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ABSTRACT 

 

 

 

A condition monitoring program applied to diesel engines, improves safety, productivity, increases 

serviceability and reduces maintenance costs. Investigation of a novel condition monitoring systems 

for diesel engine is attracting considerable attention due to both the increasing demands placed upon 

engine components and the limitations of conventional techniques. This thesis documents research 

conducted to assess the monitoring capabilities used acoustic emission (AE) analysis. It focuses on 

the possibility of using AE signals to monitor the fuel injector and oil condition. 

 

A series of experiments were performed on a JCB, four-stroke diesel engine. Tests under healthy 

operating conditions developed a detailed understanding of typical acoustic emission generation in 

terms of both the source mechanisms and the characteristics of the resulting activity. This was 

supplemented by specific tests to investigate possible acoustic emission generation due to the piston 

slap and friction.   

The effect of faults on the injector waveform was investigated using the injection system and at one 

sensor location. To overcome the reflections and injection system configuration effects the method 

of acoustic emission impedance was used. This enabled the injector signal to be successfully 

extracted and clearly shows its capability for detecting even minor combustion deviations between 

engine cylinders. 

 

Comparison between signals and measurement of the oil condition showed both provided useful 

information about the lubrication processes. Simulation and experimental work have demonstrated 

the capability of this technique to detect lubrication related faults and irregular lubrication 

variability between the engine's cylinders. 
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A review of the AE sources in diesel engines and how to represent the AE signals generated is 

presented. Three analysis methods were used: time-domain analysis using parameters such as Root 

Mean Square (RMS), variance, mean and kurtosis; frequency-domain analysis which relied on the 

amplitudes of the frequency components of the measured signals; and time-frequency domain 

analysis extracting features so that the energy content of the signals and the frequency components 

were localized simultaneously.   

In this work, data has been obtained from tests on a diesel engine, where the engine load, speed, 

temperature and the oil lubrication type were changed. The monitored signal and its difference from 

that obtained for normal engine conditions was noted as a fault signature that could be used for fault 

detection and diagnosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

4 

 

 

DEDICATION 

 
 
 
 
 

To my wife, my daughters and my sons, for your patience and 

absolutely everything with love. 

 

To my brothers and sisters, for their continuous support and 

encouragement, while I have been away from home. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



     

5 

 

LIST OF CONTENTS 

 

TITLE PAGE....................................................................................................................................1 

ABSTRACT.....................................................................................................................................2 

DEDICATION..................................................................................................................................4 

LIST OF CONTENTS......................................................................................................................5 

LIST OF FIGURES........................................................................................................................12 

LIST OF TABLES..........................................................................................................................17 

LIST OF NOMENCLATURE…....................................................................................................18 

LIST OF NOTATION.....................................................................................................................19 

DECLARATION.............................................................................................................................23 

COPYRIGHT..................................................................................................................................24 

AKNOWLEDGEMENTS...............................................................................................................25          

  

CHAPTER ONE 

INTODUCTION..............................................................................................................................26 

1.1 Introduction to Condition Monitoring.................................................................................27 

   1.1.1 Why Monitor and Diagnose Faults in Engines…………………………….……………..28 

1.2       Motivation...........................................................................................................................30 

1.3       Research Topic....................................................................................................................31 

1.4       Implementation of Condition Monitoring System..............................................................31 

   1.4.1       Sensor Selection............................................................................................................31 

   1.4.2       Feature Extraction.........................................................................................................33 

   1.4.3       Feature Comparison......................................................................................................34 

   1.4.4       Decision Process Determination...................................................................................34 

1.5       Introduction to Research Work...........................................................................................35 

   1.5.1       Aims of This Research..................................................................................................35 

   1.5.2       Research Objectives......................................................................................................36 

1.6       Thesis Structure and Organisation......................................................................................37 



     

6 

 

CHAPTER TWO 

DIESEL ENGINE CONDITION MONITORING.........................................................................39 

2.1       Introduction.........................................................................................................................40 

2.2       Engine Fundamentals..........................................................................................................42 

2.3       Diesel Engine Sensing.........................................................................................................43 

2.4       A Review of Diesel Engine Condition Monitoring.............................................................44 

    2.4.1       Overview of Principal Faults in a Diesel Engine..........................................................44 

    2.4.2       Overview of Condition Monitoring Techniques...........................................................46 

       2.4.2.1       Vibration Monitoring..............................................................................................46 

       2.4.2.2       Oil / Lubrication Analysis.......................................................................................49 

       2.4.2.3       Cylinder Pressure Monitoring.................................................................................50 

       2.4.2.4       Instantaneous Angular Speed Monitoring..............................................................52 

     2.4.2.5     Airborne Acoustic Monitoring..............................................................................53 

       2.4.2.6     Exhaust Monitoring...............................................................................................55 

       2.4.2.7     Acoustic Emission Monitoring..............................................................................56 

2.5        Summary………………………………....………………………………………………58 

 

CHAPTER THREE 

ACOUSTIC EMISSION MONITORING AND ITS APPLICATION TO DIESEL ENGINES....60 

3.1       Introduction..........................................................................................................................61 

3.2       Acoustic Emission Principles and Applications..................................................................61 

    3.2.1       Fundamental principles.................................................................................................61 

    3.2.2       Relative Merits of AE, Vibration and Airborne Acoustic Monitoring.........................63 

    3.2.3       Applications of AE Monitoring....................................................................................65 

3.3       AE monitoring of Reciprocating Machinery.......................................................................66 

    3.3.1       Initial Identification......................................................................................................66 

    3.3.2       Monitoring of Injection, Combustion and Combustion-Related Processes.................67 

    3.3.3       Monitoring of Exhaust Valve and Gasket Leakage......................................................71 



     

7 

 

    3.3.4       Event Mapping and Source Location............................................................................74 

    3.3.5       Monitoring of the piston ring-pack and cylinder liner interface...................................76 

3.4       AE Monitoring of Sliding Contact.......................................................................................78 

3.4.1       Initial Identification of AE Generation from Friction and Wear Source Mechanisms.79 

    3.4.2       AE Monitoring of Sliding Contact in Laboratory Wear Tests......................................80 

3.5       Summary…………………………………………………………………………………..89 

 

CHAPTER FOUR  

DIESEL ENGINE ACOUSTIC EMISSION SOURCES AND DATA PROCESSING…….…..91 

4.1       Introduction........................................................................................................................92 

4.2       Diesel Engine Acoustic Emission Generation....................................................................92 

    4.2.1       Mechanical Impact......................................................................................................93 

       4.2.1.1       Piston Slap.............................................................................................................93 

       4.2.1.2       Valves....................................................................................................................95 

    4.2.2       Friction........................................................................................................................97 

       4.2.2.1       Piston Liner Assembly..........................................................................................98 

       4.2.2.2       Valve Train System..............................................................................................99 

       4.2.2.3       Engine Bearing System.......................................................................................100 

       4.2.2.4       Auxiliaries...........................................................................................................102 

    4.2.3       Other Sources............................................................................................................103 

4.3       Background Noise............................................................................................................105 

4.4       Acoustic Emission Processing.........................................................................................106 

    4.4.1       Measurement of Acoustic Emission.........................................................................106 

    4.4.2       AE Analysis and Signal Processing Techniques......................................................108 

      4.4.2.1     Time-Domain Analysis...............................................................................................109 

       4.4.2.2       Frequency-Domain Analysis..............................................................................113 

       4.4.2.3       Time-Frequency Domain Analysis.....................................................................114 

    4.4.3       Feature Extraction and Pattern Recognition.............................................................115 



     

8 

 

CHAPTER FIVE     

MTHMATICAL MODEL OF PISTON SLAP AND FRICTION IN DIESEL ENGINES……..118 

5.1    General Concepts..................................................................................................................119 

   5.1.1       Piston Slap...................................................................................................................120 

   5.1.2       Piston Friction.............................................................................................................121 

   5.1.3       Characteristic of Piston Assembly Friction.................................................................123 

5.2       Review of Previous Work.................................................................................................123 

5.3       Piston and Piston Ring Kinematics...................................................................................124 

5.4       Governing Equations.........................................................................................................128 

   5.4.1       Equation of Motion.....................................................................................................128 

   5.4.2       Piston Ring Normal and Friction Forces,    and   ..................................................131 

   5.4.3       Wrist-Pin Friction,    ..............................................................................................131 

   5.4.4       Cylinder Liner Support,   ,   ,    , and     .........................................................132 

   5.4.5       Skirt-Liner Friction,    ,    ,    ,    ...................................................................133 

5.5       Radial Thermal Deformation...........................................................................................135 

5.6       Cyclic Variations.............................................................................................................135 

5.7       Cylinder Pressure Measurement......................................................................................136 

5.8       Effects of Engine Operating Conditions on Piston Liner Friction..................................137 

   5.8.1       Effect of Engine Speed..............................................................................................138 

   5.8.2       Effect of Engine Load...............................................................................................140 

   5.8.3       Effect of Oil Supply..................................................................................................141 

5.9       Effects of Piston Parameters on Piston Friction..............................................................142 

   5.9.1       Skirt-Liner Clearance................................................................................................142 

   5.9.2       Oil Supply/Oil Film Thickness.................................................................................143 

   5.9.3       Surface Finish/Waviness...........................................................................................144 

      5.9.3.1       Waviness vs. Roughness.....................................................................................144 

      5.9.3.2       Parametric Surface Waviness..............................................................................144 

  5.9.4       Piston-Skirt Profile/Shape..........................................................................................145 

  5.9.5       Piston-Skirt Size.........................................................................................................146 

  5.9.6       Piston Ovality.............................................................................................................147 



     

9 

 

5.10      Other Considerations.......................................................................................................148 

5.11      Friction Reduction Strategies..........................................................................................149 

5.12      Summary……………………………………………………………………………….149 

 

CHAPTER SIX 

EXPERIMENTAL TEST FACILITY AND FAULT SIMULATION.........................................151 

6.1       Test Rig Specification.......................................................................................................152 

6.2       Test Rig Description..........................................................................................................153 

6.3       Measuring Equipment and Instrumentation......................................................................154 

   6.3.1       Optical Encoder...........................................................................................................155 

   6.3.2       Magnetic Pickup..........................................................................................................156 

   6.3.3       Cylinder Pressure Sensor.............................................................................................157 

   6.3.4       Temperature Measurement..........................................................................................157 

   6.3.5       Torque Sensor..............................................................................................................158 

   6.3.6       Brüel & Kjær Charge Amplifier..................................................................................158 

   6.3.7       Analogue to Digital Converter (ADC)........................................................................159 

   6.3.8       Software: Lab Windows TM/ CVI Version 5.5..........................................................160 

6.4        Data Acquisition Software...............................................................................................161 

6.5        Acoustic Emission Measurement and Data Acquisition..................................................162 

   6.5.1       Wideband Sensor...........................................................................................……….163 

   6.5.2       AE pre-amplifier.........................................................................................................164 

   6.5.3       AE Data Acquisition System......................................................................................164 

6.6       Test Procedures and Fault Simulation..............................................................................167 

   6.6.1      Test Procedure……………………………………………………………………….167 

   6.6.2       Injection System.........................................................................................................167 

   6.6.3       Lubrication Oil Faults………………………………………………………………169 

6.7       Test Rig Recorded Data...................................................................................................170 

   6.7.1       Angular Domain Display...........................................................................................170 

   6.7.2      Frequency Domain Display…....................................................................................172 

   6.7.3      Time-Frequency Domain Display..............................................................................173 



     

10 

 

CHAPTER SEVEN   

 

DIESEL ENGINE FUNDAMENTAL ACOUSTIC EMISSION CHARACTERISTIC……....177 

7.1       Introduction......................................................................................................................178 

7.2       Combustion Pressure Event.............................................................................................178 

7.3       Diesel Engine Acoustic Emission Waveform..................................................................180 

   7.3.1       Effects of Operating Condition on the AE Signal.....................................................182 

7.4       Data Analysis Using Statistical Parameters.....................................................................186 

    7.4.1       RMS Value and Variance as Fault Severity Indicators............................................186 

    7.4.2       Kurtosis as a Tool for Fault Diagnosis.....................................................................189 

    7.4.3       Analysis in the Angular Domain..............................................................................190 

    7.4.4       Analysis in the Frequency Domain..........................................................................194 

    7.4.5        Analysis in the Angular-Frequency Domain...........................................................198 

7.5       Lubrication Monitoring Using Piston Slap Intensity.......................................................201 

   7.5.1       Engine Load...............................................................................................................203 

   7.5.2       Oil Temperature.........................................................................................................203 

   7.5.3       Engine Speed.............................................................................................................204 

   7.5.4       Oil Type.....................................................................................................................205 

7.6       Conventional Techniques; Limitations and Drawbacks..................................................207 

 

CHAPTER EIGHT   

SIMULATION AND MODEL VALIDATION..........................................................................208 

8.1       General Concept...............................................................................................................209 

8.2       Influence of Piston Displacement.....................................................................................209 

8.3       Influence of Piston Sliding Velocity................................................................................211 

8.4       Influence of Cylinder Block Displacement......................................................................214 

8.5       Engine Friction Measurement..........................................................................................215 

   8.5.1       Engine Friction using Conventional Technique.........................................................215 

   8.5.2       Brake Specific Fuel Consumption (BSFC)................................................................217 

   8.5.3       Friction Measurement Using AE...............................................................................218 



     

11 

 

   8.5.4       IMEP Measurements..................................................................................................222 

8.6       Lateral Force on Piston.....................................................................................................224 

8.7       Influence of Gas Torque on the Piston.............................................................................228 

8.8       Influence of Inertia and Gas Torques on the Piston.........................................................230 

8.9       Lubricant Chemistry.........................................................................................................231 

8.10     Piston and Wrist-Pin Motion............................................................................................233 

   8.10.1     Lateral Motion............................................................................................................233 

   8.10.2     Tilt..............................................................................................................................234 

8.11     Summary………………………………………………………………………………..235 

 

CHAPTER NINE     

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK................................237 

9.1       Review of Project Objectives and Achievements............................................................238 

   9.1.1       Overview....................................................................................................................238 

   9.1.2       Objectives and Achievements....................................................................................238 

9.2       Conclusions......................................................................................................................243 

   9.2.1       Conclusions Relating to AE Measurements Statistical Parameters...........................243 

   9.2.2       Conclusions Relating to Time Representation..........................................................244 

   9.2.3       Conclusions Relating to Time-Frequency Representation........................................245 

9.3       Overall Conclusions Regarding Monitoring Diesel Engine............................................245 

9.4       Contribution to Knowledge………………………………………………………….…246 

9.4       Recommendations for Future Work................................................................................246 

 

REFERENCES..........................................................................................................................249 

 

 

 

 

 

 



     

12 

 

 

LIST OF FIGURES 

 

 

Figure 2.1   Diesel engine new technologies..................................................................................41 

Figure 2.2   Principal faults in diesel engines.................................................................................45 

Figure 2.3   Angular-domain signal of body vibrations of a four stroke diesel engine.................48 

Figure 2.4   Angular-domain of cylinder pressure..........................................................................51 

Figure 2.5   Angular-domain of  acoustic waveform of two crankshaft revolutions.....................54 

Figure 2.6   Angular-domain of  exhaust pressure waveform of complete engine cycle..............55 

Figure 2.7   Angular-domain of AE waveform signal of two crankshaft revolutions...................57 

Figure 3.1   Simultaneous in-cylinder pressure , RMS AE  and acceleration 

                    measurements from a gas-fuelled engine.......................................................64 

Figure 3.2   Raw AE acquired from a small, four-stroke engine showing injection/combustion 

                    events at areas of maximum pressure, other smaller events appear regularly, AE 

                    ( ) and in-cylinder pressure (----)..................................................................70 

Figure 3.3   RMS AE signals acquired from a large, two-stroke diesel engine, (a) healthy 

                    condition and (b) large exhaust valve leak..................................................................72 

Figure 3.4   Raw AE signals acquired from the cylinder head of a small, HSDI engine, (a) 

                    propagation around the head, (b) attenuation characteristics......................................75 

Figure 3.5   (a) Four hidden signals during a cycle, signal 1 attributed to friction, (b) 

                    development of four independent components during test, source.1 attributed to 

                    friction…………………………………………………………………………….....77 

Figure 3.6   (a) Histogram of cyclic AE energy for normal and no lubricant supply conditions, 

                    upper and lower panels at 25% and 50% load respectively, (b) Scatter plot of AE 

                    energy versus load with several fault/no fault decision boundaries indicated...........78 

Figure 3.7   AE generation characteristics using a ball and cylinder test-rig for (a) lubricated 

                    contact, (b) un-lubricated contact................................................................................81 



     

13 

 

Figure 3.8   (a) RMS AE time histories for two different lubrication conditions, (b) linear 

                    relationships between integrated RMS AE signals and wear scar volume for different 

                    wear regimes................................................................................................................83 

Figure 3.9   Effect of sliding speed and load on RMS AE level for two different set-ups……....84 

Figure 3.10 Un-lubricated ball and cylinder test rig, cumulative AE versus frictional work, (a) 

                    effect of speed (b) effect of loading………………….................................................85 

Figure 3.11 Log AE count rate and coefficient of friction versus film parameter.........................87 

Figure 3.12 Schematic of the AE monitoring system for a ball on flat sliding cylinder................88 

Figure 3.13 Induced scuffing at a critical loading..........................................................................88 

Figure 4.1   Piston slap phenomenon mechanism..........................................................................94 

Figure 4.2   Representative mechanical loss distribution for a diesel engine ................................97 

Figure 4.3   Distribution of valve train friction losses..................................................................100 

Figure 4.4   Schematic of an AE sensor........................................................................................106 

Figure 4.5   (a) Examples of AE emission types, (b) typical AE signal acquired from a running 

                    engine........................................................................................................................109 

Figure 4.6   Typical time-domain parameters extracted from AE Signals...................................110 

Figure 5.1   Stribeck diagram showing the various regimes of lubrication..................................121 

Figure 5.2   (a) Schematic of crank-slider mechanism (b) piston primary motion......................125 

Figure 5.3   Schematic of piston cylinder wall system.................................................................129 

Figure 5.4   Schematic of forces and moments acting on the piston............................................130 

Figure 5.5 Flow chart for piston frictional force and the piston side force..................................134 

Figure 5.6   Pressure torque..........................................................................................................136 

Figure 5.7   Gas pressure acting on the piston crown...................................................................137 

Figure 5.8   Engine speeds acting on the piston...........................................................................139 

Figure 5.9   Engine load acting on the piston...............................................................................140 

Figure 5.10 Illustration of the dry region.....................................................................................141 

Figure 5.11 Piston lateral impact velocity...................................................................................142 

Figure 5.12 Comparison of aluminium and steel piston designs.................................................147 

Figure 6.1   JCB444T2 Engine rig...............................................................................................152 

Figure 6.2   Schematic of the engine test system.........................................................................154 



     

14 

 

Figure 6.3   Photo of optical encoder position............................................................................155 

Figure 6.4   AC voltage distribution of magnetic pick-up..........................................................156 

Figure 6.5   Kistler type 6125 pressure sensor and specification................................................157 

Figure 6.6   K type temperature thermocouple...........................................................................158 

Figure 6.7   Torque transducer in position..................................................................................158 

Figure 6.8   Charge amplifier-type 2635 (left), back (right).......................................................159 

Figure 6.9   Power 1401 CED analogue to digital converter......................................................160 

Figure 6.10 Set-up window screen..............................................................................................161 

Figure 6.11 Data acquisition No: 1 in progress...........................................................................162 

Figure 6.12 Wideband type WD acoustic emission sensor and specification.............................163 

Figure 6.13 Simple diagram of AE sensor..................................................................................163 

Figure 6.14 2/4/6 Pre-amplifier and specification......................................................................164 

Figure 6.15 PCI-2 AE system card.............................................................................................165 

Figure 6.16 AE data acquisition in progress...............................................................................166 

Figure 6.17 PCI-2 Block diagram description............................................................................166 

Figure 6.18 The components of a diesel injector........................................................................168 

Figure 6.19 Arrangement for total misfire..................................................................................169 

Figure 6.20 Raw AE signal from a running engine at 0 Nm at 1000 rpm..................................171 

Figure 6.21 Frequency spectrum of raw AE signal from a running engine at 0 Nm at 1000 

                    Rpm……………….................................................................................................172 

 

Figure 6.22 Time-frequency domain of raw AE signal from a running engine at 1000 rpm and 

                    four different loads…………………......................................................................174 

Figure 6.23 Time-frequency domain of raw AE signal from a running engine at 1000 rpm and 

                    four different loads (zoomed)..................................................................................176 

Figure 7.1   Diagram of cylinder pressure vs. crank angle (0° = TDC)......................................179 

Figure 7.2   Spectrum of cylinder pressure.................................................................................179 

Figure 7.3   Acoustic emission waveform and power spectrum of the diesel engine, AE sensor 

                     mounted on the front side of cylinder head (close to cylinder. No.1)…………...180 



     

15 

 

Figure 7.4  AE waveform power spectra of the diesel engine at loads of (a) 50 Nm, (b) 100 Nm, 

                    and (c) 150 Nm........................................................................................................181 

Figure 7.5  Time domain and frequency domain, respectively, of the AE signal from a diesel  

                  engine for engine speeds of (a) 1000 rpm; (b) 1000 rpm power spectrum; (c) 2000 

             rpm; (d) 2000 rpm power spectrum………………………………………...................182 

Figure 7.6   Time and frequency domain analysis of AE signals from a diesel engine running at 

                    1000 rpm and 2000 rpm..........................................................................................183 

Figure 7.7   Fourier spectrum of the AE signal from a diesel engine running at 1000 rpm (blue) 

                    and 2000 rpm (red) up to 20 kHz upper and 20 kHz to 100 kHz below………….183 

Figure 7.8   AE signals and associated Fourier spectra for the AE from a diesel engine running at 

                    1000 rpm under; (a) zero load; (b) 50 Nm; (c) 100 Nm; (d) 150 Nm…………….184 

Figure 7.9   Mean value of AE signal for a diesel engine running at (a) 1000 rpm at four different 

                     loads and (b) 2000 rpm at four different loads……………………………...........185 

Figure 7.10 AE signals RMS values and the variances (a) 1000 rpm no load and (b) 2000 rpm no 

                     load……………………………...............................................................................188 

Figure 7.11 AE signals RMS values and the variances (a) 1000 rpm under 150 Nm load and (b) 

                    2000 rpm under 150 Nm load…………………………...........................................188 

Figure 7.12 In-cylinder pressures of diesel engine cylinder 1 at 2000 rpm, (a) at no load and (b) 

                    at high load………………………………………………………………………....189 

Figure 7.13 Detection of presence of engine fault using the kurtosis and RMS of the AE signal 

                    (Blue) 270 bar, (Red) 235 bar, (Green) 325 bar and (Yellow) blocked injector......190 

Figure 7.14 AE signals in the angular domain (87% injection pressure).....................................191 

Figure 7.15 AE signals in the angular domain (120% injection pressure)...................................192 

Figure 7.16 AE signals in the angular domain (full misfire)........................................................193 

Figure 7.17 Spectra of the AE signals for 87% injection pressure...............................................195 

Figure 7.18 Spectra of the AE signals for 120% injection pressure.............................................196 

Figure 7.19 Spectra of the AE signals for full misfire..................................................................197 

Figure 7.20 Angular-frequency representation of healthy and 87% injection Pressure………..198 



     

16 

 

Figure 7.21 Angular-frequency representation of healthy and 120% injection Pressure.............199 

Figure 7.22 Angular-frequency representation of healthy and full misfire...................................200 

Figure 7.23 RMS value at two speeds...........................................................................................202 

Figure 7.24 Effects of engine load on amplitude of 1000rpm.......................................................203 

Figure 7.25 Effects of oil temperature on amplitude of the AE signal..........................................204 

Figure 7.26 Effect of engine speed on amplitude of the AE signal...............................................205 

Figure 7.27 Effects of engine oil viscosity on amplitude of AE signal.........................................206 

Figure 8.1   Piston lateral displacement and cylinder lateral displacement...................................210 

Figure 8.2   Piston sliding velocity at constant rpm…………………….......................................211 

Figure 8.3   Piston lateral velocity and cylinder liner response.....................................................212 

Figure 8.4   Displacement and velocity of cylinder block.............................................................214 

Figure 8.5   Engine friction power at different operating conditions with lubricating oils of 20w 

                    -50 and 10w-30for both oil.........................................................................................217 

Figure 8.6   Indicated power vs. speed and load............................................................................219 

Figure 8.7   Friction power vs. speed and load..............................................................................220 

Figure 8.8   Friction at two different speeds..................................................................................222 

Figure 8.9   IMEP at two different speeds.....................................................................................224 

Figure 8.10 Piston lateral force, lateral displacement and lateral impact velocity........................227 

Figure 8.11 Cylinder pressure and gas torque...............................................................................229 

Figure 8.12 Inertia, gas and resultant torques................................................................................231 

Figure 8.13 Kinematic viscosities vs. oil temperature for the two types of lubricating oil……..233 

Figure 8.14 Stable piston tilt..........................................................................................................235 

 

 



     

17 

 

 

LIST OF TABLES 

 

 

 

Table 1.1   Major international disasters resulting from lack of proper maintenance………...….30 

Table 1.2   Summary of the main sensor parameters………………………………………..........32 

Table 6.1   Test Engine Specifications..........................................................................................153 

Table 7.1   Summary of faults seeded into the diesel engine........................................................187 

Table 7.2   Typical properties of the oils used..............................................................................206 

Table 8.1   Indicated power (IP), Brake power (BP) and Friction power (FP) for both oils under 

                   prescribed engine operating conditions......................................................................216 

Table 8.2   Percentage reduction of BSFC (g/kWh) of an engine operating at 2000 rpm............218 

 

 

 

 

 

 

 

 

 

 

 



     

18 

 

 

LIST OF NOMENCLATURE 

 

 
AE      Acoustic emission 

ADC   Analogue-digital conversion 

ATDC After top dead centre 

BDC   Bottom dead centre 

BTDC Before top dead centre 

B&K   Brüel & Kjaer  

BSFC  Break Specific Fuel Consumption 

CA      Crank Angle 

CBM   Condition based maintenance 

CED    Cambridge Electronic Design 

CM      Condition monitoring 

CP       Cylinder Pressure 

CWT   Continuous Wavelet Transform 

DAQ    Data Acquisition 

dB        Decibel 

EV       Exhaust valve  

EVO    Exhaust valve opening 

EVC    Exhaust valve closing 

FFT     Fast Fourier transforms 

HSDI   High Speed Direct Injection 

IAS      Instantaneous Angular Speed 

IC        Internal Combustion 

ICA     Independent Component Analysis 

ICs      Independent Components 

IMEP Indicated Mean Effective Pressure 

IV       Intake valve 

IVC     Intake valve closing 

IVO     Intake valve opening 

I/O       Input/output 

Kur      Kurtosis 

MBPD Million Barrels per Day 

NDT    Non Destructive Testing 

NOx    Oxides of nitrogen 

P          Absolute pressure 

Pdf       Probability density function 

PC        Personal computer 

PCA     Principal Component Analysis 

PM       Particulate matter 

Psi        Pounds per square inch 

Po         Mean pressure 

RMS     Root mean square 

RPM     Revolution per Minute 

SNR      Signal-to-noise ratio 

sk          Skewness 

STFT    Short-Time Fourier Transform 

TDC     Top dead centre 

TSA      Time synchronous averaging 

WT       Wavelet Transform 

WVD    Wigner Ville Distribution 

Var       Variance 

σ           Standard deviation 

   



     

19 

 

 

LIST OF NOTATION 

 
 

 

   ,     Solid-to-solid contact and hydrodynamic components of bearing areas on anti-

thrust side of skirt 

 

   ,     Solid-to-solid contact and hydrodynamic components of bearing areas on thrust 

side of skirt 

a             Vertical distance from the top of the skirt to the wrist-pin 

 

b             Vertical distance from the top of the skirt to the piston centre of gravity  

CL            Horizontal distance between thrust side of liner and liner centreline (cylinder     

               line radius) 

               Horizontal distance between piston centre of mass and wrist-pin 

               Wrist-pin offset (horizontal distance of the wrist-pin from the vertical axis of    

               the piston 

D            Indication of piston displacement 

  ,          Eccentricities of piston at the bottom and top of the skirt, respectively. 

 ̂              Connecting rod force 

  ,         Total horizontal normal forces acting on the skirt on anti-thrust and thrust side,    

               respectively. 

 

     ,    , Solid-to-solid contact component of horizontal normal forces acting on the  

skirt on the anti-thrust side.  

 

   ,       Hydrodynamic component of horizontal normal forces acting on the skirt on  

               the thrust side 

   ,      Total friction forces acting on the skirt on the anti-thrust side and thrust side 

               respectively. 

 

    ,     Solid-to-solid contact component of the friction forces acting on the skirt on 

                  the anti-thrust and thrust side, respectively. 

 

    ,     Hydrodynamic component of the friction forces acting on the skirt on the anti  

               thrust side and thrust side respectively. 

 

              Friction force between piston ring and liner. 
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                Combustion gas force acting on the top of the piston  

   ,  ̂        Inertia forces due to piston mass 

   ,  ̂        Inertia forces due to wrist-pin mass 

                 Ring axial inertia force 

                 Ring pressure force 

                 Normal forces between piston and rings 

                 Horizontal friction forces between piston and rings 

                  Piston forces not depending on piston liner contact  

                  Low pass filter cut-off frequency 

              Data acquisition sampling frequency   

                  Local oil film thickness 

 ̅                 Mean oil film thickness 

                 Ring side clearance   

                 Piston rotary inertia about its centre of mass 

                  Piston skirt length 

                 Ring length in the circumferential direction 

                  Vertical distances between the wrist-pin axis and rings 

   ,       Moment about wrist-pin due to all the normal forces on the anti-thrust and  

                   thrust sides respectively. 

     ,    Moment about wrist-pin due to solid-to-solid contact forces on the anti- 

                    thrust and thrust sides respectively. 

     ,    Moment about wrist-pin due to all the normal forces on the anti-thrust and 

                    thrust sides respectively. 

   ,       Moment about wrist-pin due to all the friction forces on the anti-thrust and       

thrust sides respectively. 

 

     ,     Moment about wrist-pin due solid-to-solid contact friction forces on the 

                     anti-thrust and thrust sides respectively. 

    ,     Moment about wrist-pin due to hydrodynamic friction forces on the anti-

thrust and thrust sides respectively. 

                  Inertia moment of piston 

                  Inertia moment of wrist-pin 

                Moment about wrist-pin due to wrist-pin friction 
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                  Moments that does not depend on piston liner contact  

                 Piston mass 

                Wrist-pin mass  

                 Ring mass 

PT,PB         Vertical distance from top of cylinder liner to top and bottom of piston skirt 

                    respectively. 

                  Hydrodynamic Pressure 

                 Wavy contact load per unit length  

R                 Piston radius 

                Wrist-pin radius 

t                  Time 

U                 Piston sliding velocity 

                 Ring width in the radial direction 

                  Point at which side force on piston changes direction 

                  Point at which piston makes impact with thrust side of liner 

X                  Horizontal coordinate 

Y                  Vertical coordinate 

                   Coefficient depending on oil coverage of ring 

                   Angular coordinate 

                    Lubricant viscosity 

                   Coefficient of friction for solid-to-solid contacts 

                   Lubricant viscosity 

                   Coefficient of friction for wrist-pin 

             Coefficient of friction between ring and piston  

                    Surface roughness 

                    Hydrodynamic shear stress 

                   Piston tilt 

  ,            Pressure flow factors 

                   Shear flow factor 

  ,   ,    Shear stress factors 

                    Connecting rod angle 
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Ψ                  Crank angle 

Ω                  Surface waviness 

                   Period of engine cycle 
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CHAPTER ONE 

INTRODUCTION  

 

 

 

This chapter gives an introduction to the work presented in this thesis. Firstly, the fields of 

condition monitoring and diagnostic system implementation procedure are introduced. 

Secondly, the work to be reported in this thesis is introduced; the research work aims and 

objectives are outlined and the thesis structure is presented. 
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1.1 Introduction to Condition Monitoring 

Due to the growing demands for availability, reliability, cost efficiency and safety, the call for 

accurate machinary fault detection and diagnosis is becoming increasingly important. 

Machinery maintenance is often condition based, that is, decisions regarding the repair or 

replacement of a machine part, overhaul and/or standard maintenance are made on the basis of 

the measured condition of the machine. Proper machine condition monitoring procedures 

need to attain high levels of asset availability, reliability and performance whilst minimising 

unplanned downtime and the cost of maintenance.  

Condition monitoring, fault diagnosis and fault detection are terms used to describe similar 

concepts; detection of any abnormality or deviation from the machine’s normal condition. 

Condition monitoring has the primary aim of assessing the health of a machine or structure, 

while fault diagnosis identifies the component or process which caused the deviation from the 

normal condition. 

Mechanical signature analysis is, in many aspects, a well-established field of engineering and 

is widely used, for example, in production quality control. Sensor measurements are 

employed to determine whether the quality of a manufactured product meets the required 

specification. Such end-of-assembly tests are becoming common in the manufacture of 

machines and products, as the market demands ever greater reliability. 

Another very important field of application of mechanical signature analysis is condition 

monitoring. The availability of relatively low-cost digital computers especially designed for 

industrial applications and the increasing use of digital controllers have given rise to an 

explosion in the use of diagnostic and monitoring applications over the last two decades. 

Acoustic emission (AE) and chemical and physical analysis of in-service lubricating oil, 

process parameters and thermal images are examples of the variety of technologies utilised in 

condition monitoring. Traditionally, data as sensed from the object under surveillance is 

compared with baseline readings taken under normal operating conditions. Today it is 

possible to combine the data from a number of systems in order to judge the state of the 

machine or structure [1]. 

Various signal analysis techniques have been employed in condition monitoring; among 

these, classical and parametric spectral estimation methods have played a major role. The use 

of spectral analysis techniques is often dictated by the periodic or repetitive nature of the 
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motion of most - if not all - machines; defects and incipient failures often manifest themselves 

in the form of changes in the spectrum of a measured signal whose spectral characteristics are 

usually easily associated with a physical phenomenon such as the speed of rotation or the 

repetition rate of a certain motion [1]. 

Each machine has its own baseline signature expressed in terms of one or more continuously 

varying parameters. The challenge is to detect any change as soon as the signature begins to 

depart from normal. The condition of every machine depends on several factors such as the 

operating environment (quality of fuel, air, water, lubricant  etc.), the operating modes (part 

load running, overloading etc.) and operator skills. All of these are variable, and deviation of 

any of them from the normal range could lead to a fault developing within the system. In 

complex systems a fault in any subsystem, if not repaired early enough, can severely affect 

the performance of the other subsystems. 

Thus it is very important to recognise at an early stage that a fault has developed and also to 

identify the component responsible for that fault. Many existing diagnostic systems belong to 

a category where the fault is detected after the condition of the machine has deteriorated so 

badly that visual, audible and olfactory (i.e. smell) signs are already present [2].  

 

1.1.1 Why Monitor and Diagnose Faults in Engines? 

Even minor faults can contribute to a reduction in the useful life of high-cost engines, and it 

is in the self-interest of companies to avoid such potentially unnecessary losses. Faults not 

only directly reduce the performance of an engine, they can also cause secondary damage to 

other parts of the engine; this can lead to significant economic loss for the user and in some 

cases to personal injury [3].  

Different predictive maintenance methods and techniques such as vibration, acoustic and 

acoustic emission monitoring, using time and frequency domains have been developed to 

detect and diagnose faults, improving maintenance and, hence, the performance of both 

engines and systems [4]. When the faults are less serious, early detection and diagnosis not 

only provides information about the nature of the problem but also allows maintenance 

personnel to plan the necessary corrective action. Thus, the production losses can be 

minimised. Such an approach will result in lower labour and parts costs, less downtime and 

more efficient use of maintenance resources [5].  
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In the past twenty years development of CM techniques, particularly acoustic emission 

monitoring, has greatly improved the maintenance of rotating machinery. However, over that 

period, reciprocating machinery such as reciprocating engines has been largely ignored [5]. 

This is predominantly because the acoustic emission generated during normal operation of a 

reciprocating engine is impulsive, because of impact forces resulting from the different 

sources, which makes the diagnosis of problems relatively difficult.  

Table 1.1 shows some of the major international disasters which occurred between 1980 and 

1989, with their attendant effects. The impact on the environment may be so important that 

some major incidents must be considered as disasters, even if no human casualties were 

involved. It is essential to have improved safety in the process industry, up-to-date 

maintenance information on engine conditions [6]. The fact that the monitoring and control 

of excessive vibration, noise and temperature levels are now required by law in many 

countries may provide a significant spur to the introduction of CM techniques [6]. In 1998 

alone it is estimated that more than 2000 lives were lost as a result of accidents at sea 

attributed to weather, fire and explosion, machinery failure, collision/contact, grounding and 

unknown incidents [3]. 

Presently diagnostic systems capable of detecting incipient faults in engines are limited due 

mainly to the extremely difficult task of detecting and interpreting the low level of signal 

from a fault in its early stages.  

Many applications of condition based maintenance (CBM) can provide significant savings 

[7]. A few examples are listed below: 

 

1. SKF (a CM equipment supplier) claims that in one company, use of CBM reduced 

maintenance costs by up to 27%, productivity rose by 21%, while unscheduled downtime 

dropped by 40% and equipment breakdowns were reduced by 74% [8]. 

2. One study has shown that CBM reduced maintenance costs of one company by more than 

30%, increased equipment availability and performance from 2-40%, enhanced safety and 

reduced energy consumption by up to 10% [7]. 

3. Adelaide Brighton Cement Ltd: reported savings of 15% ($5 million) through 

improvement in plant availability and avoiding 6-10 unplanned shutdowns per year. $125,000 

per year was saved by reducing time-based maintenance schedules. Reduced spare parts 

inventory resulted in saving of approximately $130,000 per year [9]. 
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Table 1.1 Major international disasters resulting from lack of proper maintenance [6]. 

 

Year Location  Causes Effects 

1980 North Sea (UK) Oil rig capsize 123 killed 

1984 Bhopal (India) Toxic release 2700 killed and 

about 10 times as 

many injured 

1984 Ixhuatepec 

(Mexico) 

LPG 

explosion 

500 killed 

1988 North Sea (UK) Piper Alpha 

explosion 

167 Killed 

1986 Chernobyl 

(USSR) 

Nuclear 

reactor fire 

31 killed and 

135000 residents 

were evacuated 

1989 USSR Gas pipe 

explosion  

500 killed 

 

1.2 Motivation 

In the last century, the development of heavy duty diesel engines achieved a high level of 

success.  Today diesel engines are complex and have numerous components that could 

potentially fail. In order to avoid failure and to maintain high efficiency it is essential to 

monitor the engine condition continuously. Thus there has been an increased interest in 

engine condition monitoring because of the potential advantages to be gained from reduced 

maintenance costs, improved reliability, increased engine availability and reduction of the risk 

of main engine failure. Nowadays, the essential issue for diesel engine condition monitoring 

in most industries is inadequate and accurate fault detection and diagnosis. One of the most 

promising approaches to condition monitoring is to use AE signal analysis [10]. Hence, the 

motivation of this research is the efficient detection and diagnosis of faults in a heavy duty 

diesel engine using AE techniques. The motives behind not building in such user oriented 

diagnostic systems into domestic equipments (cars included) are fairly transparent. However, 

major machinery failure causing damage to life and property can never be justified. 
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1.3 Research Topic 

The topic of this research is “Fault Detection and Diagnosis in Heavy Duty Diesel Engines 

Using Acoustic Emission”.  

 

The main challenge to diesel engine fault detection and diagnosis is the improvement of 

diagnostic accuracy based on the information collected. In order to use effectively the 

collected information, the significance of every parameter or feature needs to be considered. 

This research will study the possibilities of improving diesel engine fault detection and 

diagnostic accuracy based on AE measurements. Measurement techniques are widely 

available for dealing with uncertainly problems and AE measurements are included in this 

type of problem.  

The use of AE for detecting diesel engine faults is most useful when [11]; 

1. The fault is incipient (fault symptoms are not clear). 

2. Fault information is not precise (in some cases) because of the background noise; 

3. The boundaries between different failure modes are not clear or overlap making it difficult 

to identify specific faults. 

 

1.4 Implementation of Condition Monitoring System   

To implement a successful condition monitoring system the following four procedures should 

be carefully considered [1]: 

1. Sensor selection. 

2. Feature extraction. 

3. Feature comparison. 

4. Decision process determination.  

 

1.4.1 Sensor Selection 

An insight into the underlying science of any particular machinery is essential when selecting 

the type of sensor to be used in applications associated with that machinery. Sensors designed 

to respond to one particular physical variable are often influenced to some extent by other 
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variables. This knowledge helps in eliminating disturbances from other variables. The major 

parameter for sensor selection is summarised in table 1.2. 

 

Table 1.2 Summary of the main sensor parameters 

Range Max minus Min value of the measured stimulus  

Resolution Smallest measurable increment in measured stimulus 

Sensing frequency Max frequency of the stimulus which can be detected  

Accuracy Error of measurement, in% full scale deflection 

Size Leading dimension or mass of sensor 

Opt environment Operating temperature and envionmental conditions 

Reliability Service life in hours or number of cycles of operation 

Drift Long term stability (deviation of measurement over a 

time period) 

Cost Purchase cost of the sensor  

 

It is vitally important to pay appropriate attention to the communication channel through 

which the signals from the sensors are processed. It is the extraction of specific features from 

the signals that are important, and it is good practice to use knowledge gained from 

experience to maximise the signal-to-noise ratio. These insights are generally more valuable 

than relying solely on the unthinking application of advanced signal processing strategies and 

can often turn the detection of a deviation from normal into meaningful information about the 

machine under examination. 

Having decided on the types of sensors suitable for the detection of relevant phenomena, it is 

important to recognise that the sensors, and parts of the communication channel, are not 

always entirely reliable. Accommodating faults in the detection system is traditionally 

achieved by distributing sensors and associated hardware components around the system 

under consideration in order to ensure against defects or damage in any one localised channel. 
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Such arrangements are typically configured in a triplex or quadruplex arrangement with the 

outputs from the channels compared for logical consistency, with small variations between 

them being ignored. Such an approach is often called hardware redundancy although the 

concept is often extended to include analytical processes, in which case parallel redundancy is 

a more appropriate term [1]. When building hardware redundancy into a system it is vital to 

remember that identical sensors tend to have similar life expectancies, and hence a 

malfunction in one sensor is likely to be closely followed by faults in others. This limitation is 

overcome by using dissimilar sensors responsive to different process variables. 

