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ABSTRACT

ENHANCING SECRECY VIA EXPLORING
RANDOMNESS IN THE WIRELESS PHYSICAL LAYER

SEPTEMBER 2013

REHAN TALAT

B.S., GIK INSTITUTE OF ENGINEERING SCIENCES AND TECHNOLOGY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Dennis L. Goeckel

In order to establish a secure connections in the wireless environment, crypto-

graphic methods may require an exchange of a key or secret. Fortunately, the en-

vironment provides randomness due to multi-path fading that can be exploited by

physical-layer security algorithms to help establish this shared secret. However, in

some cases, multi-path fading might be absent or negligible; therefore, we look for

artificial ways to increase randomness. In this thesis, we explore antenna radiation

variation by altering the phase between two antennas as a means of creating artificial

fading. We construct a model of the antenna gain variation by analyzing the radi-

ation pattern and run Monte-Carlo simulations to compare our approach to a base

case with only multi-path fading. We then empirically collect data in order to confirm

our analysis. Finally, we incorporate this model in a prominent security algorithm to

demonstrate the improvements in security possible through such an approach.
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CHAPTER 1

INTRODUCTION

In wireless communication systems, information is sent through the air; hence any

device listening at the right frequency can record the broadcasted signal and poten-

tially decode it for malicious purposes. Therefore, it is important that information is

made secure so that only legitimate receivers can discern it. For this reason, crypto-

graphic algorithms have been refined over the years to establish secure connections

and render the signal captured useless to illegitimate nodes or adversaries.

While legitimate nodes can use a secure connection to share secret information,

they may need to exchange secrets in the first place in order to establish this con-

nection. This secret may be in the form of a key [14], a frequency hopping sequence

[3], etc. For a brief moment while they exchange the secret, they need to maintain

secret, reliable communication on an insecure channel, and, depending on the wireless

channel, this can incur a very high communication cost. However, randomness in the

channel can be used to improve this rate and to establish a secure connection. In

this way, randomness in the wireless environment is often essential for secrecy and

security.

This work explores enhancing the randomness in the wireless environment that

can be used to create secrecy and thus enhance security. Specifically, we propose

a physical layer technique that can provide randomness when natural randomness

subsides without incurring a high cost.
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1.1 Motivation

Key-based cryptographic methods require that the key is either previously agreed

upon or is exchanged at the time of initiating conversation. The former is relatively

easy to implement in the case of wired networks since the mobility of network elements

is not an issue and the topology is fixed. The secret key has to be established once and

can be used over again. Mobile nodes often communicate wirelessly and therefore,

they have to transmit in the public insecure channel for a short time in order to

establish a secure connection. They wander around and thus the network topology

(e.g. neighbors and obstacles) is constantly changing.

In earlier works, key establishment has been approached with information-theoretic

and computational security solutions. For example, [7] makes use of friendly-jamming

to establish a secret key without dependence on the channel characteristics. Because

of the probabilistic nature of wireless communications, even the computational secu-

rity approaches make use of the randomness in the physical channel. In [3], Strasser

et al. suggest the use of uncoordinated frequency hopping to establish a key for secure

communication.

However, more extensive work has been done in the area of information-theoretic

security which relies on the channel characteristics. The work in this area covers

adaptation of existing protocols and methods to exploit the randomness in the chan-

nel; and uses secrecy rate as a base of evaluation. In [9], an oblivious transfer protocol

based on the properties of the wireless physical channel is introduced. [4] measures

the secrecy rate of using dirty-paper code in delivering confidential messages to multi-

ple users using antenna diversity, whereas [6] evaluates the secrecy rate of slow-fading

channels using channel state information.

The randomness in the channel is often used directly or indirectly in key genera-

tion and extraction techniques. In [5], the authors suggest taking RSS measurements

to extract a secret key using the channel directly. [2] and [8] introduce the generation

2



of dynamic secrets which constantly updates the system secrets. While these works

focus on key generation, [10] and [11] focus on algorithms for exchanging keys, with

[10] suggests a secret key exchange algorithm based on low-density parity-check codes

using variations in the channel because of fading. On the other hand, [11] suggests

a scheme called Physical-layer Enhanced Key Exchange method (PEK), which ex-

changes the key in the presence of an adversary by relying on the information loss at

the adversary due to the randomness in the channel.

This work studies the effectiveness of randomness in establishing a secure com-

munication in the wireless channel. Hence, it is important to consider the question of

what will happen when the randomness goes away? In particular, multi-path fading

is a major factor that causes randomness; however, its effect is reduced in stationary

and less congested environments. From this motivation, we focus on antenna diversity

as a means to generate randomness in the system and evaluate its usage. We explore

the idea of generating artificial randomness through variation of the antenna pattern.

Our analysis is divided into two parts: the analytical section and the empirical

section. In the first part, we analyze a linear two-element antenna array and its

radiation pattern. In the second part, we make measurements to supplement our

analytical work and study their impact on a prototypical security algorithm.

1.2 Background

For our research problem, we consider an oft-used jammer model. In this model,

there are two allies (Alice and Bob) and one adversary, Eve. Alice and Bob want

to communicate with each other; however, they must do so in the presence of an

adversary, Eve. In particular, Eve acts as an eavesdropper and also has the ability

to jam. If Eve is only listening, then she is termed “passive”. On the other hand, an

active Eve has the additional ability to jam Bob while listening to Alice’s transmission.

3



If Eve is to be successful in her role as an adversary, she needs to be able to

receive Alice’s message directly or she needs to prevent Bob from receiving Alice’s

transmission. This is possible only if Eve is able to communicate at the same frequency

as Alice and Bob. Moreover, Alice’s signal which reaches Bob should have a high

enough signal-to-noise ratio (SNR) so that Bob is able to successfully decode the

message. The more successful Eve is in her efforts, the lower the secrecy rate will be

and as a result, the system will incur a higher communication cost. In the analytical

section, we analyze the probabilities of the events “Bob decodes Alice’s message,”

denoted PA→B, and “Eve decodes Alice’s message,” denoted PA→E, to predict the

likelihood of Alice’s success (i.e, Eve’s failure).

The radiation pattern generated by a phased array depends on the type of in-

dividual antenna elements and the number of antennas employed. We employ a

two-element uniform linear array and, for the analysis work, each element is assumed

to be an ideal isotropic antenna. This assumption is justified by the fact that dipole

antennas can be used effectively as omni-directional antennas in a particular plane.

The number of nulls in the generated pattern depends on the distance between the

two elements and the phase difference of the source current in the two antennas. In

our case, the underlying randomness is generated by the varying radiation pattern of

the antennas being used by Bob and Alice. Although beam-forming can be achieved

by deploying large antenna arrays and using complex algorithms, they incur a higher

communication cost. On the contrary, we will demonstrate that we can artificially

generate randomness using simple low-cost antennas.

For a fixed threshold, γa, the success is measured as the probability that the SNR

of Alice’s signal at Bob exceeds the threshold while Eve is unable to decode the same

signal. We look into the case where the location of the friendly and adversary nodes

are independent of each other.
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The empirical section of our work contains measurements to corroborate our anal-

ysis. A dominant characteristic of the wireless channel is fading [1]. The channel re-

sponse of the Alice-Bob channel and the Eve-Bob channel will be different from each

other and there is a possibility that there is a deep fade in the Eve-Bob channel while

Alice has a good channel to Bob. Generating randomness through antenna diversity

can benefit in both cases where fading exists or does not exist. In order to see the

effect of generating randomness on security of our method, we will incorporate this

idea in the Dynamic Secrets algorithm introduced in [2].

1.3 Contribution

The current security and secrecy methods either have a high communication cost

or require a pre-shared key. The amount of randomness required in many solutions

leads us to believe that increasing randomness can improve these methods. Our

main contribution in this research work is to study and analyze the different random

phenomenon in such systems. We identify multi-path fading as the main source

of randomness and then consider the worst-case scenario where it is less dominant.

Therefore, we propose an artificial method for generating randomness by varying the

phase of a two-element linear antenna array. We perform a thorough analysis of using

antenna arrays by running Monte-Carlo simulations. And in the end, we empirically

confirm the result of our simulations by collected measurements on a narrow-band

channel. Moreover, we understand the limitations of our method and try to identify

them as they come along.

