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ABSTRACT 

A HIERARCHICAL APPROACH TO THE ANALYSIS OF INTERMEDIARY 
STRUCTURES WITHIN THE MODIFIED CONTOUR REDUCTION ALGORITHM 

 
SEPTEMBER 2013 

 
KRISTEN M. WALLENTINSEN, B.M., UNIVERSITY OF ARIZONA 

 
M.M., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Rob Schultz 

 
 

Robert Morris’s (1993) Contour-Reduction Algorithm—later modified by Rob 

Schultz (2008) and hereafter referred to as the Modified Contour Reduction Algorithm 

(MCRA)—recursively prunes a contour down to its prime: its first, last, highest, and 

lowest contour pitches.  The algorithm follows a series of steps in two stages.  The first 

stage prunes c-pitches that are neither local high points (maxima) nor low points 

(minima).  The second stage prunes pitches that are neither maxima within the max-list 

(pitches that were maxima in the first stage) nor minima within the min-list (pitches that 

were minima in the first stage).  This second stage is repeated until no more pitches can 

be pruned.  What remains is the contour’s prime. 

By examining how the reduction process is applied to a given c-seg, one can 

discern a hierarchy of levels that indicates new types of relationships between them.  In 

this thesis, I aim to highlight relationships between c-segs by analyzing the distinct 

subsets created by the different levels obtained by the applying the MCRA.  These 

subsets, or sub-csegs, can be used to delineate further relationships between c-segs 

beyond their respective primes. As such, I posit a new method in which each sub-cseg 

produced by the MCRA is examined to create a system of hierarchical comparison that 
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measures relationships between c-segs, using sub-cseg equivalence to calculate an index 

value representing degrees of similarity.  The similarity index compares the number of 

levels at which two c-segs are similar to the total number of comparable levels.  

I then implement this analytical method by examining the similarities and 

differences between thirteen mode-2 Alleluias from the Liber Usualis that share the same 

alleluia and jubilus.  The verses of these thirteen chants are highly similar in melodic 

content in that they all have the same prime, yet they are not fully identical.  I will 

examine the verses of these chants using my method of comparison, analyzing 

intermediary sub-csegs between these 13 chants in order to reveal differences in the way 

the primes that govern their basic structures are composed out.
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CHAPTER 1 

 
INTRODUCTION 

 

Early analytical approaches to contour treated it as only a highly generalized 

feature—i.e. a wave-like shape, or an arch-like shape.  Arnold Schoenberg’s 

Fundamentals of Musical Composition simply described contour as a “feature” of a 

motive—that which makes a motive distinctive—with no further definition of how to 

discuss contour, or how to use it as a tool of composition (1967, 9).  Other cases include 

Peter Wagner’s description of chant: “as a rule the melodic line begins at a low pitch, 

rises to a point of climax and gradually descends to its final,” (1911, III.9; quoted in 

Stevens 1986, 279-80) again describing only a general arch-shape motion of the melody.  

Ernst Toch likewise approached a discussion of melodic shape in general terms, stating 

that “with the combination of ascending and descending scale-segments melody 

approaches its real nature: the wave line” (1948, 78).  Toch also discussed melodic lines 

as constituting several small waves adding up to one large wave (1948, 79–80).  Despite 

this further attempt at describing melodic structure, none of these discussions of melodic 

shape did anything to systematize the analysis of contour to the degree that other aspects 

of music—such as rhythm, harmony, or counterpoint—have been.  Instead, such highly 

metaphorical descriptions served a subordinate role, only reinforcing points made about 

other topics. 

First attempts to systematically account for the content of a melodic contour came 

when ethnomusicologists such as Charles Seeger and Charles Adams attempted to use 

contour as a method of categorizing melodies of the groups they were studying.  Seeger 



 

2 

(1960) addressed pitch direction as a varied function of music, referring to a rise in pitch 

as “tension” and indicating it with a plus sign (+).  Likewise, Seeger referred to a fall in 

pitch as “detension,” indicated by a minus sign (–), and to a maintenance of pitch as 

“tonicity,” indicated by an equal sign (=).  He used these symbols to categorize patterns 

of tension, detension, and tonicity as they related to pitch direction, among other musical 

parameters.1  

Adams (1976) is the first to strictly define melodic contour.  He states that 

contour is “the product of distinctive relationships among the minimal boundaries of a 

melodic segment” (Adams 1976, 195).  He defines such minimal boundaries as 

those pitches which are considered necessary and sufficient to delineate a 
melodic segment, with respect to its temporal aspect (beginning-end) and 
its tonal aspect (tonal range).  Bounding a series of pitches by an initial 
pitch (I), a final pitch (F), a highest pitch (H), and a lowest pitch (L), 
satisfies these conditions while defining fewer or more boundaries does 
not (196). 
 

These four boundary pitches became an integral part of later contour theories, including 

Morris’s reductive approach. 

Despite its origins, contour theory found a more permanent home in the analysis 

of post-tonal music.  With post-tonal music, the need to categorize melodic segments by 

means other than the tonal syntax that came with common practice tonality arose, and 

because of this, melodic contour began to serve a much more independent role in 

subsequent analyses.  Building on the earlier work of Adams, five influential authors 

have continued to develop techniques for studying contour within musical analysis: 

                                                 
1 Seeger also used these terms to refer to changes in dynamics and tempo, stating that the 
type of direction change (i.e., louder vs. softer or faster vs. slower) fell into the same sort 
of binary continuum as pitch rising or falling.  In this way, he attempted to unify these 
musical elements under one system of description. 
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Michael Friedmann (1985), Robert Morris (1987), and Elizabeth West Marvin and Paul 

Laprade (1987). 

Friedmann categorizes melodic contours based on two concepts: the relationships 

between adjacent pitches and relative positions between all pitches in a contour segment, 

or c-seg.  Relationships between adjacent pitches provide detailed information about the 

immediate surface-level structure of a c-seg.  His Contour Adjacency Series (CAS) 

outlines a sequential series of direction changes as the means of defining the contour, 

using (+) and (–) symbols to account for such changes.2  For example, the contour of the 

passage shown in Figure 1.1 would have a CAS of +,–,+,+,–,–,–,+.  Friedmann then 

constructs vectors for the CAS by tallying the ascents and descents in the CAS.  The CAS 

vector of the c-seg in Figure 1.1 would be 4,4 indicating an equal number of ups and 

downs in the c-seg.  The CAS is a good tool for describing the note-to-note contour 

features of a c-seg, but this approach does not account for the global contour properties 

that give a c-seg its distinct shape.   

 

Figure 1.1. Application of Friedmann’s CAS and CC 
 

 

                                                 
2 Friedman derives the (+) and (–) symbols from John Rahn’s ordered pitch intervals, 
simply removing the intervallic distance factor. 
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To address this, Friedmann created the Contour Class (CC).  Instead of looking 

only at adjacent pitches, the CC examines the relative positions between all pitches 

within a c-seg.  In the CC, each unique pitch is given an ordinal number, with 0 

representing the lowest pitch, and n–1 representing the highest pitch within a set of n 

pitches.  This gives a global view of all the pitches in the set with regard to their registral 

position. Returning to the c-seg from Figure 1.1, the contour of the opening measure has 

a CC of 6–7–1–2–5–4–1–0–3.  A CC vector counting the ups and downs in a similar 

manner to a CAS vector now takes into account relationships between non-adjacent 

pitches.  Using the CC, Friedmann constructs a Contour Interval Array (CIA), which 

functions in a manner similar to an interval vector in set theory.  The CIA takes the 

relative distances between each pitch in the contour and accounts for the “multiplicity of 

each contour interval type in the CC as a whole” (Friedmann 1985, 230). Given a contour 

with a CC of 0–4–1–2–5–3, the CIA would be 4,2,2,2,1/1,2,1,0,0.     

With the CC and the CIA in hand, Friedmann creates two types of vectors for the 

contour class.  Contour class vector I (CCV I) presents a “two-digit summation of the 

degrees of ascent and descent expressed in a CIA.  The first digit is the total of the 

products of the frequency and contour interval type found on the left side of the slash in 

the middle of the CIA” (1985, 247).  The second digit follows the same logic as the first, 

but on the right side of the slash, representing the descents.  For the CIA expressed 

above, the first digit of CCV I would be 4(1) + 2(2) + 2(3) + 2(4) + 1(5), or 27.  The 

second digit would be 1(1) + 2(2) + 1(3) + 0(4) + 0(5), or 8.  Therefore the CCV I is 

27,8.    Contour class vector II (CCV II) is a bit more general than CCV I, discarding 

contour interval size and examining ascent vs. descent in a similar manner to the CAS 
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vector, only now including non-adjacent pitches in the calculation. The CCV II counts 

the total number of ascents and descents represented in the CC by adding the numbers on 

either side of the CIA.  Therefore the CC II for the CIA mentioned above 

(4,2,2,2,1/1,2,1,0,0) would be 11,4.  Both the CC and the CAS allow for classification 

of contours based on equivalences of contours bearing identical values for these 

measurements. 

In another influential discussion of contour, Morris (1987) introduces specific 

methodology for contour description.  He begins by defining contour space (c-space): “a 

c-space of order n, is a pitch-space of n elements, called c-pitches (cps).  C-pitches are 

numbered in order from low to high, beginning with 0 up to n–1. The intervallic distance 

between the cps is ignored and left undefined” (26).3  Morris also puts forth a method for 

comparing all c-pitches within a c-seg with each other.  His comparison matrix (COM-

matrix) compares every ordered pair of c-pitches in the c-seg.  For example, the COM-

matrix for the 671254103 c-seg discussed above, shown in Figure 1.2, provides a 

comprehensive array of the relative position of each c-pitch within the c-space.  The first 

row in the matrix compares all c-pitches against the first c-pitch in the c-seg, the 6. The 

second row compares all c-pitches against the 7, and so forth for each c-pitch in the c-seg.  

In this way, it not only compares adjacent c-pitches, but all non-adjacent c-pitches as 

well.   

 

 
 
 
 
                                                 
3 Morris’s description of c-pitch numbering is equivalent to Friedman’s CC. 



 

6 

Figure 1.2. The COM-Matrix for the 671254103 c-seg 
 6 7 1 2 5 4 1 0 3 

6 0 + – – – – – – – 
7 – 0 – – – – – – – 
1 + + 0 + + + 0 – + 
2 + + – 0 + + – – + 
5 + + – – 0 – – – – 
4 + + – – + 0 – – – 
1 + + 0 + + + 0 – + 
0 + + + + + + + 0 + 
3 + + – – + + – – 0 

 

Marvin and Laprade (1987) develop two additional ways to compare contours. 

They use the COM-matrix in order to illuminate similarities between both adjacent and 

non-adjacent c-pitches.  The first method, called the contour similarity function or CSIM, 

uses the COM-matrix to compare ascents and descents among both adjacent and non-

adjacent cpitches of two c-segs in order to arrive at a ratio between identical motions and 

different motions. To calculate CSIM, one only needs to compare corresponding 

positions within the upper right-hand triangles of the matrices.4  The number of identical 

positions within the COM-matrix is then divided by the total number of positions 

compared in order to arrive at the CSIM value.  Figure 1.3 illustrates this principle: 

COM-matrices are shown for c-segs 043251 and 125403.  Each position in the upper 

right-hand triangle of the matrix is compared to reveal that there are 7 identical positions, 

out of a total of 15 positions compared.  Therefore the CSIM value for these two c-segs is 

7/15, or 0.47. 

CSIM is an effective method for arriving at a quantifiable similarity measurement 

between two c-segs. However, it does have one fundamental restriction: it allows for the 

                                                 
4 It is necessary to examine only the upper right-hand triangle of the matrices because 
“the comparison matrix always displays a symmetry of inverse signs around the main 
diagonal” (Morris 1987, 28). 



 

7 

comparison of c-segs of the same cardinality only—that is, c-segs with the same number 

of c- pitches.  Marvin and Laprade therefore devise a second method for comparing c-

segs: the contour embedding function or CEMB.  Instead of measuring the number of 

similar movements between c-pitches, CEMB measures how many occurrences of the 

smaller c-seg are embedded within the larger c-seg, and compares that value against the 

total number of csubsegs with the same cardinality as the smaller c-seg.  For example, a 

c-seg of 021 is embedded within the c-seg 023154 seven times: the 021, 031, 

054, 231, 〈254〉, 〈354〉, and 154 all become 021 under Marvin and Laprade’s 

translation operation—that is, the renumbering of csubsegs accordingly in register from 0 

to n–1, where n now represents the cardinality of the csubseg.  There are 20 possible 

cardinality-3 csubsegs within the 023154 c-seg, so the CEMB function would return a 

value of 7/20, or 0.35. 

 

Figure 1.3. Comparison of COM-matrices for csegs 043251 and 125403 

 

�〈��������〉�� � � � 〈���������〉 

 

 



 

8 

Marvin and Laprade make additional refinements to the CEMB function, 

introducing mutually embedded csubsegs in order to provide a more complete picture of 

the relationships within two c-segs.  The ACMEMB function counts the number of 

identical mutually embedded csubsegs within the two c-segs in question.  An example of 

ACMEMB is shown in Figure 1.4.  The figure shows that there are 33 mutually 

embedded csubsegs within the two c-segs in question, out of a total of 37 possible 

csubsegs. 

