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ABSTRACT

 Thin film composite (TFC) layers are formed using interfacial polymerization 

reaction between an aqueous phase and organic phase on membrane supports.  In the 

preparation of thin film composite membrane, there are many interfacial reaction factors 

that influence the membrane performance, amongst them are dipping time, curing 

temperature and composition of aqueous phase.  Thus in this project these factors were 

studied in two stages.  In the preliminary stage, the effect of dipping time and curing 

temperature on the performance of TFC membrane were evaluated using two different 

kinds of polymer membrane supports, cellulose acetate and polysulfone.  Initial results 

revealed that dipping time does not affect the performance of TFC membranes 

especially rejection rate but curing temperature have significant influence. Curing 

temperature ranging from 40 C to 100 C was used during the interfacial reaction 

process.  Cellulose acetate TFC membranes cured at 60 C exhibited highest rejection 

rate of 76% whilst polysulfone TFC membranes cured at 80 C showed not only highest 

rejection rate of 80% but also excellent flux rates.  Since polysulfone TFC membranes 

showed superior performance compared to cellulose acetate, it is chosen for the second 

stage of the experiment. In this stage, a systematic experimental design based on the 

response surface methodology was used to identify the significant interfacial reaction 

factors which influence the membrane performance.  The factors considered were the 

composition of aqueous phase that includes the ratio of m-phenyldiamine to 

hydroquinone as monomer, percent of tetrabutylammonium bromide as a catalyst and 

percent of sodium hydroxide as an acid acceptor.  Rejection and flux rates were the 

response variables investigated.  The experimental results indicate that the proposed 

mathematical model suggested could adequately describe the performance indicators 

within the limits of the factors that are being investigated. 
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ABSTRAK 

 Membran komposit filem nipis dihasilkan melalui tindak balas pempolimeran 

antara muka di antara fasa akuas dengan fasa organik di atas permukaan membran 

penyokong.  Dalam penyediaan membran komposit filem nipis, terdapat beberapa faktor 

yang mempengaruhi antaranya masa pencelupan dalam fasa akuas dan suhu rawatan.  

Oleh itu melalui penyelidikan ini, kesan faktor-faktor tersebut dikaji melalui dua 

peringkat.  Melalui peringkat pertama, kesan masa pencelupan dalam fasa akuas dan 

suhu rawatan diuji di atas dua jenis membran penyokong iaitu polisulfona dan selulosa 

asetat.  Keputusan awal menunjukkan masa pencelupan dalam fasa akuas tidak 

mempengaruhi pekali penyingkiran secara siknifikan tetapi mempengaruhi kadar fluks.  

Suhu rawatan didapati mempengaruhi prestasi membran pada keseluruhannya  Suhu 

rawatan di antara 40 C hingga 100 C diaplikasikan dalam penyediaan membran 

komposit filem nipis.  Pekali penyingkiran untuk membran komposit selulosa asetat  

pada suhu 60 C menunjukkan keputusan tertinggi iaitu 76% manakala membran 

komposit polisulfona pada suhu rawatan 80 C bukan sahaja mencapai pekali 

penyingkiran yang lebih baik iaitu 80% malahan menunjukkan kadar fluks yang tinggi. 

Memandangkan prestasi keseluruhan membran polisulfona didapati lebih baik, lalu ia 

diaplikasikan pada peringkat seterusnya.  Pada peringkat kedua, rekabentuk eksperimen 

dipilih berdasarkan kaedah tindak balas permukaan bagi mengenalpasti  faktor  dalam 

tindak balas antara muka yang sangat mempengaruhi  prestasi membran.  Faktor yang 

dipilih ialah nisbah m-phenildiamina terhadap hidrokuinon sebagai monomer, peratus 

tetrabutilammonium bromida sebagai katalis dan peratus natrium hidroksida sebagai asid 

penerima.  Pekali penyingkiran dan kadar fluks dipilih sebagai reaksi variasi.  Keputusan 

eksperimen menunjukkan model matematik yang dicadangkan cukup untuk menjadi 

penunjuk prestasi daripada keseluruhan faktor yang dikaji.
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CHAPTER 1 

INTRODUCTION

1.1 Overview 

Membrane technology is still evolving and finding more and more applications 

in a broad range of fields and the development of membranes will strongly influence 

separation process in the future.  Rapid growth in membrane technology development is 

primarily based on consciousness on the potential of this technology.  The technology 

contributes to the solution of some of the most crucial problem nowadays.  It has been 

widely used in many applications like industrial wastewater treatment, desalination of 

sea and brackish water and liquid food treatment.  

 In membrane separations, each membrane has the ability to transport one 

component more readily than the other because of differences in physical and chemical 

properties between the membrane and the permeating components.  Furthermore, some 

components can freely permeate through the membrane, while others will be retained. 

