
 

 

 

MURDOCH RESEARCH REPOSITORY 
 
 

http://dx.doi.org/10.1109/SIPNN.1994.344853     
     

 
Choong, P.L., deSilva, J.S., Dawkins, H.J.S., Robbins, P., Harvey, 
J.M., Sterrett, G.F., Papadimitriou, J. and Attikiouzel, Y. (1994) 

Risk assessment of axillary lymph node metastases in early 
breast cancer patients using the maximum entropy network. In: 
Proceedings of the International Symposium on Speech, Image 

Processing and Neural Networks, ISSIPNN '94, 13 - 16 April, 
Hong Kong, pp. 547 - 550. 

 
 
 
 
 
 
 

http://researchrepository.murdoch.edu.au/20211/ 
 
 
 
 

 
 Copyright © 1994 IEEE 

 
Personal use of this material is permitted. However, permission to reprint/republish 
this material for advertising or promotional purposes or for creating new collective 
works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE. 
 

 

http://dx.doi.org/10.1109/SIPNN.1994.344853
http://researchrepository.murdoch.edu.au/20211/


‘I‘ 

1994 International Symposium on Speech, Image Processing and Neural Networks, 13-16 April 1994, Hong Kong 

Risk Assessment of Axillary Lymph Node Metastases in Early 
Breast Cancer Patients using the Maximum Entropy Network 

Poh Lian Choongt, Christopher J.S. d e s i l d ,  Hugh J.S. Dawkinst, 
Peter Robbins t ,  Jennet M. Harveyt, Gregory F. Sterrettt, 

John Papadimitriou t and Yianni Attikiouzelt 

Abstract 

This paper describes an Artificial Neural Net- 
work (ANN) architecture for constructing 
Maximum Entropy (MaxEnt) models based 
on discrete distributions. Entropy is maxi- 
mized by a partition function method involv- 
ing the use of Lagrange multipliers which is 
capable of implementation by an ANN ar- 
chitecture. The Maximum Entropy Network 
(MaxEN), consists of a training module and 
a testing module of interconnected processing 
elements. The practical use of the MaxEN 
network is illustrated with an application in 
the clinical management of early breast can- 
cer patients. 

1 Introduction 

This paper outlines a non-parametric method for es- 
timating probability distributions from small sam- 
ple sets. One major drawback of conventional non- 
parametric methods such as the Probabilistic Neural 
Network [6] or the Parzen windowing method [5] is 
the extensive amount of sample data required. In this 
paper, we describe the use of Maximum Entropy Esti- 
mation (MEE) for constructing multinomial distribu- 
tions. 

The Maximum Entropy Network (MaxEN) ap- 
proach incorporates concepts from neural network the- 
ory, information theory, optimization and statistical 
inference. The most unbiased estimate of a proba- 
bility distribution given only partial data (incomplete 
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information) is obtained by maximizing Shannon’s en- 
tropy measure subject to constraints derived from a 
set of moments [3]. The MEE allows us to construct a 
probability distribution that satisfies the specified con- 
straints but no other conditions (implicit or explicit) 
relating to the data and whose entropy is greater than 
that of any other distributions that satisfies the same 
constraints. 

Cheeseman [l]  has proposed algorithm for construct- 
ing expert systems based on MaxEnt models. Our 
aim and approach are essentially the same as those of 
Cheeseman, in that we wish to derive MaxEnt distri- 
butions based on small data sets, which can be used to 
make various types of decisions. Our main application 
is in the field of medicine, in particular, the problems 
of diagnosis and prognosis: can we automate the pro- 
cess of making inferences about the causes and possi- 
ble future course of a cancer based on a description of 
the measurement of various tumour parameters (risk 
factors)? 

2 The Maximum Entropy Formalism 

Let S = {0,1 ,2 , .  . . , N }  be a finite set and let 
{ P O ,  p l ,p2 , ,  . . . , p ~ }  be a probability distribution on S, 
where p j  IS the probability of occurrence of j. In order 
that this should be a probability distribution, we must 
have p j  > 0 for all j ,  and Cj”,,pj = 1. It will be be 
convenient to regard the probability distribution as a 
vector 

P = ( p O , p l , . . . , p N ) T  E I O , l ] N + ’ C ~ N + l .  (1) 

The entropy of the probability distribution p is de- 
fined to be 

N 

H(P) = - C P j  log(Pj), (2) 
j =O 

where log denotes the natural logarithm. It is easy 
to show that H has a unique maximum on the set of 
probability distributions when p j  = 1 / ( N  + 1) for all 
j .  

