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ABSTRACT

The rupture o f the abdominal aortic aneurysm (AAA) occurs when the acting 

stress exceeds the ultimate stress o f the wall. Therefore, the ability to accurately 

estimate the acting stress is very useful to predict the rupture o f an AAA. In this 

study, previously developed equation which included the effect o f inter lumen 

thrombus, systolic pressure, maximum aneurysm diameter, wall thickness, 

asymmetry parameter, is improved by applying fully coupling-fluid structure 

interaction technique (f-FSI). Further improvements o f the equation is also done by 

including the aneurysm length and iliac bifurcation angle. Various case studies are 

analyzed to investigate the hemodynamic behavior as well as stress distribution on 

the wall using modified models as well as Computed Tomography scan (CT scan). 

The results show that the geometry parameters as well as hypertension affect the 

flow pattern, displacement and stress distribution. Exponential correlation is 

observed between the maximum acting stress and the asymmetric parameter. In 

addition, a linear correlation with the maximum aneurysm, aneurysm length, iliac 

bifurcation angle and wall thickness is determined. The parametric correlations 

confirm that these geometry parameters are important parameters to predict the 

maximum acting stress. The inclusion o f the effect of hemodynamic by using f-FSI 

technique predicted a higher maximum acting stress in AAA wall compared to 

previous equations. Consequently, the current research has concluded that the newly 

developed equation can be easily used for rupture prediction with even more accurate 

results than the currently used clinical tools.
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ABSTRAK

Aneurisme aortik abdomen (AAA) akan pecah apabila tegasan yang bertindak 

melebihi tegasan muktamad dinding. Oleh itu, kebolehan untuk meramal secara tepat 

tekanan yang bertindak sangat berguna untuk meramal bila dinding AAA akan 

pecah. Dalam kajian ini, persamaan yang telah dibangunkan terdahulu yang 

merangkumi kesan daripada "lumen thrombus" dalaman, tekanan "systolic", diameter 

maksimum aneurisme, ketebalan dinding, kesan tidak simetri, diperbaiki dengan 

mengaplikasikan teknik gandigan penuh interaksi antara cecair dan struktur (f-FSI). 

Penambahbaikan persamaan juga dilakukan dengan mengambil kira panjang 

aneurisme dan sudut pencabangan dua iliak. Pelbagai kajian kes dianalisis untuk 

mengenal pasti tingkah laku hemodinamik serta taburan tekanan pada dinding 

dengan menggunakan model yang telah diubahsuai serta imbasan Tomografi 

Berkomputer (CT scan). Keputusan menunjukkan bahawa geometri serta tekanan 

darah tinggi memberi kesan kepada corak aliran. anjakan dan taburan tekanan. 

Terdapat korelasi eksponen antara tekanan maksimum yang bertindak dan parameter 

tidak simetri. Di samping itu, hubungan linear dengan aneurisma maksimum. 

panjang aneurisme, sudut pencabangan dua iliak dan ketebalan dinding ditentukan. 

Perkaitan parametrik mengesahkan parameter geometri adalah parameter penting 

untuk meramalkan tekanan bertindak maksimum. Penggunaan kesan hemodinamik 

dengan menggunakan teknik f-FSI meramalkan tekanan maksimum yang lebih tinggi 

bertindak pada dinding AAA berbanding dengan persamaan sebelumnya. Di akhir 

penyelidikan ini, dapat disimpulkan bahawa persamaan baru yang dibangunkan ini 

boleh digunakan dengan mudah untuk meramal pecah dengan hasil yang lebih tepat 

dibandingkan dengan alatan klinikal sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Abdominal aortic aneurysm (AAA) is an increase in the diameter o f the aorta 

which is due to a weakness in the wall, that leads to rupture and it is considered as 

the 13th cause o f death among both men and women in developed countries [1-4]. A 

surgical intervention can be done to avoid rupture, where the decision making is 

extensively based on the maximum aneurysm diameter (Dmax > 5 cm to 5.5 cm) and 

growth rate (>lcm /yr) [5-10], Previous studies [11-19] have shown that the rupture 

would also occur in the small aneurysm (less than 5 cm), while in some special cases, 

which are considered big, it could reach to 10cm and there were no ruptures. It was 

