) final parameter uncertainty 
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future reservoir performance. Considering the parameter boxplots in Fig. 3.8 (c) and (d), 

parameter uncertainties were also drastically reduced like the single stage MCMC. The two- The 

two-stage MCMC however seemed to have better approximated each parameter’s conditional 

distribution based on the closeness of the median of each distribution to the respective reference 

model parameters. This may be explained by the much higher acceptance rate in the two-stage 

MCMC (a consequence of a sufficiently accurate proxy) which allowed more samples to be 

drawn from the posterior distribution even with less number of full scale simulations. 

Therefore, using the two-stage MCMC algorithm we were able to much more efficiently draw 

more samples from the posterior distribution. The FMM-based proxy evaluated each model 

within 2 seconds while full simulations required about 80 seconds on the average. Overall the 

total time required for the history matching using the two stage MCMC algorithm was less than 

12 hours, implying almost 3 times speed up of the history matching process compared to the 

single stage MCMC algorithm. 

In this work, both single stage and two-stage MCMC algorithms were analyzed for convergence 

using the entropy plots. The entropy measure in the MCMC context is a measure of 

‘disorderliness’ of the posterior function of the sampled models. In other words, the closer to 

zero the entropy measure of a Markov chain is, the clearer the indication that it has converged to 

a stationary distribution. The entropy measure, as calculated using Eq. 3.22, for both the single 

stage and two-stage Markov chains is plotted in Fig. 3.9. Here, the entropy measure is plotted 

against the number of iterations and not the number of simulations. The two-stage MCMC 

algorithm shows initial lower convergence rate depicted by the smaller entropy measure 

compared to that of the single-stage MCMC algorithm, but this difference attenuates as the 

number of iterations increases. The collapse of both plots at later iterations confirms the  
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Figure 3.9: Entropy plots 
 

consistency between the single stage and two-stage MCMC algorithms since they both sample 

from similar posterior distribution. The overall conclusion regarding the comparative efficiencies 

of both algorithms in this problem is that the acceptance rate is increased without substantial 

drop in convergence rate. 

Finally, in Fig. 3.10 we present the results of the history match in graphic detail. The non-

uniqueness of the history match can be observed from the four models sampled from the 

posterior distribution. Integrating more data such as the temperature and production logging data 

can help dampen the non-uniqueness of the problem and also further reduce the uncertainty in 

the reservoir model. 
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Figure 3.10: Graphical summary of history matching results showing (a) the EPA and logarithm 
of )(x for the reference model, (b) the EPA and logarithm of )(x for the base model, 

(c) logarithm of )(x for 4 models sampled from the posterior distribution 
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3.4 Summary 

In this chapter, we focused on solving an important problem in reservoir characterization – 

history matching and uncertainty analysis. We considered a tight oil reservoir history matching 

problem by integrating the well bottomhole pressure (BHP) data to reduce uncertainties in model 

parameters. We approached the problem in the Bayesian framework using the Markov Chain 

Monte Carlo (MCMC) method. We compared the efficiency of the single stage (normal) MCMC 

algorithm with a two-stage MCMC algorithm which required an efficient proxy with which 

sampled models were quickly evaluated before running full scale simulations. We applied the 

Fast Marching Method (FMM) geometric pressure approximation as a proxy to quickly calculate 

the well BHP of each sampled model in the first stage of the two-stage MCMC algorithm. The 

suitability of the FMM-based proxy was confirmed for this problem as the acceptance rate in the 

two-stage MCMC improved 3 times over what was obtained with the single stage MCMC 

algorithm, without significant reduction in convergence rate.  
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this work, we have applied the Fast Marching Method (FMM) to significantly improve the 

computational efficiencies associated with important hydrocarbon reservoir characterization 

tasks including geologic model ranking, reservoir model calibration and uncertainty analysis.  

