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ABSTRACT

AN INTERCONNECTION NETWORK TOPOLOGY
GENERATION SCHEME FOR MULTICORE SYSTEMS

SEPTEMBER 2013

BHARATH PHANIBHUSHANA

B.E, VISHVESHWARIAH TECHNOLOGICAL UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu

Multi-Processor System on Chip (MPSoC) consisting of multiple processing cores

connected via a Network on Chip (NoC) has gained prominence over the last decade.

Most common way of mapping applications to MPSoCs is by dividing the applica-

tion into small tasks and representing them in the form of a task graph where the

edges connecting the tasks represent the inter task communication. Task scheduling

involves mapping task to processor cores so as to meet a specified deadline for the

application/task graph. With increase in system complexity and application paral-

lelism, task communication times are tending towards task execution times. Hence

the NoC which forms the communication backbone for the cores plays a critical role in

meeting the deadlines. In this thesis we present an approach to synthesize a minimal

network connecting a set of cores in a MPSoC in the presence of deadlines. Given a

task graph and a corresponding task to processor schedule, we have developed a par-

titioning methodology to generate an efficient interconnection network for the cores.
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We adopt a 2-phase design flow where we synthesize the network in first phase and

in second phase we perform statistical analysis of the network thus generated. We

compare our model with a simulated annealing based scheme, a static graph based

greedy scheme and the standard mesh topology. The proposed solution offers sig-

nificant area and performance benefits over the alternate solutions compared in this

work.
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CHAPTER 1

PROBLEM FORMULATION

1.1 Introduction

System-on-Chip(SoC) performance requirements are becoming increasingly com-

plex due to the emerging and evolving applications. Various state-of-art applications

like MPEG, video streaming, 3GPP, WiMAX which require large amount of data

processing have favored MultiProcessor SoC(MPSoC) implementation. Examples of

commercial SoC designs include Intel IXP series(IXP1200, IXP2400, IXP2800) [1],

TI TMS320C8x [2], Motorola C-port C-5 [3]. Multicore architecture has proven to

be very efficient especially for applications with high parallelism [4]. As the number

of cores multiply, several researchers are working towards incorporating thousands of

cores on a single chip [6]. The traditional bus architecture which formed the com-

munication back-bone is not scalable as the number of on-chip processing elements

is increasing rapidly. Network-on-Chip (NoC) has been proposed as a solution to

overcome the scalability issue [7].

Usually in MPSoC implementation, an application is divided into smaller sections

of code that execute on a core, known as tasks. In the task graph, a node represents a

task and an edge represents the communication between the pair of tasks. The weight

of the node represents the execution time of the task while that of an edge represents

the time needed to transfer the data between a pair of tasks. Scheduling of tasks onto

cores/processor is a key phase in multiprocessor system design, as it directly affects

the performance. Multiprocessor task scheduling problem can be defined as: a set of

m tasks, with task i having execution time of ei, needs to be scheduled on set of p
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processors such that the total execution time meets the deadline. The task graph has

a control dependency for the tasks wherein a task can execute only after all its parent

tasks have finished execution. A task graph has a deadline associated with it, before

which all the tasks must finish the execution. Slack of a task is defined as the amount

of time by which the task can be delayed without missing the deadline. Figure 1.1

shows an example task graph, where Ti represent the tasks connected via communi-

cation edges. A four core/processor is assumed. T/C represents a task mapped to a

corresponding core. A node represents the task and weight of the node represents the

task execution time. The weight of the edge represents the time needed to transfer

data between the pair of communicating cores. Values in circles represent the forward

and backward task execution calculations which is equivalent to the earliest arrival

time and the latest arrival time, values in brackets represent the slack available and

the final deadline for the task graph is also shown. Unit for all the values are in

cycles. All the scheduled tasks rely on a shared Network on Chip (NoC) connecting

the cores for data transfer. Thus the total schedule length not only depends on the

processor performance but also on the available NoC resources. With large num-

ber of processing cores and hard deadlines, on-chip communication network becomes

the bottleneck. If a network does not satisfy the communication requirements, some

tasks may have to wait for the shared communication resource to be available, which

may lead to increase in schedule length. During runtime the task execution times

may change resulting in traffic pattern variations. The designed network should be

capable of handling these variations, hence there is a need for a methodology which

considers all the communication constraints during network synthesis and models the

runtime variations so as to analyse its effect on deadlines. The final goal of such a

methodology is to generate a runtime variation tolerant network.

2



Figure 1.1. An example task graph showing different tasks and dependencies.