 

The Reductive Approach 

Morris (1993) introduced the notion of perceptual hierarchy in musical contour 

theory with his Contour-Reduction Algorithm. This algorithm, shown in Figure 1.5, 

follows a series of steps in two stages.  The first stage prunes c-pitches that are neither 

local low points (minima) nor high points (maxima).  The second stage prunes pitches 

that are neither maxima within the max-list (the collection of pitches that were maxima in 

the first stage) nor minima within the min-list (the collection of pitches that were minima 

in the first stage).  This second stage is repeated as many times as is necessary until no 

more pitches can be pruned.  What remains is the contour’s prime, or its initial, final, 

highest, and lowest c-pitches.  To illustrate this concept, Figure 1.6 applies the steps in 

Morris’s algorithm to the c-seg from Figure 1.1, 671254103. The algorithm begins by 

deleting pitches that are not local minima or maxima, arriving at the c-seg 451302. 

Entering stage two of the algorithm at N=1 on line B, steps 6 and 7 flag the maxima in 

the max-list (c-pitches 4, 5, and 2) and the minima in the min-list (c-pitches 4,  
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Figure 1.4. Application of ACMEMB to c-segs of differing cardinalities (Marvin and 
Laprade 1987, 246).5 

C-seg A: 〈0213〉  C-seg B: 〈02134〉  

Csubsegs 

〈02〉  = 〈01〉  〈02〉  = 〈01〉  

〈01〉  = 〈01〉  〈01〉  = 〈01〉  

〈03〉  = 〈01〉  〈03〉  = 〈01〉  

〈21〉  = 〈10〉  〈04〉  = 〈01〉  

〈23〉  = 〈01〉  〈21〉  = 〈10〉  

〈13〉  = 〈01〉  〈23〉  = 〈01〉  

〈021〉  = 〈021〉  〈24〉  = 〈01〉  

〈023〉  = 〈012〉  〈13〉  =〈01〉  

〈013〉  = 〈012〉  〈14〉  = 〈01〉  

〈213〉  = 〈102〉  〈34〉  = 〈01〉  

〈0213〉  = 〈0213〉  〈021〉  = 〈021〉  

 〈023〉  = 〈012〉  

 〈024〉  = 〈012〉  

 〈013〉  = 〈012〉  

 〈014〉  = 〈012〉  

 〈034〉  = 〈012〉  

 〈213〉  = 〈102〉  

 〈214〉  = 〈102〉  

 〈234〉  = 〈012〉  

 〈134〉  = 〈012〉  

 〈0213〉  = 〈0213〉  

 〈0214〉  = 〈0213〉  

 〈0234〉  = 〈0123〉  

 〈0134〉  = 〈0123〉  

 〈2134〉  = 〈1023〉  

 〈02134〉  = 〈02134〉  

33 csegs mutually embedded in csegs A and B: 
ACMEMB (A,B) = 33/37 = 0.89 

 

 

                                                 
5 The c-segs in this example come from Marvin and Laprade’s discussion of ACMEMB.  
However, these two c-segs were originally c-seg B and c-seg C in their example. 
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Figure 1.5. Morris’s contour reduction algorithm (Morris 1993, 212) 
Definition: Maximum pitch: Given three adjacent pitches in a contour, if the second is higher than or equal 
to the others it is a maximum.  A set of maximum pitches is called a maxima.  The first and last pitches of a 
contour are maxima by definition. 
 
Definition: Minimum pitch: Given three adjacent pitches in a contour, if the second is lower than or equal 
to the others it is a minimum.  A set of minimum pitches is called a minima.  The first and last pitches of a 
contour are minima by definition. 
 
Algorithm:  Given a contour C and a variable N: 
 
[STAGE ONE:] 
 
Step 0: Set N to 0. 
 
Step 1: Flag all maxima in C; call the resulting set the max-list. 
 
Step 2: Flag all minima in C; call the resulting set the min-list. 
 
Step 3: If all pitches in C are flagged, go to step 9. 
 
Step 4: Delete all non-flagged pitches in C. 
 
Step 5: N is incremented by 1 (i.e., N becomes N + 1). 
 
[STAGE TWO:] 
 
Step 6: Flag all maxima in max-list.  For any string of equal and adjacent maxima in max-list, either: (1) 
flag only one of them; or (2) if one pitch in the string is the first or last pitch of C, flag only it; or (3) if both 
the first and last pitch of C are in the string, flag (only) both the first and last pitch of C. 
 
Step 7: Flag all minima in min-list.  For any string of equal and adjacent minima in min-list, either: (1) flag 
only one of them; or (2) if one pitch in the string is the first or last pitch of C, flag only it; or (3) if both the 
first and last pitch of C are in the string, flag (only) both the first and last pitch of C. 
 
Step 8: Go to step 3. 
 
Step 9: End.  N is the “depth” of the original contour C. 
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Figure 1.6. Application of Morris’s contour reduction algorithm to the c-seg 

〈671254103〉 

 

 

0, and 2).  The algorithm then proceeds back to step 3, where the non-flagged pitches are 

deleted, leaving 2301 at N=2 on line D.  Proceeding through steps 6 and 7 a second 

time, we find no more pitches to delete.  Since all pitches are flagged, the reduction ends, 

yielding a prime of 2301 and a depth level of N=2. 
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Although the contour reduction algorithm outlined by Morris is useful in 

providing a structured approach to finding the prime of a c-seg, Morris leaves the 

algorithm open-ended to allow for different modifications as the need arises.  For 

example, it allows for variability in the pruning of repeated c-pitches, and it does not 

allow for stage-two pruning of c-segs that do not get pruned in stage one of the algorithm.  

Rob Schultz (2008) discusses c-segs that feature “a progressive outward 

expansion of c-pitches in c-space, thereby forming a wedge shape” (96).  His example, 

reproduced in Figure 1.7, shows that Morris’s algorithm would call the c-seg 

〈2415063〉 a prime without proceeding on to stage two, since all c-pitches in the c-seg 

would be flagged as either a maxima or minima.  This becomes a problem when one 

consults the list of primes Morris provides in his article, only to find that 2415063 is not 

on the list.  Schultz posits that each stage of the algorithm must be applied to every c-seg 

“at least once in order to reliably produce a true prime” (Schultz 2008, 96). 

 

Figure 1.7. Illustration of the wedge-shape problem (Schultz 2008, 97). 
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Schultz points out one other problem with the reduction algorithm.  In a c-seg 

such as 2414043, step 6 of the algorithm states that only one of the 4s is to be retained, 

yet the decision to flag any one of the 4s at the expense of the other two can change the 

resulting prime of the reduction.  

To account for these loopholes, Schultz introduces several modifications to 

Morris’s algorithm.  Figure 1.8 shows Schultz’s modified contour reduction algorithm, 

which I will refer to as the MCRA. Schultz adds steps 8–12, and modifies steps 3, 6, and 

7, in order to account for the specific problems discussed above.  Step 3 now directs the 

reduction to stage two of the algorithm in the event that all c-pitches are flagged, thereby 

addressing the problem of wedge-shaped c-segs.  Steps 6 and 7 now flag all c-pitches in a 

string of equal and adjacent maxima or minima (unless certain criteria are met), putting 

off the pruning of repetitions until the next steps.  Steps 8 and 9 remove extraneous flags 

from any string of maxima in the max-list for which no minima intervene.  Steps 10, 11, 

and 12 then remove all pairs of repetitions (i.e. a series of three or more equal and 

adjacent maxima wherein equal and adjacent minima intervene) in the max- and min-lists 

except for the outermost c-pitches involved in the repetition.  These added steps address 

the problem of pitch repetition in the max- or min-lists (Schultz 2008, 106).  Under the 

MCRA, the problem highlighted by Figure 1.7 has been corrected.  Figure 1.9 displays 

the corrections to the reductive process for these c-segs: now the c-seg in Figure 1.9 

reduces beyond stage one. 
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Figure 1.8. The Modified Contour Reduction Algorithm (Schultz 2008, 108) 
Algorithm: Given a contour C and a variable N: 
 
Step 0: Set N to 0 
 
Step 1: Flag all maxima in C upwards; call the resulting set the max-list 
 
Step 2: Flag all minima in C downwards; call the resulting set the min-list 
 
Step 3: If all c-pitches are flagged, go to step six 
 
Step 4: Delete all non-flagged c-pitches in C 
 
Step 5: N is incremented by 1 (i.e., N becomes N+1) 
 
Step 6: Flag all maxima in the max-list upwards.  For any string of equal and adjacent maxima in the max-
list, flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or 
(2) both the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of 
C. 
 
Step 7: Flag all minima in the min-list downwards.  For any string of equal and adjacent minima in the min-
list, flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or 
(2) both the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of 
C. 
 
Step 8: For any string of equal and adjacent maxima in the max-list in which no minima intervene, remove 
the flag from all but (any) one c-pitch in the string. 
 
Step 9: For any string of equal and adjacent minima in the min-list in which no maxima intervene, remove 
the flag from all but (any) one c-pitch in the string. 
 
Step 10: If all c-pitches are flagged, and no more than one c-pitch repetition in the max-list and min-list 
(combined) exists, not including the first and last c-pitches of C, proceed directly to step 17. 
 
Step 11: If more than one c-pitch repetition in the max-list and/or min-list (combined) exists, not including 
the first and last c-pitches of C, remove the flags on all repeated c-pitches except those closest to the first 
and last c-pitches of C. 
 
Step 12: If both flagged c-pitches remaining from step 11 are members of the max-list, flag any one (and 
only one) former member of the min-list whose flag was removed in step 11; if both c-pitches are members 
of the min-list, flag any one (and only one) former member of the max-list whose flag was removed in step 
11. 
 
Step 13: Delete all non-flagged c-pitches in C 
 
Step 14: If N ≠ 0, N is incremented by 1 (i.e., N becomes N+1) 
 
Step 15: if N = 0, N is incremented by 2 (i.e., N becomes N+2) 
 
Step 16: Go to step 6 
 
Step 17: End.  N is the “depth” of the original contour C. 
 
The reduced contour is the prime of C; if N=0, then the original C has not been reduced and is a prime 
itself. 
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Figure 1.9. Application of the MCRA to the wedge-shaped c-seg 

 

 

Morris uses his algorithm to arrive at a table of basic prime classes that occur in 

music.  

Each class is a cseg class and thus includes primes related by R 
[retrograde], I [inversion], and RI [retrograde inversion].  There are 25 
basic prime classes and 28 secondary prime classes—53 classes in all, 
only five of which do not have repetitions or simultaneities.  The five are 
0, 01, 021, 1032, and 1302.  These together with 010 and 1021 
are called the linear prime classes. (Morris 1993, 218)   
 

These linear prime classes, to which Schultz added 10201 and 10302, provide a 

systematic organizational scheme with which to illustrate relationships between c-segs.  
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Such relationships between primes and their respective prime classes form the basis of 

most comparisons made using the MCRA. 

Building from Morris’s algorithm from a different angle, Mustafa Bor (2009) 

introduces a similar algorithm in which contours are reduced using what he calls 

“window algorithms.”  The window algorithm essentially isolates specific subsets within 

a c-seg and looks for pitches that are neither local high and low points within the window 

to prune.  His 3-window, for example, prunes a medial pitch within a group of three 

pitches if it is neither a minimum nor a maximum.  The window is designed to move 

forward linearly, as if in time, in order to treat each pitch in turn as a medial pitch.  It is 

this 3-window approach that is in operation in the successive pruning of the MCRA.  One 

can also have a 5-window that follows a similar model of pruning, as well as a 7-window, 

a 9-window, and so on.  Such window algorithms follow similar principles, but on a 

larger scale.  The 5-window, for example, expands the window to 5 pitches, and once 

again evaluates the pitch in the middle of the window, pruning if it is neither a maximum 

nor a minimum.  Through the 5-window, Bor is able to examine non-adjacent pitches, 

determining maxima and minima that would be pruned in stage two of Morris’s 

algorithm.  Like Morris’s algorithm, Bor’s 3-window algorithm always prunes pitches so 

that the contour becomes a series of alternating signs with no passing pitches intervening, 

while the 5-window algorithm reduces the contour further to arrive at an irreducible 

result.  Despite these similarities, Bor’s window algorithms differ in that they use only 

one method of reduction: the window pruning method.  In this method, maxima are never 

compared directly with one another, nor are minima, producing a different approach to 

the reductive process.  It is hypothetically possible to have a contour that possesses 
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minima (under the Morris sense of the term) that are higher in pitch than other maxima 

pitches.   

 

Extensions to the Reductive Method 

This thesis posits a new method of analysis using a modified version of the 

MCRA presented above, wherein each stage of the algorithm is taken into account to 

create a system of hierarchical levels that we can use to measure relationships between c-

segs.  I aim to highlight relationships between c-segs by analyzing the distinct subsets 

created by the recursions at different levels within the algorithm.  I also use this method 

of comparison to calculate an index value representing degrees of similarity between two 

c-segs.  This similarity index compares the number of levels deemed equivalent to the 

total number of comparable levels within the c-segs. 

To illustrate the analytical approaches of this hierarchical method of comparison, 

I will make a case for the use of the hierarchy in the analysis of plainchant, in order to 

study how techniques of melodic composition manifest themselves in contour similarity.  

I will explore contour’s interaction with modal tendencies, and I will use the MCRA and 

comparative process to more accurately define the intricate shapes of melismatic chant 

structure.  Specifically, I will illustrate the usefulness of this analytical method by 

discussing the similarity and difference between thirteen mode-2 Alleluia chants from the 

Liber Usualis that share the same alleluia and jubilus.  These thirteen chants share very 

similar verses, yet the melodic content of these verses is not identical.  I will examine the 

verses of these chants using my method of comparison, in order to determine the overall 

similarity of these chants from a contour perspective.  I will also use the method of 
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comparison outlined above to highlight the differences between the verses at levels 

shallower than prime, and to explore possible causes for these differences. 
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CHAPTER 2 
 

INTRODUCING THE HIERARCHICAL METHOD FOR COMPARING 

CONTOURS WITH THE SAME PRIME AND THE SAME DEPTH LEVEL 

 

Using the MCRA, this chapter explores the significance of similarity between c-

segs with the same prime.  It modifies the reduction algorithm further to allow for direct 

correspondence among depth levels in order to determine a degree of similarity between 

two c-segs.  It also discusses levels shallower than prime, introducing a method of 

determining similarity using these levels as a basis, and explore possible applications of 

this comparative theory. 