 

1.4.2 Feature Extraction 

Early detection of the onset of any deviation from normal is an important application of 

industrial diagnostics. The concept of feature extraction can be represented in simple terms as: 

 

)(*)()()( tytxtatz                                                                        (1.1) 

 

Where )(tz  is the output of the sensor, )(ta  is the normal condition signature, )(tx  and )(ty  

are the signals associated with the background noise and the signal arising from the onset of 

an anomaly respectively. The operator   has a value of zero when there is no anomaly 

present and unity otherwise. The task in detecting the occurrence of an anomaly is to estimate 

when the operator is sufficiently removed from zero and close enough to unity to constitute 

the indication of the onset of an anomaly [1]. In practice this means making a decision, as will 

be discussed in the following two subsections (1.4.3 and 1.4.4). 

At this stage it is necessary to select a suitable feature extraction strategy. It is usual to collect 

sample records over significantly long periods of operation in order to establish a base line 

defined as normal operation. The standard derived in this way is often called a historical 

standard. Historical standards are widely used in industrial applications because they are 

relatively easy to establish although uncertainties arise in any resulting decision making 

process. 
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1.4.3 Feature Comparison 

Sample records establish a base line performance which extraction strategies use to detect an 

actual departure from normality, so confidence in the fault detection system would be 

enhanced by additional information on the long term statistical nature of base line data. 

One method that is used is to test prototypes of key elements of a system under consideration 

for the whole of their life expectancy in order to generate signals arising during failure of the 

element and establish base line data over very long periods. Standards established by 

prototype testing generally have wide acceptance amongst operators of industrial systems. 

However, in some simple situations, it is possible to establish a comprehensive theoretical 

standard by rigorous mathematical analysis. 

 

1.4.4 Decision Process Determination 

The ultimate aim in any  fault detection system is to provide an unambiguous indication of the 

onset of fault conditions as soon as possible and do so with utmost reliability. The criteria for 

assessing the quality of the decision include: 

1. The time T taken before an indication of fault conditions is reached. 

2. The probability, Ps, of generating a spurious indication of a fault. 

3. The probability, Pm, of missing the onset of fault conditions. 

These three criteria are interrelated, which necessitates consideration of the trade-offs 

involved in designing any particular application. 

Suppose that the extraction of a feature from a system operating under ‘normal’ conditions 

results in a Gaussian probability density function (pdf) with zero mean value. The onset of a 

fault is assumed to shift the mean value of the feature to a new non-zero value [1].  

It is to be expected that as the averaging time T, over which the features are estimated, is 

increased, the overlap between the two pdfs decreases. T  determines the speed of response of 

the diagnostic system to a fault condition. The choice of T is thus determined by the 

maximum time allowable in any practical situation. In any system with a high risk of severe 

damage as a result of the escalation of an undetected fault, such as a nuclear reactor, T would 

be defined to be around one-half of one second. The automatic detection of a fault requires the 
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setting of a decision boundary which when crossed in feature space initiates the indication of 

the fault condition [1]. 

The reliability of the decision making process can be improved by using more than one 

feature extracted from the signal, providing, of course, that the features are independent. A 

simple example of multiple features would be the simultaneous use of an amplitude 

probability function with the power within a defined frequency band. The optimal threshold 

could be set and decision rules specified, ranging from the signal exceeding both thresholds 

simultaneously, to either threshold alone being exceeded. The former having the same 

philosophical base as the parallel redundancy discussed above. 

 

1.5 Introduction to Research Work 

The diesel engine is a complex machine and as such it provides a challenging environment to 

test ideas on fault detection and diagnosis. When operating in a healthy condition it can give 

thousands of hours of uninterrupted service. However, if a fault develops, the growth can be 

fairly rapid. For this reason developing a sensitive condition monitoring system capable of 

detecting a fault in its early stages before break-down happens is important. 

In this research, AE data collected from a JCB 444T2 diesel engine is used for the detection 

and diagnosis of specific developing engine related faults. 

 

1.5.1 Aims of This Research 

The thesis uses AE as a CM technique for the study of predictive maintenance of a direct 

injection diesel engine. The aim of this research is to develop a more accurate and sensitive 

fault detection and diagnosis tool that can be used with internal combustion engines (static 

engines only).  

This will be achieved by analysing the AE data from the one sensor and developing a 

MATLAB based post-process computational analysis tool. Time, frequency and frequency-

time domain analyses will be used for CM and their suitability compared and discussed. The 

thesis will present an overall methodology of diagnostic system development, which requires 

source identification, dynamic modelling, signature recovery, fault signature identification, 

and diagnostic system design. Each of the main chapters of this thesis is a major component 
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of the proposed methodology, in the order in which one would expect to proceed when 

developing a diagnostic system. 

The thesis will also develop a mathematical model to represent the specific component of a 

diesel engine. The model includes the secondary motion of the piston, because secondary 

motion has significant implications for oil transport past the piston ring-pack and engine 

friction. The model predictions of system behaviour will be tested against the experimental 

results.  

 

1.5.2 Research Objectives  

In this work, AE measurements acquired from external surfaces of diesel engines are 

investigated under the premise that these measurements can reveal information about the 

operation of critical processes and mechanical events within the engine. This is because the 

capital investment and life cycle costs of such machines are significant and the applications 

are critical in terms of safety as well as business profitability and operational reliability in a 

HD environment. 

 

Objective 1: To review condition monitoring of diesel engines. 

Objective 2: To review the diesel engine’s principal faults and practical condition monitoring 

techniques used to monitor and evaluate these faults.  

Objective 3: To study diesel engine AE sources and to investigate what information can be 

extracted from AE measurements regarding engine operation. This necessitates an evaluation 

of AE signals acquired from the AE sensor with the aim of correlating features in the AE 

signals to actual events occurring within the engine.  

Objective 4: To study specifically AE signals arising from the condition of the lubrication, 

which is a key element of engine operation and impacts upon engine performance, emissions 

and reliability and, importantly. There is no suitable lubricant monitoring tool even though a 

number of techniques (structure-born noise, acoustic, oil analysis etc.) have been used in the 

past. The influence of other engine parameters such as engine speed, load and temperature 

will also be investigated in order to develop understanding of the source mechanisms 

responsible for AE generation, and thereby of the aspects of interfacial behaviour which can 

be monitored. 
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Objective 5: To apply signal processing methods and techniques (time, frequency and time-

frequency domain analyses) to extract fault features for early fault detection and to compare 

their performance.  

Objective 6: To develop a mathematical model of the diesel engine to be used for condition 

monitoring. The experimental results will be used to verify the model predictions.  

Objective 7: To introduce specific quantified faults into the engine and both measure and 

predict the effects on engine performance.  

Objective 8: To allow the advanced CM techniques investigated and developed in this thesis 

to be used for demonstration in educational and training purposes concerning diesel engines.  

 
Objective 9: On the basis of the investigation conducted in this work to provide useful 

information to guide future research in this field. 

 

1.6 Thesis Structure and Organisation  

In this section a brief introduction is given to the contents and relative emphasis of the 

chapters of the thesis.  

 
Chapter 1: A brief introduction to condition monitoring is presented, as well as the aims and 

objectives of this work. 

 
Chapter 2: A brief introduction to diesel engine condition monitoring methods, advantages, 

performance and faults are presented. 

 
Chapter 3: Outlines the principles of AE and gives a brief review of the growing range of 

applications and presents a review of the developments to date concerning AE monitoring of 

diesel engines and other reciprocating machinery. Previous work on AE monitoring of sliding 

contact is examined in detail for a variety of applications including; laboratory wear tests, 

hard disk drive operation and the meshing of gears.  

 
Chapter 4: Investigates sources of AE in diesel engine. Details are given of diesel engines 

AE sources including mechanical impact (piston slap, valve impact and injector tick), friction 

and other sources (gas flow, fluid flow, crack formation and wear) and background noise 

(noise not related to the engine sources). Introduce the fundamentals of AE measurement, AE 

data processing techniques and recognised AE analysis parameters. 
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Chapter 5: Develops the mathematical model of the behaviour of the four-stroke diesel 

engine, including a dynamic model of the piston mechanism. The aspects of the model are 

combined into a set of non-linear differential equations developed using MATLAB. 

 
Chapter 6: Describes and explains relevant aspects of the diesel engine test rig. It then briefly 

describes the transducers used in this work, the experimental procedures and the fault 

simulation. Test engine specification is briefly introduced. Details are given of the AE, 

temperature, speed, load (torque), and cylinder pressure sensors. It also describes data 

acquisition.  

 
Chapter 7: Investigates the fundamental characteristics of the diesel engine AE signals, using 

time-domain, frequency-domain, time-frequency-domain and other statistical analyses of 

acoustic emission data collected by the AE sensor. AE signals for a range of loads and speeds 

are considered in order to provide a baseline for normal engine characteristics. 

 
Chapter 8: Shows how the model developed in chapter five is implemented. The 

mathematical equations are solved numerically in the MATLAB environment to give impact 

force between piston skirt and cylinder wall friction forces. It describes the initial 

implementation of the model, including quantifying physical parameters. It then briefly 

explains how the simulation was implemented and comparison of model predictions and 

system behaviour are made. 

  
Chapter 9: Summarises the achievements of the research work described in this thesis and 

relates each one to the objectives given in Section 1.5.2. The key findings of the work are 

listed as conclusions and those aspects of the thesis which are novel and where the author has 

made a contribution to knowledge are given in some detail. Finally, suggestions for further 

research are presented. 
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CHAPTER TWO 

DIESEL ENGINE CONDITION MONITORING 

 

 

 

 

This chapter provides a general introduction to the diesel engine. Firstly, engine fundamentals 

are discussed and then an overview is given of diesel engine condition monitoring. The principal 

faults occurring within the engines are presented and relevant measurement procedures for 

condition monitoring are briefly discussed.  
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2.1 Introduction 

The diesel engine has found wide application as the main power supply system in a variety of 

road vehicles, merchant ships and emergency generation units, and is a mainstay that serves a 

variety of industries. Within the last decade, the use of the diesel engine became even more 

widespread as high-speed direct injection diesel engines became realistic alternatives to the 

gasoline engine for the modern passenger car, because it’s due to the economy of operation and 

decrease of greenhouse gases, especially of    . Carbon dioxide is a major source to the 

greenhouse effect, which leads finally to global warming. The overall sales of diesel vehicles in 

the EU roughly doubled between 1994 and 2002, with much of the growth occurring in the latter 

years; diesel vehicles reached 44% of the new car market sale in 2003 [12] and 53.3% in 2010 

according to Schmidt’s Diesel Car Prospects to 2015 [13].  

 

Diesel fuel consumption world-wide in 2005 was expected to be 22.8 MBPD: with on road 

vehicle consumption 12.6 MBPD (of which freight trucks consumed 74%, and buses and light 

duty vehicles 13% each) and off-road 10.2 MBPD [2]. It has been estimated [2] that, world-wide, 

on-road diesel demand will grow at an annual rate of a proximately 3% per year, double that of 

gasoline. Such a growth would result in worldwide demand for diesel fuel for on-road vehicles of 

16.6 MBPD by 2015. 

 

The diesel engine possesses many advantages over spark ignition engines (SIE), but ever since its 

invention it has been associated with the emission of oxides of nitrogen (NOx) and harmful 

particulate matter (PM), which have many negative health and environmental effects [14]. Of 

course, the degree to which these harmful emissions are generated by a diesel engine is strongly 

dependent on the engine maintenance. Because European legislation is set to impose further 

restriction on the level of emissions that are permitted from diesel engines together with targets 

for greater fuel efficiency [14], the diesel engine manufacturer has the task of producing suitable 

power train systems that meet or exceed such directives.  

To meet these proposed standards, the engineer has to develop new techniques and processes that 

can be integrated with existing engine sub-systems to reduce pollutant output. Figure 2.1 presents 

newer technologies which have been introduced into diesel engines in order to fulfil engine 

performance and emission requirements.  
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The fuel injection system is a sub-system that has lent itself to improvement in engine 

performance and emission quality, and will play a vital role in the development of improved 

diesel engines for the foreseeable future. New injector technology will allow small and precise 

will help quantities of fuel to be injected into the combustion process faster, and more precise 

control of the cooled exhaust gas re-circulation and catalysts equipment will help to meet the 

lower NOX emission level requirements, while new filters will retain some or most of the 

particulates [15]. This thesis investigates and analyses a new type of CM for diesel engines, 

capable of detecting engine failures and faults which have harsh/negative impact on the engine. 

 

 

 

Figure 2.1 Diesel engine new technologies [16]. 
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2.2 Engine Fundamentals 

A diesel engine is the power source of many machines. It generates the necessary drive power to 

overcome the resistance of loads by burning fuel and converting the energy content of the inlet 

mixture to mechanical motion. Internal combustion (IC) engines are commonly classified 

according to the type of fuel they use; the two principal categories are diesel and petrol. Diesel 

engines and petrol engines are also categorized as compression ignition and spark ignition, 

respectively. There are many different types of diesel engines. In marine and stationary engines, a 

two-stroke turbo charged configuration is most frequently used, while in smaller engines a four-

stroke cycle is more common, two and four refer to the number of piston strokes occurring during 

any one cycle of events. Diesel engines are often larger and more rigidly built than spark-ignition 

engines because of the higher stress levels due to the higher pressure in the combustion chamber. 

For injection of the diesel fuel into the combustion chamber there are two main techniques, 

direct-injection and indirect-injection. In the direct-injection method, fuel is injected directly into 

the cylinder, where it is mixed with air. For an indirect-injection, the engine has an auxiliary 

injection combustion chamber where the fuel is mixed with air. This technique is used when a 

faster fuel-air mix is needed, i.e. small engines operating at high speed. For fuel economy and 

power density the direct-injection system has a clear advantage and is therefore state of the art in 

passenger cars [16].  

In contrast to spark-ignition engines, diesel engines do not use spark plugs. Here, the fuel-air mix 

is compressed by the piston which results in a temperature rise. This temperature rise is large 

enough for the gas to self-ignite. 

 

 Most commercial vehicles are invariably powered by the diesel engine because of its superior 

thermal efficiency and higher fuel efficiency and reduced 2CO emission. The diesel engine is an 

essential contributor in the construction, transport, agriculture, electrical generation, marine and 

other sectors. For that reason, diesel power plays an essential role in the economic growth of a 

nation and pollution of the environment.   

 

From a maintenance viewpoint, the engine is the major cost item in most common sources of 

power, both for vehicles and for static equipment and the most complex component requiring 

fault detection and diagnosis. Not only are most failures hidden they can also involve several 
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aspects: mechanical, chemical, electrical, thermal or any combination of these. At the same time, 

any single failure symptom can be caused by several failure sources. For instance, an overheating 

engine can be traced to mechanical, electrical and/or thermal causes. 

 

Traditional maintenance practices mean that most engine failures prove catastrophic. There is 

little advance warning of the engine malfunction so failures are expensive and accompanied by 

secondary damage. The main performance indicators on most common diesel engines are engine 

temperature and oil pressure. There is an increased tendency to move from preventive (time-

based) maintenance to one dependent on engine and component conditions. Condition monitoring 

is used to detect abnormalities of the engine and incipient failure, and plays a significant role in 

improving economic efficiency and in preventing dangerous accidents from occurring. 

 

2.3 Diesel Engine Sensing  

The vibration signal gives a global representation of the diesel engine signature, with almost 

every moving part of the engine and the associated stiffness contributing to the signal. It is often 

difficult to interpret the vibration signals in any but the simplest diesel engines. Vibration 

excitation of diesel engines is largely caused by movement of mechanical components (mass 

effects). Motions of liquid and gas, with their lower inertia forces, are not easily monitored using 

vibration signals. AE with its sensitivity to high frequency stress waves and insensitivity to low 

frequency, whole body movements, offers a potential complementary alternative sensor 

technology. 

 

Acoustic emission is the term used to describe stress waves emitted by certain mechanical and 

fluid phenomena. Typical phenomena, which generate AE, include plastic deformation, sliding 

contact, mechanical impact, turbulent flow and cavitation. Many of these processes occur in 

diesel engines and the main challenge is to use signal processing to monitor these processes 

effectively to determine the engine condition; whether using time-domain, frequency-domain or 

time-frequency-domain features extracted from the CM signal.  
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2.4 A Review of Diesel Engine Condition Monitoring 

Abnormal running conditions for a diesel engine can vary widely in severity and consequences 

from slightly affecting an engine's performance to catastrophic equipment failure. These events 

can be expensive, sometimes dangerous, and occasionally cause environmental, and health and 

safety issues. Good CM can ensure the engine provides the required power under safe conditions 

with less fuel consumption, lower emissions and lower maintenance cost. Detecting faults and 

diagnosing the underlying problem as quickly as possible and providing assistance to correct the 

problem are the goals of engine abnormal situation prevention. 

Condition monitoring of diesel engines can be assessed on a continuous or periodic basis from 

observation or measurement of selected parameters. The application of CM and fault diagnosis 

strategies to a diesel engine is a well-recognised method of increasing its operational efficiency 

and reducing consequential damage, spare parts inventories and breakdown maintenance. 

 

The main job of most monitoring systems is to obtain information about the engine in the form of 

primary data and, through the use of modern signal processing techniques, to provide vital 

information to the engine operator and the engine control system, before any failure occurs with 

the engine in service. Good monitoring systems for diesel engines can achieve at least the 

following benefits: 

Improved decision making capability for selection of optimum engine operation conditions. 

Only defective equipment or assemblies are replaced, reducing time and cost of maintenance. 

Effective prediction and planning of maintenance operations. Time scheduled for maintenance 

can be used effectively since the nature of the fault is known in advance and both spare parts and 

labour can be organised accordingly. 

Reduction of engine emissions and fuel consumption. 

 

2.4.1 Overview of Principal Faults in Diesel Engines   

This section presents the principal faults within a diesel engines and then outlines monitoring 

techniques used in engine condition monitoring. 

Diesel engines are widely employed nowadays where high power production is necessary such as 

in heavy power generators, heavy road vehicles, most  long-distance locomotives and most road 

vehicles have diesel engines also. In the 1950s and 60s diesel engines became increasingly 



     

45 

 

popular for use in vans and taxis, however it was not until the sharp increases in oil prices in the 

1970s that serious attention was paid to the small passenger car market [17]. The last few years 

have seen the use of small diesel engines grow, largely due to better fuel economy and longer 

operating life, until nowadays all main European car producers offer at least one diesel engine 

model [17].  The diesel engine when operating normally can give thousands of hours of 

uninterrupted service. However, if a fault develops, the growth of the fault tends to be fairly rapid 

and can lead to major failure which can cause loss of life, damage to property and incur high 

costs when it occurs in, for example, commercial transport vehicles or ships. This why, it is 

essential to implement reliable and sensitive engine condition monitoring techniques.  

 

 

Figure 2.2 Principal faults in diesel engines 

 

Diesel engines use high compression ratios, generating a sufficiently high pressure and 

temperature to cause spontaneous ignition of the injected fuel. Also the speed of engine rotation 

is 3000 rpm or more. The high speed, high pressure and high temperature increase the risk of 

faults occurring within the engine. Figure 2.2 shows classification of faults according to engine 

systems and components [18]. 
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One of the most important elements is fuel injection system malfunction, which is responsible for 

about 43% of the engine faults [18]. These system faults can also directly affect engine 

efficiency, exhaust emission, engine noise and other parameters.     

Another important element is the lubrication system malfunction account for a high percentage of 

the engine faults. The lubrication system faults can directly affect the engine power, emission and 

other performance parameters, this is why it worthwhile to study this element of the system and 

associated faults. 

 

2.4.2 Overview of Condition Monitoring Techniques  

Nowadays engine performance together with high economy is a very important operating 

characteristic, and CM is being used to ensure that this characteristic is not only maintained but 

optimised. The conventional attitude to engine upkeep has been to follow a fixed routine 

maintenance program based on the engine manufacturer’s instructions. This approach has two 

disadvantages. 

1. The maintenance schedule is based only on past experience of similar engines. There is no 

guarantee that an individual component would be in perfect condition throughout this interval. 

2. The component is sometimes still in good condition even after the elapsed interval and it 

would be a waste of time and money to repair or replace a perfectly healthy component. 

Many techniques are being used for machines condition monitoring; this subsection explains the 

use of some of these techniques for fault detection and diagnosis in diesel engines.  

 

2.4.2.1 Vibration Monitoring                   

Vibration monitoring is one of the most important methods employed for identifying faults and 

predicting engine failures. This method, in particular, is becoming progressively more accepted 

as a predictive maintenance method and for engine maintenance decisions. This is why the 

understanding of vibration methods is of enormous significance to maintenance engineering. 

Vibration monitoring collects the vibration signals generated by an engine and analyses them to 

decide the engine’s condition. There are numerous reasons for the wide application of this type of 

monitoring and one of the main reasons is that each engine produces vibrations of different types 
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whilst working. The second reason is that the vibration system of the common engine and its 

structures are theoretically well-understood, making it possible to predict the features of the 

vibration signals detected using special instrumentation such as wide band transducers and 

convenient analysers. The third reason is that one can avoid considerable expense, for instance by 

avoiding the acquisition of an engine or the possible sudden loss of power output. Furthermore, 

improvements in computation and vibration signal processing methods have added to its large 

number of applications. Difficulties in using vibration monitoring might occur due to the mixture 

of various noise and vibration sources, both non-linear and non-stationary, and the influences of 

numerous different transmission paths [19]. Nevertheless, vibration monitoring is not yet 

adequate to provide all-purpose condition monitoring of the diesel engine as it provides mostly 

vibration information which is related to the firing sequence of the engine.  

While types of failures such as wear might not make significant changes to the vibration signal, 

vibration-based CM has evolved as a key method which employs transducers to measure the 

vibration at a point, and the point where the transducers should be placed is where the signal 

detected is dependent upon the failure (fault) to be diagnosed. It is particularly useful for 

analysing rotating machinery because it is normally easy to use in such circumstances and 

relatively cheap. Various methods exist for processing and saving of signals produced during 

vibration analysis some of which are: 

1. Most simply, using peak, peak to peak or RMS values of signals to establish the mechanical 

condition of an engine. 

2. Spectrum analysis which transforms the time-domain input signal using Fourier processes. 

This is used mainly for tendency analysis and diagnosis, with particular frequencies related to 

particular components [20]; 

3. Envelope analysis, or high frequency resonance technique (HFRT), restricts the signals to 

those frequencies that are necessary to be monitored. It suppresses undesired background 

vibrations, and allows the envelope near the signal to be analysed, cancelling unwanted low 

frequency vibrations; and 

4. Cepstrum analysis is employed to identify a sequence of harmonics (or sidebands) in the 

spectrum and to estimate their relative strength. This is done by taking the logarithm of the 

amplitudes and reconstructing one or more spectrums using these latest values. This has the 

effect of increasing the comparative significance of the component of lowest frequency. 

Usually the power Cepstrum is a frequency analysis of a frequency analysis.  
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Vibration method is an obtrusive method and this is a common problem with its use because 

transducers have to be fitted onto the engine in several places to collect relevant vibration data. 

However this technique has remained rather limited in its application to diesel engines, 

essentially because of the complexity of the vibration signals that are involved, see Figure 2.3, 

because the superposition of the contributions of different vibratory sources modified by their 

respective transmission paths. These sources originate from several internal phenomenons in the 

engine and excite the natural modes of the engine. The vibration is amplified at the natural 

frequencies of the engine. Therefore, the produced vibration and the noise radiated from the 

engine result from the combination of the excitations and the dynamic response of the structure. 

 

 

 

Figure 2.3 Angular-domain signal of body vibrations of a four stroke diesel engine  

 

It was quickly realised that any effective approach dedicated to diesel engines would have to 

cope with the highly transient nature of their vibrations. Gu, et al., [20] demonstrated that 

common injector faults change the vibration energy of the injection pulses, and on this basis, the 

monitoring of an injector via the comparison of monitored pulses with a baseline is described 

[21].  

Molinaro and Castain [22] have performed signal processing pattern classification on sensor-

based vibration signals to improve knock detection in spark ignition engines. They applied a 

classical four-step technique to the modelled vibration signal, consisting of: feature extraction 

(e.g. energy, amplitude distribution, statistical parameters and cepstral coefficients), selection of 
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the most representative features, identification of the ‘elements’ characterised by the features, 

their vectors and their relationships, and, finally application of classification rules (i.e. with and 

without knock). Although they only used the vibration signal, the accuracy of the fault detection 

was 100% at a speed of 1500 rpm, while, at higher speeds the result was less good; i.e. the 

accuracy was 75% at 5500 rpm. Thomas, et al., [23] have also used a pattern recognition 

technique to detect engine knock, again using the vibration signal. 

Grimmelius and Meiler [24] have developed a feature extraction and pattern recognition 

algorithm to detect cylinder mis-fire in a diesel engine by applying a base-level fluctuation signal 

analysis and torsion peak value analysis on the crankshaft torsion signal. 

 

2.4.2.2 Oil / Lubrication Analysis 

The analysis of oil is widely employed in CM and this is due to the fact that the contents (debris) 

of the oil provide a superior indication of the condition of the engine. This is because the oil 

comes into contact with the majority of the moving parts in the engine. Unfortunately, until now 

oil analysis has generally been applied only in the CM of marine diesel engines. Oil analysis is 

particularly useful where it is not easy to apply the vibration technique, but it does have its own 

advantages. Different methods of oil analysis that have been employed are: 

1. Viscosity determination by a simple experiment can give an indication of the change in 

chemical structure of the oil. Due to oil dilution by fuel the degree of contamination of the oil 

will be indicated by the flash-point of the oil. 

2. The magnetic chip detector method utilises a magnetic plug fitted into the lubrication system 

and directly into the oil. The size and number of particles attracted to the magnet indicates 

engine wear, particularly of components such as cylinder liners. 

3. Ferrography is a relatively simple and valuable method similar to magnetic chip detection, but 

in this case a magnetic field is used to separate the particles by their size instead of attracting 

them together. The shape and size of the particles provide information on different failure 

mechanisms such as abrasion, fatigue and corrosion. 

4. Spectrography uses various methods to determine different particle concentrations in the oil. 

In some methods a sample of oil is atomised using a spark and the amount of energy 

emitted/absorbed at particular wavelengths correspond to the concentration of particular 

elements present in the oil.  
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Oil analysis gives an indication of the engine’s suitability for sustained use and provides 

significant results about the condition of the individual components in the engine. Physical and 

chemical tests of lubricants can be employed for efficient diagnosis and detection of imminent 

mechanical failures in the engine. Conventionally, oil analysis has been very hard to carry out on 

line. Beck and Johnson [25] reported the use of ferrography to monitor particles present in the 

lubricant of a diesel engine over thirty years ago. Since then there have been many reports on the 

application of ferrography and oil spectrometry to many kinds of diesel engines. Yan Liu, et al., 

[26] developed a system for on-line wear condition monitoring for a marine diesel engine. This 

system consisted of: particle detection, lubricant quality assessment and measurement of shaft 

torque moment and instantaneous rotation velocity. This system detected wear particles in 

lubricant with on-line ferrography so as to judge wear condition of the diesel engine. Oil analysis 

methods can also be carried out for gear boxes and many other machines. 

 

2.4.2.3 Cylinder Pressure Monitoring  

In diesel engines, cylinder pressure can be considered to be the pulse of the engine, and the most 

commonly used parameter used to study combustion. Cylinder pressure, as a function of crank 

angle for both the compression and expansion strokes of the engine cycle, has been used to obtain 

quantitative information about the combustion process. The pressure history and peak pressure 

inside the engine cylinder give an indication of the timing and quality of the combustion and heat 

release rate.    

Analysis of the energy released by the air to fuel mixture shows that it is a function of the 

variation of pressure in the cylinder and so the latter is directly related to the engine's torque and 

work output. Studies of pressure variation as function of crank angle as well as cylinder volume 

are commonly used to monitor diesel engine combustion. 

The crank angle at which the peak pressure occurs is very important for the combustion process 

and gives information about ignition and injection timing which are very important parameters 

for combustion optimisation, and CM of internal combustion engines. Detailed knowledge of the 

pressure, and crank angle at which peak pressure occurs, could be part of a powerful diagnostic 

technique. Cylinder pressure is a direct indication of combustion performance and is used to 

estimate air to fuel ratio [27, 28], and estimate of ignition timing in engines [29]. Air to fuel ratio 

estimation is very useful for transient engine control, and Galley and Powel [27] estimated the air 
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to fuel ratio of a petrol engine by using the crank angle history in conjunction with inlet manifold 

pressure and engine speed. Leonhardt, et al., [30], used cylinder pressure to monitor fuel injection 

pump performance. They measured cylinder peak pressure, temporal location of peak pressure 

and engine speed. These fed into a neural network which was used to evaluate a function they 

called the "centre of gravity of pressure waveform" to predict mass of injected fuel and crank 

angles at which the fuel was injected into a four cylinder diesel engine. By comparing the 

predicted values with the ideal, they were able to detect anomalies such as misfire or poor 

combustion in the cylinder. Fog, et al., [31] developed a system, which predicted cylinder 

pressures from strain gauge measurements at the cylinder head. A feed forward neural network 

time series representing ten past histories of strain gauge readings was trained to predict the next 

instance of strain as well as cylinder pressure. It was conjectured that the cylinder pressure record 

predicted in real time could be used for fault diagnosis.  

 

 

 

Figure 2.4 Angular-domain of cylinder pressure [16]. 
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Gassenfeit and Powell [28] used a similar approach incorporating the ratio of the cylinder 

pressure before and after combustion. Cylinder pressures have also been used for direct engine 

control by Anastasia and Pestana [29], Kawamura, et al., [32] and Pestana [33]. Russell and 

Haworth [34] show how combustion noise can be measured by analysing the rate of change of 

pressure in each cycle. 

Figure 2.4 shows direct cylinder pressure measurement made with a flame-front piezo-electric 

transducer. Several measurement techniques available for direct in-cylinder pressure 

measurement are not suitable for use within in-service engines because they are expensive, 

unreliable, not sufficiently robust and not easy to maintain or calibrate. Cylinder pressure indirect 

measurement techniques are not suitable for the use on small automotive engines, because they 

are only suitable for the use on engines with individual cylinder heads and exposed to the 

combustion process are subjected to large thermal shock and typically require water cooling. 

They are also fragile making them unsuitable for use outside of a laboratory environment. 

 

2.4.2.4 Instantaneous Angular Speed Monitoring  

Flywheel instantaneous angular speed (IAS) of a diesel engine contains a lot of information about 

in-cylinder pressure. This technique has been used to detect faults within fuel injection systems 

and combustion processes. It is based on the fact that the IAS of the flywheel increases as the 

cylinder fires and decreases with subsequent cylinder compression. This technique again requires 

the use of speed sensors such as encoders fitted onto, say, the crankshaft of the flywheel and if 

we mounted more sensors, we will get more accurate results. 

Cylinder to cylinder variations are identified from frequency domain harmonics, with dominant 

harmonics at the cylinder firing rate, and sub-harmonics indicating cylinder differences. Many of 

the frequencies noted, but not related to cylinder firing were shown to be caused by engine 

accessories [35]. 

Statistical methods were employed by Sood, et al.,[36] to extract features from measured 

flywheel speed data. Waveform cross-correlation analysis enabled the classification of waveform 

data into faulty and healthy cluster vectors. This method was shown to give a high diagnostic 

success rate. A parameter estimation approach was also adopted by Sood, et al.,[37]. They 

showed that an analysis model and parameter ratio classifier can give highly successful diagnosis. 

Function approximation was carried out using regression coefficient feature vectors.  
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Kim, et al.,[38] examined pattern recognition diagnostic techniques using flywheel speed data 

sampled at a very high rate. Three bases were used for the investigation: minimum distance, auto 

regression and principle component analysis. Of these methods, it was shown that principle 

component analysis is very capable in detecting misfiring and it was demonstrated that its 

implementation in an ‘on-the-engine’ processor was quite straightforward. 

Jianguo, et al.,[39] developed a dynamic model for simulating the IAS on a small four cylinder 

diesel engine. It was found that the gas pressure and the vertical unbalanced inertial force, 

calculated based on the proposed model, had a great influence on the IAS. The characteristic 

parameters for detecting faults relating to the in-cylinder pressure were successfully obtained. 

Gu, et al.,[40] used neural networks and fuzzy logic to process the IAS to detect diesel engine 

faults. Ben Sasi, et al.,[35] extracted the IAS from the diesel engine alternator output voltage to 

detect exhaust valve clearance faults. To date the research on IAS has shown that this technique, 

while useful for confirming the identification of faults detected by other methods, is not yet able 

to diagnose faults. However, in the near future it is expected to show considerable success with 

advances of on-board computational technology. 

 

2.4.2.5 Air-borne Acoustic Monitoring  

This technique focuses on the analysis of acoustic or noise signals generated from engines. Faults 

within machines could be diagnosed in 1950 using a ‘Bin-Aural’ engineer’s stethoscope. This 

simple tool had two probes, one for vibration with a solid contact pointer (called the 

‘tectoscope’), and the other for sound with a non-touching conical earpiece (called the 

‘Tectophone’) [41]. Fault detection using this tool depended very much on the ability of the 

operator to remember what he had heard previously when the machine was operating correctly. 

Perhaps those were the days of the ‘skilled’ operator’ which still exists in the medical field, 

where the use of a stethoscope is used to identify the early signs of human body failure, such as 

faulty heart valves (a swishing noise), etc. 

In the early 1960s considerable success was claimed at the Boeing Company in the USA for the 

detection of faults in an aero-engine using an acoustic analyser. This was followed by similar 

work in UK with Rolls-Royce and Bristol Siddeley Engines including the Spey, Dart and 

Olympus engines. This engine research had the objective of being able to monitor such parts as 

bearings, blades, shafts and gears using one or more carefully placed microphones; the engine 
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frequencies being recorded at idling speed. No significant differences were detected between a 

‘good’ engine and one with artificial fault included. The primary problem was that the difference 

between any two ‘good’ engines was greater than the difference caused by the fault. The 

conclusion at the time was that “acoustic diagnosis is not easily achieved when applied to 

complex rotating machinery” [42]. Figure 2.5 shows a microphone output representing the 

acoustic waveform signals of two crankshaft revolutions of the engine test rig. 

 Acoustic analysis is not nearly so widely used as vibration monitoring in the CM of diesel 

engines. This stems from the difficulties associated with extracting useful information from 

signals having a high noise content, and the fact that the transducer is so easily influenced by the 

local environment.   

Cyclic combustion noise variation was used in fault diagnosis by Schmillen, et al.,[43]. Aouichi, 

et al.,[44] investigated the internal mechanisms causing diesel engine noise and described how 

noise levels are likely to change with fault condition, and Izumi, et al.,[45] compared combustion 

noise and vibration information. Chaudhri [46] showed that sound measurement is more useful in 

the detection of faults which cause considerable changes in noise output but little or no change in 

vibration signals. 

 

 

 

Figure 2.5 Angular-domain of acoustic waveform for two crankshaft revolutions [47]. 
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The most considerable advances were achieved by Ball, et al.,[47] and by Gu, et al.,[48], when it 

was found possible to eliminate background noise by digital filtration, and the pseudo-Wigner-

Ville distribution (SPWVD) and Continuous Wavelet Transform (CWT) were used to detect and 

diagnose incipient faults in diesel engines. 

 

2.4.2.6 Exhaust Monitoring  

Diesel engine exhaust quality contains information related to combustion, injection and 

lubrication. Through exhaust monitoring it is possible to reveal defects including injector faults, 

misfiring, bore wear, valve leakage and lubrication degradation, it is also possible to make an 

estimation of overall engine performance. In addition, exhaust emissions measurement also 

serves as statutory safeguard for the environment. 

The extraction of condition monitoring information from diesel exhaust can be achieved in two 

ways: chemical analysis of exhaust (emission) gases (including HC, CO, NO, NO2, CO2 and 

H2O), and the physical measurement of particles, colour, temperature, mass flow rate, noise, etc. 

Figure 2.6 shows a shape of the pressure wave for a complete engine cycle measured from the 

engine exhaust pipe.    

 

 

Figure 2.6 Angular-domain of exhaust pressure waveform for complete cycle [16]. 

 

Hadden, et al.,[49] reported a technique for the CM of diesel engines based upon the 

measurement of exhaust pressure pulses, and defect identification from smoke colour was 

documented in Highway and Heavy Construction. More recent developments tend to focus on the 
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derivation of an accurate relationship between performance and emissions: Gill [50] and Khair 

[51] both reported on the passive control of a diesel engine using a particulate trap and catalytic 

converter. Hartman, et al.,[52] reported the development of an in-cylinder optical sensor for 

active emission control. Another attractive measuring approach was monitoring of particle 

dynamic behaviour using laser light reported by Klingen [53], Corcione [54] and Smallwood, et 

al.,[55]. 

Of particular interest is the exhaust monitoring technique proposed by Soliman, et al.,[56] 

because this involves both emission control and routine condition monitoring to detect misfire 

and some other combustion related faults. The technique is based upon tailpipe pollutant 

concentration, and engine deterioration criteria for preventive maintenance are explored.  

 

2.4.2.7 Acoustic Emission Monitoring  

Acoustic emission has been widely applied to, amongst other things, pipeline testing, evaluation 

of ageing aircraft, transformer testing, rocket motor testing, production quality control, 

inspections of valves in steam lines, wind turbine monitoring, ship hull monitoring and 

earthquake prediction.  

AE is defined as mechanical waves, naturally generated by an abrupt release of stored energy 

within a material, which can be observed in rupture processes such as the snapping of dry twigs 

and the cracking of rocks. AE measurement techniques involve the detection of the stress waves, 

usually within a range of 100 kHz to 1 MHz. This frequency range is relatively high and has the 

useful consequence that a better signal to noise ratio can be achieved than with vibration signals 

or acoustic signals. AE is the predominant technique for detection of microscopic changes in 

material where the atomic rearrangement in a material during cracking and deformation generates 

elastic waves. By using piezoelectric transducers, the waves travelling through the material can 

be detected. AE is also sensitive to phenomenon such as cavitation, impact and turbulence [56]. 

An AE is an acoustic wave generated by a material and an AE signal is the electrical signal 

produced by a sensor in response to this wave [57]. Burst type AE signals are often represented 

by a decaying or damped sine wave. The mathematical model of such a signal is described in 

Equation 2.2. 

 ( )       (   )     (  )                                                                                                     (2.2) 



     

57 

 

Where,                          V (t) = Output voltage of the AE sensor, 

                                       = Initial maximum signal amplitude, 

                                     B = Damping factor / decay constant (greater than 0), 

                                     t = time (variable), 

                                      = f2 , is the angular frequency. 

Basically, there are two types of AE signals, burst and continuous signals. 

1. Discrete or burst emission: this is high amplitude, energy emission where the individual stress 

waves representing definite activity in a process can be observed. Phenomena such as crack 

growth can be observed with burst emission. 

2. Continuous emission: this is low amplitude, low energy emission useful for continuous 

observation such as monitoring leaks in processes and dislocation in metals. 

 

 
 

Figure 2.7 Angular-domain of acoustic emission waveform signal of two crankshaft revolutions  

 

Figure 2.7 shows a AE sensor output representing the AE waveform signals for two crankshaft 

revolutions. AE can be generated by a wide range of possible impulsive sources which, in 

reciprocating machinery, can include combustion, piston slap, valve clatter, gas flow and many 

other mechanical and fluid events. Such sources also produce acoustic noise and vibration, 

although acoustic waves and lower frequency vibrations can both suffer from the difficulties of 

interfering sources (e.g. wind noise, structural vibration), which make the diagnostic information 
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from the sensor signal more difficult to extract. For this reason, AE has great potential for 

revealing the internal operating characteristics of the machine, whilst using non-intrusive sensors. 

Current diagnostic systems normally involve an automatic analysis of the acquired signal. 

Feature extraction and pattern recognition algorithms are often used for analysing signals, and a 

class, which is determined by the diagnostic results, is assigned. In the simplest form, each class 

indicates a condition such as normal/faulty, or a more specific condition like a leaking cylinder 

head gasket. The classification is achieved by matching features of the signal, or even the 

complete acquired signal, with a set of reference data corresponding to known conditions. Fog, et 

al.,[58], have successfully applied principle component analysis to AE signals to detect exhaust 

valve leakage in a large marine diesel engine. El-Ghamry, et al.,[59] used various statistical 

features and pattern recognition techniques such as the mean and the variance of AE signals to 

identify diesel engine faults such as cylinder head gasket leakage.     

 

AE Advantages 

   1. High sensitivity, 

   2. Non directional technique, 

   3. Insensitive to structural resonances and mechanical background noises, 

   4. Real time capability volume monitoring approach, 

   5. Early and rapid detection of defects, faults, cracks, and 

    6. Minimization of plant downtime for inspection, no need for scanning the whole structural       

surface. 

 

AE Disadvantages 

1. Highly specialised sensors and signal processing is required, 

2. Signals weaker than vibration signals, and 

3. Rapid attenuation of signal during propagation requires the AE sensors to be very close to   

the source. 

 

2.5 Summary 

The shift to predictive maintenance strategies has created a requirement for more revealing 

diagnostic information that than currently available.  

As regards the former, a wide range of novel monitoring techniques have been investigated by 

different authors, with some proving more successful than others. Of these, analysis of vibration 
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signals appears the most promising due to the non-intrusive nature of the measurements, the rich 

information content of the signals and recent advances in signal processing techniques. 

Furthermore, it appear that more diagnostic information is contained in the higher-frequency 

emission range and therefore monitoring based upon significantly higher-frequency AE 

measurements is anticipated to offer even greater capabilities. Previous work in this area shall be 

reviewed in the following chapter. 
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CHAPTER THREE 

ACOUSTIC EMISSION MONITORING AND ITS APPLICATION 

TO DIESEL ENGINES 

 

 

 

 

This Chapter provides an understanding of three areas of AE monitoring that are central to the 

research work presented in this thesis. Firstly, the principles of AE are outlined, which includes 

discussion of AE sources, and a brief review of the growing range of applications. Secondly, 

developments to date concerning AE monitoring of diesel engines and other reciprocating 

machinery are reviewed. Finally, previous work on AE monitoring of sliding contact is examined in 

the context of application to laboratory wear tests. This provides the opportunity to examine 

relationships between variables that govern sliding contact and any resulting AE activity. 
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3.1 Introduction 

Acoustic Emission or stress wave emission is phenomena whereby transient, high-frequency elastic 

waves in the range 100 kHz to 1000 kHz are generated by the rapid release of strain energy from a 

localised source within or on the surface of a material or a certain process. A number of source 

mechanisms in machine operation, are recognized to generate AE such as sliding contact, wear, 

mechanical impacts and certain types of fluid flow. The signals resulting from AE can be measured 

at the surfaces of a machine using a suitable sensor and can be analysed in different ways to extract 

the required information, the most important of which is signal characterisation with regard to 

performance of the machine being studied [59]. While AE sensors are mounted on the surface 

(externally) the technique is non-intrusive. In addition, AE signals are associated with the 

degradation of real operational processes, while other monitoring techniques are often intrusive and 

typically measure degradation symptoms [60]. The many benefits associated with AE monitoring 

are such that research into its applications has increased in the last decade and a number of 

engineering disciplines have become associated with commercial AE based monitoring systems 

[61]. 