1.2 On-chip router architecture

The network performance is characterized by the interconnection topology and its

router architecture. The two major components of a router is the routing strategy

and the flow control technique [30]. Wormhole routers and virtual channel routers

are the two popular and largely discussed on-chip router designs. In wormhole router

there are 3 stages: routing, switch arbitration and crossbar traversal. Switch arbiter

receives all the requests from the input ports, checks the status of the output ports,

resolves conflicts and grants free ports to the requestors. Then the packet is passed

through the crossbar and the for the entire duration of packet transfer the crossbar

passage is held,until the tail flit exits the router. On the other hand in a virtual

channel router, multiple virtual channels are multiplexed onto a physical channel and

instead of reserving passage through the crossbar for the entire duration of packet, the

3



flits of different packets are transferred cycle-by-cycle basis onto the crossbar. Adding

virtual channels has proven to deliver increased throughput and better performance

[31]. We use a virtual channel router and is shown in Figure 1.2. It consists of 4

pipelined stages [35]:

Routing Logic: When the first flit of the packet arrives at the router, a VC buffer is

Figure 1.2. Virtual Channel router[35]

allocated using its VC identifier by the input controller. The routing logic examines

the routing field and a set of output virtual channels on which the packet can be

routed is produced. The number of output VCs depends on the routing function used

by the routing logic.

VC allocator: After obtaining the candidate set of output VCs, the input controller

now submits request to the global VC allocator for corresponding output VCs. The

VC allocator takes requests from all the input controllers and allocates available VCs

to the requestors. It updates the status of these channels as unavailable.

4



Switch allocator: After obtaining the output VCs, the input controller submits

request to the switch allocator to obtain the physical channel required. The switch

allocator takes the requests from all the input controllers and match the VCs request

to the output physical channel. If the requested channel is available, the requested

channel is granted and the corresponding crossbar signals are activated.

Crossbar: The last stage is the crossbar traversal. After the arbitration and the

allocation phases are completed, the flit has secured the output physical channel

successfully and it passes the crossbar for the next hop.

1.3 Summary of previous works

A large body of research exists which work towards designing Network on Chip

(NoC) in MPSoCs and several techniques have been proposed in the past [5, 10, 11,

12, 13]. Below we present a summary of the relevant works.

Murali et al. presented a tool for automatic topology generation[11]. A library

consisting of several standard topologies was built. A three phase design flow was

presented. In the first phase for a given routing function and design objectives which

include the area and bandwidth are mapped onto different existing standard topolo-

gies and the mappings are obtained. In the second phase the best topology is chosen

amongst the existing standard topologies based on the design constraints. In the final

phase the SystemC components of the network components are generated.

Srinivasan et al. presented a mixed linear programming based technique to gen-

erate custom NoCs in [15]. The inputs to the methodology were a directed communi-

cation trace graph representing average bandwidth between the processing elements,

a router architecture with a given number of input and output ports, maximum

bandwidth that a router can support and largest number of routers available. The

objective function was to minimize the total power consumption. The network la-

tency was considered in terms of router hops. Few heuristics namely clustering based

5



heuristic, path based deterministic heuristic and path based randomization heuristic

were also presented and a comparison was done between the various approaches.

A promising solution was presented by Murali et.al in [9]. The design flow uses

min cut based partitioning to partition the average bandwidth graph and clusters are

generated. Heuristics were presented for generating the paths between the routers

and minimizing the power was the objective. They also considered the floorplanning

constraints and thus a flow incorporating complete solution starting from topology

exploration to layout generation was presented. They compared the results with

standard mesh and an optimized mesh topologies.

Chan et al. presented a hybrid topology which had both point to point links

and packet switched networks [14]. Yu et al. used a min-cost max-flow algorithm

to insert switches and network interfaces [16]. Zhong et al. proposed an algorithm

for cluster generation and a heuristic for switch and network insertion [17]. Also

there have been some work on trying to map the communications on the NoC topol-

ogy and optimize the communication latency. Hu et. al. proposed an algorithm to

schedule tasks and communications to an standard existing topology, but did not

consider the problem of network synthesis [19]. Lahiri et al. proposed algorithms

to map hardware elements on predefined communication architectures according to

a communication profile defined through performance analysis [21]. This analysis

enables to discover potential contentions on shared channels. However, the approach

is assuming a memory-less communication infrastructure, which prevents using this

method to most of the router-based NoCs. Abstract NoC models were defined in [23]

which could be integrated into MPSoC design. The standard mesh and torus NoC

was considered and NoC synthesis issues were not considered.
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1.4 Analysis and motivation

We made the following observations:

• Most of the work in literature mentioned above consider just an average band-

width graph and a sustained rate of traffic flow. Hence all the communication

constraints are not visible to their approaches.

• Very few works consider the communication latency between the cores as an

optimization constraint. The runtime variations may affect the traffic patterns

assumed during the design phase.None of the work does an analysis on the

runtime variations which may affect the final deadlines.

• Moreover, as task communication times become comparable to execution times,

the NoC design plays a bigger role in determining the total schedule length.