Let f h ,  k = 1,. . . , C be functions defined on S .  The 

547 ISSIPNN’94 

I 



average values of these functions are given by 
N Differential Laver 

j =O 

The MEE process is a means of finding the probdbil- 
ity distribution which satisfies the constraints imposed 
by the equations above whose entropy is greater than 
any other distribution which satisfies the same con- 
straints. This is a constrained optimization problem, 
and may be solved in the standard way by the use of 
Lagrange multipliers, XO, XI, . . . , Ac. 

Gibbs defined the partition junction, Z, which is a 
function of the Lagrange multipliers: 

from which the probabilities may be computed from 

exp (- CL f k ~ k )  
(5) 

Z(Al,...,AC) . 
Pj = 

To find the Ah, we have to solve the equations 

for k = 1,. , . , C. When the values of the 6(j) are 
integers, which is the case when the constraints specify 
the values of moments of the distribution, these equa- 
tions can be re-written as a set of C simultaneous poly- 
nomial equations for the e-A*. (It may be noted that 
the partition function formulation always produces a 
set of probabilities that satisfy C,”=,pj = 1, so there 
is no need to apply this constraint explicitly.) Substi- 
tuting vk = e-xk simplifies the optimization process. 
We shall call the Vk the Lagrange Coefficients. 

3 The Maximum Entropy Network 

The complexity of the MEE process using this method 
has been addressed by the use of an ANN architecture. 
The Maximum Entropy Network (MaxEN) consists 
of two modules of interconnected processing elements, 
each capable of carrying out simple operations. The 
network entropy maximization state is characterized 
by a set of Lagrange multipliers, Xk, that is obtained 
by solving a set of C non-linear equations: 

Y(X) = 0 
Or 

(7) 

W K/, 
Lagrange Layer Partition Layer 

Figure 1: MaxEN Training Architecture 

3.1 Training Module 

The MaxEN training module, shown in Figure I, em- 
ploys three layers of processing units. The first layer of 
units is the Lagrange Layer, which has C units, whose 
states correspond to the values of the Largrange coeffi- 
cients. The second layer is the Partition Layer, which 
computes the components of the partition function. 
The number of units in this layer is equal to the prod- 
uct of the numbers of discrete values of each of the 
input variables. The third layer, the Constraint Layer, 
also has C units, which compute the extent to which 
the constraints are not satisfied. 

The connections between the Lagrange Layer and 
the Partition Layer have associated weights, which are 
determined by the constraints. 

Training the MaxEN is a two-phase process. The 
forward propagation step involves determining the 
magnitude of the objective function after each up- 
date to the Lagrange states or coefficients, Vk. The 
back propagation step then calculates the difference 
between the actual and target values of the objective 
function value, Y ( v ) ,  and changes the states of the 
Lagrange units to minimize the error. The process 
is iterated until the error is less than some tolerance 
value. 

3.1.1 Forward Propagation 

To initialize the network, all the Lagrange coefficients, 
Vk are initially set to unity. Incoming connections to 
the Partition Unit, j are at the left and originate from 
Lagrange Units of the layer below. Output values of 
the Lagrange Units arriving at  the Partition Unit, j 
are calculated, 

p .  1 -  - fi vw:j k (9) 
k = 1  

where 
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Uk = activation level of Lagrange Unit, k; 
wLj = weight from the Lagrange Units, k to 
Partition Unit, j .  

The layer of Partition Units computes the component 
of the Partition Function, Z(4). 

The activation level of each of the Partition Units is 
then propagated to  the Differential Layer, which com- 
putes the objective function, Y(v) from the weighted 
state of the Partition Units. The weight matrix defined 
between the layer of Partition Units and Differential 
Units is, wjZk = wLj - f k  where wft = weight from the 
Partition Unit, j to Differential Unit, k. The outputs 
of the Differential Units are: 

T 

where 

Pj = activation level of Partition Unit, j ;  
fk = k t h  constraint value. 

3.1.2 Backward Propagation 

The backward propagation state involves adjusting the 
activation level of the Lagrange Units to minimize the 
objective function. The minimization algorithm used 
is the Error Propagation Method. The difference be- 
tween the desired and predicted value is propagated 
back from the Differential Units to the Lagrange Units 
and the values of the Lagrange Coefficients, Vk are ad- 
justed accordingly to reduce the error. 

Using the Error Propagation Method, the update 
algorithm is: 

v t+ l  - 1 k - vk + a.(-yk) + p.(v: - U;-') (11) 
where 

cy is the gain parameter set to 0.001 

p is the momentum parameter set to 0.001 

The network is trained successfully when the mag- 
nitude of the objective function, Y(v) is less than the 
predefined tolerance value. 