The stream containing the components that permeate through the membrane is called 

permeate and the stream containing the retained components is called retentate.  The 

transport of permeate across the membrane is achieved by the application of either 

mechanical, chemical, electrical or thermal works (Scott, 1998). 

 Reverse osmosis is a well-developed industrial membrane separation processes.  

This process is well established and the market is served by a number of experienced 
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companies.  The separation process for reverse osmosis (RO) is not restricted to aqueous 

based solution, but it can essentially separate all solute species both inorganic and 

organic from solution.  It involved the application of mechanical pressure without using 

any other energy like heat.  Thus, RO is energy-saving separation process and indirectly 

reduce the cost of operation.  The use of RO encompasses a variety of industries 

especially in the desalination to produce potable water.  

 Desalination of sea or brackish water entails forcing salt solution through a 

permselective membrane at pressure, which is sufficiently high to overcome the osmotic 

forces and tends to drive water in the opposite direction.  These membranes must allow 

water to permeate at high rate but must reject permeation of the salt molecules to a high 

degree.

 A breakthrough of RO membranes to industrial applications begun in 1960 with 

the invention of the first integrally skinned asymmetric cellulose acetate hyperfiltration 

membrane by Loeb and Sourirajan (Kesting, 1985).  This membrane consist of a very 

dense top layer or skin with thickness of 0.1 to 0.5µm supported by a porous sub layer 

with a thickness of about 50 to 150µm.  These membranes combine the high selectivity 

of a dense membrane with the high permeation of a very thin membrane. 

 In 1970’s, the first commercial composite reverse osmosis (RO) membrane was 

developed.  The membrane consists of a very thin dense top layer, which is supported by 

a porous sub layer of a different material, which is quite different from the asymmetric 

cellulose acetate membrane where it is developed with two layers of the same material.  

The advantage of the so-called thin film composite (TFC) membrane is that each layer 

can be optimized independently to obtain optimal membrane performance with respect 

to selectivity, permeation rate and chemical and thermal stability.  



3

1.2 Background of the Problem 

Thin film composite (TFC) membrane was developed by a combination of two 

or sometimes three layers that were made of totally different material, structure and 

function.  A thin dense active layer consists of a very thin film supported by 

microporous support reinforced onto polyester fabric.  In laboratory studies, the 

microporous layer need not actually be directly coated onto a fabric base, as it is proved 

to be difficult and inconvenient when done by hand (Peterson, 1993).  Rather the 

microporous film can be casted on a glass plate because the fabric base is responsible for 

the formation of membrane defects as well as additional membrane pores (Berg and 

Smolders, 1990). 

Microporous layer are commonly synthesized using phase inversion to develop 

an asymmetric membrane.  It comprises almost the entire thickness and provides the 

required mechanical strength.  Polysulfone are commonly used as membrane polymer 

because of their high performance, tough and has high temperature and chlorine resistant 

characteristic.  Polysulfone is a hydrophobic polymer thus hydrophilic polymer such as 

polyvinylpyrrolidone and n-2-methylpyrrolidone are added as solvents. 

Several techniques can be used to apply an ultrathin active layer upon a support 

like dip coating, spray coating, spin coating, interfacial polymerization, plasma 

polymerization and grafting, but the interfacial polymerization concept has been 

predominated as the optimal system (Peterson, 1993).  Thin film composite structure 

membranes fabricated via interfacial polymerization meet this demand.  The two phases 

that are involved in interfacial polymerization process includes aqueous phase and 

organic phase to form the active layer having semi permeability.  The material as well as 

polymer molecular structure of the polymer in both of the two phases influenced the 

permeation properties of membrane performance (Arthur, 1989). 
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The successful interfacially membrane formed by Cadotte at Northstar Research 

in 1978 consists of a combination of aromatic amines with aromatic acyl chloride 

(Peterson, 1993).  Best result was obtained by the reaction of m-phenylenediamine as 

aqueous phase and trimesoyl chloride as organic phase.  The TFC polyamide membrane 

that is composed of a fully aromatic network structure was dominated as an outstanding 

recipe to produce good rejection rate and at the same time acceptable water 

permeability.  

Polyamides have excellent intrinsic separation characteristics for reverse 

osmosis, however their chlorine tolerance is relatively low (Kawaguchi and Tamura, 

1984; Tran et al., 1989).  Chlorine was widely added to water as a disinfectant and 

bactericide.  A membrane is considered chlorine resistant, when it can withstand 

exposure for several years in a biocidal concentration of 1mg/l chlorine (Rajinder, 

1994).  Many attempts have been made to improve the chlorine resistant of composite 

membrane by changing molecular structure of the monomers used for the 

polymerization.  