In Chapter 2, we first lay the ground work for our theoretical analysis by presenting

key concepts such as multi-path fading, and introduce the “Dynamic Secret [2]”

security algorithm in more detail that relies on the randomness of the wireless channel.

Moreover, we consider what happens if the multi-path fading, which produces the
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randomness, goes away. Thus, in Chapter 3, we present our idea of generating artificial

randomness through antenna radiation variation and present Monte-Carlo simulation

results to supplement our analysis. In Chapter 4, we test our idea by setting up a

lab experiment and presenting its result. Furthermore, we assess these results by

applying the solution to the Dynamic Secrets [2] algorithm in Chapter 5. Finally, we

summarize our conclusions in the last chapter, Chapter 6.
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CHAPTER 2

MULTI-PATH FADING

Multi-path fading is an important factor that contributes to the randomness of

the wireless environment. In fact, for our analysis, we make an assumption that it is

the only natural factor present in the system.

2.1 Multi-path Fading

The energy radiated by a transmitter is reflected, diffracted and scattered on its

way toward the receiver. The same energy is incident on the receiver after taking

multiple paths. There is an attenuation factor αi(θ,φ,f)
r

and time-delay τi associated

with each path i of N paths, where (r, θ, φ) is the spherical coordinates of the point

where the attenuation factor is calculated, and f is the carrier frequency. The variable

αi(θ,φ,f)
r

depends on the product of the antenna patterns of transmit and receive an-

tennas in the given direction[12] among other factors which can be taken as constant.

The electrical field strength at the receiver[12] can be written as:

E(f, u) =
N−1∑
i=0

αi(θ, φ, f)

ri
e−j2πfτi (2.1)

where u is the point at (r, θ, φ). The phases of different paths are assumed to be

independent, and each has a uniform distribution in [0, 2π]. The electric field phasor

in (2.1) can be expressed as a complex number Zr + jZi where Zr and Zi are real

numbers. Because of the large number of paths present in the environment, the

central limit theorem allows Zi and Zr to be modeled as independent and identically
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distributed (i.i.d.) Gaussian random variables, each with mean µ and variance σ2.

Let the magnitude of the received signal be a random variable R whose distribution

we will derive subsequently.

The distribution that R takes depends on the mobility and environment of the

receiver. For our analysis, let us assume the presence of a dominant path among the

large number of paths between the transmitter and the receiver. This is true, for

example, in scenarios where the transmitter and receiver are in direct line-of-sight

(LOS). In this scenario, the power in all other reflected paths is less than the power

in the dominant path. The electric field strength in (2.1) can be re-written as:

E(f, u) =
α0(θ, φ, f)

r0
+

N−1∑
i=1

αi(θ, φ, f)

ri
e−j2πfτi (2.2)

where the first term corresponds to the dominant path. In this scenario, Zi and

Zr take a none-zero mean µ because of the dominant path and R takes a Rician

distribution [16] with parameters K and σ2. The parameter K is called the Rician

K-factor and is the ratio of the power in the dominated path to the power in the

reflected paths:

K =
E
[
|α0(θ,φ,f)

r0
|2
]

E

[
N−1∑
i=1

|αi(θ,φ,f)
ri
|2
] (2.3)

This type of fading is called Rician fading [13] and the probability distribution of R

(for r ≥ 0) is defined as:

fR(r) =
r

σ2
e
−(r2+|α0(θ,φ,f)r0

|2)

2σ2 I0

(
rα0(θ,φ,f)

r0

σ2

)
(2.4)

where I0() is the 0th order modified Bessel function of the first kind and σ2 is the

variance.

For the special case when K = 0 i.e. there is no dominant path and all paths have

comparable power, then Zi and Zr are i.i.d. Gaussian random variables with zero
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mean (µ = 0). Therefore, the distribution for R reduces from a Rician distribution

to a Rayleigh distribution [16]:

fR(r) =
r

σ2
e−r

2/2σ2

(2.5)

This type of fading is called Rayleigh fading [13]. Moreover, the square of the mag-

nitude of the received signal, |R|2, can be modeled as the convenient exponential

distribution [12]:

f|R|2(r) =
1

2σ2
e
−r
2σ2 (2.6)

Let’s now consider a channel between two nodes P and Q, denoted by PQ, that

undergoes multi-path fading. Node P transmits a message, xP to Node Q through

the channel PQ. The message received at Node Q, yQ, will be:

yQ = hPQxP + nQ (2.7)

where hPQ is the fading coefficient, and nQ is the noise at Q. In this Equation, hPQ

is a random variable which takes a distribution depending on the type of fading in

the environment such as Rayleigh or Rician fading. We will now use the concepts

presented thus far to introduce our system model and draw assumptions on which we

have based our analysis.

2.2 System Model

The first chapter introduced a system that consists of three nodes i.e. Alice, Bob

and Eve; which we will use in our analysis. Alice and Bob are allies who wish to

communicate with each other. For ease of reference, we have designated Alice as

the transmitter and Bob as the receiver. Secure communication techniques are aided

if Alice and Bob can create a short shared key with each other before they begin
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transmission [11]. Moreover, this key exchange can take place on-demand over the

air and hence possibly in the presence of an adversary. Therefore, it is essential that

this exchange takes place secretly even if that results in a high communication cost.

Our Alice-Eve-Bob system results in three physical wireless channels i.e. Alice-

Bob, Bob-Eve, and Alice-Eve. The three channels are independent of each other [12]

and hence, can be represented by independent channel responses. Due to reciprocity,

the A-B channel response is the same as the B-A channel response i.e. hAB and hBA

are equivalent. Since each channel is independent of the others, it is possible to have a

good Alice-Bob channel and a bad Alice-Eve channel at the same time. This scenario

leads to information loss at Eve, which enables Alice and Bob to communicate secretly.

Hence, it is important that such instances occur as frequently as possible, as they will

improve the secrecy rate and lower communication costs.

A secret message is successfully exchanged between Alice and Bob if Bob can

decode Alice’s message and at the same time, Eve fails to do so. In the presence of

noise, a node can decode a message if the signal-to-noise ratio of the received signal

is greater than a certain threshold, γ. This noise can be due to external factors such

as interference or internal factors such as thermal noise of the hardware. We assume

that the noise present in the system is additive white gaussian noise (AWGN) with

constant one-sided power spectral density, N0.

For now, let’s assume that Alice, Bob and Eve are using single omni-directional

antennas i.e. antennas that radiate equal power in all directions. We will refer to

this system as the base case, against which we will compare the scheme that we will

introduce in the next chapter.

Let’s expand on Equation (2.7) to incorporate the base case that we just intro-

duced. We will begin by doing an analysis of the Alice-Bob channel. We assume

that Alice is transmitting a signal with power PA = E[|xp|2]. Since Alice is using

an omni-directional antenna, it’s gain toward Bob will be 1. Now, let hA→B be the
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random variable that represents the fading coefficient for the channel between Alice

and Bob. Therefore, the total power received by Bob will be PA*1*|hA→B|2. After

taking into account the noise present in the system, we can write the received power

at Bob from Alice, RcvdPxA→B, as:

RcvdPxA→B =
PA→B|hA→B|2

rαAB
(2.8)

where rAB is the the distance between Alice and Bob, and α is the path-loss exponent.

Correspondingly, we can write the SNR as:

SNRA→B =
PA→B|hA→B|2/rαAB

N0

(2.9)

Before we analyze the Alice-Eve and Eve-Bob channel, we need to consider as-

sumptions about Eve. We assume Eve can potentially jam Bob at the same frequency

on top of having the capability to listen to Alice’s communication. In other words,

she has the capability to receive and transmit at any frequency. Hence, Alice and Bob

cannot choose such a frequency that Eve is not able to listen to their conversation.

Moreover, she is not initiating a man-in-the-middle attack nor is she too close to the

source such that no security measure can be effective. She has unlimited energy, but a

fixed transmission power i.e. she can transmit at a certain frequency for an indefinite

amount of time up to a maximum transmission level. We next characterize Eve into

two distinct profiles for our analysis.