3.1.3 MENN Testing Module 

The Lagrange coefficients, Vk, determined from the 
training process are used as weights in the testing 
module. Figure 2 .  shows the network architecture 
of the testing module for classifying input variables 
X = (z', . . . , zN) into (nl + 1) categories. The in- 
put units are merely distribution units that supply 
the same input variables to all the Pattern units. The 
weight matrix, W ,  between the Input units and the 
Pattern units is calculated from the determined La- 
grange coefficients, vh as follows: 

Input Pattem Output 
Layer Layer Layer 

\x\ 

: ~ 

y q n l y P * l ( o ,  2,. . ., XN, 

ii 

Figure 2: MaxEN Testing Architecture 

where N < C, i = 1,. . ., N and j = 0 , .  . . , n1 

Each Pattern unit computes 

N 

sj = (CZi.Wij) + W l j  (13) 
i = 2  

where 
wtJ = weightfrom Input unit 2 to Pattern unit j .  

and then performs a non-linear operation on Sj before 
outputting the activation level, P(t' = j ,  x2,. . . , zN) 
to the output units. The non-linear operation used is 

and the resultant activation level 
of each pattern unit represents the MaxEN probabil- 
ity distribution, P(zl = j ,  t2, . . . , tN). The Output 
units merely sum the output of the pattern units and 
calculate the conditional probabilities as follows: 

f (S j )  = z(Al:.,.,i)), ezp -s  

~ ( z '  = j ,  2,. . . , z N )  
p(zi = jlz',. . . , tN) = 

P(X1 = i, x2,. . . , XN) 
(14) 

4 Breast Cancer Prognosis 

4.1 Medical Background 

Currently, the only certain way to determine the status 
of the axillary lymph node is to carry out complete ax- 
illary clearance. Accurate knowledge of axillary lymph 
nodes status has an essential role in the management of 
early breast cancer patients because the axillary node 
represents the principal site of regional metastases and 
is a marker of systemic metastases. It would be of 
value to be able to predict which patients are likely to 
have metastases on the basis of characteristics of the 
primary tumour. 



4.2 Description of Data 

The Breast Cancer data obtained from the Depart- 
ment of Pathology, Hospital and University Pathol- 
ogy Services of the Sir Charles Gairdner Hospital, The 
University of Western Australia related to 247 patients 
diagnosed with primary breast cancer in Western Aus- 
tralia from 1990 - 1992. Only a consecutive series of 
176 patients, treated by surgical excision for whom 
complete histological information was available were 
considered. All the 176 patients were diagnosed with 
primary infiltrating carcinoma [4] and had complete 
axillary dissection. The extent of axillary lymph node 
metastases of all the 176 patients were available for 
the following analysis. 

Table 1 lists the factors used in this study. All of 
the factors evaluated have been previously shown to 
have value as indicators of prognosis [2]. 

Table 1: Clinical and histopathological factors 

Sensitivity Risk factors 

Nuclear Pleomorphism 
Tumour Size 83.3 

Specificity) 

80.0 

5 MaxEnt Model Construction 

The model that we construct give estimate of the 
probability of classifying node-positive (LN+) and 
node-negative (LN-) patients with a given set of risk 
factors values. For example we might construct a 
model with the risk factors Nuclear Size and Vas- 
cular Invasion. The model would give us proba- 
bilities of the forms P ( L N  + and NuclearSize  = 
1 and VascularInvasion = 1) for example. From 
these it is easy to calculate the conditional probabil- 
ities of LN+ and LN- given any set of values of the 
risk factors in the model, which are the probabilities 
of interest for prediction. These probabilities are then 
used to assign patients to either LN- or LN+ group, 
based on a cut-off point of 0.5. 

We constructed models incorporating more than one 
risk factor. In these models, the constraints imposed 
were the mean of the outcome, the risk factors and of 
the products of the outcome and the individual risk 
factors. Table 2 gives details of the various models. 

The overall accuracy of the models needs to be in- 
creased if they are to be of practical use. We expect 
to improve the accuracy by constructing models based 
on larger training sets with other sets of risk factors. 

Risk Factor 
1. Age 
2. Mitotic Count 
3. Tubule 
4. Nuclear Size 
5. Nuclear Pleomorphism 
6. Tumour Grade 
7. Tumour Size 
8. Vascular Invasion 

Table 2: Results of the most accurate models 

Values 
Continuous 
Continuous 
0, 1, 2 
0, 1, 2 
0, 1, 2 
0, 1, 2 
Continuous 
0, 1 

Vascular Invasion 

Tumour Size 
Vascular Invasion 

6 Conclusion 

Non-parametric modelling using the MEE provides 
probabilistic inference for small sample. Apart from 
this advantage, the multinomial models can be con- 
structed with minimum computation time. Overall 
MEE proves to be a useful method for pattern recog- 
nition in situation whereby the number of sample data 
is small. In the clinical example illustrated, the overall 
accuracy of the models needs to be increased if they 
are to be of practical use. We expect to improve the 
accuracy by constructing models based on other sets 
of risk factors. 
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