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ABSTRACT

PROPERTIES OF SINGULAR SCHUBERT VARIETIES

SEPTEMBER 2013

JENNIFER KOONZ, B.A., WELLESLEY COLLEGE

Certificate, SMITH COLLEGE, CENTER FOR WOMEN IN

MATHEMATICS

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor ERIC SOMMERS

This thesis deals with the study of Schubert varieties, which are subsets of

flag varieties indexed by elements of Weyl groups. We start by defining Las-

coux elements in the Hecke algebra, and showing that they coincide with the

Kazhdan-Lusztig basis elements in certain cases. We then construct a resolution

(Zw, π) of the Schubert variety Xw for which Rπ∗(C[`(w)]) is a sheaf on Xw whose

expression in the Hecke algebra is closely related to the Lascoux element. We

also define two new polynomials which coincide with the intersection cohomol-

ogy Poincaré polynomial in certain cases. In the final chapter, we discuss some

interesting combinatorial results concerning Bell and Catalan numbers which

arose throughout the course of this work.
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C H A P T E R 1

INTRODUCTION

Let G be a simple linear algebraic group over the complex numbers. Let B be

a Borel subgroup in G, and let T be a maximal torus in B. The T -fixed points of

the action of T on the flag variety G/B, denoted ew, correspond bijectively with

the elements of the Weyl group W = NG(T )/T . The Schubert variety Xw is the

closure of the B-orbit of ew. Since Schubert varieties are indexed by elements

of the Weyl group of G, many geometric properties of Schubert varieties can be

determined by studying the combinatorial properties of the corresponding Weyl

group elements.

For example, when G = SL(n) is the group of all n× n matrices over C with

determinant 1, we can take B to be the set of all upper triangular matrices in G,

and T to be the set of diagonal matrices in G. Then the normalizer NG(T ) of T

in G is the set of all matrices in G which have exactly one nonzero entry in each

row and column. From this we can see that W = NG(T )/T ∼= Sn, the symmetric

group on n letters. Let V = Cn with the standard basis e1, e2, . . . , en. A (complete)

flag F in Cn is a sequence of subspaces {0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn

where dim(Vi) = i for each 1 ≤ i ≤ n. The flag variety Fn has as points flags

in Cn. Any flag F = (V0 ⊂ V1 ⊂ · · · ⊂ Vn) ∈ Fn can be represented by an

invertible n × n matrix A, where the first column of A spans V1, and in general
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the first i columns of A span Vi. Identifying flags with matrices in this way, we

can see that G = SL(n) acts on Fn transitively by matrix multiplication, and that

two matrices A1 and A2 represent the same flag in Fn if and only if A1 = A2b

for some b ∈ B. Hence Fn
∼= G/B. The case of G = SL(n) and W = Sn is

referred to as type An−1 (or type A) using the Coxeter-Killing classification of

simple algebraic groups.

1.1 Outline

We have two main goals for this thesis, which are closely related to each

other. We wish to compute and study the Kazhdan-Lusztig basis elements of

the Hecke algebra (which are equivalent in definition to Kazhdan-Lusztig poly-

nomials) and the intersection cohomology Poincaré polynomials of Schubert va-

rieties (which can be computed using Kazhdan-Lusztig polynomials) in a com-

binatorial and efficient manner. The Kazhdan-Lusztig basis elements were de-

veloped by Kazhdan and Lusztig in [18] for the purpose of satisfying certain

desirable properties.

In Chapter 2, we will provide notation, terminology, and results from the

existing literature which we will assume and reference throughout the rest of

the document.

In Chapter 3, we seek to develop a new combinatorial method for computing

the Kazhdan-Lusztig basis elements Cw of the Hecke algebra H. The definition

of these elements Cw, which are equivalent to the definition of Kazhdan-Lusztig

polynomials, was developed by Kazhdan and Lusztig in 1979 [18]. Kazhdan-

Lusztig basis elements, and thus Kazhdan-Lusztig polynomials, are difficult to
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compute in general. Simpler methods for these computations have been devel-

oped in limited cases (e.g. see [22] and [6], for example). Lascoux described an

efficient way to factor and compute the element Cw when w ∈ Sn corresponds

to a rationally smooth Schubert variety [22]. We show that by generalizing Las-

coux’s factorization in a natural way, we can define what we call Lascoux ele-

ments Lw associated to fixed reduced expressions of elements w ∈ W . We show

that for any rationally smooth element w ∈ Sn, there exists a reduced expression

for which Lw coincides with the basis element Cw. We will then prove that a

similar factorization of Cw holds for certain non-rationally smooth elements in

Sn as well.

In Chapter 4, we reprove and extend results of Ryan [27] and Wolper [34],

who showed that if w ∈ Sn corresponds to a rationally smooth Schubert variety

Xw, then Xw is isomorphic to an iterated fibration Xw = F0 → F1 → · · · →

Fr such that each fiber Fi/Fi+1, as well as the final space Fr, is isomorphic to

a Grassmannian. In particular, for any w belonging to a general Weyl group

W , we construct a resolution (Zw, π) of Xw and show that this resolution is an

iterated fibration of partial flag varieties. These resolutions are deeply connected

to the Lascoux elements of Chapter 3, for Rπ∗(C[`(w)]) is a sheaf on Xw whose

expression in the Hecke algebra is essentially the Lascoux element. When W =

Sn, this resolution can be reinterpreted combinatorially, and using combinatorial

methods, we are able to recover the results of Ryan and Wolper in a very explicit

way.

In Chapters 5 and 6, we combinatorially develop new polynomials which are

relatively simple and efficient to compute. These polynomials, called the inver-

sion polynomial Nw(q) and the closure polynomial Mw(q), both coincide with

the ordinary Poincaré polynomial Pw(q) when Xw is a rationally smooth Schu-
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bert variety of type A, and both also coincide with the intersection cohomology

Poincaré polynomial in some non-rationally smooth type A cases as well.

One unintended but mathematically relevant consequence of these techniques

led us to the study of Bell and Catalan sequences, which have arisen in many un-

expected and unrelated ways in combinatorics. A sequence of positive integers

(am, am−1, . . . , a1) is called a Bell sequence if a1 = 1 and if for each 1 < i ≤ m,

we have ai ≤ 1 + max{aj : 1 ≤ j < i}. A Bell sequence is called a Catalan

sequence if it satisfies the stricter condition that ai ≤ 1 + ai−1 for each 1 ≤ i < m.

These sequences are so named because the number of Catalan sequences with

entries from {1, 2, . . . , n} is Cn, the n-th Catalan number, and the number of Bell

sequences with entries from {1, 2, . . . , n} is the n-th Bell number [15]. In Chapter

7, we will elaborate on properties of Bell and Catalan sequences discovered in

the course of our investigation of Schubert varieties.
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C H A P T E R 2

BACKGROUND MATERIAL

In this chapter, we will review definitions, facts, and results from the litera-

ture which will be assumed throughout the rest of the thesis.

2.1 Root Systems and Weyl groups

A (crystallographic) root system Φ of rank n is a collection of vectors in Eu-

clidean space Rn which satisfy the following four properties.

1. We have span(Φ) = Rn.

2. The only scalar multiples of a vector α ∈ Φ that belong to Φ are ±α.

3. Let α ∈ Φ and let sα : Rn → Rn denote reflection over the hyperplane

orthogonal to α. Then sα(Φ) = Φ.

4. If α1, α2 ∈ Φ, then the projection of α1 onto span(α2) is a half-integral mul-

tiple of α2.

The elements of Φ are called roots. We can fix a set of positive roots Φ+ ⊂ Φ to be

any subset which satisfies the conditions that
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- for any α ∈ Φ, exactly one of α,−α lie in Φ+, and

- If α1, α2 ∈ Φ+ and α1 + α2 ∈ Φ, then α1 + α2 ∈ Φ+.

The roots belonging to the set Φ− := Φ \ Φ+ are called negative roots. We write

α � 0 if α ∈ Φ+ and α ≺ 0 if α ∈ Φ−. Consistent with this notation, for any

β, γ ∈ Rn, we write β ≺ γ if γ − β is a sum of nonnegative roots [16].

Once Φ+ is fixed, there exists a unique basis ∆ = {α1, α2, . . . , αn} ⊂ Φ+ for Rn

which satisfies the condition that for any β ∈ Φ, we can express β as an integral

sum β =
∑

α∈∆ cαα where all of the coefficients cα are either nonnegative or

nonpositive. Such a basis always exists (see [16]). Then for any β =
∑

cαα ∈ Φ,

this expression of β is unique, and we define the height of β to be the sum of the

coefficients
∑

cα. We call the elements of ∆ simple roots.

For each αi ∈ ∆, let si denote reflection over the hyperplane orthogonal to αi.

The reflection group W generated by the reflections s1, . . . , sn is called the Weyl

group associated to Φ, and the generators si corresponding to the simple roots αi

are called simple reflections.

Example 2.1. The Weyl group W associated to the root system of type An can be de-

scribed explicitly. Let e1, . . . , en+1 denote the standard basis of Rn+1. Then the roots

are given by Φ = {ei − ej : 1 ≤ i 6= j ≤ n + 1}, the positive roots are given

by Φ+ = {ei − ej : 1 ≤ i < j ≤ n + 1}, and the simple roots are given by

∆ = {αi := ei − ei+1 : 1 ≤ i ≤ n}. The Weyl group of type An is isomorphic to

the symmetric group Sn+1 as follows. Each simple reflection si of W (An) corresponds to

the generator (i, i+ 1) of Sn+1, the involution which permutes the indices i and i+ 1.

Let w ∈ W . Then w is some composition of the simple reflections s1, . . . , sn.

The length `(w) of w is defined to be the length of a shortest word in these gen-
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erators representing w. An expression for w of minimal length `(w) is called a

reduced word for w and may not be unique.

Let W be a Weyl group generated by a collection S of simple reflections. For

any subset I ⊂ S, let WI denote the Weyl group generated by I . Then WI is

called a (standard) parabolic subgroup of W [17].

For two elements u, w ∈ W , we say that u ≤ w if a substring of some reduced

word for w is an expression of u. Under this ordering, called the Bruhat-Chevalley

ordering, the group W acquires the structure of a partially ordered set.

For any w ∈ W , the right descent set of w, denoted DR(w), is the set of all

simple reflections s for which ws < s. (One can similarly define the left descent

set of any w ∈ W ).

Let w ∈ W and fix a reduced word w = si1si2 · · · si` of w. Let

N(w) := {β ∈ Φ+ : w−1(β) ≺ 0}

be the collection of all positive roots which are sent negative by w−1, called the

inversion set of w. Throughout this text, we will identify the set N(w) with the set

{αi1 , si1(αi2), si1si2(αi3), . . . , si1si2 · · · si(`−1)
(αi`)}

(see [31]). Associated to the reduced word w, we can consider N(w) to be an

ordered set N(w) = {β1, β2, . . . , β`(w)} where β1 = αi1 and for 1 < j ≤ `(w), we

have βi = si1 · · · sij−1
(αij).

2.2 Algebraic Groups and Schubert Varieties

In this thesis we will work with a simple linear algebraic group G defined

over the complex numbers. Let B be a Borel subgroup in G and let T be a max-

imal torus in B. Let Φ be the abstract root system defined by T and Φ+ ⊂ Φ the
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set of positive roots determined by B. We identify the Weyl group W of Φ from

the previous section with NG(T )/T , where NG(T ) denotes the normalizer in G

of T .

The fixed points of the action of T on the flag variety G/B, denoted ew, cor-

respond bijectively with the elements of the Weyl group W = NG(T )/T . We are

now in a position to define Schubert varieties, the central objects of the thesis.

Definition 2.2. For any w ∈ W , the Schubert variety Xw is the closure of the B-orbit

of ew.

Since Schubert varieties are indexed by elements of the Weyl group of G,

many geometric properties of Schubert varieties can be determined by studying

the combinatorial properties of the corresponding Weyl group elements. For ex-

ample, for u ≤ w in W , the Schubert variety Xw contains the Schubert variety Xu

[10]. In fact, many take this to be the starting definition of the Bruhat-Chevalley

ordering. It is well-known that for w ∈ W , we have dim(Xw) = `(w).

The Schubert varieties Xw are projective varieties, which can be singular. This

thesis is concerned with understanding the singularities of Xw. In particular a

major outcome of the thesis is the introduction and study of certain new reso-

lutions of Xw, which have appeared in some special cases in type A and which

generalize the Bott-Samelson resolutions, discussed in the next section.

In the Bott-Samelson resolution of Xw the resolving object Zw is a smooth

projective variety, which can be presented as an iterated P1 fibration. The new

resolutions generalize the Bott-Samelson resolution, but the resolving smooth

projective object is an iterated P/Q fibration, where P and Q are a standard

parabolic subgroups of G with Q ⊂ P a maximal (proper) subgroup of P . Recall

that P is a standard parabolic subgroup of G if B ⊂ P . Any such P corresponds to
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a unique subset I of the simple roots ∆ ⊂ Φ+.

2.3 The Bott-Samelson Resolution

We now describe the Bott-Samelson resolution of Xw, which depends on a

choice of reduced expression for w. The Bott-Samelson resolutions have played

an important role in understanding the singularities of Xw. The following defi-

nitions and facts can all be found in [9].

Fix a reduced expression si1si2 · · · sir for w ∈ W . Define Zw := (Pi1 ×
B Pi2 ×

B

· · · ×B Pir)/B where

• Pi is the minimal parabolic subgroup of GL(n) generated by the Borel sub-

group B and si, and

• (Pi1 ×
B · · · ×B Pir)/B = (Pi1 × · · · × Pir)/ ∼ where ∼ is the equivalence

relation arising from the Br action given by

(b1, b2, . . . , br)(g1, g2, · · · gr) = (g1b
−1
1 , b1g2b

−1
2 , · · · , br−1grb

−1
r ).