2.2.1 Passive Eve

Eve is passive when it only has the ability to eavesdrop on Alice-Bob’s conver-

sation. If we assume hA→E to be the fading coefficient of Alice-Eve’s channel then
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similar to our analysis for (2.7), we write down the received power at Eve from Alice,

RcvdPxA→E, as:

RcvdPxA→E =
PA→E|hA→E|2

rαAE
(2.10)

where rAE is the the distance between Alice and Eve, and α is the path-loss exponent.

Correspondingly, we can write the SNR as:

SNRA→E =
PA→E|hA→E|2/rαAE

N0

(2.11)

2.2.2 Active Eve

Active Eve has the ability, in addition to eavesdropping, to jam communication.

We make an assumption that Eve jams by generating noise at Alice’s transmission

frequency to attempt to make the legitimate signal indistinguishable at Bob. She does

not jam by partially altering the message or re-transmitting the complete message. If

we denote PE→B as the power transmitted by Eve, hE→B to be the fading coefficient

of Eve-Bob’s channel, and assume that Eve is also radiating energy uniformly in all

directions; then by extending (2.8), we have:

RcvdPxA→B =
PA→B|hA→B|2

rαAB
+
PE→B|hE→B|2

rαEB
(2.12)

where rEB is the the distance between Eve and Bob, and α is the path-loss exponent.

Correspondingly, we can write the SNR as:

SNRA→B =
PA→B|hA→B|2/rαAB

PE→B|hE→B|2/rαEB +N0

(2.13)

Since Eve is also listening, (2.10) and (2.11) hold true to calculate the power received

at Eve.

In this section, we have presented a thorough examination of the system. Now,

we would like to expand on this system by discussing a few secrecy algorithms that

rely on multi-path fading.
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2.3 Secrecy and Multi-path fading

As discussed in Section 1.1, randomness in the environment plays a vital role in

establishing secrecy. Therefore, multi-path fading is very important in the wireless

channel. Let us take a look at two secrecy algorithms, Dynamic Secrets [2] and

Physical-layer Enhanced Key (PEK) exchange method [11], in light of multi-path

fading. Both these algorithms make use of the Alice-Bob-Eve system model.

In [11], the author presents the PEK exchange algorithm that allows Alice and

Bob to secretly exchange a key in order to establish a secure connection. Alice makes

use of uncoordinated frequency hopping, within a range of agreed upon frequencies,

to send out short messages. This makes it difficult for Eve to track which frequency

is being used for communication. Moreover, it makes use of co-operative jamming

whereby Alice employs a secondary antenna to jam Eve.

In [2], the author presents “Dynamic Secrets” as a method to maintain secrecy of

a system by dynamically updating the system key. Alice and Bob agree on a secret

key, which they periodically update by exchanging messages over the air. Adversaries

like Eve can gain knowledge of the system key at a given instance; however, since the

key is being constantly updated, she can not maintain knowledge of the key unless

she is privy to the conversation between Alice and Bob.

The two algorithms described above rely on packets received at Bob that are lost

at Eve. Randomness caused by multi-path fading increases the likelihood for this

event to happen. Let’s consider Rayleigh fading. When the K-factor is small, multi-

path fading is prevalent since there is no single path dominating all the other paths.

But as the Rician K-factor gets bigger, a dominant path gets stronger and stronger.

Thus, energy from all the other multi-paths become insignificant. In other words, the

fading due to multi-path blends into the AWGN channel and the channel becomes

deterministic. In such cases, the efficiency of these security algorithm reduces as it
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becomes more difficult to establish a secure connection and the communication cost

can become prohibitive.

Therefore, in such instances, it is very useful for us if we can artificially generate

randomness in the system. In the next chapter, we will show a way to vary antenna

radiation as a method to artificially introduce randomness into the system. When

the Rician K-factor is large, this artificial randomness can help security algorithms

to establish and maintain secrecy at a lower communication cost.

2.4 Measuring Success: Defining a metric

We will now define a metric that we will use throughout our analyis to compare the

base case with a test case. As mentioned earlier, a secret message is sent successfully

from Alice to Bob if Bob decodes the message and Eve does not. Since, we made

an assumption that Bob and Alice are independently located at a fixed distance

around Alice, therefore, we can also assume that the event whether Bob decodes

Alice’s message is independent of the event that Eve decodes Alice’s message. So the

probability of success can be defined as:

Psucc = P(“Bob decodes” AND “Eve does not decode”)

= P(Bob decodes) ∗ P(Eve does not decode)

= P(SNR of Alice’s signal at Bob > γb) ∗ P(SNR of Alice’s signal at Eve < γe)

(2.14)

where γb and γe is the minimum SNR required to decode a message successfully at

Bob and Eve, respectively. We can now extend our analysis in Section 2.2 to evaluate

the probability of success. We deduce the probability of success for Passive Eve base

case as follows:

Psucc = P (PA|hA→B |
2

N0
> γb)P (PA|hA→E |

2

N0
< γe)

= P (PA|hA→B |
2

N0
> γb)[1− P (

PA|hA→E|2
N0

> γe)],
(2.15)
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When the channel exhibits Rayleigh fading, |hP→Q| takes an exponential distribution.

Hence, this expression can be further evaluated as:

Psucc =
(
e−γbN0/2σ2PA

)(
1− e−γeN0/2σ2PA

)
(2.16)

Similarly, we deduce the probability of success for Active Eve base case as follows:

Psucc = P (
PA|hA→B|2

PE|hE→B|2/r2EB +N0

> γb)[1− P (
PA|hA→E|2

N0

> γe)] (2.17)

We will run Monte-Carlo simulations to see how Psucc varies with increasing Rician

K-factor for Passive and Active Eve. We assume that total power transmitted by

Alice, PA, is fixed at 10 units. Moreover, when Eve is jamming we assume that the

total power transmitted by Eve, PE, is also fixed at 10 units. We assume that the

noise power density in the system is constant i.e. N0 = 1. The decode threshold

for Bob, γb is fixed at 5 dB, and we assume that Eve’s decode threshold is fixed at

(γe = 1dB). The results of the simulations for Passive and Active Eve are plotted in

Figure 2.1 and we observe that as the K-factor increases, i.e. multi-path fading goes

away, the probability of success reduces to zero.
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(a) Passive Eve
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(b) Active Eve

Figure 2.1: Probability of Success vs Rician K-factor. Bob’s threshold to decode a
message, γb, is fixed at 5 dB. Eve’s threshold to decode a message, γe, is fixed at 1
dB. We observe that as the channel changes from Rayleigh fading (K-factor = 0) to
an additive white Gaussian noise (AWGN), the probability of success decreases to
zero as fading goes away.
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CHAPTER 3

ANTENNA DIVERSITY AND RANDOMNESS

Antennas play an important role in any wireless communication system. They

convert the energy from an electric current into electro-magnetic radiation and vice

versa. The radiation fields, which is one way to characterize antennas, is divided into

three regions: reactive near field, radiating near field (formerly Fresnel) and radiating

far field (formerly Fraunhofer). The “radiation pattern” of an antenna is the gain as

a function of angle of its radiating far field. The boundary between the radiating near

and far field is generally accepted as approximately equal to (2L2)/λ from the source

of radiation, where L is the length of the largest dimension of the antenna, and λ is

the wavelength of the source. For example, for an antenna of length 7.1 inches, and

operating at 400 MHz, the boundary is approximately a distance of 3.5 inches from

the antenna. Figure 3.1 shows the radiation pattern of a half-wave dipole antenna.

The radiation pattern is a three dimensional plot since the antenna radiates in all

directions. In most cases, the two-dimensional azimuthal and elevation plane plots

provide sufficient information to understand the complete pattern. The radiation

pattern consists of lobes of energy (simplistically named as main, side, front and back

lobes) and nulls, where energy is not present. The antenna is unable to transmit, or

in reciprocity is unable to receive, in directions where the nulls occur. In reality, the

radiation pattern is not neatly defined into lobes as there are numerous other factors

in play; however, the directivity remains the same.
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Figure 3.1: Radiation pattern of a dipole antenna that has
two lobes and two nulls. The red plot shows the azimuthal
plane radiation and and blue plot shows the elevation plane
radiation.