First, we demonstrated the application of the drainage volume, calculated using FMM, as a 

dynamic measure of reservoir performance and surrogate parameter in ranking multiple geologic 

models based on the cumulative oil production in conventional reservoirs under primary 

depletion. The concept was demonstrated for both 2D and 3D heterogeneous reservoirs. 

 Also a new approach, called the Gaussian quadrature method, for point-discretizing the 

surrogate parameter probability distribution function (PDF) was compared with traditional (P5-

P50-P95 and P10-P50-P90) model selection methods. In our work, the Gaussian quadrature 

performed much better than the traditional methods in closely matching the true PDF of the 

actual reservoir performance parameter. However, it should be pointed out that, since the 

Gaussian quadrature model selection method is not based on predefined percentiles like the 

traditional methods, it may be difficult to identify specific percentile models, such as the P10 

model, for instance. However, the Gaussian quadrature approach offers more advantages over 

the traditional methods if the primary goal of the model ranking task is to quickly and more 

accurately estimate the bounds of uncertainty without making Gaussianity assumptions.         

Second, we considered an inverse problem involving a hydraulically fractured tight oil reservoir 

model calibration. The problem was approached in the Bayesian framework using the Markov 
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Chain Monte Carlo (MCMC) algorithm. The FMM was applied in the geometric pressure 

approximation as a proxy to quickly calculate the well bottomhole pressure (BHP) and thus, 

evaluate proposal models in the first stage of a two-stage MCMC algorithm, before running full 

simulations in the second stage. The performances of the two-stage and single stage MCMC 

algorithms were compared. The two-stage MCMC algorithm was found to be about 3 times 

faster than the single stage MCMC algorithm with the same level of uncertainty reduction and 

without substantial decrease in convergence rate. This was as a result of the suitability of the 

FMM-based proxy in evaluating the proposal models.  

The two-stage MCMC algorithm gave better estimation of parameters, especially for the matrix 

permeability and the hydraulic fracture half-lengths. The is due to the fact that the two-stage 

MCMC algorithm could sample more from the posterior distribution with 500 iterations than the 

single stage MCMC due to the much higher second stage acceptance rate. The fracture 

permeability was however poorly estimated by both algorithms. This can be attributed to the low 

sensitivity of this parameter due to the high value.     

A good direction towards achieving more robustness with this technique is to consider the 

formulation of the FMM-based proxy to effectively handle BHP constrained wells as well as 

wells with varying rates including multiphase flow systems. Improving the robustness will also 

require adapting the FMM algorithm to handle anisotropic permeability fields as well as corner 

point and unstructured gridding. 

An attempt was also made in this work on the application of FMM geometric pressure 

approximation in obtaining steady state pressure solutions for conventional reservoirs as 

presented in the Appendix A of this thesis. It was discovered that the approximations were closer 

to true solutions for homogeneous than for heterogeneous reservoirs. Also, for transient 
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pressures in unconventional reservoirs with multistage transverse hydraulic fractures, it was 

slightly more efficient to calculate the pressure field with iterative solvers using an initial guess 

obtained from FMM geometric pressure approximation than using a homogeneous pressure field. 

To further improve the effectiveness of the FMM pressure approximation initial guess, it will be 

worthwhile to adapt the FMM algorithm to handle high heterogeneity contrasts that come with 

hydraulic fracture models.     
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APPENDIX A 

APPLICATION OF FAST MARCHING METHODS TO 

PRESSURE FIELD CALCULATIONS 

 

Over the years, technological boundaries in petroleum reservoir engineering have continually 

been shifted towards reducing computational time and improving the overall efficiencies in 

reservoir simulations. In this work we made efforts to accomplish a similar objective. Here, an 

application of Fast Marching Methods (FMM) for calculation of pressure field in both 

conventional and unconventional reservoirs is presented. The pressure filed is estimated using 

the FMM geometric pressure approximation (Xie, Gupta, et al., 2012) and this is input as an 

initial guess into a linear system solver to obtained the full pressure field. The Generalized 

Minimal Residual Algorithm (GMRES) (Saad and Schultz, 1986) was adopted to solve the linear 

system.  