The Schubert variety Xw can be expressed as

Xw = Pi1Xsi1w
= · · · = Pi1Pi2 · · ·Pir−1Xsir

= Pi1 · · ·Pir/B.

The Bott-Samelson resolution is then given by π : Zw → Xw where

π : (g1, g2, . . . , gr)B
r 7→ g1g2 · · · grB.

We will now describe how Zw is a sequence of fibrations where the fibers are

all isomorphic to P1. Define ϕr−1 : (Pi1×
B · · ·×BPir)/B → (Pi1×

B · · ·×BPir−1)/B

9



by ϕr−1 : (g1, g2, . . . , gr)B
r 7→ (g1, g2, . . . , gr−1)B

r−1. This is a fibration with fiber

Pir/B
∼= P1. So we have

P1 ∼= Pir/B −→ (Pi1 ×
B · · · ×B Pir)/B

↓

P1 ∼= Pir−1/B −→ (Pi1 ×
B · · · ×B Pir−1)/B

↓

...

↓

P1 ∼= Pi2/B −→ (Pi1 ×
B Pi2)/B

↓

Pi1/B
∼= P1

Later we will see the connection between the Bott-Samelson resolution of Xw

and certain elements in the Hecke algebra of W .

2.4 Hecke Algebra and Kazhdan-Lusztig Elements

Let H denote the Hecke algebra associated to W over the ring Z[q, q−1]. Let

{Tw}w∈W denote the standard basis of H, normalized so that

TsTw =





Tsw if sw > w

(q − q−1)Tw + Tsw if sw < w

for any simple reflection s and any element w in W . The Kazhdan-Lusztig basis

elements of H, developed in [18], are defined to be the unique elements

∑

x≤w

fx(q, q
−1)Tx ∈ H

10



such that the coefficients fx(q, q
−1) are all nonzero polynomials with no constant

term, and such that Cw is fixed under the involution :H → H defined by Tx =

T−1
x−1 and q = q−1.

There exists a family of polynomials {Px,w(q) : x ≤ w ∈ W} ⊆ Z[q] for which

Cw =
∑

x≤w

(−q)`(w)−`(x)Px,w(q
−2)Tx

for all w ∈ W ([18]). The polynomials Px,w(q) are known as the Kazhdan-Lusztig

polynomials, and they are completely characterized by the following three char-

acteristics:

1. Px,w(q) = 0 whenever x � w in the Bruhat-Chevalley order.

2. Px,w(q) = 1 whenever x = w.

3. deg(Px,w(q)) ≤
1
2
(`(x, w)− 1) whenever x < w.

Theorem 2.3. [18] The Kazhdan-Lusztig polynomials Px,w(q) satisfy the following re-

cursive formula. Let x ≤ w and suppose s is a simple reflection such that ws < s.

Then

Px,w(q) = qcPx,ws(q) + q1−cPxs,ws(q)−
∑

x≤z<ws
zs<z

µ(z, ws)q
1
2
l(z,w)Px,z(q) (2.1)

where c = 1 if xs < x, c = 0 if xs > x, and µ(z, ws) is the coefficient of q
1
2
(`(z,ws)−1) in

Pz,ws(q).

In the next section we will see a topological interpretation of the Kazhdan-

Lusztig polynomials.
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2.5 Poincaré Polynomials and Rational Smoothness

For a complex algebraic variety X , the Poincaré polynomial of X is given by

PX(q) =
∑

i≥0

dimC(H
i(X))qi

where H i(X) is the singular homology of X , viewed in its analytic topology. If

Xw is a Schubert variety, we define Pw(q
2) = PXw

(q), and then

Pw(q) =
∑

x≤w

q`(x)

where the sum is over all elements x ≤ w in the Bruhat-Chevalley order on W .

One can also consider the Poincaré polynomials arising from other types of

homology. In particular, this thesis will often deal with the intersection coho-

mology Poincaré polynomial

IX(q) =
∑

i≥0

dimC(IH
i(X))qi.

As was the case for the ordinary Poincaré polynomial PX(q), we define Iw(q
2) =

IXw
(q) Then the polynomial Iw(q) has a combinatorial description, discovered

by Kazhdan and Lusztig [18], described as follows. For w ∈ W and x ≤ w in the

Bruhat-Chevalley order on W , let Px,w denote the Kazhdan-Lusztig polynomial

indexed by x and w. The Poincaré polynomial for the full intersection cohomol-

ogy for Xw is then given by

Iw(q) =
∑

u≤w

Pu,w(q)q
`(u).

We will have occasion to focus on those Schubert varieties which are smooth,

but also those which satisfy a weaker notion of being rationally smooth.

Definition 2.4. For any irreducible complex algebraic variety X and for any point x ∈

X , let H∗
x(X) = H∗(X,X − {x}) be the cohomology with support in {x}. We say that

12



X is rationally smooth if

Hm
x (X) ∼=





0, m 6= 2dim(X)

Q, m = 2dim(X)

for all points x ∈ X .

Since intersection cohomology satisfies Poincaré duality, the intersection co-

homology polynomial IX(q) is always symmetric. In general, ordinary cohomol-

ogy and PX(q) do not have these properties. In fact, it was shown by McCrory

[24] that a complex projective variety X is rationally smooth if and only if its

ordinary cohomology satisfies Poincaré duality. This is equivalent to the state-

ment that X is rationally smooth if and only if PX(q) = IX(q) (see [14], and [3]

Chapter 6).

2.6 Bott-Samelson Elements

Each Bott-Samelson resolution determines an element in the Hecke algebra,

following Springer’s result [30]. Fix a reduced expression si1si2 · · · sir for w ∈ W .

Let π : Zw → Xw be the corresponding Bott-Samelson resolution. We use the

notation of Williamson. For an element E in the bounded derived category of

B-equivariant constructible sheaves on G/B define ch(E) ∈ H by

ch(E) =
∑

w∈W

(
∑

i≥0

dimH i(Ew)q
`(w)+i

)
Tw.

Theorem 2.5. ([30], Theorem 2.8)

ch(Rπ∗(C[`(w)])) = (Tsi1
+ q−1) . . . (Tsir

+ q−1)

In particular if π is a small resolution, then the right-hand side is the previ-

ously defined Cw after replacing q by −q−1.
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This thesis is about generalizing both sides of the equation in the theorem.

2.7 Pattern Avoidance

We now recall some results about pattern avoidance, especially in type A.

For any w ∈ Sn, we often express w in one-line notation rather than as a

composition of simple reflections, depending on our purposes. The one-line

expression for any w ∈ Sn is given by

w(1)w(2) · · · w(n).

For example, if w = s2s1s3s2 ∈ S4, then the one-line expression for w is 3412. If

the one-line expression for w ∈ Sn is w1w2 · · ·wn, we refer to each value wi as the

entry corresponding to the index i. So for w = 35214 ∈ S5, the entry 5 occurs at

index 2.

Definition 2.6. An element w ∈ Sn is said to contain the pattern v ∈ Sk if w, when

expressed in one-line notation, contains a subword of length k whose entries are in the

same relative order as the entries of v. If w does not contain the pattern v, we say that w

avoids v.

For example, the element 42513 ∈ S5 contains the pattern 3412, which ap-

pears in w as the subword 4513, and w avoids the pattern 123 because there are

no indices i < j < k such that wi < wj < wk.

Many geometric properties of a Schubert variety Xw are equivalent to com-

binatorial statements about pattern containment and avoidance. Perhaps most

famously, we have the following.
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Theorem 2.7. [21] For any w ∈ Sn, the singular locus of the Schubert variety Xw is

nonempty if and only if w contains one of two specific patterns: 3412 and 4231.

Theorem 2.7 has been widely used to study the properties of singular Schu-

bert varieties. In Chapter 3, we will explore and expand upon a result of Las-

coux which says that if w ∈ Sn avoids the patterns 3412 and 4231, the associated

Kazhdan-Lusztig basis element Cw can be factored into a product of terms of the

form (Tsi − f(q)) where f is a rational function.

In [2], Billey and Braden extend the notion of pattern avoidance to apply

to all Weyl groups. They show that if W ′ is any subgroup of W conjugate to a

standard parabolic subgroup, then there exists a unique map φ : W → W ′, called

the pattern map for W ′, such that φ is W ′-equivariant, and if φ(w) ≤′ φ(uw) for

some w ∈ W and u ∈ W ′, then w ≤ uw, where ≤′ denotes the restriction of the

Bruhat-Chevalley ordering on W to W ′. For w ∈ W and v ∈ W ′, we say that

w contains the pattern v if φ(w) = v, and that w avoids the pattern v otherwise.

When W is of type A, this definition of pattern containment agrees with the

previous definition. Extending upon Theorem 2.7, Billey has determined the list

of patterns which are avoided precisely when Xw is smooth/rationally smooth

for types B, D and E [1].

The notion of flattening is closely related to pattern avoidance, and will be

used occasionally throughout this thesis when convenient.

Definition 2.8. Let 0 ≤ k ≤ n, let Z = {i1 < i2 < · · · < ik} ⊂ {1, 2, . . . , n}. The

flattening map fl
Z

: Sn → Sk maps an element x ∈ Sn to the element of Sk whose

entries are in the same relative order as the entries x(i1) x(i2) · · · x(ik). When we mean

to emphasize entries rather than indices, we may write fl(x(i1) x(i2) · · · x(ik)) instead of

fl
i1,...,ik

(x).
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For example, fl{3,5,6}(153462) = fl(362) = 231 ∈ S3. Pattern containment is

closely related to flattening, as an element w ∈ Sn contains the pattern v ∈ Sk if

and only if there exist indices i1 < i2 < · · · < ik such that fl{i1,...,ik}(w) = v. For

instance, an element x ∈ Sn contains a 3412 pattern if there exist 1 ≤ i < j < k <

l ≤ n such that fl{i,j,k,l}(x) = 3412.

Definition 2.9. Given a set Z = {i1 < i2 < · · · < ik} ⊂ {1, 2, . . . , n} and an element

x ∈ Sn, the unflattening map unflx

Z
: Sk → Sn maps an element u ∈ Sk to the element

y ∈ Sn for which fl
Z
(y) = u and x(a) = y(a) for all a ∈ [n] \ Z.

For example, we have unfl136245
{3,5,6}([231]) = 135264.

The following two results regarding nonsingular Schubert varieties of type

A are due to Gasharov. The first provides an elegant means of describing the

elements w ∈ Sn corresponding to nonsingular Schubert varieties, and it will be

used often throughout the thesis. The second result provides a generalization

of the factorization of the Poincaré polynomial for the full flag variety due to

Kostant [20] and Macdonald [23].

Theorem/Definition 2.10. [12] Let w ∈ Sn be an element which avoids the patterns

3412 and 4231. Let d = w−1(n) and let c = w(n). The element w falls into one or both

of the following cases.

Case 1: w(d) > w(d+ 1) > · · · > w(n)

Case 2: w−1(c) > w−1(c+ 1) > · · · > w−1(n)

If w is in Case 1, define w′ = w \ n and define m = n − d. If w is in Case 2, define

w′ ∈ Sn−1 to be the element whose entries are in the same relative order as w \ c, and

define m = n− c. (In terms of flattening, we have w′ = fl(w \ n) if w is in Case 1, and

w′ = fl(w \ c) if w is in Case 2).
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Definition 2.11. For any integer a, the q-number associated to a is the polynomial

[a]q := qa−1 + qa−2 + · · ·+ q + 1.

Theorem 2.12. [12] Suppose w corresponds to a nonsingular Schubert variety, and let

w′ and m be defined as in Theorem/Definition 2.10. The element w′ also corresponds to a

nonsingular Schubert variety, and the ordinary Poincaré polynomial Pw(q) satisfies the

following recursive factorization formula:

Pw(q) = [m+ 1]qPw′(q).
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C H A P T E R 3

Modified Height and Lascoux Elements

In this chapter, we will give a modified definition of root height, and use

it to define new elements in an extension of the Hecke algebra, which will be

called Lascoux elements. These Lascoux elements were developed to generalize

a construction given by Lascoux in [22]. We will show that Lascoux elements

are similar to the Kazhdan-Lusztig basis elements of the Hecke algebra in quite

a few ways.

3.1 Preliminaries

For any w ∈ W , we can modify the usual definition of root height for any

root β ∈ N(w) in the following manner.

Definition 3.1. Let w ∈ W . The modified height htw(β) of any root β ∈ N(w) is the

largest integer h for which β can be expressed as a sum of h roots in N(w).

Let w ∈ W and consider any decomposition of a fixed reduced word w of w

into two factors: w = w′(si1si2 · · · sir). Then the associated inversion set of w is

ordered in the following way (see Section 2.1).

N(w) = {N(w′), w′(αi1), w
′si1(αi2), . . . , w

′si1si2 · · · sir−1(αir)}
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Since N(w′) ⊂ N(w), we can compare htw′(β) and htw(β) for any β ∈ N(w′).

Definition 3.2. Let w ∈ W and consider a reduced expression of w of the form w =

w′(si1si2 · · · sir). We say that heights are preserved with respect to w′ (or that heights

are preserved with respect to this expression) if htw′(β) = htw(β) for all β ∈ N(w′).

Definition 3.3. Let w ∈ W with fixed reduced expression w = si1si2 · · · sir . Let

N(w) = {β1, β2, . . . , βr} be the associated ordered inversion set of w. The height se-

quence associated to w is simply the sequence of integers

hts(w) = (htw(β1), htw(β2), . . . , htw(βr)).

Connecting these two definitions, we can see that the reduced expression

w = w′(si1si2 · · · sir)

is height-preserving if hts(w) = (hts(w′), . . .).

We will now provide some general results on modified height.

Proposition 3.4. Let w ∈ W and consider a reduced expression of w of the form

w = si1si2 · · · sir . Fix the reduced expression w−1 = sir · · · si2si1 of w−1. If hts(w) =

(a1, a2, . . . , ar), then hts(w−1) = (ar, . . . , a2, a1).