In our work, we

use the antenna’s radi-

ation pattern to gener-

ate randomness in the

system. Referring back

to Figure 3.1, let’s con-

sider a point at the 90◦

angle mark of the fig-

ure. Denote the gain

of the antenna at that

point by X. If we are

able to vary the radia-

tion pattern of the an-

tenna, this will conse-

quently vary the value

of X. This can be

achieved in a number of

ways including but not limiting to changing the dimensions of the antenna, and ro-

tating the antenna on its axis. If we normalize the gain of the antenna, the value

of X will vary from 0 to 1 where the distribution of values depend on the radiation

pattern. In the case of an isotropic antenna, which radiates equally in all directions,

the value of X will remain constant. However, isotropic antennas do not exist in

practical situations and each antenna has some sort of directivity associated with it.

Nonetheless, isotropic antennas are used as the basis of making comparison between

several antennas and it is the one that we will be using in our work.

In this chapter, Section 3.1 provides an explanation of the characteristics of an

antenna array. In Section 3.2, we analyze these characteristics with reference to
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the transmitter-receiver system. Section 3.3 extends the system model presented

in Section 2.2 to incorporate antenna arrays. And then, we present Monte-Carlo

simulations that we ran on the extended model in Section 3.5

3.1 Antenna Arrays

Single element antennas are replaced by antenna arrays in a lot of applications

where the radiation pattern of single elements does not meet the directivity or per-

formance requirements. The array is constructed by placing the single elements in

a one or two dimensional arrangement. The same input is fed to all elements but

with varying linear or non-linear phase difference to achieve the required radiation

pattern. The Array factor is an important characteristic which depends only on the

elements’ geometrical configuration. The radiation pattern of the array is given by:

Array Radiation Pattern = Array Factor ∗ Element Radiation Pattern (3.1)

In our system, we use a two element array separated by a distance d and having

a phase difference of α. The distance d can be expressed in terms of the radiating

electromagnetic wave’s wavelength as nλ. For our analysis, we are using isotropic

antenna elements that radiate equally in every direction. Hence, when normalized,

it will have a gain of 1 in every direction. In our case, the array radiation pattern is

equal to the array factor AF ; therefore, it can be expressed as:

AF (θ) = cos
(kd cos(θ) + α

2

)
(3.2)

where k = 2π
λ

, d = nλ, and θ is the angle of incidence.

Equation (3.2) represents the normalized field pattern, however, we will use the

normalized power pattern which represents a plot of the square of the amplitude of
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the electric or magnetic field in angular space. Hence, the power pattern can be

represented as follows:

G(θ) = cos2
(2πn cos(θ) + α

2

)
(3.3)

The frequency of the electromagnetic wave determines n whereas α depends on

the phase difference of the currents fed into the antennas. If we vary these constants,

we can in turn vary the radiation pattern of the antenna array. Since we want to

generate a varying radiation pattern, it is difficult to achieve it by constantly altering

the physical dimensions or by changing the frequency. Therefore, we achieve a varying

radiation field by altering the phase difference only. Figure 3.2 illustrates the radiation

pattern for a two-element isotropic array.

3.2 Analysis

  0.2  0.4  0.6  0.8  1

30

210

60

240

90 270

120

300

150

330

180

0

Figure 3.2: Polar Plot: Power radiation pat-
tern of an antenna array with two isotropic el-
ements (d = 1.25λ, α = π/3).

In this section, we derive the

probability distribution for a vary-

ing antenna pattern of a two-element

linear phase array. We assume that

the transmitter is stationary and the

locations of the receiver nodes are

varying. For ease of reference, we

will do the analysis with reference to

the system model introduced in Sec-

tion 2.2 whereby Alice is the trans-

mitter node, Bob is the receiver node

and Eve is the adversary.

Let θb denote the angle of Bob

from Alice and θe denote the loca-

tion of Eve from Alice. It is assumed
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that Bob’s and Eve’s location are independent of each other, and Bob and Alice are

not aware of Eve’s location. However, the two nodes are at the same distance from

Alice. In other words, we can consider that Eve or Bob are on the circumference of a

unit circle with Alice in the center. Moreover, we assume that Bob and Eve can take

any location around Alice with equal probability. This means that θb and θe are i.i.d.

uniform random variables in the range [−π, π).

θb ∼ U [−π, π) (3.4)

θe ∼ U [−π, π) (3.5)

Let Gb denote the antenna gain at Alice in Bob’s direction and Ge denote the

antenna gain at Alice in Eve’s direction. Since Gb and Ge are functions of θb and

θe, respectively, they are also i.i.d. random variables in the range [0, 1]. In order to

find the probability density function of Gx (in this subsection, from here onward Gx

will refer to both Gb and Ge unless specified), we will first find P (Gx < g) i.e. the

cumulative distribution function (cdf).

We will proceed through extending the use of the antenna array shown in Figure

3.2. The elements in the array are separated by a distance 1.25λ and have a phase

difference of π/3 radians. Hence, the gain G from (3.3) is:

G(θ) = cos2
(2.5π cos(θ) + π

3

2

)

Figure 3.3 shows the same radiation pattern in a cartesian plot rather than a polar

plot. This plot is more convenient to find the range of θ, ∆θs, to evaluate P (Gx < g).

For example, let’s say we would like to evaluate P (Gx < g) for g = 0.5. From Figure

3.3, we see that there are five sub-ranges of θ that satisfy this condition:
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Figure 3.3: Cartesian Plot: Power Radiation Pattern of two-element isotropic anten-
nas (d = 1.25λ, α = π/3).

∆θ1 : −2.394 < θ < −1.9106

∆θ2 : −1.5040 < θ < −1.0852

∆θ3 : −0.5222 < θ < 0.5222

∆θ4 : 1.0852 < θ < 1.5040

∆θ5 : 1.9106 < θ < 2.394

(3.6)

Using information from (3.4), we calculate the probabilities:

P (∆θ1) = 1
2π

(−1.9106− (−2.394)) = 0.0769

P (∆θ2) = 1
2π

(−1.0852− (−1.5040)) = 0.0667

P (∆θ3) = 1
2π

(0.5222− (−0.5222)) = 0.1662

P (∆θ4) = 1
2π

(1.5040− 1.0852) = 0.0667

P (∆θ5) = 1
2π

(2.394− 1.9106)) = 0.0769

Hence,
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P (Gx < 0.5) =
n∑
i=1

P (∆θi) = 0.4534 (3.7)

In this way, we can generate the cdf for Gx for a given n and α. Writing it down

in a closed form solution, we have the following expression:

P (G < g) =


1, for g ≥ Gmax

m∑
i=1

P (∆θi), for Gmin < g < Gmax

0, for g ≤ Gmin

(3.8)

where, since θ follows a uniform distribution and using the symmetry in the radiation

pattern, P (∆θi) is defined as:

P (θ
(s)
i < θ < θ

(e)
i ) =

1

π
(θm1 − θm2)

and m is the number of intervals of θ in [0, π) for which Gx < g. θ
(s)
i and θ

(e)
i are

start and end values, respectively, of those m intervals.

3.3 Extending the System Model

We introduced the communication model for analyzing the base case in Section

2.2. Now, we will extend the same model to introduce the test case by including the

suggested varying-phase antenna array. The assumptions we make for Alice, Bob and

Eve also hold true for the test case. The only difference is that since we will be using

varying-phase antenna array instead of omni-directional antennas at some nodes, the

power radiated by that node will not be the same in every direction.

3.3.1 Passive Eve

In this scenario, both Bob and Eve are the listening nodes whereas Alice is the

only transmitting node. Therefore, we deploy a varying-phase antenna array at Alice

whereas Bob and Eve will be using single omni-directional antenna. We represent the
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gain of Alice’s antenna array in the direction of Bob and Eve as YA→B and YA→E,

respectively. Since the total power transmitted by Alice is the same for Bob and Eve,

we can denote it by PA. Therefore:

PA→B = PA→E = PA

Since hA→B is the fading coefficient of the Alice-Bob channel, Bob is at unit distance

from Alice, rAB = 1, and N0 is the noise power spectral density; we can write the

SNR of the signal received at Bob as:

SNRA→B =
PA|hA→B|2YA→B

N0

(3.9)

Similarly, hA→E is the fading coefficient of the Alice-Eve channel, Eve is at unit

distance from Alice, rAE = 1, and N0 is the noise power spectral density; we can

write the SNR of the signal received at Eve as:

SNRA→E =
PA|hA→E|2YA→E

N0

(3.10)

3.3.2 Active Eve

Recall that, in this scenario, both Bob and Eve are still the listening nodes,

however, along with Alice, Eve is also attempting to jam the communication at Bob.