Most of the current work considers a single cycle/fixed cycle router latency and

hence their results are inaccurate.

• Conventional NoC architectures like Torus and Mesh are designed for uniform

architectures having regular floorplan. Most MPSoCs have non-uniform core

sizes making it difficult to map them onto regular standard topologies.

1.4.1 Motivational example

Consider the task graph shown in Figure 1.1. Assume a four core system is used

and the following task to processor assignement was done:

• C1 - T1,T5,T7

• C2 - T2,T6

• C3 - T3

• C4 - T4
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Figure 1.3. Mesh topology for a four core system

Figure 1.4. Topology obtained from our scheme

Figure 1.3 shows a mesh topology for the interconnection network. A careful

analysis of the communication traces show that C1 never communicates with C4;C4

only communicates with C2, C1 to C3 communication is frequent and critical and

hence C1 and C3 need to be placed together. An optimal solution does not require

four routers and the topology generated from our scheme is shown in figure 1.4. The

number of routers and links can be reduced if the communication constraints are

thoroughly analysed resulting in significant area benefits. Hence in this thesis we

propose a structured and systematic approach for on-chip network generation which

aims at solving the above mentioned problems. The main contributions of this thesis

are:

• Unlike prior work we consider a task model for application representation; the

most important advantage of doing so is that we get a good visibility into all
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communication constraints, which are not available in existing solutions which

start from average bandwidth graph.

• The final deadline for the task graph is affected by both task execution times

and task communication times. During runtime, the task execution times may

vary, affecting the final deadlines. To account for this we follow a two phase

design flow: in the first phase we design the network assuming mean execution

times and in the second phase we model the runtime characteristics of the tasks

by doing statistical simulations wherein a distribution for task run times is

assumed. This methodology is largely motivated by the process of logic synthesis

of gates under design constraints followed by a statistical static timing analysis

for timing closure. Thus accounting for runtime variations of task execution

times and providing a checking mechanism for the designer.

• We adopt a partitioning approach for network synthesis. We use Kernighan-

Lin(KL) algorithm for partitioning the cores and mapping them onto the routers

and we have developed a recursive KL algorithm for generating the links between

the routers.

• For comparison we have developed a simulated annealing based topology syn-

thesis scheme and a static graph based greedy scheme. Also comparison with

standard mesh topology has been done and results have been presented.

• We have defined few metrics to analyse the quality of network generated and

comparison with all the schemes have been presented.

1.5 Problem statement

Our optimization problem can be formulated as follows:

Given:
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• An application task graph

• A deadline for the task graph completion

• Task to processor schedule

Objective:

• Obtain an interconnection network for the processing cores which require min-

imal network resources. Minimize the total on-chip router area:

n∑
k=1

Ak

where n = total no. of routers, Ak = area of router k

Constraint:

• Meet the deadline

Ti +
m∑
j=1

Dj ≤ T (1.1)

where

T = Deadline for the taskgraph

Ti = Total task execution time for path i

m = Number of routers in path i

Dj = Delay of router j
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CHAPTER 2

DESIGN FLOW AND ALGORITHMS

2.1 Introduction

Application specific custom network generation methodologies have proven to per-

form better than standard topologies [9]. In our network topology generation scheme

we adopt a 2-phase design flow where we synthesize the network in first phase and

in second phase we do a statistical analysis to verify the quality of network gener-

ated.The top level flow for our NoC design methodology is shown in Figure 2.1.Our

network synthesis has three phases:

• Phase I: Core to router mapping: We use a partitioning approach to map cores

to routers. We use Kernighan-Lin (KL) algorithm, the very powerful and pop-

ular two way partitioning algorithm,to partition the cores and assign them to

the routers.

• Phase II:Path generation: The second phase of our algorithm is adding links be-

tween the routers and generating paths for each pair of communicating cores.We

propose a recursive KL algorithm to obtain links between the routers.

• Phase III:Routing: The final phase of our algorithm is Routing and we use the

Dijkstra’s algorithm
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Figure 2.1. Top level design flow

2.2 Network topology synthesis

2.2.1 Phase I: Core to router mapping

It is of utmost importance to have a core mapped to the correct router. We adopt

a partitioning approach to map the cores to routers. Partitioning approach for gener-

ating on-chip networks has been shown to be efficient especially when there are large

number of cores [9, 26]. Depending on the number of routers the cores are partitioned

and assigned to a particular router. We use Kernighan-Lin(KL) algorithm for pari-

tioning.

Kernighan-Lin Algorithm:

Kernighan-Lin [20] is the most popular two way partitioning algorithm. It is an

iterative improvement algorithm which attempts to find optimal series of interchange

operations between partitions so that the gain is maximized. KL algorithm has im-

portant applications in various fields including VLSI circuit partitioning, placement,

load balancing [27, 28, 29].