 

3.2 Acoustic Emission Principles and Applications  

AE monitoring, also referred to as stress wave monitoring, is the practise of characterising and 

evaluating AE signals in order to investigate material or component behaviour. It is inherently a 

passive Non Destructive Testing (NDT) technique that relies on energy being released from a 

material. This is distinctly unlike conventional ultrasonic NDT inspection techniques, where the 

effects of introducing external, artificial waves of a known type are monitored. 

The purpose of this section is to provide an understanding of the foundations of AE monitoring; 

how AE is generated, how AE can be measured, methods to process AE signals in order to provide 

information for condition monitoring, and how AE monitoring fares when evaluated against 

comparable techniques. 

 

3.2.1 Fundamental Principles  

AE is the term given to describe transient, elastic waves of surface displacement that occur within 

the approximate frequency range 100 kHz to 1000 kHz due to changes in the microstructure of 

materials. Phenomena which cause these impulsive releases of energy and which conform to the 

classical definition of an AE source, i.e. they occur due to mechanical deformation of a stressed 
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material, include crack growth, movement and creation of dislocations, and slip, twinning and grain 

boundary sliding in metals. In essence, any form of atomic level material dislocations can generate 

AE and it has been claimed that displacements as small as 1/1000th of an atomic radius can produce 

well-distinguished AE signals [61]. There are a number of other mechanisms that either give rise to 

AE that occur in the absence of any deformation process, these are sometimes termed pseudo or 

secondary sources, and in terms of machinery operation include mechanical impacts, sliding 

contact, turbulent fluid flows and fluid cavitation. 

AE generated waves radiate in all directions, propagating throughout the material in a variety of 

forms; as compression, shear and Lamb waves, and ultimately manifesting themselves as Rayleigh 

surface waves. As the waves propagate they suffer a loss of amplitude with distance. Pollock [62] 

identified four reasons for this attenuation; geometric spreading of the wave front, internal friction, 

dissipation of energy into adjacent media and velocity dispersion. 

Geometric spreading of the wave from a point source inevitably results in attenuation since the 

wave has a fixed amount of energy which must be distributed over an ever larger wave front. The 

wave amplitude will decrease inversely with distance in three-dimensional solids and inversely as 

the square root of the distance in two-dimensional structures such as plates and shells. This form of 

attenuation has been noted as being dominant close to the source, i.e. in the near field [62]. Internal 

friction involves the conversion of elastic wave energy into thermal energy through various 

damping mechanisms. This results in exponential attenuation with distance that becomes dominant 

at greater distances from the source, i.e. the far field.  

Further signal distortion takes place when material boundaries are encountered as wave reflection, 

refraction, transmission and mode conversions can all occur. Therefore, for complicated structures 

that feature, for instance, intricate geometries, cavities and contain fluids, wave propagation will be 

considerably more complex than for simple plates and strips. These effects generally cause a 

reduction in wave amplitude with distance although local constructive or destructive interference 

effects may also exist. Wave dispersion is a further form of attenuation which causes different 

frequency components of a signal to propagate through a material at different velocities. The 

outcome is that a signal of initially short duration spreads out as it travels and loses amplitude 

accordingly. 
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In effect this means that by the time measurement of the signal is possible at the material surface the 

waveform will merely be a representation of the original source excitation. Nevertheless, significant 

information is still available, and it is typically the variation of the measured signal, either with time 

or distance, which is of interest. The benefit of AE propagation is that, given a source of sufficient 

energy, external remote investigation of material behaviour can be achieved. This is a significant 

advantage when the area of interest is at an inaccessible location or is one which prohibits the use of 

other monitoring techniques. 

 

3.2.2 Relative Merits of AE, Vibration and Air-Borne Acoustic Monitoring 

The source mechanisms that produce AE are generally also responsible for vibration and audible 

air-borne acoustic waves. All can be exploited as non-intrusive condition monitoring techniques, 

although it has been claimed that AE has significant advantages over the other two. 

The principal benefit of AE is that far greater signal-to-noise ratios can be achieved for signals 

relating to the most important mechanisms and processes. Because of the very high frequency 

content of AE the lower-frequency background noise, which can be troublesome for vibration 

monitoring, has little bearing on the AE signal. Accelerometers monitor surface motion up to 

approximately 50 kHz using the most modern transducers. However, operational noise and machine 

resonances are also prevalent in this region and because this background vibration is often orders of 

magnitude greater than any fault-induced vibration then early, accurate detection of faults can be 

difficult. Consequently, when abnormalities in the vibration signal are detected the machine or 

component is usually close to failure, or failure has already occurred. AE monitoring on the other 

hand is of such sensitivity that it can be used to detect the degradative processes that lead to failure 

rather than the consequences. A further benefit of high-frequency AE is that the temporal and 

spatial resolutions are significantly greater than for vibration monitoring. Again, this is because 

high frequency waves attenuate much quicker with regards to both time and distance. The 

monitoring of air-borne acoustics via instrumentation located away from the material surface is a 

further step down in diagnostic capabilities where additional acoustical environmental effects have 

to be considered. 

Numerous investigations have directly compared AE and vibration monitoring, and to a lesser 

extent air-borne acoustics for machinery diagnosis. These have included experimentation on rolling 

element bearings [63, 64, 65], reciprocating engines and compressors [66, 67, 68], centrifugal 
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pumps [69] and the meshing of gears [70-72]. In each of these cases AE monitoring was shown to 

be the more effective for fault detection and performance monitoring. One aspect where AE 

monitoring shows a particular improvement on vibration monitoring is an increased sensitivity to 

fluid flows, both for normal and faulty operation [63, 69, 71]. 

The improvement offered through AE monitoring is emphasised in Figure 3.1, which shows 

simultaneous in-cylinder pressure, RMS AE and RMS accelerometer measurements acquired from 

the cylinder head of a running gas-fuelled engine [67]. It is evident that the vibration signal lacks 

clear correlation with the timing of the valve activity (denoted in Figure 3.1 as IVO and IVC for 

inlet valve opening and closing, and EVO and EVC for exhaust valve opening and closing) whereas 

the AE signal displays more information with transient AE events generated at each valve action. In 

this case the accelerometer measurements appear to show a particular lack of information as other 

researchers have reported that valve impacts within engines are identifiable from vibration signals 

[73, 74, 75]. 

 

 

Figure 3.1 Simultaneous in-cylinder pressure , RMS AE   and RMS acceleration 

 measurements from a gas-fuelled engine [67]. 

 

Vibration monitoring does possess some advantages when compared to AE monitoring. 

Accelerometers can be mounted so to measure the vector components of acceleration thereby 
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providing a 3-dimensional account of whole-body surface movement. This is in contrast to the 1-

dimensional measurements available through AE measurements. Absolute measurements of 

acceleration can be obtained; hence data can be compared on a quantitative basis. This has resulted 

in vibration monitoring being widely-used, well-understood and industrially accepted. Currently, 

AE monitoring is not as widely-understood or as accepted although it is quickly gaining in 

recognition as a condition monitoring technique [67]. 

 

3.2.3 Applications of AE Monitoring 

The benefits of AE monitoring are sufficient for it to become an established technique in a number 

of engineering disciplines with a number of bespoke AE-based commercial monitoring systems 

available for specific applications. This is particularly true in the field of pressure vessel proof 

testing where the non-destructive nature and high sensitivity to cracks and fluid flow through 

confined spaces make it a valuable tool for structural assessment and defect location [61, 76]. AE 

analysis has proven to be particularly well suited to be the monitoring of crack initiation and 

propagation [77]. This has been ascertained through applications as varied as the monitoring of 

cables in suspension bridges [78] and of the structural integrity of historical statues [79]. 

On a smaller scale, laboratory materials research is a further successful application. The generation 

of AE from microscopic material disturbances has allowed material properties, damage mechanisms 

and resulting material behaviour to be investigated in detail using insight that may not be available 

through other means.  

Condition monitoring of machinery via AE measurements is an expanding area of active research 

where AE monitoring of bearings is perhaps the most advanced, probably as a result of the 

regularity of bearing faults occurring in industry and the relative ease of investigation. Other 

components investigated include gearboxes, turbines and reciprocating engines. Progress to date in 

monitoring of reciprocating engines shall be detailed in the following section. 

Recent developments in computational and data acquisition capabilities have permitted further 

investigation into these established research themes as well as opening up additional research 

possibilities. These have been in fields as diverse as orthopaedic diagnostics, where friction during 

bending of human knees has been detected [80], and botany, where phenomena such as flora 

cavitation have been studied [81]. 
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3.3 AE Monitoring of Reciprocating Machinery 

The purpose of this section is to provide a review of achievements to date regarding AE monitoring 

of reciprocating machinery; this primarily involves diesel engines, both large and small, but also 

includes work on reciprocating compressors. The use of non-intrusive AE analysis in engine 

diagnostics is a relatively recent development that has centred primarily on research institutions, 

although the progression into commercial use has of late been observed, with at least one AE-based 

engine diagnostic system currently available [82]. 

This monitoring method is based on the premise that the mechanical and fluid events and processes 

occurring within engines, e.g. valve activity, injector operation, piston motion, fuel combustion and 

exhaust, generate AE which can then be measured with suitably placed external sensors. Therefore, 

with appropriate signal analysis there is the possibility to monitor aspects of machine operation and 

detect associated faults. Details shall be given as to what has been investigated and also the 

analytical techniques that have been employed. A thorough review of this topic is also provided by 

Steel and Reuben [61]. 

 

3.3.1 Initial Identification 

To the author's best knowledge the first published work concerning AE acquisition from engines 

was reported by West, et al., [83]. However, these works made no attempt to understand the AE 

generated during engine operation, rather, they were largely exercises in signal-processing with the 

aim being to extract a digitally embedded burst-type AE signal, relating to a micro crack, from 

background AE acquired from a lawnmower engine. Nevertheless, it was recognised that certain 

aspects of engine operation could result in AE generation: "We are looking at scenarios where the 

AE signal is buried in strong interference (which could be periodic) due to a mechanical motion, 

like the movement of a piston in an engine" [84]. 

Much of the AE in this case was regarded as noise which was dominated by frequencies below 30 

kHz. This is below the typical AE frequency band lower limit, and it is not clear what, if any, pre-

processing filtering steps were taken. Hence this observation may simply be a consequence of un-

filtered AE acquisition. 

Gill, et al., [85] were the first to report on the possibility of engine diagnosis via AE measurements. 

This study focused in particular on the combustion process, with RMS data acquired from sensors 
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located close to the combustion chambers of small, four-stroke high speed direct injection (HSDI) 

diesel engines. Information about the timing and sequence of mechanical operation within the 

engine was used to map the events in the AE signals acquired during normal operation to their 

respective origins. This showed that events were generated from combustion or combustion-related 

processes as well as from valve activity for all four cylinders. The presence of these events was 

found dependent upon sensor location with signals from other positions on the engine noted as 

being more complex containing contributions from other engine driven components. 

Two induced fault conditions were investigated; fuel starvation through disconnection of the fuel-

feed pipe to an individual cylinder, and reduced injection discharge pressure. Under fuel starvation 

conditions a simple comparison revealed that the events purported to relate to the combustion 

process in normal operation were absent. To characterise a progressive reduction in injector 

discharge pressure the authors used a simple technique whereby the energy in a time-windowed 

section of the signal was calculated and compared as conditions varied. It was also found practical 

to use the signal averaged over 10 cycles so that a time-averaged, time-domain signal was obtained, 

which provided a better overall representation of the AE signature at a particular running condition. 

The signal energy in a window corresponding to the combustion process was found to increase with 

a reduction in discharge pressure. It was reasoned that this was due to an increase in combustion 

harshness as a result of poorer fuel atomisation. Analysis of event timing was also found to be 

useful for fault detection. The initial event, postulated to be combustion-related occurred earlier in 

the cycle with decreasing injection pressure. This was consistent with the premise that the event was 

injection related since the lower delivery pressures would be achieved by the fuel pump earlier in 

the cycle. 

 

3.3.2 Monitoring of Injection, Combustion and Combustion-Related Processes 

Gill, et al., [86] expanded their earlier work [85] to investigate more detailed raw AE signals 

acquired from the fuel injector body of a small, HSDI diesel engine operating under reduced 

injection discharge pressures. To provide a thorough evaluation of injector operation the AE data 

were supplemented by measurements of injection pressure, needle lift and in-cylinder pressure. As 

in the previous study, the relatively small size of the engine meant that AE originating from all four 

cylinders of the engine propagated to the sensor location, with the most prominent events found to 

relate to fuel injection and combustion in the cylinder closest to the sensor. 
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The level of temporal resolution offered through AE monitoring permitted the injection AE 

signature to be separated into its constituent events. The authors suggested that the initial AE burst 

was due to the sudden increase in fuel pressure whilst the main AE burst was generated due to the 

injector needle attaining the fully open position and subsequently impacting with the injector body. 

Importantly, these observations were validated through comparison with the needle lift 

measurements. 

Again, similar to [85], the timing of injection events was observed to advance for a reduction in 

injection discharge pressure. This was found consistent both cyclically and also over all engine 

speeds and loads considered. The authors also report that for the lowest pressure the duration of the 

whole injection/combustion AE event was extended compared to the normal condition by a period 

of low amplitude AE. This was thought to be related to coarse fuel atomisation which would require 

a longer combustion period. Validation of this suggestion was not provided, and would have been 

difficult to achieve, but it does illustrate that examination of AE activity may reveal further insights 

than needle lift and fuel pressure monitoring. 

Several other research groups have investigated AE relating to injection and combustion processes 

[67, 87-93]. Berjger [87] confirmed that operation of a fuel injector without combustion was indeed 

a source of AE. Fuel was injected into a combustion chamber of a four-stroke engine filled with 

inert gas thereby inhibiting fuel ignition and combustion and leaving only the injection events, 

namely the pressure increase in the injector body, the resulting needle movements and high-pressure 

fuel flow, as possible AE sources. Analysis presented in this work was limited but AE events were 

noted and attributed to injector operation, with the amount of activity dependant on both the 

quantity and diameter of the nozzle orifices. The proposed use of such knowledge was for injector 

nozzle diagnostics in ship injection systems.  

Bialkowski, et al., [88] performed similar tests on a common-rail diesel injection system again 

finding that significant AE activity was generated by injector operation in the absence of 

combustion. In this case, AE activity was found to increase with both injection pressure and fuel 

pre-heating. 

Godinez, et al., [89] reported that injector cavitation and detonation could be diagnosed from 

analysis of time-domain AE characteristics. These claims were corroborated through simultaneous 

acquisition of other engine data, in this case load measurement from the rocker. Time-domain 

analysis of windowed injection/combustion events was also found to be a suitable method for 
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identification of operating conditions over varying load by Frances, et al., [90]. Eleven statistical 

features were extracted from a window corresponding to the combustion AE events for a 3.8 MW, 

medium speed, four-stroke engine, namely; signal energy, mean, standard deviation, variance, 

skewness, kurtosis, maximum amplitude, peak start location, peak ignition location, peak end 

location and power spectral density ratio. Principal Component Analysis (PCA) was used to identify 

and eliminate redundant features and a neural network was then applied to differentiate between 

operating conditions. The results of this process showed that engine loading condition could be 

reasonably identified, although not with complete confidence. Further frequency-domain analysis 

showed that engine loading could not be determined through analysis of frequency content but 

could be distinguished through wavelet analysis. 

Chandroth, et al., [91] described a data acquisition system which acquired AE measurements 

alongside vibration and in-cylinder pressure data for the detection of combustion-related faults in a 

small, four-stroke diesel engine. This was expanded upon by Sharkey, et al., [92] who applied 

neural networks to assess the value of each measurement technique for the detection of these faults. 

Selective pre-processing methods were employed, in the case of AE data this consisted of 

frequency-domain analysis. The authors reported that the best performance in terms of 

generalisation, i.e. when one dataset is tested against validation data, with a value of 97.7 %, was 

from the AE measurements. This compared with 94.0 % and 88.7 % for the vibration and in-

cylinder pressure data respectively, providing further evidence of the usefulness of AE 

measurements in engine diagnostics. 

Other combustion-related features have been investigated. The possibility of using AE 

measurements to infer fuel-to-air ratios in an 8-cylinder, 430 kW, four-stroke gas engine was 

investigated by El-Ghamry, et al., [67]. For this work a window of raw AE data corresponding to 

the combustion period in the cylinder closest to the transducer was extracted from the rest of the 

signal. Simple features were then calculated such as the mean, peak, peak to mean ratio, standard 

deviation and variance over 10 individual cycles acquired at various running conditions.  

The amount of AE activity was observed to increase for both lean and rich running conditions 

compared to the reference normal condition, with variance noted as the most distinct parameter. The 

changes in fuel supply were also evident, although to a lesser degree, from inspection of in-cylinder 

pressure data. 
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Figure 3.2 Raw AE acquired from a 430 kW, four-stroke engine showing injection/combustion 

events at areas of maximum pressure, other smaller events appear regularly, AE ( ) and in-

cylinder pressure (----------) [93]. 

 

El-Ghamry, et al., [93] further outlined a technique whereby the in-cylinder pressure trace could be 

reconstructed from the AE signal over the compression/expansion period. This would be similar to 

others who attempted reconstruction of the in-cylinder pressure trace using vibration [94-96] and 

IAS measurements [97, 98, 99-104] to diagnose combustion deficiencies. Although this work 

centred on the combustion period, data were presented, see Figure 3.2, which showed a number of 

other events, both large and small in relation to the prominent injection/combustion events, and 

these appear regularly during the cycle and are cyclically consistent. 

 

3.3.3 Monitoring of Exhaust Valve and Gasket Leakage 

Much use has been made of the sensitivity of AE to gas flow excitation to investigate the 

monitoring of fluid flows within engines, including normal processes and leakages from both 

exhaust valves and gaskets. 
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El-Ghamry, et al., [67] reported that for a 0.5 MW gas engine AE was generated at times coincident 

with valve movements; the specific example given was of exhaust valve opening, which was 

observed to be accompanied by a broad, high-amplitude AE event. It was reasoned that the AE 

generated during valve opening may be indicative of the gas flow properties through the exhaust 

port, and thus this activity would be affected by such factors as in-cylinder pressure, valve leakage 

and deposition. The authors also noted that the AE signals were much more defined and responsive 

to these valve actions than simultaneously acquired vibration measurements. 

Fog, et al., [66, 71, 105] detected exhaust valve leakage in a large, two-stroke diesel engine using 

AE measurements, again finding this more effective than acceleration, in-cylinder pressure or 

temperature measurements. For this work in addition to the normal case the exhaust valve was 

degraded by cutting a groove in the valve face, with two leakage areas, 4 and 20 mm
2
. It was found 

that due to the large size of this engine the cylinder-by-cylinder analysis was simpler than for small 

engines because the propagation distances and signal attenuation were such that cross-cylinder 

interference was minimal. This allowed for easier isolation of events, and using knowledge of the 

engine cycle the AE events were then related to mechanical actions within the engine, Figure 3.3 

shows such events labelled as XVO, XVC, IJS and IJE which relate to exhaust valve opening and 

closing and the start and end of the injection process, respectively. A further pre-processing step 

was the resampling of the data, which effectively related one AE sample to one pulse of the shaft 

encoder signal thereby overcoming signal non-stationarity over varying operating conditions. 

Furthermore, it greatly reduced the amount of data per cycle which permitted the easier application 

of higher statistical analysis techniques. 

RMS AE signals acquired from the exhaust valve housing of the engine operating under normal 

conditions and with a large exhaust valve leakage are given in Figures 3.3(a) and 3.3(b) 

respectively. It is clear that with the leak there is a significant increase in AE activity. As might be 

expected, this occurs during the compression and expansion phases and increases in amplitude with 

in-cylinder pressure. This leakage activity was also observed to increase in proportion to the 

leakage area. 
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Figure 3.3 RMS AE signals acquired from a large, two-stroke diesel engine, (a) healthy condition 

and (b) large exhaust valve leak [66]. 

 

Friis-Hansen and Fog [106] investigated the same dataset and found that a simple calculation of the 

mean value in a windowed region relating to the compression stroke, 300 to 350 degrees after TDC, 

was sufficient to distinguish between leakage sizes with only a small percentage of 

misclassifications. This window was chosen carefully to avoid signals relating to injector and valve 

sources. The possibility of monitoring injector misfire was also investigated, not through analysis of 

AE generated during the injection process but through the consequences on combustion, i.e. the in-

cylinder pressure and related leakage levels. Detection was proposed through comparison of AE 

energy during windows of the AE signal before and after TDC. Ratios above and below unity were 

found to be suitable for distinguishing between normal operating and complete misfire conditions. 

However, it was not clear whether this method would work under no leakage conditions. 

Monitoring of head gasket leakage in a small, four-stroke diesel engine was investigated by El-

Ghamry, et al., [107]. As with others who have considered AE generation from small engines a high 

level of cylinder cross-talk was observed, hence sensor positioning was important in order to target 

specific engine areas. When gasket leakage was induced AE activity during the 

compression/expansion phase increased significantly, in a similar manner to that observed 

previously by Fog, et al., [66, 73, 105], for exhaust valve leakage. An algorithm based upon signal 
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thresholding and statistical quantifiers was developed to automatically identify this gasket leakage 

feature. Frances, et al., [108] also reported that the energy content of a windowed section of the 

signal varied when a fault was introduced to the exhaust manifold gasket of a small, four-stroke 

engine. However, although a change was generally observed between fault and no fault conditions 

the difference was not systematic over varying engine speeds and loads. 

Variability of AE signals over several cylinders of a medium-speed, four-stroke diesel operating 

under normal conditions was evaluated by Frances, et al., [109]. For each cylinder statistical 

parameters were calculated over a number of cycles for a windowed area of the signal containing 

the compression and expansion phases. In each case the AE energy content was found to be 

cyclically consistent; however, substantial variation was observed between cylinders. One cylinder 

displayed a significant increase from the normal variance, and tests over varying loads indicated 

that the additional AE activity was related to the in-cylinder pressure. Frequency analysis showed 

that it contained energies at higher frequencies and although this was not investigated further this 

led the authors to suggest that the additional AE activity was indicative of leakage. 

AE measurements have also been successfully used to monitor normal and faulty valve processes 

and associated leakages in reciprocating compressors, Gill, et al., [68, 103]. AE signals acquired 

from the cylinder head of a small, two-cylinder compressor during normal operation showed all 

mechanical activities of inlet and exhaust valves [110]. In this case, the valves were of the plate 

variety and their operation was therefore dictated by the pressure differential between the cylinder 

and exhaust manifold. Several faults were induced. For both a grooved discharge valve seat and an 

unseated discharge valve. Additional AE features relating to gas leakage were evident in addition to 

changes in event timing brought about by variations in pressure balance. Analysis of event timing 

also permitted the detection of a weakened valve spring. 

Testing on a large scale, industrial, ethylene compressor [68] further demonstrated the sensitivity of 

AE monitoring to valve actions and fluid flows. Valve opening and closing events were readily 

identifiable. A further source was identified as fluid flow in and out of the cylinder; in addition to 

being active at valve opening this also generated a low-amplitude feature around mid-stroke 

positions. Data acquired immediately prior to an overhaul, with ‘real’ faults in place, showed that 

significant AE activity resulted from leakage past the valves and also from leakage through the 

stuffing box to the sump. 
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3.3.4 Event Mapping and Source Location 

The task of relating AE events to their respective mechanical and fluid-mechanical sources within 

an engine, termed ‘event mapping’, has been described in a number of papers and reports. Event 

mapping is, effectively, the source location of a sequence of AE events aided by knowledge of the 

processes that constitute an engine cycle and which may be anticipated to give rise to AE. 

Acquisition of other engine signals can also be useful, engine timing signals are particularly 

valuable as they provide calibrated timing references; also, needle lift measurements have proved 

effective in understanding AE generation during fuel injector operation [86]. Even when further 

engine information is unavailable the processes of varying engine operating conditions and inducing 

faults will generally bring about changes to the cyclic AE signature which can then be used to 

understand the original source mechanisms. 

It has been demonstrated that the temporal resolution of AE signals acquired from engines is of an 

extremely high order, due to burst-type events usually being of a relatively short duration. 

Therefore, this allows the events to be separated and mapped in the time, or angular, domain to a 

precise level. This is particularly true for large, low-speed engines where interference between 

events is often minimal. 

Nivesrangsan, et al., [111-114] conducted a thorough investigation into the mapping of AE events 

generated within the cylinder head of a small HSDI diesel engine. In doing so they introduced 

techniques for spatial reconstitution [113] and source location [114] using multi-sensor arrays. The 

motivation for developing such techniques was to provide focused monitoring of specific 

components and/or processes and thereby improve the diagnostic capabilities of AE. This is 

particularly relevant for small, multi-cylinder engines as the small propagation distances and 

material attenuation properties results in AE from all cylinders contributing to the AE measured at a 

single point. This is exemplified in Figure 3.4(a) which shows raw time-domain AE data acquired 

from sensors located on the cylinder head adjacent to cylinders 1, 2 and 4 [112]. The windowed 

firing period for each cylinder is also indicated and immediately it is clear that the main events are 

associated with the injection/combustion processes, and that the amplitude of these events are 

greatest for the sensors located closest to the cylinder in question.  
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Figure 3.4 Raw AE signals acquired from the cylinder head of small, HSDI engine, (a)   

propagation around the head, (b) attenuation characteristics [112]. 

 

A systematic reduction in energy is evident as the AE propagates to other sensor positions; see 

Figure 3.4b which shows AE energy level versus injector-sensor distance. In order to develop 

techniques for application on a running engine the authors first investigated AE propagation 

characteristics, i.e. source-sensor attenuation, wave arrival time differences and frequency 

modulation, using Hsu-Nielsen simulated sources and a nine sensor array located around the 

cylinder head [112, 113]. Nivesrangsan, et al., then applied the knowledge gained from these tests 

to reconstituting the source AE characteristics, in terms of timing and amplitude, for events 

associated with injector operation and exhaust valve opening [113]. Good results were reported 

from the reconstitution process, thereby offering more accurate information regarding event timing 

and amplitude that could be used as the basis of a diagnostics system. However, the events 

considered were noted as being the dominant features in the signals, which opens the question as to 

how this process would fare for lower-strength sources. Further difficulties were noted when an 

event was itself a composite of multiple sources. 

Accurate source location of events was also demonstrated using triangular sub-arrays taken from 

the nine-sensor array [114]. Triangulation methods based upon wave arrival, time-of-flight 

difference and relative energy content were investigated, with the former found successful for burst-
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type events and the latter for events which contained multiple sources. A prerequisite for 

application of these techniques was that the signals should contain strong, well-defined events, with 

filtering suggested to improve performance for weaker sources. The success of this work opens the 

path towards complete automatic spatial decomposition of signals using multi-sensor arrays. A 

possible application could be to precisely locate the source of events that may be indicative of a 

fault, such as events that may originate due to scuffing in large engine cylinder liners. 

 

3.3.5 Monitoring of the Piston Ring-Pack and Cylinder Liner Interface 

Pontoppidan and co-workers [115-120] have investigated AE monitoring of the piston ring-pack 

and cylinder liner interface. The different published papers used some of the same datasets. Here 

the interest lay with developing advanced signal processing techniques for the detection of changes 

in signals rather than on fundamental interpretation and understanding of the signals. RMS AE data 

were acquired at 20 kHz from sensors positioned on the cylinder cover and liner of a large, two-

stroke diesel engine running at several loads, and under normal and no lubricating oil supply 

conditions. Again, the inherent non-stationarity of the signals was overcome through resampling the 

data to a constant number of samples per engine cycle via the TDC and shaft encoder signals. 

Techniques such as ‘event alignment’ were also developed to account for variations in the timing of 

injection events due to load changes [116-118]. 

Statistical techniques such as Independent Component Analysis (ICA) and PCA were used to 

investigate the data and it was found that changes in lubricating oil condition could readily be 

identified [119, 120]. Further work [115] applied a variant of ICA to effectively separate the RMS 

AE signature into four components, or ‘hidden signals’. Three of these signals modelled 

characteristics of AE generation at three different loads whilst the remaining signal was identified 

as being representative of friction and wear. These four signals are shown in Figure 3.5(a), with 

Signal 1 the friction related signal, and data presented from BDC to BDC (300
0 

shown in figure). 

The authors noted that features in the friction signal could be related to the engine operation; the 

amplitude was lower at the beginning and end of the cycle which was thought possibly due to 

improved lubricating conditions at around BDC as the cylinder may have received oil indirectly via 

the common air intake. Figure 3.5(b) shows the level of each hidden RMS AE signal present as the 

test progressed. Changes in the three load-related signals corresponded with the load changes.  
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The friction-related signal emerged just after the lubricating oil supply was shut down and increased 

throughout the experiment until the supply was restored. This resembles what would be expected, 

and appears to verify to a degree the existence of a friction contribution to the overall AE signal. 

Sigurdsson, et al., [116] further showed that AE generation was greater during operation with no 

lubricant supply than for normal conditions. In this case a simple feature was extracted, the total AE 

energy generated during an engine cycle, and this was found sufficient to discriminate between 

lubrication conditions at constant load. Figure 3.6(a) depicts this feature clearly for two engine 

speeds.  

However, AE energy was observed to also increase with load, therefore values for fault and no-fault 

conditions coincide over varying loads, implying that a single overall threshold cannot be used for 

fault detection.  

The authors suggested models, founded on supervised and unsupervised learning and with engine 

load as an input, which could counter this problem by providing non-linear threshold functions, as 

shown in Figure 3.6(b). 

 

 

Figure 3.5 (a) Four hidden signals during a cycle, Signal 1 is attributed to friction and wear. (b) 

Development of four independent components during test, source 1 attributed to friction [115]. 
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Figure 3.6 (a) Histogram of cyclic AE energy for normal and no lubricant supply conditions, upper 

and lower panels at 25% and 50% load respectively, (b) Scatter plot of AE energy versus load with 

several fault/no fault decision boundaries indicated [114]. 

 

Carlton [121] alluded to the commercial use of an AE monitoring system to address the problem of 

cylinder liner scuffing. Although no further information was revealed, and no results or case studies 

were presented, it can be assumed from the context that this was in relation to large marine engines.  

 

3.4 AE Monitoring of Sliding Contact 

As has already been stated one of the major objectives of this work is to investigate AE generated 

from the sliding friction of piston assembly and cylinder liner. To provide a foundation for this it is 

necessary to review the body of work which has considered AE monitoring of sliding, or 

interacting, surfaces. 

The study of sliding contact encapsulates the topics of lubrication, friction and wear. When two 

contacting surfaces move relative to each other than a resistance to motion occurs. This resistance, 

or friction, is due to a combination of various mechanisms such as asperity deformation i.e. 

(deformation through rubbing), adhesion and ploughing by hard asperities or entrapped wear 

particles, and results in surface and sub-surface deformations, dislocations and fractures which 

dissipate strain energy in a variety of thermal, kinetic and elastic forms. Monitoring of these effects 
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therefore presents the opportunity to gain insight into tribological behaviour since they are 

intrinsically related to the friction mechanisms. 

One component of the elastic energy released is in the form of radiated stress waves, including AE. 

The possibility of using AE to infer tribological behaviour has been investigated and developed in 

numerous published works covering various applications. Precursor to more detailed studies was 

the initial understanding that AE arises from frictional processes that occur during manufacturing 

operations such as turning, grinding and forming [122-128]. Fundamental friction and wear 

characteristics have been investigated on standard wear testing laboratory equipment [129-142]. 

These have identified systematic relationships between AE activity and the various parameters 

which govern friction and wear. Further investigations have focused on applying AE monitoring to 

a range of industrial situations where interfacial conditions are problematic. This has included a 

significant body of work on the monitoring of hard disk drive magnetic storage devices [143-162] 

and also industrial applications such as gearboxes, mechanical seals and bearings [163-176]. 

 

3.4.1 Initial Identification of AE Generation from Friction and Wear Source Mechanisms 

AE monitoring was initially identified as a technique that could prove useful for investigation of 

friction and wear phenomena through studies of material cutting and forming processes conducted 

to investigate whether tool or cutting process condition could be ascertained. The concept behind 

this is that in order to remove or form material a considerable amount of power is expended in the 

form of plastic deformation of the material. This is inevitably accompanied by friction acting at the 

interface of tool and work piece, and chip in the case of machining processes, the consequence of 

which is gradual wear of the tool surface that is detrimental to the quality of the work piece surface 

finish. 

AE generated during turning of aluminium alloy was investigated by Grabec and Leskovar [122]. 

The spectral content of the signal was examined with audible frequency emissions observed to be 

discrete whilst emissions in the ultrasonic range, including AE, were continuous. The influences of 

various cutting parameters were evaluated and although the continuous signal was related to the 

friction at the tool/work piece interface no correlation could be identified between tool wear and AE 

activity, though the possibility was not dismissed. Tool condition monitoring via AE measurements 

was also considered by Iwata and Moriwaki [123]. They again focused on the spectral content and 
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reported that features up to 350 kHz were related to the tool wear condition, it was also suggested 

that AE count parameters may be indicative of tool condition. 

Numerous further studies followed these initial works and these have firmly established the 

effectiveness of AE monitoring of tool condition for manufacturing processes including turning 

[124, 125], milling [126], grinding [127] and forming [128]. In all of these examples characteristics 

of AE generation have been related to friction and wear. A number of researchers have associated 

burst-type AE events to occurrences such as tool fracture and chip break-off whilst continuous AE 

emissions have been linked to continual shearing and friction. This material is not reviewed in detail 

here but is used to highlight the role that this research has had in establishing the use of AE 

monitoring towards understanding interfacial behaviour. 

It is appreciated that the material deformation energies associated with manufacturing processes 

may be considerably greater than for normal wear processes. Nonetheless, it has also been 

recognised that small energy level deformations generate AE, for instance, Dornfeld, et al., [177] 

proposed the use of AE to detect the onset of slip between surfaces. Their work consisted of blocks 

of varying materials and surface roughness pulled in a stick-slip motion against a reference 

aluminium base block, with pulling speed and normal load varied. For all materials except luctite 

plastic a burst-type AE signal was observed upon the onset of motion, i.e. the transition from static 

to kinetic friction, with the basis for AE generation identified as deformation of surface asperities in 

contact. For the plastic material it was thought that there was no AE generation due to a 

combination of low surface roughness and characteristically poor AE generation capabilities. For 

steel blocks the AE amplitude was observed to increase with speed whilst an increase in normal 

load was found to result in increased AE activity for rough surfaces and reduced activity for 

smoother surfaces. A further application was given of a robotic gripper where burst-type AE signals 

were observed upon contact of gripper arm with the object and again upon the slipping release. 

 

3.4.2 AE Monitoring of Sliding Contact in Laboratory Wear Tests 

To investigate the relationship between AE generation and the friction and wear of sliding contact 

systems a number of studies have been performed using laboratory test-rigs on which simple test 

pieces are loaded against each other in relative motion. These test-rigs can take several forms such 

as a stationary ball on rotating cylinder or reciprocating pin on stationary disc, and typically the 

speed of relative motion and the applied load can be altered so as to provide a range of wear 
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characteristics. Such tests are routinely used in tribological studies and represent an ideal base for 

investigation of AE activity from friction and wear. Furthermore, these test-rigs allow other friction 

and wear parameters to be readily obtained, for instance, measurements of friction force or wear 

scars, and these can aid interpretation of AE activity and correlation to tribological behaviour. 

One of the first investigations of this kind was conducted by Belyi, et al., [129] who examined 

friction and wear behaviour of polymers sliding against steel using AE and observed that AE 

parameters could be used to distinguish between different wear mechanisms. Surface roughness of 

specimens was increased which caused a transition from adhesive and fatigue wear regimes to 

abrasive wear, and this was found to be accompanied by an increase in AE count rate. This was 

explained by a greater number of AE generation sites as wear debris surface area increased. A linear 

relationship between cumulative AE count and wear volume was presented. 

 

 

 

Figure 3.7 AE generation characteristics using a ball and cylinder test-rig for (a) lubricated contact, 

(b) non-lubricated contact [130]. 
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McBride, et al., [130] generated a body of work which investigated AE generation during rotation 

of a steel cylinder loaded against a stationary steel ball with both lubricated and unlubricated 

contact considered. The AE peak amplitude and the rise time for each AE signal were extracted 

from time-series AE parameters. Clear differences were observed between lubricated and non-

lubricated conditions for each parameter; Figure 3.7(a) shows lower but more consistent peak AE 

values and no particular rise-time characteristic, whilst Figure 3.7(b) shows greater peak AE values 

with increased spread for non-lubricated contact and a distinctively sharp event rise-time 

characteristic. 

These observations were correlated to the wear inflicted upon the ball and cylinder surfaces. The 

non-lubricated contact produced a distinct wear scar with evidence of material transfer and wear 

debris, which led the authors to conclude that the non-lubricated AE characteristics were indicative 

of micro-fracture and material removal. Theoretical analysis of the contact zone indicated that 

mixed lubrication conditions would exist and the lubricated case, however, showed smooth wear 

scars with significant plastic flow. The authors therefore attributed the AE generation characteristics 

in this case to asperity contact. 

Work in this area was taken forward by Boness, et al., [131] who, using a similar set-up also found 

that AE generation was greater from unlubricated contact than lubricated. They were also able to 

distinguish between different wear mechanisms. Common features in the time-history for lubricated 

and unlubricated conditions emerged after the data were presented in log-log format as shown in 

Figure 3.8(a). An initial peak observed for both cases was attributed to the initial removal and gross 

deformation of original asperities. This was followed by a second peak of gradually increasing 

amplitude. Scanning Electron Microscope (SEM) examination of the surfaces at this point revealed 

transference of debris from the rough cylinder to smooth ball hence this secondary phase was 

attributed to adhesive wear. The erratic behaviour exhibited by the unlubricated case after about 200 

seconds was attributed predominantly to abrasive wear. It was further proposed that for each 

mechanism; initial contact, adhesion and abrasion, a linear relationship between wear scar volume 

and integrated RMS AE signal could be established. This is shown in Figure 3.8(b) for the initial 

contact and adhesive wear periods for contact lubricated with two grades of paraffin. 

 

This concept was further investigated for lubricated contact by Boness and McBride [132] who 

reported differing behaviour between a reference lubricated sample and one containing a wear-
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reducing additive, the latter exhibited less AE generation and a reduced wear volume. Furthermore, 

they could also distinguish between different concentrations of added aluminium particles to 

accelerate wear. AE activity was observed to increase with particle concentration, and this 

concurred with increased wear as quantified through examinations of wear scars. 

Other authors [133-135] have verified the capability of AE measurements to detect changes in wear 

regimes during unlubricated sliding. Jiaa and Dornfeld [133] studied long-distance unlubricated 

sliding using a pin-on-disk set-up. Through analysis of time-series RMS AE, and substantiation by 

SEM examinations, they identified distinguishing features for three different wear regimes; 

running-in, steady-state and self-acceleration. Tests to investigate break-in behaviour after the 

removal of wear particles indicated a close relationship between AE activity and energy lost 

through frictional work. Additionally, the response of AE generation to varying sliding speeds and 

loads was evaluated.  

 

 

Figure 3.8 (a) RMS AE time histories for two different lubrication conditions, (b) linear 

relationships between integrated RMS AE signals and wear scar volume for different wear regimes 

[131]. 
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The mean RMS AE level during the steady-state wear region was found to be proportional to both, 

as shown in Figure 3.9 for data scaled to the same range from two different AE measurement 

arrangements and material pairs. The authors stated that their results were in agreement with a 

power function relation between RMS AE and the rate of frictional energy dissipation given by Diei 

[136]. 

Similarly, Hamchi and Klamecki [134, 135] investigated the use of AE monitoring to discriminate 

between different wear mechanisms acting at an unlubricated pin-on-disc interface. Various loads 

and speeds were considered as well as several pin materials. For most materials the AE count rate 

and energy content were found to parallel the variation of wear rates across the mild-severe wear 

transition. It was also found that the different methods of energy dissipation associated with 

adhesion and micro-cutting (abrasion) wear regimes produced different peak AE amplitude 

distributions. However, it was noted that the results were dependent upon the material properties, 

with inconclusive results from tests with a copper pin. 

 

 

 

Figure 3.9 Effect of sliding speed and load on RMS AE level for two different arrangements [134]. 
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Lingard and Ng [137] investigated AE generation during unlubricated sliding of a rotating disk 

loaded against a stationary disk. Again, a range of disk materials, loads and speeds were 

investigated with torque friction measurements and wear scar dimensions recorded to aid 

interpretation of the AE data. Significant AE activity was observed with AE event count rate and 

cumulative event count extracted as parameters. No discernible relationships emerged when these 

were evaluated against measures of wear such as wear rate and volume, although the possibility was 

not discounted. Instead, relationships were identified between frictional work and cumulative AE 

event count for all the material pairs examined. Relationships for varying speeds and loads are as 

shown in Figures 3.10(a) and 3.10(b) respectively whilst a further factor was found to be the 

materials of the pairs used.  

The form of these relationships were noted as being similar to the power law relationship between 

the amount of AE generated and the rate of frictional work given by Diei [136] and referenced by 

Jiaa and Dornfeld [133].  

 

 
 

Figure 3.10 Unlubricated ball and cylinder test rig, cumulative AE versus frictional work, (a) effect 

of speed (b) effect of loading [137]. 
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The authors also provided an explanation as to why AE generation would be related to frictional 

forces rather than parameters of wear. They reasoned that Archard’s theory of adhesive wear 

indicates that only a small proportion of asperity interactions produce a wear particle, whereas all 

such events contribute to the frictional force. 

Further work by Lingard, et al., [138] led the authors to state that AE output appears to be more 

sensitive to contact conditions than measurements of either friction force or of the wear rate. 

Frequency domain analysis showed that certain peak frequencies were associated with different 

material pairs. 

Recent work by Mechefske and Sun [139] considered AE generation from lubricated sliding contact 

using a ball-on-disk test-rig and a non-contact laser vibro-meter. The lubricant contained an anti-

wear additive, zinc dialkyldithiophosphate, which was noted as increasing in effectiveness with 

greater sliding speeds. Similar to other work, their results showed that the peak AE and RMS values 

increased in accordance with sliding speed and wear surface strain rate. They also reported that AE 

count rate, in terms of sliding distance, reduced when sliding speed was increased and they related 

this to the effectiveness of the lubricant and hence wear rates. 

AE generation during elastohydrodynamic lubrication has been investigated [131, 138]. Boness, et 

al., [131] reproduced these conditions by using a polished surface on a ball-on-cylinder test-rig and 

noted that for these conditions the RMS AE level was no greater than the base noise level of the 

equipment. This further confirmed the authors’ view that asperity contact was the primary AE 

source in their work. Lingard, et al., [138] also reported that AE activity was a sensitive indicator of 

lubrication condition. They observed that when lubricant was introduced to a disc-on-disc interface 

the AE activity reduced significantly, a reflection of the much reduced wear rates. Moreover, they 

found that as conditions were altered so to increase the elastohydrodynamic effect, quantified by the 

film parameter Λ in Figure 3.11, the AE count rate systematically reduced. 