In this test case, we deploy two antenna arrays, one used by Alice and one used by

Bob. It is also important to note that, although Eve is trying to jam Bob, we assume

Alice is not affected by these jamming efforts. Analogous to the definition of YA→B

and YA→E, let us represent the gain of Bob’s antenna array in the direction of Alice

and Eve as YB→A and YB→E, respectively. Let the total power being transmitted by

Eve be denoted as PE. Since the total power transmitted by Alice is the same for Bob

and Eve, we can denote it by PA. Since hA→B and hE→B are the fading coefficients of
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the Alice-Bob and Eve-Bob channels, respectively, Eve and Bob are at a unit distance

from Alice (rAB, rAE = 1), and while N0 is the noise power spectral density; we can

write the SNR of the signal received at Bob as:

SNRA→B =
PA|hA→B|2YA→BYB→A

PE|hE→B|2YB→E/r2EB +N0

, (3.11)

where rEB is the distance between nodes Bob and Eve and the path-loss exponent is

2. Similarly, hA→E is the fading coefficient of the Alice-Eve channel, Eve is at unit

distance from Alice (rAE = 1) and N0 is the noise power spectral density; we can

write the SNR of the signal received at Eve as:

SNRA→E =
PA|hA→E|2YA→E

N0

(3.12)

3.4 Measuring Success: Defining a metric

In Section 2.4, we introduced a metric to measure the success of the base case.

Now, we will extend that metric for the test case. To reiterate, a secret message is

sent successfully from Alice to Bob if Bob decodes the message and Eve does not.

Hence, the probability of success can be extended for the test case of Passive and

Active Eve. For Passive Eve, we can write Psucc as follows:

Psucc = P (PA|hA→B |
2YA→B

N0
> γb)P (PA|hA→E |

2YA→E
N0

< γe)

= P (PA|hA→B |
2YA→B

N0
> γb)[1− P (PA|hA→E |

2YA→E
N0

> γe)].
(3.13)

Similarly, for Active Eve as follows:

Psucc = P (
PA|hA→B|2YA→BYB→A

PE|hE→B|2YB→E/r2EB +N0

> γb)[1− P (
PA|hA→E|2YA→E

N0

> γe)] (3.14)

3.5 Monte-Carlo Simulations

We will present results of running Monte-Carlo simulations for Rician (K-factor

= 5 dB) and Rayleigh fading (K-factor = 0 dB) environments. The two antennas at
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Alice’s varying-phase antenna array are separated by n wavelengths and have a phase

difference of α. We assume that total power transmitted by Alice, PA, is fixed at 10

units. Moreover, when Eve is jamming we assume that the total power transmitted

by Eve, PE, is also fixed at 10 units. We assume that the noise power density in the

system is constant i.e. No = 1. While the decode threshold for Bob, γb can vary from

-10 dB to 25 dB, we assume that Eve’s decode threshold is fixed at (γe = 1dB).

The following sections show simulation results for Passive and Active Eve. Recall

that in Passive Eve test case scenario, Alice only uses an antenna array whereas in

Active Eve test case scenario, both Alice and Bob use the antenna arrays. We observe

that in Passive Eve simulations, the test case always shows more success than the

base case. In the Active Eve simulations, the base case is more successful when multi-

path fading is dominant in the channel (lower K-factor). But, as multi-path fading

becomes less dominant, and the slowly goes away, the test case is more successful

than the base case. We attribute this to presence of another antenna array at Bob.
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3.5.1 Passive Eve

1. Varying SNR at fixed K, α and n:
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(a) Rician K-factor = 0 dB (Rayleigh Fading)
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(b) Rician K-factor = 5 dB

Figure 3.4: Probability of Success vs Bob’s threshold to decode a message for a fixed
K, α = π/2 rad and n = 3.3. Eve’s threshold to decode a message, γe, is fixed at
1 dB. In these plots, the blue curve corresponds to the test case and the red curve
corresponds to the base case. We observe that for the two channel conditions, one
with Rayleigh fading and other with high K-factor, the test case is performing better
than the base case for fixed α and n.
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2. Varying SNR and α at fixed K and n:
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(a) Rician K-factor = 0 dB (Rayleigh Fading)
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(b) Rician K-factor = 5 dB

Figure 3.5: Probability of Success vs Bob’s threshold to decode a message for a fixed
K, and n = 3.3. The phase difference, α is varied from −π to π to generate separate
plots and then superimposed on a single axis. Eve’s threshold to decode a message,
γe, is fixed at 1 dB. In these plots, the blue curve corresponds to the test case and
the red curve corresponds to the base case. We observe that for the two channel
conditions, one with Rayleigh fading and other with high K-factor, the test case is
performing better than the base case for fixed n and varying α.
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3. Varying SNR and n at fixed K and α:
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(a) Rician K-factor = 0 dB (Rayleigh Fading)

−10 −5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
s
u

c
c

γ
b
 (dB)

(b) Rician K-factor = 5 dB

Figure 3.6: Probability of Success vs Bob’s threshold to decode a message for a fixed
K, and α = π/2. The separation of elements in the antenna array, n is varied from
0.5 to 4 wavelengths to generate separate plots and then superimposed on a single
axis. Eve’s threshold to decode a message, γe, is fixed at 1 dB. In these plots, the
blue curve corresponds to the test case and the red curve corresponds to the base
case. We observe that for the two channel conditions, one with Rayleigh fading and
other with high K-factor, the test case is performing better than the base case for
fixed α and varying n.
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4. Varying α at fixed K, n and SNR:
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(a) Rician K-factor = 0 dB (Rayleigh fading) and γb = 10 dB.
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(b) Rician K-factor = 5 dB and γb = 5 dB.

Figure 3.7: Probability of Success vs phase difference in an antenna array for a fixed
K, n = 3.3, and γb. Eve’s threshold to decode a message, γe, is fixed at 1 dB. In these
plots, the blue curve corresponds to the test case and the red curve corresponds to
the base case. We observe that for the two channel conditions, one with Rayleigh
fading and other with high K-factor, the test case is performing better than the base
case for fixed n and γb.
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5. Varying n at fixed K, α and SNR:
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(a) Rician K-factor = 0 dB (Rayleigh fading) and γb = 10 dB.
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(b) Rician K-factor = 5 dB and γb = 5 dB.

Figure 3.8: Probability of Success vs separation of elements in the antenna array for
a fixed K, α = π/2, and γb. Eve’s threshold to decode a message, γe, is fixed at
1 dB. In these plots, the blue curve corresponds to the test case and the red curve
corresponds to the base case. We observe that for the two channel conditions, one
with Rayleigh fading and other with high K-factor, the test case is performing better
than the base case for fixed α and γb.
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6. Varying K at fixed n, α and SNR:
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Figure 3.9: Probability of Success vs Rician K-factor for a fixed n = 3.3, and α = π/2.
Bob’s threshold to decode a message, γb, is fixed at 5 dB. Eve’s threshold to decode
a message, γe, is fixed at 1 dB. In these plots, the blue curve corresponds to the test
case and the red curve corresponds to the base case. We observe that when Eve is
passive, the test case has a higher Psucc compared to the base case. At higher Rician
K-factor, the fading channel becomes a noisy one and the base case completely fails
whereas the test case still provides an advantage.
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3.5.2 ActiveEve

1. Varying SNR at fixed K, α and n:
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(a) Rician K-factor = 0 dB (Rayleigh fading)

−10 −5 0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
s
u

c
c

γ
b
 (dB)

 

 

(b) Rician K-factor = 5 dB

Figure 3.10: Probability of Success vs Bob’s threshold to decode a message for a fixed
K, α = π/2 rad and n = 3.3. Eve’s threshold to decode a message, γe, is fixed at
1 dB. In these plots, the blue curve corresponds to the test case and the red curve
corresponds to the base case. We observe that for the high K-factor, the test case has
higher success than the base case. However, for Rayleigh fading channel, base case
has more success than test case as γb increases.
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2. Varying SNR and α at fixed K and n:
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(a) Rician K-factor = 0 dB (Rayleigh fading)
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(b) Rician K-factor = 5 dB