Obtaining the approximate (guess) pressure field requires performing the geometric pressure 

approximation for each source and/or sink, having calculated the drainage volumes pV as a 

function of time )(t  using FMM; where  refers to the diffusive time of flight with reference to 

each well. These pressure fields obtained with reference to each well are combined using the 

principle of superposition in space (Lee et al., 2003). For varying boundary conditions, such as 

step changes in rate schedules, the superposition in time principle is also applied. The 

approximate pressure fields are then provided as an initial guess into a linear system of equations 

which is constructed using a Finite Difference (FD) scheme (Ertekin et al., 2001) to be solved 

using the GMRES solver. 
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The results presented here are all based on rate constrained wells. For conventional reservoir 

cases, pressure fields are calculated for five –spot injection patterns with the injector in the 

center and equidistant from all producers at the corners. The approximate pressure fields are 

compared with the GMRES results for three different rate schedules in both homogeneous and 

heterogeneous reservoirs. For unconventional reservoirs on the other hand, both approximate 

pressure fields and GMRES results are compared with the results from a commercial simulator 

(ECLIPSE®). Also the degree of efficiency in pressure calculation derivable from using the 

approximate pressure field as an initial guess is assessed.    

A.1   Procedure for Pressure Field Calculations using FMM 

The steps involved are outlined as follows: 

A.1.1   Drainage Volume Calculations with FMM 

Pressure front contours can be approximated by solving the expression obtained from retaining 

the high frequency terms of the asymptotic expansion of the pressure solution (Vasco et al., 

2000). This expression, referred to as the Eikonal equation is given in Eq. (1.5) of the main text, 

can be solved efficiently using the FMM (Sethian, 1999) to obtain the diffusive time of flight 

contours )(x . This can be converted to an approximate pressure front arrival time 
)(t
by a

t  transformation, for example, given by ct )(2 x (Ertekin et al., 2001), where c  is the 

transformation factor that depends specifically on the flow regimes. The drainage volume pV  

can then be calculated as a function of time using thresholds of 
)(t
contours as described in Eq. 

(2.3) of the main text. A )(. tvsVp  relationship is obtained for each well in the reservoir and 



69 
 

therefore for n  wells, corresponding jp tV )]([  relationships are obtained for each jwell][

],1[ nj  .  

A.1.2   Geometric Pressure Approximation and Superposition in Space and Time 

Similar to Eq. (3.10) in the main text, the pressure drawdown with respect to each well is 

approximated by an integration of the inverse of pV , mathematically expressed as: 

    

j

j j

j

t

pt

w

j
tV

dt

c

Q
tp


)(

),( '

'
* x     (A.1) 

where 
xjpjp VV

jj t


 refers to the pressure arrival time at position x in the domain considered 

and with respect to a specific thj well; 
jwQ represents the thj well rate. The convention adopted 

in this work is negative 
jwQ values for producer wells and positive 

jwQ values for injector wells. 

Varying rate schedules are handled using the superposition in time principle (Lee et al., 2003). 

Considering m rate schedules for the thj well, the pressure drawdown may be approximated as 

follows: 
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where i
jw

Q refers to the rate at the thi schedule. Here, we set 01 i
jw

Q when 1i , so that 1
jw

Q

represents the first well rate. Also i
jt represents the difference between the entire operation time 
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for the thj well jt and the time elapsed between the start of well operation to the thi schedule i
jt  

(that is i
jj

i
j ttt  ); and 

xjpjp VV

i
j

i
j t


 .   