Several research groups have indicated that scuffing, severe adhesive wear, can be identified 

through AE monitoring. Boness [140] investigated normal operation and scuffing inducing 

conditions using a ball-on-cylinder test rig, with jet fuel and clay-treated jet fuels as lubricants and 

tests at various loads in both air and nitrogen environments. For both environments an initial peak 

in the AE activity was observed which was believed to indicate interaction of major asperities 

during initial wear. For the air environment, under non-scuffing inducing conditions, both AE levels 
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and wear scar diameter gradually increased till the end of the test. Under the same conditions the 

nitrogen environment case showed no further increase in wear scar or AE level thus indicating that 

a further oxidative wear mechanism was present for the air environment case. 

 

 

Figure 3.11 Log AE count rate and coefficient of friction versus film parameter [138]. 

 

Regarding scuffing, this could be induced at a critical load in the nitrogen environment, and could 

be identified through wear scar examination. At this critical load the clay-treated fuel samples 

exhibited greater AE levels than untreated fuel, as shown in Figure 3.12. Further examination of the 

wear scars showed that at this critical load the initial  adhesive damage in some cases led to 

progressive deterioration and subsequent failure, i.e. scuffing, which was accompanied by constant 

high AE levels, labelled as ‘scuffed’ in Figure 3.12. For others, the surface recovered with both 

wear and AE levels reduced for the remainder of the test, labelled as ‘incipient scuff’ in Figure 3.12. 

 

An interesting observation regarding the stability of AE monitoring was made by both Boness, et 

al., [131] and Lingard, et al., [138]. Using different test-rig and material arrangements both research 

groups showed that if a test was interrupted and then restarted, the AE RMS activity resumed at its 

previous level. This bodes well for the robustness and repeatability of AE monitoring. 
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Figure 3.12 Schematic of the AE monitoring system for a ball on flat sliding cylinder. 

 

 

 

Figure 3.13 Induced scuffing at a critical loading [140]. 
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3.5   Summary  

This section has reviewed AE generation and how it can be measured and analysed to provide 

information useful for condition monitoring. The measured AE signal is generally dependent upon 

three main factors; the source generation characteristics, the transmission path from the source to 

the sensor, and the sensor response characteristics. A variety of processing techniques can then be 

applied to the measured signal, from the extraction of simple waveform and statistical parameters to 

complex algorithms. 

 

The use of AE as an engine condition monitoring measured has been found to offer greater 

diagnostic capabilities than comparable techniques, due to higher level temporal and spatial 

resolutions, increased sensitivity and improved signal to noise ratios. It has been established that the 

mechanical and fluid-mechanical events and processes occurring within engines, e.g. valve 

contacts, fuel injection, combustion and exhaust, are AE generating sources from which diagnostic 

information can be garnered. Findings which suggest AE monitoring can be applied towards 

determining the lubrication condition are particularly relevant to the work in this thesis. 

 

The majority of investigations into engine AE generation have used similar analytical procedures, at 

least for the initial processing steps. Raw or RMS AE data has been typically been converted from 

the time-domain to an angular base to overcome sign non-stationary. In many cases RMS AE has 

been found adequate; however, to best exploit the extreme temporal resolution available then raw 

measurements are necessary. The signals are then usually interpreted through mapping of AE events 

to the mechanical and fluid-mechanical actions occurring within the engine. Simplistic and 

advanced signal processing techniques have been used to characterise signals, many researchers 

have found simple statistical parameters to be sufficient, calculated either from the whole engine 

cycle or from windowed areas, although improvements have been reported using advanced 

statistical techniques. 

 

AE monitoring has also proved to be effective for gaining insight into the tribological behaviour of 

sliding contacts, particularly for evaluation of contact dynamics and frictional behaviour during 

boundary lubrication conditions. This has been ascertained over several different applications where 

factors governing contact have been varied and corresponding effects on AE activity related, 

including; sliding speed, load, time, surface topography and lubricant characteristics. Various 
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qualitative relationships have been proposed and in some cases these have been found transferable 

across applications. Tests where hydrodynamic conditions were induced showed little or no AE 

activity above background noise levels. A variety of primarily time-domain AE parameters have 

been used to characterise the AE activity, although frequency-domain analysis has also been shown 

useful. The potential benefit of this work in terms of condition monitoring is that it demonstrates 

that it may be possible to obtain an on-line measure of friction without the need for direct, intrusive 

measurements.  
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CHAPTER FOUR 

DIESEL ENGINE ACOUSTIC EMISSION 

SOURCES AND DATA PROCESSING 

 

 

 

 

 

This chapter investigates and discusses acoustic emission sources in diesel engines; including 

mechanical impact (for example piston slap, valves impact, injector tick, etc.), friction sources, other 

sources (gas flow, fluid flow Crack formation and wear), turbo noise and background noises. Secondly 

the fundamentals of acoustic emission measurement, acoustic emission data processing techniques 

and recognised AE analysis parameters are introduced.  
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4.1 Introduction  

Development of modern heavy duty diesel engines is driven by three major factors: fuel economy, 

pollutant engine-out emission, and customer satisfaction. To satisfy these requirements, advanced 

technologies are needed for all aspects of engines, including lubrication oil, fuel and engine 

components. The performance of the engine is directly affected by the friction, wear, blow-by gas flow 

(one of the important sources of AE) and oil consumption, which are in turn closely related to the 

listed three factors. Therefore, a detailed understanding of acoustic emission sources is crucial for 

developing advanced condition monitoring of diesel engine.   

 

4.2 Diesel Engine Acoustic Emission Generation 

The AE signals encountered on diesel engines are mostly stress waves travelling on the surface of the 

engine. Mechanical events that generate AE include impacts and crack formation; in addition, fluid 

and gas flows also generate AE [178]. The propagation of the acoustic emission waves through the 

engine is very complex; with non-uniform wave dispersion/attenuation, reflection/transmission 

needing to be considered.  

Neill, et al., [179] and Fog [180] have shown that for AE measurement, the distance between sensor 

and source should be reduced as much as possible so that AE signals are far more localised, i.e., 

virtually coming only from the source where they are generated. This means, however, that differential 

damping of different sources will be crucial in sensor location considerations due to material interfaces 

along the signal path [181]. Of course, it is necessary to ensure good signal conductivity from the 

surface to the sensor. 

Virtually all the theory and knowledge from vibration monitoring can be applied to AE since the two 

types of signal are generated by the same events, e.g., impacts and frictional movement, both lead to 

small movements of the structure (vibration), and micro cracking inside the material. The magnitude 

of AE signals are functions of the amplitude of the forces and wear involved, and thus many of the 

phenomena that have been used for monitoring vibration also appear in AE but because of the 

frequency ranges involved with less contaminating noise – and noise has always been the most 

significant problem with vibration measurement.   
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A review of an engine's AE sources shows that the generation of engine AE involves many different 

sources and mechanisms and that makes the AE signals very complex, in addition AE wave 

propagation in a real structure is additionally complicated by factors including internal damping, 

reflection, refraction, conversion mode and diffraction [182]. These AE signals contain not only 

stationary waveforms but also non-stationary transients, pulses and embedded noise. 

 

4.2.1 Mechanical Impact  

The impact sources in diesel engines will be related mainly to collisions between mechanical parts: 

e.g. piston slap, injector tick and valve movement [183, 184]. The following sections will describe 

both of these in detail. 

 

4.2.1.1 Piston Slap 

It is well known that the impacts between piston and cylinder may contribute significantly to the AE 

generated from diesel engines in a specific frequency range. Reducing diesel engine piston slap effects 

will reduce not only AE events, but also reduce impacts and wear of the piston and cylinder, and hence 

enable better operation of the diesel engine. 

Piston slap, see Figure 4.1, is common to all reciprocating engines, and has been the focus of 

considerable interest over the past decade or so. This interest has been stimulated by: 

 

1. The effect of waterside attack on diesel engine cylinder liners. 

2. The excessive wear on pistons, cylinder liners and piston rings. 

3. The contribution this phenomenon makes to the overall level of AE generated by reciprocating 

engines.  

Piston slap is mechanical in nature and is responsible for a considerable portion of the diesel engine’s 

overall AE events. The crank-slider mechanism of an engine between piston and cylinder inner wall 

has a very small clearance which is large enough to allow the piston’s secondary motion. Piston slap is 

the impact between the piston and the cylinder wall and represents one of the more prevalent sources 

of AE among the mechanical impact sources present in a diesel engine when compared with other 

sources such as the injection system, impacts in bearings, the valve train and the auxiliaries [185,186]. 

Piston slap occurs because of sudden variations in the forces acting on the piston in the radial direction 

of the cylinder liner. These radial forces are a function of the inertial forces acting on a piston and 
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connecting rod. When the impact occurs between piston and cylinder liner kinetic energy is transferred 

to the cylinder, and transmitted through the structure of the engine as an AE, and radiated away from 

the engine's surface in the form of noise.   

 

 

Figure 4.1 Piston slap phenomenon mechanism  

 

Many research activities in the last few years have been focused on piston slap. The investigations 

have addressed the dynamic behaviour of the piston assembly and studied the influence of radial 

clearance, engine speed and properties of lubricant on piston slap and associated phenomena.   

Griffiths and Skorecki [187] identified the final speed of the piston as a useful parameter with the 

purpose of calculating the kinetic energy of the impact, assessing the reduction in noise produced 

for different geometric-constructive configurations of the engine. They concluded that piston slap 

predominates in the low frequency range below 5 kHz, while Fielding and Skorecki [188] showed 

experimentally that the effects can extend to 5 - 10 kHz.   

Haddad, et al., [189, 190] showed that piston slap could become one of the major sources of noise 

in internal combustion engines with an optimized combustion chamber. This study analysed the 

measured vibration from piston slap and investigated the effects of load, speed and temperature, 

different operating conditions, and the use of different lubricants. 

Ungar and Ross [186] studied experimentally the effects of the impacts of the piston in alternating 

machines, confirming that they constitute an important part of the engine total noise. They 



     

95 

 

developed a theoretical description to calculate the crank angle at which piston slap occurs and to 

predict the AE. 

In 2000 D’Agostino, et al., [191], proposed a computer program for the determination of the fluid 

film force between piston skirt and cylinder wall due to the hydrodynamic lubrication mechanism. 

The finite element method has been applied by other authors to analyse the impact force. However, 

these models are sufficient only to estimate the impact forces.  

To eliminate noise generated by piston slap attention should be directed towards: 

 

1. Preventing the change of the side force by offsetting the crankshaft from the axis of the cylinder 

by an amount greater than the crank radius, but this rather drastic change in engine design is 

hardly likely to be acceptable. 

2. Close control of the piston-cylinder liner clearance as a practical solution to elimination of piston 

slap. 

 

The thickness of the oil film in the cylinder clearance plays a very important role in reducing piston 

slap and AE. 

 

4.2.1.2 Valves  

A multi-cylinder diesel engine has many intake and exhaust valves. Closing and opening of these 

valves is achieved by a camshaft and valve springs operating in precise synchronisation. AE events 

from the valves in a diesel engine arise from two sources of distinctly different origin and character, 

namely: 

1. Impact between colliding surfaces, in particular those of the valve and valve seat, and of the 

rocker arm with push rod or valve stem. Valve impact is considered to be the predominant source 

of AE. 

2. Aerodynamic noise created by gas passing between the valves and their seating, and gas flow 

over the valve face.  

 

The valve is loaded by a spring and the cylinder pressure, which varies periodically during engine 

operation. The valve impacts on the valve seat on valve closure, and the degree of impact depends 
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on the valve closing velocity, which is controlled by the dynamic behaviour of the valve train, 

particularly the force exerted on the valve by the valve spring.  

The bending of the valve cone results in a sliding motion, improper contact and valve/seat interface 

wear, which affects engine performance. Valve wear has been a problem to engine designers and 

manufacturers for many years. Work carried out previously to isolate the fundamental mechanisms 

of diesel engine intake and exhaust valve seat wear experimentally [192, 193] has shown that 

recession originates from two processes: impact of the valve on the seat on valve closure, and 

sliding of the valve against the seat as the valve head deflects and wedges against the seat as 

combustion occurs in the cylinder. These processes produce characteristic wear features on valves 

and seats. Impact on valve closure leads to the formation of a series of ridges and valleys on the 

valve seating faces and surface cracking on seat insert seating faces. Radial scratches were seen on 

seat insert seating faces as a result of sliding at the valve/seat interface.  

Studies of wear have focused on the effect of engine operating conditions such as temperature and 

load [194]. Little work has been carried out to investigate the effect of design parameters, material 

properties, valve closing velocity and the effect of reducing lubrication at the valve seat interface on 

wear. 

Research work on diesel engines has tended to place greater emphasis on investigating exhaust 

valve wear than on intake valves. Modelling approaches, used until now for predicting valve wear 

[195,196], have been simplistic and have focused mainly on the sliding contact between the valve 

and seat under the action of the combustion pressure, taking no account of the impact of the valve 

on the seat on valve closure. Most only enable a qualitative analysis rather than providing a 

quantitative prediction of valve recession.  

Most investigations dealing with diesel engine AE discuss the amount of AE generated by the valve 

but have been limited to showing the contribution the valve makes to the overall AE events by 

comparing the condition when the valves are operating normally with that when the valves are 

inoperative; this type of work is reported by Bradbury [197] and Mercy [198].  

 

4.2.2 Friction   

Many researchers have studied the frictional contributions and tribological characteristics of each 

engine component through both theoretical and experimental studies. 
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The engine frictional losses can be classified into four main components: piston/ring assembly, 

valve train system, bearing system, and auxiliaries (water pump, oil pump, alternator, etc). Figure 

4.2 shows the general proportions of the frictional loss of each engine component, although these 

proportions can be changed according to engine speed, load, and the type of engine. 

 

 
 

Figure 4.2 Representative mechanical loss distributions for a diesel engine [199]. 

 

From Figure 4.2, it can be said that most of the engine friction losses are from the piston assembly. 

Therefore, it is necessary to attack the piston assembly friction to achieve low engine friction since 

the piston assembly (piston skirt, piston rings and piston pin) accounts for about half of total engine 

friction for motoring conditions, and an even higher fraction of total engine friction for firing 

operation. Many researchers have made a great effort to understand the tribological phenomena and 

reduce the frictional losses of the piston assembly. However, the friction reduction of the piston 

assembly still remains a challenging area due to the complexities of the tribological phenomena and 

the interrelations among friction, emissions, durability, noise and vibrations, oil consumption, blow-

by, etc. The friction characteristics of the diesel engine are related to the type of lubrication. The 

main friction sources in diesel engines are: 

 

4.2.2.1 Piston Liner Assembly 

The frictional forces associated with the piston liner assembly usually consist of: 

1. Ring friction. 
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2. Piston skirt friction. This type of friction is strongly dependent on two factors: 

a) Whether the skirt contacts the cylinder bore, and  

b) How the skirt shears the oil 

3. Rod bearing friction. 

McGeehan [199] reviewed the literature for piston and ring friction and quoted sources [200, 201] 

that suggested that piston assembly friction could account for 58 % to 75 % of the total mechanical 

friction of the internal combustion engine. However, these papers were written before 1980. Recent 

literature and experience at Cummins Engine Company suggests that the total friction due to 

pistons, rings, and rods will contribute only 40 to 55 % [202-204], which is a measure of the 

progress made in the last three decades. 

Friction can be measured by motoring teardown engine tests which are commonly used and 

probably the simplest technique to evaluate engine friction [205, 206]. This test involves rotating 

the engine with a motoring dynamometer and recording the torque required to maintain a constant 

speed. By removing components from the engine it is possible to determine their contribution to 

friction. There are also other friction sources in the engine, but these contribute only a small amount 

compared to the total engine friction.  There are recommendations and contributions made in the 

literature from various companies for reducing friction.  

1 . Ford Motor Co. [202, 204, 207] methods to reduce friction: 

. Reduce ring tension (44 % reduction in tension causes a 22 % reduction in ring friction), 

. Reduce mass ‘25 % reduction causes a 0.1 psi MEP’,  

. Coated top ring,  

. Ring materials and coatings, 

. Reduce the number of rings (4 % reduction for 2 rings rather than 3 rings), 

. Optimized ring face profiles,  

. Low friction skirt and roller follower coatings ‘8 %’. 

2. Cummins Piston Ring Division [208, 209]: 

. More conformable low tension oil ring,  

. Reduced compression ring cross-section,  

. Connecting rod guided by piston (constrain the rod from moving along the axis of the engine with 

the piston rather than between the crank throws), and  

. Reduce the piston mass, 
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3. Southwest Research Institute [210]: 

. Reduce oil ring tension, 

. Reduce windage or percent of oil in the air, and 

. Reduce maximum cylinder pressure. 

Almost every company surveyed claimed that reducing ring tension (oil ring in particular) and top 

ring width would reduce friction.  

Efforts to reduce piston skirt friction yielded mixed results. Some said that reducing the contact area 

of the piston skirt would reduce friction while others said it would not. Increasing skirt clearance 

was another way to reduce friction but it was noted that this might increase cavitation problems. 

Reduced mass of the piston was cited by many as a way to reduce friction.  

 

4.2.2.2 Valve Train System 

The elements that are responsible for most of the valve train friction are:  

1. Cam / tappet interface, 

2. Cam journal bearings, 

3. Rocker arm /pivot, and 

4. Oscillatory interfaces.  

 

Valve train frictional losses typically account for 7 to 15% of the total mechanical losses of a diesel 

engine, and are generally about a quarter of that for piston assemblies. However, at low engine 

speeds their relative importance is much more equal. However, it is in terms of wear and the 

consequent reliability and durability problems that the valve train has proved to be the most difficult 

to design and lubricate effectively [211]. The design and tribological performance of the cam and 

follower have therefore historically been based on the choice of materials, specification of the 

lubricant additives and calculation of Hertzian stress. It is widely accepted that there is significant 

surface contact between the cam and follower resulting in boundary lubrication. However, in more 

recent times the role of thin film lubrication, predominantly elastohydrodynamic lubrication, has 

been recognized [211]. Figure 4.3 shows the distribution of friction losses. 

It is well known that at the start of the cam/follower event the friction is dominated by rolling and 

then subsequently by sliding of the surfaces in the presence of lubricant as the cam nose is neared. 
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Apart from the cam/follower interface, the camshaft bearings, follower/guide and valve/guide 

interfaces also contribute towards drive train friction losses. Ball, et al., [212] measured the valve 

train friction of diesel and gasoline engines and found that the form of the camshaft drive torque 

variation with crank angle was largely dictated by the cam profile and valve spring forces.  

Baniasad and Emes [213] adopted a similar approach using novel strain gauge camshaft drive 

pulleys to study the effect of engine speed and temperature on average camshaft drive torque. There 

are many possible ways in which valve train friction measurement can play a vital role. For 

example, in the design and development of cam profiles and geometry, valve timing, valve spring 

rate and lubricant formulation. It can also provide validation data for predictive mathematical 

models and provide guidance as to their further development. 

 

 

 

Figure 4.3 Distribution of valve train friction losses. 

 

4.2.2.3 Engine Bearing System 

Bearing friction contribution makes the second largest contribution to engine friction followed by 

losses from the valve train, which comes from many different sources including the crankshaft main 

bearings, connecting rod big-end bearings, connecting rod small-end bearings, camshaft bearings, 

and rocker arm bearings. Engine bearings typically represent 20 to 30% of the total engine frictional 

losses. Of the many different bearings in a diesel engine none are more critical or highly stressed 

than the connecting rod big/small-end bearings and the crankshaft main bearings. 
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At low engine speeds, the engine friction loss is more dominated by boundary lubrication than 

mixed lubrication, whereas shear loss becomes important at higher engine speeds and under such 

conditions lubricant viscosity plays an important role in defining these losses. Engine journal 

bearings operate mostly under hydrodynamic lubrication, apart from during stop/start or under very 

high loads where elastohydrodynamic lubrication and mixed lubrication can become important. A 

journal bearing consists of a shaft rotating within a stationary bush as with an engine main bearing, 

whereas in big-end bearing the bush also has angular velocity. The hydrodynamic film generated 

between the journal and bush surfaces supports the load. This feature is normally called bearing 

load-carrying capacity and is related to the bearing durability. 

Most of the reported engine bearing friction data has been calculated through the measurement of 

lubricant temperature and oil film thickness. A number of experiments have been performed to 

measure oil film thickness in a big-end bearing using the total capacitance technique [214–218]. 

Bates, et al., and Spearot [219] and Murphy [220] also measured oil film thickness by the total 

resistance method to investigate bearing performance. Suzuki, et al., [221] and Choi, et al., [222] 

measured minimum film thickness using the total capacitance method and compared the data with 

the predicted results. Choi, et al., [223] carried out evaluation of friction in engine bearing from 

crankshaft temperature measurement. Cho, et al., [224] measured the big-end bearing film thickness 

by using the total capacitance method and a scissor-type linkage called a grasshopper linkage to 

bring the wiring out of the engine crankcase. Irani, et al., [225] used capacitive measurement 

technique to measure hydrodynamic lubricating oil film thickness in the middle main bearing of a 

heavy-duty six-cylinder diesel engine. Measurement of oil film thickness as a function of the crank 

angle was carried out with a variation of the engine speed, load, and oil temperature. Masuda [226] 

measured the bearing film pressure distribution on a test rig using semiconductor-type pressure 

transducers. Schilowitz and Waters [227] successfully measured the oil film thickness in the main 

bearing of an engine in an operating vehicle. Mihara, et al., [228] successfully used a thin-film 

pressure sensor made of manganin to measure oil film pressure during engine operation. 

Helena, et al., [229], on a test rig, measured oil pressure in a journal bearing using an optical sensor. 

Warrens, et al., [230] used a relatively new, commercially available dynamically loaded journal 

bearing rig to study the effect of different viscosity modifiers on friction performance. Mufti, et al., 

[231, 232], on a custom made rig, measured oil film thickness in a journal bearing using eddy 

current sensors. Tanaka [233] successfully used a transparent bearing to study the effect of oil 

cavitation on a test rig. Cerrato, et al., [234] modified the main bearing of a single cylinder engine, 
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extensively modifying the bearing housing, to measure the frictional performance. Similarly, other 

researchers like Syverud [235], Sinanoglu, et al., [236], Sorab, et al., [237], Tseregounis, et al., 

[238], and Unlu and Atik [239] have carried out interesting experiments on test rigs, looking at 

details such as the effects of temperatures, pressures, oil film thickness, etc. on journal bearing 

performance. 

From the above review, it is clear that oil film measurements have been carried out by numerous 

researchers but none have measured engine bearing friction in a real firing engine without any 

major modification to the bearing housing. 

 

4.2.2.4 Auxiliaries 

Engine auxiliaries comprise about 20-25% of the total engine friction losses. Engine auxiliary 

power losses come from such built-in accessories as turbo, pumping losses (coolant pumps, oil 

pumps and fuel injection pumps) as well as those that are external such as fans, generators, air 

conditioning, and power-steering pumps. Of these components the oil pump will be the focus since 

the fuel pump, whether inline or distributor type, are cam driven against roller followers and the 

basic friction losses are closely related to those covered in the valve train friction section, while the 

power to drive the coolant pump is rather low in comparison. 

The report by Steward and Selby [240] shows a number of examples of how reducing oil viscosity 

will reduce engine friction. But it was also shown that reducing the viscosity could cause significant 

increase in wear. However, cases were also shown where different additives to the oil could lessen 

or eliminate the effect of the low viscosity on wear.  

As the reports above indicate, lower viscosity oils may lead to increased wear. In particular, wear 

will increase around Top Ring Reversal of the cylinder bore. This increase in wear may be reduced 

by: 

1. Improving the design of the piston and ring, 

2. Improved oil formulations, and 

3. Material which have a high resistance to wear. 
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4.2.3 Other Sources 

Fluid and gas flow are also common sources for AE in diesel engines. The most significant gas flow 

restriction in a diesel engine is the flow through the intake and exhaust valves, which plays an 

essential role in determining residual gas fraction which have an important influence on fuel 

consumption and emissions, and the important fluid flow is that through the injector. Turbulence 

generated in a diesel engine is defined anisotropic and an AE signal generated by the turbulent or 

cavitating flow through the orifice can be detected by AE sensors. The gas flow processes into, 

through, and out of a diesel engine is all unsteady - that is the pressure, temperature and gas particle 

velocities vary with time. Both large-scale and small-scale turbulence have a drastic result on 

combustion, flow-mixing and heat-transfer in an engine [241]. The major source of energy for 

turbulent velocity fluctuations is shear in the mean flow, e.g. jets [242], but the velocity gradient at 

the wall in the boundary layer produces large vortices which are unstable inside the chamber and 

eventually break down into additional turbulent motion.  

The fluid flow through the orifice of the injector is associated with four components:  

1. Pressure build up in the injector (this includes a small impact between needle and valve seat 

before the needle is fully open). 

2. Needle lift (mechanical impact between needle and its backstop and fluid flow through injector 

nozzle). 

3. Needle closing (mechanical impact between needle and its seat and fluid flow through injector 

nozzle). 

4. Back pressure fluctuations in the fuel line (repeated reflections of back pressure between needle 

and plunger of the fuel injection pump in the fuel delivery line after needle has closed). 

Typically, the injection process is a combination of needle impacts and the high pressure fuel flow 

within the injector body. Gu and Ball [243,244] have studied needle dynamic behaviour in the 

diesel engine injection process and have developed a dynamic model for the needle motion of a 

typical single-stage, hole-type injector of a direct injection diesel engine and compared it with 

experimental results for the vibration response from an injector body. They describe the vibration 

characteristic of injectors by three series of transients during an injection cycle; fluid excitation 

beginning prior to needle opening impact, needle opening impact and needle closing impact. Gill, et 

al., [245] also have observed the injection process using AE and vibration methods and found that 
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AE detected activity starting with the build-up of fuel pressure in the high-pressure pipe prior to the 

opening of the needle valve, which did not appear in the vibration signal.  

Crack formation is also a source of acoustic emission in diesel engines. Crack formation appears 

after many repetitive cycles of use and can affect even high-strength materials. The onset of crack 

formation can be the result of surface impact due to relative motion. The impact factor could be 

from residual stresses in the component due to the impact, the stress concentration associated with 

the shape of the impact stem and incipient micro-cracks formed during impact, or plastic work in 

the material or distortion of the microstructure. Cracks in the bearing (connecting rod bearing) 

could be the effect of cavitation and crack formation in the liner may be reduced by ensuring the 

piston had a low coefficient of friction, experienced only small impacts, or high strength materials 

were used [246].   

Wear is inevitable for engine parts in sliding contact. The amount of wear depends on material 

pairs, surface topography, working conditions and chemical effects of the environment. It is 

impossible to completely prevent wear, but since it leads to large economical losses it is the subject 

of much research in many disciplines. Any empirical relation is difficult to develop because the 

relevant factors are not predictable. Seventy five percent of the wear in an engine occurs during the 

heating up period, because of the poor lubrication at that time. The lubricant normally forms a thin 

film to prevent metal–metal contact. When the engine is not in operation, the lubricant drains to the 

bottom, and it takes time to form a complete film after starting up. Since the hardness of the surface 

is higher and the roughness is less effective wear at this stage is expected to be less. 

The most severe wear occurs on the cylinder surfaces in diesel engines. On the upper portions of the 

cylinders, lubrication is poorer comparing to other regions, because the lubricant that reaches here is 

then partly burnt. Pistons, valves, and piston rings are the other elements subjected to severe wear. 

The wear in cylinders is the result of the physical and chemical effects of combustion, cooling, 

friction, and lubrication. To eradicate or at least to reduce the wear at the cylinder-piston-ring 

system, the surface of the cylinder tube is continuously lubricated. 

The primary reason for wear is the failure in lubrication. During the engine’s operation, on the one 

hand the cylinders are continuously lubricated; on the other hand the rings strip off the oil, and 

cause metal–metal contact. Abrasive wear particles on the cylinder form deep grooves on the 

surface. The wear rate is not the same on all parts of the cylinder. The most severe wear occurs at 
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regions near top dead centre (TDC), the least lubricated region because the flame removes the 

lubricant and constitutes thermal shocks. The regions near to bottom dead centre (BDC) are the 

least worn regions because these regions are least exposed to the flame and are best lubricated.  

 

4.3 Background Noise  

Background noise is unwanted signals picked-up from sources that are not relevant to the source 

being monitored and can have electrical and/or mechanical origins. Precautions against such 

interfering noise should always be taken, even though enormous progress has been made since the 

early use of AE technology. In diesel engines AE events will almost certainly be generated from 

more than just the source of interest and will be a complex combination of combustion, impact and 

flow generated AE. These AE signals must be identified or eliminated in order to discriminate them 

from the signals of interest generated by the engine. 

A basic starting point for eliminating these unwanted signals is the selection of an appropriate 

frequency range for the application. Background noise coming from longer distances usually 

consists only of frequency components below 20 kHz, and so has only a small influence on the 

measurements higher than 20 kHz.  It has been found that 100 kHz to 1MHz is a suitable range for 

the study and monitoring of diesel engines. Further studies are needed to narrow the range and 

improve the accuracy of AE monitoring. Noise elimination could be a key factor to successful use 

of AE inspections in some difficult industrial applications such as on-line monitoring of welding 

and the detection of fatigue crack growth in flying aircraft [247, 248]. 

Electrical noise problems can be eliminated by using differential sensors or sensors with built-in 

preamplifiers and selecting proper thresholds.  

 

4.4 Acoustic Emission Processing 

4.4.1 Measurement of Acoustic Emission 

There are several methods of measuring absolute surface displacement which involve capacitive, 

electromagnetic and laser-optical measurement techniques. However, practical difficulties in 

applying these methods in an industrial environment have meant that the vast majority of AE 

monitoring has used resonant transducers based on piezoelectric elements. These sensors have 

proven to be suitably sensitive and robust to the extent that they have become accepted as the norm. 

The material used for the active element is most usually lead zirconate titanate (PZT), a 
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piezoceramic; although it has been shown that it is equally feasible to use other piezo-active 

materials such as polyvinylidene diflouride (PVDF) [249].  

 

 

Figure 4.4 Schematic of an AE sensor [10]. 

 

The construction of a piezoelectric AE sensor is shown schematically in Figure 4.4. These sensors 

rely on the fact that a voltage is generated in proportion to the compression of the piezoelectric 

element; hence nanometre surface displacements are converted into an electrical signal. However, 

the output of most piezoelectric sensors is not an accurate description of the surface movement 

under inspection. Rather, the AE signal, i.e. the sensor output, is the sensor’s response to the forcing 

transient waves.  

This is influenced by the sensor construction and consequent frequency response, the amplitude 

sensitivity and associated self-resonance (ringing after initial excitation), and also by whatever 

means the sensor is coupled to the material. 

The sensor response characteristics are determined by the geometry of the piezoelectric element. 

These can be manufactured in a variety of forms so as to offer a range of resonance frequencies and 

sensor sizes for various applications, although for sensor selection there is usually a compromise 

between bandwidth and sensitivity. If prior information is known about the source frequency 

characteristics then narrowband sensors can be selected to provide high sensitivity, conversely, if 

source characteristics are unknown then broadband sensors with lower sensitivity are available. 

With regards to monitoring of machinery the AE sources of interest have typically broad and varied 



     

107 

 

frequency contents and therefore broadband sensors are generally required if all mechanical and 

fluid processes are to be considered. Moreover, since most of these sources are of reasonably high 

amplitude the loss of sensor sensitivity is less important than the broadness of the frequency 

response. A further factor in sensor selection is the anticipated source to sensor transmission 

distance. Given that higher frequencies suffer from greater attenuation they have an inherently 

smaller detection distance and therefore the spatial range of a sensor is indirectly determined by its 

resonance frequency. 

The use of resonant sensors incurs further distortion of the original source AE, but this is tolerable, 

and somewhat unavoidable, since these transducers represent the most practical means of measuring 

emissions in the upper frequency range. Although the impact of this may be minimal for 

comparative work when a consistent set-up is used, it can be a problem when absolute 

measurements are required. Furthermore, the lack of a universally accepted, and applied, method of 

signal calibration means that quantitative comparison of test results obtained from different 

detection systems is highly questionable. 

Attempts have been made to overcome this problem through signal normalisation and 

characterisation of AE sensor response to reproducible broadband sources such as pencil-lead 

breaks [250], glass capillary breaks [250, 251] and helium gas jets [252]. However, there are 

problems with this approach, particularly since the generated waveforms are reproducible only at a 

single point on a given structure and even then although the structure can generally be well-defined 

the amplitude is dependent upon the source energy. As a result these methods are not universally 

employed in practice; rather they tend to be used as a check to ensure the functionality of the AE 

detection system and to confirm the quality of sensor coupling. A further use for these reproducible 

sources is to investigate AE propagation in structures, in which case the acquired signals are 

required to be normalised as a function of the source energy. 

There are several other essential components in an AE measurement system. Signal amplification is 

necessary and is provided either integral to the sensor or externally via a pre-amplifier. Filtering of 

the signal is necessary to eliminate unwanted frequency components and background noise. The 

range of this filtering can typically be varied to suit the application although a prerequisite is the 

removal of any low-frequency energy and this lower limit varies from 20 to 100 kHz. Analysis of 

the frequency content via conventional spectrum analysers, rather than time-series data, was also 

much used. 
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RMS averaging of the raw signal used to be commonly used in the acquisition of AE data. This 

significantly reduces the required sampling rate thus allowing the use of less sophisticated data 

acquisition equipment. However, this was at the expense of information loss, both of the fine detail 

of the raw AE waveform and of the associated spectral content. Some researchers use specific 

circuitry which does not acquire and store data for future analysis but instead analyses the signal in 

real-time through the extraction of waveform features.  

Today Analogue to Digital converters continuously digitise raw AE signals at full bandwidth, i.e. at 

sampling rates up to several MHz, and store this data for future analysis. Prior to this, digitised 

acquisition of raw AE was limited to small data batches that for many applications were insufficient 

to permit a full investigation.  

 

4.4.2 AE Analysis and Signal Processing Techniques 

There are two basic types of AE signal. The first is burst-type emission, where the signal consists of 

clearly defined ‘events’ as shown in Figure 4.5(a). These events are characterised by amplitude 

significantly larger than the background level, distinct sharp signal rises and close to exponential 

decays, and individual pulses can be well-separated in the time-domain. The second type is 

continuous emission; this occurs when burst generation is so rapid that the signal appears 

continuous and resolution of individual events is not possible.  

 

Typically, signals acquired from machinery will be a combination of both to varying degrees, for 

example, Figure 4.5(b) shows a raw AE signal measured from the surface of a running engine in 

which a number of overlapping burst- and continuous- type events of varying amplitude are evident. 
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Figure 4.5 (a) Examples of AE emission types, (b) typical AE signal acquired from a running 

engine. 

 

4.4.2.1 Time-Domain Analysis 

There are various means by which AE signals can be processed and evaluated in order to extract 

information useful for condition monitoring, the most fundamental being the characterisation of 

signals with regards to the behaviour of the object under observation. The most common method for 

achieving this is time-domain characterisation of burst-type events through extraction of waveform 

parameters. This typically involves monitoring the sensor output continuously for activity that 

exceeds a predefined threshold level. When this occurs an event is registered and the signal is then 

processed to extract parameters such as those identified in Figure 4.6, these include; peak 

amplitude, event rise time, event decay time, signal duration, AE event count and AE count rate. 

 

Of all the waveform descriptors, the measure of threshold crossing counts has probably been the 

most widely used, likely due to the simplicity of measurement system required and the applicability 

for both burst and continuous type emissions. However, there are disadvantages associated with the 

sole use of count parameters to describe AE signals. 
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Figure 4.6 Typical time-domain parameters extracted from AE Signals [252]. 

 

These were outlined by Beattie and Jaramillo [252] who stated that firstly, AE count rate considers 

the amplitude of a signal only indirectly in that a large amplitude signal will usually persist for a 

longer time than a low amplitude signal, thus producing more counts. Secondly, for two signals of 

equal amplitude and duration, the one with the higher frequency content will register most counts. 

They suggested that a more quantitative measure is desirable, with the most obvious being the 

amount of AE energy emitted. 

A further problem with applying threshold-based analysis to machinery monitoring is that burst 

type activity is often accompanied by a high level of continuous signal. If the burst activity is 

generated from a fault-related source, such as the early signs of wear, then this may effectively be 

buried in the continuous signal, which can make identification via threshold-analysis difficult. 

Therefore, to fully preserve the possibility of incipient fault detection and to better understand AE 

generation from machinery, continuous and mixed AE should be analysed by other means. 

AE energy is a measurement parameter used extensively in AE monitoring. However, the 

calculation of energy is open to interpretation. The energy is taken as the area under the absolute of 

the signal, as defined in Equation 4.1; this is in contrast to a number of researchers who define AE 

energy as the area under the square of the signal. 

 

  ∫ | ( )|  
 

 
                                                                                                                               (4.1) 
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Where| ( )|, is the absolute amplitude of the AE signal in volts, t  is time in seconds and E  is the 

AE energy in V.s. 

 

A point to note regarding Equation 4.1 is that although it is presented in relation to time this does 

not preclude the use of other bases. For instance, for AE acquired from rotating equipment the AE 

signal is often transformed from a time-domain waveform to one which is a function of angular 

displacement. The resulting AE energy is then also an angular-domain parameter and the integration 

limits may be angular positions, as defined in Equation 4.2. 

 

    ∫ | ( )|  
 

 
                                                                                                                           (4.2) 

 

Where| ( )| is the absolute amplitude of the angular-domain AE signal,   is angular position in 

degrees,    is the angular-domain AE energy, and a and b are angular positions. 

 

A further parameter widely used to indicate energy is the Root Mean Square (RMS) value of the 

raw AE signal, calculated using Equation 4.3. 
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Where x is the data value at a discrete point in time and N is the total number of data samples in the 

selected time period. Root Mean Square (RMS) of a signal can be measured also using this 

equation:  
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                                                                                                              (4.3a) 

 

Where  ( ), is the instantaneous value of the signal at time t and       is the RMS value of  ( ) 

for the time period T. 

This can be applied as post-acquisition processing in which the RMS value for each successive time 

window is calculated, as shown in Figure 4.6 for a burst-type event. Otherwise, a signal averaging 

circuit can be in-built into the acquisition equipment which continually calculates the RMS value 

over a sliding time period. This allows data acquisition at a lower, more conventional rate thereby 



     

112 

 

bringing about a significant reduction in data size. This can be beneficial when analysis of many 

hundreds or thousands of lengthy acquisitions is considered as analysis of raw waveforms can be 

extremely computationally intensive. 

Further simple statistical parameters are commonly used to describe signals such as the mean, x , 

standard deviation, σ, and variance, 2 , as defined in Equations 4.4, 4.5 and 4.6 respectively. These 

can be applied to a whole signal, to sections, or windows, of a signal, or to determine variation 

between sets of signals. 
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Other statistical indicators often used are the skewness and kurtosis [253] as well as crest, impulse, 

clearance and shape factors. Kurtosis and skewness are statistical parameters that can be used to 

describe the graphical representation of the AE signal population. Kurtosis characterises the relative 

peakedness or flatness of a distribution compared to the Gaussian distribution. Positive kurtosis 

indicates a relatively peaked distribution. Negative kurtosis indicates a relatively flat distribution. 

Kurtosis is defined as 
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Skewness characterises the degree of asymmetry of the distribution around its mean. Positive 

skewness indicates a distribution with an asymmetric tail extending towards more positive values. 

Negative skewness indicates a distribution with an asymmetric tail extending towards more 

negative values. The Gaussian distributions produce a skewness of zero.  
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4.4.2.2 Frequency-Domain Analysis 

Frequency-domain analysis offers further options for investigation of AE signals, and is a proven 

technique for machinery diagnostics. This has been established through a long association with 

vibration monitoring where spectral analysis is considered one of the principal analytical tools and 

is used in many commercial monitoring packages. 

Since AE is regarded by some as an extension of vibration monitoring, in that both are 

measurements of surface motion as a function of time, the transfer of many diagnostic principles 

from the latter to the former has been accomplished.  

In general, frequency analysis involves the decomposition of time-series data into the frequency 

domain; this is typically achieved as an estimate through an algorithm known as the Fast Fourier 

Transform (FFT). For many applications this method alone is sufficient to describe the signal. 

However, other algorithms have been developed which implement the FFT in order to estimate the 

distribution of the signal energy in the frequency domain, the principal methods for this are known 

as the Power Spectral Density (PSD) and Welch’s PSD estimate [254]. 

Regarding condition monitoring, analysis of frequency spectra can be similar to time-domain 

analysis, in that deviations from the expected normal condition may be indicative of faults. Some 

frequency parameters are directly associated with aspects of normal machine operation such as 

running speed or resonance, however, the development of faults may result in the emergence of 

discrete frequencies which can be related to the physical behaviour of individual machine 

components, and AE spectral analysis is used to distinguish between different types of source 

mechanism which is of benefit when investigating events of unknown origin.  

A further approach commonly used is to filter the signal to separate it into its constituent parts. If 

the filter is carefully constructed then this can then allow increased focus on specific events through 

enhanced signal-to-noise ratios. 

There are some problems in using frequency domain analysis and the common one is the energy 

leakage and the low resolution. This energy leakage can be reduced by employing a window 

function, such as a Hanning window. 
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4.4.2.3 Time- Frequency Domain Analysis  

Time- frequency domain analysis is an attractive approach which analyses AE signals in the time-

frequency domain. This is useful because many acoustic emissions are transient signals whereas 

stationary characteristics are assumed by the classical Fourier approach. For transient AE signals, 

the early parts of an event can often provide more information concerning the AE source than the 

main stream because the latter is often distorted by the effect of multiple reflections during 

propagation. The significant progress made in time-frequency analysis in the past twenty years 

provides tools to investigate the characteristics of frequency in these transient processes. 

The most widely used time-frequency methods include the Short-Time Fourier Transform (STFT), 

Wavelet Transforms (WT) and Wigner-Ville Transform (WVT). The Wigner-Ville Distribution 

(WVD) was first successfully used to analyse transient AE signals for condition monitoring by 

[255] Newland at the University of Manchester. 

The STFT can be defined as: 

 

  (   )  ∫  ( )
 

  
 (   )                                                                          (4.10) 

 

It employs a moving window ω (t - τ) to the measured AE signal x (t) when performing the Fourier 

transform. If the time window is narrow enough, a good time resolution can be achieved, but at the 

cost of reduction in frequency resolution. This will not be troublesome in the analysis of AE signals 

because high frequency resolution is not often necessary for such high frequency signals. This 

technique will be used to analyse the AE signals acquired during the experiments. 

Wavelet transforms are techniques introduced in the 1980s to process transient signals, particularly 

to reveal local disturbance, and have been applied by many researchers to the field of fault 

diagnosis. The pioneering work was carried out by Newland [255,256] who introduced the wavelet 

transform into the analysis of mechanical vibrations. It has been widely recognised that the wavelet 

transform is an effective technique for machinery fault diagnosis. In the past 10 years, numerous 

studies have been published in the field of condition monitoring and fault diagnostics which have 

included signal processing in the time-frequency domain for the detection of transient signals and 

extraction of fault feature or weak signal components [257].  