Figure 3.11: Probability of Success vs Bob’s threshold to decode a message for a fixed
K, and n = 3.3. The phase difference, α is varied from −π to π to generate separate
plots and then superimposed on a single axis. Eve’s threshold to decode a message,
γe, is fixed at 1 dB. In these plots, the blue curve corresponds to the test case and
the red curve corresponds to the base case. We observe that for the high K-factor,
the test case has higher success than the base case. However, for Rayleigh fading
channel, base case has more success than test case as γb increases.
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3. Varying SNR and n at fixed K and α:
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(a) Rician K-factor = 0 dB (Rayleigh fading)
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(b) Rician K-factor = 5 dB

Figure 3.12: Probability of Success vs Bob’s threshold to decode a message for a fixed
K, and α = π/2. The separation of elements in the antenna array, n is varied from
0.5 to 4 wavelengths to generate separate plots and then superimposed on a single
axis. Eve’s threshold to decode a message, γe, is fixed at 1 dB. In these plots, the
blue curve corresponds to the test case and the red curve corresponds to the base
case. We observe that for the high K-factor, the test case has higher success than
the base case. However, for Rayleigh fading channel, base case has more success than
test case as γb increases.
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4. Varying α at fixed K, n and SNR:
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(a) Rician K-factor = 0 dB (Rayleigh fading) and γb = 10 dB.
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(b) Rician K-factor = 5 dB and γb = 5 dB.

Figure 3.13: Probability of Success vs phase difference in an antenna array for a fixed
K, n = 3.3, and γb. Eve’s threshold to decode a message, γe, is fixed at 1 dB. In these
plots, the blue curve corresponds to the test case and the red curve corresponds to
the base case. We observe that for the high K-factor, the test case has higher success
than the base case. However, for Rayleigh fading channel, base case has more success
than test case at some α ranges.
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5. Varying n at fixed K, α and SNR:
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(a) Rician K-factor = 0 dB (Rayleigh fading) and γb = 10 dB.
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(b) Rician K-factor = 5 dB and γb = 5 dB.

Figure 3.14: Probability of Success vs separation of elements in the antenna array
for a fixed K, α = π/2, and γb. Eve’s threshold to decode a message, γe, is fixed at
1 dB. In these plots, the blue curve corresponds to the test case and the red curve
corresponds to the base case. We observe that for the high K-factor, the test case has
higher success than the base case. However, for Rayleigh fading channel, base case
has higher success than the test case.
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6. Varying K at fixed n, α and SNR:
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Figure 3.15: Probability of Success vs Rician K-factor for a fixed n = 3.3, and
α = π/2. Bob’s threshold to decode a message, γb, is fixed at 5 dB. Eve’s threshold
to decode a message, γe, is fixed at 1 dB. In these plots, the blue curve corresponds to
the test case and the red curve corresponds to the base case. We observe that when
the K-factor is lower, the base case has more success than test case. However, as the
K-factor increases and the channel becomes noisy, the base case is less successful than
the test case.
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CHAPTER 4

MEASUREMENTS

Indoor experiments were set up to supplement the analytical work. The mea-

surements were conducted at two different locations: a laboratory and a classroom.

These two locations provided an environment with minimal interference from moving

objects e.g. a student walking through the environment. The laboratory provided

a more congested environment compared to the classroom, as it is furnished with

benches, cabinets, other lab equipment and the entrances to smaller rooms. The

classroom is large and relatively empty with chairs stacked against one of the walls.

Furthermore, the lab instruments being used for the experiments were automated in

order to minimize corruption in data collection caused by human interference in the

environment.

The goal is to measure the variation in the received signal strength when a varying-

phase antenna array is used instead of a single antenna. Therefore, we ran two

iterations of the same experiment; one using a single antenna system (Figure 4.1),

and one using a two-element linear antenna array (Figure 4.2). We generate a single

tone at 2.527 GHz using the signal generator and transmit it in the air using one

of the two antenna systems. At the receiver, the signal is received by a single omni-

directional antenna. All antennas employed were off-the-shelf TP-Link’s 2.4GHz 8dBi

Indoor Desktop Omni-directional Antennas that are readily available on the market.

In order to prevent interference with the wide-band wifi signal, a slightly different

frequency was chosen than 2.4 GHz.
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Figure 4.1: The configuration of the instruments to take measurements for the base
case. A single antenna system was used in the base case.
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Figure 4.2: The configuration of the instruments to take measurements for the test
case. A two-element linear antenna system was used in the test case. Compared to
the base case, an extra signal generator was used and its clock was locked with the
first generator.

40



Table 4.1: A summary of the different parameters configured while taking measure-
ments.

No. Parameter Value
1. Transmit Frequency 2.527 GHz
2. Separation between antenna elements of the array 9 in
3. Length of the antenna elements of the array 11.5 in
4. Far field region of the antenna array 57 in
5. Distance between transmitter and receiver in all cases 72 in
6. Power of each antenna element (Test Case) 10 dBm
7. Power of single omni-directional antenna (Base Case) 13 dBm
8. Resolution bandwidth configured at spectrum analyzer 10 kHz

At the transmitter, Agilent E44xx Series signal generators were employed as they

were readily available in the lab. One signal generator is sufficient for the single an-

tenna case, but, in order to create a varying phase difference while using a phased

array, another signal generator was required. In the later case, the two signal genera-

tors were phase locked and used the same clock reference. This was done by using the

10 MHz reference signal port and trigger port that are standard on such generators.

The “10 MHz out” port of the first generator was connected to the “10 MHz” in

port of the second generator. Similarly, the “trigger out” of the first generator was

connected to the “trigger in” of the second generator using a standard coax cable.

At the receiver, the antenna is connected to an Agilent Spectrum Analyzer. Since

the signal generated is a single narrow-band tone, the resolution bandwidth of the

spectrum analyzer is set to 10 kHz.

While using the phased array, certain physical parameters were kept constant

during each measurement. The antenna separation of the phased array was fixed

at 9 inches which corresponds to (n =)1.93 wavelengths. The longest dimension

of the phased array was the antenna’s length at 11.5 inches; hence, the far field

radius (2L2/λ) was calculated to be around 57 inches. Hence, the transmitter and

receiver were placed 72 inches apart with an unobstructed line-of-sight (LOS) path.
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This distance ensured that the receiver lied in the far field of the transmitter. We

ensured that a LOS path was present to reduce the effects of multi-path fading in

our measurements and, per Chapter 2, test the case of most interest. Moreover, the

antenna systems were placed on stools of the same size to prevent reflections caused by

proximity to the ground that might have otherwise increased the effect of multi-path

fading. For the phased array, the amplitude of the signal at each antenna was fixed

at 10 dBm. While running the case with the single antenna system, the amplitude

was doubled (13 dBm) to account the added gain of using two antennas. Moreover,

while comparing both systems, it was ensured that the single antenna was placed

at the mid-point of the two-antenna system. Table 4.1 provides a summary of this

configuration.

0°

26.5°

45°

63.5°

90°

0.75 ft

Figure 4.3: This figure show the five posi-
tions (1-5) of the receiver with respect to
the transmitter (red) where data was col-
lected for the both cases.

The process of generating a random

phase at the transmitter and collecting

data samples at the receiver was auto-

mated to prevent human error. More-

over, it ensured that no extra reflections

were added while taking measurements.

Five data sets for each case at each lo-

cation were collected by placing the re-

ceiver at 0◦, 26.5◦, 45◦, 63.5◦ and 90◦ (po-

sitions 1 − 5 as shown in Figure 4.3) of

the deployed antenna system. The per-

pendicular bisector of the imaginary line

joining the two transmit antennas in the

azimuth plane was taken as the reference axis. At each position, 5000 samples were

collected over a duration of 30 minutes. A scripting language, python, was used for

this purpose. Appendix A provides the python code used for this setup. Moreover,
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python was also used for generating a random phase from (−π, π) and applying it to

one of the generators while using the two-antenna system. Appendix A also contains

the python code used for this process. Moreover, in this case, the randomly varying

phase difference was applied independently of the data collection process.