Proof. Say N(w) = {β1, . . . , βr} where βj = si1si2 · · · sij−1
(αij) for each 1 ≤ j ≤ r.

Then N(w−1) = {β′
r, . . . β

′
1} where each β′

j = sirsir−1 · · · sij+1
(αij). Suppose there

exist indices m,n, k such that βm = βn + βk, i.e.

si1 · · · sim−1(αim) = si1 · · · sin−1(αin) + si1 · · · sik−1
(αik).

Applying w−1 to both sides, we have

sir · · · sim+1sim(αim) = sir · · · sin+1sin(αin) + sir · · · sik+1
sik(αik),

i.e. sir · · · sim+1(αim) = sir · · · sin+1(αin) + sir · · · sik+1
(αik),

i.e. β′
m = β′

n + β′
k.
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Thus every linear relation for the roots βj holds for the roots β′
j , and the desired

conclusion follows.

Lemma 3.5. Fix a reduced expression w of w ∈ W and let hts(w) = (a1, a2, . . . , ar) be

the associated height sequence. Then a1 = ar = 1.

Proof. Say w = si1si2 · · · sir and N(w) = {β1, . . . βr}. Clearly β1 = αi1 has mod-

ified height 1, since the modified height of any inversion vector is less than or

equal to its height as a root.

Let u = wsir = si1si2 · · · sir−1 . Then N(u) = {β1, . . . , βr−1} and βr = u(αr).

Suppose for a contradiction that βr has modified height > 1 in N(w). Then there

exist βi, βj ∈ N(w) such that βr = βi + βj . Then βi, βj ∈ N(u), so applying u−1 to

both sides of this equation, we get αir = u−1(βi)+u−1(βj). This is a contradiction

because we have a positive root αir on the left side, and since βi, βj ∈ N(u), we

know that u−1(βi) and u−1(βj) are negative roots.

The following result for Sn illustrates that modified height can be reinter-

preted in a natural way with respect to one-line notation.

Proposition 3.6. Let w ∈ Sn. Let ep − eq ∈ N(w) with modified height htw(ep − eq) =

m. Then the longest decreasing subword in the one-line expression of w between the

entries q and p consists of m + 1 entries, as does the longest subword of the one-line

expression of w−1 between entry w−1(p) and entry w−1(q).

Proof. The two statements of the proposition are equivalent, and we will prove

the second. First note that ep − eq ∈ N(w) if and only if w−1(p) > w−1(q). If

htw(ep − eq) = m, then we can express ep − eq as the sum of m distinct roots in

N(w):

ep − eq = (ep − ei1) + (ei1 − ei2) + · · ·+ (eim−1 − eq).
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By the above, we have w−1(p) > w−1(i1) > · · · > w−1(im−1) > w−1(q), so w−1

contains a decreasing subword between indices p and q of length m+1. Thus the

longest decreasing subword of the one-line expression of w−1 starting at index p

and ending at index q consists of at least m+ 1 entries.

Suppose the one-line expression for w−1 contains a decreasing subword

w−1(p)w−1(j1)w
−1(j2) · · · w

−1(jm)w
−1(q)

of length m+ 2 between indices p and q. Then ep − ej1 , ej1 − ej2 , . . . , ejm − eq is a

collection of m+ 1 roots in N(w) and

ep − eq = (ep − ej1) + (ej1 − ej2) + · · ·+ (ejm − eq),

so htw(ep − eq) ≥ m+ 1, a contradiction.

Example 3.7. Let w = 7326541 ∈ S7. Then htw(e1 − e7) = 4 because

e1 − e7 = (e1 − e4) + (e4 − e5) + (e5 − e6) + (e6 − e7)

and this expression of e1 − e7 as the sum of distinct roots in N(w) has the maximal

number of terms possible. Alternatively, from the one-line notation for w, we can see

that the decreasing subwords of w between the entries 7 and 1 are given by

71, 731, 721, 7321, 761, 751, 741, 7651, 7641, 7541, and 76541.

The longest of these is 76541 which has 5 entries, so we know that the modified height of

e1 − e7 with respect to w is 4.

3.2 Lascoux Elements

We start this section by providing an algorithm which will be fundamental

to the rest of this chapter and to other chapters to come. The algorithm, which
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provides a method for computing a particular type of reduced expression for an

element w ∈ W , will allow us to define Lascoux elements, the main object of

study in this chapter.

Algorithm 3.8. Let w ∈ W , let R1 be a nontrivial subset of DR(w), and let WR1 denote

the Weyl subgroup of W generated by the reflections in R1. Let T1 be a maximal proper

subset of R1 and let WT1 be the maximal parabolic subgroup of WR1 generated by T1.

Then let w0 denote the longest element of WR1 , let x1 be the unique element of minimal

length in WT1w0, and define w1 = wx−1
1 .

Repeat this process with w1 in place of w to obtain elements x2 and w2 = w1x
−1
2 .

Continue on in this fashion until arriving at some wm = e.

This process provides a reduced expression for w given by

w = xm · · · x2x1.

In general, Algorithm 3.8 does not produce a unique expression of w ∈ W .

At each step of the algorithm, a choice of Ri is made and a choice of Ti ⊂ Ri is

made. In Examples 3.13 and 3.14, we will see how Algorithm 3.8 can be used to

compute different reduced expressions for the same element.

Note that if the subsets Ti in the algorithm are all taken to be trivial, then

each xi is equal to a single simple reflection and the resulting reduced expres-

sion has the form w = (si1) · · · (sir). This reduced expression has correspond-

ing Bott-Samelson resolution (P1 ×
B P2 ×

B · · · ×B Pr)/B, where each Pi is the

parabolic subgroup of G indexed by the reflections of Ri. In Chapter 4, we will

use Algorithm 3.8 to generalize the Bott-Samelson resolution in such a way as to

accommodate the cases where the Ti are not all taken to be trivial.

The following notation will be used throughout the rest of this chapter.
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Notation 3.9. • For any integer a, let [a] := qa−q−a

q−q−1 (this is not to be confused with

the polynomial [a]q =
qa−1
q−1

).

• If si is any simple generator of W , let Ti := Tsi be the standard Hecke algebra

basis element associated to si.

Using Algorithm 3.8, we can now define Lascoux elements, the main objects

of study in this chapter.

Definition 3.10. Let w ∈ W . Apply the first step of Algorithm 3.8 to w to produce

a reduced expression w = w1(si1si2 · · · sir), and say N(w) = {N(w1), β1, β2, . . . , βr}.

Continue applying the algorithm until w is completely factored. We recursively define

the Lascoux element associated to the reduced expression w to be

Lw = Lw1

(
Ti1 −

qhtw(β1)

[htw(β1)]

)(
Ti2 −

qhtw(β2)

[htw(β2)]

)
· · ·

(
Tir −

qhtw(βr)

[htw(βr)]

)

where Le = 1. Note that in general the coefficients of Lw lie in the ring Q(q), rather

than Z[q, q−1], and thus Lw lies in an extension of the Hecke algebra.

Proposition 3.11. Let w ∈ W and let w = w1x be a reduced expression for w obtained

by applying Algorithm 3.8. Then the associated Lascoux element Lw is independent of

the choice of reduced expression x of x.

The proof of this proposition, which is a subject of joint work with Eric Som-

mers, will be published separately.

The following result illustrates a key way in which the Lascoux elements are

similar to the Kazhdan-Lusztig basis elements.

Lemma 3.12. Let w ∈ W and use Algorithm 3.8 to fix a reduced expression w of w.

Then Lw = Lw.
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Proof. Observe that for any simple reflection s in W , we have T−1
s = Ts−(q−q−1).

Thus, for any simple reflection s and any non-zero integer a, we have

(
Ts −

qa

[a]

)
= T−1

s − q−a(q−q−1)
(qa−q−a)

(by the definitions of [a], Ts, q)

= Ts − (q − q−1)
(
1 + q−a

qa−q−a

)
(by the definition of T−1

s )

= Ts − (q − q−1)
(

qa

qa−q−a

)
(rewriting)

= Ts −
qa

[a]
.

The desired conclusion follows immediately.

Let w ∈ W and let w be a fixed reduced expression of w obtained via Algo-

rithm 3.8. Since Lw is bar-invariant, we can see that Lw = Cw if and only if the

coefficients of Lw are all polynomials with zero constant term.

The bar-invariance of the factor
(
Ti −

qa

[a]

)
was known previously by Lascoux

[22]. We will elaborate on Lascoux’s work in Section 3.3 below.

We will now provide a string of examples which will serve not only to pro-

vide a sense of familiarity with Algorithm 3.8 and the computation of Lascoux

elements, but also to illustrate a fundamental observation which has guided the

direction of much of our work.

Example 3.13. Let w = 53241 ∈ S5. We will use Algorithm 3.8 to produce a reduced

expression w for w, and compute the associated Lascoux element Lw. We start the algo-

rithm by observing that DR(w) = {s1, s2, s4} and letting R1 be the entire set DR(w).

- Let T1 = {s1, s2}. Then x1 = s4, w1 = 53214, and DR(w1) = {s1, s2, s3}. Let

R2 = DR(w1).

- Let T2 = {s1, s2}. Then x2 = s3s2s1, w2 = 32154, and DR(w2) = {s1, s2, s4}.

Let R3 = DR(w2).

24



- Let T3 = {s1, s2}. Then x3 = s4, w3 = 32145, and DR(w3) = {s1, s2}. Let

R3 = DR(w3).

- Let T4 = {s1}. Then x4 = s2s1, w4 = 21345, and DR(w4) = {s1}. Let R3 =

DR(w4).

- Let T5 = ∅. Then x5 = s1, and w5 = 12345 = e.

This process factors w into the reduced word

w = x5x4x3x2x1 = (s1)(s2s1)(s4)(s3s2s1)(s4).

Heights are preserved at every stage of this factorization, which we can see immediately

by aligning the height sequences of the wj vertically as below.

hts(w) = (1, 2, 1, 1, 3, 2, 1, 1)

hts(w1) = (1, 2, 1, 1, 3, 2, 1)

hts(w2) = (1, 2, 1, 1)

hts(w3) = (1, 2, 1)

hts(w4) = (1)

We then have

Lw = Lw1
(T4 − q)

= Lw2

(
T3 −

q3

[3]

)(
T2 −

q2

[2]

)
(T1 − q) (T4 − q)

...

= (T1 − q)

(
T2 −

q2

[2]

)
(T1 − q) (T4 − q)

(
T3 −

q3

[3]

)(
T2 −

q2

[2]

)
(T1 − q) (T4 − q)

One could now compute Cw and check directly that Lw = Cw, but a direct compu-

tation is in fact unnecessary in this case. Indeed, by computing only Lw, and verifying
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that the coefficients are all polynomials with zero constant term, we can conclude imme-

diately from Lemma 3.12 that Lw = Cw, since bar-invariance and these conditions on

coefficients are the three defining characteristics of the Kazhdan-Lusztig elements.

Example 3.14. Let w = 53241 ∈ S5 as in Example 3.13. In this example, we will use

Algorithm 3.8 to obtain a reduced expression w for which heights are not preserved. As

before, we have DR(w) = {s1, s2, s4}. Let R1 = DR(w).

- Let T1 = {s1, s4}. Then x1 = s2s1, w1 = 32541, and DR(w1) = {s1, s3, s4}. Let

R2 = DR(w1).

- Let T2 = {s1, s3}. Then x2 = s4s3, w2 = 32415, and DR(w2) = {s1, s3}. Let

R3 = DR(w2).

- Let T3 = {s1}. Then x3 = s3, w3 = 32145, and DR(w3) = {s1, s2}. Let

R4 = DR(w3).

- Let T4 = {s1}. Then x4 = s2s1, w4 = 21345, and DR(w4) = {s1}. Let R5 =

DR(w4).

- Let T5 = ∅. Then x5 = s1, and w5 = 12345 = e.

This process factors w into the reduced word

w = x5x4x3x2x1 = (s1)(s2s1)(s3)(s4s3)(s2s1).

Heights are not preserved with respect to this factorization. Indeed, we have hts(w) =

(1, 2, 1, 1, 3, 1, 2, 1) and hts(w1) = (1, 2, 1, 1, 2, 1). The corresponding Lascoux element

is

Lw = (T1 − q)

(
T2 −

q2

[2]

)
(T1 − q) (T3 − q)

(
T4 −

q2

[2]

)
(T3 − q)

(
T2 −

q2

[2]

)
(T1 − q)

which is not equal to Cw. Indeed, the coefficient of T1T2T1T4 in Lw is q4+ q2+1, which

has nonzero constant term, and thus cannot appear in the expression for Cw.
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In the next example, we encounter an element for which no reduced expres-

sion preserves heights.

Example 3.15. Let w = 45312 ∈ S5. In this example, we will show that there is no

reduced expression of w following Algorithm 3.8 which preserves heights. Our choices

of R1 are {s2, s3}, {s2} or {s3}. If we take R1 = {s2}, then we must take T1 = ∅, which

gives us x1 = s2 and w1 = 43512. Then from Proposition 3.6, we can immediately see

that heights are not preserved in this step since the longest decreasing subword between

5 and 2 consists of three entries in w and ony two entries in w1. Similarly we can

verify that taking R1 = {s3} will not preserve heights. So we must take R1 = {s2, s3}.

We can then take T1 = {s2} or T1 = {s3}. If we take T1 = {s2}, then we will have

w1 = 43152, where the longest decreasing subword between 5 and 2 again consists of

only two entries. If we take T1 = {s3}, then we will have w1 = 41532. Then the longest

decreasing subword between 4 and 1 consists of three entries in w and only two entries

in w1. So with either choice of T1, heights are not preserved.

This shows that there is no way to preserve heights even at the first step of the algo-

rithm. One can check that for this element w, there is also no reduced expression w of w

for which Lw = Cw.

We are very interested in understanding the conditions under which Lw =

Cw for some reduced expression w of w ∈ W . Experimentation has led us to

believe that preserving heights is a necessary condition for Lascoux elements

and Kazhdan-Lusztig elements to be equal.

