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ABSTRACT 
 
 
 
 

The use of composite beam in buildings has known to be more economical 

compared to bare steel beams with hot-rolled steel section, as the composite action 

between steel and concrete results in significant savings in steel weight and reduce 

the beam depth.  However, the use of composite beam with cold-formed steel of 

lipped C-channel is yet to be established as the structural behavior of such beam is 

not well understood. This study presents and discusses the behavior of composite 

beam with cold formed steel section and innovative shear connectors. The composite 

beam comprises two cold formed steel of lipped C-sections oriented back to back to 

form I-steel beam and perpendicular metal decking concrete slab. Three types of 

bracket shear connectors namely single bracket (SBSC), double bracket (DBSC) and 

hot rolled plate (HPSC) shear connectors were developed and used; the proposed 

shear connectors were fixed to the web of steel beam by bolts. In addition, headed 

stud (HSSC) shear connector welded to the top flange of cold formed steel beam was 

also investigated. Push tests in accordance with Eurocode 4 were carried out to 

determine the strength capacity and ductility of the proposed shear connectors. 

Sequentially, full-scale beam tests were conducted to investigate the actual behavior 

of the composite beam with the proposed shear connectors. The length of full-scale 

specimen between supports is 4000 mm. Theoretical validation for the experimental 

results was performed based on the plastic analysis of composite beam. The 

experimental results of push tests showed very good strength with extreme 

deformation capacity for all bracket shear connectors suggesting that they are strong 

and ductile enough to provide composite action between steel beam and concrete 

slab. Also, it was observed that strength capacity of shear connector increases as the 

thickness of steel beam increases. For headed stud shear connectors, the stud possess 

strength capacity as high as its predicted strength. The results of full-scale beam tests 

showed very good agreement as compared to theoretical values that predicted based 

on push test results. The bending resistance and stiffness of the composite beams 

were improved up to 170% and 270% respectively as compared to non-composite 

cold formed steel beam. Composite beam with HSSC shear connectors showed the 

best performance as compared to composite beams with SBSC, DBSC and HPSC 

shear connectors. Also, the results showed that the bending resistance of the 

composite beam increases as the thickness of steel beam increases. It is concluded 

that the proposed composite beams with cold formed steel section are strong enough 

to be used in small and medium size buildings. 
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ABSTRAK 

 

 

 

 

Penggunaan rasuk rencam dalam bangunan telah diketahui lebih menjimatkan 

berbanding dengan rasuk keluli dengan keratan keluli tergelek panas, kerana 

tindakan komposit antara keluli dan konkrit dapat menghasilkan penjimatan berat 

keluli yang ketara dan mengurangkan kedalaman rasuk. Walau bagaimanapun, 

penggunaan rasuk komposit dengan keluli terbentuk sejuk daripada C-channel 

berbibir belum lagi terlaksana kerana kelakuan struktur rasuk tersebut tidak difahami 

dengan baik. Kajian ini membentangkan dan membincangkan kelakuan rasuk 

komposit dengan keratan keluli terbentuk sejuk dengan penyambung ricih inovatif. 

Rasuk komposit terdiri daripada dua keratan keluli terbentuk sejuk daripada C-

channel berbibir bertemu belakang bagi membentuk rasuk I dan papak konkrit 

dengan dek logam yang serenjang. Tiga jenis penyambung ricih iaitu kurungan 

tunggal (SBSC), kurungan berganda (DBSC) dan plat gelek panas (HPSC) telah 

dibangunkan dan digunakan; penyambung ricih yang dicadangkan telah dipasangkan 

kepada web rasuk keluli menggunakan bolt. Di samping itu, penyambung ricih 

headed stud (HSSC) yang dikimpal kepada bebibir atas rasuk keluli terbentuk sejuk 

juga disiasat. Ujian tolakan berdasarkan Eurocode 4 telah dijalankan untuk 

menentukan keupayaan kekuatan dan kemuluran bagi penyambung ricih yang 

dicadangkan. Ujian rasuk berskala penuh dengan panjang spesimen 4000 mm telah 

dijalankan untuk menyiasat kelakuan sebenar rasuk komposit dengan penyambung 

ricih yang dicadangkan. Pengesahan secari teori bagi keputusan eksperimen telah 

dijalankan berdasarkan analisis plastik rasuk rencam. Keputusan ujian tolakan yang 