The goal of the algorithm, as Morris originally conceived of it, was to provide a 

rigorously structured approach to arriving at the salient boundary pitches of a contour—

the first, last, highest, and lowest.  The recursions within the algorithm give us the prime 

contour at the end, and also produce a hierarchy of levels above that prime.  Morris even 

alludes to the importance of these levels: he states that “each stage of reduction provides 

a contour on a distinct analytic level” (1993, 213) and draws a comparison to Schenkerian 

hierarchical levels of structure (215).  Despite this initial nod to the importance of these 

intermediary levels between the prime and the surface, much of Morris’s discussion 

focuses on equivalence based solely on prime contours and their resulting depth levels.  

However, examining contour reductions at specific depth levels other than the prime of a 

contour segment (c-seg) provides for a more nuanced comparison.     
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Contour Reduction: The Recursive Approach 

 The MCRA consists of 17 steps, as seen in Figure 2.1.  Morris states that a c-seg 

of cardinality n can be reduced to a smaller “prime” using these steps.  The algorithm 

follows these steps in what Bor (2009) called two stages.  The first stage includes steps 0 

through 5, where the c-seg is pruned of c-pitches that were neither local minima nor 

maxima.  The second stage includes steps 6 through 17, and now prunes pitches that are 

not maxima within the max-list (the collection of pitches that were maxima in the first 

stage) nor minima within the min-list (the collection of pitches that were minima in the 

first stage).6  This second stage is then repeated as many times as necessary until no more 

pitches can be pruned. 

 Figure 2.2 provides an illustration of the application of the MCRA.  A c-seg of 

cardinality 7 (with pitches numbered 0 to n-1), 1312014, is displayed on a clefless, five-

line staff, which is used to represent contour pitches in contour space, as opposed to 

pitches in pitch space.  The staves themselves are labeled in alphabetical order for ease of 

reference.  Steps 1–4 are applied to the surface-level c-seg, pruning all but the maxima 

and minima in the first stage.  At this point, we arrive at our first sub-cseg, 131204, or 

sub-cseg1 as shown on staff B.7 This sub-cseg represents the first level deeper than the  

                                                 
6 Several of the steps in stage two apply to specific conditions that occur only in certain 
c-segs.  Specifically, steps 8-9 and 11-12 deal with the eventuality of repeated pitches in 
the max- and min-lists, and are not necessarily used in c-segs that do not display such 
repetitions. 
7 Marvin and Laprade have a similar term, the csubseg, which refers to any contiguous or 
non-contiguous subset within a c-seg.  I am using the term sub-cseg here to refer to very 
specific non-contiguous subsets produced by the algorithm. 
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Figure 2.1. The Modified Contour Reduction Algorithm (Schultz 2008, 108) 
Algorithm: Given a contour C and a variable N: 
 
Step 0: Set N to 0 
 
Step 1: Flag all maxima in C upwards; call the resulting set the max-list 
 
Step 2: Flag all minima in C downwards; call the resulting set the min-list 
 
Step 3: If all c-pitches are flagged, go to step six 
 
Step 4: Delete all non-flagged c-pitches in C 
 
Step 5: N is incremented by 1 (i.e., N becomes N+1) 
 
Step 6: Flag all maxima in the max-list upwards.  For any string of equal and adjacent maxima in the max-
list, flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or 
(2) both the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of 
C. 
 
Step 7: Flag all minima in the min-list downwards.  For any string of equal and adjacent minima in the min-
list, flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or 
(2) both the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of 
C. 
 
Step 8: For any string of equal and adjacent maxima in the max-list in which no minima intervene, remove 
the flag from all but (any) one c-pitch in the string. 
 
Step 9: For any string of equal and adjacent minima in the min-list in which no maxima intervene, remove 
the flag from all but (any) one c-pitch in the string. 
 
Step 10: If all c-pitches are flagged, and no more than one c-pitch repetition in the max-list and min-list 
(combined) exists, not including the first and last c-pitches of C, proceed directly to step 17. 
 

Step 11: If more than one c-pitch repetition in the max-list and/or min-list (combined) exists, not including 
the first and last c-pitches of C, remove the flags on all repeated c-pitches except those closest to the first 
and last c-pitches of C. 
 

Step 12: If both flagged c-pitches remaining from step 11 are members of the max-list, flag any one (and 
only one) former member of the min-list whose flag was removed in step 11; if both c-pitches are members 
of the min-list, flag any one (and only one) former member of the max-list whose flag was removed in step 
11. 
 

Step 13: Delete all non-flagged c-pitches in C 
 

Step 14: If N ≠ 0, N is incremented by 1 (i.e., N becomes N+1) 
 

Step 15: if N = 0, N is incremented by 2 (i.e., N becomes N+2) 
 

Step 16: Go to step 6 
 

Step 17: End.  N is the “depth” of the original contour C. 
 

The reduced contour is the prime of C; if N=0, then the original C has not been reduced and is a prime 
itself. 
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Figure 2.2. Contour reduction and the sub-cseg  
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surface.  Since this c-seg can be pruned further in the recursions of the algorithm, it 

moves on to stage two and reduces to a sub-cseg2 on staff D, 1203.   This can be pruned 

even further to yield a sub-cseg3 of 102, which is the prime.   

 

Hierarchical Levels and Similarity Relations 

 We can create a hierarchical procedure to determine the level of similarity using 

contour reduction, as I have illustrated in the flow chart shown in Figure 2.3.  When two 

c-segs are reduced, levels are created that can be compared “level for level” with one  

another, (i.e. sub-cseg1 with sub-cseg1, etc.).  This yields a threefold hierarchy of 

similarity.  The first, most basic element of similarity to consider is the prime.  If the 

primes of two c-segs are different, the c-segs have no levels of similarity within this 

system.  If this is the case, the reduction can yield information about possible 

transformations of the c-segs (i.e. inversions, retrogrades, retrograde inversions, etc.) but 

little else. 

If two c-segs do have the same prime, however, then these c-segs have reached 

level 1 similarity.  From here we can move forward to a comparative concept that I will 

define as a c-seg’s complexity. This variable gives us an exact count of how many unique 

sub-csegs exist in a given c-seg.  Complexity in this sense is thought of in terms of 

perceptions of surface detail within a c-seg.  The more intricate the surface detail is, the 

more iterations of the recursive algorithm we must use to arrive at the prime.  That said, 

complexity relates directly to the notion of depth level, more specifically the depth level  
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Figure 2.3. The comparison-hierarchy flow chart 
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of prime, and therefore can be labeled with the variable Nprime.
8.  In essence, the greater 

the prime’s depth level, the more complex a c-seg is.  If two c-segs have reached level 1 

similarity, we can then compare their complexity.  If they differ in complexity, the two c-

segs exist only in level 1 similarity.   

If two c-segs share a level 2 similarity, we know that the two c-segs share the 

same prime and the same complexity.  It is important to note that two c-segs must possess 

both of these levels in order to be compared for similarity at levels shallower than prime.  

To do otherwise would never yield a direct level-for-level equivalence shallower than 

prime.  For c-segs at level 2 similarity, we can begin a comparison at the N–1 level.  For 

c-segs that do not possess any levels shallower than prime form (or if N–1=0), level 2 

similarity is the end of the comparison, and level 2 is the most similar those c-segs can be 

without being identical.9   

For c-segs that do possess deeper intermediary levels between the prime and the 

surface, the comparison at this point becomes recursive, and we continue to evaluate the 

sub-csegs at these deeper levels.  To execute the recursion, I have introduced the variable 

x in line 1 of the flow chart.  The variable x represents the number of levels shallower 

                                                 
8 The complexity and the depth level values are highly similar and related concepts, but 
the primary difference is that the complexity refers to the entire c-seg, including all of its 
embedded sub-csegs at various different depth levels.  As such, it is labeled with the 
value of the depth level of prime.  To use the term “depth level” in its place would be 
misleading, as the specific depth level of a surface-level c-seg under the MCRA would be 
0.  Therefore, referring to a c-seg’s depth level as being anything other than 0 would be 
confusing.  The complexity measurement clarifies this issue by removing the “depth 
level” label from a discussion of the global properties of the c-seg. 
9 Hypothetically, a level-3 similarity is possible, assuming that the surface level c-segs at 
N=0 are identical.  In this instance, the c-segs would be exactly the same, and the “level-3 
similarity” label would not yield any useful observations. 



 

26 

than prime being compared, so that N–x yields the specific depth level of the sub-cseg 

being compared at any given recursion.10 

If two c-segs that have passed level 2 similarity possess a common sub-cseg at 

level n–1, they have a greater perceptual similarity.  This would indicate a new level 3 

similarity.  The fact that the c-seg is the same on more than just the prime level would 

indicate that both c-segs share some of the same embellishing features of a basic prime, 

and we may instinctually hear these c-segs as more similar than c-segs that do not share 

this feature. 

If the sub-csegs at N–1 are identical, the similarity level increases, and the 

algorithm moves on to compare sub-csegs at N–2.  If these sub-csegs are identical, the 

similarity level increases again, and the process repeats itself at N–3, N–4 and so on, until 

one of two possible end conditions is met: 1) a given recursion at N–x does not yield a 

common sub-cseg, in which case the similarity level is not increased any further; or 2) 

one runs out of levels to compare, having gone through the iterations of the recursive 

comparison until reaching the surface level, in which case the c-segs are identical. 

The level of similarity at this point is a representation of similarity with regard to 

the comparative process.  For example, the label “level 3 similarity” informs us that three 

comparison levels are similar: the prime, the complexity, and a single level shallower 

than prime.  The comparison ends at that point, and the two hypothetical c-segs diverge 

from there.  Although this is important information, this label becomes more useful when 

placed in the context of the c-segs’ complexity.  A level 3 similarity would seem quite 

large between two c-segs that only share 4 comparable levels, yet the same level 3 

                                                 
10 The variable N in this equation (as opposed to n) represents the depth level of prime. 
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similarity label would seem much smaller in the context of c-segs with 7 comparable 

levels.  Therefore, it may be prudent to include a c-seg’s complexity in the similarity 

label when applying this comparison method. 

 To that end, it is also useful to create a similarity index representing the degree of 

similarity between two c-segs as measured using this method.  The similarity index 

compares the number of levels at which two c-segs are similar to the total number of 

possible levels.  For example, if two c-segs share four possible levels of comparison, and 

they have a level 3 similarity, then the similarity index for the two c-segs would be ¾, or 

0.75.11 

 

Analytical Demonstration of the Hierarchical Comparison 

To illustrate the fundamental components of this theory, we can apply this process 

to a set of c-segs from Brahms’s Violin Sonata in G major, Op.78.  The two c-segs occur 

in the violin part in measures 38–39 (Figure 2.4a) and measures 114–115 (Figure 2.4b).  

When comparing the c-seg of measures 38–39 with the c-seg of measures 114–115, we 

run the contour reduction algorithm on both c-segs, as shown in Figure 2.5c.  Once the 

reduction has been run, we may begin our comparative analysis.  The reduction is applied 

to both c-segs 1346532140 and 123456789646420 respectively, and pitches that are 

neither minima nor maxima are pruned, yielding a sub-cseg1 of 13120 and 14230, 

                                                 
11 Though the similarity index is a good measure of the total level of similarity between 
two c-segs, when comparing similarity indices it is important to keep in mind that 
different levels of complexity will lead to differences in the similarity index.  An index of 
1/3 and an index of 2/6 would both yield a value of 0.33, yet this does not tell us that, of 
the two values, one is much closer to the surface than the other.  This is why it is 
important to keep both the similarity label and the index in mind, for the two inform each 
other. 
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respectively.  Next, maxima within the max-list are pruned and minima within the min-

list are pruned, producing a sub-cseg1: 120 for both c-segs.  This level produces the 

prime, and thus the end of the algorithm.  These primes are the same, so the c-segs pass 

level 1 similarity.  We can see that the complexity is the same: both c-segs reduce to 

prime at depth level 2, and thus the c-segs pass level 2 similarity.  The two c-segs do not 

share a common sub-cseg1, and therefore do not move to level 3 similarity.  These c-segs 

remain at level 2 similarity out of 4 possible similarity levels (the fourth being the 

comparison of surface level c-segs), and have a similarity index of 0.5. In order to 

examine contour relationships at levels shallower than prime, we shall consider two more 

c-segs from the Brahms sonata: c-segs for measures 16 and 17 respectively, as seen in 

Figure 2.5a.  The reduction for these c-segs is shown in Figure 2.5b.  The reduction 

algorithm is applied to two c-segs: 010342 and 010243.  After the first round of 

pruning, we get a sub-c-seg1 of 01032 for both c-segs, as seen on staff B.  From there, 

minima are pruned in the min-list, and maxima are pruned in the max-list, and we 

 

Figure 2.4a. Score excerpt for measures 36–39 
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Figure 2.4b. Score excerpt for measures 114–116 
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Figure 2.4c. Comparison of c-segs for measures 38–39 and measures 114–115  
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Figure 2.5a. Score excerpt for measures 16 and 17 
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Figure 2.5b. C-seg comparison for measure 16 and measure 17 
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get a sub-cseg2 of 021 for our prime in both c-segs.  In this instance, we have two c-segs 

that meet all three levels of similarity: they possess the same prime, the same level of 

complexity, and they share a common level above prime.  These c-segs share a level 3 

similarity, out of four possible levels and have a 0.75 similarity index: the most similar 

these two c-segs can be without being identical.  We can corroborate the high degree of 

similarity between these two c-segs using Marvin’s CSIM function.  In terms of CSIM, 

these c-segs at their surface levels produce a similarity quotient of 0.93, which is the 

highest value two six-note contours can receive without being identical. 

