University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2013

Jun 27th, 3:50 PM - 4:10 PM

Concurrent Sessions A: Passage Effectiveness Monitoring in Small Streams III - Fish Passage Analysis Through Circular Culverts in Northeast Ohio: Identifying the Design Parameters Linked With Passage Success

Darshan Baral Youngstown State University

Hans M. Tritico Assistant Professor, Civil Engineering, University of Mount Union

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Baral, Darshan and Tritico, Hans M., "Concurrent Sessions A: Passage Effectiveness Monitoring in Small Streams III - Fish Passage Analysis Through Circular Culverts in Northeast Ohio: Identifying the Design Parameters Linked With Passage Success" (2013). *International Conference on Engineering and Ecohydrology for Fish Passage*. 68. https://scholarworks.umass.edu/fishpassage_conference/2013/June27/68

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@libraryumass.edu.

FISH PASSAGE ANALYSIS THROUGH CIRCULAR CULVERTS IN NORTHEAST OHIO: IDENTIFYING DESIGN PARAMETERS LINKED WITH PASSAGE SUCCESS

Darshan Baral & Hans Tritico

Does Ohio Need to Care about Fish Passage?

Does Ohio Need to Care about Fish Passage?

- Anecdotal Evidence Against
- No Endangered Fish
 Species
- No Strongly Migratory (Native) Species
- Mild Slopes and Water
 Velocities
- Generally Hardy Fish

Anecdotal Evidence For

- + 176 Species of Fish
- + 60,000 Miles of Streams
- + 90,000 Culverts
- + 6 Federally Endangered Mussel Species
- + No Significant Prior Consideration

Do Ohio fish pass through Ohio Culverts?

1 Previous Study

- Embedded Bankfull Culvert Effectiveness (Tumeo & Pavlick, 2011)
- 61 Attempts at Bankfull Culverts in the State of Ohio
- 2 Culverts are in dynamic equilibrium

Study

- Look specifically at passage efficiencies
- Start with the 90,000 existing culverts
 - What percentage pass fish already?
 - Can we identify characteristics that make a culvert successful from our existing inventory?
- Northeast Ohio
 - Ashtabula, Mahoning, Portage, Stark, Summit, and Trumbull County
 - 5,000+ culvert database

Study Area

County Map of the State of Ohio and the Study Area in Red

Data Sources

- Ohio Department of Transportation (ODOT) District 4
 - 5,837 culverts
- Ohio GAP Analysis
 - Fish distribution information
- USGS Seamless Data Warehouse
 - 1/9 NED as Digital Elevation Model (Approx. 3m × 3m)
- Ohio Streamstats
 - 14 Discharge data: 12 monthly averages, 25% low flow, and 2yr flood
- FishXing Helpfile
 - Fish dimensions and swimming speed

Selection of culverts for analysis

- One celled circular culverts with diameter > 24 inches
- Having slope, length, and tributary data
- 241 (192 circular) culverts selected
- 94 chosen for field study after GIS inspection
- 55 out of 5,837 culverts selected
- 54 analyzed in FishXing, 40 analyzed in HEC-RAS

Map showing the 94 culverts for which field visits were conducted

Fish Species

Table 1: Properties of the fish used in the study

Fish	Swimming Speed (m/s)		Fish Length	Fish Body Depth	
	Prolonged	Burst	(m)	(m)	
Blacknose dace	0.384	-	0.043	0.009	
Central stoneroller	0.399	-	0.062	0.015	
Golden shiner	0.742	_	0.140	0.043	
Greenside darter	0.312	-	0.051	0.009	
Largemouth bass	1.047	-	0.419	0.122	
Longear sunfish	0.390	-	0.089	0.034	
Northern pike	0.481	-	0.635	0.094	
Pumpkinseed	0.372	-	0.127	0.058	
Smallmouth bass	0.818	-	0.343	0.094	
Walleye	0.521	2.195	0.365	0.058	
White sucker	0.768	-	0.381	0.070	

Results:

FishXing

HEC-RAS

Insufficient Flow Depth Excessive Outlet Drop High Flow Velocity

Fig 10: Barrier types for each fish species

Difference between FishXing and HEC-RAS

- FishXing
 - Only 1 cross-section downstream from culvert
 - Time to exhaustion
 - Passage analysis over range of flows
- HEC-RAS
 - At least 3 cross-section both upstream and downstream from culvert
 - No time to exhaustion
 - Passage analysis for 14 individual flows

Do Ohio fish pass through Ohio culverts?