Pressure domains involving multiple wells can also then be handled using the superposition in 

space concept (Lee et al., 2003). In this work, the pressure field as a function of time ),(* tp x  

may be obtained by summing up the pressure drawdowns approximated for each well, ),(* tp j x

and subtracting the initial pressure field )0,(xinitp  as shown below: 
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A.1.3   Derivation of Linear System of Equations for GMRES Solver 

This section revises the conventional Finite Difference (FD) discretization of the material 

balance equation in flow in porous media. The material balance equation for a single phase oil 

flow in porous media, neglecting gravity effects may be written as: 
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Using a simple FD scheme, the material balance can be re-expressed as:   
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where, 1nP  and nP are vectors containing pressure value of every grid cell at the current and 

old time steps respectively. The source and sink terms are placed in the vector Q  and the time 
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step size is given by t . The accumulation term on the left hand side of Eq. (A-4) for every grid 

cell are placed along the diagonal of the diagonal matrix C . For this problem the accumulation 

term form each grid cell is calculated as follows: 
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where total compressibility tc  is the sum of oil compressibility oc and formation compressibility

fc . Also to simplify the simulations, the lagging coefficient method was adopted in constructing 

the linear system of equations. Thus the flux balance in each grid cell (first term on the right 

hand side of Eq. (A-5)) can be expressed as:   

              kjikjikjikjikjikjikjikji ppTppTFlux ,,,,1,,21,,,,1,,21,,,,  TP  
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where the inter-cell transmissibility, evaluated at old time level n is obtained as: 
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The inter-cell values for the viscosity o  and formation volume factor oB are calculated as the 

arithmetic average of values in adjacent grid cells. Finally, solving for pressure at the new time 

level, we obtain: 
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      QCPPTC   tt nn 1     (A.9) 

This can be written in the form:  

BAP 1n      (A.10) 

So that BAP 11  n  essentially. However, to solve Eq. (A.10) more efficiently, iterative solvers 

are good choices in many cases. For this work, we apply the GMRES algorithm in MATLAB® 

specifying the approximate pressure field ),(* tp x obtained from the FMM-geometric pressure 

approximation described earlier as an initial guess at the start of the iterative process. 

A.2   Results and Discussion 

In this section we present first, the results of the steady state pressure field calculations for 

conventional five-spot pattern in both homogeneous and heterogeneous waterflood reservoirs. 

Next the results of the application of this concept on an unconventional (hydraulically fractured) 

reservoir will be presented. For all cases considered, constant rate boundary conditions were 

applied to all wells. We assumed oil PVT properties such as viscosity o  and formation volume 

factor oB have weak dependence on pressure. Reservoir initial reservoir pressure was assumed 

homogeneous at psipinit 3000 . Furthermore, since pressure drop and rate do not exactly vanish 

at the radius of investigation, an extra term 2


e was included in the estimation of the drainage 

volume used in all pressure calculations to further improve the quality of the geometric pressure 

approximation (Gupta, 2012). 
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A.2.1   Steady State Pressure Solutions for Synthetic Waterflood Reservoir 

For this case, both homogeneous and heterogeneous 2-Dimensional flow domains were studied. 

For each, the pressure field was solved in the single phase framework using the equations shown 

above. The total compressibility and fluid viscosity were considered constant. The general 

waterflood pattern used for this study together with the flow rate schedules for each well is 

shown in Fig. A.1.  

 

 

 

 

 

 

 

 

        
              (a)                   (b) 
 

Figure A.1: Conventional reservoir test case set up showing (a) the waterflood pattern applied to 
             both homogeneous and heterogeneous reservoirs and (b) well flow rate schedule  

 

Homogeneous Reservoir Case 

The results of the steady state pressure calculations for homogeneous permeability and porosity 

values of md100 and 1.0 is shown in Fig. A.2. Results at the 1st, 11th and 21st time steps are 

shown for FMM pressure solutions before and after refinements with GMRES. For intermediate  
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Figure A.2: Steady state FMM-approximate and GMRES-refined pressure solutions for homogeneous  
5-spot waterflood pattern  