Wavelet transform has been used to process AE signals. Qi [258] demonstrated the effectiveness of 

wavelet-based AE analysis to characterise fracture behaviour in composite materials. Jeong [259] 
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applied a Garbor wavelet to analyse the AE event generated in anisotropic composite laminates and 

found it an effective tool to analyse the wave propagation in a dispersive medium. Ding, et al., 

[260] used a wavelet packet transform to accurately estimate the arrival time of AE events based on 

the decomposition of the AE signal. These studies show the effectiveness of wavelet transform in 

the analysis of AE events, particularly single burst AE. No paper has been found in the literature 

that has applied this technique to the analysis of a continuous AE signal or a train of burst-type 

acoustic emissions. 

 

4.4.3 Feature Extraction and Pattern Recognition 

A number of other approaches exist for AE signal processing which do not involve applying a 

threshold, which are applicable for burst and continuous type emissions, and for both time- and 

frequency- domain information. Although the work in this thesis does not apply these techniques it 

is considered worthwhile to provide a brief review. 

Many of these methods are considered attractive to condition monitoring as they introduce some 

form of automation to the analysis process and therefore lend themselves well to real-time 

monitoring. Also, they can be adapted to quickly handle large amounts of data and to identify 

changes in signals, or signal features which do not conform to the expected case. A further point is 

that many of these processes are purely statistical in nature, and require minimal interpretation of 

the complex AE signals with regards to the material or component behaviour. Hence, they are 

generic and transferable over applications as is borne out in the wide range of data processing 

problems to which they have been applied, such as speech recognition, machine vision, medical 

diagnostics and financial market analysis. 

One technique used for isolating significant features from large and often complex datasets is 

Principal Component Analysis (PCA). This is a form of higher-level statistical analysis whereby 

variance is analysed and a simplified description of the data is returned which preserves as much 

statistically relevant information as possible. The removal of redundant features is deemed 

desirable, especially for the large datasets which AE monitoring usually generates, as it permits the 

application of further statistical classification and diagnostic aids. 

Independent Component Analysis (ICA) is a further signal isolation technique, and is considered an 

extension of PCA. It assumes that the measured signal is a composite of separate signals which can 

be resolved using ICA algorithms based upon the assumption that the source signals are statistically 
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independent. The outcome is the source signals and also a measure of their separation effectiveness, 

i.e. how strongly they appear in the measured signal. This technique is especially useful for 

extracting low-level or hidden signals, which may otherwise be obscured by dominant sources. 

Pattern recognition techniques are extensively used in condition monitoring applications, either 

using simple time-domain parameters, or in combination with feature extraction or other analytical 

processes. The overall aim with pattern recognition is to ascertain the condition of an item through 

comparison of measured signal parameters against a reference bank in which signals over varying 

conditions are mathematically and statistically well-defined. A best-match is identified and the 

acquired signal is then classified as representative of that particular condition. One drawback with 

this process is that in order to minimise misclassifications prior knowledge is required of all 

conditions that may be encountered. This may be impractical due to the many different operating 

conditions and fault scenarios; hence the pattern recognition process may, in application, be limited 

to differentiating between normal and abnormal conditions. 

Neural networks have regularly been used to recognise and classify complex fault patterns without 

requiring a great deal of prior knowledge about the process, the signals, or the specific fault 

patterns. Neural networks are structured in layers of interconnecting processing elements (neurons), 

with the behaviour of the network determined by the weights associated with each connection. 

These weights can be adaptively trained using example signals to associate a particular input pattern 

to an output classification. Hence, if something similar to that pattern is presented again then the 

network will recognise it and return the appropriate output. Many output possibilities can be 

programmed in this manner and it is not unusual to have several processing layers in order to 

achieve an output classification. Neural networks are adept at handling large amounts of data in a 

short period of time and are therefore useful for real-time analysis and for data fusion, i.e. the 

amalgamation of information obtained from a variety of sensory inputs. 

Further generic signal processing tools include fuzzy logic and expert systems. Fuzzy logic is a 

technique used when fault threshold values for conventional time-domain and frequency-content 

analysis are felt too rigid to suit the complex nature of mechanical condition monitoring. Expert 

systems is a term used to describe the application of knowledge-based procedures and programs that 

are the equivalent to the knowledge, or reasoning processes, that would be expected from human 

experts in a particular field. 
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CHAPTER FIVE 

MATHEMATICAL MODEL OF PISTON 

SLAP AND FRICTION IN A DIESEL ENGINE 

 

 

 

 

 

In this chapter a mathematical model is developed for the numerical simulation of the behaviour of 

the four-stroke diesel engine used in the test rig, and subsequently for predicting the impact and 

friction forces between piston assembly and cylinder wall responsible for piston slap signatures and 

friction. The model consists of a piston displacement equation, piston acceleration equation and 

piston motion equation. In addition, a hydrodynamic lubrication model is developed for piston slap 

phenomenon and friction. 
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5.1 General Concepts 

This chapter describes a mathematical model developed to simulate the work cycle of a healthy 

four-stroke diesel engine, and to simulate the consequences of piston slap and piston friction. The 

fundamental idea is that piston slap is initiated when the connecting-rod side force changes 

direction either due to changes in the connecting-rod angle, or the connecting-rod force (from 

compression to tension or vice versa). The piston’s impact against the cylinder bore and friction are 

significant sources of AE events and energy loss and can lead to cavitation wear on the cooling side 

of the liner, while its motion along the cylinder bore generates friction and transports oil, thereby 

affecting wear of the piston, rings and liner, and contributing to oil consumption.  

Factors effecting the piston slap and friction are [261]:  

1. Cylinder liner temperature, 

2. Oil film thickness between piston skirt and cylinder liner, 

3. Lubricant viscosity, 

4. Engine speed, 

5. Piston skirt profile, 

6. Piston skirt size, 

7. Piston skirt waviness, 

8. Piston skirt roughness, 

9. Skirt-liner clearance, and 

10 Wrist-pin offset.   

Piston skirt lubrication is provided by lubrication oil which is, in general, picked up from the oil 

sump and thrown onto the cylinder bore by the motion of the crankshaft. In some engines, 

lubrication oil is also sprayed onto the underside of the piston or other locations within the power 

cylinder system. The lubrication is then transported along the cylinder bore by the motion of the 

piston, piston rings and gravity. Lubrication oil is also transported around the system when it is 

entrained in blow-by gases. The lubrication oil leaves the cylinder bore in three ways: oil returns to 

the sump: oil entrained in the blow-by gas leaves the system via the crank case: or oil is consumed 

in the combustion chamber.  

The engine process is the basis for the model simulating piston slap and friction AE events but due 

to the complex nature of oil transport within the system and inaccessibility for experimental 

confirmation, it is often impossible to accurately predict the location and thickness of oil films 

within the system.  
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5.1.1 Piston Slap 

As stated, piston slap is caused by changes in direction of the piston side force. This event occurs 

many times in an engine cycle; however, major piston slap has been found to occur near TDC 

during firing. This is due to the fact that at this time the impact energy is greatest due to the high 

pressures in the cylinder chamber [262]. While high levels of engine noise have warranted in major 

changes in diesel engine design geometry, piston slap is reduced simply by changing the geometric 

parameter of the piston known as wrist-pin offset [263, 264, 265, 266]. Offsetting the piston has the 

effect of reducing slap impact since movement of the piston form from one side of the cylinder to 

the other occurs prior to peak cylinder conditions, and thus with less impact energy. This has 

generally been used for reduction of AE events caused by piston slap in diesel engines and has 

proved to be successful, relative to other event source levels.  

Without wrist-pin offset the piston simply traverses from the anti-thrust side to the thrust side, when 

the side force on the piston changes direction. This usually occurs near peak cylinder pressure 

conditions, which causes a steep piston side force curve, and in turn, causes higher impact intensity.  

The effect of wrist-pin offset is to cause the piston to tilt when the cylinder pressures become 

significant, in an orientation such that the bottom of the piston makes initial contact with the thrust 

side of the cylinder liner. As stated, this occurs before peak pressure conditions, and thus the 

intensity of impact is minimised. The reaction force due to contact at the bottom of the skirt 

combined with the change in direction of side force causes the piston to tilt in the opposite 

direction, causing another minimal impact between the top of the piston skirt with the cylinder liner. 

This two phase impact technique of lowering piston slap impact intensity has proven to be effective 

in low-noise engine design. 

However, with the development of high speed, low weight engines, more study is needed of the 

dynamics of piston slap and the factors affecting it, rather than the quick answer of varying wrist-

pin offset. Limited studies on the engine conditions affecting piston slap in diesel engines have been 

undertaken, including engine load and speed effects [267], and clearance effects at low speeds 

[268]. In addition, studies of the dynamics of the piston using displacement measuring techniques 

have also been accomplished [269, 270]. However, there is need for a more complete picture of the 

dynamics of the piston during piston slap, and the engine conditions and parameters affecting its 

intensity. Also, there has been little understanding of the role of the oil film in damping the impact, 

since prediction of the oil film is extremely difficult, and there are no adequate ways of measuring 

this parameter.  
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5.1.2 Piston Friction      

The diesel engine frictional losses can be classified into four main components: piston assembly, 

valve train system, bearing system, and auxiliaries (water pump, oil pump, alternator, etc). Figure 

4.2 shows the general proportions of the frictional loss for each engine component, although these 

proportions will change according to engine speed, load, and the type of engine [270]. 

From Figure 4.2, it can be said that most of the engine friction losses are from the piston assembly 

(piston skirt, piston rings and piston pin) which accounts for nearly half of the total engine friction 

for motoring conditions, and an even higher fraction of total engine friction for firing operation. 

Thus, it is necessary to attack piston assembly friction to achieve low engine friction. Many 

researchers have made a great effort to understand tribological phenomena to reduce the frictional 

losses of the piston assembly. However, the friction reduction of the piston assembly still remains a 

challenge due to the complexities of the tribological phenomena and the interrelations between 

friction, emissions, durability, noise and vibration, oil consumption, blow-by, etc. 

 

 
 

Figure 5.1 Stribeck diagram showing the various regimes of lubrication [263]. 

  

In general the characteristics of the lubrication phenomena in the piston assemblies can be 

explained using the Stribeck curve. Figure 5.1 shows a general Stribeck diagram representing the 

various lubrication regimes. The Stribeck diagram classifies the lubrication regime into three 

regions: boundary lubrication, hydrodynamic lubrication, and mixed lubrication. In the boundary 
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lubrication region, the asperities between two rubbing surfaces come into contact and become dry 

friction. Surface properties and lubricant additives affect the friction losses in this region and the 

friction coefficient is independent of lubricant viscosity, surface speed, and load. In the 

hydrodynamic region there is no direct contact between the two surfaces. The lubricant film 

separates the two surfaces completely and friction losses in the hydrodynamic region mainly come 

from shear forces of the fluids moving at different velocities between the two surfaces. The mixed 

lubrication region lies between these two extremes. 

 

Basically the main functions of the piston ring assembly are to seal:  

1. The high pressure combustion chamber from the crankcase, and 

2. The oil in the crankcase from the combustion chamber.  

 

Optimized piston/ring pack designs should fulfil these functions with minimum friction losses and 

wear. That is, the tribological characteristics such as friction, lubrication and wear of the piston/ring 

assembly are equally important. However, in this study the main concern will be concentrated to the 

friction losses of the piston assembly. 

The lubrication phenomena of piston rings are extremely complicated due to the variation of piston 

speed, piston ring dynamics and interactions of the cylinder gas and lubricant film between the ring, 

ring groove, and the cylinder liner. Many researchers have made progress in analysing the 

lubrication phenomena of the piston assembly. The results of their research have proven that the 

basic frictional mechanism of the piston assembly is the combination of boundary, mixed and 

hydrodynamic lubrication.  

As the oil viscosity, piston speed, and load are changed, the lubricant regime of the piston assembly 

also changes. As the piston approaches TDC and BDC, the piston speed becomes zero momentarily 

and the duty parameter (the x-axis) in the Stribeck curve approaches zero. Therefore, the lubrication 

regime near the TDC and BDC positions becomes boundary lubrication. At the mid-piston stroke, 

the piston speed is a maximum value and hydrodynamic lubrication becomes dominant. Mixed 

lubrication occurs during the transitions between hydrodynamic and boundary lubrication. On the 

up-stroke, the squeeze film effect of the oil can delay the transition to mix and boundary lubrication. 

In addition to the complicated friction mechanism of the piston/ring, the friction reduction of the 

piston/ring is also interrelated with oil consumption, blow-by, wear and other engine durability 

problems. Therefore, it remains a challenging problem to reduce the piston assembly friction losses. 

Recently however, the AE technique as developed at Huddersfield University will be used in 
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monitoring piston slap intensity and piston assembly friction, and will thus provide an 

understanding of the impact forces. 

 

5.1.3 Characteristics of Piston Assembly Friction 

The friction measurement of the piston assembly under engine firing condition is still a challenging 

problem. This is why in this research the piston assembly friction measurement under firing 

condition was done by using the AE technique. 

 

Engine friction can roughly be divided into: coulomb friction (dry friction) which occurs when 

asperities between two surfaces moving relative to each other come into contact, and fluid friction 

which develops between adjacent layers of fluid moving at different velocities. The actual degree of 

friction in and between engine components can seldom be put neatly into either of these categories, 

but instead will lie somewhere between these two extremes because the load on, and velocity of, 

engine friction surfaces always vary when the engine is operating. 

This means that there is a continuum between dry friction and fluid friction and the place on this 

continuum is dependent on such factors as: component geometry, surface roughness, relative 

velocities of the moving surfaces, normal loads and various rheological properties of the lubricant. 

This continuum approach is exemplified by what is commonly known as a Stribeck curve. Figure 

5.1 shows a generic example of this curve.  

 

5.2 A Review of Previous Work  

Early work in this area [186-190] was focused on reducing engine noise and vibration and began 

with rigid body, frictionless models of the piston-cylinder system based on idealised joint 

constraints and a variety of additional simplifications. These models were initially used to solve for 

the crank angles at which the lateral force on the piston is reversed, causing piston slap to occur and 

to develop an idea of which parameters were likely to affect piston motion. They were later 

developed into more sophisticated models that were used to investigate the effect of variations in 

piston-cylinder bore clearance and wrist-pin offset. Experimental results obtained by Skorecki [187] 

confirmed that piston slap is a significant source of engine noise, particularly in the range of 2 kHz 

to 4 kHz and were used both to confirm the trends predicted by the model simulations and to 

investigate the effect of varying lubrication conditions on piston slap.   
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In 2000 D’Agostino et al [191] proposed a computer program for the determination of the fluid film 

force between piston skirt and cylinder wall due to the hydrodynamic lubrication mechanism. The 

finite element method (FEM) has also been applied by other researchers to analyse the impact force. 

However, the models as well as the FEM were not sufficient to estimate the impact forces. This is 

because the basic mechanism associated with the piston slap is related to the mechanical elements 

of engine block in a non-simple way. 

More recent work has emphasised modelling of the oil film. The average Reynolds equation 

developed by Patir and Cheng [271] was used by Zhu et al [272, 273] to take into account surface 

roughness and waviness, and models have been extended from essentially two-dimensional 

kinematic models to quasi-three-dimensional models which make use of the two-dimensional 

Reynolds equation, which was applied over a variable circumference by Dursunkaya et al [262].   

 

5.3 Piston and Piston Ring Kinematics 

Fundamental to piston and piston ring operation are the piston and piston ring dynamics, which 

comprise the primary and secondary piston motions, radial and axial ring motions and ring twist. 

These motions influence all facets of piston and ring operation; the formation of oil films, the 

resulting friction between ring and liner, friction between piston and liner, slap between piston skirt 

and liner, wear of the components and blow-by across the ring pack. 

The primary motion of the piston is equal to that of the piston rings. This can be determined as a 

function of the crank angle when the geometry of the crank-slider mechanism is known; a 

schematic of this assembly for a trunk-piston engine is shown in Figure 5.2a. Thus, expressions can 

be derived for piston displacement, velocity and acceleration, and these are given in Equations 5.1, 

5.3 and 5.5 respectively. 

The piston displacement, velocity and acceleration during a four-stroke engine cycle, with a 

connecting rod/crank radius ratio, n, of 2.6, are shown in Figure 5.2b. 

If the crankshaft is rotating at constant angular speed,   as shown in the Figure 5.2, we can 

calculate the position of the piston in terms of the crank angle   [274]: 

 

    (      )   (      )                                                                                        (5.1) 

 
Where:   is the angle the con-rod makes with the vertical, and it can be seen that: 

 

                                                                                                                                (5.2) 
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Figure 5.2 (a) Schematic of crank-slider mechanism, (b) piston primary motion [275]. 

 

From Eq. 5.2 we got: 

     
 

 
     

     
 

 
     

Where       
 ⁄  

By using the trigonometric identity of: 

     √         √  (
 

 
    )  √  (      )                                                      (5.3) 

By substituting Eq. (5.3) into Eq. (5.1), we obtain 

   [(      )   (  √  (
 

 
    )  )]                                                                          (5.4)  

In another form 

   [(      )  (  ⁄ ) (  √  (
 

 
    )  )]                                                           (5.5) 

 
With respect to time, the mean crankshaft angular speed: 
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If the angular velocity is constant, then 

     

Differentiating: 

  

  
   

   

   
   

The piston position with respect to crank angle is simply x and the piston speed is: 
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The piston acceleration is the differentiation of the piston velocity. The acceleration with respect to 

crank angle is    :  
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                                       (5.8) 

The acceleration with respect to time and the angular velocity of piston derivatives then: 
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)                                                                                                           (5.9) 

 

Where x is piston displacement from TDC, r is the crank radius, θ is the crank angular displacement 

from TDC, n is the ratio of connecting rod length to crank radius (i.e.   ⁄  ), v is piston velocity, ω is 

the mean angular speed of the crankshaft and a is piston acceleration. Piston secondary motion also 

affects ring operation. This is caused by clearance between the piston and liner which allows lateral 

movement and rotation of the piston about the piston pin according to the forces and moments 

acting upon it. Piston rings also exhibit secondary motions; again including lateral movement and 

ring rotations and, additionally, ring lift and ring twist. These arise from the various forces acting on 

the rings. These include; inertial forces from piston acceleration and deceleration, forces owing to 

the pressure difference across the ring, oil film damping forces, and friction forces from shearing of 

the lubricating film and contact pressure at the ring/liner interface. 

 

5.4 Governing Equations  

5.4.1 Equation of Motion 

The equations of motion for the piston have been well developed [276,277]; however, modifications 

were made here in consideration of wrist-pin moment inertia,    , wrist-pin friction    , and 

friction and normal forces on the piston from the three rings,     and     for the top ring, and 

   and     for the second ring and    and     for the third ring (see Figures 5.3 and 5.4). Also, 

the forces and moments due to oil film support were broken down into four forces and four 

moments. Each side of the cylinder liner has a normal force, friction force, a moment due to the 
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normal force, and a moment due to friction force. For the thrust side, this corresponds to   ,    , 

and     , and.      For the anti-thrust side, this corresponds to   ,    , and     , and       

[276].  

Equilibrium of forces in the y-direction yields: 

 

∑       ̂    ̂    ̃      ∑    
 
                                              (5.10) 

 

Where     corresponds to the force due to the gas pressure on the top of the piston, and  ̂   and, 

 ̂  correspond to axial inertial forces due to the piston, and wrist-pin (along with part of the 

connecting rod), respectively. The connecting rod force is given by   ̃ 

Equilibrium of forces in the x-direction yields: 

 

∑            ̃      ∑    
 
                                                           (5.11) 

 

Where     and     correspond to the horizontal inertia forces due to the piston, and wrist-pin, 

respectively. The third equilibrium equation balances moments about the wrist-pin and yields: 

 

∑                                       (   )   ̂     

          ∑    
 
    ∑    

 
                                                                                (5.12)   

                                                                                            

Where     corresponds to the rotary inertia due to the wrist-pin,   and    correspond to the 

wrist-pin offset and horizontal distance between the wrist-pin axis and centre of gravity, 

respectively, and a and b correspond to the vertical distance from the top of the skirt to wrist-pin 

and centre of gravity, respectively. Elimination of   ̃ from equations (5.10) and (5.11) yields: 

 

             (       )                                                                     (5.13) 

 

Rewriting equation (5.12) yields: 

            (   )                                                      (5.14) 
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Where    and    are the forces and moments that do not depend on piston-liner contact: 

 

   (    ̂    ̂   ∑    
 
   )      ∑    

 
                                                         (5.15)  

 

             ̂       ∑    
 
    ∑    

 
                                                   (5.16) 

 

Frictional losses from the second ring are relatively small, and, as a result, most friction reduction 

strategies focus on the top and oil control rings. The horizontal inertia forces and moment are 

defined in terms of piston eccentricities,     and    and can be calculated as:  

 

 

 

 

Figure 5.3 Schematic of piston cylinder wall system [276].  



     

129 

 

 

Figure 5.4 Schematic of forces and moments acting on the piston [276]. 
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                                                                                                       (5.19) 

 

From Newton’s law in matrix form: 

                                                                                                                                       (5.20) 

 

Thus, equations of mass and acceleration define the equations of motion for the piston; the 

procedure for determining the terms in the force matrix depends on the piston contact. 
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5.4.2 Piston Ring Normal and Friction Forces,     and    

The piston normal forces have been calculated assuming solid-to-solid contact between ring and 

groove, and using forces calculated by a model similar to Namazian [277].    ,    and,    

correspond to the pressure force, friction force between the ring and liner, and ring axial inertia 

force, respectively. The ring’s equation of motion is obtained by considering these forces [263]: 

 

   
    

   
                                                                                                        (5.22) 

Where   , is the ring mass, and    is the top ring side clearance. The force between the piston and 

ring is given by Namazian as: 

 

            
   

  
(
  

  
)                                                                                                       (5.23) 

 
Where   , is the ring length in the circumferential direction;    is the ring width in the radial 

direction, and β (critical shear rate) depends on area covered with oil (assumed as 0.1). Substituting 

equation (5.23) into (5.22) yields: 
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)    

    

   
                                                              (5.24) 

 
This can be solved for    to obtain the normal force due to the top ring. A similar analysis was done 

for the second and third rings.  

The horizontal friction force can be calculated since the normal force is known: 

 

                                                                                                                               (5.25) 

Where      -       is the friction coefficient between the piston and ring. 

 

5.4.3 Wrist-Pin Friction,     

The wrist-pin frictional moment     is modelled as [254]: 

 

    (    )̇                                                                                                                   (5.26) 

 

Where   , is the radius of the wrist-pin, and   represents the normal force on the wrist-pin. The 

sign changes with change in piston tilt. 
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5.4.4 Cylinder Liner Support,   ,    ,   , and     

The cylinder liner support is divided into a force and moment on both the thrust and anti-thrust side 

[261]. The two sides are decoupled by use of the piston tilt equation: 

 

     
     

 
                                                                                                                            (5.27) 

 

Where,  is the piston tilt, see Figure 5.4, and the side support due to hydrodynamic lubrication is 

given by an averaged Reynolds Equation based on average flow factors [261]. 
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                                 (5.28) 

 

Where     and    are the pressure flow factors, and    is the shear flow factor. These flow 

factors are based on surface waviness,    and surface roughness,  . The 
  

  
 term is dependent on 

piston skirt thermal distortions, machined profile, elastic deformations and geometry. With the 

proper boundary conditions for the Reynolds Equation, the normal force due to hydrodynamic 

pressure and its moment about the wrist-pin is found by the following integrations: (for the thrust 

side): 

 

     ∫     (   )                                                                                              (5.29) 

      ∫     (   )(   )                                                                            (5.30) 

 

Where    and    are the total bearing areas on the thrust and anti-thrust side, respectively, found 

by iteration. 

If the distance between the piston skirt and cylinder liner become small enough so that the 

hydrodynamic assumption is invalid, a contact pressure and friction force result. The contact 

pressure is determined by calculating the normal pressure for one wave, then integrating over the 

area to find the total normal pressure, and consequent force and moment. The coupled local wavy 

contact pressure,  ̅ , and wavy contact deformation,   equations defined by Zhu et al [273] are 

solved via adaptive step control numerical method, the following normal force and moment result 

(for the thrust side 

 

     ∫     (   )                                                                                             (5.31) 

      ∫     (   )(   )                                                                            (5.32)    
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Thus, by combining the contributions from the hydrodynamic and constant normal forces and 

moments, the following total normal force and moment result (for the thrust side): 

 

                                                                                                                                   (5.33) 

                                                                                                                            (5.34) 

 

5.4.5 Skirt-Liner Friction 

The frictional forces and moments caused by hydrodynamic lubrication are also given by Zhu et al 

[273] for a rough piston skirt. The shear stress is given as: 

 

   
  

 ̅
(      )     

 ̅

 

   

  
                                                                                        (5.35) 

 

Where  ,    and     are the average shear stress factors dependent on surface waviness and 

roughness. Thus, the hydrodynamic friction force and moment is given as (for the thrust side): 

 

      ∬    (   )                                                                                                  (5.36) 

 

      ∬    (   )(         )                                                              (5.37) 

 

In the case of contact, friction is given by (for the thrust side): 
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∬     (   )  (         )                                                        (5.39) 

 

Thus, by combining the contributions from the hydrodynamic and constant frictional forces and 

moments, the following total forces and moment result (for the thrust side): 

 

                                                                                                                                (5.40) 

                                                                                                                            (5.41) 

 

This summarized the theory behind the piston slap model which will be used and compared with the 

experimental results. 
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Figure 5.5 Flow chart for piston frictional force and the piston side force. 

 

Input data and Initial values 

Values  

Start  

No 

Yes 

       

Check  

Update t (total) = t (initial) +  t 

Calculate piston side force, frictional 

             force and gas force 

Integrate time step of differential 

                equation of motion     

Output and store piston secondary 

motion and piston side force  

Stop 



     

134 

 

5.5 Radial Thermal Deformation 

During combustion, the piston crown and top land are exposed to combustion gases, resulting in 

heat transfer to the piston and crown temperatures of about 200 Co . The top ring(s) seal the 

combustion chamber and there is significant clearance between the piston and the cylinder bore at 

the pin axis, so in general the piston skirt is not exposed to significant amount of the combustion 

gases. The piston skirt temperature is therefore predominantly determined by conduction of heat 

from the crown, and typically varies axially through 60-100 Co . Depending on the material and 

structure of the piston, and whether any cooling oil is supplied to the underneath of the piston, 

temperatures within the piston can vary significantly. These temperatures and the corresponding 

thermal expansion, which is of the same order as the piston cylinder bore clearance, vary over time 

with running conditions from cold shape at start-up, to a significantly larger shape at steady-state, 

high load and speed. It is considered for the purposes of this study that we have fully warmed 

engine I assume steady state warm thermal behaviour.  

 

5.6 Cyclic Variations  

As the cylinder pressure changes from minimum to maximum value, the piston assembly friction is 

influenced by the cylinder pressure variation. Thus, in addition to the friction force, it is valuable to 

determine the range between maximum and the minimum of the friction force during the measured 

engine cycles. The cylinder pressure variation and gas torque is shown in Figure 5.5.  

As expected, the piston assembly friction is dependent on the cylinder pressure variation. The 

variation of the second peak of the friction forces is very dependent on that of the peak cylinder 

pressure. The crank angles at which the friction forces become maximum or minimum are 

coincident with that of maximum pressure or minimum pressure, respectively. 

The gas torque signal exhibits an offset sine wave shape. The amplitude of the combustion related 

torque oscillations is clear. The phase of the torque output main component is within a few crank 

angle degrees of cylinder pressure. This is observed at the peak values of torque; however the 

torque is a distorted sine wave which can be observed in the bottom lumps between the combustion 

events. This is largely due to inaccuracies in the reciprocating masses and valve train.  

Fuelling, igniting and combustion relate cylinder to cylinder torque fluctuations. Due to uneven air 

charges, fuel injections, poor ignition repeatability and/or combustion instability, the engine torque 

output is never completely even, especially at low speeds. Logically, the frequencies characterizing 

these phenomena are lower than the firing frequency. 
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Figure 5.6 Measured diesel engine pressure and gas torque 

 

 

5.7 Cylinder Pressure Measurement 

The oil viscosity at 90°C is just about 5% of that at 30°C [276]. The smaller value of viscosity 

yields an increased possibility for boundary and mixed lubrication between the piston and the liner. 

At elevated oil temperatures, the oil film thickness between the piston assembly and the liner could 

be less than the mean length of metal asperities at some piston positions, and thus there could be 

more possibility of metal-to-metal contact between them during the engine operation.  

That is, the lubrication regime could be boundary and/or mixed lubrication near the TDC and BDC 

positions in which the cylinder pressure is high and the piston speed is low. Figure 5.6 shows the 

measured cylinder pressure at an oil temperature of about 90 °C. The region of most significance of 

pressure is the region around TDC of compression stroke, as this is where transducer is located.       

The trend of pressure force variation as the engine speed increases is the same as that for low 

oil temperature. However, the absolute value of cylinder pressure at high oil temperature is 

less than that at low oil temperature due to the difference in volumetric efficiency. Since the 

air densities trapped in the cylinder become lower and the volumetric efficiencies are lower at 
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high oil temperature, the cylinder pressure at high oil temperature is lower than that for low 

oil temperature at the same engine speed.  

From figure 5.6 (lower one) the measured engine speed fluctuations between two speeds, the 

increased moment of inertia of the angle-brake set up leads to very large engine non-

uniformity and thus limited speed fluctuations. Nonetheless, the greater speed droops of the 

friction are apparent.   

Note that the firing stroke is within the crank angle range from 10 to 190 degree ATDC. The 

maximum pressure shown here is around top dead centre. 

 

 

Figure 5.7 Gas pressure acting on the piston crown  

 

5.8 Effects of Engine Operating Conditions on Piston Liner Friction 

Modern diesel engines operate in a variety of speed and load conditions depending on their 

application. In small vans and heavy duty trucks, loads and speeds will vary considerably due to the 

variety of operating conditions encountered. Some passenger car engines typically operate at high 

speeds and high loads. Stationary power generation engines operate in high load, low speed 
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conditions because high load generates more power and the low speed is needed to interface with 

the electric generator and the power grid. 

Both engine speed and load affect the friction generated between the piston and the liner. In 

addition, oil supply plays a very important role in piston assembly liner lubrication. 

 

5.8.1 Effect of Engine Speed 

With increasing engine speed, combustion characteristics and corresponding pressure trace change; 

altering fuel injection timing and increase fuel mass (because the piston speed is directly related to 

the rotational speed of the crankshaft). Also the engine temperature increases with increased engine 

speed, and correspondingly the thermal deformations of the piston and cylinder bore increase. Both 

the piston and cylinder bore temperatures and thermal deformations increase with axial height, and 

the location of the coolant chamber affects the temperature distribution and any reinforcements can 

restrict thermal deformation.  

Figure 5.7 shows piston axial velocity (Eq. 5.7) and lateral force (Eq. 5.13) behaviour for the JCB 

engine. It can be seen that the piston axial velocity increased with increasing engine speed and the 

piston lateral trust force is only slightly influenced by increasing speed. The speed of the piston is 

zero at both TDC and BDC as seen in Figure. By comparison with the Stribeck curve of Figure 5.1 

the lubricant would be in the boundary regime and some asperity contact would presumably occur. 

Also the coefficient of friction will increase during this phase resulting in increased friction forces 

[276]. Therefore, it is likely that high strength AE will be produced at these angular positions. 

Moreover, at TDC the lateral forces are much higher than at BDC because of combustion and the 

resulting AE should be stronger. The high forces seen at (0, 720 and 1440 deg.), because gas 

pressure variation is greatest value around firing TDC (negative value denote piston movement 

towards the BDC), whereas during compression, and inlet and exhaust strokes, its magnitude is 

much lower.  

Other factors such as the number of piston rings; piston ring profiles, width, tension, piston skirt 

length and profile are all capable of influencing piston ring assembly friction but it is clear that 

these factors serve only to superimpose themselves on the effects inherent to the nature of the piston 

ring assembly’s reciprocating motion (relative velocity) and in-cylinder pressure fluctuations due to 

combustion (load). 

As the speed increases the instantaneous piston speed at mid- stroke also increases. At higher piston 

speeds the lubricant is in the hydrodynamic region, higher fluid pressure will develop in the oil film 

formed by the hydrodynamic lubrication and friction force will increase. Friction forces at both 



     

138 

 

dead centres are different because at the BDC the area of contact between piston and cylinder wall 

is smaller due to the opening of the transfer port located at BDC. At the middle of the stroke, the 

opening of the exhaust port also reduces the contact area between piston and wall, because of the 

max piston speed at middle (low oil viscosity, the shear rate depends directly on the piston speed, 

and the viscosity is controlled by the shear rate). 
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Figure 5.8 Engine speed and effect on the piston  

 

The lateral force after compression TDC decreases as the engine speed increases as seen in Figure 

5.7. However, in contrast to the period of time after cold starting the engine, the friction force near 

the mid-stroke does not change a lot. This is basically due to the low oil viscosity at high oil 

temperature. At high speeds, the measured friction forces are more influenced by the increased 

signal noise that occurs at higher speeds. The friction forces decrease slightly near compression 

TDC as the engine speed increases and increase near mid piston stroke even if the differences are 

small. However, in contrast to expectations, the friction force peak near compression TDC at high 

speed is greater than that for low speed. 



     

139 

 

5.8.2 Effect of Engine Load 

The effect of engine load on friction is less straightforward. In order to maintain constant engine 

speed when the load on the engine increases, the amount of air and fuel brought into the cylinder to 

be compressed and burned during combustion must be increased. As a result, higher peak pressures 

are reached in the cylinder. 

The engine load acting on the piston (force and velocity) is illustrated in Figure 5.8 as a 

function of the crank angle. As seen in the figure the piston lateral force was increased by 

increasing the load and there is no significant change in piston axial velocity with increasing 

load. The friction generated by the piston is significantly affected by the pressures reached in 

the cylinder throughout the engine cycle.  

 

0 180 360 540 720 900 1080 1260 1440

0

5

10

Crank Angle(o)

F
or

ce
(k

N
)

Piston Lateral Force

 

 

105Nm at 899rpm

420Nm at 900rpm

0 180 360 540 720 900 1080 1260 1440

-10

-5

0

5

10

P
is

to
n 

V
el

oc
ity

(m
/s

)

Crank Angle(o)

Piston Axial Velocity

 

 

105Nm at 899rpm

420Nm at 900rpm

 

 

Figure 5.9 Engine load acting on the piston  

 

The cylinder pressure controls the top land pressures, which affect the piston dynamics and 

therefore the lubrication conditions encountered by the rings throughout the engine cycle. Although 

in general, the contribution of friction as a percentage of the engine’s indicated power output 

reduces as load increases, because the piston lateral force is increased as seen in Figure 5.8, major 
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changes in load may result in a change in the type of piston liner friction that dominates in different 

parts of the cycle. 

 

5.8.3 Effect of Oil Supply  

The amount of oil supplied to the piston throughout the engine cycle has a significant effect on the 

friction and lubrication conditions between the piston and the liner [276]. The presence of oil 

between piston and liner should significantly reduce the friction force, as the side load is partially 

supported by hydrodynamic pressure, thereby reducing the extent of asperity contact. This may 

affect the piston tilt to a small degree, but is not common to have a significant effect on lateral 

motion. Also the presence of oil does not change the timing of the start of piston slaps, but provides 

cushioning, slowing the piston’s travel across the cylinder bore once contact with the oil is made, 

and reducing oscillations due to bouncing and tilt. The lateral motion is reduced due to the fact that 

the incompressible oil physically reduces the available clearance and can only be squeezed out in a 

finite amount of time.  

Note that there is no oil on the liner in the region above TDC of the oil control ring in the first 

cycle. This is because the oil control ring can never travel above its own TDC position, and there is 

thus no direct oil supply to the upper rings between TDC of the oil control ring and TDC of the top 

ring. As a result, the only source of oil to this part of the liner is what is brought into this region by 

the top ring or the second ring in subsequent cycles. There is therefore much less oil supply to this 

section of the liner as can be seen in Figure 5.9.   

 

 

 

Figure 5.10 Illustration of the oil dry region at top of cylinder [276]. 
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5.9 Effects of Piston Parameters on Piston Friction 

5.9.1. Skirt-Liner Clearance 

As the piston travels up and down in the cylinder, it also rotates (at low speed about 10 rpm) and 

moves transversally in a secondary motion, due to changing gas pressures and inertias [276]. 

Instead of travelling along the axis of the cylinder, the piston presses against one side of the liner as 

it moves towards the combustion chamber, then moves to the other side as it travels down. When 

the piston moves from one side to the other a “slap” occurs, which is when the piston hits the liner 

and oscillates briefly before remaining pressed against it. The impact velocity of this slap affects the 

amount of noise produced by the engine as well as the piston frictional losses as seen in Figure 5.10. 

The skirt/liner clearance directly affects the impact speed of the piston slap. A larger clearance 

allows the piston to accelerate over a larger distance, resulting in a faster impact speed at the slap. 

Large impact velocities lead to large impact forces, which lead in turn to large contact friction 

losses. Thus, skirt/liner friction should be reduced as clearance is reduced. This should be for larger 

oil thicknesses, but for thinner oil films a minimum point should occur where friction begins to 

increase again when clearance is decreased. 

 

 

Figure 5.11 Piston lateral impact velocity  

 

This minimum point results from asperity contact occurring at tight clearances, which increases 

friction, by bringing the skirt and liner surfaces closer together for low oil film thicknesses. For 

large clearances the slapping velocity dominates and friction decreases as clearance decreases, 

while for very small clearances asperity contact becomes important and friction begins to rise while 
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clearance is decreased. There is almost no change in hydrodynamic friction with clearance, what 

causes change in the friction is a largely change in asperity contact. The ideal skirt-liner clearance 

provides sufficient space for the oil but is not large enough to produce significant impact. 

Insufficient clearance produces excessive contact friction, while excessive clearance produces 

excessive impact. 

 

5.9.2. Oil Supply/Oil Film Thickness 

Oil film thickness, which is controlled by oil supply, has a direct impact on friction but the 

mechanisms of oil distribution between the piston and liner are not fully understood. A very thin oil 

film enables the skirt to easily push the oil aside and contact the liner, leading to boundary friction. 

On the other hand, a thick oil film tends to encourage hydrodynamic lubrication by providing more 

contact between the film and the piston surface, thereby enabling the lateral force to be spread over 

a larger area.  

As the film thickness is increased to a certain point, it reduces boundary contact friction to a very 

small value, which minimizes net friction work loss. If film thickness is increased beyond this 

critical point, however, no further reduction in boundary friction occurs, and hydrodynamic friction 

increases due to an increase in wetted area. Thus, increasing film thickness beyond the critical point 

can actually increase net friction. 

The oil film thickness has a much greater impact on boundary friction than hydrodynamic. The 

boundary friction is increased rapidly as film thickness is decreased, this is due to an increase in the 

amount of boundary contact that occurs as the piston and liner surfaces are brought closer together. 

When the film thickness is increased sufficiently the boundary contact friction component is very 

small (can be neglected), and further increases in film thickness increase hydrodynamic friction 

loss. There is only a small change in hydrodynamic friction throughout the range of film 

thicknesses. 

The oil film thickness has a much larger effect on piston friction than skirt/liner clearance. The 

main effect of the clearance is to control friction during the “slap” period of the piston transition, 

while the film thickness affects skirt/liner contact throughout the cycle. 

When its effect on friction is clear, the lubricant film thickness may also affect other engine 

parameters. For example, a thicker oil film can serve to cushion engine slap, reducing engine noise 

and vibration as well as friction. However, if the film is too thick, oil consumption may become a 

problem. 
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5.9.3 Surface Finish/Waviness 

The piston skirt is typically machined so that it is covered by circumferential grooves, as well as 

smaller scale “roughness” asperities [276]. The grooves behave as oil reservoirs, supplying oil for 

hydrodynamic lubrication. The customary measure of groove size is waviness, which is the 

“amplitude” (i.e., half of the peak-to-valley depth) of the groove.  

The liner also affects oil flow and retention. In typical diesel engines, liners have a honing pattern 

that serves much the same purpose as the waviness pattern on the piston: the grooves retain oil by 

surface tension and serve as an alternate supply, and they also provide flow paths for oil. Unlike the 

piston, in which grooves are machined circumferentially, the grooves in the liner are often oriented 

at an angle relative to the horizontal. The honing angle has a modest impact on friction. Shallow 

honing angles (relative to the horizontal) encourage oil to flow laterally rather than move up or 

down the liner, which would be undesirable. 

 

 

5.9.3.1 Waviness vs. Roughness 

Surface roughness refers to the natural deviations of an actual surface from a geometrically smooth 

shape. Any metal shape has natural surface roughness that is related to the method of manufacture, 

degree of polishing, and other factors. In a ring surface, surface roughness plays an important role 

because it serves much the same purpose as waviness on a piston surface: the valleys serves as oil 

reservoirs, and the gaps between the peaks provide flow paths for oil. In a piston, however, the 

waviness amplitude should be greater than the roughness amplitude, often by an order of 

magnitude. Thus, although roughness would be expected to play an important role in a piston with a 

nominally smooth (un-honed) surface, roughness only slightly modifies the effective amplitude of 

the waviness peaks in typical pistons. Therefore, roughness amplitude is expected to have a 

negligible effect on friction. The changes in roughness had little impact on net friction. 

 

5.9.3.2 Parametric Surface Waviness 

The friction losses decrease as surface waviness decreases, largely due to a decrease in boundary 

friction. For availability of oil, a piston with deeper machined grooves has more volume to contain 

the oil – that is, the lubricant can be trapped within the machined grooves instead of staying 

between the piston and liner. When it is contained within the grooves, the oil is not useful as a 

lubricant or to support hydrodynamic pressure, and asperity contact occurs. Conversely, when the 
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oil cannot escape into deep machining grooves and is compressed between the piston and liner, 

hydrodynamic pressure is generated and the piston load can be fully supported on the oil film. 

The relation of friction to surface waviness suggests dependence not only on waviness height, but 

on the relation of the waviness to oil availability. A smoother piston should require less oil to 

support hydrodynamic lubrication, while a very wavy piston should require more. 

There is a nearly linear relationship between waviness, film-thickness ratio and piston friction. 

Thus, in cases where very little lubricant is available to the piston a low waviness is preferred, 

whereas in cases where a large film thickness is possible, a smooth piston is still preferred but a 

wavier surface is allowable. However, a very smooth piston is always undesirable. 

Although skirts with low waviness values appear to produce the lowest friction, extremely smooth 

surfaces can lead to high friction, wear and sometimes seizure. Extremely smooth surfaces do not 

retain oil well, so that direct solid-solid contact, if and when it occurs, can be very poorly lubricated 

and quite severe. Also, the contact surface area may be larger in cases of very smooth surfaces, 

further contributing to friction and wear. Therefore, friction can be minimized by selecting small 

but nonzero waviness values, to prevent scuffing.  