menghasilkan kekuatan yang sangat baik dengan keupayaan ubah bentuk yang 

melampau bagi semua penyambung ricih kurungan menunjukkan bahawa mereka 

cukup kuat dan cukup mulur untuk menyediakan tindakan rencam antara rasuk keluli 

dan papak konkrit.Selain itu, dapat juga diperhatikan bahawa keupayaan kekuatan 

penyambung ricih meningkat apabila ketebalan rasuk keluli meningkat. Untuk 

penyambung ricih headed stud, stud  tersebut mempunyai kapasiti kekuatan setinggi 

kekuatan yang diramalkan melalui kiraan berdasarkan Eurocode 4. Keputusan ujian 

berskala penuh menunjukkan keputusan yang sangat baik berbanding dengan nilai 

teori yang diramalkan berdasarkan keputusan ujian tolakan. Rintangan lenturan dan 

ketegaran rasuk rencam juga telah meningkat sehingga 170% dan 270% berbanding 

dengan rasuk bukan rencam tergelek sejuk. Kesimpulannya, rasuk rencam yang 

dicadangkan dengan keratan keluli terbentuk sejuk adalah cukup kuat untuk 

digunakan dalam bangunan bersaiz kecil dan sederhana.  

. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

The population growth in the world requires an increase in the demand of 

residential and housing construction. Dannemann, (1982) introduces low cost house 

construction system using cold formed steel sections. The later  are one of the most 

efficient and economic structural members (Bryan, 1980). In the past 20 years, 

extensive growth of using cold formed steel sections in residential construction has 

been reported. Pekoz (1999) states that, in the United States, there were about 500 

homes built in light gauge steel in 1992. This number rose to 15,000 in 1993, 75,000 

in 1994. In Australia, about 40,000 new houses  using load bearing cold formed steel 

framing are constructed per year (Hancock and Murray, 1996). In Malaysia, recent 

development in IBS includes the increased usage of light steel trusses consisting of 

cost-effective profiled cold-formed channels and steel portal frame systems as 

alternatives to the heavier traditional hot-rolled sections (CIDB, 2003). With fast and 

accurate manufacturing, ease handling and transportation, high strength-to-weight  

ratio, efficiency in cost and material, speedy in erection, fully recyclable, and 

durability, cold-formed steel sections could be an alternative economic structural 

components and frame systems for residential and commercial construction 

(Dannemann, 1982; Yu, 2000; Allen, 2006). The increase in the use of cold-formed 

steel as construction materials leads to an increase in the research done in this area 

(Ghersi, et al., 2002). There are three primary areas of cold formed steel applications; 

namely, framing, metal buildings, and racks (Schafer, 2011). 
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Cold-formed steel members are steel products that made from sheets or coils 

by cold rolling, press brake or bending brake method (Yu, 2000). The thickness of 

cold formed steel members can go up to 8 mm (EN1993-1-3, 2006). However, the 

available thickness in Malaysian market is ranged from1 mm to 3 mm. In 1930s, the 

development in cold formed steel construction faced difficulties due to lack of design 

specification (Yu, et al., 1996). Thus, extensive research was conducted at the end of 

1930s and first American Institute of Steel and Iron (AISI) specification was 

published in 1946 as end product of this research (Haws, 1996). Subsequent 

improvements and developments led to enhance and modernize the AISI 

specifications. Later, new standard specifications in UK, Canada, China, Japan, India 

and other countries were published.  

 

Recent developments in the technology of producing cold formed steel sections 

includes ultra-high yield stress, possibility of welding, more complex section shapes, 

enhancement of corrosion resistance and controlled rolling and forming technology 

encouraged the builders, contractors and companies to use cold formed steel sections 

as primary framing system in low-rise and midrise construction and as secondary 

framing system in high-rise or long-span construction (Davies, 2000; Ziemian, 

2010).  