Figure (4.4) shows two plots on together. The one on top shows the signal strength

of the received signal of both antenna systems, whereas the second plot is the phased-

array antenna system data at the same position in the form of a histogram to show

the variation of the RSSI. The blue signal represents the samples collected from a

two-antenna phased array system while the red signal represents a single antenna

system at the transmitter. Similarly, Figures (4.5) to (4.8) show measurement results

of positions 2-5 inside the laboratory. To make it easier to draw a comparison, all

figures have the same set of axes.

From this data, it is evident that the two-antenna array with varying phase pro-

vides more variation in the signal strength compared to the single antenna system.

Moreover, the variation in the received signal strength across different locations is

not the same. For example, the standard deviation of the signal strength with the

varying phase antenna array system at position 4 is 6.45 dB whereas at position 1 it

is 4.45 dB. For the single antenna system, it is 0.15 dB at position 4 and 0.21 dB at

position 1.
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Received Signal Strength at Position 1 (0°)
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Figure 4.4: Received Signal at Position 1 (0◦) of the Laboratory. Top: Blue represents
RSSI measurements using two-antenna phased array while red represents the RSSI
measurements using a single antenna. Bottom: Histogram showing variation of the
data samples collected for two-antenna phased array system
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Received Signal Strength at Position 2 (26.5°)
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Received Signal Strength

Figure 4.5: Received Signal at Position 2 (26.5◦) of the Laboratory. Top: Blue rep-
resents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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Received Signal Strength at Position 3 (45°)
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Figure 4.6: Received Signal at Position 3 (45◦) of the Laboratory. Top: Blue rep-
resents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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Received Signal Strength at Position 4 (63.5°)
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Figure 4.7: Received Signal at Position 4 (63.5◦) of the Laboratory. Top: Blue rep-
resents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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Received Signal Strength at Position 5 (90°)
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Figure 4.8: Received Signal at Position 5(90◦) of the Laboratory. Top: Blue repre-
sents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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For the laboratory environment, we “roughly” estimated the Rician factor and

found it to be at least 11 dB i.e. the LOS signal was always the dominant path of the

static Rician multi-path fading environment. The signal strength was directly mea-

sured with the line-of-sight intact. Then, an obstacle with RF absorbing properties

is placed in the middle of the transmitter and receiver to break the line-of-sight, and

the received signal strength is noted. The Rician K-factor is thus calculated using

these two values.

K-factor =
E[Power of the dominant LOS path]

E[Power of all other reflected paths]

The experiment was repeated in the less congested environment of a large class-

room. Figures (4.9) to (4.13) show the result of these measurements. Similar to the

previous data set, it shows two plots where the first plot shows the comparison be-

tween the two-antenna array (blue) and the single antenna (red) whereas the second

plot shows the variation of the two-antenna array data-set. For this data-set, we

see that the standard deviation of the two-antenna system is 2.27 dB at position 4

whereas it is 5.65 at position 1. On the other hand, for the single antenna system, the

standard deviation is 0.16 dB and 0.14 dB at position 4 and position 1, respectively.

There are some observations that we can draw from the two sets of measurements.

Firstly, the two-antenna phase array provides more radiation variation in comparison

to the single antenna system. The standard deviation, calculated by joining the two

data sets, of the varying phase two-antenna system is 5.38 dB whereas the standard

deviation of the single antenna system is 1.78 dB (It is important to note here that

this is calculated by combining all 50,000 samples. That is why we are seeing a 1.78

dB standard deviation rather than 0.2 dB standard deviation that we had observed

earlier.). Secondly, this variation in signal strength is not attributed to position/angle

of incidence. The standard deviation of the variation of the antenna array at Position

4 of the laboratory (6.45 dB) is not the same as the standard deviation at Position 4
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of the classroom(2.27 dB). Thirdly, it is possible that a certain position in a location

may generate results deviating from the norm (e.g. Position 5 of the classroom). This

can be attributed to a strong reflector in the vicinity or other geometrical properties

of the environment.

Lastly, we can draw an assumption regarding the efficiency of varying phase two-

antenna arrays over single antenna systems using these results. The environment in

which we took our measurements has a very high Rician factor, which suggests that

the environment is nearly an AWGN channel. In other words, it presents a worst-case

scenario where multi-path fading plays a minor role in creating randomness in the

channel. Thus, our results show that even in a static and less dynamic environment,

we are able to generate artificial randomness.
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Received Signal Strength at Position 1 (0°)

65 00

 60.00

 70.00

 65.00

n
g
th

 75.00

ce
iv
e
d

 S
ig
n
a
l 
S
tr
e

 80.00

R
e
c

 85.00

 90.00

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Sample Index

1400

Receiver at Position 1 (0°)

1200

800

1000

600

800

C
o
u
n
t

400

200

0

 90  88  86  84  82  80  78  76  74  72  70  68  66  64  62  60  58  56

Received Signal Strength

Figure 4.9: Received Signal at Position 1 (0◦) of the Classroom. Top: Blue represents
RSSI measurements using two-antenna phased array while red represents the RSSI
measurements using a single antenna. Bottom: Histogram showing variation of the
data samples collected for two-antenna phased array system
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Received Signal Strength at Position 2 (26.5°)
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Figure 4.10: Received Signal at Position 2 (26.5◦) of the Classroom. Top: Blue rep-
resents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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Received Signal Strength at Position 3 (45°)
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Figure 4.11: Received Signal at Position 3 (45◦) of the Classroom. Top: Blue rep-
resents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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Received Signal Strength at Position 4 (63.5°)
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Figure 4.12: Received Signal at Position 4 (63.5◦) of the Classroom. Top: Blue rep-
resents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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Received Signal Strength at Position 5 (90°)
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Figure 4.13: Received Signal at Position 5 (90◦) of the Classroom. Top: Blue rep-
resents RSSI measurements using two-antenna phased array while red represents the
RSSI measurements using a single antenna. Bottom: Histogram showing variation
of the data samples collected for two-antenna phased array system
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CHAPTER 5

IMPROVEMENT OF DYNAMIC SECRETS

In Section 2.3, we reviewed the “Dynamic Secrets” [2] algorithm. Recall that the

algorithm relies on information loss due to randomness in the environment. We will

quantify the performance of that algorithm by implementing it for the base case and

test case presented in the previous chapter. It is important to note that the original

algorithm was designed for link-layer transmissions whereas we will be measuring its

performance at the physical layer. Therefore, we adapted the idea accordingly but,

in essence, it is the same idea as presented in [2]. We want to find out the expected

cost, E[X] of establishing a shared secret key using the dynamic secrets algorithm.

Although we look at expected cost, note that it is possible to use other performance

metrics, and the following procedure can be used to evaluate those metrics [15].

Figure 5.1 shows the markov state diagram that we will use to analyze this algo-

rithm. We begin by assuming that initially the connection is insecure. Alice and Bob

do not share a system secret. They need to exchange messages in order to establish

Alice & Bob

system secret

is leaked

Alice & Bob

system secret

is secure

p

1-p

Figure 5.1: Markov state diagram showing the possible states to investigate the num-
ber of trials it will take before the system secret is secure. This happens while Eve
loses information when she is unable to decode, and while Bob is successful in decod-
ing Alice’s message.
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a shared secret. The dynamic algorithm suggests that with each transmission, Alice

and Bob generate a system secret irrelevant of whether Eve is unable to decode the

message or not. This system secret is “dynamically” updated as Bob decodes more

of Alice’s messages. Therefore, even though if Eve is initially able to eavesdrop on

the communication, and is aware of the algorithm, it will eventually lose track of

the system secret when it fails to decode a message because of packet loss caused by

randomness in the environment. Referring back to Figure 5.1, the final state “Alice

& Bob system secret is secure” is analogous to the case when Bob is able to decode

while Eve is not able to decode Alice’s message. Therefore, the probability “p” is

actually the same as Psucc that we defined in Section 3.4. Hence, the probability of

staying in the initial state is (1− Psucc) while the probability of transitioning to the

final state is (Psucc). Let the cost incurred with each transition be fixed and denote

it by τ .

We map the markov process to a linear system via the signal flow graph [15] to

analyze the expected cost of transitioning from the initial state to the final state. It is

possible to evaluate the expected cost by other simpler methods. However, the Signal

Flow Graph is a useful method to draw other conclusions than the expected cost

such as moment generating functions and finding probability bounds. This method

transforms the markov process into a transfer function. Figure 5.2 shows the signal

flow graph for this markov state diagram where H(s) is the reduced form transfer

function between the two states.