Blais (1977) has reported the correlation between chemical structure and 

membrane performance of polyamides.  Few studies have been done to investigate the 

correlation between chemical structure of polyamides and their oxidation resistance 

(Kawaguchi and Tamura, 1984).  Glater et al. (1983) have recently reported the 

sensitivity of polyamide to halogen disinfections by monitoring the decay of the 

membrane performance.  A more extensive study of model-compound chlorine 

sensitivity was reported by Lowell et al. (Glater et al., 1994).  He found that ester 

linkages were generally chlorine resistant, in agreement with Jayarani and Kulkarni 

(2000) when they developed composite membrane with the incorporation of 

hydroquinone as an ester linkage.  The membrane named as composite polyesteramides 

showed higher chlorine tolerance compared to commercial composite polyamide.  Thus, 

based on these references, this study is aimed to develop TFC polyesteramide membrane 

by interfacial polymerization of aromatic amines in the presence of aromatic diol as ester 

linkages with aromatic acyl chloride on a microporous support.  
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Available TFC reverse osmosis membranes in the market, are highly effective in 

their intended application for desalination and industrial process water due to continuing 

searching for new and improved polymers for RO membrane materials (Jian and Ming, 

1987; Ibbora et al., 1996).  To date, most of the research done was to improve thin film 

composite membrane performance by changing the structure of membrane monomer or 

the coating conditions.  A few researchers studied the effect of polyamide molecular 

structure on the performance of reverse osmosis membrane (Cadotte, 1981; Hirose et al.,

1997).  Roh et al. (2002) observed the influence of rupture strength of thin film 

structure, whilst Arthur (1989) investigated the structure and properties relationship of 

the thin film composite membrane.  

The relationship between separation properties and coating condition is of 

particular importance for the development of new TFC membrane (Kim et al., 2000; 

Rao et al., 2003).  The exact coating condition is important for attaining the desired 

stability of thin film composite membranes.  This stability is important to give high 

water permeability and rejection rate.  Thus, the major emphasis now seem to be focused 

on optimizing the membrane coating conditions and also to study how these conditions 

effect the structural changes on membrane formation of TFC membrane so as to enhance 

separation properties. 

Most of the research work done previously had studied the performance of TFC 

membrane using polysulfone as a porous support.  Literature search seem to suggest that 

there has been no study using cellulose acetate as a porous support for the TFC 

membranes.  Thus, this study investigates the possibility of using cellulose acetate as a 

porous support and compares its performance with polysulfone microporous support 

membrane.  Cellulose acetate was preferably used as a microporous support because of 

its low cost and low tolerant to chlorine reaction.  In cellulose acetate, spaces in water 

swollen polymer matrix were the primary provider of continuous flow channel that 

contribute to the separation of salt and small organic molecules (Khulbe et al., 2002). 
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The growth of the interfacially polymerized film was influence by aqueous phase 

composition (Bartels and Kreuz, 1987; Bartels, 1989).  Until now, not much has been 

said regarding the effect of the composition of aqueous phase such as the effect of the 

catalyst and acid acceptor on the performance of membrane.  The catalyst is one of the 

factors affecting the reverse osmosis performance of the membrane (Wang, 1988a).  The 

highest permeation rate was obtained in the presence of catalyst in the membrane recipe. 

The aqueous phase consists of alkaline amine solution, particularly when caustic 

is used as an acid acceptor.  Acid acceptors are commonly added in aqueous phase as a 

neutralizer for hydrogen halide generated during the course of the reaction.  A study of 

acid acceptor showed that base strength of the acid acceptor affected the degree of 

concurrent hydrolysis (Cadotte, 1979).  A small amount of acid acceptor is enough in the 

preparation of TFC membrane.  

Most of the previous research on membrane performance usually use one-factor-

at-a-time experimental approach which can be time consuming and exorbitant in cost 

(Haaland, 1989).  The conventional practice consisting in varying one variable at time 

does not allow evaluation of the combined effects of all the factors involved in the 

process and constitutes a time consuming methodology (Cochran and Cox, 1992).  

Recently, statistically approach was increasingly used for optimization steps in 

membrane process.  Ismail and Lai (2004) developed the defect free asymmetric 

polysulfone membranes for gas separation using response surface methodology.  Ani et

al. (2002) has used the Taguchi method which is a statistical design to determine the 

significant factors affecting the spinning process and the optimal spinning parameter. 