 

Wedge Shapes and the N=2 Problem 

 The method of comparison introduced above runs into a small snag when dealing 

with the reduction of wedge-shaped c-segs.  As Schultz (2008) has pointed out, a wedge-

shaped c-seg cannot be pruned at the first stage of Morris’s contour version of the 

algorithm because every pitch is either a maximum or a minimum.  Schultz thus extended 

the algorithm to apply the second stage of the reduction algorithm to wedge-shaped 

contours.  Let us consider a hypothetical example that Schultz used in his explanation of 

this problem, illustrated in the left column of Figure 2.6 (2008, 100).  For the wedge-

shaped c-seg 2415063, no pitches are flagged for pruning in steps 1–4, as they are all 

either a minimum or a maximum.  Proceeding to the algorithm’s second stage, however, 

prunes pitches in both the min- and max-lists, which produces a prime of 1032 and a 

depth level of 2, as seen on staff D.  
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Figure 2.6. An illustration of the wedge-shape problem 
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Schultz also introduced step 15, which states that if no pitches were pruned at 

stage 1, the depth level would not increase to depth level 1, but skip straight to depth 

level 2 as the rest of the algorithm is applied.  However, when attempting to compare c-

segs at depth levels shallower than prime, the depth levels do not line up conceptually 
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with each other.  In a non-wedge-shaped contour, stage two reductions are always applied 

to a sub-cseg1, generated after depth level 1.  However, a wedge-shaped contour in the 

current state of the algorithm would reach stage two reduction at a depth level of 0.  We 

should be able to compare these c-segs along with the other c-segs, but we cannot 

conceptually do that until the depth levels are properly aligned. 

Figure 2.6 illustrates the problem.  The first stage of the algorithm yields no 

pruned pitches for the c-seg a in the left column, while pitches are pruned for c-seg b in 

the right column.  When the two contours proceed to step 6 of the algorithm, c-seg a 

flows from step 3 to step 6, and c-seg b flows through steps 4 and 5.  At this point both c-

segs arrive at the second stage of the algorithm, but with different depth levels.  This 

seems to suggest that the first stage was not applied to c-seg a even though it did go 

through that initial pruning process.  Furthermore, the pruned c-seg b arrives at the 

second stage identical to c-seg a.  This suggests a similarity on some level, but it is 

unclear as to precisely which one.  These c-segs should yield a level 3 similarity, because 

their primes, complexity, and sub-cseg1s are all the same.  However, their depth level N 

values at sub-cseg1 differ, which is problematic because we can no longer compare that 

level, even though the c-segs have gone through the same process.  As it stands now, the 

two c-segs become the same only after step 16 on staff E, which forbids the possibility of 

a deeper level of similarity.  In other words, the current algorithm would yield only a 

level 2 similarity between these c-segs, while a closer examination of the c-segs would 

suggest that a level 3 similarity would be more appropriate. 

 I see two possible ways to fix this problem.  The first solution (illustrated in 

Figure 2.7a) is to simply remove steps 3 and 15 (the steps governing the repetition of 
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N=0), and state that depth levels change regardless of whether or not pitches have been 

pruned in the first stage.  Figure 2.7b shows the reduction from Figure 2.6, corrected 

according to the steps in Figure 2.7a to allow the levels shallower than prime to line up 

accurately.  The other solution (shown in Figure 2.8a) is not to allow depth levels to be 

stage specific.  For instance, if no pitches were pruned in stage 1, we are still left with a 

depth level 0 c-seg, and we move on to stage 2, where the N=0 c-seg becomes an N=1 c-

seg instead of N=2.  Figure 2.8b shows the reduction from Figure 2.6 using the second 

possible correction, and illustrates the conceptual problems with that solution: in this 

example, the depth levels have been modified to reflect that no action was taken in stage 

1.  These two c-segs now share only a prime, since the algorithm has been modified in 

such a way that the depth levels do not reflect the difference between a level at stage 1 

and a level at stage 2. 

There are small difficulties with each of these solutions, just as there are with the 

solution described by Schultz.  The first solution suggests that depth level 1 is somehow 

different from depth level 0, whereas the second solution struggles to reflect the 

differences between stage 1 reduction and stage 2 reduction and thus has difficulty 

reflecting the deeper background c-seg.  For the sake of comparing each level at each 

stage and step of the reduction process, the first solution I have suggested may be the 

most acceptable.  It would indicate that both c-segs have gone through both stages of the 

reduction, and still retain the deeper-level representation necessary to differentiate stage 1 

from stage 2.  In other words, one cannot skip the first stage just because no pitches 

would be pruned.  One still must apply that stage, and the depth level numbering should 

reflect this. 
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Figure 2.7a. The Modified Contour Reduction Algorithm12 
Algorithm: Given a contour C and a variable N: 
 
Step 0: Set N to 0 
 
Step 1: Flag all maxima in C upwards; call the resulting set the max-list 
 
Step 2: Flag all minima in C downwards; call the resulting set the min-list 
 
OMITTED: (Step 3: If all c-pitches are flagged, go to step six) 
 
Step 4: Delete all non-flagged c-pitches in C 
 
Step 5: N is incremented by 1 (i.e., N becomes N+1) 
 
Step 6: Flag all maxima in the max-list upwards.  For any string of equal and adjacent maxima in the max-list, 
flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or (2) both 
the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of C. 
 
Step 7: Flag all minima in the min-list downwards.  For any string of equal and adjacent minima in the min-list, 
flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or (2) both 
the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of C. 
 
Step 8: For any string of equal and adjacent maxima in the max-list in which no minima intervene, remove the 
flag from all but (any) one c-pitch in the string. 
 
Step 9: For any string of equal and adjacent minima in the min-list in which no maxima intervene, remove the 
flag from all but (any) one c-pitch in the string. 
 
Step 10: If all c-pitches are flagged, and no more than one c-pitch repetition in the max-list and min-list 
(combined) exists, not including the first and last c-pitches of C, proceed directly to step 17. 
 
Step 11: If more than one c-pitch repetition in the max-list and/or min-list (combined) exists, not including the 
first and last c-pitches of C, remove the flags on all repeated c-pitches except those closest to the first and last c-
pitches of C. 
 
Step 12: If both flagged c-pitches remaining from step 11 are members of the max-list, flag any one (and only 
one) former member of the min-list whose flag was removed in step 11; if both c-pitches are members of the 
min-list, flag any one (and only one) former member of the max-list whose flag was removed in step 11. 
 
Step 13: Delete all non-flagged c-pitches in C 
 
Step 14: If N ≠ 0, N is incremented by 1 (i.e., N becomes N+1) 
 
OMITTED: (Step 15: if N = 0, N is incremented by 2 (i.e., N becomes N+2)) 
 
Step 16: Go to step 6 
 
Step 17: End.  N is the “depth” of the original contour C. 
 
The reduced contour is the prime of C; if N=0, then the original C has not been reduced and is a prime itself. 
 

 
 
 

                                                 
12 Original algorithm shown in Schultz 2008, p. 108. 
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Figure 2.7b. A correction of the wedge-shape problem 
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Figure 2.8a. The Alternate Modification of the Algorithm13 
Algorithm: Given a contour C and a variable N: 
 
Step 0: Set N to 0 
 
Step 1: Flag all maxima in C upwards; call the resulting set the max-list 
 
Step 2: Flag all minima in C downwards; call the resulting set the min-list 
 
Step 3: If all c-pitches are flagged, skip to step 5. 
 
Step 4: Delete all non-flagged c-pitches in C 
 
Step 5: if no c-pitches were pruned in step 4, N=0.  If any c-pitches were pruned in step 4, N is incremented by 1 
(i.e., N becomes N+1) 
 
Step 6: Flag all maxima in the max-list upwards.  For any string of equal and adjacent maxima in the max-list, 
flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or (2) both 
the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of C. 
 
Step 7: Flag all minima in the min-list downwards.  For any string of equal and adjacent minima in the min-list, 
flag all of them, unless: (1) one c-pitch in the string is the first or last c-pitch of C, then flag only it; or (2) both 
the first and last c-pitches of C are in the string, then flag (only) both the first and last c-pitches of C. 
 
Step 8: For any string of equal and adjacent maxima in the max-list in which no minima intervene, remove the 
flag from all but (any) one c-pitch in the string. 
 
Step 9: For any string of equal and adjacent minima in the min-list in which no maxima intervene, 

remove the flag from all but (any) one c-pitch in the string. 

 
Step 10: If all c-pitches are flagged, and no more than one c-pitch repetition in the max-list and min-list 
(combined) exists, not including the first and last c-pitches of C, proceed directly to step 17. 
 
Step 11: If more than one c-pitch repetition in the max-list and/or min-list (combined) exists, not including the 
first and last c-pitches of C, remove the flags on all repeated c-pitches except those closest to the first and last c-
pitches of C. 
 
Step 12: If both flagged c-pitches remaining from step 11 are members of the max-list, flag any one (and only 
one) former member of the min-list whose flag was removed in step 11; if both c-pitches are members of the 
min-list, flag any one (and only one) former member of the max-list whose flag was removed in step 11. 
 
Step 13: Delete all non-flagged c-pitches in C 
 
Step 14:N is incremented by 1 (i.e., N becomes N+1) 
 
OMITTED: (Step 15: if N = 0, N is incremented by 2 (i.e., N becomes N+2)) 
 
Step 16: Go to step 6 
 
Step 17: End.  N is the “depth” of the original contour C. 
 
The reduced contour is the prime of C; if N=0, then the original C has not been reduced and is a prime itself. 

 
 
                                                 
13 Original algorithm shown in Schultz 2008, p. 98. 



 

38 

Figure 2.8b. The alternate modification of the wedge-shape problem 
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Further Analytical Applications of This Comparative Theory 

 Having presented the concept of contour similarity using the reduction algorithm, 

I will now briefly discuss its possible analytical applications.  The types of comparisons 

described above can reveal differences in the treatment of motives in tonal music from a 
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contour-based perspective.  We may use the theory to see just how similar two c-segs are 

on a deeper level, one that is perhaps less immediately salient.  In addition, this method 

of comparison can give us additional information needed to differentiate c-segs that have 

been compared in other ways, such as with Marvin’s CSIM function.  We can also 

address the idea of contour as a motive and look at how composers include those 

contours in different ways throughout a piece. 

 One can find many comparisons among different segmentation levels that suggest 

a matryoshka-like nesting of contours within one another.  For instance, Figure 2.9a 

displays the first six measures of the Brahms Sonata.  At the level of the motive, the 

primes are 10, 01, 201, and 021.  However, construing the 10 and 01 segments 

together as a single unit yields a prime of 201, the same prime as the motive 

immediately following in m. 5, as well as the same prime as the second two motives 

(201 and 012) combined.  Figure 9b shows that while these two contours have the 

same prime, their surface-level contours are in fact quite different.  No depth levels above 

prime match up, and even the depth levels of the primes themselves are different.  These 

two contours share only a level 1 similarity, suggesting a low level of similarity as 

represented by a similarity index of only 0.2.  In short, Brahms’s treatment of this prime 

form is vastly different in these two instances. 
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Figure 2.9a. Score example of measures 1–9 
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Figure 2.9b. Comparison of c-segs for measures 1–4 and measures 5–6 
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An example of a nested c-seg can be seen in measures 5 and 6, the score for 

which can be found in Figure 2.9a.  Figure 2.10 shows that the c-seg for measure 5,  

 

Figure 2.10.  Comparison of c-segs for measure 5 and measures 5–6 
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201, is a prime in itself at depth level 0.  The c-seg for measures 5 and 6 together is also 

201 at a deeper depth level.  This combined c-seg is more complex, as indicated by its 

depth level.  The comparison shows us Brahms’s different treatment of the prime sub-

cseg, and can show us how smaller c-segs at shallower depth levels can be combined to 

create a more complex contour with the same prime. 

 

Conclusion 

This chapter has shown that c-segs can be compared on multiple levels using the 

contour reduction algorithm.  The reduction algorithm creates a hierarchy of comparison 

levels that illustrate an increase in similarity with a corresponding increase in level.  A 

level 1 similarity corresponds to c-segs that share only the same prime.  A level 2 

similarity indicates that two c-segs share the same complexity, as represented by depth 

level equivalence.  Level 3 similarity indicates that two c-segs share a common sub-cseg, 

and level 4-and-above similarity indicates that two c-segs share multiple common sub-

csegs.  These levels of comparison can give us insight into the comparison of c-segs on 

different levels, and can also give us a new tool that we can use to further compare c-segs 

that have already been compared using other methods.  In the case of the Brahms c-segs, 

this comparative method was able to show varying degrees of similarity among c-segs 

that all possessed the same prime.  Since some c-segs are more similar than others, as 

represented by the intermediary sub-csegs, pointing out the similarity of these 

intermediary sub-csegs becomes a useful strategy for refining the comparative analysis 

using the MCRA.   In general, contour reduction is a useful set of tools to have in one’s 

analytical toolbox because it can describe the similarity of c-segs at different levels. 
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CHAPTER 3 
 

EXTENSIONS TO THE COMPARATIVE PROCESS 

The method of comparison I have introduced in the previous chapter illustrates 

the usefulness of the MCRA in determining finer gradations of structural similarity. One 

especially advantageous aspect of this approach is its ability to reduce and compare c-

segs of different cardinalities. However, the approach is specific only to c-segs that 

reduce to the same prime at the same depth level, and has no way of comparing c-segs 

with different complexities, as measured by the differing depth levels of prime. In this 

chapter, I will focus on this issue, and present a more generalized version of the 

comparison methodology of the preceding chapter that can account for this phenomenon. 