The algorithm is characterized by a cost matrix and is shown in 2.1. This cost

function has two parameters, Bandwidth and Slack between the cores. The idea
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Notation Explanation
A,B Starting random partitions
ζ A 2-tuple consisting of cores and routers (C,R)
Cij Cost between core i and core j
BWij Bandwidth between core i and core j
Sij Slack between core i and core j
k Coefficient of cost function
Ea External cost of node a
Ia Internal cost of node a
Da Ea − Ia Benefit of moving a A to B
gab Da +Db − 2Cab Gain of swapping a and b

Pm, Pn Intermediate partitions
σ Standard deviation
Γ A set representing all the existing current partitions
ξ A design point representing partitions obtained from (ζ, Cij)

Table 2.1. Notations used in Kernighan-Lin module

behind choosing this cost function is motivated by the fact that if two cores have

large bandwidth of data to transfer and less slack available for communication, then

the two cores need to be physically close to each other which can be achieved by

placing them in a single partition. The coefficient of cost function k, decides the

contribution of the slack in the cost function.

Cij = BWij − k ∗ Sij (2.1)

Consider two random partitions A and B, node a ∈ A and b ∈ B. The contribution

of node a to the cutset is called as the External cost of node a, and is defined as:

Ea =
∑
v∈B

Cav (2.2)

Internal cost of node a is defined as:

Ia =
∑
v∈A

Cav (2.3)
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If we move node a from A to B, it will increase the value of cutset by Ia and decrease

it by Ea.Hence the benefit of moving a from A to B:

Da = Ea − Ia (2.4)

If a and b are interchanged, the reduction in the cost, or the gain of swapping is given

by:

gab = Da +Db − 2Cab (2.5)

The Kernighan-Lin procedure is explained below.

Algorithm 1 Module KERNIGHAN LIN()

1: Input: ζ,Cij
2: Output: ξ
3: repeat
4: Start with random partitions A and B
5: Unmark all the nodes
6: Calculate gab for all a ∈ A and b ∈ B
7: Choose an unmarked pair (a1,b1) with maximum gain g1 but don’t swap a1

and b1
8: Update D for remaining nodes as if a1 and b1 were swapped and recompute g
9: Choose second pair (a2,b2) with maximum gain g2.compute G=g1+g2
10: At this point we have pairs (a1,b1),(a2,b2).. and gains g1,g2..

11: The gain for first k swaps: Gk =
k∑
i=1

g(i)

12: If there is no k such that Gk > 0 then the current partition cannot be improved;
otherwise choose the k that maximizes Gk and make the swappings permanent

13: until Gk ≤ 0; no further pairwise improvements are possible

2.2.2 Phase II: Path generation

After Phase I, which maps the cores to routers,the second phase of our algorithm is

adding links between the routers and generating paths for each pair of communicating

routers. The area of an on-chip router increases quadratically with the number of

ports [32] and hence it is really important to carefully choose the interconnection links

for the routers. An incremental path generation methodology is proposed by adopting
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a recursive KL algorithm. Here existing partitions become nodes. We update the cost

function between the newly formed nodes. The new cost function is the summation

of the costs between each nodes in the partition. We feed this set of nodes with

an associated cost function into KL partitioner. The output is a set of partitions

wherein routers that need to be connected are in same partition. Thus by following

this process recursively we obtain interconnection links between the routers. The

steps involved in the recursive KL algorithm is shown in algorithm 2

Algorithm 2 Module RECURSIVE KERNIGHAN LIN()

Input:ξ,Cij
repeat

Existing set of partitions ξ become nodes
for all partitions do

Update the cost function between partition Pm and Pn
Cmn =

∑
Cij ∀i ∈ Pm,∀j ∈ Pn

end for
ξ=KERNIGHAN LIN(Γ,Cmn)

until Pm = Pn = Corecount

2.2.3 Phase III: Routing

The final phase of our network synthesis is creating routing paths.We use Dijkstra’s

shortest path algorithm to find the routing paths. We set the cost function as the

hop count. Here the objective is to find the path with minimum hops between each

pair of routers. The steps involved is shown in the algorithm 3.

2.3 Example illustrating our algorithms

Let us consider an example to illustrate our algorithms. Consider a set of cores

and a set of routers shown in figure 2.3. Let us further assume that a task graph is

mapped to cores and the cost function defined in Equation 2.1 is calculated between

each pair of cores. The first phase of our algorithm is to map the cores to routers using

KL algorithm. Figure 2.4 shows the cores mapped to the routers. The second phase
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Algorithm 3 Module DIJKSTRA()

1: Set Cost between nodes = Hop Count
2: Set root node value=0 and all other nodes = infinity
3: Mark all nodes unvisited
4: For the current node consider all the neighbors and update their tentative distance
5: If the distance is less than previously recorded value then overwrite that distance
6: When all the neighbors are done, mark the current node as visited node and

remove it from unvisited set
7: Move to the unvisited node which has smallest distance, mark that as current

node and move to step 4
8: If the destination node is marked visited then the algorithm stops

Figure 2.2. Our top level final algorithm
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of our algorithm is to generate links between the routers. The existing partitions

become nodes. Then using the KL algorithm the links are obtained. We run this

recursively until the entire partition count becomes equal to the core count.