 

time steps, rates well rates are constant and since the system is slightly compressible, pressure 

field changes are negligible. It is clear from the results that the pressure field obtained by FMM 

geometric approximation closely scales well with the refined (true) solution at all times. There 

are however, discrepancies in the shapes of the pressure contours especially when well rates 

differ significantly (at later time steps). This may be attributed to the fact that the FMM 

algorithm by nature does not properly handle the Neumann (no flux) boundary condition which 

was built into the system of equations for this problem. Therefore, FMM approximated pressure  

Time step 1 
 

Time step 11 
 

Time step 21 
 

FMM 
Geometric Pressure 

Approximation 

FMM Pressure solution  
Refined with GMRES 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A.3: Material balance errors in FMM-approximate and GMRES-refined pressure solutions for 
homogeneous 5-spot waterflood pattern  

 

field contours are not normal to the boundaries as expected and as can be observed in the refined 

solutions. This implies artificial influxes at the boundaries which gives a possibility of local flux 

imbalance in each grid cell. The flux balance was quantified as a logarithm of the square of the 

divergence of flux calculated from Eq. A.7. The distributions of the flux balance for both 

approximate and refined solutions are shown in Fig. A.3. For slightly compressible flow, as we 

have in this problem, it is expected that flux balance should reduce to the (negligible) 

accumulation terms for all cells except at the wells. This can be observed with the true solutions 
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but not with the FMM approximate. Flux errors are randomly scattered throughout the domain 

while clustered around wells in the FMM approximate solutions. 

Heterogeneous Reservoir Case 

The results of the steady state pressure calculations using the heterogeneous permeability and 

porosity distributions shown in Fig. A.4 are presented in Fig. A.5.Similar to the homogeneous 

case, results at the 1st, 11th and 21st time steps are shown for FMM pressure solutions before and 

after refinements with GMRES. Likewise, for intermediate time steps, the pressure field remains 

at steady state.  

 

 

 

 

            

        (a)               (b) 
 

Figure A.4: Heterogeneous model: (a) permeability distribution on Logarithmic scale,  
(b) porosity distribution  

 

Similar to the homogeneous reservoir case, FMM approximate pressure solutions do not satisfy 

the Neumann boundary condition so that pressure contours are not normal to the boundaries as 

shown in Fig. A.5. Aside that, in this case, FMM approximate pressure contours are dissimilar to 

the true pressure contours; although closely capture the actual ranges. Similar to the 

homogeneous case, the flux balances for both FMM approximate solutions and refined solutions 

are compared in Figure A.6. 
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Figure A.5: Steady state FMM approximate and GMRES refined pressure solutions for heterogeneous  

5-spot waterflood pattern  
 

It is clear from this figure that flux errors get more significant both in high permeability regions 

and around well bore regions where flux magnitudes are high. This is also in agreement with the 

observation made in the homogeneous reservoir case where the high flux values occur only 

around well bore regions. The high values of the flux errors in high permeability regions cause 

artificial sinks/sources effects which can also be observed from the FMM approximate pressure 

contours. 
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Figure A.6: Material balance errors in FMM approximate and GMRES refined pressure solutions for 
heterogeneous 5-spot waterflood pattern  

 

Therefore it is safe to conclude here that increase in heterogeneity results in preferential 

clustering of flux imbalances in high permeability regions which, in turn deteriorates FMM 

geometric pressure approximations. Pressure solutions obtained by FMM pressure 

approximations are not perfect either for homogeneous flow media. Material balance errors are 

only almost evenly distributed throughout the medium so that sink/source artifacts are not 

formed.           
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A.2.2   Pressure Solutions for Unconventional (Tight) Reservoirs 

 For this study a synthetic homogeneous tight oil reservoir of matrix permeability mDkm 05.0  

and porosity 05.0 was assumed to have slab geometry of size ft5080004010  , so that the 

reservoir could be finely discretized into 5800401  grid cells of dimensions ft101010  . 