 

Primes on Differing Depth Levels 

Melodic contour plays an important role in the structure of plainchant, yet a 

rigorous analysis of contour in plainchant has not yet occurred.  Because of the ability of 

the MCRA to systematically reduce a c-seg of any cardinality to its prime, and the ability 

of the comparative process to use the hierarchy produced by the MCRA to describe 

similarity, these tools are ideal for use on this particular repertoire.  The MCRA is 

particularly good for finding the deeper structure of longer c-segs, including long 

melismatic passages, and phrase-length melodies.  Such c-segs can be subdivided into 

smaller c-segs to show motivic relationships between the smaller and larger structures.  

This type of relationship is apparent especially in certain types of plainchant, namely the 

Alleluia.  Consider the verse of Alleluia Cantate domino, shown in Figure 3.1a and 

Figure 3.1b.  The prime of the verse is 021 at a depth level of N=5.  Within this verse, 
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smaller instances of the 021 prime occur.  Figure 3.1c shows the first half of the phrase, 

“cantate domino,” which also has a 021 prime at a shallower level: N=4.  At an even 

smaller scale of segmentation, the c-seg set to the word “cantate” also has a prime of 

021 and a depth of 4.  Such relationships occur at varying degrees of similarity when 

each of these is compared using the hierarchical comparison method. 

However, a unique condition begins to arise when one analyzes c-segs on a larger 

scale in this fashion.  As longer c-segs are reduced, the chances of having extremely 

complex contours rise.  When this happens, there is a greater probability of having 

identical sub-csegs at differing depth levels.  Consider Figure 3.2, which shows two 

phrases from related chants: Alleluia Dies sanctificatus (c-seg a) and Alleluia Hic est 

discipulus (c-seg b).  As displayed in the figure, c-seg a has a greater degree of 

complexity, reducing to prime at N=5, while c-seg b reduces to prime only at N=4.  

Despite this difference, both c-segs feature a common sub-cseg: 1020, but at differing 

depth levels.  Such depth level displacement presents problems for the direct comparison 

of sub-csegs using the hierarchical comparison. 
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Figure 3.1a. Alleluia Cantate Domino 
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Figure 3.1c. Reduction of the phrase “cantate domino” 
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Figure 3.1d. Reduction of the c-seg on the word “cantate” 

 

 

Figure 3.2a. Phrases from Alleluia Dies Sanctificatus and Alleluia Hic Est Discipulus 
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Figure 3.2b. Reductions of the phrases presented in Figure 3.2a. 

 

 
The Displacement Problem 

Figure 3.3 shows another instance of this issue.  Two hypothetical c-segs are 

shown, which both feature a 10 prime, at respective depth levels of N=3 and N=2.  

According to the current comparative method, this would suggest a level 1 similarity 

because the primes are identical, but occur at different depth levels. 
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Figure 3.3. Reduction of hypothetical c-segs to show displacement  

 

 

The difficulty arises when one examines the sub-csegs within each of the c-segs, 

produced by the algorithm.  Both c-segs include a sub-cseg of 2010, yet they occur at 

different depth-levels, and therefore are not compared using the method outlined in the 

previous chapter.  The comparison process supposes that sub-csegs are comparable only 

in pairs of c-segs with the same complexity.  However, the c-segs presented in Figure 3.3 

do not fit this definition.  In looking at the two lists of sub-csegs, it becomes clear that the 

relationship between these two c-segs may be stronger than previously stated, due to the 

common occurrence of the 2010 sub-cseg.  Our current notion of the comparison 

process would end the comparison at level 1 similarity due to the location of the 

complexity measurement.  Under the process, no intermediary levels are compared, yet 
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the possibility of similarity on these levels suggests that the comparative process must be 

modified in order to account for differences of complexity in c-segs such as these. 

Because the notion of complexity is so important as a determinant of similarity 

within the direct comparison process, an alternate calculation must be introduced in order 

to account for comparisons between sub-csegs at different depth levels.  I propose a new 

concept, the displaced similarity, which measures both the number of similar sub-csegs 

and the depth displacement between corresponding sub-csegs. 

 

The Displacement Comparison 

 C-segs of differing complexity require different procedures to outline the level of 

similarity.  Because the complexity differs, the similarity between two c-segs is more 

obscured than c-segs of the same complexity.  One can explain this principle using the 

concept of displacement: the degree with which a prime level similarity is obscured by 

differences in complexity.  The level of displacement will therefore reflect the 

mathematical difference between the levels of complexity. One can think of this type of 

displacement as similar to the generational displacement between cousins at various 

levels of removal.  For example, in a relationship between first cousins, once removed, 

one cousin is separated from the common ancestor by a generation.  In this sense, if one 

c-seg has an extra sub-cseg that is not present in the second c-seg, then they have a 

displacement of 1: they are like the cousins once removed. 

Turning back to Figure 3.3, the prime of c-seg b is the same as the prime of c-seg 

a, exactly one depth-level shallower.  Since the primes are identical, and the depth level 

is different, we can state that the prime of the shallower c-seg has been displaced by one 
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level.  Figure 3.4 again shows another instance of c-segs with the same prime form.  

Here, c-seg a has a complexity of 3, c-seg b has a complexity of 2, and c-seg c has a 

complexity of 1.    The primes of c-seg a and c-seg b are only one depth-level apart, and 

therefore have a displacement of 1.  However, the primes of c-seg a are two depth-levels 

apart, so they have a displacement of 2.  We can use this displacement measurement to 

create a series of steps that will allow the comparison of sub-csegs needed in Figure 3.2.  

The direct comparison of depth-levels with no displacement represents the closest 

possible similarity.  The displacement therefore will reflect the notion that the c-segs are 

now less similar. 

 

Figure 3.4. Reductions of c-segs with 021 occurring at different depth levels 
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Figure 3.5 presents a modification of the comparison process for c-segs that 

possess some order of displacement.  Since the comparison must proceed to examine sub-

csegs regardless of this complexity difference, some way to indicate the lack of similarity 

on this level must exist in order to highlight the difference between a direct comparison 

and one occurring on some order of displacement. In order to make such a distinction 

clear, the complexity measurement of the direct comparison outlined in chapter 2 is 

replaced by the displacement calculation.  For c-segs that possess some level of 

displacement, the displacement value d is calculated by subtracting the complexity of the 

deeper c-seg from the complexity of the shallower c-seg.  Such a displacement value 

indicates the extent of inequality between the complexities of the two c-segs, and 

therefore sufficiently replaces the earlier complexity measurement. 

Once the order of displacement is found, the rest of the comparison works in a 

manner slightly different than the direct comparison.  The process, as shown in the 

flowchart, proceeds through the displacement calculation and sets x to 0.  Since the sub-

csegs are displaced, it is no longer possible to refer to sub-cseg levels (represented by N 

for each distinct sub-cseg). We must now conceive of sub-cseg comparison in line 3 of 

the flowchart as comparing the sub-csegs found x levels shallower than the prime. As 

such, x not only functions as a similarity measurement, but it also counts the number of 

iterations that occur at the individual depth-levels of the respective sub-csegs, regardless 

of whether or not their N values correspond. 

Following this step on line 3 of the chart, if the two sub-csegs in question are not 

identical, the comparison ends.  The similarity level is represented by the current value of 

the variable x, yet this similarity level label lacks crucial information regarding the 
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Figure 3.5. Displacement comparison flowchart 
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specific comparison process we used to compare these two c-segs.  Currently there is no 

way to distinguish between a label derived by the displaced similarity comparison or the 

direct similarity comparison.  To make this distinction, and to account for the inequality 

of complexity within the displaced comparison, we need to include the order of 

displacement, as illustrated by the end condition on line 3 of the flowchart. 

If the two c-segs in question do possess an identical sub-cseg x levels shallower 

than prime, one must then move on to ask if at least one of the sub-csegs compared in the 

previous decision belongs to the surface level of one of the c-segs.  If this is not the case, 

x is increased by 1 and the process begins again.  The recursive loop repeats until one of 

the end conditions is met, at which point the displacement is taken into account and the 

level of similarity is calculated. 

With these steps, we may now more accurately describe the similarity between 

the c-segs presented in Figure 3.3. The displacement d is calculated by subtracting the 

complexity of c-seg a (Na =3) from the complexity of c-seg b (Nb =2) to arrive at a 

displacement value of 1.  We then enter line 3, where we find that both c-segs share the 

same prime and thus meet the criteria for level 1 similarity.  Since neither of these are a 

surface-level c-seg, x is increased to 1 and sub-csegs one level shallower than prime are 

compared.  Since the two c-segs share a common sub-cseg at this level (sub-cseg 2010), 

they meet the new criteria for level 2 similarity.  Neither of the 2010 sub-csegs 

represents a surface level c-seg, so the recursion repeats again: x becomes 2 and the sub-

csegs two levels shallower than prime are compared.  They do not share a common sub-

cseg at these levels, so the process ends. The similarity level is reflected by x, so the two 

c-segs share a level 2 similarity, with a first order displacement. 
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The Similarity Index for Displaced C-segs 

Under the direct comparison, the similarity index calculates a value representing 

the degree of similarity between two c-segs.  This index number is a crucial quantitative 

value that puts the distinct levels of similarity into perspective with regard to other 

comparisons made using this same method.  As I have stated previously, the similarity 

index is the ratio of identical levels to the total number of comparable levels.  In the 

direct comparison, the index relies on the fact that there are an equal number of depth 

levels available for comparison.  However, in the displaced comparison, the depth levels 

do not line up in so organized a fashion. 

Due to the depth level inequality within a displaced comparison, not every sub-

cseg in the more complex c-seg has a corresponding sub-cseg with which to make a 

comparison.  Once again, the displacement valued d counts the number of these sub-

csegs in more complex c-seg that have no corresponding sub-csegs within the less 

complex c-seg.  Consider Figure 3.3 once again.  The displacement value for these two c-

segs is 1, indicating that one level in c-seg a has no corresponding level in c-seg b. 

 The similarity index for displaced c-segs must take into account the fact 

that there are sub-csegs in the reduction of one of the c-segs that are not compared with 

any other sub-cseg.  Consider Figure 3.6, which shows the comparison process of sub-

csegs in the displaced comparison.  C-seg a and c-seg b share a displacement of 1.  

Therefore, only four out of the five sub-csegs in c-seg a are comparable with a sub-cseg 

in c-seg b.  With only four comparisons to make, the similarity index must be calculated 

out of only the four levels compared.   
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Assuming that all four of these comparisons yielded similar sub-csegs, the 

similarity index for the two c-segs would be 4/4, or 1.0.  This may initially seem 

problematic, as it is clear that the two c-segs are not exactly identical, and this is where 

the displacement label becomes crucially important.  The two hypothetical c-segs  

 

Figure 3.6. Comparison of displaced sub-csegs 
C-seg a C-seg b 

Surface level Surface level 
Sub-cseg1 Sub-cseg1 

Sub-cseg2 Sub-cseg2 

Sub-cseg3 Sub-cseg3 

Sub-cseg4  
 

reflected in Figure 3.6 have a first order displacement, which reflects the fact that the c-

segs are indeed not identical.  Instead, c-seg b is completely embedded within c-seg a, 

with c-seg a having an additional level beyond the identical sub-csegs of c-seg b.  With 

this label, the similarity level now reflects the high degree of similarity, while the 

displacement reflects the level of difference. 

In the case of Figure 3.3, we can now accurately calculate the similarity index for 

these c-segs.  C-seg a has four levels; while c-seg b has three, so only three levels are 

comparable.  Only two of the three levels were found to be similar, therefore the 

similarity index in this case would be 2/3, or 0.67, with a first order displacement. 

 

An Application of the Comparative Process 

 To illustrate the entire process, let us reexamine the two c-segs shown in Figure 

3.2.  First, each of the c-segs is run through the MCRA, as shown in Figure 3.2b.  



 

59 

Analyzing the sub-cseg structures, we notice that the complexities of the c-segs are 

unequal: d = 5-4 = 1. 

 Now that we have found the displacement, x is set to 0 and we may now begin 

examining their primes (i.e. the sub-csegs 0 levels shallower than prime).  The primes are 

both 120, and neither is a surface-level c-seg, so x is increased to 1 and the process 

repeats.  The sub-csegs one level shallower than prime are also identical (1020) and 

again, neither belong to the surface level.  We repeat the recursive loop, increasing x to 

two, and examine sub-csegs two levels shallower than prime.  The sub-cseg at this level 

for c-seg a is 102120 while the sub-cseg at this level for c-seg b is 10313020: clearly 

not identical.  Since we cannot pass affirmatively through line 3 of the flowchart, we 

must arrive at our end condition.  The c-segs in question share a level 2 similarity with a 

first order displacement.  

Now that we have arrived at a level of similarity, we can calculate a similarity 

index for these two c-segs.  C-seg a possesses six distinct levels with which to compare, 

while c-seg b has only five levels.  Therefore, only five comparable levels exist.  Only 

two of these five levels were found to be similar, so the similarity index is 0.4, with a first 

order displacement.  Here, the prime level similarity is obscured both by the large number 

of levels shallower than prime that are different, as well as the fact that the primes are 

displaced.  Such a moderate similarity index indicates that, although the two c-segs are 

related in that they share more than just a prime similarity, the reduction process of the 

surface-level features reduces cpitches at different recursive stages of the algorithm, 

suggesting that the phrase hic est discipulus (c-seg b) features a simpler composing out 

(to borrow a term from Schenker) than the phrase dies sanctificatus (c-seg a).  The 
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reduction of certain cpitches in c-seg b occurs at a shallower level than in c-seg a, 

requiring c-seg a to continue through additional levels in order to reveal its deeper 

structures, and thus the similarity between them. 