Preliminary Answer: Infrequently

In <u>Ohio</u> what design modifications will help the most?

Classic Options:

- Increased diameter
- Decreased length
- Reduced slope
- Rougher culvert material
- Embedding the culvert

Identification of design parameters

- In FishXing for
 - Greenside darter (shallowest body)
 - Largemouth bass (fastest prolonged swimming speed)
- Change of design parameters independently
 - Diameter (existing dia to up to ten times the existing dia)
 - Length (existing length down to 25')
 - Slope (existing slope down to 0% slope)
 - Manning's n (current material to corrugated metal)
 - Embeddedness with gravel of n= (6" for pipes with dia < 48" and 12" for pipes with dia > 48 ")

Identification of design parameters: Greenside darter

Percentage of culverts (out of 53) that turn into partial barrier because of change in design parameters independently

Identification of design parameters: Largemouth bass

Percentage of culverts (out of 54) that turn into partial barrier because of change in design parameters independently

In <u>Ohio</u> what design modifications will help the most?

Ohio Options:

1) <u>Embedding the culvert</u>

- 2) Increased diameter
- 3) Reduced slope
- 4) Rougher culvert material
- 5) Decreased length

Conclusions for Ohio

- Most of the time fish are not passing through culverts
- Embedding culverts will help the most
 - Bigger impact for smaller bodied fish
 - Must ensure dynamic equilibrium

Future Questions/Directions

- What do the prevalent barriers mean in the context of Ohio ecosystems?
- More culverts Potentially 900 culverts
- Field sampling
- Obtain swimming speed for more species

THANK YOU

CONTACT: TRITICHM@MOUNTUNION.EDU

Results: Selected Culverts

Table 2: Properties of the culverts selected for study

	Diameter (in)	Length (ft)	Pipe Slope (%)	Embedded depth (in)	Perched height (in)
Average	61	177	1.00	1.8	8
Minimum	28	41	0.06	0	0
Maximum	120	548	3.70	48	66

- 6 culverts were embedded, 49 were not
- 26 culverts were perched, 29 were not

Results: Fish Distribution

Fig 8: The number of culverts in which each fish species are present in

Fig 9: % of culverts out of 54 that are non barriers, partial barriers, and complete barriersbroken up by fish species25

Table 3: Important Culvert Parameters according to FishXing analysis

Parameter	Barrier	Numbers	Mean	Std. Deviation	Std. Error Mean
Length (feet)	Partial	6	196	98	40
	Complete	48	174	103	15
Diameter (in)	Partial	6	69	26	11
	Complete	48	61	19	3
Slope	Partial	6	0.87%	0.76%	0.31%
	Complete	48	0.97%	0.65%	0.09%
Perched height (in)	Partial	6	0	0	0
	Complete	48	9	14	2
Embedded height (in)	Partial	6	5	5	2
	Complete	48	2	7	1

Fig 11: Culvert map showing FishXing Results

Fig 13: % of culverts out of 40 that are non barriers, partial barriers, and complete barriersbroken up by fish species28

Fig 14: Barrier types for each fish species

Table 4: Important Culvert Parameters according to HEC-RAS analysis

Parameter	Barrier	Ν	Mean	Std. Deviation	Std. Error Mean
Length (feet)	Partial	22	155	80	17
	Complete	18	184	80	19
Diameter (in)	Partial	22	63	21	4
	Complete	18	58	13	3
Slope	Partial	22	0.89%	0.74%	0.16%
	Complete	18	1.10%	0.72%	0.17%
Perched height (in)	Partial	22	2	4	1
	Complete	18	17	18	4
Embedded height (in)	Partial	22	1	3	1
	Complete	18	0	0	0

Fig 15: Culvert map showing FishXing Results