Conjecture 3.16. Let w ∈ W and let w be a reduced expression for w obtained via

Algorithm 3.8. If Lw = Cw, then heights were preserved at each step of the algorithm.

Proposition 3.17. Let w ∈ W and let w be a reduced expression for w obtained via

Algorithm 3.8. The coefficients of Lw are Laurent polynomials.
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Proposition 3.17 indicates that Lascoux elements always have at least two of

the three defining properties of Kazhdan-Lusztig elements, namely they are bar-

invariant and their coefficients are all Laurent polynomials. The third missing

property is for all coefficients to be polynomials with no constant term. The

proof of Proposition 3.17 will be given for some special cases in the following

sections, and Conjecture 3.16 and Proposition 3.17 are both subjects of future

work with Eric Sommers.

The following examples show that the condition of height preservation is not

sufficient to have Lw = Cw in general. The elements w in Examples 3.18 and

3.19 also appear in work of Williamson and Braden on intersection cohomology

complexes on flag varieties [33] (see Section 4.3 for further discussion).

Example 3.18. We will consider D4 to have the Dynkin diagram shown in Figure 1. In

3

1 2 4

Figure 1. Dynkin Diagram of Type D4

other words, we will consider the Weyl group of D4 to be generated by the simple reflec-

tions s1, s2, s3, s4 where s2 does not commute with any of the other three and s1, s3, s4

all commute with each other.

Let w denote the element s2s1s2s3s4s2s1 ∈ W (D4), which corresponds to a singular

Schubert variety. We will follow Algorithm 3.8 to produce a reduced word for w. We

have DR(w) = {s1, s2}. Let R1 = DR(w).

- Let T1 = {s1}. Then x1 = s2s1, w1 = s1s2s4s3s1, and DR(w1) = {s1, s3, s4}. Let

R2 = DR(w1).
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- Let T2 = {s1, s3}.Then x2 = s4, w2 = s1s2s3s1, and DR(w2) = {s1, s3}. Let

R3 = DR(w2).

- Let T3 = {s1}.Then x3 = s3, w3 = s1s2s1, and DR(w3) = {s1, s2}. Let R4 =

DR(w3).

- Let T4 = {s1}. Then x4 = s2s1, w4 = s1, and DR(wr) = {s1}. Let R5 = DR(w4).

- Let T5 = ∅. Then x5 = s1 and w5 = e.

This process produces the reduced word w = (s1)(s2s1)(s3)(s4)(s2s1) where hts(w) =

(1, 2, 1, 1, 1, 2, 1). Although heights were preserved in this factorization at every step of

the algorithm, we have Lw 6= Cw. Indeed, the coefficient of T1T2T1 in Lw is (q4+q2+1),

which could not possibly appear in the expression for Cw since it is a polynomial with

nonzero constant term.

Example 3.19. Let w = 84567123 ∈ S8. We can apply Algorithm 3.8 to produce the

reduced word

w = (s3)(s2)(s4)(s7)(s3)(s5)(s6s5)(s4s5)(s3)(s7)(s1)(s6)(s2s3)(s4)(s5)(s1)

which has associated height sequence

hts(w) = (1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1).

As in Example 3.18, heights are preserved at every stage of this factorization, and yet

Lw 6= Cw, which can be verified without computing Cw by noting that for the elements

u = s7s3s4s5s6s4s5s4s1s2s1 and v = s6s7s6s2s3s4s5s2s3s2s1, the coefficients of Tu and

Tv in Lw are both (q8 + 7q6 + 13q4 + 7q2 + 1), which is a polynomial with nonzero

constant term.
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Observe that if heights are preserved throughout the factorization of Algo-

rithm 3.8, we get

Lw =

(
Ti1 −

qhtw(β1)

[htw(β1)]

)(
Ti2 −

qhtw(β2)

[htw(β2)]

)
· · ·

(
Tir −

qhtw(βr)

[htw(βr)]

)

where N(w) = {β1, . . . , βr} is the ordered inversion set associated to the reduced

expression w. However, computing such a product without respect to the algo-

rithm will often produce an element with rational (non-polynomial) coefficients,

as in Example 3.20.

Example 3.20. Let w = 53241 with reduced expression w = (s1)(s2s1)(s3)(s4s3)(s2s1)

as in Example 3.14. Then hts(w) = (1, 2, 1, 1, 3, 1, 2, 1), and we can consider the follow-

ing product, which does not give the Lascoux element Lw.

(T1 − q)

(
T2 −

q2

[2]

)
(T1 − q) (T3 − q)

(
T4 −

q3

[3]

)
(T3 − q)

(
T2 −

q2

[2]

)
(T1 − q)

In this product, we are simply taking the factors to be
(
Ti −

qa

[a]

)
where i is an index of

a simple reflection in w and a is the corresponding height in hts(w). The coefficient of

T1T2T1T3T2T1 in this product is (q6 + q4)/(q4 + q2 + 1), which is clearly not a Laurent

polyonomial. From this we can see that in general, the Lascoux element Lw depends on

more than the reduced expression w.

Suppose w is a reduced expression for some w ∈ W obtained via Algorithm

3.8, for which Lw 6= Cw. Then there exists some element u ≤ w of maximal

length for which the coefficient of Tu in Lw has terms of degree ≤ 0. Since all

Lascoux elements are bar-invariant and have Laurent polynomial coefficients,

we can choose a bar-invariant Laurent polynomial c(q) such that the element

Lw − c(q)Lu will have a polynomial coefficient of Tu with no constant term. We

can repeat this process to eventually obtain an expression which satisfies all of
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the characteristic properties of Kazhdan-Lusztig elements and must therefore

equal Cw. This provides a new and potentially efficient way to calculate the

Kazhdan-Lusztig basis elements and thus the Kazhdan-Lusztig polyomials. This

process is related to applying the decomposition theorem to the resolutions we

introduce in Chapter 4 and is analogous to the procedure used by Springer [30]

for the Bott-Samelson resolutions (see also Polo’s paper [26]).

Example 3.21. Let w = 53241 ∈ S5 with w = (s1)(s2s1)(s3)(s4s3)(s2s1). As we

saw in Example 3.14, the coefficient of T1T2T1T4 in Lw is (q4 + q2 + 1), and because of

the constant term 1, we know immediately that Lw 6= Cw. However, for any reduced

expression u of u = s1s2s1s4 obtained via Algorithm 3.8, we can easily verify that

Lw − Lu has no coefficients with degree ≤ 0, and so Lw − Lu = Cw.

The main goals of this chapter are to explore properties of Lw for various

reduced expressions, investigate cases for which Lw might equal Cw, and to con-

sider the consequences of such an equality.

3.3 Previous Work

Lascoux has shown that for any element w ∈ Sn which avoids the patterns

3412 and 4231, there exists a reduced expression w of w for which the corre-

sponding product
∏(

Ti −
qa

[a]

)
equals the Kazhdan-Lusztig element Cw.

Proposition 3.22. [22] Let w ∈ Sn.

(1) If there exists an integer k for which n = w(k) > w(k + 1) > · · · > w(n), then

Cw = Cw\n

(
Tn−1 −

qn−k

[n− k]

)
· · ·

(
Tk+1 −

q2

[2]

)(
Tk −

q1

[1]

)
.

31



(2) If there exists an integer k for which n = w−1(k) > w−1(k + 1) > · · · > w−1(n),

then

Cw =

(
Tk −

q1

[1]

)(
Tk+1 −

q2

[2]

)
· · ·

(
Tn−1 −

qn−k

[n− k]

)
C(w−1\n)−1 .

It was shown by Gasharov in [12] (see Proposition 2.10), that if w ∈ Sn cor-

responds to a nonsingular Schubert variety Xw, then w will satisfy at least one

of the hypotheses of (1) and (2), and that the smaller length element w \ n or

(w−1 \ n)−1 would also correspond to a nonsingular Schubert variety. This al-

lows Proposition 3.22 to be applied inductively until the Kazhdan-Lusztig basis

element Cw is completely factored into terms of the form
(
Ti −

qa

[a]

)
.

Proposition 3.22 extended previous work which showed that these factoriza-

tions hold when w ∈ Sn is the longest element [11]. It was soon after showed

by Kirillov and Lascoux that if w ∈ Sn corresponds to a Schubert subvariety of a

Grassmann variety, then Cw factors into terms of the form
(
Ti −

qa

[a]

)
[19].

3.4 Properties of Modified Height

Lemma 3.23. Let w′ be a fixed reduced word in Sn and suppose w ∈ Sn can be factored

into a reduced word of the form w = w′sk+h · · · sk+1sk ∈ Sn with associated height

sequence hts(w) = (hts(w′), h + 1, h, . . . , 2, 1). Then sk+i ∈ DR(w
′) for each i ∈

{0, 1, . . . , h− 1}.

Proof. Recall that for any simple reflection sj and any element u ∈ Sn, we have

sj ∈ DR(u) if and only if u(j) > u(j +1). We therefore wish to show that w′(k) >

w′(k + 1) > · · · > w′(k + i + 1). Let 0 ≤ i < h and suppose for a contradiction

that w′(k + i) < w′(k + i + 1). By the hypothesis, we know that htw(ew′(k+i) −
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ew′(k+h+1)) = i + 1 and htw(ew′(k+i+1) − ew′(k+h+1)) = i + 2. In other words, when

w−1 is expressed in one-line notation, then longest decreasing sequence between

the index w′(k+i) and the index w′(k+h+1) is shorter than the longest decreasing

sequence between the index w′(k + i + 1) and the index w′(k + h + 1). Also, the

assumption w′(k + i) < w′(k + i + 1) indicates that when w−1 is expressed in

one-line notation, the entry w−1(w′(k + i)) = k + i + 1 appears to the left of the

entry w−1(w′(k+ i+1)) = k+ i+2. Both of these entries necessarily appear to the

left of the entry w−1(w′(k+h+1)) = k. However, since k+ i+1 and k+ i+2 are

consecutive numbers, it is impossible for w−1 to satisfy the two conditions that

(a) k+i+1 appears to the left of k+i+2, and (b) the longest decreasing sequence

between k + i + 1 and k + h + 1 is shorter than the longest decreasing sequence

between k + i+ 2 and k + h+ 1. Thus, we have arrived at a contradiction.

Definition 3.24. Let w ∈ Sn. Consider any maximal decreasing subword of adjacent

entries wjwj+1 · · ·wj+r of the one-line expression of w. A shift by N applied to this

decreasing subword is the reordering of it to obtain the subword

wj+r−N+1wj+r−N+2 · · ·wj+r wiwj+1 · · ·wj+r−N .

In other words, if w′ is the element obtained by applying a shift by N to a

particular decreasing subword wjwj+1 · · ·wj+r of w, then the one-line expression

for w′ is obtained from the one-line expression for w by switching the decreas-

ing subword wj · · ·wj+N−1 (the first N entries in the given subword) with the

subword wj+N · · ·wj+r (the remaining part of the subword). As an expression in

simple reflections, we can express w as w′x where

x = (sj+r−N · · · sj+1sj)(sj+r−N+1 · · · sj+2sj+1) · · · (sj+r−1 · · · sj+Nsj+N−1).

We will say that a shift preserves heights if heights are preserved with respect to

the corresponding factorization of w.

33



Example 3.25. Consider the subword 6431 in the element w = 7564312 ∈ S7. Apply-

ing a shift by 1 to this subword would produce the element 7543162 ∈ S7, and applying

a shift by 2 to this subword would produce the element 7531642 ∈ S7.

Observation 3.26. Let w ∈ Sn and suppose wj wj+1 · · · wj+r is an adjacent decreasing

subword of the one-line expression of w. Let w′ ∈ Sn be the element obtained from w by

shifting this decreasing subword by N . By Proposition 3.6, we can see that this shift is

height-preserving if the following two conditions hold.

1. For all p < j, the length of the longest decreasing subword from the entry wp to

any one of the entries wj, wj+1, . . . , wj+r is the same in w as in w′.

2. For all q > j+ r, the length of the longest decreasing subword from any one of the

entries wj, . . . , wj+r to the entry wq is the same in w as in w′.

Example 3.27. Let w = 35421 and consider the decreasing sequence 5421 in w. A shift

by 3 of this subword would not preserve heights, because the longest decreasing sequence

between the entries 3 and 1 in w involves three entries (3, 2, 1), while the longest decreas-

ing sequence between 3 and 1 in 31542 involves only two entries (3, 1). However, a shift

by 2 of this subword, which results in the element 32154 ∈ S5, is height-preserving.

Lemma 3.28. Suppose w ∈ Sn avoids the patterns 45312 and 4231. Let w(d) = n

and let w(d)w(d + 1) · · · w(d + k) be the maximal adjacent decreasing subword of w

starting with n.

1. Then there exists some p ∈ {1, 2, . . . , k} such that for all i < d we have w(i) <

w(d+ p− 1), and for all i > d+ k, we have w(i) > w(d+ p).

2. It follows immediately that heights are preserved under a shift by p applied to this

subword.
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3. Suppose additionally that w avoids the pattern 3412. For the value of p found

in (1), let w′ denote the element obtained from w by applying a shift by p to the

decreasing subword w(d)w(d + 1) · · · w(d + k). Then w′ belongs to a maximal

parabolic subgroup isomorphic to Sd+p−1 × Sn−(d+p−1).

Proof. 1. If d + k = n, then for all i < d we have w(i) < w(d) = w(d + k − k)

and there are no entries w(i) with i > d + k. We can therefore assume that

d + k < n. Then since this decreasing sequence is maximal, we know that

w(d + k + 1) > w(d + k). This fact alone implies that there exists some p ∈

{1, . . . , k} such that w(d+p−1) > w(d+k+1) > w(d+p). Fix such a p. Then if

w(i) > w(d+p−1) for any i < d, the element w would contain the subword

w(i)w(d)w(d+p−1)w(d+k)w(d+k+1) ∼ 45312. And if w(i) < w(d+p) for

any i > d+k, we would have w(d+p−1)w(d+p)w(d+k+1)w(i) ∼ 4231.