 

Conclusion 

In this chapter, we have enhanced the comparative method presented in Chapter 2 

by giving it the ability to compare c-segs exhibiting different complexity values. Orders 

of displacement have been created to allow for alternate tracks of comparison, thereby 

lifting the implicit restriction that only c-segs with the same complexity value could be 

subjected to hierarchical comparison.  Such displacement values are added to the 

similarity labels and index in order to reflect this specific type of c-seg inequality.  With 

this methodology in place, on can compare any two c-segs with the same prime, 

regardless of the primes’ respective depth levels. 
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CHAPTER 4 
 

MEASURING SIMILARITY WITHIN ALLELUIAS OF THE SAME MODE 

Contour theory has been applied to a variety of genres in various contexts; 

however, one genre of music to which contour theory has not been rigorously applied is 

plainchant.  The monophonic context of this repertoire indicates that melodic contour 

could be a primary method of organization.  In this chapter, I will illustrate the usefulness 

of this analytical method in plainchant by discussing the similarities and differences 

between thirteen Alleluias from the Liber Usualis that share the same alleluia and jubilus. 

 Plainchant seems ideally suited for study using contour theory primarily because 

it exists almost entirely in the melodic domain. However, melodic contour has been 

primarily characterized in the literature in the simplest of terms. Alec Robertson and 

Abbot Ferretti (Robertson 1970, 28), Wagner (1970, 9), and Stevens (1986, page 279–80) 

all invoke the shape of an arch, but an “arch” is not always readily seen or heard on the 

surface of the music, which is quite often teeming with local changes in direction that 

mask such underlying structures.  Melismatic chants, for example, contain many 

embellishments that can considerably obscure the overall arch shape.  Syllabic chants on 

the other hand may exhibit the arch shape on a more visible and aurally perceptible level. 

 Figure 4.1a reproduces the antiphon Robertson uses in his example.  Robertson 

states that “this ‘arch’ may be seen…rising from videntes to the point of climax (domum)  
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Figure 4.1a. Videntes stellam (Robertson 28) 

 

 

Figure 4.1b. A reduction of Videntes stellam to show the underlying arch structure 

〈0 2 3 45 4 3 6 5 6 5 4 5 4 5 6 76 7 5 6 4 5 4 3 4 3 21  0 1 21 0〉�

�

〈0    4    2  5 4 5   3 4 3      6 5 6 4 5 3 4    2 3          0   1    0〉�

�

�

〈0                   2         1             3                 0〉�

�

〈0                  1                0〉 
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and falling to its other base (myrrham)” (28). On the deepest level, this is true; the chant 

does reduce to 010 at depth level 3, as shown in Figure 4.1b. However, this prime label 

does not tell us much about the structure of the music closer to the surface.  Even in as 

simple a chant as this, interesting parallels occur both on shallower levels of reduction 

and within smaller segmentations.  Each phrase also has an arch-like shape, and the 

parallelisms between the parts that make up the whole of the antiphon inform the manner 

in which the overall arch is formed.  The first phrase, videntes stellam magi, features a 

021 prime at depth level 1, and the next phrase, gavisi sunt gaudio magno, is also 021, 

this time at a deeper level of 2.  As shown in Figure 4.1c, both are arch-like, yet neither 

returns to 0, giving the rise in pitch needed at the beginning of the larger overall arch.  

The middle phrase, et intrantes domum, features a prime of 010, and contains the 

climax of the entire chant on the first syllable of domum.  The prime of the penultimate 

phrase, obtulerunt Domino, is  120, the inverse of the opening two primes. This helps 

produce the descent needed to return and complete the larger arch shape.  This 120 also 

shares a level 2 inversional similarity with the 021 of the second phrase (gavisi sunt 

gaudio magno)—that is, their sub-cseg2s are also related by inversion—lending further 

credence to the close connection between them.  Finally the 010 of the final phrase, 

aurum, thus et myrrham, both completes and parallels the larger arch structure of the 

overall chant.  These various phrase-level features closer to the musical surface are 

important to the sense of melodic unity within the chant.  
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Figure 4.1c. Reductions of phrase 1 and phrase 2 of Videntes stellam 

〈0   1       2      3     4 3〉��〈0     3     2      3     2     1      2    1〉�

�

�

〈0       2  1〉�〈0     3     2      3  2     3     1〉�

�

�

� � � ������〈0     2       1〉  

 

Of course, this analysis calls into question what exactly is meant by the term 

“arch.”  Strictly speaking, an arch shape would start on a pitch, rise to a height, and return 

to the starting pitch.  This interpretation would leave room for only one possible prime, 

010, to govern all plainchants in the repertoire.  This, however, is not the case, and 

indeed cannot be the case, given that chants in certain modes cannot fit this condition.14  

Wagner thus defines an arch somewhat more precisely: “as a rule the melodic line begins 

at a low pitch, rises to a point of climax and gradually descends to its final” (1911, III.9; 

quoted in Stevens 1986, 279–80).  Wagner’s rule expands the strict definition of “arch” to 

                                                 
14 Hucbald (c. 870) discusses the relationship between the final and the starting pitch.  
Ostensibly, the final of the mode shall also be the final note of the chant, as is the case in 
the antiphon described above.  However, Hucbald also states: “the four finals also 
possess somewhat of a like-relationship to the notes a fourth below, and in certain cases a 
fifth below, but such notes are used for beginnings, not endings” (39).  This suggests the 
possibility of beginning a chant on a note other than the final, as many do.  This would 
especially be true of the plagal modes, as more of their range extends below the final.  To 
exclude those pitches from a chant not only would severely limit the available range of a 
chant, it would also obscure the plagal identity of the mode in question.  
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include any prime c-seg that has a prominent high point, but no unique low point outside 

of the first or last c-pitch.  The list of possible primes thus also expands to include 021 

and 120, i.e. all c-segs that belong to the CAS +, -.  However, many other chants 

feature prime c-segs other than these arch-shaped primes, even on the global scale. It also 

fails to explain the intricacies of the contours formed by more complex, melismatic 

plainchants, such as the Alleluia.  

 Consider, for example, the chant Alleluia Angelus Domini Descendit, shown in 

Figure 4.2a.  The overall arch shape, as defined above, does not occur in this chant: 

instead of the +, – provided by the simpler arch structures, it exhibits a prime of 10201 

with a CAS of –, +, –, +, which is somewhat further removed from the arch idea.  In 

this case, the meaning behind the text may have influenced shape of the various 

intermediary sub-csegs in order to create the 10201 prime.  Robertson’s (1970, 88) 

analysis of the chant discusses the manifestations of “descent” within the melodic 

characteristics of the chant.  The text reads “Alleluia.  The angel of the Lord came down 

from heaven: and approaching he rolled back the stone, and sat upon it.”  The descent of 

the angel in the text could be responsible for the downward interjections transforming the 

arch-shape on the prime level.  The prime 1021 of the alleluia and jubilus (Figure 4.2b) 

begins with a prominent descent—the motion from 1 to 0—thus transforming what 

otherwise would be a classic arch shape.  Only the verse’s 021 prime presents an arch 

shape with no interrupting descents on the prime level (Figure 4.2c). However, the 

intermediary sub-csegs do feature prominent descents, as Robertson claims.  In addition, 

when taken with the alleluia and jubilus, the 021 of the verse is further obscured.  The 

entire chant exhibits a 10201 prime, which obscures the arch-shape of the verse with 
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two interrupting descents (Figure 4.2d).  In such an alleluia, a more nuanced 

understanding of the contour of the chant on various levels can yield new insight into the 

unique structural qualities of the particular chant.  

 

Figure 4.2a. Alleluia Angelus Domini Descendit 
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Figure 4.2b. The alleluia and jubilus from Alleluia Angelus Domini Descendit 

〈4   3   1   2  3   4   5  4   3   4   5  4   3   4  3   1   2   1  0    1   2  3   4   5  6  5  4〉 

〈4       1                  5       3       5         3  4        1  2        0                           6      4〉 

〈2   1          3                      0            4      2〉 

〈1             0                           2      1〉 
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Applying the Hierarchical Comparison Method 

The MCRA and the hierarchical comparison that follows can be applied in 

multiple ways to contribute to our understanding of the structure of Alleluias, and more 

abstractly, plainchant in general.  Recall that the MCRA prunes c-pitches in order to 

reach a prime at the deepest level of the music, and that this prime will consist of the first, 

last, highest, and lowest c-pitches in the c-seg.  If one is looking to find the prime of a 

plainchant melody, several factors influence the possible outcomes of the algorithm.  

According to the author of the Dialogus de musica, the final note determines the 

modality; therefore the identity of the final pitch is always the final of the mode.15  This 

may not seem to explain anything about contour or the possible prime outcomes of the 

MCRA, but due to modal structure, the fact that the final pitch is fixed becomes very 

important.  As Wagner states, a chant will typically start on a low pitch, rise to a height, 

and then descend to the final, implying in certain circumstances that a chant would begin 

on a pitch other than the final.  For example, in plagal modes, the range of the modes 

extends down either a fourth or fifth below the final in addition to a sixth above, as 

shown in Figure 4.3.  Indeed, it is the prominence of the lower range below the final in 

these melodies that gives a plagal mode its identity.   

Consider Figure 4.4.  Looking at the alleluia and jubilus alone, one would not be 

able to distinguish the plagal identity of the mode.  It is not until later in the verse, where 

the prominent descent down to A occurs, that one can establish the plagal identity of this  

                                                 
15 “‘Tonus vel modus est regula, quae de omni cantu in fine diiudicat.’ (‘A tone or mode 
is a rule which classifies every melody by its final.’)” (Dialogus de musica, quoted in 
Hiley 454) 
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Figure 4.3. Ranges of chants in the eight modes from Dialogus de musica 

 

 

Figure 4.4. A plagal chant wherein the full range of the plagal mode is not made apparent 
until the middle of the chant. 
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chant.  This descent is indeed the cause of the deviation from the overall arch-shape.  

With the limited range above the final, along with the melodic characteristics of plagal 

modes in general, it becomes impossible for the last pitch to also be the lowest.  

Similarly, the tendency for melodies in the authentic modes to extend a single tone below 

the final excludes the possibility of the last pitch being the lowest as well.  

Morris (1993, 218) identifies seven linear prime classes and 22 possible linear 

primes.16  Given the range requirements of these chants, five of the 22 linear primes are 

excluded from the possible primes for the reduction of entire alleluia chants: 0, 00, 

10, 010, and 120. In addition, though the arch-type shape described by Robertson is 

perhaps too broad, the general meaning behind it remains: most chants, the Alleluias 

especially, begin at some point, rise up to a high point, and come back down in 

accordance with the CAS +,-. As such, it is highly unlikely to have a prime on a global 

scale that begins or ends on the high point.  This excludes the linear primes 01, 101, 

102, and 201 as well.  

 With the modal and melodic constraints listed above, there are only 13 linear 

primes (shown in Figure 4.5) that remain as possibile large-scale primes of the Alleluias.  

Given that there are 170 Alleluias in the Liber Usualis, the fact that there are only 13 

primes that could fit so many chants illustrates that there are a wide variety of possible 

ways in which a prime may be proliferated at shallower structural levels.  For example, 

out of the 49 mode-1 Alleluias listed in the Liber Usualis, only five of the 13 possible  

                                                 
16 Schultz (2008) adds two additional linear prime classes to this list, and thus 4 
additional linear primes. 
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Figure 4.5. Table of remaining primes seen in chant 
〈021〉 

〈1021〉 

〈1201〉 

〈1032〉 

〈2301〉 

〈1302〉 

〈2031〉 

〈10201〉 

〈12021〉 

〈10302〉 

〈20301〉 

〈23031〉 

〈13032〉 

  

linear primes appear: 10201, 021, 1201, 12021, and 010.  Although this suggests 

a high level of similarity within the generalized overall structure of a mode-1 Alleluia, 

this does little to reflect that these chants have varying degrees of similarity with other 

chants in the list.  Both the Alleluia Beautus Vir and the Alleluia Ego Sum Pastor Bonus, 

for instance, have a prime of 10201 on the global level, (see Figures 4.6a and 4.6b), but 

share only level 1 similarity.  Under both comparison processes, a level 1 similarity 

indicates a similarity between primes only: even the depth levels of these primes are 

different.  Because only their primes are identical and there are seven levels of 

comparison between them, their similarity index is 0.14. This low value reflects the 

extent to which two chants with the same primes can differ in their melodic design closer 

to the musical surface.
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Examining just the opening alleluia segment, which is comprised of the alleluia 

with the attached jubilus, provides a microcosmic example of this same phenomenon.  Of 

the same 49 mode-1 Alleluias, only four primes occur: 021, 1201, 1021, and 

10201.  Figure 4.6c and Figure 4.6d shows the reduction of the alleluia and jubilus from 

Alleluia Verumtamen and Alleluia Propitus esto, which both have a prime of 021 but 

once again share only a level 1 similarity.  As this figure illustrates, these chants exhibit a 

variety of differing surface-level features despite their deeper-level similarities on the 

prime level. 

 

Figure 4.6c. The reduction of the alleluia and jubilus from Alleluia Verumtamen 
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Figure 4.6d. The reduction of the alleluia and jubilus from Alleluia Propitus esto 
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Contour and “Sameness” of Melody 

 It is also striking that out of the 27 mode-2 Alleluias in the Liber Usualis, almost 

half of them (13) contain the exact same alleluia segment, shown in Figure 4.7a and 4.7b.  

Scholars such as David Hiley (1993) attribute this to the fact that the same melody was 

often used for many different chants.   