 

The main governed instability characteristic of cold formed steel members 

comes from its thinness that induces the local, lateral, flexural, distortional buckling 

before reach its yielding point. Thus, extensive researches and investigations have 

been conducted (Lau and Hancock 1987; LaBoube 1993; Rogers and Hancock 1997; 

Wang and Li 1999; Wilkinson and Hancock 2000; El-Kassas, Mackie et al. 2002; 

Schafer 2002; Holesapple and LaBoube 2003; Stephens and LaBoube 2003; Yu and 

Schafer 2003; Young 2004; Young and Ellobody 2005; Guzelbey, Cevik et al. 2006; 

Yu and Schafer 2006; LaBoube and Findlay 2007; Dubina 2008; Pala 2008; 

Ranawaka and Mahendran 2009; Kumar and Kalyanaraman 2012; Macdonald and 

Heiyantuduwa 2012) to study the stability problems and improve the behaviour of 

cold formed steel members. The current codes of practice cover the design 

considerations for plain cold formed steel members subjected to compression, 

tension, bending, shear or combinations. However, the use of cold formed steel 

members in composite with concrete is still very limited. This is due to the fact that, 
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no standard specifications have been made for cold formed steel section as composite 

members.  

 

This study investigated the structural behaviour of composite beam with cold 

formed steel section. Innovative new shear connectors suitable for cold formed steel 

section are proposed to perform the composite action between steel beam and 

concrete slab. In addition, the feasibility of using welded stud shear connectors with 

cold formed steel beam is investigated. The findings from this study may lead to 

expanding of the use of cold formed steel sections in Malaysian construction industry 

and promoting the use of the proposed shear connectors and composite beams as 

alternative construction materials for possible construction implementation. Also, it 

may improve the understanding about the feasibility of using the welded stud as a 

shear connector for composite beam with cold formed steel section. 

 

 

 

1.2 Problem Statement 

 

Recently, cold formed steel members are extensively used in construction 

industry.  Builders, contractors and companies have realized the efficiency of using 

cold formed steel sections as primary framing system in low-rise and mid-rise 

construction; and as secondary framing system in high-rise or long-span construction 

(Allen, 2006; Ziemian, 2010).   

 

However, the efficiency of using such structural members with concrete to 

form composite beam members is not properly investigated. Exploitation of 

composite principles seems appropriate for promoting the use of cold formed steel 

sections to a wider range of applications (Irwan, et al., 2008). For example, 

composite beam with cold-formed steel section could be an alternative economic 

beam for reinforced concrete and hot rolled steel beams in medium and small size 

buildings (Hossien, 2005). Also, in cold formed steel housing and residential 

buildings, designing beams as composite beams rather than the current practice 

where the beams designed as non-composite beams could improve their strength 

capacity and stiffness, and in some cases provide simple fabrication and installation 



4 

 

without the requirements of specially trained labor (Fox, et al., 2008). However, the 

thinness of cold formed steel section materials is a big challenge faces the designers 

and researchers. Introducing composite action between cold formed steel beam and 

concrete slab should be based on their strength and ductility requirements. New shear 

connectors should also be proposed so that the cold-formed steel section can develop 

composite action with the slab system. 

 

 

 

1.3 Objectives of Study  

 

The main objective of this study is to study the structural behaviour of cold 

formed steel concrete beam with the proposed shear connectors. The purpose of the 

newly invented shear connectors in this study is to develop a composite beam system 

that has better capacities and performance as compared to non-composite beam. 

 

 Four specific objectives are considered in this study: 

 

1. To evaluate the mode of failures, strength capacities and ductility of the 

proposed shear connectors, 

2. To study the structural behaviour of composite beam with cold formed steel 

section and the proposed shear connectors, 

3. To examine and study the feasibility of using welded stud shear connector 

with cold formed steel beam, 

4. To validate the performance of the proposed composite beam by comparing 

the theoretical predictions and experimental results.  

 

 

 

1.4 Scope of Study  

 

The scope of this study consists of an experimental program. The experimental 

program is designed to provide a better understanding of the structural behaviour of 

the proposed composite beams. Innovative new shear connectors suitable for 
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composite cold formed steel beam are introduced. They are namely; single bracket 

shear connector (SBSC), double bracket shear connector (DBSC) and hot rolled plate 

shear connector (HPSC). In addition, headed stud shear connector (HSSC) welded to 

the top flange of steel beam is investigated. This is to study the feasibility of using 

welded studs with cold formed steel sections. Proposed equations are adopted to 

predict the strength capacity of proposed shear connectors depending on their 

mechanism to resist the longitudinal load. The experimental program comprises of 

two phases. In the first phase, push tests are carried out in accordance with Eurocode 

4. Based on load-slip curves that obtained from the push tests, the strength capacities 

and ductility of proposed shear connectors are determined. The second phase is 

designed to investigate the structural behaviour of the proposed composite beams. 

