TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iv
	ACK	NOWLEDGEMENT	V
	ABS	ГКАСТ	vi
	ABS	ГКАК	vii
	TAB	LE OF CONTENTS	viii
	LIST OF TABLES		
	LIST OF FIGURES		
	LIST	OF ABBREVIATIONS	xviii
	LIST OF SYMBOLS		
	LIST	OF APPENDICES	xxii
1	INTE	RODUCTION	
	1.1	General Introduction	1
	1.2	Problem Statement	4
	1.3	Objectives of Research	5
	1.4	Scope of Research	6
	1.5	Significance of Research	7

2 LITERATURE REVIEW

2.1Hazardous Waste Management8			
	2.1.1	Classification of Hazardous Waste	8
	2.1.2	Hazardous Waste Regulation and Management in Malaysia	10
2.2	Heavy	y Metals	13
	2.2.1	Heavy Metals In Raw Untreated Water	15
2.3	Drink	ing Water Treatment Processes	15
	2.3.1	Coagulation, Flocculation and Sedimentation Process	16
	2.3.2	Filtration Process	17
	2.3.3	Disinfection and Water Storage	17
2.4	Alum	Derived Water Treatment Sludge (WTS)	17
	2.4.1	Removal of Hazardous Contaminants by Alum	19
	2.4.2	Reuse of Water Treatment sludge (WTS)	21
2.5	Charac	cterization of WTS	22
	2.5.1	Methods of Physicochemical Characterization	23
2.6	Stabili Cemer	zation/solidification (S/S) of WTS in Portland nt	24
	2.6.1	Portland Cement S/S	26
	2.6.2	Leaching Tests	26
			26

3 EXPERIMENTAL

3.1	Chemicals and Instruments	
3.2	Sampling and Preparation of River Water and WTS	31
3.3	Preparation of Metal and Coagulant Solutions	36
	3.3.1 Preparation of Metal Solutions	36

	3.3.2 Preparation of Alum and PAC Solutions	37
3.4	Determination of Optimum pH for Heavy Metal Removal by Coagulation using Alum and PAC	37
3.5	Preparation of Artificial Water Treatment Sludge (ATS)	38
3.6	Determination of Metal Leaching from Alum Sludge	39
3.7	Construction and Testing of Stabilization/ Solidified (S/S) Cement Mortar-Water Treatment Sludge (CMWTS)	39
	3.7.1 Preparation of the CMWTS Bricks	40
	3.7.2 Compressive Strength Test on CMWTS	40
	Bricks	42
3.8	Leaching Test on CMWTS Bricks	43
	3.8.1 Leach Test on Whole CMWTS Brick	43
	3.8.2 Leach Test on Powdered CMWTS Brick Material	44
3.9	Characterization of Sludge and S/S Samples	44
	3.9.1 Determination of Functional Groups by Fourier transformed infrared spectroscopy (FTIR)	45
	3.9.2 Total Organic Carbon (TOC) Analysis	
	3.9.3 Microstructural Analysis	45
	3.9.4 Determination of Elemental Composition	46
	Using XRD	46
	3.9.5 Thermal Analysis of Samples	
	3.9.6 Determination of Surface Area using Branauer-Emmet-Teller (BET) N ₂ adsorption	47
	3.9.7 Determination of Moisture and Total Solids	47
	3.9.8 Determination of pH	49
	3.9.9 Determination of bulk density (ρ_b)	50
	3.9.10 Determination of particle density (ρ_s)	50
	3.9.11 Determination of Total Porosity (ε)	51

52 52

RESULTS AND DISCUSSION

4	4.1	Introduction	
	4.2	Optimum pH for the Removal of Heavy Metal by Coagulation using Alum and PAC	54 54
	4.3	Sludge Generation at Optimum pH	59
		4.3.1 Heavy Metal Content of River Water Sample	59
		4.3.2 Mass and Characteristics of Artificial Sludge (ATS) Generated by Simulation	60
	4.4	Leachability of Heavy Metals from Artificial Sludge and Water Treament Sludge	62
		4.4.1 Effect of pH on Heavy Metal Leachability from Artificial Sludge	62
		4.4.2 Effect of pH on Heavy Metal Leachability from Water Treatment Sludge (WTS)	66
	4.5	Characterization of WTS	69
		4.5.1 Physicochemical Properties and Chemical Composition of WTS	69
	4.6	Characterization of CMWTS	73
		4.6.1 Chemical Composition of CMWTS	74
		4.6.2 Physicochemical Properties of CMWTS	75
	4.7	The Effect of Curing on pH of CMWTS	80
	4.8	Leaching of Metals from CMWTS Bricks	82
	4.9	Leaching of Metals from CMWTS Powder	85
	4.10	Compressive Strengths of CMWTS Blocks	86