Thus, the claim is satisfied for this choice of p.

3. From the above and by the construction of w′, it is clear that we have

w′(i) < w′(j) for all i ≤ d + p − 1 and all j > d + p − 1. Let J =

{s1, . . . , sn−1} \ {sd+p−1}. Then w′ belongs to the subgroup of Sn generated

by the simple reflections in J . By standard facts (see [7]), we know that this

subgroup is isomorphic to Sd+p−1 × Sn−(d+p−1).

3.5 Identities in the Nonsingular Case

In this section we will prove certain identities with a focus on elements Cw

and Lw where w ∈ W corresponds to a nonsingular Schubert variety. This sec-

tion reproves Proposition 3.22.
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Lemma 3.29 below was originally shown by Kazhdan and Lusztig in their

seminal 1979 paper “Representations of Coxeter Groups and Hecke Algebras”.

We will reprove this result using our terminology.

Lemma 3.29. [18] Let w ∈ W be any element other than the identity element. Let s1 be

a simple reflection in the right descent set of w and let s2 be a simple reflection in the left

descent set of w (in other words, suppose ws1 < w and s2w < w). Then

CwTs1 = (−q−1)Cw = Ts2Cw.

Proof. For any element v ≤ w, we have vs1 ≤ w and Pv,w(q) = Pvs1,w(q), since

s1 ∈ DR(w) (see [17] Chapters 5 and 7). Let v ≤ w and assume vs1 < v. Let `

denote `(w)− `(v). We will compute the coefficients of Tv and Tvs1 in the product

CwTs1 . Both terms are obtained from the expression

(Pv,w(q
−2)(−q)`(v,w)Tv + Pvs1,w(q

−2)(−q)`(vs1,w)Tvs1)Ts1 .

Observe that the factor

(Pv,w(q
−2)(−q)`(v,w)Tv + Pvs1,w(q

−2)(−q)`(vs1,w)Tvs1)

can be re-expressed as Pv,w(q
−2)(−q)`(Tv − qTvs1). Also observe that

(Tv − qTvs1)Ts1 = (−q−1)Tv + (1 + q)Tvs1).

We therefore have

(Pv,w(q
−2)(−q)`(v,w)Tv + Pvs1,w(q

−2)(−q)`(vs1,w)Tvs1)Ts1

= Pv,w(q
−2)(−q)`(Tv − qTvs1)Ts1

= Pv,w(q
−2)(−q)`((−q−1)Tv + (1 + q)Tvs1).

By factoring out (−q−1) from the entire expression and then simplifying, we have

(Pv,w(q
−2)(−q)`(v,w)Tv + Pvs1,w(q

−2)(−q)`(vs1,w)Tvs1)Ts1
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= (−q−1)(Pv,w(q
−2)(−q)`Tv + Pv,w(q

−2)(−q)`+1Tvs1)

= (−q−1)(Pv,w(q
−2)(−q)`(v,w)Tv + Pvs1,w(q

−2)(−q)`(vs1,w)Tvs1).

Hence CwTs1 = (−q−1)Cw. An analogous computation proves that Ts2Cw =

(−q−1)Cw.

If w ∈ Sn corresponds to a nonsingular Schubert variety, then by Theorem

2.7 and Theorem/Definition 2.10, at least one of Propositions 3.30 and 3.31 will

hold.

Recall that if w ∈ Sn, then for any 1 ≤ k ≤ n, the element fl(w \ k) ∈ Sn−1 is

an element which permutes the indices 1 through n − 1, and thus lies in Sn via

the standard embedding of Sn−1 ↪→ Sn.

Proposition 3.30. Let w ∈ Sn and suppose n = w(k) > w(k + 1) > · · · > w(n) for

some 1 ≤ k ≤ n. Then w = (w′)sn−1sn−2 · · · sk ∈ Sn where w′ = fl(w \ n) ∈ Sn−1,

and

Cw′

(
Tn−1 −

qn−k

[n− k]

)(
Tn−2 −

qn−k−1

[n− k − 1]

)
· · ·

(
Tk+1 −

q2

[2]

)(
Tk −

q1

[1]

)

= Cw′(Tn−1Tn−2 · · ·Tk + (−q)1Tn−1Tn−2 · · ·Tk+1 + · · ·+ (−q)n−k−1Tn−1 + (−q)n−k).

Proof. Since n = w(k) > w(k + 1) > · · · > w(n), we have sk, sk+1, . . . , sn−1 ∈

DR(w). Observe that for any integer r ≥ 1, we have

q−1 −
qr

[r]
=

−q−1(qr − q−r)− qr(q − q−1)

qr − q−r
= −

(qr+1 − q−(r+1))

qr − q−r
. (3.1)

We will proceed by comparing coefficients on the left and right. First consider

terms of the form Cw′f(q, q−1)Tv where f is some rational function of q, q−1 and

v is a subword of sn−2sn−3 · · · sk. On the left side of the equation, these terms are

obtained by the expression

Cw′

(
− qn−k

[n−k]

)(
Tn−2 −

qn−k−1

[n−k−1]

)
· · ·
(
Tk −

q1

[1]

)

= Cw′

(
− qn−k

[n−k]

)(
−q−1 − qn−k−1

[n−k−1]

)
· · ·
(
−q−1 − q1

[1]

)
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where the equality follows from Lemma 3.29. By Equation (3.1), the above is equal to

Cw′

(
−qn−k(q − q−1)

qn−k − q−(n−k)

)(
−(qn−k − q−(n−k))

qn−k−1 − q−(n−k−1)

)
· · ·

(
−(q2 − q−2)

q1 − q−1

)
.

This expression simplifies to Cw′(−q)n−k, which is precisely the term on the right side

which does not involve Tn−1.

Let 1 ≤ j < n − k. We will now compute the terms on the right and the left of

the form Cw′f(q, q−1)Tv where f is some rational function and v = sn−1sn−2 · · · sn−ju

and u is a subword of sn−j−2 · · · sk (i.e. v is a subword of sn−1sn−2 · · · sk which involves

sn−1, sn−2, . . . , sn−j but does not involve sn−j−1). On the left side, these terms are ob-

tained from the expression

Cw′Tn−1Tn−2 · · ·Tn−j

(
−

qn−k−j

[n− k − j]

)(
Tn−j−2 −

qn−k−j−1

[n− k − j − 1]

)
· · ·

(
Tk −

q1

[1]

)

which, using Lemma 3.29 and Equation (3.1), simplifies to become

Cw′(−q)n−k−jTn−1,...,n−j .

This is precisely the term on the right side which involves Tn−1Tn−2 · · ·Tn−j .

The only remaining term to be considered is the term involving Tn−1,...k. On both

sides, this term is simply Cw′Tn−1Tn−2 . . . Tk. We have now verified term-by-term that

the left side of the equation is equal to the right side.

Analogous reasoning, or the application of Proposition 3.30 to w−1, proves

the following.

Proposition 3.31. Let w ∈ Sn and suppose n = w−1(k) > w−1(k+1) > · · · > w−1(n)

for some 1 ≤ k ≤ n. Then w = sksk+1 · · · sn−1(w
′) ∈ Sn where w′ = fl((w−1 \ n)−1) ∈

Sn−1, and we have

(
Tk −

q1

[1]

)(
Tk+1 −

q2

[2]

)
· · ·

(
Tn−1 −

qn−k

[n− k]

)
Cw′

= (Tn−1Tn−2 · · ·Tk + (−q)1Tn−1Tn−2 · · ·Tk+1 + · · ·+ (−q)n−k−1Tn−1 + (−q)n−k)Cw′ .
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Corollary 3.32. [22] Suppose w ∈ Sn corresponds to a nonsingular Schubert variety.

If w belongs to Case 1 of Theorem/Definition 2.10, then

Cw = Cw′

(
Tn−1 −

qn−d

[n− d]

)(
Tn−2 −

qn−k−1

[n− d− 1]

)
· · ·

(
Td+1 −

q2

[2]

)(
Td −

q1

[1]

)

= Cw′(Tn−1Tn−2 · · ·Td + (−q)1Tn−1Tn−2 · · ·Td+1 + · · ·+ (−q)n−d−1Tn−1 + (−q)n−d).

If w belongs to Case 2 of Theorem/Definition 2.10, we have

Cw =

(
Tc −

q1

[1]

)(
Tc+1 −

q2

[2]

)
· · ·

(
Tn−1 −

qn−c

[n− c]

)
Cw′

= (Tn−1Tn−2 · · ·Tc + (−q)1Tn−1Tn−2 · · ·Tc+1 + · · ·+ (−q)n−c−1Tn−1 + (−q)n−c)Cw′ .

Proof. Suppose w belongs to Case 1. Then by Proposition 3.30, we know that

Cw′

(
Tn−1 −

qn−d

[n− d]

)(
Tn−2 −

qn−d−1

[n− d− 1]

)
· · ·

(
Td+1 −

q2

[2]

)(
Td −

q1

[1]

)

= Cw′(Tn−1Tn−2 · · ·Td + (−q)1Tn−1Tn−2 · · ·Td+1 + · · ·+ (−q)n−d−1Tn−1 + (−q)n−d).

Note that the left side of this equation is bar-invariant and has dominant term Tw.

Note also that each coefficient on the right side of this equation is a polynomial

in q with no constant term. Any expression with these properties is necessarily

equal to Cw.

Similarly, if w belongs to Case 2, then by Proposition 3.31 we have
(
Tc −

q1

[1]

)(
Tc+1 −

q2

[2]

)
· · ·

(
Tn−1 −

qn−c

[n− c]

)
Cw′

= (Tn−1Tn−2 · · ·Tc + (−q)1Tn−1Tn−2 · · ·Tc+1 + · · ·+ (−q)n−c−1Tn−1 + (−q)n−c)Cw′ .

As before, the left side of this equation is bar-invariant and has dominant term

Tw, and each coefficient on the right side of this equation is a rpolynomial with

no constant term. Hence these expressions must be equal to Cw.

Since every nonsingular element w ∈ Sn necessarily belongs to either Case

1 or Case 2 in Theorem/Definition 2.10, we immediately can conclude that for

any nonsingular w ∈ Sn, there exists a product of factors of the form
(
Ti −

qa

[a]

)

which equals Cw.
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3.6 Identities in the Singular Case

In this section we will prove certain identities with a focus on elements Cw

and Lw where w ∈ W corresponds to a singular Schubert variety.

Lemma 3.33. Suppose w = w′sk+h · · · sk+1sk ∈ Sn has associated height sequence

hts(w) = {hts(w′), h + 1, h, . . . , 2, 1}. Then we obtain the following generalization of

Proposition 3.30:

Cw′

(
Tk+h −

qh+1

[h+1]

)
· · · (Tk − q)

= Cw′(Tk+h · · ·Tk − qTk+h · · ·Tk+1 + · · ·+ (−q)hTk+h + (−q)h+1).

Proof. We will compare coefficients on the left and right sides of the equation

above. First consider terms of the form Cw′f(q, q−1)Tv where f is some rational

function of q, q−1 and v is a subword of sk+h−1sk+h−2 · · · sk. On the left side of the

equation, these terms are obtained by the expression

Cw′

(
− qh+1

[h+1]

)(
Tk+h−1 −

qh

[h]

)
· · ·
(
Tk −

q1

[1]

)

= Cw′

(
−

qh+1

[h+ 1]

)(
−q−1 −

qh

[h]

)
· · ·

(
−q−1 −

q1

[1]

)

= Cw′

(
−qh+1(q − q−1)

qh+1 − q−(h+1)

)(
−(qh+1 − q−(h+1))

qh − q−(h)

)
· · ·

· · ·

(
−(q3 − q−(3))

q2 − q−(2)

)(
−(q2 − q−(2))

q1 − q−(1)

)

= Cw′(−q)h+1

which is precisely the term on the right side which does not involve Tk+h.

Let 1 ≤ j < h. We will now compute the terms on the right and the left of the

form Cw′f(q, q−1)Tv where f is a rational function and v = sk+hsk+h−1 · · · sk+j+1u and

u is a subword of sk+j−1 · · · sk (i.e. v is a subword of sk+hsk+h−1 · · · sk which involves

sk+h, sk+h−1, . . . , sk+j+1 but does not involve sk+j). On the left side, these terms are

obtained by the expression
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Cw′Tk+hTk+h−1 · · ·Tk+j+1

(
− qj+1

[j+1]

)(
Tk+j−1 −

qj

[j]

)
· · ·
(
Tk −

q1

[1]

)

= Cw′

(
−

qj+1

[j + 1]

)(
Tk+j−1 −

qj

[j]

)
· · ·

(
Tk −

q1

[1]

)
Tk+hTk+h−1 · · ·Tk+j+1

= Cw′

(
−

qj+1

[j + 1]

)(
−q−1 −

qj

[j]

)
· · ·

(
−q−1 −

q1

[1]

)
Tk+h · · ·Tk+j+1

= Cw′

(
−qj+1(q − q−1)

qj+1 − q−(j+1)

)(
−(qj+1 − q−(j+1))

qj − q−(j)

)
· · ·

· · ·

(
−(q3 − q−(3))

q2 − q−(2)

)(
−(q2 − q−(2))

q1 − q−(1)

)
Tk+h · · ·Tk+j+1

= Cw′(−q)j+1Tk+h · · ·Tk+j+1

which is precisely the term on the right side which involves Tk+h · · ·Tk+j+1.

The terms involving Tk+h · · ·Tk+1 on the right and left are both clearly given by

Cw′(−q)Tk+h · · ·Tk+1.

The only remaining term to be considered is the term involving Tk+h · · ·Tk. On both

sides, this term is simply Cw′Tk+h · · ·Tk. We have now verified term-by-term that the

left side of the equation is equal to the right side.