Chau et al. (1995) had studied phase inversion factors influencing polysulfone 

ultrafiltration hollow fiber membranes fabrication in a systematic manner using the 

orthogonal array method, whilst Pesek and Koros (1994) studied the influence of four 

factors in production of gas membranes using the complete 2k factorial methods. 
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Thus in this study an attempt is made to investigate the composition effect of the 

aqueous phase used on the interfacial polymerization of TFC reverse osmosis membrane 

performance using RSM.  This research continues the quest for producing practical thin 

composite membrane with high rejection and flux rates.  Emphasis is however placed 

towards studying the effect of the concentration of monomer, catalyst and acid acceptor 

in view of the fact that only a considerable amount of research had been done in this 

area.  Using the RSM method, parameter interaction and optimum composition can also 

be determined.  This work has demonstrated the use of a central composite design 

(CCD), which is the most popular class of RSM design.  The rejection and flux rates 

were the response variables investigated. 

 Membrane morphology is very much related to the membrane performance. 

Recent advances in microscopy have led to attempts to correlate surface characteristics 

to the performance of membrane.  Scanning electron microscopy (SEM) and atomic 

force microscopy (AFM) can provide direct characterization of membrane morphology 

with the aid of image analysis.  The scanning electron microscopy (SEM) is a powerful 

tool to investigate the morphology of membranes. SEM not only views the cross-section 

of the membrane, but also shows the surface of the top layer and bottom layer of the 

membrane.  Recently, atomic force microscopy (AFM) became popular and many AFM 

pictures of reverse osmosis membrane surface had been taken in attempts to relate 

morphology to membrane performance.  Hirose et al. (1996) found a relationship

between the flux of reverse osmosis membranes and their roughness parameters 

measured by AFM.  According to their experiments, an increase in surface roughness 

resulted in a higher water permeation flux.  This theory was confirmed by consequent 

research (Gao and Chen, 1998).  Thus, in this study, an attempt is also made to correlate 

membrane morphology and membrane performance using SEM and AFM. 
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1.3      Objective of the Study 

The objectives of the research are to investigate the effect of coating conditions 

such as dipping time and curing temperature on the TFC membranes performance using 

both cellulose acetate and polysulfone as the microporous support. The performances of 

these membranes were then compared.  Consequently, the effect of aqueous phase 

composition such as monomer ratio, concentration of acid acceptor and catalyst is 

studied on using RSM central composite design ( =2) in order to identify the significant 

factors and to develop a mathematical model thus enabling the prediction of responses.  

Finally, the correlation of membrane morphology with fabrication conditions was 

studied to extend knowledge for producing high rejection and flux rate thin film 

composite membrane. 

1.4 Scope of the Study 

 In order to obtain the objectives listed above, the scope of the study are identified 

as follows: 

i. The active layer of TFC membranes is prepared using interfacial polymerization 

method, while the asymmetric microporous membranes were prepared using 

phase inversion methods.  The microporous material comprises of two polymers, 

polysulfone or cellulose acetate.  Various dipping and curing condition were 

used so as to determine their effects on the performance of TFC membranes.  

ii. Membrane permeation study was evaluated in terms of rejection rate and flux 

rate.  Transport properties were also determined using transport parameter 

equation by Kimura-Sourirajan analysis, while membrane morphology was 

characterized using scanning electron microscopy (SEM). 
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iii. Influencing factors such as ratio of monomer, percent of catalyst and percent of 

acid acceptor were studied using RSM, using the membrane with the favorable 

performance based on initial finding i) and ii).  A total of 20 experiments were 

carried out and tested in a dead end permeation cell to obtain the flux and 

rejection rate, which are the response variables.  This response variables obtained 

was evaluated and analyzed using response surface methodology so as to 

determine the significant factors.  Based on the significant factors identified, the 

relationship of each factor with the response variable was determined so as to 

predict the mathematical model. 

iv. Finally, atomic force microscopy was used to correlate the relationship between 

membrane structure and membrane performance. 

1.5 Outline of the Thesis 

The thesis is basically divided into five chapters.  An overview, background of 

the problem, research objective and scope of this research are presented in Chapter 1.  A 

comprehensive literature review had been carried out prior to any experimental work.  

Literature review was conducted in providing state of the art background to the research 

project and these were discussed in detail in Chapter 2.  Chapter 3 provides preliminary 

studies for coating condition and comparison between cellulose acetate and polysulfone 

as porous support.  In this chapter, membrane performance in term of rejection rate, flux 

rate, transport properties and membrane morphology was identified and discussed.  

Chapter 4 presents the application of response surface methodology in describing 

significant factor affecting TFC production, clarify the interaction between parameters 

and proposed mathematical models for predicting TFC membrane performance. The 

membrane morphology was also characterized.  Finally, Chapter 5 discusses the overall 

objective of this research and concludes the outcome of research project.  Some 

recommendation for future studies also discussed. The schematic diagram summarizing 

the overall methodology experimental is shown in Figure 1.1. 
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