5	COI	CONCLUSIONS AND RECOMMENDATIONS			
	5.1	Conclusions	90		
	5.2	Recommendations	94		
REFERE	NCES		96		
APPEND	ICES		104		

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Sources of heavy metals	14
2.2	Guidelines for disposal of scheduled waste directly to the Kualiti Alam Landfill	18
3.1	Concentrations of metal standard solutions	36
3.2	Feed concentrations of heavy metals	38
3.3	Components of CMWTS brick samples	41
4.1	Heavy metal content of raw river water and spiked river water	59
4.2	Characteristics of sludge generated using Alum and PAC at various pH conditions	60
4.3	Effect of pH on leachability of heavy metal ions from AAIS	63
4.4	Effect of pH on leachability of heavy metal ions from APS	63
4.5	Effect of pH on leachability of heavy metal ions from AAIPS	64
4.6	Concentration of heavy metal ions leached out from WTS by various types of eluent	67
4.7	Heavy metals composition of WTS	69
4.8	Physical properties of WTS	70
4.9	Thermogravimetry data for WTS	73
4.10	Heavy metals compositions of CMWTS samples	74
4.11	Thermogravimetry data for CM and CMWTS	79
4.12	pH of solutions containing CM and CMWTS	81

4.13	Concentration of metals in the curing solutions containing CM and CMWTS bricks	83
4.14	Concentration of metals in the curing solutions containing CM and CMWTS powder	85
4.15	Compressive strength data of CM and CMWTS bricks	88

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Generation and treatment steps for WTS in a water treatment plant.	2
2.1	Production and disposal of 'drinking water sludge' in a typical water processing flow of a water treatment plant	16
2.2	Metal hydroxide solubility curve	20
3.1	Photographic view of river water sampling location	31
3.2	Location of water sampling along the Johor River.	32
3.3	The surroundings near to sampling point	33
3.4	Photographic view of a WTS storage lagoon, Semangar Water Treatment Plant, Johor	34
3.5	(a) Wet natural water treatment sludge (WTS) and (b) dry natural water treatment sludge (WTS) [Drying condition: Air dried for 24 hours and oven dried until constant weight at 100°C]	35
3.6	(a) Brick mould (b) Dimensions of the CMWTS	40
3.7	(a) Mortar bricks in the mould, (b) and (c) Mortar bricks were removed from mould and (d) Image of mortar bricks before curing process [Re-moulding process of the mortar bricks after 24 hours of casting]	42
3.8	Compressive strength tester	43
4.1	Removal of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn by Alum at pH 2 to 12 [Temp: ~25°C, Coagulant: 30 ppm Alum]	55
4.2	Removal of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn by PAC at pH 2 to 12 [Temp: ~25°C, Coagulant: 15 ppm PAC]	55
4.3	Solubility test on metals at pH 2 to 12	56

4.4	Percentage of metal ions removed from solution by Alum and PAC at pH 8 and pH 10.	58
4.5	Effect of pH on mass of sludge generated using Alum and PAC	61
4.6	Leachability profile of metal ions from AAlS using various eluents [50 mL eluent, 0.5 g sludge, 1 hr, 24°C]	64
4.7	Leachability profile of metal ions from APS using various eluents [50 mL eluent, 0.5 g sludge, 1 hr, 24°C]	65
4.8	Leachability profile of metal ions from AAIPS using various eluents [50 mL eluent, 0.5 g sludge, 1 hr, 24°C]	65
4.9	Leachability profile of metals from WTS using various eluents	67
4.10	The FTIR spectrum for WTS	71
4.11	Morphological structure of WTS determined using (a) SEM, (b) FESEM and (c) XRD	72
4.12	TGA Thermogram of WTS	73
4.13	Metal Compositions of CM, WTS and CMWTS [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	75
4.14	Comparison of the FTIR spectra of WTS, CM and CMWTS [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	76
4.15	Microscopic observation on the development of (a) CM, (b) CMWTS1 (c) CMWTS2 and (d) CMWTS3 [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	77
4.16	Diffractogram of CM and CMWTS [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	78
4.17	Thermograms of CM and CMWTS [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	79
4.18	The effect of curing solution and curing time on pH of CM and CMWTS samples	81