Figure 2.3. Set of cores and routers

Figure 2.4. Kernighan-Lin algorithm maps cores to routers
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Figure 2.5. Existing partitions become nodes

Figure 2.6. Recursive Kernighan-Lin iteration 1
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Figure 2.7. Recursive Kernighan-Lin iteration 2

Figure 2.8. Final network generated
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CHAPTER 3

SCHEMES FOR COMPARISON

3.1 Simulated annealing approach

We have developed a simulated annealing(SA) based scheme for topology gener-

ation.SA is a random-search technique which exploits analogy between the way in

which a metal cools and freezes into a minimum energy crystalline structure. SA’s

major advantage over other methods is an ability to avoid becoming trapped in a

local minima. The algorithm employs a random search methodology which attempts

to find a global minima for a given minimization problem. An acceptance criterion is

defined wherein an increase in the objective function is accepted with a probability.

The basic elements of a SA implementation includes:

1. A representation of all possible configurations

2. A generator function which produces a change to the existing solution and

returns the new configuration

3. A cooling schedule with an initial temperature and a final temperature, a de-

preciation factor and a limit to the number of tries at each temperature value

4. An acceptance criterion which states that a new solution is accepted with a

probability

5. A depreciation factor for the temperature

6. A randomly generated initial solution
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Figure 3.1. Top level simulated annealing module

Notation Explanation
M(C ⇒ R) A mapping relation where core C is mapped to Router R

Fij A function which returns routers in flow between core i and core j
χ A configuration representing M and F

χinitial Initial random configuration
Tempinitial Initial temperature
Tempfinal Final temperature

α Depreciation factor
Ntries Number of tries to find a valid solution at each temperature

Φ Solution validity Indicator
A Total router area

χfinal Final configuration

Table 3.1. Notations used in Simulated Annealing
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We start with a random configuration wherein cores are randomly assigned to

routers. We make sure that the partition size is balanced. The STEP function shown

in algorithm 6 generates a core to router mapping and a path for each flows. Number

of hops for each flow is randomly picked between 1 and a maximum value depending

on the cost of the flow. Routers for the flow is randomly picked. Thus generated

configuration is checked to see if it meets the deadline using SCHEDULE LENGTH

function in VALIDITY CHECK module shown algorithm 5. If the configuration

meets the deadline, it is accepted otherwise an INVALID is returned. At each tem-

perature Ntries are performed to obtain a VALID solution. If a solution is valid, then

the total router area is calculated and if it is less than the previously obtained value,

the solution is made the final, otherwise it is accepted with a probability shown in

algorithm 4. A geometric depreciation factor was used as it is known to give good

results [36]. The goal for the simulated annealing module is to minimize total router

area.

3.2 Static graph based greedy approach

We have developed a methodology based on a static graph which consists average

bandwidth information between nodes. An example static graph is shown in figure

3.2. The motivation behind this approach is to greedily assign lower hops/direct links

to the flows which have high average bandwidth and lower average bandwidth flows

get higher hops. The deadline or the slack is not visible to this approach. We use

a Breadth First Search(BFS) algorithm to search paths between routers. We start

with no. of routers equal to no. of cores. The communication flows are sorted in

non-increasing order of average bandwidth information. Higher bandwidth flows get

lower hops and lower bandwidth flows get higher hops. Algorithm 7 shows the static

graph based greedy network topology generation.
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Algorithm 4 Module SIMULATED ANNEALING()

Input: Tempinitial, T empfinal, α,NTries, χinitial
Ouput: Afinal, χfinal
Begin:
temp = Tempinitial
χ = χinitial
χfinal = INVALID
Afinal = INVALID
while temp > Tempfinal do

for i in 1..Ntries do
χnew = STEP()
Φ = VALIDITY CHECK(χnew)
if Φ is VALID then
δ = Anew − Acurrent
if (δ < 0) OR (e−δ/temp > RANDOM(0,1)) then
χ = χnew

end if
end if
χfinal = χ

end for
temp = temp ∗ α

end while
return χfinal
End

Algorithm 5 Module VALIDITY CHECK()

Input: χ
Output:Φ
if SCHEDULE LENGTH(χ) <= DEADLINE then

return Φ VALID
else

return Φ INVALID
end if

Algorithm 6 Module STEP()