H(s) =
Psucce

sτ

1− (1− Psucc)esτ
(5.1)

We can find the expected cost, E[X] through the first moment generating function

of H(s) at s = 0, which is H ′(s)|s=0.
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Initial State (Events):

Bob & Eve decodes

Eve only decodes

Bob & Eve do not decode

H (s) Final State (Events):

Bob decodes but Eve does

not decode

Figure 5.2: This Figure shows the signal flow graph of the Markov state diagram
shown in Figure 5.1. Note that in the signal flow graph form, we can represent the
transition between one state to the other as a transfer function. Moreover, the graph
shows the list of events that are part of each node.

E[X] = H ′(s)|s=0

= d
ds

(
Psuccesτ

1−(1−Psucc)esτ

)
|s=0

= d
ds

(
Psuccesτ

1−(1−Psucc)esτ

)
|s=0

= (1−(1−Psucc)esτ )(τPsuccesτ )−(−τ(1−Psucc)esτ )(Psuccesτ )
(1−(1−Psucc)esτ )2 |s=0

= τPsucc
P 2
succ

= τ
Psucc

(5.2)

From (5.2), we can see that the expected cost totally depends on Psucc for this

system. We calculate Psucc from measurement data collected in the previous chapter,

and assume that the cost of each transition is 10 units, τ = 10. We fix Eve’s threshold

to decode a message and sweep Bob’s threshold to decode a message to plot Psucc and

expected cost, E[X]. Figure 5.3 shows the calculated Psucc using this information.

Correspondingly, Figure 5.4 shows the expected cost.

From the plots, we can see that when we are using a two-element antenna array,

the cost to establish a secret key is lower compared to that of using a single antenna.

Moreover, it is important to note that Eve’s threshold is first set to −65 dBm (if we

assume noise to be −75 dBm, γe = 10 dB)which means that it is a weak Eve. In other

words, she is only able to decode Alice’s message if the signal strength is strong. If we
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(b) Psucc vs Bob’s decode threshold when Eve’s decode threshold is −75 dBm (Strong Eve)

Figure 5.3: Compared to the single antenna system (red), the antenna array system
(blue) is still able to perform when Eve is stronger.
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Figure 5.4: The expected cost for the antenna array system (blue) rises when Eve
becomes stronger but it is still able to operate. Whereas, the single antenna system
(red)’s cost is ∞ since Psucc is 0.
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lower Eve’s threshold to −75 dBm (if we assume noise to be −75 dBm, γe = 0 dB),

and hence, have a stronger Eve, we observe that the single omni-directional antenna

will not be successful at all while the two-element antenna array will still be able to

operate.

This result can be compared with the Monte-Carlo simulation data for Passive

Eve presented in Section 3.5.1. It is important to realize that the two results can not

be compared in absolute terms because of the number of assumptions made while

running the simulations. However, we observe similar trend in both the simulation

and empirical data. Similar to the simulation results, we see that test case performs

better than the base case. Since the K-factor is high, the variation due to multi-path

fading alone is very small. This is evident from the red plots presented in the previous

chapter. Our method provides greater variation and hence, the probability of success

is higher. Moreover, we see that as Eve is stronger, the probability of Alice succeeding

in the base case drops to 0 whereas Alice in the test case is still able to exceed with

low probability.
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CHAPTER 6

CONCLUSION

In the wireless channel, randomness is often required to establish security and/or

secrecy. This randomness is generated by multi-path fading in the environment.

However, in static and less congested scenarios, randomness can go away as the multi-

path fading is not present. In such scenarios, we can get this randomness back by

generating artificial randomness through antenna radiation variation. As an example,

let us recall the Passive Eve model where Alice wants to communicate with Bob and

Eve has the ability to listen to that conversation. We have defined Psucc as the

probability of the event when Bob can decode Alice’s message but Eve can not. The

analysis on ”Dynamic Secrets” show that at a high Rician K-factor of 10 dB, without

our antenna radiation variation, the Psucc is 0 whereas when we employ our method;

the probability of success, Psucc, is approximately 0.075.

The conclusion that we draw from our results is significant, as it enhances secrecy

in worst-case scenario, but at the same time certain limitations apply to them. The

most important consideration is regarding the capabilities of the eavesdropper, Eve.

In our calculations, we assume Bob and Eve to be at the same distance. It is possible

to assume a more pessimistic case where Eve is closer to Alice. This will certainly

reduce Psucc, as it is similar to the case in Chapter 5 where we reduce Eve’s decoding

threshold from -65 dBm to -75 dBm to indicate a stronger Eve. However, at the same

time, Psucc of the linear antenna array will still improve relative to the single antenna

case. Also note that as Eve gets closer to Alice, within a certain distance it is possible

that, even with our method, we may not be able to force Eve to miss any messages.

62



While in the case of passive Eve it may be sufficient to use our method at Alice’s

side only, that may not be the case when Eve is active. Since Eve is trying to jam

Bob in a static Eve-Bob channel, we must then also use our method at Bob. However,

this places certain limitations as the receiver design can be much more complex than

a transmitter.
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APPENDIX

AUTOMATION OF LAB INSTRUMENTS

Lab instruments such as signal generators and spectrum analyzers provide mul-

tiple options for automation. The most common languages that they use are SCPI

(Standard Commands for Programmable Instrumetnts) and TCL (Tool Command

Language). Hence, we can send commands to the instrument using telnet over ether-

net or via RS-232 and GPIB interfaces. Scripting languages such as python provide

a means to send a sequence of messages to the instrument and receive its response.

In our setup, we also use python to send SCPI commands to the instruments.

There are two scripts that run indpendently of each other. The first script, chooses a

random phase between −π and π and applies it to one of the signal generator. The

other signal generator is always at the same phase reference, thus, this generates a

random phase. The python script is presented below:

#Python script to apply random phase to one of the two signal generators.

import SCPI

import sys

import string

import SIGGEN

import random

import math

# Open the connection to Serial Port of Signal Generator

sig=SIGGEN.SIGGEN()

sig.SerialClose()

sig.SerialOpen()

# Set Zero Phase Reference

sig.SerialWrite(’Phase:Reference’)

phase=0

sig.SerialWrite(’Phase:Adjust ’+str(phase)+’ rad’)
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for i in range(0,10000):

if (i%1==0):

phase=random.uniform(-math.pi,math.pi) #Uniformly select a

rendom phase from -pi to pi

sig.SerialWrite(’Phase:Adjust ’+str(phase)+’ rad’)

#Apply phase

The above script depends on a class SIGGEN which is not part of a standard

library. This class helps to establish RS-232 connection between the computer and

signal generator. It is re-produced below:

#Class to establish RS-232 connection with signal generator

import serial

class SIGGEN:

def __init__(self): #Constructor opens a serial port

self.ser=serial.Serial(

port=’COM13’,

baudrate=9600,

parity=serial.PARITY_NONE,

stopbits=serial.STOPBITS_ONE,

bytesize=serial.EIGHTBITS

)

def SerialClose(self):

self.ser.close()

def SerialOpen(self):

self.ser.open()

def SerialWrite(self,msg):

self.ser.write(msg + ’\r\n’)

def GetValue(self):

out = ’’

while self.ser.inWaiting() > 0:

out += self.ser.read(1)

if out != ’’:

return out

def out_print(self):

out = ’’

while self.ser.inWaiting() > 0:

out += self.ser.read(1)

if out != ’’:
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print ">>" + out

The second script collects 5000 measurement samples from the spectrum analyzer.

The following script was used:

#Python script to collect samples from the spectrum analyzer

import SCPI

import timeit

import time

import sys

import string

import SIGGEN

f = open(’16June_K_factor_lab_no_absorber.txt’,’a’) #Creating a local file

to save collected samples

power = SCPI.SCPI("192.168.1.15")

FREQ="+2.52700000E+009"

for i in range(0,5000): #5000 iterations to collect 5000 samples

power.sendCmd("FETCH:SAN?")

x=power.getMeasurements()

tempindex=string.index(x,FREQ)

y=x[tempindex:(tempindex+33)]

f.write(y+"\n")

f.close()
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