Compliance and monitoring of fish passage structures beginning with construction.

Pre Construction Meeting

- Included Project Engineer, Construction Contractor and Inspectors.
- Review design drawings.
- Discuss site logistics.
- Staging area.
- Proper materials.

Site Isolation

- Diversion should be sufficient to handle 2 year peak flow or greater.
- Type of bypass
 - Gravity or pump diversion.
 - Proper intake screen.
 - Reduce scour at outlet.

Timing requirements and fish safety

- July 15 September 30
- WDFW biologist reference two state pamphlets for guidance in determining in-water work window.
- Can differ from NOAA and USFWS.
- Know fish species present and life stage.
- Have a fish removal and exclusion plan.

Sediment Control

- Minimize removal of vegetation
- Use proper erosion and sediment control devices
- Clean work equipment
- Sediment concerns
 - Cofferdam
 - Bank trampling and compaction
 - First flush impacts

Importance of Compliance and Monitoring

- Biological
 - Habitat complexity and our uncertainties about physical and ecological behaviors.
- Structural
 - Measure effectiveness through wide range of changing conditions.
 - Identify maintenance and project repair needs.
 - Provide data on why techniques and practices work or fail.
- Legal
 - Culvert Court Case
 - State Fish Passage Laws (RCW 77.57.030 and WAC 220-10-070)
- Fiscal
 - \$2.45 billion on 977 state-owned barrier culverts in western WA.

The First Step in Compliance

- Hydrologic Code Rules adopted in 1983.
 - Regulatory mechanism to protect fish life and habitat from impacts of hydraulic projects.
- Hydraulic Project Approval (HPA) permit.
 - Primary fish habitat protection law in Washington State.
 - Regulated activities: bank protection, dredging, fish passage corrections, flow control structures, etc.
 - Provide consistency throughout state.
 - Adapt to changing conditions over time.

Hydrologic Project Implementation Monitoring

- Determine whether permits contain correct provisions and specifications.
 - Is the correct design and structure used?
 - Must have properly trained biologist issuing the HPA.
 - Improve operator/landowner education.
- Determine level of permittee compliance with HPA.
- Verify critical elevations
 - Is the culvert set at the correct elevation and alignment according to design?
 - Verify grade controls, footings, log placements, and any other critical components.

Hydrologic Project Effectiveness Monitoring

- Determine whether compliant projects are protecting habitats.
 - Protection of habitat structures, functions and processes.
 - Protecting abundance and productivity of fish species over time.
- Determine relationships between "ineffective" compliant projects and variables describing project design and environmental conditions.
- Identify opportunities to improve protection of and avoid negative impacts to fish life and habitats.

Common mistakes

- Wrong streambed material type and placement
- LWD installed incorrectly
- Incorrect or damaged materials delivered/used
- Wrong stream alignment of the culvert
- Incorrect culvert size

Where WDFW is now?

- Washington Department of Transportation compliance checks and monitoring
 - Spawner surveys
- Implementation monitoring on HPAs issued since Oct.1, 2012.
 - 14 stream simulation, 16 no slope design, 7 unknown/other
- Future plans to do effectiveness monitoring.
 - Currently working on study design.

Question?