The reservoir was assumed to have been developed with a horizontal well completed with 5 

transverse hydraulic fracture stages, equally spaced ft1000 apart and each of infinite 

conductivity. Each of the fracture stages similar fracture half-length ftx f 550 and fracture 

height spanning the whole pay zone. A constant rate boundary condition of DbblQw /100 was 

applied to the well over a period of years10 ( days3600 ). 

The FMM approximate pressure solution at ,10years  shown in Fig. A.7(a) is compared with the 

pressure solution obtained from ECLIPSE® commercial simulator at the same time,  shown  in 

Fig. A.7(b). From these figures, marked differences between the pressure distributions can be 

observed. This is as a result of the implicit assumption in FMM geometric pressure 

approximation that the )(x contours also define the pressure contours. The FMM approximated 

pressure distribution was also refined with the GMRES algorithm. However in this case, one of 

the goal was to compare the computational time required for GMRES to converge to the true 

solution at each time step with and without the FMM approximated pressure as initial guess.  

For one test case, a homogeneous pressure distribution of psipinit 3000  was supplied as the 

initial guess, that is, initptp ),(0 x  at every time step; and for the second test case, the FMM 

approximated pressure calculated at the corresponding time step was supplied as the initial guess 

into GMRES, that is, ),(),( *
0 tptp xx  . The pressure distributions obtained from both cases are  
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            (a)                         (b) 
 

 

 

 
           (c)                                         (d) 
 

Figure A.7: Pressure solutions for a tight oil reservoir showing (a) FMM geometric approximation 
pressure distribution, (b) pressure distribution obtained from ECLIPSE®, (c) GMRES pressure  

solution with initptp ),(0 x , and (d) GMRES pressure solution with ),(),( *
0 tptp xx   

 

displayed in Fig. A.7(c) and (d) respectively. The pressure distributions obtained from the 

GMRES solutions also show close resemblance to the ECLIPSE® solution. As shown in Fig. 

A.8, the second approach of solving for the pressure distribution using the GMRES algorithm 

with the FMM approximated pressure distribution as the initial guess improves the 

computational speed of the calculation with increase in time. It should be noted that the pressure 

calculations are not done sequentially here. For instance, as shown in Fig. A.8, GMRES requires 

about ondssec43 to obtain the pressure solution taking a single time step dayst 3200 from 

the initial homogeneous reservoir pressure distribution with initial guess initptp ),(0 x , but 

ondssec38 with same set up except with initial guess  )3200,(),( *
0 daysptp xx  .    
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Figure A.8: Comparative GMRES computational time between cases:  

initptp ),(0 x  and ),(),( *
0 tptp xx   

 

A.3   Summary  

Here we have demonstrated another application of Fast Marching Methods (FMM) to reservoir 

pressure field calculations. The principle of superposition in time and space in the FMM 

geometric pressure approximation framework was also formulated and described. FMM 

approximated pressures were also refined with a GMRES solver. For conventional reservoirs 

under waterflood, FMM approximated steady state pressure solutions closely resemble the 

GMRES (finite difference) solutions even as rate schedules change. However, for the 

heterogeneous case, the pressure contours are distorted in FMM pressure approximations due to 

preferentially distribution of material balance errors.  
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For transient pressure solutions in hydraulically fractured tight reservoirs on the other hand, 

FMM approximate pressure solution also roughly captures the true range. Pressure contours 

however look different in shape compared with the contours in the true solutions. This is due to 

the formulation of the FMM geometric pressure approximation which assumes similar shapes of 

both the diffusive time of flight contours obtained from FMM and pressure contours. It was 

nonetheless observed that supplying the FMM pressure approximations as initial guesses to 

GMRES, especially for large time steps, reduces the pressure distribution computational time.  

 

 

 

 

 

 

 

 

 

 

 

 