4.19	The effect of curing time and curing solution on leachability of metals from CM and CMWTS brick samples [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	84
4.20	The effect of curing time and curing solution on leachability of metals from CM and CMWTS powder samples [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	87
4.21	Compression strength of bricks as a function of amount of WTS added and pH. [Note: CMWTS1, CMWTS2 and CMWTS3 contains 5%, 10% and 20% WTS, respectively.]	88

LIST OF ABBREVIATIONS

AAIPS	-	Artificial alum- PAC sludge
AAIS	-	Artificial alum sludge
Al	-	Aluminium
Al (NO ₃) ₃ .9H ₂ O	-	Aluminium nitrate
Al ₂ (SO ₄) ₃ .18H ₂ O	-	Aluminium sulphate
APS	-	Artificial PAC sludge
ASTM	-	American society for testing and materials extraction
ATS	-	Artificial water treatment sludge
Cd	-	Cadmium
Cd (NO ₃) ₂ .4H ₂ O	-	Cadmium nitrate
CH ₃ COOH	-	Acetic acid
Cr	-	Chromium
Cr (NO ₃) ₃ .9H ₂ O	-	Chromium (III) nitrate
CMWTS	-	Cement mortar-water treatment sludge
Cu	-	Copper
Cu (NO ₃) ₂ .3H ₂ O	-	Copper (II) nitrate
DDDW	-	Double distill deionized water
DOE	-	Department of environment
EPX	-	Extraction procedure toxicity
FAAS	-	Flame atomic absorption spectrophotometer
Fe	-	Iron
Fe (NO ₃) ₃ .9H ₂ O	-	Iron (III) nitrate

FESEM	-	Field emission scanning electron microscope		
FT-IR	-	Fourier transform infrared spectroscopy		
HCl	-	Hydrochloric acid		
ICP-MS	-	Inductively coupled plasma-mass spectrometry		
MEP	-	Multiple extraction procedure		
Mn	-	Manganese		
Mn (NO ₃) ₂ .4H ₂ O	-	Manganese (II) nitrate		
N_2	-	Nitrogen		
NaOH	-	Sodium hydroxide		
ND	-	Not detectable		
NH ₄ OH	-	Ammonium hydroxide		
Ni	-	Nickel		
Ni (NO ₃) ₂ .6H ₂ O	-	Nickel (II) nitrate		
PAC	-	Polyaluminium chloride		
Pb	-	Lead		
$Pb_3(NO_3)_2$	-	Lead (II) nitrate		
OPC	-	Ordinary Portland cement		
S/S	-	Stabilization/solidification		
SAJ	-	Syarikat Air Johor		
S _{BET}	-	Branauer-Emmet-Teller surface area		
SEM	-	Scanning electron microscope		
SPLP	-	Synthetic precipitation leaching procedure		
SW	-	Scheduled waste		
TCLP	-	Toxicity characteristic leaching procedure		
TGA	-	Thermal gravimetric analysis		
TOC	-	Total organic carbon		

USEPA	-	United States environmental protection agency
WET	-	Waste extraction test
WTS	-	Water treatment sludge
XRD	-	X-ray diffraction
Zn	-	Zinc
Zn (NO ₃) ₂ .6H ₂ O	-	Zinc nitrate

LIST OF SYMBOLS

mg /L	-	Milligrams per litre
М	-	Molar
ppm	-	Parts per million
$ ho_b$	-	Bulk density
3	-	Porosity
ρ_s	-	Particle density

LIST OF APPENDICES

APPENDIX	TITLE	PAGE

А	EPA listed wastes	104
В	Publications	107
С	Presentations	108
D	Bulk density, particle density and porosity of WTS	109
E	Heavy metals compositions in WTS	110
F	Moisture and ash content of WTS	111
G	Total organic carbon of WTS	112