In addition to the waviness, the effect of the roughness is dominated by the macroscopic waviness. 

Since the characteristic length of waviness (i.e., the depth of the machined grooves) is typically an 

order of magnitude greater than roughness, the effect of waviness on friction loss dominates. 

 

5.9.4 Piston-Skirt Profile/Shape 

Changing the “flatness” of the skirt changes both the hydrodynamic and boundary friction of the 

piston. A flatter skirt should show both a larger wetted area and a thicker oil film. The thicker oil 

film indicates that separation between the piston and liner is increased, decreasing boundary contact 

or possibly eliminating it entirely. An increase in wetted area size and film thickness tends to lead to 

an increase in hydrodynamic friction losses, but this also results in lower average and peak oil 

pressures, which could help reduce hydrodynamic friction. The increase in wetted area and oil film 

thickness (skirt/liner clearance) is sustained throughout the stroke. 

The skirt-liner clearance for sharper profiles drops significantly below the waviness height for a 

large portion of the cycle, meaning that substantial boundary contact is occurring and high friction 

forces created. For flatter profiles, skirt/liner clearance drops below the waviness height briefly, and 

only by a small amount, indicating that much less metal-metal contact is taking place. A piston with 

a flatter profile experiences more wetting during the entire engine cycle, so that the change in 

hydrodynamic lubrication is the same throughout. 
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The change in skirt/liner clearance with piston profile suggests that a sharper profile experiences 

much more boundary friction than a flatter one. This confirmed that a flatter piston profile causes a 

large reduction in boundary friction, along with a slight increase in hydrodynamic friction. 

Changing the piston profile has a substantial effect on the amount of boundary friction generated, 

with metal-metal contact almost entirely eliminated for the flattest profile. The small increase in 

hydrodynamic friction for flatter profiles is much smaller than the corresponding change in 

boundary friction. In two different oil viscosities, the piston Friction Mean Effective Pressure 

(FMEP) decreases for flatter profiles, with boundary contact decreasing substantially with smaller 

increases in hydrodynamic friction. For both oil viscosities the proportion of the changes in 

hydrodynamic and boundary friction is different for the two cases. 

 

5.9.5 Piston-Skirt Size 

The size of the piston skirt is an important parameter in piston design. For example, a steel piston 

requires a dramatically different design from an aluminium piston because steel is a much denser 

material. Steel offers a stiffer structure that can handle much higher in-cylinder pressures but, if it is 

not designed carefully to reduce weight; it will require much larger connecting rods and other 

supporting structure, which could nullify any potential advantages. In a typical steel piston design, 

much of the material is removed, especially in low-stress areas like the periphery of the piston skirt.  

Figure 5.11 illustrates the difference in skirt size by comparing aluminium and steel pistons, which 

were both designed for heavy-duty engines. (Obviously, it is simplistic to change the skirt size 

without modifying the profile, stiffness, or other characteristics.) 

The effect of skirt size on friction can be understood by observing that smaller skirts must distribute 

the lateral load over a smaller area (i.e., have higher average and peak pressures), so they tend to 

have more boundary lubrication and less hydrodynamic lubrication. Indeed, there is a dramatic 

increase in boundary friction as the skirt size is reduced, but a slight decrease in hydrodynamic 

lubrication as the skirt gets smaller. On balance it seems best to make the skirt as large as possible. 

In actual piston designs, the tendency of smaller skirts to operate in the boundary lubrication regime 

can be offset by other design changes. For instance, the ovality can be adjusted to spread the load 

horizontally. Also, the profile can be adjusted to spread as much pressure in the centre region as 

possible. Most of the pressure is borne in the centre of the skirt. Since the steel piston spreads the 

load horizontally across its width, it does not incur significant friction disadvantages by reducing 

skirt height. 
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Figure 5.12 Comparison of aluminium and steel piston designs [276].  

 

5.9.6 Piston Ovality 

The piston ovality is designed not just to minimize friction, but also to minimize wear, reduce 

seizing, enhance guidance, etc. Piston ovality is essentially a piston profile oriented in the 

horizontal direction, and it fulfils several of the same purposes as the profile.  

When the engine is in operation, the piston skirt deforms in response to pressures stemming from 

lateral force on the connecting rod and inertial forces. Just as smooth, flattened profiles distribute 

pressure more evenly and thereby promote hydrodynamic friction, pistons with less ovality have the 

potential to reduce friction by conforming more closely to the liner. 

However, the caution that must be exerted regarding the profile also applies to ovality: the system 

must be evaluated after the piston has been deformed by operational temperature and lateral 

pressure.  

 

Ovality is analogous to profile shape because both modify the effective clearance between the 

piston and liner. The objective of both is to facilitate a relatively flat oil film with gradual gradients 

in order to distribute the lateral force over as large an area as possible. This promotes hydrodynamic 

lubrication and reduces wear. The ovality is adjusted so that it closely matches the shape of the 

liner, particularly at points in the cycle when the lateral force is high.  

Since reducing the ovality (i.e., making the piston more round) enables it to better conform to the 

liner surface, it is predicted that reducing ovality will reduce contact friction, thereby reducing net 

friction as well. However, it is important to not completely eliminate ovality (i.e., make a perfectly 

circular piston). The lateral pressure is highest along the thrust and anti-thrust lines, so these areas 
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will deform the most. A perfectly round piston will thus deform preferentially along the thrust and 

anti-thrust lines, leading to “negative ovality,” or a concave shape that shifts pressure away from the 

thrust/antitrust lines. This could cause instabilities and produce undesirable high-pressure patches.  

Since ovality can be adjusted independently of the piston profile, the two parameters can be jointly 

optimized to achieve ideal results. The profile is difficult to optimize because the piston rotates 

during the stroke especially near the TDC effectively changing the profile. The ovality does not 

change as much, however, since the piston does not rotate significantly about the thrust/anti-thrust 

axis. Therefore, in principle, the ovality can be optimized more precisely than the profile. Ideally, 

the two can be jointly optimized to minimize boundary contact friction while also achieving other 

objectives, such as smooth guidance throughout the stroke.  

 

5.10 Other Considerations 

In addition to frictional losses, wear of the piston and liner must also be taken into account. Piston-

liner wear leads to leakage of combustion gases out of the engine cylinder (“blow-by”) and a 

corresponding reduction in efficiency and increase in engine emissions. Limiting this degradation of 

engine performance and avoiding the need to service and replace parts, requires that piston-liner 

wear be controlled. 

The actual wear of the piston and liner is a complicated and not well-understood phenomenon, and 

wear predictions have not been included in this study. Wear factor can be calculated, which takes 

into account two main contributors: asperity contact pressure and sliding distance. The wear factor 

is a mean factor for an engine stroke, and can be calculated as the integral of the contact pressure 

multiplied by the piston speed, integrated over the stroke distance. 

The wear factor increases as mean lubricant viscosity is reduced, because the amount of asperity 

contact occurring increases. Wear increases strongly even as frictional losses remain low–the 

minimum FMEP at a viscosity corresponding to a high wear rate. This means choosing an ideal 

lubricant viscosity which represents a balance between friction and wear considerations, and the 

desire for low friction must be balanced against the need for low wear. It is possible to decrease 

wear slightly by controlling viscosity changes during the engine cycle. Maintaining high viscosity 

near dead-centres can reduce asperity contact in the end-stroke regions, decreasing wear.  
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5.11 Friction Reduction Strategies 

Piston friction arises from a complex combination of design characteristics, material and surface 

features, oil properties, and engine operating conditions. The piston skirt contributes as much 

friction as the ring-pack to the engine’s mechanical losses. Like the ring-pack, its friction can be 

reduced if asperity contact is reduced. The piston experiences both hydrodynamic and boundary 

lubrication, with the dominant lubrication regime changing during the engine cycle. While the 

hydrodynamic frictional losses from the two sides are approximately equal and occur throughout 

the stroke, boundary contact is only observed on the major thrust side, during the expansion stroke. 

This results from the high gas pressures present after combustion, as well as the piston “slap” as it 

moves from the minor to the major thrust side. The boundary friction generated in this region of the 

stroke contributes a significant amount of total piston skirt friction. 

Several piston parameters have been discussed above including design parameters such as the skirt 

profile and waviness, and other factors including lubricant viscosity and skirt-liner clearance, with 

the goal of reducing friction. The most important parameters identified were oil film thickness and 

skirt waviness, which can both be manipulated to reduce friction by reducing skirt/liner asperity 

contact. 

There are some issues which have not been addressed and are significant in friction reduction. 

These parameters are practical design parameters which offer the greatest potential for near term 

implementation, viz. mechanical design of the piston itself such as piston skirt ovality, the physical 

dimensions of the piston skirt, and optimizing the lubricant parameters for pistons of certain 

geometrical and material designs. Also there is another important parameter, which is skirt stiffness. 

The author expects that more flexible skirt can reduce friction, by increasing wetted area and 

decreasing contact friction.    

 
 

5.12 Summary  

The results presented in this chapter are for heavy duty diesel engine. The degree to which 

conclusions drawn from these results can be applied to other engines is sometimes limited, 

particularly when there are significant differences in the combustion pressure - inertia balance, 

piston – cylinder bore relative stiffness or oil supply conditions. 

The model analysis demonstrated the piston’s lateral motion is essentially driven by the combustion 

pressure, component axial inertias and angular position of the connecting rod. Piston cylinder bore 

friction and wrist-pin friction were not play a significant role in determining the side force acting on 
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the piston. The connecting rod angular inertia and rate of change of momentum do not play a large 

role in determining the magnitude of the side force but can significantly affect the mid-stroke piston 

slap timing. The side force acting on the piston, and driving lateral motion, is relatively unaffected 

by oil film thickness.  

The lateral motion of the piston is constrained by the cylinder bore and oil film, and is therefore 

essentially a function of the piston – cylinder bore clearance, oil film thickness, side force, and 

piston deformation (and cylinder deformation as well). There is large effect that oil film thickness 

can have on lateral motion if there is sufficient oil supply, significantly reducing lateral motion and 

impact velocities, and damping out oscillations.  

Each of the parameters (Piston Ovality, Piston-Skirt Size…etc), which mentioned above has the 

potential to affect friction, but they offer varying benefits. Obviously, the improvements are not 

additives, if the waviness is excessive, profile curvature will no longer have much of an effect on 

friction. In order to reduce friction, the piston should be designed to provide a relatively even skirt-

liner clearance in order to enhance hydrodynamic lubrication and avoid boundary lubrication. This 

can be achieved by using a relatively flat profile, adjusting piston ovality to match the liner shape, 

and reducing waviness peaks so they do not contact each other. Moreover, selecting the lubricant 

such as the viscosity excessive drag is also crucial to controlling friction. A key take away from this 

study is that the piston liner system is highly-integrated, and changing one variable affects many 

other parameters.     
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________________________________________________________________________ 

CHAPTER SIX 

EXPERIMENTAL TEST FACILITIES 

AND FAULT SIMULATION 

 

 

 

 

 

 This chapter discusses test-related issues including the test rig, instrumentation, and test procedures. 

Firstly a brief description of the test engine characteristics and specifications is given. Secondly 

details of the test systems and instrumentation are presented, with further information concerning the 

acoustic emission instrumentation as it is of crucial importance in this work. The data acquisition, test 

procedures, software and fault simulation strategies are described in the final section.           
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6.1 Test Rig Specification 

The test-bed for this project used as a source of AE data, was a JCB 444T2 diesel engine, 4.4 litre, 

four-cylinder, four-stroke, 16-valve, in-line, direct injection and turbocharged, as seen in Figure 6.1 

and Table 6.1). This engine test setup is available within the Automotive Laboratory, Huddersfield 

University, UK. This type of diesel engine is chosen as a test bed in this study, because it’s a heavy 

duty diesel engine and used as a power supply in different equipments, such as wheel loaders, 

excavators, soil compactors, electric generators, etc.,  

 

 

Figure 6.1 JCB444T2 Engine rig 

 

The diesel engine was connected to an eddy current dynamometer which exerted a braking force 

and was rated to handle an engine of a maximum power of 210 kW and a maximum torque of 501 

Nm. The test cell holding the dynamometer has a ventilation system to maintain room temperature 

and an exhaust extraction system. Also the rig is controlled by a panel control outside the room 

which is used to start/stop the engine, adjust engine speed and fuel supply, and monitor the engine 

temperature. Figure 6.1 is a photo of the test engine in situ. The four cylinders were numbered 1-4, 

with cylinder 1 at the front.  
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Table 6.1 Test Engine Specifications [specification catalogue] 

Type of engine Turbocharged diesel engine 

Number of cylinders 4 

Bore 103mm 

Stroke 132mm 

Inlet valve diameter  36.5mm 

Exhaust valve diameter 33.2mm 

Compressor inlet diameter 60mm 

Compressor outlet diameter 60mm 

Turbine inlet diameter 100mm 

Turbine outlet diameter 80mm 

Compression ratio 18.3:1 

Number of valves 16 

Injection system Direct injection 

Displacement 4.399 litre 

Cooling system Water 

Maximum power 74.2 kW @ 2200 rpm 

Fuel injection pump Rotary mechanical 

Injection sequence 1-3-4-2 

 

6.2 Test Rig Description  

The test rig, as seen in Figure 6.1, consists of two main parts; the JCB 444T2 diesel engine (firing 

sequence of 1-3-4-2) and AC dynamometer. There is one AE sensor and other instrumentation 

mounted on the test engine. The charge amplifiers and power supply units are cited in the front of 

the engine. The outputs from all sensors are sent to the data acquisition system and operating 

computer. The exhaust noise was reduced by adding exhaust mufflers to the silencer. The load was 

applied by attaching an AC dynamometer to the engine shaft.  

The AE signals are amplified and sent to the AE data acquisition system, whereas the other signals 

are sent to the CED power 1401 data acquisition system (see Fig. 6.9) and then to the computer, for 
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analysis and storage. An optical encoder was also fixed to the crankshaft to give a trigger pulse once 

per revolution in order to synchronise data collection.  

6.3 Measuring Equipment and Instrumentation 

Figure 6.2 shows the schematic for the test rig and instrumentation used in this work. In addition to 

the AE measurements made by AE sensor, five different types of transducers have been installed on 

the test rig to collect data on: combustion pressure in cylinder one (transducer was fixed in cylinder 

one, because AE sensor was mounted in cylinder one as well), speed, top dead centre position, 

engine coolant temperature and load. These signals were collected using the following different 

types of transducers: 

1. Optical encoder, 

2. Magnetic pickup, 

3. Cylinder pressure transducer, 

4. Thermocouples, and 

5. Torque sensor. 

 

 

Figure 6.2 Schematic of the engine test system. 

 

Before the pressure sensor signals were fed to the Analogue-to-Digital Converter (ADC), they 

passed through a B&K type 2635 charge amplifier to condition the signal. The charge amplifier 

compensates for the reduction in transducer sensitivity due to the use of long cables, filters out 
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unwanted signal components and amplifies the signal. The charge amplifier also converted the high-

impedance output signal into a low-impedance voltage signal. 

Speed and load channels were directly fed to a Cambridge Electronic Design (CED) Power 1401 

multifunctional data collection interface. This ADC has sixteen 16-bit input channels and sixteen 

digital I/O ports. Five programmable clocks, clock inputs and event (clock start) connections are 

also provided for specific applications. 

 

The in-cylinder pressure signal used to monitor combustion conditions was obtained from a Kistler 

type 6125A piezoelectric pressure sensor from cylinder one as mentioned. 

The flywheel TDC trigger signal is used to set the start time of data collection so that each data 

segment is measured at an exact crank position. This is to ensure accurate time domain averaging 

and rearrangement of data segments. A second trigger signal, from the flywheel gear encoder, is 

used to measure engine speed, and from which a given number of pulses were sent out every 

revolution. 

The external load is measured with a torque sensor, which was fixed behind the AC dynamometer. 

 

6.3.1 Optical Encoder 

A reference point is required to compare data collected from the test rig, or to time average the 

signals. This was achieved by using an HED-6000 optical encoder, which is fixed to the crankshaft 

(in front of engine) as shown in Figure 6.3.  

 

 

Figure 6.3 Photo of optical encoder in position. 
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This device consists of a rotating disk, a light source, and a photo detector. The encoder enabled 

data collection to commence at precisely the same crank angle position in each cycle, and also gave 

a pulse for each complete rotation of the crankshaft, it allowed time domain averaging to be 

performed over the same period. 

 

6.3.2 Magnetic Pickup 

Engine speed and the number of crankshaft revolutions play a large role in cycle process analysis 

and in determining engine conditions, so it is important to measure this parameter as accurately as 

possible. For this measuring task miniature magnetic pick-ups are suitable. This type of sensor 

consists of a permanent magnet, yoke and coil. A magnetic pick-up is mounted in close proximity to 

the gear teeth of the engine flywheel because the distance between the gear teeth and the pick-up 

coil is critical, see Figure 6.4. An electric impulse is produced by the sensor’s internal coil every 

time a gear tooth passes its tip. Since there are 126 teeth on the flywheel, every 126 impulses will 

indicate one complete revolution of the crankshaft, and the number of teeth detected per second is 

proportional to the speed of the engine. 

 

 
 

Figure 6.4 AC voltage distribution of magnetic pick-up [16]. 

 

The magnetic pick-up sensor acts essentially like a small generator, producing a current as lines of 

magnetic flux are cut. These magnetic pick-up sensors come in non-powered and external-powered 

varieties. The two wires to carry the AC voltage are twisted and shielded to prevent electrical 

interference from disrupting the signal. It is remarkable that these transducers supply a high signal 
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output in spite of their small size and this has enabled their use where many conventional sensors 

cannot be fitted. Hence these transducers are used in a wide range of sensing applications. 

A RS-4652 magnetic pick-up speed sensor was used to measure the speed of the engine. It was 

fixed on the engine using a small bracket so that its tip was at a distance of approximately 2 mm 

from the flywheel.  

 

6.3.3 Cylinder Pressure Sensor 

In-cylinder combustion pressure was measured by a Kistler type 6125A piezoelectric pressure 

sensor, see Figure 6.5. The sensor was fixed in the combustion chamber of cylinder number 1. The 

sensor is made of polystable quartz elements, and ground insulated to avoid electrical interferences 

due to ground loops, and does not require additional cooling. It has also been specially designed to 

work at high temperatures and for precision measurement in internal combustion engines. The 

specifications of the sensor are summarised in Figure 6.5. 

 

 

Figure 6.5 Kistler type 6125 pressure sensor and specification [16]. 

 

6.3.4 Temperature Measurement 

Temperature measurements were taken in order to monitor the lubricating oil, cooling water, by 

means of thermocouples installed at the oil sump and cooling water (water way out from the 

engine). AE data is very dependent upon the engine temperature, and measurement and collection 

of this data ensured repeatability of measurements (chosen of AE sensor location is very important). 

Also temperature monitoring ensured the safe operation of the other sensors and the engine itself. 

The thermocouples used in this test were K-type; see Figure 6.6, with a linear response from -

20 Co to 220 Co .  
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Figure 6.6 K-type, Cr-Al thermocouple. 

 

6.3.5 Torque Sensor 

The torque sensor was a force transducer which converted applied force into an electrical signal. A 

torque sensor type Heidenhain used in this project was attached to the back of the AC dynamometer 

to measure the load applied by the latter to the engine, see Figure 6.7. 

 

 

 
 

Figure 6.7 Torque transducer in position 

 

6.3.6 Brüel & Kjær Charge Amplifier 

The output from the cylinder pressure transducer was connected to a B&K Charge Amplifier Type 

2635 to amplify the weak output signal, which gives an output voltage proportional to input charge. 

This type of amplifier is a comprehensively equipped charge conditioning amplifier intended for 

different applications, its output can be routed to portable tape recorders and level recorders, 

electronic voltmeters, measuring amplifiers and frequency analyzers [278]. It can be powered from 

internal batteries or external DC power supplies, making it useful both in the field and in the 
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laboratory see Figure 6.8. An overload detector, test oscillator and power supply unit are also 

included. The overall gain of the type 2635 is adjusted in the input and integrator amplifiers in order 

to provide a rated output level switchable between 0.1mV/unit and 1V/unit in 10 dB steps. With 

these nine positions, the output signal level can be adjusted to best utilize the limited dynamic range 

of tape recorders and to match the various input requirements of recorders, voltmeters and analyzers 

[278]. 

 

 
 

Figure 6.8 Face of B&K charge amplifier type 2635 (left), back (right) [278]. 

 

6.3.7 Analogue to Digital Converter (ADC) 

All the signals collected from the test rig, as explained in previous sections, needed to be converted 

from the original analogue form to digital. Except for the AE signal this was achieved using a 

Cambridge Electric Design (CED) Power 1401 ADC interface between the transducers and the 

computer, see Figure 6.9. The CED Power 1401 is able to record waveform data, digital (event) 

data and marker information, and can generate waveform and digital output simultaneously for real-

time, multi-tasking experimental system using its own processor, clocks and memory, under the 

control of the host computer. The Power 1401 features a 16-bit internal microprocessor and an on-

board memory to facilitate high speed accurate data capture and complex on-line analysis, freeing 
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valuable time for the host computer to perform other tasks, such as updating the display and writing 

the data to hard disk.  

Technical data of the Power 1401 CED 

1. 16 digital input/output channels and 500MHz bandwidth, 

2. Rear panel BNC socket for clock inputs and event (clock start) connections, 

3. Interface adapters available for PC (ISA or PCI bus), and 

4. 5 programmable clocks.  

 

 

Figure 6.9 Power 1401 CED analogue to digital converter [77]. 

 

6.3.8 Software: Lab Windows TM/ CVI Version 5.5  

National Instruments Lab Windows / CVI Version 5.5 is an interactive development environment 

written in the programming language C, to create virtual instrumentation applications [279]. It 

includes a large set of run-time libraries for instrument control, data acquisition, analysis, and user 

interface. Building an application in Lab Windows / CVI begins with the user interface, and a 

graphical user interface (GUI) editor is included. The Lab Windows / CVI development 

environment contains many measurement specific features that make developing C based 

measurement applications much easier than in traditional C development environments by, e.g. 

offering automatic code generation.  

 

6.4 Data Acquisition Software 

The data acquisition software is based on a windows operating system and has the ability to perform 

on-line data sampling, record and monitor engine parameters as it is running, such as speed, load 

and temperature. The software package has a separate set-up page to allow the user to choose the 
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required settings such as channel numbers, sampling frequency, data length and filenames. Figure 

6.10 shows the set-up window used to select the sampling frequency, channel points and the other 

important factors and parameters. The sampling frequency is set at 80 kHz. This enables embedded 

very high frequency band signals (up to about 40 kHz) such as transient pressures and temperatures 

to be collected. The data length is set at 8192 samples so that one complete combustion cycle (720° 

crank angle) is included even at the low speed of 1000 rpm. Time Synchronous Averaging (TSA) 

was used for six segments collected continuously at the same speed and load, and each segment is 

acquired at exactly the same crank angle as a reference position.  Figure 6.11 shows the progress of 

the data acquisition process. On this screen multiple channels of data are being collected. One of 

which is cylinder pressure and one channel is coolant temperature.  

 
 

 
 

Figure 6.10 Set-up window screen 

 

Other parameters such as speed, load, sampling rate, and data length are automatically saved in 

binary format to the hard disk. The measured data is analysed offline using the MATLAB package. 

All the results and figures resulting from the experimental work and discussed in later chapters of 

this research work were generated directly from the MATLAB environment. 
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Figure 6.11 Data acquisition in progress. 

 

6.5 Acoustic Emission Measurement and Data Acquisition   

AE measurements are based on the use of an AE sensor to convert the motion of a point on a 

surface generated by elastic waves into an electrical signal in which the variations of voltage mimic 

identically, or are analogous to, the variations in motion. During AE measurements the operating 

environment of the engine was noise controlled, e.g. the door was closed (room door) and the other 

engines in the laboratory switched off to minimise contamination of the AE signal.   

AE sensors used for accurate AE measurement need to be sensitive, stable, capable of high 

temperature operation, have good frequency response and be able to operate over a very wide range 

of AE levels. To obtain the required accuracy this project used a wideband sensor as this is most 

commonly used for precision measurement. 

 

6.5.1 Wideband Sensor 

The AE sensor was used in this research were of the commercially available piezoelectric element 

type, based on the ceramic, lead zirconate titanate (PZT). These generate small voltages in relation 

to nanometre amplitudes surface waves and can be manufactured so as to provide different 

bandwidth responses and sensitivities to suit a variety of applications. 
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The AE signals were measured using a Physical Acoustics Corporation Wideband sensor model 

WD as shown in Figure 6.12. This type of sensor has a differential output to decrease the influence 

of noise. The Wideband sensor was chosen because it has a frequency range suitable for most 

engine events, good sensitivity, high temperature operation and is of small size. 

 

 

Figure 6.12 PAC WD acoustic emission sensor and specification [280]. 

 

 

 

Figure 6.13 Simple diagram of AE sensor. 

 

A schematic diagram of the AE sensor is given in Figure 6.13. Essentially it consists of a crystal 

which is housed in an appropriate enclosure with a wear plate and a connector. The sensor moves 

due to the stress wave impinging on its face, and it delivers an electrical signal to a preamplifier. 

The preamplifier can be fixed inside the sensor enclosure to prevent signal loss. To ensure good 

transmission of the AE signal, a thin layer of high vacuum grease was applied between the sensor 

face plate and the holder surface. 
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6.5.2 AE pre-amplifier 

Amplification of the raw AE signals were generally provided by a PAC model 2/4/6 preamplifier 

chosen for maximum compatibility to get best results. This type of preamplifier can work with 

either a single ended or differential sensor, and provide 20, 40 or 60 dB gain and also band-pass 

filtering within the range 100 to 1000 kHz. The power is supplied using the output signal BNC. 

Figure 6.14 shows the pre-amplifier and its specifications. 

 

 
 

Figure 6.14 PAC model 2/4/6 pre-amplifier and specification. 

 

6.5.3 AE Data Acquisition System  

The typical frequency of AEs is in the range of 100 kHz – 1MHz. The recent development of data-

streaming methods makes it possible to continuously sample and save such high frequency signals. 

Data streaming is able to maintain a steady high-speed data flow within a computer so that the data 

can be transferred to a storage medium continuously using such devices as the PAC PCI-2 board, 

shown in Figure 6.15. This board is connected to the computer through an industry standard high-

speed (138MB/sec) PCI bus and the sampled AE waveforms can be continuously transferred to the 

hard disk up to the capacity of the hard disk. 

The AE measurement system developed in this research is based on the PAC PCI-2 card, which was 

specially designed for high-speed data acquisition of AE signals. 

The stored data can be shown on screen and characterised using all of the waveform features and 

statistical parameters discussed in Section 4.5.2, or processed using advanced digital computing 

methods in MATLAB through the interface software developed by this author. All the AE signals 

presented in the following chapters were processed using the software developed in MATLAB. 
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Figure 6.16 shows the progress of the AE data acquisition process. In this screen two channels of 

data are being collected. The sampling rate and length are automatically saved. The data files are 

saved in binary format to the hard disk. The measured data is analysed offline using MATRLAB 

package.   

 

 

 

Figure 6.15   PCI-2 AE system card [280]. 

 

The system has two AE channels and two parametric channels with 16-bit A/D converters. 

For the AE channels, as shown in Figure 6.17, the PCI-2 card provides selectable anti-aliasing filter 

circuitry with 4 high pass filter selections (1 kHz, 20 kHz, 100 kHz and 200 kHz) and 6 low pass 

filter selections (100 kHz, 200 kHz, 400 kHz, 1 M Hz, 2  MHz and 3 MHz) allowing the 

configuration of different filter strategies. The data-streaming function enables AE waveforms to be 

recorded on the hard disk of the computer continuously at a rate of up to 10 M samples/sec. 

The first parametric channel can be connected directly with the output of sensor and can provide 

measurement configurations such as gain control, offset control and filtering options. The second 

parametric channel only provides a straight +/- 10 volt input for conditioned sensor output. The 

sampling rate for these two parametric channels can reach up to 10,000 readings/ sec. 
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Figure 6.16 AE data acquisition system in progress. 

 

 

 
 

Figure 6.17 PAC PCI-2 block diagram [280] 
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6.6 Test Procedures and Fault Simulation 

Two types of faults were simulated and seeded into the engine. The engine was tested at two seeds 

(1000 and 2000 rpm) and four different loads, which will see in the following chapters. Data were 

collected from the engine while it was running under these faulty conditions, these faults were: 

1. Injector related faults, such as injection pressure reduction, injection pressure increase and 

injector disconnected (full misfire). 

2. Lubricating oil related faults such as friction, piston slap and changes in viscosity. 

 

6.6.1 Test Procedure 

Before starting the engine, to avoid health risks the ventilation system should be checked to determine 

it was working properly. This system works by sucking-up the exhaust emission of the engine and 

taking it outside the laboratory (engine room). The valves for the fuel, the cooling water for the engine, 

and the dynamometer were also opened manually before starting the engine. The emergency engine 

switch-off is fixed on the control panel. The oil supply indicator was checked to ensure a suitable and 

adequate oil supply during test. The engine temperature was checked periodically to ensure it never 

exceeded 90 C0 . 

The key objective for this study was to acquire real data from the test rig and to develop an 

understanding of how to apply signal processing methods to AE data for diesel engine CM. First the 

engine was tested under different loads: zero Nm, 50 Nm, 100 Nm and 150 Nm, and at speeds of 1000 

rpm and 2000 rpm. In these tests one AE sensor was fixed inside the holder and the holder mounted on 

the cylinder head of the engine by ceramic glue (for injector fault) and the holder mounted (sensor 

inside the holder) on the cylinder block for lubricating oil condition monitoring. High vacuum grease 

was applied between the sensor and holder to give good signal conductivity between them. 

 

 6.6.2 Injector System 

The fuel injection system is possibly the most important part of a diesel engine, and faults in the 

fuel injectors causes many engine failures which is why it was decided to seed faults into the fuel 

injectors. Not only is the injector responsible for delivering the right quantity of fuel to the 

cylinders, but this fuel must be delivered at the right time and at the right rate. In addition to this, 

the fuel must be finely atomised and effectively distributed throughout the cylinder to allow the 

complete combustion of the air and fuel.  
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There is one injector for each cylinder of the engine; this injector is fixed inside the cylinder head. 

The introduction of fuel into the combustion chamber in a finely atomised spray is controlled by the 

injector. 

The internal components of the injector were accessible and these can be seen in Figure 6.18. From 

left to right the figure shows the nozzle tip, the check valve stop, the check valve spring, the washer 

assembly and the injector body.  

 

 

 

Figure 6.18 Components of a diesel injector. 

 

One of the most important factors affecting the condition of the injection process is the fuel 

breaking pressure. Any change in the fuel breaking pressure will change the injection time and 

therefore affect the combustion process and degrade engine performance. In this work, the injector 

breaking pressure was decreased by reducing washer thickness, see Figure 6.18 (a thinner washer 

assembly was created) so that more fuel was injected; as a consequence the injector breaking 

pressure was reduced from 270 to 235 bar (as a result, earlier injection was expected) and by 

increasing the thickness of washer (a thicker washer assembly was created) the injector will inject 

less fuel and the start of injection will be later (breaking pressure was increased from 270 to 325 

bar).  

The last seeded fault was to disconnect the fuel injector from the fuel line (full misfire), this means 

that air will be compressed and injected into the chamber without any fuel, which means that there 

will be no combustion. Figure 6.19 shows the fuel pipe disconnected from the injector and the pipe 
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connected to fuel container to avoid fuel spillage in the room. For comparison a set of experimental 

data was collected using a healthy condition injector at 1000 rpm and different loads.  

 

 

 

 

Figure 6.19 Arrangement for total misfire. 

 

6.6.3 Lubrication Oil Faults 

The lubrication system is one of the most important part of a diesel engine, and problems in the 

lubricants causes many different engine failures (wear, cylinder, crankshaft, bearing etc.), which is 

why it was decided to study lubricating oil condition and quality. The data expected from oil 

analysis is dependent upon many factors. Primarily, the size of the engine will affect the data.  

Viscosity is one of the most important oil properties, which determines whether the lubrication oil 

can still effectively lubricate at operating temperatures. Viscosity is directly relates to the condition 

of the lubrication oil, as the measure of how viscous the oil is relates to how well the oil can 

maintain its lubricating properties in the cylinder and outer parts under high temperature and 

pressure. High or low viscosity can also indicate further problems, where high viscosity could 

suggest high particulate load, or that the oil level is no less important, would indicate that, if too 

low, this can cause significant problems often resulting in engine failure (increase friction, wear 

etc.). Depending on the environment in which the engine operates. Also if the oil level is too high, 

this can make many different problems such abnormal running.     
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6.7 Test Rig Recorded Data 

6.7.1 Angular-Domain Display  

The measured amplitude of the signals from the healthy engine was displayed in the angular-domain. 

Angular-domain analysis was expected to reveal the overall signal amplitude and cyclic features, 

while frequency-domain analysis gave spectral information of the AE. These methods were applied 

to study the AE generation mechanisms and to give the individual features of the sources.  

Figure 6.20 shows the AE waveform recorded in a laboratory environment without any special 

consideration or precautions. It displays the raw AE time-domain signal acquired from one working 

cycle (two complete revolutions) of the engine as a function of crank angle at engine speed of 1000 

rpm with no load. The mechanical events corresponding to crank angle are shown along the bottom 

of the figure. IV and EV refer to intake and exhaust valves respectively, 1, 2, 3 and 4 refer to the 

cylinders and INJ refers to the injector.  

The main feature extracted from the AE waveform shown in Figure 6.20 is that it exhibits four 

peaks corresponding to the engine firing sequence and each peak is caused by combustion in one of 

the cylinders of the engine, from left to right, cylinders 1, 3, 4, and 2.  The waveform consists of 

numerous frequency components superimposed on each other due to the numerous AE sources. 

The thin vertical lines indicate TDC for each cylinder in the order they fire: 1-3-4-2. As can be seen 

from Figure 6.20, the largest AE signals are associated with injection events and occur just after 

TDC for each cylinder. Smaller amplitude events are also associated with exhaust valves opening. 

The highest AE amplitudes are, as would be expected, observed for the cylinder closest to the 

sensor, since the magnitude of the signal will decrease with distance from sensor. Thus the highest 

amplitude signal detected by the AE sensor is, as can be seen from the figure, due to events 

occurring in cylinder one. This is because the sensor is mounted closest to cylinder one. 

The major mechanical events in the engine cylinder head are injection, fluid excitation, exhaust 

valve opening and its mechanical impacts (impact between valves and seats, injector needle impact 

and rocker arm with valve stem impact). 

Figure 6.20 shows that the dominant event follows the fuel injection and that exhaust valve closing 

is the most significant valve event, which is associated with the engine exhaust valve and differs 

from those associated with the intake valve. The intake valve movement involves lower kinetic 
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energy and the pressure differences across it might be expected to generate lower inherent signal 

energy, and this almost certainly explains the non-appearance of clear AE events for the exhaust 

valve closing (EVC).   

 

 

Figure 6.20 Raw AE signal in angular-domain from engine running at zero load and speed of 1000 

rpm 

 

The injector events for each cylinder occur at crank angles of around 0 0 , 180 0 , 360 0  and 540 0 , 

consistent with the firing order of 1-3-4-2. However, it is possible that the valve events include a 

number of related events associated with impacts of the rocker arm with the push rod or valve stem. 

It is also evident in the AE data that the actual timing of events can be slightly different. The 

difference in energy between cycles - e.g. the kinetic energy between the two potential impact points 

at push rod and valve stem - is relatively random, depending on exactly the position of the rocker 

from the previous cycle. There are also apparent inconsistencies between cycles, e.g. the exhaust 

valve opening events show differences between the various running conditions. This is due to the 

exhaust valve opening energy changing with the force the hot products of combustion exert on the 

face of the valve, an effect whose magnitude will depend on running conditions. 
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6.7.2 Frequency-Domain Display  

Frequency-domain analysis gives spectral information of AE signals by transforming them from the 

time-domain to the frequency-domain. The common, obvious characteristics in the spectrum of AE 

signals are the firing frequency and its harmonics.  

Here the recorded AE data is plotted as amplitude of AE response against frequency, and the 

constancy between AE and engine load should be more distinct than in the angular-domain. The 

demonstration in the frequency-domain is frequently more important because the frequency rates of 

AE and their relationship to the dynamic features of a system are clearer, as mentioned previously in 

section (4.4.2.2). The frequency spectrum or frequency domain can be achieved by using the digital 

Fast Fourier transform of the time waveform. 

Figure 6.21 shows the spectrum of the raw AE data at 1000 rpm with no load and we can see the 

first peak in the AE spectrum occurs at a frequency of about 20.0 kHz. It is also clear there is a 

single main peak in the spectrum extending from about 10 kHz to about 40 kHz. This is somewhat 

surprising, given the frequency response of the sensor, and confirms the importance of the peak.       

 

 

Figure 6.21 Frequency spectrum of raw AE signal from engine running at 1000 rpm with no load 

 

As can be seen from the Figure 6.21, there are two main frequency bands, low and high (below and 

above 40 kHz). The low frequency band is generally continuous and dominates the signals, and is 
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thought to be associated with the mechanical activity of moving parts around the cylinder head. The 

higher frequency components can be measured around TDC for each cylinder.  

These components are thought to be associated with fluid flow, including fuel flow in the injectors 

and gas flow over the valves. Fog et al [58] and El Ghamry et al [59] observed that the high 

frequency components in AE signals appear to be associated with fluid-flow activity for a number 

of sources such as exhaust valve leakage on a two-stroke large marine diesel engine and a cylinder 

head gasket leak on a four-stroke, high-speed diesel engine respectively. Also gas flow across 

turbine is very important source of AE.   

 

6.7.3 Angular-Frequency Domain Display 

Conventional spectral analysis using statistical parameters and Fourier transforms for the study of 

periodic, stationary and deterministic signals cannot accommodate the temporal variation of the 

spectral characteristics of a non-stationary signal.   

The Fourier transform does not take time information into account, it simply identifies all 

frequencies contained in the signal, but it does not provide information regarding the time when 

those spectral components are present and when they are not. The Fourier transform is not a suitable 

technique for non-stationary signals, and transient signals which are important in diesel engines are, 

by their nature, normally highly non-stationary, 

In order to accurately represent the frequency information contained in non-stationary signals, a 

technique that presents both time and frequency information needs to be used, producing a signal 

spectrum in the time-frequency domain. 

Angular-frequency analysis is a signal processing method that makes it possible to see both the time 

and frequency information at the same time. It displays the combined results from time and 

frequency analyses in a three-dimensional way which plots the amplitudes against time and 

frequency axes as shown in Figure 6.22.        

Using this technique to analyse AE signals generated by a diesel engine enables us to link every 

event observed in the time-frequency plane to a single excitation source. It is then possible to 

measure the energy of each event and to quantify the part each excitation mechanism plays in the 

AE signals measured on the surfaces of the engine.  
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To describe this temporal variation of engine AE signals, an evolving spectral analysis must be 

performed by using time-frequency methods. Such methods are a good tool for describing the 

spectral contents of transient signals as a function of time: they enable several patterns 

superimposed in time and/or in frequency, within the same transient signal, to be located and 

separated in the time-frequency plane [281].    

 

 

Figure 6.22 Time-frequency domain of raw AE signal from engine running at 1000 rpm with four 

different loads: 0 Nm, 50 Nm, 100 Nm and 150 Nm. 

 

Time-frequency analysis of such signals should make it possible to separate the responses 

associated with each source of excitation and consequently lead to a better understanding of, for 

example, the mechanisms of combustion, associated shocks and the transmission of resulting AE 

signals to the external structure of the engine. 

An efficient time-frequency method should allow us to: 

1. Locate at each point of the structure the responses inherent to each source of excitation, 

2. Analyse the frequencies associated with each source of excitation, and 
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3. Measure the contribution of each source of excitation in terms of energy. 

 

This should make it possible to quantify the contribution of generated AE signals from each of the 

sources. 

The time-frequency method is very useful in that most engine AE signals are related to events such 

as combustion and valve operations which have fixed occurrence times determined by the crank 

mechanism. By performing time-frequency analysis these events can be identified according to their 

occurrence in both time and frequency [281].  

The most common current method for obtaining the time-frequency distribution is the short-time 

Fourier transform (STFT). The STFT is a linear time-frequency transformation which maps a signal 

onto the time-frequency (scale) plane and is sensitive to transient signals. The STFT used in this 

work processes a signal by decomposing the signal into short blocks (or windows) and computing 

the spectrum of each block. Different types of windows can be used to reduce spectral leakage, but 

usually a Gaussian window is used. It is common to have a certain overlap of blocks to reduce 

information loss due the window function. 

For the AE engine, angle frequency analysis in which time is replaced by the crank angle is more 

useful and has been used in this study.  Figure 6.22 shows the AE waveform of the diesel engine in 

the joint angle-frequency domain for an engine speed of 1000 rpm and four different loads (0 Nm, 

50 Nm, 100 Nm, and 150 Nm). From the STFT representation we can clearly see four peaks 

representing the combustion events of the engine cylinders in the firing order from left to right (1, 3, 

4, 2 and 1). 

In the angular -frequency spectrum with no load shown in Figure 6.22, a large AE peak occurs at 

crank angles integer-multiples of 180 degrees, when the piston of each cylinder reaches TDC and 

immediately afterward during combustion. The AE levels at these angles are significantly larger in 

the 20 to 50 kHz frequency domain and last for about 10 degrees especially for cylinders 3 and 4, 

which is temporal stretching due to transmission distance. Lower frequency AE components, due 

probably to the motion of the pistons and other moving parts, are present and discernible 

particularly away from TDC positions and reach a maximum frequency around 50 kHz. It is 

expected that an increase of crankshaft and piston bearing gaps particularly affect these lower AE 

events. The spectrum analysis shows that the major part of the energy is located in the lower 
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frequencies (below 50 kHz), this can be seen more clearly in the STFT representation, and also we 

can see that the peak of the STFT extends to a low frequency range. The heights of the combustion 

peaks are proportional to the engine load and confirming that the engine AE signals are load 

dependent.   

 

 

 

Figure 6.23 Time-frequency domain of raw AE signal from engine running at 1000 rpm with four 

different loads: 0 Nm, 50 Nm, 100 Nm and 150 Nm (zoomed). 
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_______________________________________________________________________ 

CHAPTER SEVEN 

DIESEL ENGINE FUNDAMENTAL ACOUSTIC 

EMISSION CHARACTERISTICS 

 

 

 

 

This chapter investigates the fundamental characteristics of diesel engine acoustic emission signals, 

using time-domain, frequency-domain, and other statistical analyses of AE data. Acoustic emission 

signals for a range of loads and speeds are considered in order to provide a baseline for normal 

engine characteristics. 