Output:χ
M = SWAP CORES()
for all (flows between corei and corej) do
MAXHOPij= ceil(MaxCost/costij)
Fij = RANDOM(1,MAXHOPij)

end for
return χ(M,F )
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Figure 3.2. Static graph showing average bandwidth information

Algorithm 7 Module STATIC GRAPH GREEDY()

1: Map each core to a router
2: Sort average bandwidth in non-increasing order
3: Higher bandwidth flows get lower hops.Map bandwidth to hops for each flow
4: for hopij in 1..MaxHopCount do
5: for all flows between core i and core j do
6: if hopij is 1 then
7: Open a direct link between the routeri and routerj
8: else
9: found=BFS(routeri,routerj)
10: if found is 0 then
11: Add links between routeri and routerj via existing connections with

maximum hops = hopij
12: end if
13: end if
14: end for
15: end for
16: Use Dijsktara algorithm to find shortest path
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Experimental setup

To validate the proposed methodology experiments were conducted using synthetic

benchmarks. The experimental set up is shown in Figure 4.1. The algorithms were

implemented in object oriented perl. TGFF [25] was used to generate a number of task

graphs with varying complexity. Ganeshpure[34] presented a task graph simulator

and we used this for our task graph related calculations. Router delay models were

obtained from [35]. Table 4.1 shows the list of benchmarks used. It shows the number

of cores in the design, number of nodes and edges in the task graph. The baseline

represents the best case schedule length with a point to point connection between

the cores. The computation to communication ratio represents the ratio between the

task execution time and the maximum value of the corresponding communication

time. The number of passes for KL and recursive KL algorithm was set to 100.

Each case of router count was sampled 100 times and the best result was chosen.The

runtime variation of task execution times was modelled by assuming a Gaussian

distribution, with 3σ variation defining the maximum and minimum value and a

mean value midway between them. Each run was sampled for 1000 cases and the

effect of standard deviation on the schedule length was analysed. We used Orion

simulator [32] to calculate the total router area.
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Figure 4.1. Experimental set up

Benchmark Cores Nodes Edges Baseline Deadline Communication ratio
Benchmark1 8 20 24 8100 8300 1:0.01
Benchmark2 6 15 16 1700 4200 1:0.3
Benchmark3 9 35 49 3450 8000 1:0.5
Benchmark4 30 71 100 4459 20000 1:0.6
Benchmark5 16 52 83 4748 22000 1:1
Benchmark6 49 96 134 3238 25000 1:1

Table 4.1. Benchmarks showing number of cores, nodes and edges

Specification Parameter Value
Virtual channels per input port 2

Flit width 32
Buffer depth 4

Clock frequency 1GHz
Technology node 45nm

Table 4.2. Router specifications used in the simulations
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Figure 4.2. Benchmark profiling to obtain communication to computation ratio for
various multimedia benchmarks

Specification Parameter Value
CPU clock 1.2GHz
L1 I-cache 32KB
L1 D-cache 32KB
L2 cache 512KB 2-way

Technology node 45nm

Table 4.3. Processor configuration for benchmark profiling
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4.2 Benchmark profiling

We used synthetic benchmarks generated by TGFF. To make sure that these

benchmarks are close to the real world application, we ran various multimedia bench-

marks and observed the computation cycles. We used the Intel CE4100 multimedia

SoC [37] configuration and we used Gem 5 simulator [38]. We used a single core

processor and the goal in doing such a profiling was to obtain the total cycles spent

in computation and the total cycles spent in communicating with the main mem-

ory. This ratio allows us to carefully craft the communication costs in the synthetic

benchmarks generated by TGFF. Figure 4.2 shows the ratio obtained for various mul-

timedia benchmarks. We observed that few benchmarks are computation dominant

like the fft and ifft which have very low ratio of 0.002 and benchmarks like crc and

susansmoothing have a ratio of about 0.2 indicating a good mix of computation and

communication. For our benchmarks a ratio was picked randomly between 0.01 to 1.

4.3 Effect of coefficient of cost function on schedule length

In Figure 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 the schedule for best router case is plotted

against the k - coefficient of cost function for various benchmarks. As we increase

k, the contribution of slack in the cost function increases. Lower slack and higher

bandwidth communication flows get priority and lower hops are assigned to them.

This becomes evident in the total schedule length getting better with increase in k.

The cost function cannot have a negative value and hence k is swept between a valid

range starting from 0. The value which finds the best schedule length is chosen for

the entire set of simulations. For BM5 the deadline was set too far from the baseline.