Consider the equation of Lemma 3.33. Note that the left side of this equation

is bar-invariant, the right side satisfies the conditions that each coefficient is a

Laurent polynomial in q, and the dominant term on either side is Tw, which are

all properties satisfied by the Kazhdan-Lusztig basis element Cw for w. It turns

out that the coefficients of Lascoux elements occasionally have nonzero terms

of degree ≤ 0 (see the examples of Section 4.3). When this is not the case, the

Lascoux elements are the Kazhdan-Lusztig basis elements.

3.7 Connection to Intersection Cohomology

For any w ∈ W , we will show that under the transformation Ts 7→ −1/q, the

Kazhdan-Lusztig basis element Cw specializes to the polynomial Iw(q).
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Definition 3.34. Define a ring homomorphism F : H → Z[q, q−1] by F (Tsi) =
−1
q

. So

in general F (Tu) =
(

−1
q

)`(u)
.

Lemma 3.35. For any w ∈ W , we have F (Cw) =
(

−1
q

)`(w)

Iw(q
2).

Proof. First note that since Iw(q) is symmetric, we have

Iw(q) = q`(w)Iw(q
−1) = q`(w)

∑

u≤w

q−`(u)Pu,w(q
−1) =

∑

u≤w

q`(w)−`(u)Pu,w(q
−1).

Using this fact, we then have

F (Cw) =
∑

u≤w

(−q)`(w)−`(u)Pu,w(q
−2)

(
−1

q

)`(u)

=

(
−1

q

)`(w)∑

u≤w

(q2)`(w)−`(u)Pu,w(q
−2)

=

(
−1

q

)`(w)

Iw(q
2).

Lemma 3.35 was originally shown by Lascoux in [22]. Note that if w ∈ W has

a reduced expression for which Lw = Cw, then by computing F (Lw) = Iw(q), we

obtain a factorization of Iw(q) into q-numbers. We will revisit this relationship

again in Chapter 5.

3.8 Future Work

Let W denote a general Weyl group. In joint work with Eric Sommers, we

hope to provide a proof of the following statement.

Claim 3.36. Lemma 3.33 has a generalization to all maximal parabolic subgroups, in

Weyl groups of type A and in other types as well. This implies that the coefficients of the

Lascoux elements Lw are all Laurent polynomials.
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C H A P T E R 4

A RESOLUTION OF SCHUBERT VARIETIES

Let W be a Weyl group and let w ∈ W . In this chapter, we will describe a

particular method for constructing a smooth variety Zw−1 which will turn out

not only to be a resolution of the Schubert variety Xw−1 , but which can also be

described as an iterated fibration with fibers isomorphic to partial flag varieties.

We will see that the resolution Zw−1 is closely related to the Lascoux elements of

Chapter 3.

This resolution Zw−1 , is a generalization of the well-known Bott-Samelson

resolution. Zelevinsky defined these resolutions in certain type A cases [35],

and this work was generalized by Sankaran and Vanchinathan in [28]. These

resolutions have been used to prove important results on Schubert varieties and

Kazhdan-Lusztig polynomials (see [26] and [8]).

4.1 Defining the variety Zw−1

Let w ∈ W . Use Algorithm 3.8 to construct subsets Ri and Ti, 1 ≤ i ≤ m,

and obtain an associated reduced expression w for w. Let Pi be the parabolic

subgroup of G indexed by Ri for each 1 ≤ i ≤ m, and similarly define parabolic
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subgroups Qi to be those indexed by the sets Ti. We define a variety Zw−1 as

Zw−1 = P1 ×
Q1 P2 ×

Q2 · · · ×Qm−1 Pm/Qm.

Here, we have

P1 ×
Q1 P2 ×

Q2 · · · ×Qm−1 Pm/Qm ≡ (P1 ×P2 × · · · ×Pm)/ ∼

where ∼ is the equivalence relation arising from the action of Q1×Q2×· · ·×Qm

on P1 ×P2 × · · · ×Pm given by

(q1, q2, . . . , qm) : (a1, a2, . . . , am) 7→ (a1q1, q
−1
1 a2q2, . . . , q

−1
m−1amqm).

Define π : Zw−1 → G/B by π(a1, a2, . . . , am) = a1a2 · · · amB. Then π : Zw−1 →

im(π) is a proper P1-equivariant birational map with P1-stable image. We have

im(π) = Xw−1 , and since `(w) = `(w′) + `(x), we can conclude that π is injective

over the open Schubert cell X◦
w−1 . Thus (Zw−1 , π) is a resolution of the Schubert

variety Xw−1 .

The resolution Zw−1 is a generalization of the Bott-Samelson resolution. In the

Bott-Samelson construction, each Pi is taken to be indexed by a single element

of DR(w
′), rather than a subset of elements, and each Qi is taken simply to be the

Borel subgroup B.

Define φ : Zw−1 → P1 ×
Q1 · · · ×Qm−2 Pm−1/Qm−1 by

φ(a1, a2, . . . , am) = (a1, a2, . . . , am−1).

Then φ is a fibration with associated fiber Pm/Qm. When W = W (An), the fiber

Pm/Qm will be isomorphic to a Grassmannian. In general, the fiber Pm/Qm will

be isomorphic to a minimal generalized flag variety for a simple group G. In this

way, we can see that Zw−1 is an iterated fibration with fibers Pm/Qm, . . ., P1/Q1
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isomorphic to partial flag varieties:

Pm/Qm −→ P1 ×
Q1 · · · ×Qm−1 Pm/Qm

↓

Pm−1/Qm−1 −→ P1 ×
Q1 · · · ×Qm−2 Pm−1/Qm−1

↓

...

↓

P1/Q1

The resolution (Zw−1 , π) of Xw−1 is closely related to the Lascoux elements of

Chapter 3, which were constructed using the same algorithm. When (Zw−1 , π)

is the Bott-Samelson, recall that ch(Rπ∗(C[`(w)])) produces the Kazhdan-Lusztig

basis element Lw−1 in the Hecke algebra under the substitution q 7→ −q−1 (see

Theorem 2.5). More generally, we have the following.

Proposition 4.1. When the reduced word w is produced using the Algorithm 3.8, then

Rπ∗(C[`(w)]) is a sheaf on the Schubert variety Xw−1 (after the substitution q 7→ −q−1)

whose expression in the Hecke algebra is exactly Lw.

The proof is the subject of future joint work with Eric Sommers.

Example 4.2. Let w = 53241 as in Examples 3.13 and 3.14. Recall that the reduced

word w1 = (s1)(s2s1)(s3)(s4s3)(s2s1) used in Example 3.14 did not preserve heights,

and we saw that Lw1 6= Cw1 . The resolution associated with this reduced word is given

by

Zw−1 = P124 ×
P14 P134 ×

P13 P13 ×
P1 P12 ×

P1 P1/B.

The reduced word w2 = (s1)(s2s1)(s4)(s3s2s1)(s4) used in Example 3.13 did preserve

heights, and we saw that Lw2 = Cw2 . The resolution associated with w2 is given by

Zw−1 = P124 ×
P12 P123 ×

P12 P124 ×
P12 P12 ×

P1 P1/B.
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4.2 Applications in Type A

For w ∈ Sn, the processes discussed in the previous section can be reinter-

preted in terms of pattern avoidance to yield some interesting results. In partic-

ular, Lemma 3.28 (3) has a geometric implication as we will now show.

Proposition 4.3. Suppose w ∈ Sn avoids the patterns 3412 and 4231 (equivalently,

suppose w ∈ Sn corresponds to a nonsingular Schubert variety). Then there exists an

isomorphism between a smooth space Zw−1 (the same Zw−1 described in the last section),

which can be decomposed as an iterated fibration of Grassmannians, and the Schubert

variety Xw−1 .

Proof. Let w(d)w(d+1) · · ·w(d+k) be the maximal adjacent decreasing sequence

in the one-line notation for w starting with w(d) = n. Let m denote the integer

between 1 and k described in Lemma 3.28. Let w′ be the element obtained from

applying the height-preserving shift by m to this decreasing subword. Then w′

fixes the index d +m− 1, and so w′ belongs to the subgroup of W generated by

the reflections {s1, . . . , sn}\{sd+m−1}, which is isomorphic to Sd+m−1×Sn−(d+m−1)

(see Lemma 3.28). We have Zw−1 = Pd,d+1,...,d+k−1×
Pd,...,d+m−2,d+m,...,d+k−1Z(w′)−1 and

dim(Zw−1) = dim(Xw−1). Let P1 = Pd,d+1,...,d+k−1 and Q1 = Pd,...,d+m−2,d+m,...,d+k−1.

We will now show that π : Zw−1 → Xw−1 is injective, and hence bijective.

Since Schubert varieties are normal, it then follows that π is an isomorphism of

varieties.

Since w′ also avoids the required patterns 3412 and 4231, we can continue

factoring Z(w′)−1 as above, obtaining

Zw−1 = P1 ×
Q1 P2 ×

Q2 · · · ×Qr−1 Pr/B.

Suppose π(a1, · · · , ar) = π(c1, · · · , cr) for some (a1, · · · , ar), (c1, · · · , cr) ∈ Zw−1 .
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Then the element yr := a−1
r · · · a−1

1 c1 · · · cr ∈ B. Let y1 = a−1
1 c1 ∈ P1. By Lemma

3.28 (3), we know that y1 = a2a3 · · · ar · yr · c
−1
r · · · c−1

3 c−1
2 belongs to the parabolic

subgroup Pd,...,d+m−2,d+m,...,d+k−1 of G corresponding to the subgroup Sd+m−1 ×

Sn−(d+m−1) of W , since

Pi,Qi ⊂ Pd,...,d+m−2,d+m,...,d+k−1

for all 2 ≤ i ≤ r. Thus y1 lies in the intersection of these two parabolic subgroups,

so y1 ∈ Q1.

By induction, we can apply the same process as above to show that

y2 := a−1
2 a−1

1 b1b2 ∈ Q2

...

yr−1 := a−1
r−1 · · · a

−1
1 b1 · · · br−1 ∈ Qr−1.

Then we have (y1, · · · , yr) ∈ Q1 ×Q2 × · · ·Qr−1 × B, and

(a1y1, y
−1
1 a2y2, y

−1
2 a3y3, · · · , y

−1
r−1aryr) = (c1, c2, · · · , cr)

so (a1, · · · , ar) and (c1, · · · , cr) belong to the same equivalence class in Zw−1 . Thus

π is injective.

Corollary 4.4. Suppose w ∈ Sn avoids the patterns 3412 and 4231 (equivalently sup-

pose the Schubert variety Xw is nonsingular). Then the Poincaré polynomial of the

Schubert variety Xw factors into a product of symmetric polynomials, each of which are

Poincaré polynomials indexed by elements in a maximal parabolic quotient W/WJ .

Proposition 4.3 reproves results of Wolper [34] and Ryan [27], who have

shown that any nonsingular Schubert variety of type A can be realized as an it-

erated sequence of fibrations ending in a Grassmannian, for which all fibers are
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isomorphic to Grassmannians. Gasharov and Reiner extended this result toall

classical Weyl groups [13]. Billey and Postnikov then showed that even in the

exceptional Weyl groups, the Poincaré polynomial of any smooth Schubert va-

riety factors as a product of symmetric polynomials each of which are Poincaré

polynomials indexed by elements in a maximal parabolic quotient W/WJ [4].

4.3 Future Work

When Algorithm 3.8 is applied to some element w ∈ W to produce a re-

duced expression w for which heights are preserved, we often have Lw = Cw,

but this is not necessarily the case. We know that Lw = Cw if and only if the

resolution (Zw, π) is small. In joint work with Eric Sommers, we are currently

investigating the problem of determining when these resolutions are small. This

will build upon previous work of Zelevinsky [35], who determined an explicit

small resolution on Grassmann Schubert varieties in type A, and Sankaran and

Vanchinathan [28], who extended Zelevinsky’s construction to types C and D,

and it will also build upon the work of Billey and Warrington [5], who showed

321-hexagon avoiding permutations in Sn are precisely the elements of Sn corre-

sponding to Schubert varieties with small Bott-Samelson resolutions.

Suppose Algorithm 3.8 is applied to some element w ∈ W to produce a re-

duced expression w for which heights are preserved, but that Lw 6= Cw (see

Examples 3.18 and 3.19). All such elements that we have found so far coincide

exactly with the elements discovered by Williamson and Braden in [33] for which

the intersection cohomology complexes have torsion in their stalks or costalks.

This connection is also being explored.
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C H A P T E R 5

THE INVERSION POLYNOMIAL

In this chapter, we will define a new polynomial, called the inversion polyno-

mial, using the Lascoux elements developed in Chapter 3. The inversion polyno-

mial Nw(q) will equal the intersection cohomology polynomial Iw(q) whenever

Lw = Cw, regardless of the reduced expression chosen for w. This polynomial

will have a natural factorization into a product of q-numbers, which will allow

us to define its exponents and study them in comparison with those of Iw(q).

At the end of the chapter, we will analyze Nw(q) and compare it to Iw(q) in a

manner which is independent of the Lascoux elements Lw.

5.1 Definition

In Section 3.7, we defined a function F : H → Z[q, q−1] by F (Tsi) =
−1
q

, and

saw that we can recover the intersection cohomology Poincaré polynomial for

any w ∈ W by applying F to its associated Kazhdan-Lusztig basis element Cw.

Specifically, Lemma 3.35 shows that F (Cw) =
(

−1
q

)`(w)

Iw(q
2). When Lw = Cw for

some reduced expression w of w ∈ W , this specialization produces a particular

product of polynomials, which will be the main topic of study in this chapter.

49



Lemma 5.1. Let w ∈ W , and suppose (λ1, λ2, . . .) forms a partition of `(w), where

λi := #{β ∈ N(w) : htw(β) = i}. Then regardless of reduced expression, the product

q`(w)F (Lw) is a polynomial.