Firstly, time-domain characteristic techniques are discussed. Secondly, the power spectrum of the 

engine AE signal is investigated. Thirdly, statistical parameters are used for detecting and 

diagnosing simulated faults. An analysis of a number of measured parameters from the engine test 

rig is then undertaken for the purposes of detecting, diagnosing and assessing the severity of the 

seeded faults described in Chapter Six: changes in injection pressure and changes in lubricant 

viscosity, level and temperature.    
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7.1 Introduction 

Research into the AE generated from diesel engines, where the AE stress waves are in the 

ultrasound region (form 20 kHz up to several gigahertz), is now being undertaken by investigators 

in a number of UK universities. Work in this field has led to many experimental and theoretical 

studies into the relationship between engine generated AE and other parameters such as engine 

type, speed, load and combustion system [1, 6]. The studies tend to focus on the characteristics of 

the AE wave transmission path.  Investigations on many diesel engines of widely varying types and 

designs have shown that the AE event generated by combustion represents a considerable part of 

the overall AE events, and the combustion event is highly dependent on the cylinder pressure and 

rate of change of pressure in the combustion chamber [246].       

AE signals can also be characterised by calculating certain statistical parameters such as mean 

value, standard deviation, skewness and kurtosis or can be further processed to obtain the 

probability density function and correlation function. In the case of diesel engine AE signal 

analysis, the correlation function allows the contribution of the combustion event to the total AE 

level to be calculated.  

 

7.2 Combustion Pressure Event 

The pressure in the combustion chamber of a diesel engine has been extensively studied, primarily 

from the point of view of monitoring engine operating performance, but in recent years there has 

also been interest in the combustion event and consequent high-frequency AE within the diesel 

engine. 

A typical pressure-crank angle curve for the cylinder pressure in the JCB diesel engine used in this 

work is shown in Figure 7.1. If the combustion does not occur, then the pressure rises and falls as 

shown by the curve ‘Without firing’. If fuel is injected slightly before top dead centre (TDC), then, 

after a small delay period, there is rapid combustion during which the pressure quickly rises to a 

maximum and then falls see curves ‘Firing’. The pressure – crank angle waveform is similar for all 

curves measured, whether on full load, part load or no load and with or without firing. The extra 

area under the firing curve is a measure of the work done in the cylinder during the combustion 

stroke.  
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Figure 7.1 Diagram of cylinder pressure vs. crank angle (0° = TDC). 

 

The rapid rise in pressure generates high-frequency components in the excitation force, as shown in 

Figure 7.2. This figure shows a clear increase in amplitude of the frequency components of 

excitation above about 250 Hz, when combustion takes place.  

         

 
 

Figure 7.2 Spectrum of cylinder pressure. 



     

179 

 

Clearly, these high frequency components contain information about the combustion process, 

particularly its onset and rate of rise. The spectrum of the cylinder pressure initially drops off 

rapidly, about 45dB per octave, and thus contains little high-frequency energy. The shape of the 

cylinder pressure curve is similar whether there is firing with no load, some load or high load, the 

difference being the brief period of rapid pressure rise due to combustion, thus it can be inferred 

that the increase in high-frequency (above 250 Hz) energy when combustion takes place is due to 

this rapid increase in pressure when the piston is approaching TDC, after the fuel has been injected. 

 

7.3 Diesel Engine Acoustic Emission Waveform      

The output of the AE sensor mounted on the front of the cylinder head (close to cylinder one) of the 

test engine running at an average speed of 1000 rpm and with no load is shown in Figure 7.3(a). 

Because the AE waveform was recorded in a laboratory environment without any special 

considerations or precautions, the higher resonance frequencies were removed by low pass digital 

filtering [282]. 

 

 
 

Figure 7.3 Acoustic emission waveform and power spectrum of the diesel engine, AE sensor 

mounted on the front side of cylinder head (close to cylinder No: 1) 
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The main feature that could be observed from the acoustic emission waveform are shown in Figure 

7.3(a), is the four peaks corresponding to the engine firing sequence and these represent combustion 

events in the cylinders 1,3,4 and 2 respectively. What makes the waveform complicated and 

difficult to extract information from is the numerous frequency components superimposed on each 

other. 

In the associated power spectrum, shown in Figure 7.3(b), four peaks can be seen; the first at 

approximately 19 kHz, the second at approximately 37 kHz, the third at approximately 65 kHz and 

the fourth at about 100 kHz. The amplitudes of any higher harmonics can be ignored because they 

contain considerably less energy than the first four leading terms.  

As would be expected, the first peak is due to the combustion process and its amplitude is highly 

dependent on the combustion conditions and the associated peaks to the first peak may be due to 

gear timing mechanisms. The second peak (37 kHz) is probably due to the closing impact of the 

valves, which occur twice per crankshaft revolution, every second revolution in each cylinder. By 

increasing the load the amplitude of both these peaks increases, see Figure 7.4. The third peak at 65 

kHz corresponds to the third harmonic of the peak combustion frequency, also increases in 

amplitude at higher loads. It has been shown that the peaks at 65 and 100 kHz are due to the AE 

events in cylinder head and may be due to valves impact events or fuel injection [238].  

 

 
 

Figure 7.4 AE waveform power spectra of the diesel engine at loads of (a) 50 Nm, (b) 100 Nm, and 

(c) 150 Nm. 
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7.3.1 Effect of Operating Conditions on the AE Signal 

Each cylinder experiences fuel injection and combustion once for every two complete revolutions 

of the crankshaft. Thus the number of ‘combustions’ per single revolution of the camshaft will be 

equal to (number of cylinders)/2. Here there are four cylinders, so there will be two combustion 

processes during each complete revolution of the camshaft, and the corresponding AE occurrence 

for 1000 rpm will be at twice the fundamental frequency. 

This section reports on how varying the engine rig speed and load affect the characteristics of the 

AE signals. The engine rig was operated at two speeds, 1000 and 2000 rpm under no load. A 

Matlab code was written to show the measured AE signal in terms of both the time-domain 

(expressed as crank angle), and frequency-domain. 

Figure 7.5 shows angular domain histories at both speeds with their associated spectra. It can be 

observed that the amplitudes of the angular-domain wave forms increase as the speed increases. In 

the frequency domain the amplitude of the peaks also increases with increasing speed. It seems that 

the peaks stay in much the same places, but the relative amplitudes change. The peak at 19 kHz 

does not move but it remains at 19 kHz at both 1000 rpm and 2000 rpm. However the peak at about 

25 kHz gets a lot bigger at 2000 rpm than at 1000 rpm and dominates the spectrum.  

 

 
 

Figure 7.5 Angular domain and frequency domain, respectively, of the AE signal from a diesel 

engine for engine speeds of (a) 1000 rpm; (b) 1000 rpm power spectrum; (c) 2000 rpm; (d) 2000 

rpm power spectrum. 
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To gain a better understanding of the speed effects, Figure 7.6(a) shows the signals for the two 

speeds, superimposed on each other. The corresponding AE frequency domain representations are 

shown in Figure 7.6 (b) and (c) respectively.  

 

Figure 7.6 Time and power spectra of AE signals from a diesel engine running at 1000 rpm and 

2000 rpm. 

 

 

Figure 7.7 Fourier spectrum of the AE signal from a diesel engine running at 1000 rpm and 2000 

rpm; up to 20 kHz (upper) and 20 kHz to 100 kHz (below). 
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Firstly, in Figure 7.6(a), the angular domain analysis of the AE signals is shown for the two engine 

speeds of 1000 and 2000 rpm, for two complete revolutions (720°) of the crank shaft – about 0.12 

seconds and 0.06 seconds duration respectively.  

Secondly, the differences in peak amplitudes are obvious; at a speed of 2000 rpm the waveform 

amplitude is double that at 1000 rpm. This confirms that engine speed has a substantial effect on the 

measured AE levels. Also, it can be seen from Figure 7.6 that the speed variation does not affect the 

distinctive cyclical character of the AE waveform. 

The spectrum of the AE signal has been divided into two, a lower frequency band –up to 20 kHz - 

and a higher frequency band from 20 kHz up to 100 kHz, see Figure 7.7. The lower box in Figure 

7.7 shows the high frequency portion, above 20 kHz, and reveals clear differences in the signal due 

to a change in engine speed. The major portion of the AE energy is located in this frequency band. 

This demonstrates that the higher frequency band dominates the engine AE levels for the 

combustion event. The spectrum amplitudes increase with the increase of engine speed and more 

harmonics can be seen in the spectrum. The frequency response of the AE sensor is linear up to 

approximately 40 kHz, but we can still observe relative amplitudes beyond this frequency.  

 

 

Figure 7.8 AE signals and associated Fourier spectra for the AE from a diesel engine running at 

1000 rpm under; (a) no load; (b) 50 Nm; (c) 100 Nm; (d) 150 Nm. 
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To investigate effects of load variation, the AE signal was recorded when the engine was running at 

a speed of 1000 rpm, and under four different loads: zero, 50 Nm, 100 Nm and 150 Nm. The 

recorded AE signals and the associate Fourier spectra are shown in Figure 7.8. The complexity of 

the AE signals generated by the diesel engine makes the identification of the differences in the AE 

waveforms in the time-domain, due to different loads, difficult to determine. The amplitude of the 

spectrum in the higher frequency band, 20 kHz - 100 kHz shows clearer results.  

The load of 50 Nm exhibits higher amplitude but fewer transients compared with the case of no 

load and this agrees with some previous researchers that the AE level is load dependent. By 

increasing the load to 100 Nm and then to 150 Nm, the amplitude of the AE signals spectrum 

increased and more transients could be seen in the spectrum in both the lower and higher frequency 

bands. 

 

 
 

Figure 7.9 Mean value of AE signal for a diesel engine running at (a) 1000 rpm at four different 

loads and (b) 2000 rpm at four different loads. 
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Figure 7.9 shows the effect of load variation at different speeds on the RMS of the AE signals. 

Figure 7.9 confirms that the mean value of AE signal increases with the increase of engine speed 

(double), however, the relationship between load and the AE signal level is more complex. At low 

speeds the mean of AE signal level appears largely independent of load, but that at the higher 

engine speed (2000 rpm) the mean AE signal level appeared to have increased with load (load 

dependent).  

 

7.4 Data Analysis Using Statistical Parameters 

Here the term statistics refers to systematic methods of arranging and describing scientific data and 

inferring general properties from specific sets of observations. The idea behind testing the engine in 

this way is to investigate the possibility of utilising AE measurements and simple statistical 

methods for online condition monitoring. Calculating the RMS values and the variance of the AE 

signal may give a quick indication of the engine health in a relatively straight-forward way, and 

information on the engine’s health could be assessed by a technician without the need for any 

special training. 

The statistical parameters: mean, standard deviation, variance, kurtosis and skewness are described 

with their defining equations in Section 4.5.2.1, Time-Domain Analysis. The author wished to 

assess the use these statistical parameters have in identifying of fault severities, assist in finding 

solutions for uncertain fault problems and help to avoid high engine maintenance cost through 

enhanced online monitoring and better identification of unexpected failure.  

 

7.4.1 RMS Value and Variance as Fault Severity Indicators   

 In this section RMS values and variance of the acoustic emission signals are used to give an 

indication of fault severity. The engine was tested under four conditions, one with no fault and three 

different faults commonly found  in injectors were introduced, see Table 7.1. Case 1 was with no 

fault introduced. In case 2 the injection pressure of cylinder 1 was reduced by 35 bars (13%) to 235 

bars. Case 3 the injection pressure was increased by 55 bars (20%) to 325 bars. In case 4 the fuel 

injector was disconnected from the fuel line (full misfire). The engine was tested with each fault 

under four conditions: with no load, 50 Nm, 100 Nm and a load of 150 Nm, each at speeds of 1000 

rpm, 1100 rpm, 1200 rpm  and 2000 rpm.  
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RMS values and variances of the measured AE signals were calculated and averaged for each of the 

test conditions, see Figures 7.10 and 7.11. The RMS values increased from case 2 through to case 4, 

and this applies for two speeds and both loads. This increase corresponds to the fault severity 

increase and could be postulated to the fact that in each case the number of faults increases 

(mechanical impacts and flow friction etc.) the combustion getting affected more and hence the AE 

level increased. Richard [283] stated that the variance of the RMS signal could be used as an 

indicator of combustion quality. 

 

Table 7.1 Summary of faults seeded into the diesel engine 

 Case 1 Case 2 Case 3 Case 4 

Fault location N/A Cylinder 1 Cylinder 1 Cylinder 1 

Injection pressure 270 bar 235 bar 325 bar Full misfire 

Description Healthy 

condition 

Injection 

pressure 

reduction 

Injection 

pressure 

increase 

Injector 

completely 

disconnected 

 

 

Figures 7.10 and 7.11 are showing the RMS values and the variance for each case. It can be seen 

that the faulty cases all have higher variances compared with the healthy case, case 1. Again an 

increase in variance can be seen as the number (as mentioned before) and severity of the faults 

increased, and this suggests that this quick simple approach could be used as an indicator for fault 

severity. 
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Figure 7.10 AE signals RMS values and the variances (a) no load and four speeds, and (b) 50 Nm 

load and four speeds 

 

 

Figure 7.11 AE signals RMS values and the variances (a) four speeds under 100 Nm load and (b) 

four speeds under 150 Nm load. 
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7.4.2 Kurtosis as a Tool for Fault Diagnosis 

In this section the possibility of detecting and diagnosing fuel injector faults using kurtosis is 

investigated. In cylinder number 1 fuel injector pressure was altered from a healthy pressure (270 

bar), first to 235 bar, 325 bar and then subsequently disconnected. The instantaneous in-cylinder 

pressure is shown in Figure 7.12. There are clear differences between the peak pressures of the four 

cases (especially at high load) and, as expected, introducing the fault increases the peak pressure, 

cause the peak pressure depends on the combustion rate in the initial stages, which is influenced by 

the amount of fuel taking part in the uncontrolled combustion phase, which in turn is governed by 

the delay period [284]. 

 

 

Figure 7.12 In-cylinder pressures of diesel engine cylinder 1 at 2000 rpm, (a) at no load and (b) at 

150 Nm load 

 

Figure 7.13 presents a possible detection method whereby faults are found by plotting the kurtosis 

of the AE signals from the diesel engine against its RMS value.  

The spectra of the AE signals in the low frequency band show a clear difference between the AE 

signal for the healthy and faulty cases. At low frequencies it easy to detect a clear difference see 
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Figure 7.13. At high frequencies it is more difficult to detect a clear difference, because there is 

clear signal, but at lower frequencies the differences can be seen clearly. 

 

 

Figure 7.13 Plot of kurtosis against RMS for the AE spectrum below 20 kHz (Blue) 270 bar, (Red) 

235 bar, (Green) 325 bar and (yellow) full misfire 

 

7.4.3 Analysis in the Angular-Domain  

Angular-domain of the AE signals under the four given loads at (engine speed was fluctuating 

between 950 and 1000 rpm) are presented in Figures 7.14, 7.15 and 7.16. These show the 

comparison of healthy AE signals with those obtained with the three seeded faults.  

For the reduced injection pressure (-13%), a clear difference can be seen for no load operation just 

before 360º, see Figure 7.14(a), compared with the other load conditions.  
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Figure 7.14 AE signals in the angular-domain (87% injection pressure). 
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Figure 7.15 AE signals in the angular-domain (120% injection pressure). 
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Figure 7.16 AE signals in the angular domain (full misfire) 
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The rapid transient event of the no load condition indicates an obvious injector valve impact due to 

the pressure reduction. However, for other load conditions this feature is not so clearly observed in 

this angular-domain presentation. This shows that more advanced analysis is required to achieve 

full fault diagnosis. 

 

For the increased injection pressure (+20%), again a clear difference is seen for the no load 

condition around 360º, see 7.15(a), compared with the other load conditions.  

 

For full misfire the AE signal in Figure 7.16 show the same distinctive and a clear AE event at 360
o
 

for all load conditions, that is there is no AE peak and this allows the misfire to be detected 

straightforwardly in the angular-domain.  

 

7.4.4 Analysis in the Frequency-Domain  

The AE signals in the frequency-domain are obtained by applying the Fast Fourier Transformation 

(FFT) to raw time-domain AE signals. Figures 7.17, 7.18 and 7.19 give spectral comparison for 

three faulty cases respectively. It can be seen that high AE energy is mainly in a frequency range 

from 10 kHz to 45 kHz and a clear change can be observed in the spectrum between the healthy and 

faulty cases.  

 

For the three faulty cases, the main frequency components shift slightly to higher frequency bands. 

It may indicate that the engine responds with sharper impacts or more violent flow processes, which 

are basic symptoms of the faulty operation.  

 

However, it is impossible to determine which cylinder has a faulty injector from the spectrum and 

to differentiate between the three faulty cases. 
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Figure 7.17 Spectra of the AE signals for 87% injection pressure. 
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Figure 7.18 Spectra of the AE signals for 120% injection pressure 
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Figure 7.19 Spectra of the AE signals for full misfire 
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7.4.5 Analysis in the Angular-Frequency Domain  

Angular domain analysis shows that AE signals in the angular-domain can diagnose the no load 

condition but not higher load conditions, whereas spectrum representation allows fault detection for 

all cases but not diagnosis. To combine the capabilities of both the angular and frequency domains, 

joint angular-frequency analysis is applied to the AE signals. Previously work [285, 286] has shown 

that the smoothed Wigner distribution is effective in analysis of injector impact induced vibration. 

However, recent advances in signal processing show that the wavelet transform is more suitable for 

the analysis of highly non-stationary signals such as AE from engines. Therefore, the measured AE 

signals is analysed with a continuous wavelet transform (CWT) using a Morlet wavelet [287]. 

 

 
 

Figure 7.20 Angular-frequency representation of healthy engine and engine with 87% injection 

pressure 

 

 

For a more detailed study, CWT results are presented centred on the combustion TDC of cylinder 1. 

The two graphs in the top of Figure 7.20 show CWT results for a healthy engine under no load and 

a high load respectively. It can be seen that the combustion AE events occurs around 365º and its 
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high frequency content increases under high load. In addition, the amplitudes of the spectral peaks 

also increase. The AE event due to fuel injection happens just after 355º and both its frequency 

range and amplitude increase with load. 

 

 

Figure 7.21 Angular-frequency representation of healthy and 120% injection pressure 

 

With the introduction of the small decrease in injection pressure, the CWT results change 

substantially. CWT results shown in bottom graphs have higher AE amplitudes, indicating higher 

impact from needle valve opening due to reduced injection pressure. For the no load case, the 

combustion event is substantially reduced, indicating poor combustion occurring in the cylinder. In 

contrast, the high load condition show a very high AE combustion event with a much wider 

frequency range. This shows that the combustion occurs violently because of poor fuel atomization 

and more fuel is injected caused by reduced injection pressure [281]. 
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Figure 7.22 Angular-frequency representation of healthy and full misfire 

 

Figure 7.21 shows result of higher injection pressure (120%), CWT results differ substantially from 

that healthy case. CWT results shown in bottom figures have low AE amplitude at no load and 

higher amplitude at high load. This indicates lower impact from needle valve opening due to the 

increased injection pressure. For the zero load case, it shows no combustion AE event around 365º 

indicating no combustion occurring in the cylinder. In contrast, the high load condition show a very 

high AE combustion event (good combustion) with extended frequency range. This shows that the 

combustion occurs weakly because despite good fuel atomization less fuel is injected caused by the 

increased injection pressure. 

 

These changes in the CWT due to the presence of these faults show that it is possible to differentiate 

a small injection fault from healthy conditions and successfully diagnose it under both high and low 

load conditions.  
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Figure 7.22 present the CWT results for a healthy engine and full misfire for both low and high load 

conditions. It is obvious that neither the combustion AE event nor injection show on the CWT 

results and hence this fault can be detected and diagnosed without difficulty.  

 

7.5 Lubrication Monitoring Using Piston Slap Intensity  

One of the driving factors for the development of modern diesel engines is engine pollutant 

emission [280]. The pollutant could be of used oil which ends up in landfills, in sewers, or directly 

in the environment where it contributes to spoiling freshwater resources and degrading ecosystems. 

To minimise this aspect of pollution advanced technologies are needed for all aspects of engines, 

including engine lubrication oil.  

The performance of the piston slap in a diesel engine is directly associated with the friction, and 

wear, which are in turn closely related to engine knock, lubrication oil and fuel. Understanding the 

relation between engine oil and piston slap intensity is important for developing advanced diesel 

engines. Many studies identified that liner and its lubrication are not responsible for the greatest 

proportion of the engine failures. Engine faults encountered included cracked liners and abnormal, 

excessive wear caused by poor lubricating conditions. 

In this section engine lubricating oil condition and quality are evaluated by analysing the acoustic 

emission signal from the diesel engine in certain frequency bands. Initially the engine was tested 

using good quality lubricating oil (20W50 type) at the full level (healthy case); subsequently 10% 

of oil was removed (engine oil level was 90%) and then engine oil level was 110% (10% added), 

the removed and added oils were measured by the engine capacity from the engine specification, 

while the engine was run at two speeds (1000 and 2000 rpm) with different loads but at constant 

coolant temperature (90±5
o
C). The AE signals were measured using an AE sensor mounted on the 

side of the engine cylinder block. 

Simultaneously cylinder pressure data was collected from the 1
st
 cylinder using a combustion 

pressure sensor. The engine speed was set at two speeds, the acoustic emission was sampled at 2 

MHz and 6 segments were collected in each experiment. In the three tests no effects on the cylinder 

pressure were detected in the time-domain waveforms of the AE signal. 
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Figure 7.23 RMS of AE signal at two speeds  

 

By taking the RMS values of the signals, some changes could be observed as seen in Figure 7.23. It 

was found that the RMS values of the frequency band 10 to 50 kHz are affected by the level of the 

oil. Certain components of the AE signals in this frequency band increased when the oil level was 

reduced by 10%. It was considered that these changes in amplitude of the components in this 

frequency band are due to piston slap [282,287].  

As can be seen in figure 7.23 there are clearly changes between the baseline and the two oil levels at 

1000 rpm. At 2000 rpm there is a smaller but similar change for oil decrease, but nothing significant 

for the 10% increase.    

The component amplitudes in this frequency band were found linearly proportional to the engine 

speed and load.  
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7.5.1 Engine Load 

Previous studies have shown that piston slap intensity increases when the load is increased. In this 

study the engine speed was set at 1000rpm and the load was varied from zero to 350 Nm in steps of 

100 Nm. The time-averaged RMS values for the frequency band 10 to 50 kHz are shown in Figure 

7.24 [286]. The load affects the magnitude of the cylinder pressure, which directly relates to the 

driving force on the piston, thus increasing engine load and slap intensity.  

 

 

Figure 7.24 RMS value of AE signal 10 kHz to 50 kHz with change in engine load at speed of 

1000rpm. 

 

7.5.2 Oil Temperature 

Oil temperature was increased from 30C to 90C in steps of 5C (controlled from the panel 

control, where there is oil temperature indicator and the temperature start measurement when engine 

starting until engine warmed up by collecting data in each step until 90
o
C). Figure 7.25 shows the 

RMS spectral amplitudes of structure-borne stress waves as the oil temperature increased. At an oil 

temperature 30C, the viscosity is ~50% higher than for fully warmed up conditions (90C Oil 

temperature) [287].  
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Thus, with cold oil the duty parameter (viscosity*speed/load) in the Stribeck curve [264] is high and 

there is more possibility for hydrodynamic lubrication than for boundary or mixed lubrication in the 

piston assembly (see Figure 5.1). 

Increasing oil temperature increases piston slap intensity as the result of two effects:  

1. Increasing the oil temperature decreases its viscosity dramatically, which provides less damping 

in the oil film between the piston and the cylinder walls. 

2. Increase in oil temperature is accompanied by an increase of cylinder liner temperature, which 

has the effect of enlarging the clearance between the piston and liner so the motion of the piston 

would be less restricted, increasing the slap intensity [287].  

 

 

 

 

Figure 7.25 Effects of oil temperature on RMS value of AE signal 10 kHz to 50 kHz with change in 

engine temperature at speed of 1000rp 

 

7.5.3 Engine Speed 

The effect of engine speed on piston slap was studied at engine speeds of 1000, 1100, 1200, 1300, 

and 1400 rpm at a load of 100 Nm. Figure 7.26 shows that increasing engine speed increases the 

acceleration of the cylinder block. Increasing the speed increases the in-cylinder pressure and the 

piston’s kinetic energy, and these are the reasons for the intensity of impacts being higher [287].  
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Figure 7.26 Effect of engine speed on RMS value of AE signal 10 kHz to 50 kHz with change in 

engine speed at constant load of 100 Nm 

 

7.5.4 Oil Type 

Engine oil should have certain acceptable properties for satisfactory lubrication of the engine, of 

which viscosity is one of the most important as it affects the oil’s capacity to lubricate effectively. 

The effects of oil viscosity on the capacity of piston slap to generate AE signals were investigated 

by changing the oil viscosity by using two different types of engine oil; 10W-30 and 20W-50. Table 

7.2 presents some of their typical and relevant properties. Between oil changes the oil was left to 

drain for 30 mints and the oil filter was renewed. 

The engine speed was set to 1000 rpm, and the AE signals were recorded at different temperatures 

and engine loadings. Figure 7.27 shows the consequent changes in the AE signal. It was difficult to 

discern any clear effects on the AE signals as a consequence of changing the oil type using only the 

mean spectral components [287].  

By band pass filtered the signals using a digital band pass filter between 10 and 50 kHz and 

calculating the RMS values of the signals, clear differences could be observed, see Figure 7.27. The 

intensity of the impacts is less when using higher viscosity oil, because of its higher damping 

characteristics.  

The RMS values in the case of 20W-50 are less at 200 and 350 Nm but more date would be needed 

to confirm the intermediate loads. By increasing the oil temperature this effect became less. 
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Table 7.2 Typical properties of the oils used. 

 Typical properties  10W-30 20W-50 

1 Viscosity  @100 C°  11.0 17.5 

2 Viscosity  @40 C° 72 153 

3 Viscosity Index 143 125 

4 Viscosity,  - 25 C° <7000 <9500 

5 Viscosity,  - 20 C° <7000 <9500 

6 Viscosity,  - 15 C° <7000 <9500 

7 Sulphated Ash, wt.% 1.2 1.2 

8 Yield Stress None None 

9 Total Base # 7.75 7.75 

 

 

 
 

Figure 7.27 Effects of engine oil viscosity on amplitude of AE signal. 
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7.6 Conventional Techniques: Limitations and Drawbacks 

The main drawbacks of the conventional methods of analysis; such as time-domain or angular 

domain extracted features (see Section 7.4.3), spectral analysis and statistical parameters (see 

Section 7.4.); is that they give limited information, especially when the sampling frequency is very 

high as it is in AE data acquisition. The frequency-domain analysis gives only information about the 

frequency components of the measured signals and in the case of diesel engine AE condition 

monitoring these frequency components are dominated by the firing frequencies of the engine and 

its harmonics (as seen in Section 7.4.4). The low frequency band (higher than 20 kHz) is dominated 

by the combustion event and it is difficult to detect any other AE event sources such as injection 

process event, exhaust and intake valve event sources. More advanced signal processing techniques 

have been investigated and applied in this chapter, time-frequency domain analysis using 

continuous wavelet transform (CWT) see Section 7.4.5.  
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________________________________________________________ 

CHAPTER EIGHT 

SIMULATION AND MODEL VALIDATION 

 

 

 

 

This chapter evaluates the models developed using parameters of a healthy four-stroke diesel 

engine. The mathematical equations are solved numerically in a MATLAB environment to give 

displacement, speed, acceleration, piston lateral force, gas torque, friction power, indicated power 

and inertia torque. The model has proved to be useful results, which can be used successfully for 

fault detection and diagnosis. 
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8.1 General Concept 

Chapter Five developed a mathematical model for the four-stroke diesel engine to predict likely 

piston slap and friction signatures. The derived mathematical equations now have to be solved. 

Because the differential equations are both coupled and nonlinear (also some of the many algebraic 

equations to be solved are highly nonlinear), it is not possible to derive a closed form of solution 

and numerical methods are used. Importantly, an initial validation of the model is performed by 

comparing the predicted parameters over the work cycle to a healthy engine. 

The method of solving the set of nonlinear and coupled differential equations that make up the 

model is based on a fourth order Runge-Kutta algorithm [55, 101]. The step size in the algorithm is 

adaptive, allowing longer steps when the functions to be integrated are smooth and smaller steps 

when the function changes rapidly. The simulation of the dynamic operation of the engine becomes 

the solution of repeated simultaneous equations for a number of initial value-boundary problems, 

corresponding to each element of the system. Knowing the initial values of all variables and the 

interaction which take place across the boundary of each element during the small time intervals of 

the iterations, the values of all variables can be determined. This process is repeated successively 

for the complete work cycle of the engine. 

 

8.2 Influence of Piston Displacement 

Piston secondary motion (displacement) in the piston–cylinder gap has a direct influence on 

cavitation destruction, lubrication, and oil consumption via the cylinder–piston group, on friction 

losses and cylinder–piston group wear, on engine reliability and on vibration, AE and noise.  

Piston displacement occurs under the action of lateral forces. Friction opposes piston motion in the 

form of: the friction force between piston skirt and cylinder; the friction force between piston rings 

and pistons; the friction force between piston rings and the cylinder; the friction moment in the 

piston pin connections; and the friction moment between the connecting rod and connecting rod 

neck. 

It was found that piston displacement takes place according to variation in the forces acting on it. If 

the sign of the force changes the piston starts to move freely from one wall of the cylinder shell to 

the opposite. 
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Figure 8.1 Piston lateral displacement and cylinder lateral displacement at engine speed 1497 rpm 

and brake torque 420 Nm  

 

In this case, the top and bottom edges of the piston start to move simultaneously. Then the bottom 

edge of the piston skirt outstrips the top edge. Figure 8.1 shows the relative lateral displacements of 

the piston and cylinder at engine speed of about 1500 rpm and load of 420 Nm. This figure shows 

experiments results and the environment between the piston skirt and the cylinder liner changes due 

to the crank rotation and cylinder pressure. As can be seen, the magnitude plot has a high magnitude 

of about 5 m, and which is the peak found in the frequency spectra of the piston. The first phase of 

free motion ends when the bottom edge of the skirt comes in contact with the opposite side of the 

cylinder shell. As soon as the bottom edge closes the gap, the top of the skirt starts to rotate 

(rollover) relative to the bottom. The rollover takes place with the oil that is squeezed out of the gap 

being removed by the top edge of the piston skirt. In this way, the radial motion of the piston is a 

result of a change in the direction of force and it is compound.  

Piston free motion cannot be realized simultaneously with a change in the sign of the force (sign as 

in Equation 5.26). In order for motion to be initiated, it is necessary to overcome frictional forces 
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including moment resistance. The start of the piston’s free lateral motion in the unloaded direction 

is delayed from the moment of sign change in the force by between 15–20° from the dead centre of 

the intake stroke, compression stroke, and exhaust stroke.  

During the exhaust stroke, the piston is displaced once near the operational TDC. The moment the 

free lateral motion of the piston begins corresponds to 10–15° after TDC. The whole of the 

resistance to piston displacement is equivalent to the value of the force at the moment piston free 

motion begins and depends on stroke and operational mode of the diesel engine. 

The resistance forces and moments do not influence the maximum rate of piston displacement, but 

they do determine the starting moment of piston lateral free motion and hence the end of the 

displacement: piston impact on the piston shell. 

 

8.3 Influence of Piston Sliding Velocity 

Regardless as to whether or not the transmission properties of the cylinder block are understood, 

further investigation of the signals is still constructive as it may reveal information about the factors 

which govern the amount of AE generated. 

 

 

Figure 8.2 Piston sliding velocity at constant engine rpm 

 

The consistency during the cycle of the continuous events proposed to relate to the piston liner 

contact is seen in Figure 8.2 for data acquired from the AE sensor positioned on the cylinder block. 
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The plot shows the amount of piston lateral velocity at an engine speed of about 1500 rpm and load 

of 420 Nm.  

Due to the four-stroke cycle, strokes 1 and 3 follow the same motion and similarly strokes 2 and 4 

are grouped together. The figure emphasises that AE activity is related to piston velocity. It is also 

clear that there is a distinction between the directions of piston velocity; at a given piston 

displacement the AE energy is greater for velocity towards the cylinder head than towards the 

crankshaft. 

The piston trajectories for cylinders 1 and 3 are essentially the same although the engine firing order 

dictates that the trajectory for cylinder 3 is 180 degrees out of phase with cylinder 1. The firing 

order further determines that cylinder 2 follows the same trajectory with cylinder 3, although 360 

degrees out of phase in terms of the engine cycle, and similarly cylinder 4 and cylinder 1 are 360 

degrees out of phase.  

 

 

 

Figure 8.3 Piston lateral velocity and cylinder liner response at engine speed 1497 rpm and brake 

torque 420 Nm   
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Burst-type AE events, are noted as occurring at maximum piston speeds when the direction of 

piston acceleration changes and also at certain angles on the piston upstroke. 

The precise origins of these AE events are not known. One possibility is that they occur due to 

disruption of piston liner contact as the direction of piston acceleration changes; another is that they 

result from impacts caused by movement of the pushrod tappets. 

There are also two possible explanations identified for the difference in the amount of AE generated 

between acceleration directions. Firstly, the direction of acceleration may impact upon the piston 

ring dynamics causing a change in the tribological behaviour and consequently a change in the AE 

generation properties. This is obviously dependent upon the AE generation being sensitive to 

changes in piston sliding contact behaviour, this has been shown in other applications and, for 

instance, different AE generation characteristics have been observed for different contact areas at 

the head-slider/disk interface in HDDs [250, 251]. This explanation also relies on the AE measured 

at the centre-line of a cylinder being dominated by the piston liner interaction in that particular 

cylinder. 

The second explanation concerns cross-cylinder propagation. Given the apparent relationship 

between piston speed and AE activity the effects of any cross-cylinder propagation will be most 

obvious when the piston velocities for cylinders 2 and 3 are greater than for cylinder 1. The piston 

kinematics is such that these circumstances occur when the direction of the piston in cylinder 1 

accelerates towards the crank. This provides a possible explanation for what seemingly appeared to 

be an acceleration related feature. The issue of cross-cylinder propagation is significant as it 

suggests that to achieve monitoring of specific cylinders it may be necessary to develop spatial 

reconstitution techniques to decompose the signal into its constituent parts. 

Considering that the AE measured at the centre-line of any cylinder will likely involve contributions 

from each of the four cylinders comparisons which related AE activity to solely the motion of the 

piston in one cylinder will be inaccurate. Rather, the AE data should be compared to a combination 

to varying extents (depending upon their relative importance) of all the piston motions. 

Determination of each cylinders contribution would require knowledge of the complicated 

transmission properties of the cylinder block and of the source AE levels and phases at each piston 

liner contact. The complexity of this task limits what can be achieved here and instead the mean 

piston speed of all four pistons is used as an approximation. No distinction is made between 
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directions of piston speed since the objective is to compare the AE activity with the overall piston 

speed characteristics. It is observed that the mean piston speed resembles more accurately the 

profile of the AE energy during the cycle than the individual cylinder piston speed, which may 

imply that it offers a more realistic representation of the signal composition.  

The principal observation from tests on the engine is that AE activity appears to be generated from 

piston liner contact and that the selection of sensor position greatly affects the measured strength of 

this activity. Furthermore, it has also been established that for this activity there is a relationship 

between piston velocity and the amount of AE generated. 

 

8.4 Influence of Cylinder Block Displacement  

The cylinder block is one of the major structures of a diesel engine; it generates AE due to 

combustion gas pressure, oil film pressures and friction on the piston skirt and in the crankshaft 

bearings. AE analysis of cylinder block is helpful for analysing the AE characteristics of the whole 

engine. 

 

 

 

 

Figure 8.4 Displacement and velocity of cylinder block.  
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The AE sensor position on the engine cylinder block that produced the largest AE signal was the 

upper position, followed by the lower and then the mid position. This indicates that AE propagation 

from the liner to the external surface of the cylinder block occurs best above the water jacket (in this 

study we mounted the AE sensor above the water jacket). 

Figure 8.4 shows the data collected from the AE sensor that was mounted on the upper side of the 

engine block. This data provides a way of identifying the existence of piston slap and friction, and 

their intensities; however it is deficient in representing the dynamics of the piston.    

From the figure 8.4, a distinct peak is observed at approximately 33 degree ATDC and it is 

considered that the peak is caused by piston slap. Also, the magnitude of the peak is an indication of 

the intensity of impact. These observations mean the cylinder block displacement data can be used 

as a tool in identifying the existence of piston slap (by finding acceleration), and measuring 

intensity effects due to changes in different engine parameters. 

Thus when analysing piston slap data the results will be represented in terms of engine block 

displacement. Also, oil film thickness measurements can be used when applicable in discerning the 

dynamics of the piston. 

 

8.5 Engine Friction Measurement 

Due to the importance of friction losses in a diesel engine, we have developed a method to measure 

engine friction loss with high accuracy. In spite of its importance and past endeavours to measure 

engine friction, its accurate measurement is not easy since the amount of friction is relatively small 

compared with power dissipated in the brakes or cylinder pressure, and so on. Accurate 

measurements of the piston assembly friction are an especially difficult and challenging problem 

and friction measurement of the piston assembly under firing condition remains a challenging 

problem. 

 

8.5.1 Engine Friction using Conventional Technique 

The Indicated power (IP), Brake power (BP) and Friction power (FP) for two engine oils 25w-50 

and 10w-30 for an engine operating at eight different test conditions are given in Table 8.1. It was 

observed that there was a rise in engine friction with the increase in engine speed (rpm) for all 

conditions, which indicates that speed is one of the most important factors for engine friction. Other 

parameters on which engine friction depend are engine load, oil viscosity, oil temperature etc. 
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However, in this case the engine oil temperature was controlled (90±5
o
C) for both lubricants so the 

effect of engine lubricant temperature on friction can be ignored. 

 

Table 8.1 Indicated power (IP), Brake power (BP) and Friction power (FP) for 25w-50 and 10w-30 

oils under prescribed engine operating conditions 

Engine 

Speed 

rpm 

Torque 

Nm 

IP (kW) 

 

BP (kW) 

 

FP (kW) 

 

Oil 

20w-

50  

Oil 

10w-

30 

Oil 

20w-

50  

Oil 

10w30 

Oil 

20w-

50  

Oil 

10w-30 

1000 50 7.31 7.76 5.22 5.24 2.09 2.52 

1000 100 11.78 12.38 10.46 10.51 1.32 1.87 

1000 200 22.75 22.87 20.91 20.96 1.84 1.91 

1000 300 34.58 34.24 31.42 31.41 3.16 2.83 

2000 50 20.89 20.44 10.55 10.49 10.34 9.95 

2000 100 31.48 31.12 20.98 20.94 10.50 10.18 

2000 200 50.60 48.85 41.78 41.83 8.83 7.02 

2000 300 68.81 68.20 62.83 62.95 5.98 5.25 

 

 

At high speed and low load engine friction power is significantly higher (four to five times as great) 

compared to low speed and low load because the piston ring assembly and bearings are operating 

predominantly in the hydrodynamic lubrication regime and there is a strong dependence of 

hydrodynamic friction on engine speed (and oil viscosity). This strengthens the argument that the 

contribution of hydrodynamic friction in an engine is higher than the boundary and mixed 

lubrication friction. At low speed, for all load levels (engine operating in boundary and mixed 

lubrication regime) it was observed that there is marginal change in engine friction between the oils.  

BP = IP –FP                                                                                                                          (8.1)  

At high speed, high load the friction power is reduced to a level comparable to the low speed, high 

load condition; this may be explained with the help of the well-known fact that the contribution of 

friction as a percentage of indicated power output reduces as load increases, which is also shown in 
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Figure 8.5. It may also be decided that the shearing of the oil film’s sub-layers would be easier at 

high speed and high load which helps friction reduction.  
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Figure 8.5 Engine friction power at different operating conditions with lubricating oils of 20w-50 

and 10w-30. 

8.5.2 Brake Specific Fuel Consumption  

The brake specific fuel consumption is defined as the fuel flow rate per unit power output. It is 

desirable to obtain a lower value of BSFC meaning that the engine used less fuel to produce the 

same amount of work. This is one of the most important parameters for engine development. 

Brake specific fuel consumption (BSFC) was calculated at an engine speed of 2000 rpm for loads 

applied to the engine for both engine lubricants, see Table 8.2. The percentage reduction in BSFC 

obtained with changing the lubricant to one of lower viscosity was also calculated. Results indicate 

that there is significant reduction of fuel consumption of an engine when lower viscosity grade oil 

was used. Similar trends were observed for gasoline test vehicle during a chassis dynamometer 

study [288].   

As we saw in the previous section engine friction power can be reduced by using a lower viscosity 

grade oil at high speed and at all load points without affecting the engine adversely, which also 

corroborated by the BSFC results and which showed fuel saving of approximately 2%. 
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Table 8.2 Brake specific fuel consumption (g/(kW.hr)) of an engine operating at 2000 rpm and 

different loads (torque) 

 

Torque 

(Nm) 

BSFC (g/(kW.hr)) % Reduction 

due to change 

in oil 

10W30 20W50       

50 367.30 372.27 1.33 

100 269.74 275.22 1.99 

200 256.65 259.26 1.01 

300 231.46 234.04 1.10 

 

8.5.3 Friction Measurement Using AE 

Friction in the piston assembly is the most complex as large variations in the speed and load occur 

over a single cycle. Friction arises because both the piston rings and the piston skirt rub against the 

cylinder liner. The rings are loaded against the liner through pre-tension and under the effect of the 

in-cylinder pressure. The skirt will tend to lean against the liner as a result of the reaction of the 

connecting rod. It is generally assumed that the piston skirt is in the hydrodynamic region of the 

lubricating oil throughout the engine cycle. The piston rings have a more complex operation and 

when the piston is at mid-stroke, hydrodynamic lubrication occurs. 

As the piston approaches TDC or BDC, the reduction in speed causes the oil film to break down. At 

TDC combustion, this is enhanced by the build-up of the cylinder pressure, which increases the 

loading further. This has been observed by measuring the frictional force acting on the cylinder 

liner; a spike is seen around TDC and BDC, characteristic of a move into the mixed and boundary-

lubrication regimes. Overall, piston friction occurs mainly in the hydrodynamic regime and is 

therefore highly sensitive to the lubricant viscosity. 

Figure 8.5 shows the indicated power vs load for two speeds and the two types of oil. An increase 

of engine speed means an increase in power for a given load, and an increase in load for a given 

speed also means an increase in power. There appeared to be very little change in power with 

change in oil. The rate of increase of power appears to be slightly larger for the higher engine speed. 
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Figure 8.6 shows engine friction power vs load for two speeds and the two types of oil. It can be 

seen that friction power is greater at the higher speed and for the range considered speed has a more 

pronounced effect on the friction power than load. This may show that the increase in cylinder 

pressure (i.e. load) does not lead to as much increase in friction as an increase in cylinder speed. 