All the communications get huge slack and the schedule length becomes independent

of k. As we can see in Figure 4.7 the variation in schedule length is very small and

almost independent of k.
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Figure 4.3. Schedule length plotted against k - coefficient of cost function for Bench-
mark 1

Figure 4.4. Schedule length plotted against k - coefficient of cost function for Bench-
mark 2
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Figure 4.5. Schedule length plotted against k - coefficient of cost function for Bench-
mark 3

Figure 4.6. Schedule length plotted against k - coefficient of cost function for Bench-
mark 4
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Figure 4.7. Schedule length plotted against k - coefficient of cost function for Bench-
mark 5

Figure 4.8. Schedule length plotted against k - coefficient of cost function for Bench-
mark 6
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4.4 Effect of deadlines on coefficient of cost function

k, which is the coefficient of cost function in equation 2.1 is a weighting parameter

which dictates the contribution of the slack in the cost function. Since cost is a

positive entity, we need to make sure that the cost function doesn’t go negative, so

an upper bound on the coefficient is needed. The minimum slack available for a given

benchmark depends on the deadline, if the deadline is tending towards the baseline

then the slack tends to zero and if the deadline is placed far away from the baseline

the slack available will be high. When the slack available is high, the coefficient of cost

function needs to take small value so as to protect the cost function from dropping to

a negative value. Figure 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 shows the plot of upper bound

on the coefficient of cost function plotted against deadlines for various benchmarks

Figure 4.9. k - coefficient of cost function plotted against deadline for Benchmark 1

4.5 Effect of router count on schedule length and total area

Our design flow is shown in Figure 2.2. The number of routers are varied from 1

to a value equal to number of cores. After fixing the number of routers the cores are

mapped to routers using Kernighan-Lin and the topology is generated using recursive
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Figure 4.10. k - coefficient of cost function plotted against deadline for Benchmark
2

Figure 4.11. k - coefficient of cost function plotted against deadline for Benchmark
3
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Figure 4.12. k - coefficient of cost function plotted against deadline for Benchmark
4

Figure 4.13. k - coefficient of cost function plotted against deadline for Benchmark
5
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Figure 4.14. k - coefficient of cost function plotted against deadline for Benchmark
6

KL. In simulated annealing based scheme we follow a similar procedure wherein the

router count is varied from 1 to number of cores. The simulated annealing based

scheme is shown in figure 3.1. The results for various benchmarks are shown in figure

4.15, 4.16, 4.17, 4.18,4.19, 4.20 and DL represents the deadline used for each bench-

mark. It was observed that as we increase the no. of routers, each communication

flow observes a greater no. of hops which results in an increase in the total schedule

length which eventually leads to deadlines being missed. The cases which don’t meet

the deadline are discarded. Small no. of routers have smaller no. of hops for each

communication flow but end up having large no. of ports per router. Hence even

though they meet the deadline, these candidates are discarded if they violate the

maximum no. of ports allowed per router. The maximum no. of ports allowed per

router was set to 5 and we used mesh topology as a reference to set this value. So we

observed that we end up with 2 to 3 potential candidates for the final best topology

selection. To further converge on to the best topology we use statistical modelling

of task execution times to find the topology which maximizes the percentage cases

meeting the deadline.
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Figure 4.15. Schedule length plotted against various router scenarios for Benchmark
1

Figure 4.16. Schedule length plotted against various router scenarios for Benchmark
2
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Figure 4.17. Schedule length plotted against various router scenarios for Benchmark
3

Figure 4.18. Schedule length plotted against various router scenarios for Benchmark
4
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Figure 4.19. Schedule length plotted against various router scenarios for Benchmark
5

Figure 4.20. Schedule length plotted against various router scenarios for Benchmark
6
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4.6 Effect of variation in task execution times

The runtime variation of the task execution times were modeled as a normal

distribution and each run was sampled for 1000 cases. The statistical simulations are

run on the potential candidates for best topology obtained after applying constraint

1 and constraint 2 (refer figure 2.2). Figure 4.21,4.22,4.23,4.24 shows the variation

for different benchmarks plotted against standard deviation. The motivation behind

this experiment was to analyse the effect of runtime variation and to determine the

capability of the network to handle such a variation. Our algorithms make sure that

critical communications are given smaller hops and even if there is a runtime variation

for task execution time in the critical paths, deadlines will not be missed.Percentage

cases meeting the deadline was observed and network is marked as a good topology if

this percentage meets the design requirement. This serves as an important feedback

in the design process which can help in tuning the design parameters.

Figure 4.21. Plot showing percentage cases meeting the deadline for different stan-
dard deviation under different deadlines for BM1
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Figure 4.22. Plot showing percentage cases meeting the deadline for different stan-
dard deviation under different deadlines for BM2

Figure 4.23. Plot showing percentage cases meeting the deadline for different stan-
dard deviation under different deadlines for BM3
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Figure 4.24. Plot showing percentage cases meeting the deadline for different stan-
dard deviation under different deadlines for BM4

4.7 Comparison with various schemes

4.7.1 Performance comparison

Figure 4.25 show the schedule length in cycles the with mean execution times for

the tasks for all the benchmarks. The dimension of the mesh for each benchmark is

shown on the x-axis. For BM1 all schemes gave approximately same performance.