Proof. Fix a reduced expression w = si1si2 · · · sir and consider the associated or-

dered inversion set of w given by N(w) = {β1, β2, . . . , βr}. Then the Lascoux

element associated with this reduced expression is defined to be

Lw =

(
Tsi1

−
qhtw(β1)

[htw(β1)]

)
· · ·

(
Tsir

−
qhtw(βr)

[htw(βr)]

)
.

For brevity, let hj := htw(βj) and write Lw =
∏r

j=1

(
Tj −

q
hj

[hj ]

)
. Then we have

F (Lw) =
∏r

j=1

(
−1
q
− q

hj

[hj ]

)
. Since [a] := qa−q−a

q−q−1 for any integer a, we can rewrite

this expression to obtain

F (Lw) =

(
−1

q

)r r∏

j=1

[hj + 1]q2

[(hj − 1) + 1]q2

where each term [h+1]q2 is simply the q2-number (q2)h + (q2)h−1 + · · ·+ (q2) + 1.

We can now expand this product and cancel terms:

F (Lw) =

(
−1

q

)r
(
[1 + 1]

λi1

q2

[2 + 1]
λi2

q2

[1 + 1]
λi2

q2

· · ·
[r + 1]

λir

q2

[(r − 1) + 1]
λir

q2

)

=

(
−1

q

)r (
[1 + 1]

λi1
−λi2

q2
[2 + 1]

λi2
−λi3

q2
· · · [(r − 1) + 1]

λir−1
−λir

q2
[r + 1]λr

q2

)
.

Since r = `(w), the desired conclusion follows.

Definition 5.2. Let w ∈ W and suppose (λ1, λ2, . . .) forms a partition of `(w), where

λi := #{β ∈ N(w) : htw(β) = i}. Define the inversion polynomial Nw(q) to be the

unique polynomial for which F (Lw) = (−1/q)`(w)Nw(q
2). (We write Lw rather than

Lw to emphasize that F (Lw) is independent of reduced expression).

By Lemma 3.35 and Definition 5.2, the following is clear.

Proposition 5.3. Let w ∈ W . We have Nw(q) = Iw(q) whenever w has a reduced

expression w for which Lw = Cw.
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5.2 Exponents of Nw(q)

When a polynomial has the form
∏

i[ai+1]q, the values ai are often called the

exponents of the polynomial. Inversion polynomials are defined so as to always

have a factorization as a product of q-numbers, and so it is natural to study their

exponents. Doing so will allow us to describe the inversion polynomials in a

manner that is independent of Lascoux elements.

For any w ∈ W , the exponents of Nw(q) can be computed in the following

way. Let λi := #{β ∈ N(w) : htw(β) = i}. Suppose (λ1, λ2, . . .) forms a partition

of `(w). (In Example 5.6, we will encounter an element for which the sequence

(λi) does not form a partition of `(w)). Let (m1,m2, . . .) be the partition conjugate

to (λi). Then the exponents of Nw(q) are precisely the values mi; i.e. the inversion

polynomial for w is given by

Nw(q) =
∏

i≥1

[mi + 1]q.

Example 5.4. Let w = 3421 = s2s1s2s3s2 ∈ S4. Then w corresponds to a nonsingular

Schubert variety. The positive roots sent negative by w−1, along with their heights

relative to N(w), are given below.

β ∈ N(w) : e2 − e3 e2 − e4 e3 − e4 e1 − e4 e1 − e3

htw(β) : 1 2 1 2 1

where, for example, htw(e1 − e4) = 2 because e1 − e4 = (e1 − e3) + (e3 − e4). From

this we can see that (λ1, λ2) = (3, 2), which has conjugate partition (̃λi) = (2, 2, 1). We

therefore have

Nw(q) = [2 + 1]2q[1 + 1]q = 1 + 3q + 5q2 + 5q3 + 3q4 + q5.

For this element, we have Nw(q) = Pw(q).
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Example 5.5. Let w = 53412 = s2s1s3s2s4s3s2s1 ∈ S5, which corresponds to a singu-

lar Schubert variety (in fact, the element 53412 contains both patterns 3412 and 4231).

The positive roots sent negative by w−1, along with their heights relative to N(w), are

given below.

β ∈ N(w) : e2 − e3 e1 − e3 e2 − e4 e1 − e4 e2 − e5 e1 − e5 e4 − e5 e3 − e5

htw(β) : 1 1 1 1 2 2 1 1

From this we can see that (λ1, λ2) = (6, 2), which has conjugate partition (̃λi) =

(2, 2, 1, 1, 1, 1). We therefore have

Nw(q) = [2 + 1]2q[1 + 1]4q = 1 + 6q + 17q2 + 30q3 + 36q4 + 30q5 + 17q6 + 6q7 + q8.

For this element, we have Nw(q) 6= Pw(q), but Nw(q) = Iw(q).

Example 5.6. Let w = 564123 = s3s2s1s4s3s2s1s5s4s3s2 ∈ S6, which also corresponds

to a singular Schubert variety. The roots sent negative by w−1, along with their heights

relative to N(w), are given below.

β ∈ N(w) : e3 − e4 e2 − e4 e1 − e4 e3 − e5 e2 − e5 e1 − e5

htw(β) : 1 1 1 2 2 2

β ∈ N(w) : e4 − e5 e3 − e6 e2 − e6 e1 − e6 e4 − e6

htw(β) : 1 2 2 2 1

From this we can see that (λ1, λ2) = (5, 6), which is not a partition of `(w), and so

Nw(q) is not defined.

5.3 Properties of the Inversion Polynomial

In this section, we will study Nw(q) independent of Lw. Since it is possible in

theory for Nw(q) to equal Iw(q) (or for Nw(q) to have other interesting properties)

in cases where there is no reduced expression for which Lw = Cw, it is useful to

be able to study properties of Nw(q) as a polynomial in its own right.
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5.3.1 The Nonsingular Case in Type A

When w ∈ Sn corresponds to a nonsingular Schubert variety, we know from

Chapter 3 that Cw = Lw for some reduced expression w of w, and thus by Propo-

sition 5.3, we have Nw(q) = Iw(q) (and hence Nw(q) = Pw(q)). In this section,

we will analyze Nw(q) independently of the Hecke algebra to attempt to arrive

at the same result.

Note that from Theorem 2.12, we can see that for nonsingular elements w ∈

Sn, both the ordinary Poincaré polynomial Pw(q) and the inversion polynomial

Nw(q) factor into q-numbers. We will now show the much stronger statement

that in fact we have Nw(q) = Pw(q) in this case.

Proposition 5.7. Suppose w ∈ Sn corresponds to a nonsingular Schubert variety. Then

Nw(q) = Pw(q) (and hence Nw(q) = Iw(q)).

Proof. Since w avoids 3412 and 4231, we know that w belongs to one of the two

cases described in Theorem/Definition 2.10. Suppose w belongs to the first case,

i.e. suppose n = w(d) > w(d+1) > · · · > w(n). Then m := n−d, and w′ := fl(w\n)

can be considered in one-line notation as w with the entry n replaced by a blank

space. This allows us to consider N((w′)−1) as a subset of N(w−1). For example,

if w = 31542, then we can consider w′ = 31 42, so N((w′)−1) = {e1 − e2, e1 −

e5, e4 − e5} is a subset of N(w−1) = {e1 − e2, e1 − e5, e3 − e4, e3 − e5, e4 − e5}.

Let ei − ej ∈ N((w′)−1) with htw′(ei − ej) = h′. Let h = htw(ei − ej). Since

every decreasing sequence of entries between index i and index j in the one-

line expression for w′ also occurs in the one-line expression for w, it is clear that

h′ ≤ h. Since neither i nor j can be equal to d, and since w(d) = n, any decreasing

sequence of entries between index i and index j in w cannot involve index d, and

therefore must also occur in w′. Thus h′ = h.
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We will use this fact to describe the modified heights of all roots in N(w−1).

Note that

N(w−1) = N((w′)−1) t {en−1 − en, en−2 − en, . . . , ed − en}

where any ej−en has modified height htw(ej−en) = n− j and each root ei−ej ∈

N((w′)−1) has htw′(ei−ej) = htw(ei−ej). This allows us to compute the inversion

polynomial of w:

Nw(q) = [m+ 1]qNw′(q).

By Theorem 2.12, we know that Pw(q) satisfies the same recurrence relation, so

since Nid(q) = 1 = Pid(q), we have Nw(q) = Pw(q) in this case.

Now suppose w belongs to Case 2 of Theorem/Definition 2.10. Then n =

w−1(c) > w−1(c + 1) > · · · > w−1(n), m := n − c, and w′ := fl(w \ c). Then we

can consider w′ to be an element of Sn by defining w′(n) = n. For example, if

w = 4132 ∈ S4, then we will consider w′ = 1324 ∈ S4 instead of 132 ∈ S3. As

before, this allows us to directly see N((w′)−1) as a subset of N(w−1). If ei − ej ∈

N((w′)−1) with htw′(ei − ej) = h′ and htw(ei − ej) = h, then j 6= n, and so it is

again clear that h = h′. We have

N(w−1) = N((w′)−1) t {ew−1(c+1) − en, ew−1(c+2) − en, . . . , ew−1(c+m) − en}

where each htw(ew−1(c+j) − en) = j, and for any ei − ej ∈ N((w′)−1), we have

htw(ei − ej) = htw′(ei − ej). Hence we again have Nw(q) = [m+1]qNw′(q), and so

inductively we again have Nw(q) = Pw(q).

5.3.2 The Singular Case in Type A

Since Nw(q) and Iw(q) are both symmetric polynomials, it is obvious that

neither is equal to the ordinary Poincaré polynomial Pw(q) when w corresponds
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to a singular Schubert variety. In this subsection, we will isolate some conditions

under which w corresponds to a singular Schubert variety and Nw(q) = Iw(q).

Lemma 5.8. Suppose w ∈ Sn avoids the pattern 45312 but not 3412. Then there exist

indices 1 ≤ i < j < k ≤ n such that fl{i,j,j+1,k}(w) = 3412. In other words, there exists

a 3412 pattern in w in which the middle two entries of the pattern are adjacent.

Proof. Let w(i)w(j)w(k)w(l) denote a 3412 pattern in w for which k − j is min-

imal. Suppose for a contradiction that k 6= j + 1. If w(j + 1) < w(k), then

fl{i,j,j+1,l} = 3412, which contradicts the minimality of k−j. Similarly if w(j+1) >

w(i), then fl{i,j+1,k,l} = 3412, again contradicting the minimality of k − j. Finally,

if w(k) < w(j + 1) < w(i), then fl{i,j,j+1,k,l} = 45312, contradicting the hypothe-

sis.

Let w ∈ Sn be an element which avoids the patterns 4231, 45312, 45213 and

35412, but not 3412. This means that for any 3412 pattern w(i)w(j)w(k)w(l)

in w, the root ej − ek is not a linear combination of the other roots in N(w−1).

By Lemma 5.8, we can find indices i, j, k such that fl{i,j,j+1,k}(w) = 3412. Let

s = sj (so fl{i,j,j+1,k}(ws) = 3142). Throughout the rest of this subsection, we will

consider w and s to be fixed.

Lemma 5.9. The element ws will also avoid the patterns 4231, 45312, 45213, and 35412.

Proof. Observe that since ws is obtained from w by switching two adjacent en-

tries, if ws contains a pattern which w does not, then this pattern must utilize

both the entries w(j) and w(j + 1).

First suppose that ws contains the pattern 4231. Then there must exist indices

p < j and q > j+1 such that fl(w(p)w(j+1)w(j)w(q)) = 4231. However, if p < i,

then fl(w(p)w(i)w(j)w(j + 1)) = 4231, and if p > i, then fl(w(i)w(p)w(j)w(j +

1)w(k)) = 35412, both of which contradict the assumptions on w.
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Suppose ws contains the pattern 45312. Then either there exist indices p <

q < r all greater than j + 1 such that fl(w(j + 1)w(j)w(p)w(q)w(r)) = 45312, or

else there exist indices p < q < r all less than j such that fl(w(p)w(q)w(r)w(j +

1)w(j)) = 45312. In the former case, we have fl(w(i)w(j)w(p)w(q)w(r)) = 45312,

and in the latter case, we have fl(w(p)w(q)w(r)w(j + 1)w(k)) = 45312. In both

cases, we contradict the assumption that w avoids the pattern 45312.

Suppose ws contains the pattern 45213. Then either there exist indices p <

q < r all greater than j + 1 such that fl(w(j + 1)w(j)w(p)w(q)w(r)) = 45213,

or there exist indices p < q < r all less than j such that fl(w(p)w(q)w(r)w(j +

1)w(j)) = 45213. In the first case, we have fl(w(i)w(j)w(p)w(q)w(r)) = 45213,

and in the second we have fl(w(p)w(q)w(r)w(j + 1)w(k)) = 45312. Either way,

this contradicts the assumptions on w.

Finally, suppose ws contains the pattern 35412. Then either there exist indices

p < q < r all greater than j + 1 such that fl(w(j + 1)w(j)w(p)w(q)w(r)) = 35412,

or there exist indices p < q < r all less than j such that fl(w(p)w(q)w(r)w(j +

1)w(j)) = 35412. In the first case, we have fl(w(i)w(j)w(j+1)w(p)w(q)) = 45312,

and in the second case, we have fl(w(p)w(q)w(r)w(j + 1)w(k)) = 45312. Either

way, we contradict the assumptions.

Proposition 5.10. We have Nw(q) = (q + 1)Nws(q).

Proof. It is clear that N(w−1) = N((ws)−1) t {ej − ej+1}, and htw(ej − ej+1) = 1.

We will now show that for any root ep − eq ∈ N((ws)−1), we have htws(ep − eq) =

htw(ep − eq).

Let ep − eq ∈ N((ws)−1) with h′ = htws(ep − eq) and h = htw(ep − eq). Clearly

h′ ≤ h since every subword of the one-line expression for w′ is also a subword

of the one-line expression for w. Suppose for a contradiction that h′ � h. This
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implies that the longest decreasing subword between index p and index q in w

necessarily involves both the entries w(j) and w(j + 1). In particular, we have

p ≤ j < j + 1 ≤ q with w(p) ≥ w(j) > w(j + 1) ≥ w(q), and either p � j or

j + 1 � q or both. In what follows, let

w(p)w(a1) · · · w(as)w(j)w(j + 1)w(b1) · · · w(bt)w(q)

denote the longest decreasing subword between index p and index q in the one-

line expression for w.