The proposed composite beam comprises two cold formed lipped steel C-sections 

oriented back-to-back to form an I-steel beam, and profiled concrete slab. Full-scale 

simply supported beam specimens of 4000 mm length between supports are tested 

using four-point load system. The beam is subjected to two point loads with 1025 

mm far from the supports. This system of loading produces a constant region of pure 

bending moment between the point loads. Hence,  the ultimate flexural capacity of 

the proposed composite beam is determined. Later, the results from full-scale tests 

are used to verify the theoretical results. Theoretical analysis using current design 

methods of composite beam is conducted based on push test results. A comparison 

between theoretical values and experimental results is conducted to validate the use 

of current design methods of composite beam for designing the proposed composite 

cold formed steel concrete beams. 

 

The details of the works involved are divided into several tasks according to 

their subsequent, where organized into relevant chapters as described in section 1.6.  

 

 

 

1.5 Significance of Research  

 

Composite beams are extensively used in construction industry due to their 

efficiency in strength, stiffness and saving materials (Nie, et al., 2006; Tahir, et al., 

2009). To date,  headed stud shear connectors are commonly used to perform the 
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composite action between steel beam and concrete slab (Lawson, et al., 2001). 

However, it was found that headed stud shear connectors create a significant tripping 

hazard on working surfaces at site (US Department of Labor, 2001). Thus, alternative 

new shear connectors need to be developed. Also, in small and medium size 

buildings where the span is very short (about 4000 mm), the use of composite beam 

with hot rolled steel beam is not effective due to the loss of interaction between steel 

beam and concrete slab (Johnson,1981). The proposed composite beams in this study 

could be an alternative to be suitable in place of composite hot rolled steel concrete 

and reinforced concrete beams in small and medium size buildings. 

 

Also, in light-weight  residential and commercial buildings, cold formed steel 

members are used as floor beams and joists, and designed as non-composite beams 

(Popo-Ola, et al., 2000; Grubb, et al., 2001; Ghersi, et al., 2002). Such beams need to 

be checked for buckling and twisting and most likely they fail due to lateral-torsional 

buckling prior to the attainment of their full capacities (Ziemian, 2010). Big steel 

sections are then used resulting in space and material consuming. Thus, the 

validation of using cold formed steel sections with concrete as a composite beam 

could significantly increase their strength and stiffness capacities. The concrete slab 

could provide lateral bracing that prevents the cold formed steel section to fail under 

lateral-torsional buckling. Also, it could improve the resistance of top flange and 

reduce its tendency to buckle under compression. 

 

 

 

1.6 Structures of Thesis 

 

In this section, the organization of thesis is presented according to each 

following chapter 

 

Chapter 1 provides background of the topic, problem statement, and objectives of 

study, scope or research and significance of the study. 

 

Chapter 2 presents a comprehensive review on the area of study and all published 

works related to the current study.  
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Chapter 3 provides detailed description on the methodology of this study. The 

fabrication of new shear connectors and their configurations are presented. Push test 

specimen configuration, fabrication, instrumentation and test procedure are 

described. Also, detailed description on the full-scale beam test i.e. fabrication of the 

specimen, rig setup and procedure are outlined. 

 

Chapter 4 presents and discusses the experimental results of materials properties and 

push test. Tensile test results of steel materials are presented. Load-slip curves of all 

push test specimens and their strength capacity and ductility as well as failure modes 

are discussed. 

 

Chapter 5 contains the discussion on the experimental results of full-scale beam tests. 

Load-deflection curves of all specimens and their failure modes are discussed. The 

theoretical validation of experimental results is done using current practice design 

method. A comparison between experimental and theoretical results is conducted.  

 

Chapter 6 provides conclusions, recommendations and future work development. 
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