This means that the high peaks of the thrust force at TDC, shown in Figures 8.2 and 8.3, result in 

less friction and hence less AE effect, than speed changes. 

 

 

 

Figure 8.6 Indicated power vs. load at engine speeds 1000 rpm and 2000 rpm with lubricating oils 

of 20w-50 and 10w-30  
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Figure 8.7 Friction power vs. load at engine speeds 1000 rpm and 2000 rpm with lubricating oils of 

20w-50 and 10w-30  

 

The results in Figure 8.5 show clearly that the low quality oil consumes more power than the other. 

This confirms that oil quality has a significant influence on engine performance. It is difficult to 

differentiate between the oil type in the results for friction power, although 20W50 shows 

marginally less friction power in the load range of from 50Nm to 250Nm at 1000 rpm (see Figure 

8.6), which is to be expected because it has higher viscosity. During the tests, the oil and water 

temperatures were maintained at 90±5
o
C.  

There are many sources of mechanical friction losses beside piston assembly friction (such as main 

bearings, water pump, oil pump, etc.). 

Figure 8.7 shows the relative friction power vs. load curves at two different engine speeds 1000 rpm 

and 2000 rpm with lubricating oils of 20w-50 and 10w-30. In these tests the friction losses of the 

water pump, oil pump, and other mechanical parts are taken into account. The friction of the water 

pump and the timing chain are included in the camshaft assembly loss. The oil pump friction is 

included in the crankshaft assembly loss. In Figure 8.7, the piston assembly friction is responsible 

for about 45% of the total engine friction losses, (see Section 4.2.2).  As expected, the crankshaft 
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assembly friction loss increased with increasing engine speed. This means that the dominant friction 

mechanism of the crankshaft assembly was in the hydrodynamic region.  

The camshaft assembly friction losses also increased, as the engine speed increased, but not as 

strongly as for the crankshaft assembly. This can be explained because the main lubrication regime 

of the camshaft assembly is boundary or mixed lubrication. The friction losses of the piston 

assembly decrease with increasing speed in the low speed regions but increase in the high speed 

regions. That is, as expected, at low engine speeds the piston assembly friction shows that the 

boundary and mixed lubrication characteristics are dominant. However, as the engine speed 

becomes higher, the dominant lubrication mechanism is converted to hydrodynamic. From these 

considerations it can be deduced that the hydrodynamic friction force between two states (between 

two regions/regimes of the oil), would be different and can affect such piston dynamics such as slap 

and secondary motion. 

While examining the friction results it is important to bear in mind that the measured piston 

assembly frictional force is the summation of four main components: two compressions rings, an oil 

control ring, and the piston skirt. Therefore a change in a variable may produce different and even 

conflicting effects for each component. For example at moderate lubricant temperatures the piston 

skirt operates in the hydrodynamic regime whereas the piston rings operate in the boundary to 

hydrodynamic lubrication regimes. Any increase in lubricant temperature would bring the piston 

ring lubrication conditions more towards boundary, increasing the friction loss whereas decrease in 

viscosity would reduce the friction contribution from the piston skirt owing to a reduction in shear 

loss. 

At low oil temperatures at the start of the power stroke the piston assembly friction is high because 

of severe lubrication conditions, resulting in boundary lubrication but, as the piston picks up 

velocity, just before and after mid-stroke, the friction decreases owing to a high entraining velocity 

dragging more lubricant into the piston–liner interface. 

Thus the piston–liner interface enters the hydrodynamic lubrication regime. At mid-stroke, the 

entraining velocity is high and under hydrodynamic lubrication conditions, this results in an 

increase in friction due to a high shear rate. A similar picture can be seen for other piston strokes. 

 

At high temperature, because of severe lubrication conditions, a sharp rise in friction can be usual at 

the start of the power stroke. Also the friction at the start and end of each stroke is high as the film 

thickness in this region is relatively small because of a low entraining velocity and low lubricant 

viscosity, but at mid-strokes there is a slight decrease in friction. One of the main factors 
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responsible for the difference in friction loss during upward and downward piston strokes is the 

flow and availability of lubricant on the liner surface, as the piston uncovers and covers the liner. 

The flow and availability of lubricant is also dependent on the engine speed. 

The friction contribution from skirt–liner interaction is mainly due to shear loss, as evidenced by a 

continuous decrease in power loss as lubricant temperature increases at any engine speed. 

 

 

 

Figure 8.8 Relative friction power vs. load at two different engine speeds 1000 rpm and 2000 rpm 

with lubricating oils of 20w-50 and 10w-30  

 

8.5.4 Indicated Mean Effective Pressure Measurements 

The Indicated Mean Effective Pressure (IMEP) method can determine the piston assembly friction 

force from the measured cylinder pressure, the connecting rod force, and the piston assembly inertia 
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force. For the measurement of the connecting rod force and the piston assembly inertia force, 

information about the piston dynamics is needed. 

The measured piston friction force cannot provide any information about the lubrication 

mechanism. That is, the measured piston assembly friction using the IMEP method includes lots of 

information, such as piston viscous lubrication friction components, mixed lubrication friction 

components, and piston skirt friction. In addition the friction measurements using the IMEP method 

result in a very accurate measurement of forces acting on the complete piston assembly, but it is 

necessary to include the piston assembly inertial force and assume that the zero degree is the engine 

TDC position, the start of the power stroke. The sudden change in the sign of the frictional force at 

the end of each stroke is due to the change in the direction of piston travel. It was seen that, at low 

lubricant temperatures, there is a slight drift at the end of the compression stroke (between 675 and 

720 degrees), causing the frictional force to cross the zero datum line slightly. The effect was 

reduced considerably at higher lubricant temperatures.  

Figure 8.8 is for a lubricant temperature of about 90
o
C, because of severe lubrication conditions a 

sharp rise in friction can be seen at the start of the power stroke. Also the friction at the start and 

end of each stroke is high as the film thickness in this region is relatively small because of a low 

entraining velocity and low lubricant viscosity but at mid-stroke there is a slight decrease in friction. 

At any engine operating condition, the maximum friction takes place at the start of the power stroke 

as the lubrication condition at this point is in the boundary regime owing to the peak combustion 

pressure. At the end and start of each stroke the piston–liner friction is more towards boundary 

lubrication, whereas at mid-stroke it is generally hydrodynamic because of the relatively high 

entraining velocity. 

Some factors affecting IMEP are [289]: 

1. Compression ratio, 

2. Air/fuel ratio, 

3. Volumetric efficiency, 

4. Ignition timing, 

5. Valve timing and lift, and 

6. Air pressure and temperature. 

 

In the IMEP method, the piston pin friction force was neglected when calculating the piston friction 

force from the measured pressure force, connecting rod force, and the inertia force. The piston pin 
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exerts a frictional force on the piston assembly and affects the piston friction force and dynamics. 

However, it is very difficult to measure the piston pin friction force. 
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Figure 8.9 IMEP vs. load at two different engine speeds 1000 rpm and 2000 rpm with lubricating 

oils of 20w-50 and 10w-30  

 

8.6 Lateral Force on Piston 

The lateral force transmitted from the wrist-pin to the piston is defined by the lateral force balance 

on the wrist-pin (see Figure 5.4). This force, combined with the lateral pressure force around 

combustion TDC, drives the piston’s lateral motion while its interaction with the cylinder bore 

constrains it, and supports the driving force. The contribution of gravity is negligible. 

The lateral displacement and lateral impact velocity of the piston are initially unknown, and solved 

for iteratively based on satisfying a lateral force balance on the piston. The piston tilt significantly 

impacts both the lateral pressure force generated around combustion TDC, and the piston-cylinder 

bore clearance distribution. 

During the intake and exhaust strokes there are significant fluctuations in the wrist-pin force due to 

the wrist-pin and connecting rod inertias, and corresponding fluctuations in the cylinder force due to 
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these plus the added effect of piston inertia. These fluctuations are due to the fact that at light loads, 

the component’s lateral inertias are significant and the elastic piston tends to bounce on the rigid 

cylinder bore during piston slap. It is expected that, in the physical system, oil would significant 

damp out this motion. At higher loads, the piston’s tendency to bounce is significantly reduced as 

the piston’s inertia becomes negligible compared to the large driving force. 

As shown in Figure 8.9 (upper one), the force supported at the piston-cylinder bore interface is 

essentially a function of combustion chamber pressure and connecting-rod angle. In the absence of 

a significant amount of interference, variations in the side force driving the piston’s motion, from 

the ideal function of pressure force are: 

1. Piston and wrist-pin axial inertias lead to a difference between the pressure force on the piston, 

and the axial force on the connecting-rod. The balance of combustion chamber pressure and 

component inertias can significantly shift the timing of mid-stroke piston slap during the intake 

and exhaust strokes. 

2. The angle at which the connecting rod acts generates a lateral force from the axial load. 

3. Connecting rod inertia and wrist-pin friction shift the moment balance on the connecting rod, 

altering the angle of action of the connecting rod force and the resulting lateral force on the 

connecting rod. The wrist-pin friction does not significantly impact the lateral force transmitted 

to the piston. Connecting rod inertia can significantly shift the timing of mid-stroke piston slap, 

and in high speed, low load running conditions, increasing component inertias significantly 

change the lateral force as they become more significant compared to the pressure load. 

4. The wrist-pin lateral inertia introduces further fluctuations in the lateral force. These 

fluctuations, and those due to lateral motion of the connecting rod small end, are dependent on 

the detailed piston cylinder bore interface interactions, and can be considered to represent a 

significant source of uncertainty in the motion of the system. 

5. The lateral component of the combustion chamber pressure force can become significant around 

combustion TDC, but is highly dependent on piston tilt.  

 

The side force driving the piston’s motion is the side force that must be generated at the piston 

cylinder bore interface by the net lateral force on the piston. The piston’s inertia introduces 

additional fluctuations to the piston cylinder bore interface force, and the translation of the piston 
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across the cylinder during piston slap interrupts this force, particularly in the upper section of the 

cylinder bore where there are significant clearances.  

Piston slap begins to occur when the side force driving the piston’s motion changes sign. The 

timing of this sign changes and tends to occur for two reasons: 

1. The axial force transmitted through the components changes sign. This tends to occur at mid-

stroke during the intake and exhaust strokes as the inertia and pressure force terms balance, but 

may also occur in the compression or expansion strokes at high speed, low load running 

conditions. The exact timing is dependent on the pressure trace. 

2. The connecting-rod angle changes sign. The timing of this is a function of the engine’s 

geometry, and for an engine with no crankshaft offset will be 0
0
, 180

0
, 360

0
 and 540

0
 crank 

angle. There is a small shift in this timing due to the fact that the wrist-pin connecting rod force 

does not lie along the connecting rod axis. 

There is a small delay between the initiation of piston slap, and the piston actually leaving the 

cylinder bore surface. The piston may then translate freely across the cylinder, during which time 

there is no piston cylinder bore interface force, before making contact with the other side of the 

cylinder bore. In cases where there is an interference fit, the piston will remain in contact with both 

sides of the cylinder bore throughout this process. It is possible, even without an interference fit, for 

the piston to remain partly in contact with each side of the cylinder bore if there is sufficient tilt.     

There are many uncertainties in the interface force at the piston cylinder bore which affect the 

detailed distribution of the force. These uncertainties include [289]: 

1. Local surface geometry, 

2. Asperity contact force, 

3. Friction coefficient, and 

4. Oil film thickness. 

The impact force on the major thrust side is considerably larger than the corresponding values on 

the minor thrust side. This is because the offset position of the wrist-pin creates a larger clearance 

on the major thrust side, thus the impact velocity is greater there. This is analogous to a ball falling 

upon an oily plate from a greater height resulting in a larger impact force. It can be observed that, 

on the major thrust side, the contact force attains its maximum value at the maximum combustion 

pressure. 

As the contact force dramatically decreases on the major thrust side, the corresponding value on the 

minor thrust side begins to increase at around the crank angle of 60°, which is nearly one-third of 



     

226 

 

piston travel in the down-stroke sense. From the Figure 8.9 we can see that at the TDC a lateral 

displacement has resulted in an almost aligned piston orientation (see figure for the crank angle of 

0°). As the piston moves downwards, the lateral displacement increases dramatically with rising 

pressure towards the major thrust side, culminating in a lateral displacement, and a corresponding 

tilt towards the major thrust side.  

 

 

 

Figure 8.10 Piston lateral force, lateral displacement and lateral impact velocity. 
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These motions are responsible for the high thrust force. After combustion (maximum pressure) the 

piston tilting motion reverses in deal with rapid emergence of clearance on the major thrust side (i.e. 

a reduction in rigid body approach with respect to the major thrust side). The piston continues in 

this manner, where the combination of lateral minor thrust and reversal of tilting motion away from 

the major thrust side leads to the diminution of the gap on the minor thrust side, and this is the 

reason for the emergence of increasing contact forces on the minor thrust side. From mid-cycle, at 

90° crank-angle, the lateral motion reverses to one approaching the minor thrust side. This is 

indicated in Figure 8.9 by the negative values of lateral displacement. At the same time, the tilt 

angle is generally reducing, until a totally aligned configuration is observed at the BDC, as 

expected. This is where the few undulations in the tilt angle are due to increased lubricant reactions 

due to the approach of the piston towards cylinder bore on the minor thrust side.  

On the upstroke of the piston from BDC (i.e. for crank-angles greater than 180°) the piston aligns 

itself to the minor thrust side with small tilt angles due to low combustion pressures. The inertial 

dynamics of the engine displaces the piston laterally towards the major thrust side. At 360° the 

power stroke cycle is complete. The tilt angle and the corresponding lateral displacement values at 

0° and 360° should ideally be the same, if the transient analysis is to yield a repeatable cycle. It is 

clear that a number of such cycles should be included in the transient analysis but due to the 

computational time and memory constraints, it was clear that such an undertaking was impractical 

and that a clear picture of transient contact behaviour should emerge with the initial analysis. Any 

further extension of the analysis can only lead to refinement of the results in a quantitative sense, 

but not for the fundamental understanding of the physical phenomena. 

 

8.7 Influence of Gas Torque on the Piston 

The gas torque signal is a very important signal for power train control. The gas torque is affected 

by many different sources such as fuel injection, air quantity, oil temperature and so on. The 

maximum torque value represents the maximum pressure in the cylinder during the combustion 

stroke.  

As a consequence of the large fluctuations in engine torque during the cycle, the variations in the 

rotational speed are obvious in Figure 8.10; the sudden drop in the piston velocity and its 

subsequent increase can be linked with the negative and positive peaks of the gas torque. The 

amplitudes of the cyclic speed fluctuations tend to increase as the mean engine speed decreases 

owing to the fact that at low engine speed the cycle time is long and the engine deceleration at the 
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end of the compression stroke is dominant and vice versa. This is a very important criterion in 

making compromises between the flywheel size, the engine speed of response and the engine low 

idle speed limit.  

As shown in Figure 8.10, the cylinder pressure is quite similar at different engine speeds. The 

combustion pressure can result in significant radial deformation of the piston, relative to the piston 

cylinder bore clearance, particularly close to combustion TDC. The upper portion of the piston is 

deformed outwards, while the lower portion bends in the soft, central portion of the skirt bends 

further inwards that the more rigid outer edge. Pressure deformation becomes significant over the 

compression and expansion strokes.  

 

 

 

 

Figure 8.11 Cylinder pressure and gas torque. 
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Thus, the effect of engine speed on the friction force of the piston assembly is complicated by the 

effect of engine speed on cylinder pressure, in addition to the direct dependence on engine speed. 

Basically, it is known that the gas pressure behind a ring provides the major contribution to the 

sealing force. Thus, in the case of the top compression ring the gases in the combustion chamber 

pass down the clearance space between the piston crown land and the cylinder liner and then into 

the top ring groove to load the rear face of the ring. Thus, this top groove pressure affects the piston 

ring assembly friction since the high groove pressure exerts piston ring side force and increases the 

normal load of the ring against the cylinder liner. It is usual in lubrication analyses of piston ring 

packs to assume that the pressure in the top ring groove is at all times equal to the combustion 

chamber pressure. 

  

8.8 Influence of Inertia and Gas Torques on the Piston 

The inertia of the engine will affect its performance. For real-time monitoring and control of the 

engine the torque produced by a cylinder will have two components, the gas pressure torque and the 

reciprocating inertia torque. The gas pressure torque depends, almost exclusively, on the engine 

load and could vary from cylinder to cylinder even under steady-state operating conditions. The 

reciprocating inertia torque depends only on engine speed and is fairly uniform for all cylinders. 

Under steady-state operating conditions, the total torque corresponding to a given cylinder, may be 

considered a periodic function of time (crank angle). Figure 8.11 represents the resultant inertia and 

gas torques throughout the cycle for several engine speeds. As expected, the inertia torque has the 

same magnitude at any engine speeds. The resultant torque between gas and inertia has similar 

fluctuations at different engine speeds as seen in the figure.  

The resulting friction force of the piston assembly can be computed using information concerning 

the pressure force, the connecting rod force, and the inertial forces of the connecting rod and piston 

assembly. The friction torque can be calculated from the measured inertia torque and the gas 

pressure torque. 

From Figure 8.11 the axial inertia result in significant radial deformation of the piston, relative to 

the piston cylinder bore clearance, particularly at TDC and BDC. Negative axial acceleration results 

in a positive axial inertia force, deforming the piston upwards. The lower portion of the skirt is 

deformed outwards while the crown bends inwards, and the soft, central portion of the skirt bends 

further outwards that the more rigid outer edges.  
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Although the values of inertia torque and pressure torque are zero, the friction torque at each crank 

angle is the resultant torque generated by inertia, cylinder pressure, and friction. Thus, the inertia 

and pressure torque influence the instantaneous torque at each crank angle and therefore, the inertia 

and gas pressure torque must be considered to allow the friction torque information to be extracted 

from the measured torque at each crank angle. The total inertia torque is just the sum of linear 

inertia torque and angular inertia torque. 

 
 
 
 
 

 

 

Figure 8.12 Inertia, gas and resultant torques. 

 

8.9 Lubricant Chemistry 

Lubricants are the result of a base stock which can be of either mineral or organic origin and a 

collection of additives which represent only a small fraction of the final product [67]. Diesel engine 
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oil viscosities are highly dependent on the temperature and decrease exponentially with increasing 

temperature [289]. The relationship between the viscosity and the temperature is quantified by the 

viscosity index (VI) which is an arbitrary scale assessing the change in viscosity between 30 ˚C and 

100 ˚C. Ideally the scale of the VI should be 0–100 ˚C. To perform satisfactorily in an engine oils 

now should have VI levels above 150. To achieve this, additives known as viscosity modifiers or 

viscosity index improvers can be used. These are polymeric molecules that have a temperature-

dependent structure; at low temperatures, they coil into a ball and have little effect on the fluid 

viscosity but, at high temperatures, they uncoil and become surrounded by oil and considerably 

increase the oil viscosity. Figure 8.12 shows the kinematic viscosity–temperature relationships for 

two oil types. As can be seen their viscosities decrease similarly with increasing temperature. 10W-

30 type decreases much less with increasing temperature compared with 20W-50.  

There are some important additives which are designed to improve boundary-lubrication 

characteristics, reducing the friction coefficient on the extreme left-hand section of the Stribeck 

curve (Figure 5.1). These molecules have a polar constituent that attaches to the lubricated surface, 

while organic chains in the molecule absorb a layer of oil. They are very effective at reducing 

friction in boundary lubrication as long as the temperature does not rise so as to cause 

decomposition of the molecule or desorption of oil on the surface. Some other additives necessary 

in lubricating oils are sometimes used. 

To calculate the viscosity of a given lubricant at any temperature the Vogel equation (8.2) may be 

used for straight weight oils. 

 

        (
  

    
)                                                                                                                             (8.2) 

 

 
Where k,   and    are constants determined for each lubricant with units of cSt for k and ˚C for 

   and     . T is the temperature of the lubricant in ˚C, and v is the kinematic viscosity at the desired 

temperature in cSt. 

 

There were differences in results which may be due to operating conditions (loading, temperatures, 

soot contamination, etc.) and which highlight the difficulty of performing accurate testing in this 

area.  

 

Figure 8.12 indicates the effect of temperature on the oil viscosity of the two test engine oils. The 

oil viscosity is much lower when it is warmer. As shown in Figure 8.12 at 30°C the oil viscosity 
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could be ten times higher than for fully warmed up conditions (90°C). Thus, with hot oil the duty 

parameter (viscosity*speed/load) in the Stribeck curve is reduced and there is a greater possibility 

for boundary or mixed lubrication than for hydrodynamic lubrication in the piston assembly 

friction. 

 

 

Figure 8.13 Kinematic viscosities vs. oil temperature for the two types of lubricating oil [287]. 

 

8.10 Piston and Wrist-Pin Motion 
 

8.10.1 Lateral Motion 

The lateral motion of the piston is driven by the wrist-pin lateral force, and constrained by the 

piston cylinder bore interface. The side force is essentially a function of the axial pressure load on 

the piston and the connecting rod angle, with shifts due to component inertias. It is expected that the 

side force on the piston will change sign for two reasons: 

 

1. When the connecting rod angle changes sign, which for an engine with no crankshaft offset is at 

0, 180, 360 and 540 crank angle degrees. 
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2. When the axial load on the connecting rod changes from compression to tension, which is 

determined by the pressure trace and component inertias, and typically occurs about mid-stroke 

during the intake and exhaust strokes.   

 

8.10.2 Tilt 

Piston tilt is determined by the moment balance on the piston, about the wrist-pin axis. The wrist-

pin friction moment tends to drive piston rotational motion approaching combustion TDC, while the 

friction and normal moments at the piston cylinder bore interface, combined with the piston’s 

rotational inertia, determine the tilt during intake and exhaust strokes. All four are significant during 

combustion. In some cases, particularly when there is wrist-pin offset, the combustion chamber 

pressure moment will also significantly affect piston tilt around combustion TDC, and can be used 

to counter-act the wrist-pin moment.  

Approaching combustion TDC, the connecting rod is rotating clockwise (negative), and drives both 

the wrist-pin and the piston to rotate clockwise, decreasing piston tilt. The large loads on the wrist-

pin bearings at this point result in a large negative moment being applied to the piston. At TDC the 

side force on the piston goes to zero and piston slap is initiated. As the piston travels across the 

cylinder bore it rotates rapidly clockwise until contact is made on the upper portion of the skirt, 

generating a very large positive moment, which in turns results in rapid, anticlockwise rotation of 

the piston and brief oscillation until the tilt reaches a stable positive tilt. 

Piston tilt throughout the rest of the cycle is determined by the balance of normal and friction 

moments created at the piston cylinder bore interface, and the piston’s rotational inertia. This 

balance is very sensitive to the point of action of the normal force at the piston cylinder bore 

interface, which in turn is dependent on the local geometry.  

Oscillations occur as the piston hits the cylinder bore at an angle, and then rotates, over correcting, 

to find its balance point. To complicate matters further, the piston profile is significantly changed 

by radial deformation due to combustion chamber pressure, axial inertia, and contact with the 

cylinder bore. 

As can be seen in Figure 8.13, in the absence of significant wrist-pin and pressure moments, the 

“stable” piston tilt (neglecting oscillations) is a function of: 

 

1. Deformed piston geometry: The location of the minimum clearance point and the slope of the 

profile determine the amount of tilt required to shift the point of action of the contact force, 
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2. Cylinder bore geometry: The average cylinder bore gradient, over the load bearing area of the 

piston, significantly contributes to piston tilt, and 

3. Piston cylinder bore friction coefficient: Around combustion TDC, the significant friction 

moments generated affect piston tilt, while throughout the rest of the cycle it was found to have 

very little effect. 

 

 

 

Figure 8.14 Stable piston tilts [289].  

 

8.11      Summary 

Fuel economy of large, diesel engines is critical performance metric for engine manufacturers. 

Demands for increased fuel economy are coupled with corresponding improvements in engine 

performance, durability, and emissions. One method of improving fuel economy is to reduce the 

losses due to mechanical friction within the engine. Mechanical friction accounts for between 10% 

and 15% of the indicated work output of the engine. Reductions in mechanical friction directly 

improve engine thermal efficiency and fuel economy.    
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The angular motion of the piston is driven by the friction moments at the piston wrist pin and piston 

cylinder bore interfaces, and the moments generated by the pressure force and piston cylinder bore 

side force. In the absence of wrist-pin offset, the wrist-pin friction moment dominates this moment 

balance approaching combustion TDC until piston slap occurs, at which point the piston 

interactions with the cylinder bore also becomes significant. Away from combustion TDC, where 

the loads transmitted through the system are much smaller, the piston is essentially searching for a 

stable position on the cylinder bore where the side force and friction force moments will balance. 

The oil film thickness plays a significant role in piston tilt, effectively changing the geometry 

constraining piston motion, and resulting in larger tilt, particularly during piston slap and an 

increase in land contact at combustion TDC. 

Accurate determination of the friction generated at the piston cylinder bore interface continues to 

pose a significant challenge. The oil film thickness can have a significant effect on reducing friction 

generation at the piston cylinder bore interface, but the accuracy of these results come into question 

when we compare the different surface representations, particularly approaching combustion TDC 

and throughout the expansion stroke, where there significant variations in the friction predicted. 

The net normal force generated by the piston cylinder bore interface is relatively by the lateral 

wrist-pin force, the proportion of it that can be supported by hydrodynamic vs. asperity contact 

pressure is not. At small clearances, small variations in surface geometry or piston deformation may 

result in significant variations in the hydrodynamic and asperity contact pressure, and 

corresponding changes in the resulting contact friction. 

Further investigation is required to determine the degree of accuracy that can be placed on friction 

predictions.      
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________________________________________________________ 

CHAPTER NINE 

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORK 

 

 

 

This chapter summarises the research work described in this thesis achievements and relates them 

to the objectives as defined in section 1.5.2. The key conclusion is that useful information for 

detecting and diagnosing faults can be extracted from the acoustic emission signals from a diesel 

engine, in a normal laboratory environment without the necessity for any testing. More importantly 

most of the used techniques and signal processing methods are inexpensive and their limitations 

and drawbacks are well defined. 

The chapter ends by addressing areas of future work that would helpfully extend some of the main 

topics such as the mathematical model developed in this thesis.    
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9.1 Review of Research Objectives and Achievements 

9.1.1 Overview 
 
The primary incentive for the work in this thesis has been to address the growing requirement for a 

system that can monitor running conditions at the piston assembly and cylinder liner contact in 

four-stroke diesel engines. The possibility of achieving this through analysis of non-intrusive AE 

measurements has been investigated since prior work indicated a sound technical basis. AE 

monitoring has previously been found to be an effectual tool for examination of other engine 

processes [61, 67, 73, 85-109], furthermore, the friction and wear processes expected to occur at the 

piston, rings and liner contact and slap impact occur at piston skirt and liner contact are known AE 

generating sources [129-140] and finally, it has been shown that AE signals propagate from the 

internal liner surface to the external engine surfaces where measurements can be made [111]. 

In this work a number of tests were conducted on a JCB four-stroke diesel engine where the effect 

on AE generation at the piston, rings and liner contact of parameters such as piston sliding speed, 

piston skirt friction, piston impact forces  and lubricating oil were evaluated in order to clarify and 

understand the AE source mechanisms. 

Discussions of results from the separate tests have been presented in the previous Chapters. The 

conclusions from all chapters are brought together in this Chapter to clarify what has been achieved. 

Overall conclusions regarding monitoring of the diesel engine are then drawn and implications for 

application towards engine monitoring are discussed. This Chapter closes with recommendations 

for future work. 

 

9.1.2 Objectives and Achievements 

The achievements of this research are outlined in this section. The research focused on the diesel 

engine condition monitoring via the analysis of its acoustic emission signals. Both theoretical and 

experimental work was carried out. A variety of signal processing techniques were used to extract 

useful information from the generated AE signals about the engine condition and to detect and 

diagnose certain quantified seeded faults. This was achieved in a typical untreated engineering 

laboratory. The main achievements of this work are presented below in the same order they appear 

in Section 1.5. 

 

Objective 1: To review condition monitoring of diesel engines. 
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Achievement 1: A review of CM generally and for diesel engines in particular was presented in 

Chapter 1, Section 1.4 preceded by a general introduction to the procedure for implementing a 

diagnostic system.  

 

Objective 2: To review the diesel engine’s principal faults and practical condition monitoring 

techniques used to monitor and evaluate these faults. 

 

Achievement 2: A review of the CM of the diesel engine and engine fundamentals were presented 

in Chapter 2, Section 2.4 preceded by a general introduction to the field of CM. An overview of the 

frequency of occurrence of the principal diesel engine faults was given in Subsection 2.4.1, 

followed by an introduction to the CM techniques most commonly used to detect and diagnose 

these faults.   

  

Objective 3: To study diesel engine AE sources and to investigate what information can be 

extracted from AE measurements regarding engine operation. This necessitates an evaluation of AE 

signals acquired from the AE sensor with the aim of correlating features in the AE signals to actual 

events occurring within the engine. 

 

Achievement 3: A review of AE generation and how it can be measured and analysis to provide 

information useful for CM of diesel engines was presented in Chapter 3. The use of AE for engine 

CM has been found to offer greater diagnostic capabilities than comparable techniques, due to 

higher spatial resolutions and signal-to-noise ratios. 

 

Objective 4: To study specifically AE signals arising from the lubrication condition, which is a key 

element of engine operation and impacts upon engine performance, emissions and reliability and, 

importantly, is an event which presently lacks a suitable monitoring tool even though a number of 

techniques have been used in the past. The influence of other engine parameters such as engine 

speed, load and temperature will be also investigated in order to develop understanding of the source 

mechanisms responsible for AE generation, and thereby of the aspects of interfacial behaviour 

which can be monitored. 

 

Achievement 4: The diesel engine as an AE system was introduced in Chapter 4, Section 4.3. The 

major sources of the acoustic emission signals were presented and discussed in Section 4.3.1, 4.3.2 

and 4.3.3, emphasis being given to mechanical impact and friction events generated AE. Section 4.5 
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discusses the AE measurements and compares the three basic signal processing techniques used for 

AE data processing: time domain, frequency domain and the time-frequency domain. It is 

considered useful to provide a brief review of other approaches AE signal processing. 

 

Objective 5: To develop a mathematical model of the diesel engine to be used for CM. The 

experimental results will be used to verify the model prediction. 

 

Achievement 5: The main concern in this model was the dynamics of the pistons. In Chapter 5 a 

mathematical model is developed for the numerical simulation of the behaviour of the diesel engine 

used in the test rig. The model consists of piston equations (displacement equation, speed equation 

and acceleration equation) and governing equations (piston motion equation, piston ring normal and 

friction forces, wrist-pin friction equation, cylinder liner support equation, and skirt liner friction 

equation). The information gained from such simulations can be used to help develop more 

advanced models for the CM.  

 

Objective 6: To introduce specific quantified faults into the engine and both measure and predict 

the effects on engine performance. 

 

Achievement 6: A description of the test rig was given in Chapter 6. This included the 

specifications for the particular diesel engine used and details of the measuring equipment and test 

system see Figure 6.2. 

It was decided in Section 6.6 that, given the relative frequency found in the literature review, the 

faults that would be introduced in to the engine would be reduction and increase of injection 

pressure (and a disconnected fuel pipe), and changes in the quality, level and temperature of the oil 

in the engine. These faults would, of course, influence the combustion process, the pressure pulse it 

generated and the timing of the impacts of the injection process. The problem which the research 

programme was to address was whether or not the consequent changes in the AE signal from the 

engine could be reliably detected and used to diagnose the fault. 

AE sensor for the measurement of the AE signal from the engine were integrated with the existing 

test rig, including the conventional condition monitoring instrumentation already being used; 

cylinder pressure and injection line pressure. 
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Objective 7: To apply signal processing methods and techniques (time, frequency and time-

frequency domain analysis) to extract fault features for early fault detection and compare their 

performance. 

 

Achievement 7: Several signal processing methods were applied to the data collected from the AE 

sensor. Although initial emphasis was focused upon time-domain analysis, data was also examined 

in the frequency and time-frequency domains. Each of the three processing methods was evaluated 

for its usefulness in fault detection, diagnosis and assessment of severity level. Attention was also 

given to the practical implications of the use of the various methods. The results from the AE signal 

analysis is presented in Chapter 7. 

Not only can features from the time domain be relatively directly interpreted, and this is a major 

benefit of this means of analysis, but they can be used for immediate fault diagnosis. Frequency 

analysis of the acoustic emission signals while useful for detection of injector faults in misfiring. 

More advanced means for signal processing included the use of CWT in Chapter 7.   

  

Objective 8: To allow the advanced CM techniques investigated and developed in this thesis to be 

used for demonstration in educational and training purposes concerning diesel engines.  

 

Achievement 8: A wide variety of computer simulated codes and advance measurement techniques 

were developed and prepared in this research work, as tools for diesel engine CM. For example the 

ability of continuous Wavelet Transform (CWT) was presented in Section 7.4.5. Outside the 

University of Huddersfield there are a number of students and professionals world-wide who have 

expressed an interest in the work. 

 

Objective 9: On the basis of the investigation conducted in this work to provide useful information 

to guide future research in this field. 

 

Achievement 9: In this field of research there remains much for any subsequent researcher to 

undertake. In particular, the development of the mathematical model and application of new signal 

processing techniques, to further extend this work to CM and fault detection and diagnosis of diesel 

engines. Suggestions are listed below, in proposed possible future work. 
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Finally, the author has been able to make a number of presentations and publish a number of papers. 
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9.2 Conclusions 

This work has established that continuous AE activity in signal acquired from the cylinder block is 

related to sliding contact. The potential benefits of this research have important consequence. 

Particularly considering that the current method assessing piston running condition in engine is 

limited to the periodic inspections and oil analysis.  

On the basis of this research, AE monitoring offers diagnostic information that may be exploited to 

offer monitoring of engine condition and performance. The question is about finding the way of 

extracting this information from the signals. The main aim of the analytical methods used in this 

work was to characterise changes in the signals to aid understanding of the AE source. However, it 

is possible that these methods can also be used as the basis of a monitoring system. For instance, in 

the tests conducted on the engine, the AE energy of the signals, where friction was the predominant 

source as it clearly increased as running conditions deteriorated. Similarly, the gradient of the 

engine load verses AE energy relation increased. These parameters could be collected where then 

trended over time or evaluated against a predetermined knowledge archive in order to identify 

running condition.   

However, since these diagnostic features are based on the measured AE amplitude the information 

they provide is inherently qualitative. For example the AE amplitude is a function not only of the 

intensity of source mechanism but also of the source-sensor transmission and the sensor response 

characteristics.  

 

9.2.1 Conclusions Relating to AE Measurement Statistical Parameters 

It was found that conventional time-domain statistical parameters such as RMS, mean and variance, 

for diesel engine AE signals served as good condition indicators. 

Abnormal engine behaviour could be detected as these parameters deviated from baseline values 

which make these parameters suitable for online CM. However, two problems were found to be 

associated with the use of these parameters. They are sensitive to many different events from 

different sources and this often requires further investigation to attain a diagnosis. This drawback 

might be overcome, in certain circumstances, by signal averaging and/or using appropriate filtering.  

Frequency-domain analysis gives information concerning the frequency components of the 

measured AE signals and, because the energy content of these frequency components are dominated 

by the combustion event of the engine which, while it gives a good indication about the combustion 

process swamps other sources with a relatively much lower energy content. Certain frequency 
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bands are associated with certain engine events, i.e. piston slap excitations are in the frequency band 

of 15 to 35 kHz. Higher order statistics as Kurtosis is one of useful statistical parameter to give a 

quick indication of engine health.   

 

9.2.2 Conclusions Relating to Time Representation  

Conclusion 1: Engine operation conditions affect the AE intensity, generally, an increase in either 

engine speed or load leads to a corresponding increase in the AE. In terms of AE sources, increase 

in engine load appears to have a stronger effect than a corresponding increase in speed; this will 

increase the accuracy for fault detection such as small faults. 

 

Conclusion 2: The variation of the AE peak amplitude with change of the amount of fuel injected 

into the cylinder relative to the healthy condition confirms a method for injector fault detection. 

Injector faults such as low pressure, high pressure and disconnected injector (misfire) can be clearly 

detected and diagnosed, and the cylinder where the fault is occurring can be identified. These types 

of faults can be easily identified on different cylinders with the same sensor position. 

 

The detection of such faults avoid the engine running under faulty conditions which may lead to 

high fuel consumption, high levels of emissions, and increased engine noise and vibration which 

may lead to further mechanical problems. 

 

Conclusion 3: The work has shown that a wide range of engine faults can be successfully detected 

and diagnosed using a limited number of sensors and simple time- and frequency-domain analysis 

of the AE wave. The time-domain analysis offers clear and powerful detection and diagnosis of 

most injector faults compared with frequency analysis which give a clear detection only in the case 

of a blocked injector. 

 

Conclusion 4: It has been shown that for injector fault detection based on AE waveforms, the 

identifying feature in case of reducing injection pressure is an increase in the pressure peak in the 

cylinder due to increased fuel injected and timing change in the combustion process. 
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9.2.3 Conclusions Relating to Time-Frequency Representation  

Time-frequency analysis techniques, whether linear or bilinear, are capable of presenting the results 

in either two or three dimensional plots in which the time, frequency and amplitude information can 

be observed. Unfortunately, in the case of diesel engine AE signals their capabilities are limited due 

to complexity of the signals. Based upon the results in Chapter 6, the CWT was found to be able to 

detect high frequency short time transient signals and its higher frequency range gives good 

condition monitoring information. It was applied to detect certain engine faults, because most of the 

engine faults occur as transient such as injection and piston slap impacts.  These transients could be 

captured using the ability of CWT to capture impacts, and calculating the energy content of these 

transient impacts could be a good condition monitoring.  

 

 

9.3 Overall Conclusions Regarding Monitoring of Diesel Engine 

 

This work has established that continuous AE activity in the signals acquired from the cylinder 

block of a four-stroke diesel engine is related to sliding contact at the piston assembly liner contact. 

 

Conclusion 1: Wear component would be expected to be a factor since the condition and profile of 

pistons are important elements that affect piston frictional behaviour.   

                

Conclusion 2: A further concern from commercial application of AE monitoring may be the 

complexity and reliability of the AE measurement hardware. Experience gained from this project 

suggests that sensors of sufficient robustness for long-term application are available (wideband 

sensor was installed on engine for several running hours with no obvious deterioration in sensor 

construction or response). Moreover, piezoelectric type sensors are already applied on the cylinder 

block of some engines to detect the occurrence of knock conditions. A further issue is the 

sophistication of DAQ hardware required as the high sampling rate necessary for raw AE 

acquisition may be excessive for incorporation within a mixed sensor array. However, the use of 

RMS AE reduces the sampling frequency to a more acceptable level and this work has shown that 

such measurements are an adequate base from which to evaluate piston running condition. 

 

Conclusion 3: The diagnostic information can be obtained without the need for intrusive 

measurements or expensive engine modifications. It therefore represents a new and promising 
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opportunity which may be of significant benefit to users of JCB heavy duty engine and one which 

complements existing monitoring systems. 

 

Conclusion 4: In addition AE measurements can be made on an on-line basis and are therefore 

available for potential integration into engine management systems. This means that as well as early 

diagnosis of problems the information may be used to adjust operating conditions so as to optimise 

operating costs or component lifetimes. 

 

9.4 Contribution to Knowledge 

The work conducted by the author and described by this thesis included several aspects that are 

novel and not previously implemented by other researchers or practitioners. A summary of these 

aspects is given below. 

 

Contribution 1: The author believes that the application of AE for detection and diagnosis of 

friction in heavy duty diesel engine faults is novel (Chapter 8). No work has been found in the 

literature that describes the use of the analysis for CM of heavy duty diesel engine using AE data, 

either experimentally or using a mathematical model. 

 

Contribution 2: The author believes that the use of CWT techniques for the analysis of the acoustic 

emission spectrum for a heavy duty diesel engine monitoring for CM is novel (Chapter 7) as no 

reports in the literature have been found using CWT for fault detection and fault diagnoses for 

heavy duty diesel engine. 

 

Contribution 3: The author believes that the application of lubrication monitoring by AE in order to 

detect piston slap intensity (Chapter 8) has not previously been employed for heavy duty diesel 

engine.     

 

9.5 Recommendations for Future Work  

Although diesel engine CM has been a topic of study over the past few years, it is still an open field 

and many problems have still to be resolved. This thesis has dealt with some of them, but the author 

identifies the following possible directions for future research. There are several areas in which 

further research is recommended, including aspects of dynamic modelling, signature recovery. 
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Recommendation 1: In the modern diesel engines major AE sources such as piston slap and 

combustion process are reasonably well understood and controlled. However, some minor sources 

such as wear due to decrease of oil film thickness, cavitation and lubrication blow by need to be 

modelled and a better understanding of these sources is required. 

 

Recommendation 2: Integration of AE measurement based system with measurements taken 

directly from the engine, such as vibration and Instantaneous Angular Speed (IAS), could be very 

useful in building a reliable diesel CM system. 

 

Recommendation 3: The investigations using the AE waveform predicted by the model could be 

extended to investigate the capabilities of piston cylinder bore friction coefficients as a function of 

axial position.  

 

Recommendation 4: Induce scuffing conditions. In this work scuffing was not considered, 

therefore, although AE monitoring has been shown to be sensitive to changes in lubrication 

condition, the ability to detect scuffing cannot be confirmed. In order to induce scuffing the cylinder 

should be starved of lubricant for a longer period of time and action should be taken to prevent an 

oil mist entering the cylinder via the scavenge ports. If this fails to induce scuffing, water injection 

should be considered as a means to aid the removal of lubricating oil from the sliding surfaces. 

 

Recommendation 5: Investigate Blind Source Separation and Independent Component Analysis 

techniques as possible new robust feature extraction methods. 

 

Recommendation 6: The exploration of more advanced techniques such as AE classifications using 

neural networks to detect and diagnose engine faults at an early stage. 

 

Recommendation 7: Combine the methods developed here with other CM methods, such as the 

noise from the engine system, to improve detection performance and increase information about the 

engine condition. 

 

Recommendation 8: Test other diesel engines types, to see if trends occur in AE measurements, 

where engine size, injection type, turbo size are varying. These would be the transparent to AE to 

build-up online commercial system of AE for CM.  
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Recommendation 9: Investigation of how the findings of this work can be applied towards engine 

monitoring and management. This will likely involve the development of signal processing 

techniques to improve the accuracy, efficiency and robustness of the analysis. These may also be 

more amenable to automation and integration with engine management systems. Particular 

application is foreseen as an element of a cylinder lubrication control system for the purpose of 

optimising oil dosage rates.     

 

Recommendation 10:  Long-term testing over a wider range of engine and correlation with engine 

performance and maintenance activities would allow a knowledge archive to be developed of the 

changes in AE activity during the service life of a cylinder and piston and of the features which 

characterise various running conditions. 
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