In the earliest books with chant texts, those edited by Hesbert (1935), there 
are just over 100 alleluia texts.  Not all have their own unique melody, 
however; Schlager reckons that around sixty melodies were used (see the 
list in Schlager, ‘Alleluia’, NG).  Prominent among the melodies used for 
more than one text are those for Dies sanctificatus (third Mass on 
Christmas Day, nine other texts in the early repertory), Dominus dixit ad 
me (first Mass on Christmas Day, eleven other texts) and Excita Domine 
(third Sunday of Advent, six other texts) (Hiley 1993, 131). 
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Wili Apel also notes that out of 25 mode-2 Alleluias, only 14 melodies are used (1959, 

138).17  The chant Dies sanctificatus is one of the 13 aforementioned mode-2 chants 

bearing the identical alleluia segment.  According to Hiley, the nine others using this 

“same melody” would find themselves also among the 13 found in the Liber Usualis.  It 

is clear that current research would place these 13 Alleluias under the category of “same 

melody,” and they may indeed have originated from the same source.  However, a closer 

examination of these 13 chants reveals that, although they are functionally very similar, 

each features slight differences in actual pitch content. 

 Let us take Alleluia Dies sanctificatus as a starting point, shown in Figure 4.8a.  

For the purposes of illustrating differences and similarities between these 13 Alleluias, I 

will discuss various segmentations, the reductions of which are shown in Figure 4.8b–f.18 

As with other Alleluias, the melismas contained within the chant give the c-segs at each 

of these segmentations a high level of complexity: their depths range from N=3 to N=5, 

yielding multiple intermediary levels to compare with other chants.  The primes for these 

segmentations are shown in Figure 4.8g. 

 

                                                 
17 The quantitative discrepancies between Apel and me arise from the different editions 
of the Liber Usualis in use.  Apel uses the 1950 edition, whereas I am using the 1961 
edition. 
18 I have segmented these phrases based on the tendencies of the modes to end phrases on 
certain pitches—notably the final, the subfinalis, and a tenor—as well as the logical 
division of the phrases in the text.  These tend to coincide in most places with the large 
bar, half-bar, and punctum-mora (similar to the dot in our modern notation, which 
lengthens the affected note) symbols used by the Solesmes notation to mark phrasing for 
performance.  I have used this segmentation for each chant consistently, allowing for 
direct phrase-to-phrase comparison within the analysis.  Certainly other segmentations 
are possible, and I believe they would yield the same types of similarities and differences, 
provided one is consistent about them. 
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Figure 4.7a. The alleluia and jubilus of the 13 common mode-2 Alleluias 

 

 

Figure 4.7b. Reduction of the alleluia and jubilus of the 13 common mode-2 Alleluias 
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Figure 4.8d. Reduction of the phrase Dies sanctificatus illuxit nobis from Alleluia Dies 
sanctificatus 
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Figure 4.8e. Reduction of the phrase venite gentes et adorate dominum from Alleluia 
Dies sanctificatus 
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Figure 4.8f. Reduction of the phrase quia hodie Descendit lux magna super terram from 
Alleluia Dies sanctificatus 
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Figure 4.8g. Prime sub-csegs and depth levels of Alleluia Dies sanctificatus 
Segmentation Prime Depth Level 
Entire chant 13032 N=5 
Alleluia and Jubilus 021 N=3 
Verse 12021 N=5 
Dies sanctificatus illuxit 
nobis 

120 N=5 

venite gentes et adorate 
dominum 

1021 N=3 

quia hodie descendit lux 
magna super terram 

1201 N=3 

 

Comparing this chant to another of the 13 Alleluias under consideration, Alleluia 

Video caelos (see Figures 4.9a–f), we see that all of the primes are identical.  Comparing 

corresponding segments within the two chants, we find that the verses exhibit level 3 

similarity, as shown in Figure 4.10, and a similarity index of 0.43.  In order to pinpoint 

the differences that account for the remaining 0.57, we can look at the smaller-scale 
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segmentations.  The second phrase, Video caelos apertos, exhibits a level 2 similarity and 

a first order displacement with the first chant, for a similarity index of 0.4.  Both the third 

and fourth phrases exhibit a level 3 similarity and a similarity index of 0.6. Here, we see 

that all three phrases have differences, but they are not spread evenly across the verse: the 

third and fourth phrases have a higher similarity, suggesting that it is in the second phrase 

where most of the dissimilarity lies.   

 

Figure 4.9a. Alleluia Video caelos  
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Figure 4.9d. Reduction of the phrase Video caelos apertos from Alleluia Video caelos  
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Figure 4.9e. Reduction of the phrase et Jesum stantem from Alleluia Video caelos  
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Figure 4.9f. Reduction of the phrase a dextris virtutis Dei from Alleluia Video caelos  
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Figure 4.10. Comparison of Alleluia Dies sanctificatus and Alleluia Video caelos  
Segmentation Prime Similarity 

Level 
Displacement Similarity 

Index 
Entire chant 13032 3  0.43 
Verse 12021 3  0.43 
Second phrase: Video caelos 
apertos  

120 2 1 0.4 

Third phrase: et Jesum stantem 1021 3  0.6 
Fourth phrase: a dextris 
virtutis 

1201 3  0.6 

 

An even smaller-scale segmentation reveals exactly where these differences 

occur.  For example, the first phrase of each chant can be further divided into two parts.  

The first section of each—Dies sanctificatus (Figure 4.8d) and Video (Figure 4.9d) 

respectively—both bear the same prime of 1021, but share only level 1 similarity and 

an index value of 0.2. This reflects the major location of change for this verse segment.  

Turning to the second section of each verse segment—illuxit nobis and caelos apertos 

respectively—we see that they exhibit level 5 similarity, and are thus identical.  The 

differences between the two phrases within these chants are therefore to be found only in 

their opening subphrases. 

This type of analysis is not incongruent with analyses of other types of chant 

performed by Apel.  In a discussion of the mode 2 Graduals, Apel states that “all the 

Graduals of mode 2 employ one and the same melody or, to put it more correctly, a small 

number of fixed melodic phrases that recur in various combinations” (Apel 1959, 138).  

Like the Gradual discussed by Apel, these small melodic units—such as the sections of 

the phrase—are combined, recombined, or modified to fit into a larger whole. 
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 Figure 4.11 shows the primes and similarity levels for all the segments of the 11 

remaining chants under examination, using the Dies sanctificatus as the point of 

reference. 

 

Figure 4.11a. Similarity comparison of entire-chant c-segs with the chant Alleluia Dies 
sanctificatus 

Chant name Prime Depth 
Level 

Similarity 
level 

Similarity 
index 

Alleluia Hic est discipulus 〈13032〉 N=5 3 0.43 

Alleluia Vidimus stellam 〈13032〉 N=5 3 0.43 

Alleluia Redemptionem 〈021〉 N=4 0 0 

Alleluia Tu es petrus 〈13032〉 N=4 1 0.14 

Alleluia Hic est sacerdos 〈021〉 N=4 0 0 

Alleluia Sancti tui domine 〈13032〉 N=5 3 0.43 

Alleluia Magnus sanctus 〈13032〉 N=5 3 0.43 

Alleluia Nunc com eo 〈021〉 N=4 0 0 

Alleluia Inveni David 〈13032〉 N=5 3 0.43 

Alleluia Tu puer propheta 〈13032〉 N=5 3 0.43 

Alleluia Domine diligo 〈13032〉 N=5 3 0.43 
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These tables clearly indicate a degree of difference between the chant segments, as 

evidenced by the variety of depth levels, similarity levels, and index values.  They also 

illustrate the need for segmenting at multiple levels.  For example, the chant Alleluia Hic 

est sacerdos shares no similarity with Dies sanctificatus on the global level (Figure 

4.10a).  However, closer examination of smaller segments reveals that they are in fact 

more closely related: as shown in the tables above, their alleluia and jubilus segments are 

identical, and their verses are related by inversion with level 1 similarity.  The similarity 

becomes more evident when examining the first phrase for the two chants.  The larger 

segmentations are quite different, yet these phrases share level 2 similarity with a first 

order displacement—on par with the other chants, which display higher levels of 

similarity among larger segmentations.  Even though the larger-scale analysis shows that 

this chant is very different, it is clear from this first verse segment that it still belongs in 

the same group.20   

Generally speaking, the tables displayed in Figure 4.11 indicate only a moderate 

level of similarity between these chants in comparison with the Dies sanctificatus and the 

remaining eleven chants.  In fact, Dies sanctificatus may not be the most typical 

representative of this melody.  However, one can look at the high levels of similarity 

between certain chants’ phrases and their constituent sections in order to create a 

hypothetical normative chant model to represent the chants in the list. 

                                                 
20 The fact that Schlager and Hiley cite only nine chants that are the “same” as the Dies 
sanctificatus chant makes one wonder if they excluded the three chants that displayed a 
different overall prime.  These may be different enough to seem like different melodies at 
first glance, but their similarities to the remaining ten chants within the smaller 
segmentations clearly illustrate their relationship to the chants in the list.  Because of 
these similarities on these smaller scales, they should be included in the set along with the 
other chants that are classified as “the same,” despite their surface-level differences. 
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In order to create this model, we must return to the surface level and compare the 

exact melodic content of each chant section.21  We can take these melodic units (at the 

subphrase level) and use them to create a framework for a normative chant model.  Figure 

4.12 shows an abstract formal framework representing the 13 chants in question.22  The 

chant is broken up into four sections of two to three units apiece.  This framework 

provides a clear formal organization into which we can insert each chant under 

consideration. 

Using this framework, one can compare corresponding subphrases within each 

section of the formal model.  Most abstract sections illustrated in this model have 13 

“real” subphrases associated with them, one for each of the 13 chants in the list.  The task 

now is to decide which discrete subphrase is the most likely representative for each 

section.  To decide the normative representative of all real subphrases within a section, 

one can look at the arithmetic mode of the section—the subphrase that appears most often 

in the list.  For example, section 2.1 has 13 subphrases associated with it (the first verse 

subphrase of each of the 13 chants).  Of these 13 subphrases, the subphrase 

10123454343121 (seen first as the section Video, from Alleluia Video caelos, shown 

                                                 
21 I am no longer using the MCRA or comparative process to create the normative chant 
model.  The comparisons made in order to create the normative model instead are 
designed to look for identical chant subphrases at the surface of the music.  Sections are 
listed in Figure 4.12 using c-seg notation only to facilitate comparison between the 
normative model and each distinct chant in the list. 
22 Some chants are missing sections, thus deviating from this abstract formal model, but 
the underlying structure still suggests that this model can be used to describe the content 
of all of these chants.  The majority of the chants features the same phrase structure, and 
therefore will have matching sections within the framework.  Those that do not possess 
this same phrase structure still have sections that match up with certain c-segs created by 
the sections of the larger chants.   They are counted with the c-segs that they resemble 
most closely. 



 

99 

Figure 4.12. Formal framework for the 13 chants 
First Phrase 

1.1 (Alleluia) 

Surface: 〈01343421〉  

Prime 〈021〉 

1.2 (Jubilus) 

Surface: 〈34540131323031231〉 

Prime 〈2301〉 

Second Phrase 
(Beginning of the verse) 

2.1 

Surface: 〈10123454343121〉 

Prime 〈1021〉 

2.2 

Surface: 〈1213453143201313120〉 

Prime 〈120〉 

Third Phrase 
(Middle of the verse) 

3.1 

Surface: 〈21212120〉 

Prime 〈10〉 

3.2 

Surface: 〈01310343231〉  

Prime 〈021〉 

Fourth Phrase 
(End of the verse) 

4.1 
Surface: 

〈02343232010〉 

Prime 〈010〉 

4.2 
Surface: 

〈121345314320131312010〉 

Prime 〈120〉 

4.3 
Surface: 

〈34354543201231〉 

Prime 〈2301〉 

 

in Figure 4.9a and 4.9d) appears eight times, and therefore represents the section.   

Taking the most common subphrase for each section in the formal framework, we can 

construct a musical representation of this hypothetical chant.  Figure 4.13 shows the 

entire normative model chant, as it would appear in musical notation, featuring all of the 

“most common” subphrases within each section.23     

                                                 
23 This is not meant in any way to represent a hypothetical source chant from which the 
13 real chants emerged.  It is simply meant to illustrate commonalities between each of 
the 13 chants in the list. 
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Figure 4.13a. Normative model chant 
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Figure 4.13d. Reduction of the first phrase from the normative model chant 
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Figure 4.13e. Reduction of the second phrase from the normative model chant 
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Figure 4.13f. Reduction of the third phrase from the normative model chant 
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Now that a normative chant has been formed, one can conduct comparative 

analyses again, using the normative model as the point of reference.  The following tables 

in figure 4.14 display the similarity levels between the segments of the 13 chants when 

compared to this normative model. 

The comparisons displayed in the tables above show a general increase in 

similarity between most of the chants and the model used in Figure 4.9, Alleluia Dies 

sanctificatus.  However, of these increases in similarity, only one is identical to the 

normative chant in every case.  This means that the remaining chants all have differences 

at levels closer to the surface that make them unique.  If these chants are indeed called 

identical, what is it about these chants that is causing them to differ from the normative 

chant model?  Why is it that they do not all possess the precise identity to which scholars 

such as Apel and Hiley have alluded? 

Certainly the absence of entire verse-segments in the shorter alleluias of the list 

(chants e, f, g, and j) will contribute to the high degree of difference for these chants, and 

this points us in the direction of our answer.  These shorter chants have fewer words—

indeed, they lack an entire phrase of text—and therefore would not have as much of a 

need for extra melodic content.  To retain the exact melodic content of the longer 

alleluias would create melismas that are both unnecessary and would break up the text in 

such a way that would detract from its meaning.  