concluded that the maximum aneurysm diameter criterion alone is not enough to 

predict the rupture, and other parameters for example smoking, family history, 

hypertension, intra luminal thrombus and geometry parameters (i.e. The aneurysm 

length, the maximum diameter, the length o f distal neck, the iliac bifurcation angle, 

asymmetry and wall thickness) should also be taken into account to help the surgeons 

decide the need for surgical treatment to prevent delay, which can cause rupture, or 

early treatment, which is not without risk, especially for most patients older than 

seventy years old.
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The rupture o f aneurysm in biomechanical point o f view is highly dependent 

on the ultimate stress and the acting stress on the wall, due to the effect o f the 

hemodynamic. For this reason, recent researches have focused more on studying the 

mechanical properties o f the aorta wall to find its ultimate strength and the stress 

acting upon it, and compared between them to predict the rupture. However, this 

work focuses on predicting the stress acting upon the wall, where there are many 

parameters that affect it, for example hypertension, intra luminal thrombus, and 

geometry parameters. These parameters can detect and measure very accurately by 

using ultrasound, computed tomography (CT scan) or magnetic resonance imaging 

(MRI).

Since there is no direct way to measure the acting stress on the AAA wall, the 

numerical methods; such as the Computational Fluid Dynamic (CFD), the 

Computational Solid Stress (CSS), and the Fluid-Structure Interaction (FSI), were 

widely used to compute it. Among these three methods, it has been proven that the 

FSI give the most accurate results because, it takes into account the effect o f  both 

hemodynamic and the wall structure. The different techniques o f the FSI available 

for modeling the fluid and solid components are broken into three classifications, 

based on the level o f  coupling between fluid and solid, as shown in Figure 1.1.

The first classification is uncoupling, where the fluid equations are first 

solved to compute the pressure and velocity before passing the pressure at the 

interface as boundary condition to the solid analysis. The second classification is 

partial coupling, which is similar to the first one except that, also the displacements 

o f the solid are used as boundary condition on the fluid domain at the end o f  time 

step without iteration. The third classification is known as fully coupling which can 

be divided into two methods (the partitioned method, and the direct method). The 

partitioned method is where the boundary data exchanges between the fluid and solid 

analysis for every time step and it is repeated until both systems have converged. The 

direct method, also known as Simultaneous solution method, is where the fluid 

equations and the solid equations are combined and treated in one system. The direct 

method has been used in this study because it is the fastest in the system of fully



coupled method and it is good for unsteady analysis.
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Figure 1.1 Fluid-Structure Interaction analyses producer [20],

On the other hand, it is important to mention here that the acting stress 

computed by the numerical method is considered as an expensive tool because it 

takes a long computational time and requires skilled staff to run the simulation. 

Therefore, it is helpful to come out with an equation that helps to save time and easy 

to use in calculating the maximum acting stress. Thereafter, it can be compared to the 

ultimate strength o f the wall to predict the rupture o f AAA.
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Abdominal aortic aneurysm (AAA) is an increase in the diameter o f the aorta 

that leads to its rupture. It is considered as the 13th cause of death in developed 

countries [1-4]. Numerous efforts have been done so far to prevent aneurysm rupture. 

Surgical intervention is one o f the ways to prevent aneurysm rupture. It is considered 

necessary when the maximum aneurysm diameter is (> 5-5.5) cm, and growth rate (> 

lyr/cm). Unfortunately, the surgeons who decide the need for surgical treatment rely 

on the rupture-predicting indicator (which is very often used alone). As a 

consequence, such an indicator cannot give an accurate reading when it is used alone. 

Instead, other parameters need be taken into account in order for to the surgeons to 

be able avoid the delay which can cause rupture, or early treatment which is not 

without risk especially most o f the patients older than 70 years old.

Predicting the risk o f the AAA rupture through determining the acting stress 

on its wall is a challenge that faces the researchers. Unfortunately, there is no direct 

method to measure it in the AAA. Although the numerical method has been widely 

used, yet, such a method requires both sufficient time and enough training. This in 

turn makes it too expensive method to be practically adopted. The correlation of 

some geometry parameters have also been studied [21-29], and semi empirical 

equation was developed by Z Li et al [28]. However, there are some limitations in 

this equation. It needs to be modified in order to get more accurate equation to 

predict the acting stress in AAA. Moreover, the Computational Solid Stress (CSS) 

analyses have been used to develop the Z Li equation. Unfortunately, they ignored 

the effect o f the hemodynamic.