This is because it was computation dominant benchmark, the communication cost

was too low(refer table 4.1). For BM2, mesh performed better among all the schemes.

Since BM2 is a small benchmark with just 6 cores, mesh was found to be the best

network topology. For rest of the benchmarks our scheme was the best among all the

4 schemes. Static graph based greedy approach gave the worst performance. This is

because the scheme assigned lower hops to flows which had higher average bandwidth.

But these flows may not be critical resulting in a higher schedule length. A best case

performance benefit of 35% over mesh topology, 28.25% over SA based scheme and

37% over static graph based greedy approach was observed.
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Figure 4.25. Plot showing performance numbers of various schemes for all the
benchmarks

4.7.2 Total router area comparison

Table 4.4 shows total router area obtained from various schemes. For our scheme

best topology was chosen based on the statistical analysis: the topology which max-

imizes the percentage cases meeting the deadline. Router area is quadratic with no.

of ports and hence links/ports have to be carefully added. Our scheme was extremely

effective in adding links to the routers due to which significant area benefits were

observed over all the other schemes. A best case benefit of 53% over mesh,85% over

SA and 57% over static graph based greedy approach was observed. For SA based

scheme the quality of the solution depends on the runtime. As we can observe from

the table 4.4, for the same runtime the bigger benchmarks give bigger benefit over

SA. This is because as the benchmark size increases the search space of the solution

increases and SA needs longer runtime to find a good solution.

4.7.3 Quality metrics

We have defined few metrics to analyse the quality of the generated network

topology. The three quality metrics defined are average port count, average hop
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BM Our scheme SA Mesh Greedy %SA %Mesh %Greedy
BM1 45913.08 75753.8 91826.16 112114.58 49.12 50 59.04
BM2 38536.45 67033 65012.96 85301.38 42.51 40.72 54.82
BM3 55799.71 92858 109424.46 118145.26 39.90 49 52.77
BM4 228939.92 1075775.1 437071.76 488123.72 78.71 47.61 53.09
BM5 113952.85 312903.7 215845.76 265682.91 63.58 47.20 57.10
BM6 343767.22 2377048.5 746289.26 782324.33 85.53 53.93 56.05

Table 4.4. Table showing total router area in µm2 for all the schemes and % benefit
over all the schemes

count and worst case hop count. Average port count is defined as:

APC =
N∑
i=1

Pi/N (4.1)

where

Pi = No. of ports in router i

N = Total no. of routers

The average port count metric defines the uniformity of the network. Figure 4.26

shows the average port count for various benchmarks. This metric makes sure that

all the routers have approximately same no. of ports which will help in smooth place

and route process. The average port count obtained from our scheme was comparable

to the mesh. For BM4, BM5 and BM6, SA scheme had a large average port count.

This shows that SA scheme tried to assign equal priority hops to all the flows. The

second metric is the average hop count which is the average no. of hops of the network

and is shown for all the benchmarks in Figure 4.27. It was observed that the average

no. of hops from our scheme is comparable to Mesh topology. For BM3 our scheme

performed better over the mesh. The third metric is the worst case hop count and

is shown for all the benchmarks in Figure 4.28. It was observed that SA scheme

had the least worst case hop count. Our scheme did comparable to mesh, the greedy
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approach had bigger worst case hops as the scheme assigns bigger hops for low average

bandwidth flows.

Figure 4.26. Plot showing average port count of various schemes for all the bench-
marks
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Figure 4.27. Plot showing average hop count of various schemes for all the bench-
marks

Figure 4.28. Plot showing average hop count of various schemes for all the bench-
marks
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CHAPTER 5

CONCLUSION

A methodology for interconnection network topology generation for multicore

system-on-chip was presented. Given a task graph, a corresponding task to proces-

sor schedule and a deadline, we have developed a recursive partitioning methodology

based on Kernighan-Lin algorithm to generate an efficient interconnection network

for the cores. A 2-phase approach was adopted wherein the first phase was genera-

tion of the network and in the second phase runtime variations of the task execution

times were modeled as Gaussian distribution and results from statistical simulations

were presented. Also, effect of delay models and task communication times on the

deadlines were analyzed. To best of our knowledge this is the first approach wherein

a complete design methodology for network synthesis which includes statistical mod-

elling of runtime variations has been presented. The results from proposed solution

were compared against simulated annealing based approach, static graph based greedy

approach and standard mesh topology. The proposed solution offers significant area

and performance benefits over the alternate approaches.
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