Lack of text accounts for the large differences in some chants, but what accounts 

for the surface and sub-surface level differences between the chants that possess a greater 

similarity to the normative chant model?  To answer this question, let us return to the two 
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Figure 4.14a. Similarity comparison of entire chant c-segs with the normative chant 
model 

 Chant name Prime Depth 
level 

Similarity 
level 

Similarity 
index 

A Alleluia Dies sanctificatus 〈13032〉 N=5 3 0.43 

B Alleluia Video caelos 〈13032〉 N=5 4 0.57 

C Alleluia Hic est discipulus 〈13032〉 N=5 5 0.71 

D Alleluia Vidimus stellam 〈13032〉 N=5 7 1.0 

E Alleluia Redemptionem 〈021〉 N=4 0 0 

F Alleluia Tu es petrus 〈13032〉 N=4 1 0.14 

G Alleluia Hic est sacerdos 〈021〉 N=4 0 0 

H Alleluia Sancti tui domine 〈13032〉 N=5  5 0.71 

I Alleluia Magnus sanctus 〈13032〉 N=5 3 0.43 

J Alleluia Nunc com eo 〈021〉 N=4 0 0 

K Alleluia Inveni David 〈13032〉 N=5 4 0.57 

L Alleluia Tu puer propheta 〈13032〉 N=5 4 0.57 

M Alleluia Domine diligo 〈13032〉 N=5 3 0.43 
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chants discussed earlier: Alleluia Dies sanctificatus (hereafter known as chant a) and 

Alleluia Video caelos  (hereafter known as chant b).  The reductions of the c-segs for the 

first verse phrase are shown in Figure 4.15.  The comparative process shows a level 1 

similarity with first order displacement between the two.  We see that the primes are 

identical, and that the sub-cseg immediately shallower than prime is also identical.  

However, the two differ at sub-cseg3 and sub-cseg2: chant a has a sub-cseg3
 of 

1041214030, while chant b has a sub-cseg2
 of 10313020.  The sole distinction 

between these two sub-csegs is the single intervening maximum—the 2 in the middle of 

the chant a sub-cseg.  Further difference is seen in shallower levels of the two chants.  

The sub-cseg1
 of chant a, 105341212121215140313120, differs from the sub-cseg1

 of 

chant b, 10534121215140313120 in the number of repetitions of the “1-2” pair in the 

middle of each.  The quantity of internal repetition is the point of difference between 

these two c-segs. 

We must then return to the surface-level c-segs for both chants, and examine why 

chant a contains more “1-2” repetitions than chant b.  The reason may lie in the text-

music relationship of this phrase.  In chant b, the phrase is Video caelos apertos, which 

has only three words and eight syllables.  Chant a, on the other hand, has the phrase Dies 

sanctificatus illúxit nóbis, containing four words and twelve syllables.  The syllabic 

addition of the word sanctificatus in the first half of the phrase of chant a, accounts for 

the extra “1-2” repetitions in the middle of the surface-level c-segs.  Here, John Stevens 
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Figure 4.15a Reduction of the phrase Dies sanctificatus illuxit nobis from Alleluia Dies 
sanctificatus 
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Figure 4.15b. Reduction of the phrase Video caelos apertos from Alleluia Video caelos 
apertos 

〈� � � � � � � � � ���������〉

�

〈� � � � � � � � � ���������〉

�

〈� � � � � � � � � ���������〉

�

〈� � � � � � � � � ���������〉

�

〈� � � � � � � � � ���������〉
 

 

suggests that accents in the text of the phrase are represented in the music by two possible 

means: “shortening or lengthening (accents of duration) and heightening (accents of 

pitch, usually called tonic accents)” (1986, 280).  In the sanctificatus section, the word 

sanctificatus is begun with a liquescent podatus , accounting for the first 1-2 
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segment, and the accent on the penultimate syllable creates a tonic accent in the music, 

and accounts for the second 1-2 podatus as Stevens suggests. 

 Another example of this accent relationship occurs when comparing c-segs of the 

first verse segments of chant b and chant g (Alleluia Hic est sacerdos).  These two chants 

share an even closer relationship than chants a and b: level 4 similarity.  The primes 

occur on the same depth level, and both share a common sub-cseg3
 and sub-cseg2.  The 

difference is once again made apparent at the sub-cseg1
 level for both chants.  The sub-

cseg1
 for chant b, 10534121215140313120, differs from the sub-cseg1

 for chant g, 

105341215140313120 again in the number of “1-2” repetitions there are.  In chant b 

there are two, while in chant g there is only one—not enough even to qualify it as the 

same type of repeating pattern.  The difference itself then is similar to the difference 

between chants a and b.  However, on the surface-level of the music, this difference 

occurs not in the first half of the phrase, as did the comparison between chants a and b, 

but rather at the beginning of the second half of the phrase.  The second half of the phrase 

in chant b has two words (caelos apertos) while the second half of the phrase in chant g 

has only one word: sacerdos.  This is evident in the fact that the first syllable tonic accent 

on cae is no longer present.  Instead, the accent on the second syllable of sacerdos is used 

as the starting point for a melisma containing the rest of the segment.26  This is an 

exemplary illustration of Stevens’s remark about the tonic accent.  Here we see the 

presence of two accents in the caelos apertos, and only one in sacerdos: these accents (or 

lack thereof) have the power to alter the contour of the c-segs in question in these areas.  

The text has the power to modify, or in some cases even override the normative contour 

                                                 
26 This is the same melisma that occurs over apertos in chant b. 
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model, accounting for the differences between it and each chant in the list, as well as 

between the chants themselves. 

 The relationships discussed above would not be as readily apparent, or as 

accurately explained without the MCRA and hierarchical method of comparison.  

Comparing intermediary sub-csegs between these 13 chants reveals differences in the 

way the primes that govern their basic structures are composed out (to borrow a term 

from Schenker).  Using the hierarchical comparison method, we can arrive at a more 

precise quantitative measurement of difference within the 13 chants.  Such measurements 

are useful tools for the determination of difference between interchangeable units within 

a paradigmatic style of analysis, and for exploring the various reasons for these 

differences.  In the case of these 13 mode-2 Alleluias with the same alleluia and jubilus, 

the comparison reveals surface and sub-surface level differences that arise from 

differences in both the length of the text, and the textual accents that occur within the 

Latin language.  The hierarchy in this case illustrates the importance of these textual 

accents in the role of creating intricate contour structures across levels not commonly 

found in simpler chants. 
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CHAPTER 5 
 

CONCLUSION 

In the previous chapters of this thesis, I have presented refinements to the theory 

of melodic contour and the reductive approach of the MCRA. The MCRA provides a 

hierarchy of structural levels as a result of the recursive pruning procedure contained 

therein.  This thesis has extended the analytical capabilities of the MCRA by providing a 

methodology for examining the hierarchical levels between the prime and the surface 

levels.  It uses the levels within the hierarchy to refine the comparison between two c-

segs, extending the capabilities of the MCRA to allow for such comparisons to occur. 

 A simple glance at the hierarchical levels within related c-segs suggests the need 

for adjustment of the comparison process when using the MCRA.  C-segs may not only 

have identical primes, but they may or may not also feature identical sub-csegs on levels 

shallower than prime.  As such, a method is needed to quantify the degree to which two 

c-segs with the same prime are similar.  In Chapter 2 of this thesis, I have introduced a 

concise methodology that enhances the comparison process of c-segs using the MCRA.  

This comparison method provides a structured step-by-step approach for comparing sub-

csegs within two given c-segs that share the same complexity (i.e., they reduce to prime 

at the same depth level).  The direct comparison evaluates sub-csegs at equivalent depth 

levels in order to determine whether they are identical, and arrives at an indicator of 

similarity by counting the number of levels that are found to be identical.  I have taken 

this similarity level and created an index value representing the degree to which the two 

c-segs in question are similar. 
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 Although this methodology allows for the comparison of sub-csegs in c-segs with 

the same prime and complexity, it requires the depth levels of the sub-csegs to be equal; 

it therefore lacks the ability to make comparisons across depth levels.  The comparison 

method developed in Chapter 3 fills this void by introducing the notion of displaced 

similarity.   

In the displaced comparison, the prime’s depth levels are not equal: one lies closer 

to the surface than the other.  The comparison process is similar to that of the direct 

comparison, but with a few crucial modifications.  Both compare sub-csegs by 

methodically proceeding from the deepest level (prime) toward the surface level.  

However, in the displaced comparison, the depth levels of these sub-csegs do not align 

with one another. Instead, one would compare, for instance, sub-cseg3 of one c-seg with 

sub-cseg2 of the other.  As such, the shallower c-seg’s prime and any other corresponding 

sub-csegs can be conceived as embedded within the more complex c-seg.  Since the 

displacement of the primes obscures the perception of similarity for a pair of c-segs, a 

new variable is introduced (d) that calculates the difference in complexity between the 

two c-segs.  This value allows one to make a comparison of intermediary sub-csegs 

regardless of depth level, while also reflecting that the two c-segs are less similar than 

two c-segs whose complexity values are identical. 

 The study presented in Chapter 4 illustrated the application of the two 

comparative methods.  It examined 13 mode-2 Alleluias that previous scholars (Apel 

1958; and Hiley 1993) have grouped together as highly similar.  It implemented three 

different lengths of segmentation, and ran the MCRA on each resulting c-seg.  In this 

analysis, the comparison method provided a precise quantitative measurement of 
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difference between these c-segs.  The comparisons made at each length of segmentation 

highlighted surface and sub-surface level differences between specific chants, which 

resulted from changes in both the length of each chant, and the change in textual accent 

between different words in the Latin language.  Without the MCRA and the comparative 

methodology I have devised, the relationships between chants would not be as 

quantifiable, and explanations of the differences exhibited by these chants would be less 

systematic. 

 

Further Research 

 The hierarchical comparison method has supplemented the way c-segs are 

compared using the MCRA, and therefore contributed to our understanding of how 

contour is portrayed in music.  However, there are still areas for further refinement.  First 

of all, differences between the direct and displaced comparisons could be more concisely 

defined, and an eventual unification of these two processes would allow for a more 

elegant analytical model.  In addition, just as the hierarchical comparison expanded the 

notion of comparing c-segs using the MCRA, the idea of the comparison process could 

be further expanded to compare sub-csegs that are judged not to be equivalent.  For 

example, if two c-segs share a level-3 similarity with a similarity index of 3/5 (0.6), this 

would indicate that two pairs sub-csegs are judged to be different.  However, the notion 

of sub-cseg equivalence as a determinant of similarity excludes the possibility of high 

levels of similarity between these sub-csegs.  A further refinement of the comparative 

process could be to apply Marvin and Laprade’s (1987) CSIM or ACMEMB toward 
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these sub-csegs in order to arrive at a percentage of similarity for that specific level.27 

One could then combine this percentage in some fashion with the similarity index in 

order to arrive at a more precise quantification of similarity. 

 Another possible avenue of further refinement involves the extension of the 

hierarchical comparison to c-segs whose primes are related by inversion, retrograde, and 

retrograde inversion.  If two primes are related by one of these transformations, it stands 

to reason that one or more of their intermediary sub-csegs may also be related in the same 

fashion.  Just as the hierarchical comparison method compares sub-csegs based on the 

criteria of equivalence, a similar hierarchical comparison method could be used to 

compare sub-csegs based on these transformations.  Such a methodology could then be 

integrated with the existing hierarchical comparisons to lend further analytical capability 

to the comparison technique. 

 Finally, further research could include the integration of the hierarchical 

comparison method with other existing theories of musical contour.  One might adapt the 

method so that it can be applied to the window algorithms of Bor’s (2009) reductive 

technique.  Since the hierarchical structures are created in different ways under Bor’s 

method, the hierarchical comparison process would have to be modified in order to be of 

use in that analytical setting.  Other contour theories that might benefit from the 

hierarchical comparison process include Schultz’s (2009) methods for examining musical 

contour diachronically.  Exploring how c-segs compare with each other as each pitch is 

                                                 
27 In terms of examining c-segs for similarity, CSIM would be the more applicable 
choice.  However, CSIM is only applicable toward c-segs of the same cardinality, and 
therefore would not be applicable in many cases.  A subsequent refinement of CSIM 
would need to occur before it could be used in this fashion consistently. 
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added could provide further avenues of refinement for the hierarchical comparison 

process. 

 Future developments in any of these directions would prove valuable to the 

success of the comparative method I have devised, and to the overall usefulness of the 

MCRA in general.  Certainly these tools can provide valuable insights into multiple styles 

of music across many musical and historical eras, and this would contribute much to the 

existing set of tools within the domain of contour theory.  As I have shown throughout 

this thesis, the refinement of the comparison process makes resulting analyses stronger, 

and therefore enhances our understanding of melodic construction.   

  



 

121 

APPENDIX 

 
THE THIRTEEN COMMON MODE 2 ALLELUIAS 

 
 
 
Figure A.1. Alleluia Dies Sanctificatus 

 
 



 

122 

Figure A.2. Alleluia Video Caelos 

 
 
 
Figure A.3. Alleluia Hic est discipulus 
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Figure A.4. Alleluia Vidimus stellam 

 
 
 
Figure A.5. Alleluia Redemptionem 
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Figure A.6. Alleluia Tu es Petrus 

 
 
 
Figure A.7. Alleluia Hic est sacerdos 
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Figure A.8. Alleluia Sancti tui 

 
 
 
Figure A.9. Alleluia Magnus sanctus 
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Figure A.10. Alleluia Nunc cum eo 

 
 
 
 
Figure A.11. Alleluia Inveni David 
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Figure A. 12. Alleluia Tu puer Propheta 
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Figure A. 13. Alleluia Domine diligo 
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