Unlike the previous attempts made by the researchers, this study takes into 

account the effect o f both the hemodynamic and the deformation o f the wall. This 

was conducted through using fully coupling-fluid structure interaction analysis (f- 

FSI) to modify the Z Li equation. In addition, the two new geometry parameters (the 

aneurysm length and the iliac bifurcation angle) have been added to it.

1.2 Problem statement
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There are two main objectives in developing the new equation to predict the 

maximum acting wall stress for the purpose of estimating the risk o f the Abdominal 

Aortic Aneurysm (AAA) rupture. They are:

1- To establish parametric correlations o f some geometry parameters (the 

maximum aneurysm, the aneurysm length, the length o f distal neck, the 

asymmetric parameter, the iliac bifurcation angle, and the wall thickness).

2- To develop the new equation to predict the maximum acting stress in AAA 

wall.

1.3 Objective of the Study

1.4 Scope o f  the Study

Several scopes have been recognized and found to be sufficient to developed 

the new equation to calculate the acting stress on the AAA wall to predict the risk of 

its rupture.

i. The fully coupling fluid structure interaction analysis (f-FSI) has been 

used to create the dataset by simulate the virtual aneurysm models at 

different geometry parameters (the maximum aneurysm, the aneurysm 

length, the length of distal neck, the asymmetric parameter, the iliac 

bifurcation angle, and the wall thickness). MatLab code has been 

developed to generate the virtual aneurysm models.
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ii. The effect of these geometry parameters on the flow pattern, 

displacement and stress distributions have been studied by using the 

virtual aneurysm models.

iii. The effect o f  the hypertension has been studied by used the real AAA 

models constructed from the CT scan.

iv. The multiple linear regression method, and trial and error have been 

used to modified L Zi equation by using f-FSI dataset.

v. The accuracy o f the new equation was performed by comparing it to 

the equation currently used in the clinical indicator (Laplace 

equation), and Z Li equation, with numerical published datasets o f the 

real AAA models, f-FSI simulation o f the real AAA models driving 

from the CT scan, and f-FSI simulation of virtual aneurysm models in 

range out o f that was used to developed the new model.

1.5 Outline o f Thesis

This thesis is divided into the following chapters:

1- Introduction: Where the author has given a general overview o f this 

work which includes the background o f the work, some description of 

the f-FSI methods, the problem statement, objectives o f the study and 

the scope of the study.



7

2- Literature review: Where the author has focused on the review o f some 

previous studies that use the numerical method (CFD, CSS, FSI) to 

compute the wall stress, and other researchers that compare between 

theses method and also review of some articles that study the effect of 

some parameters in the wall stress and the strength o f the AAA wall.

3- Methodology: The author has described in details the physiological 

variables that are used to study the influence in the maximum wall 

stress. In addition, the detailed descriptions on the construction o f AAA 

geometry from the CT scan. The fluid and solid formulations as 

applicable to this application and the numerical procedure o f the fluid 

structure interaction are introduced in Section 3.3. In the last section in 

this chapter, the procedure to develop the new model are described in 

details.

4- Result and Discussion: Where the validation o f this f-FSI simulation is 

presented, and the effect o f the Newtonian and Non-Newtonian 

properties on the wall shear stress distribution, the flow is shown and 

discussed in details, and also the effect o f some geometry parameters 

(the maximum aneurysm, the aneurysm length, the length o f distal 

neck, the asymmetric parameter, the iliac bifurcation angle, and the wall 

thickness), and hypertension, that have been discussed in this study. In 

the last section, the new model has been validated by comparing with 

the previous numerical study and also the fully coupling-fluid structure 

interaction (f-FSI) analysis by using modified models and the real 

models that have been constricted from the CT scan.

5- Conclusion: Where the conclusions and recommendations according to 

the objectives o f the study are outlined. The suggestions for future work 

according to the limitation o f this work are also highlighted.
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