Suppose p � j. If as < i, then w(as) occurs to the left of w(i) in the one-line

expression of w. Then w(as) > w(j) implies w(as) > w(i), so since we know that

w(i) > w(j + 1) as well, we can simply replace w(j) with w(i) in the decreas-

ing subword above to obtain a decreasing subword of the same length between

index p and index q which does not use both w(j) and w(j + 1). However, this

contradicts the reasoning above. We must therefore have as > i. But in this

case, we have i < as < j and fl{i,as,j,j+1,k}(w) = 35412, which contradicts the

hypothesis.

Suppose instead that q 
 j+1. We will proceed in a similar fashion. If b1 > k,

then w(j + 1) can be replaced with w(b1) in the decreasing subword above to

obtain a decreasing subword of the same length between index p and index q

which does not use both w(j) and w(j + 1). Otherwise, we have j + 1 < b1 < k

and fl{i,j,j+1,b1,k}(w) = 45213, a contradiction.

We have now shown that for any ep−eq ∈ N((ws)−1), we have htws(ep−eq) =

htw(ep − eq). It follows that Nw(q) = (q + 1)Nws(q).

We will now shift our attention to computing the polynomial Iw(q).

Lemma 5.11. Let z < ws with `(z, ws) = 1. Then zs ≮ z.
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Proof. Since z < ws with `(z) = `(ws) − 1, we must have z = (ws)t for some

transposition t. In particular, the permutation z is obtained from ws by switching

two entries.

Suppose for a contradiction that zs < z. Then z(j) > z(j + 1). Since ws(j) <

ws(j + 1), either z is obtained from ws by switching ws(j) = w(j + 1) with an

entry A > w(j), or else z is obtained from ws by switching ws(j+1) = w(j) with

an entry B < w(j + 1).

In the former case, since `(z) < `(ws), the entry A must occur to the left of

w(j + 1) in the one-line expression of ws. However, if A occurs to the left of

w(i), then fl(Aw(i)w(j)w(j + 1)) = 4231, and if A occurs to the right of w(i), then

fl(w(i)Aw(j)w(j + 1)w(k)) = 35412. Both contradict the assumptions on w.

Similarly, if z is obtained from ws by switching w(j) with an entry B <

w(j+1), then since `(z) < `(ws), the entry B must occur to the right of w(j) in ws.

If B occurs to the right of w(k) in the one-line expression of ws, then fl(w(i)w(j+

1)w(k)B) = 4231, and if B occurs to the left of w(k), then fl(w(i)w(j)w(j +

1)Bw(k)) = 45213. Again, both options contradict the assumptions.

Throughout the rest of this section, we will often refer to elements which

satisfy the following condition.

Definition 5.12. We will say that a pair of elements u ≤ v in W satisfies the Submax-

imal Degree Condition if deg(Pu,v(q))) � 1
2
(`(u, v)− 1).

Lemma 5.13. Assume that for all z < ws with `(z, ws) > 1, the pair (z, ws) sat-

isfies the Submaximal Degree Condition. Then for any x ≤ w, we have Px,w(q) =

qcPx,ws(q) + q1−cPxs,ws(q); i.e. the sum on the right side of Equation (2.1) is 0.

Proof. Suppose x < ws and that there is some z for which x ≤ z < ws and

zs < z. If the term of the sum in Equation (2.1) corresponding to z is nonzero,
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then `(z, ws) must be odd. By Lemma 5.11, we know that if `(z, ws) = 1, then

zs ≮ z, and thus z cannot contribute a term to the sum. And if `(z, ws) > 1, then

since (z, ws) satisfies the Submaximal Degree Condition, we have µ(z, ws) = 0,

and thus z does not contribute a term to the sum.

Conjecture 5.14. For all elements x < ws with xs < ws, we have Px,ws(q) = Pxs,ws(q).

Proposition 5.15. Assume that for all z < ws with `(z, ws) > 1, the pair (z, ws)

satisfies the Submaximal Degree Condition. Assume also that Conjecture 5.14 holds.

Then Iw(q) = (q + 1)Iws(q).

Proof. Note that for all x ≤ w, we have Px,w(q) = Pxs,w(q). This would be true

just from the fact that ws < w ([7]), but it is easy enough to verify at this point:

Px,w(q) = qPx,ws(q) + Pxs,ws(q) = Pxs,w(q).

Using this fact, it is straightforward to compute Px,w(q) for each x ≤ w.

For example, consider the elements x < w such that x, xs both correspond to

singular points in Xws. Then Px,w(q) = qPx,ws(q) + Px,ws(q) = (q + 1)Px,ws(q)

by the conjecture. Continuing on in this way and then computing the sum

Iw(q) =
∑

x≤w Px,w(q)q
`(x), one can verify that

∑

x≤w

Px,w(q)q
`(x) = (q + 1)

∑

x≤ws

Px,ws(q)q
`(x)

or in other words, Iw(q) = (q + 1)Iws(q).

Proposition 5.16. Assume that for all z < ws with `(z, ws) > 1, the pair (z, ws)

satisfies the Submaximal Degree Condition. Assume also that Conjecture 5.14 holds.

Then Nw(q) = Iw(q).

Proof. By results 5.10 - 5.15 above, we have

Nw(q) = (q + 1)Nws(q) and Iw(q) = (q + 1)Iws(q),
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where ws avoids the required patterns 4231, 45312, 45213, and 35412. This pro-

cess can then be iterated, allowing us to obtain the formulas

Nw(q) = (q + 1)rNws1s2···sr(q) and Iw(q) = (q + 1)rIws1s2···sr(q)

where the element ws1 · · · sr corresponds to a nonsingular Schubert variety. By

5.7, we know that Nws1s2···sr(q) = Pws1s2···sr(q) = Iws1s2···sr(q). Hence Nw(q) =

Iw(q).

60



C H A P T E R 6

THE CLOSURE POLYNOMIAL

In 2008, Oh, Postnikov, and Yoo described a root theoretic method for deter-

mining the ordinary Poincaré polynomial Pw(q) when w ∈ Sn corresponds to

a nonsingular Schubert variety [25]. They defined a polynomial Rw(q), called

the distance enumerating polynomial of w, which like the intersection cohomol-

ogy polynomial Iw(q) is always palindromic and coincides with the ordinary

Poincaré polynomial Pw(q) when the Schubert variety Xw is nonsingular. In our

quest to develop an efficient combinatorial method for determining the intersec-

tion cohomology Poincaré polynomial in as many cases as possible, we define

in this chapter another new polynomial, called the closure polynomial Mw(q).

The closure polynomial is a generalization of the distance enumerating polyno-

mial in the sense that it coincides with Rw(q) (and hence Pw(q) and Iw(q)) when

w ∈ Sn corresponds to a nonsingular Schubert variety, and it coincides with

Iw(q) in many singular cases as well. One advantage of Mw(q) is that it can be

computed for any element w of any Weyl group.
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6.1 Hyperplane Arrangements

For any w ∈ Sn, the inversion set N(w−1) gives rise to the inversion hyper-

plane arrangement of w, denoted Aw, which consists of all hyperplanes xi−xj =

0 in Rn for which ei − ej ∈ N(w−1).

Definition 6.1. The distance enumerating polynomial Rw(q) =
∑

r q
d(r0,r) is the

generating function that counts regions r of the arrangement Aw according to the dis-

tance d(r0, r) from a fixed initial region r0.

The polynomial Rw(q) is always palindromic, and for a certain fixed initial

region, it has been shown that when Xw is nonsingular, we have Rw = Pw [25].

When n is small (n ≤ 4), we can easily visualize hyperplane arrangements.

For W = S3, for instance, there are three possible hyperplanes which might

appear in an arrangement. Let H1 denote the plane defined by x1 − x2 = 0, let

H2 denote the plane defined by x2 − x3 = 0, and let H3 denote the plane defined

by x1 − x3 = 0. The intersection of any two of these planes is the line given by

x1 = x2 = x3. Since the three planes intersect in a common line, we can visualize

them as three lines intersecting in a common point. This allows us to draw them

in R2. All three hyperplanes will appear in the hyperplane arrangement for the

longest element w0 = 321, and the hyperplanes H1 and H3 will appear in the

hyperplane arrangement for w = 312. See Figures 2 and 3.

For each hyperplane in A(w), choose one side to be positive and one to be

negative. Let the fundamental region of the hyperplane be the region which is

positive with respect to each hyperplane. Then the distance enumerating poly-

nomial can be computed by simply letting the coefficient of qm be the number of

regions which are distance m away from the fundamental region. As we can see

from Figures 2 and 3, we have R[321](q) = 1+2q+2q2+q3, and R[312] = 1+2q+q2.
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Figure 2. A[321]: R[321](q) = 1 + 2q + 2q2 + q3

Figure 3. A[312]: R[321](q) = 1 + 2q + q2

For W = S4, there are six possible hyperplanes, which we will denote as

follows.

H1 = {(x1, x2, x3, x4) : x1 − x2 = 0}

H2 = {(x1, x2, x3, x4) : x1 − x3 = 0}

H3 = {(x1, x2, x3, x4) : x1 − x4 = 0}

H4 = {(x1, x2, x3, x4) : x2 − x3 = 0}

H5 = {(x1, x2, x3, x4) : x2 − x4 = 0}

H6 = {(x1, x2, x3, x4) : x3 − x4 = 0}
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These hyperplanes have seven distinct lines of intersection:

L1 = {(s, s, s,−3s) : s ∈ R} = H1 ∩H2 = H1 ∩H4 = H2 ∩H4

L2 = {(s,−3s, s, s) : s ∈ R} = H2 ∩H3 = H2 ∩H6 = H3 ∩H6

L3 = {(s, s,−3s, s) : s ∈ R} = H1 ∩H3 = H1 ∩H5 = H3 ∩H5

L4 = {(−3s, s, s, s) : s ∈ R} = H4 ∩H5 = H4 ∩H6 = H5 ∩H6

L5 = {(s, s,−s,−s) : s ∈ R} = H1 ∩H6

L6 = {(s, s,−s,−s) : s ∈ R} = H3 ∩H4

L7 = {(s, s,−s,−s) : s ∈ R} = H2 ∩H5

Let N be one point on L4. Let S denote the three dimensional sphere through

N and −N with center at the origin. Each line Li intersects S at two points.

Projecting stereographically from N , we obtain the arrangement shown in Figure

4.

Figure 4. A[4321]: R[4321](q) = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6

Example 6.2. For the elements 4321, 2143, 4231 ∈ S4, the associated hyperplane ar-

rangements and distance enumerating polynomials are given in Figure 4, Figure 5,

and Figure 6, respectively. In these diagrams, we take the positive sides of the hyper-

planes H1, H2, and H3 to be the inner sides, and we take H4, H5, and H6 to be oriented

as H1, H2, and H3 were, respectively, in Figures 2 and 3.
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Figure 5. A[2143]: R[2143](q) = 1 + 2q + q2

Figure 6. A[4231]: R[4231](q) = 1 + 4q + 4q2 + 4q3 + 4q4 + q5

6.2 Definition of the Closure Polynomial

A central goal of this thesis has been to develop a polynomial combinatori-

ally and efficiently which coincides with the intersection cohomology Poincaré

polynomial in as many non-rationally smooth instances as possible. One candi-

date for this, which we will now discuss, is called the closure polynomial and

was heavily inspired by the distance enumerating polynomial Rw(q) described

above.

Definition 6.3. We say that a set S ⊂ N(w) is N(w)-closed if whenever α, β ∈ S and

α + β ∈ N(w), we have α + β ∈ S. Define the collection of all M-allowable sets to be

M(w) := {S ⊂ N(w) : both S and N(w) \ S are N(w)-closed}.
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The closure polynomial for w is then defined to be

Mw(q) =
∑

S⊂M(w)

q|S|.

One can easily confirm that (like Iw(q)) the polynomial Mw(q) is always

palindromic, and always satisfies the relation Mw(q) = Mw−1(q).

Our definition of M-sets was motivated by Tymoczko’s work in [32], where

an analog of the M-sets is used to compute the ordinary Poincaré polynomial

of regular nilpotent Hessenberg varieties. In [29], Sommers and Tymoczko used

modified heights to factor the Poincaré polynomials of regular nilpotent Hessen-

berg varieties into products of q-numbers. We will see similar factorizations of

Mw(q) in Propositions 6.6 and 6.8.

Example 6.4. Let w = 4312, which corresponds to a nonsingular Schubert variety.

Then w−1 = 3421. We have

N(w) = {e1 − e3, e1 − e4, e2 − e3, e2 − e4, e3 − e4}.

The M-allowable sets for w are given below, arranged according to their cardinalities.

size 0 : ∅

size 1 : {e1 − e3}, {e2 − e3}, {e3 − e4}

size 2 : {e1 − e3, e2 − e3}, {e1 − e3, e1 − e4}, {e1 − e4, e3 − e4},

{e2 − e3, e2 − e4}, {e2 − e4, e3 − e4}

size 3 : the complements in N(w) of all M-allowable sets of size 2

size 4 : the complements in N(w) of all M-allowable sets of size 1

size 5 : N(w) = the complements in N(w) of all M-allowable sets of size 0

Hence, we have Mw(q) = 1 + 3q + 5q2 + 5q3 + 3q4 + q5. In this example, we have Mw(q) =

Rw(q) = Pw(q).
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Example 6.5. Let w = 3412, which corresponds to a singular Schubert variety. Then

w−1 = 3412 also, and we have N(w) = {e1 − e3, e1 − e4, e2 − e3, e2 − e4}. There are no

nontrivial linear relations satisfied by the roots in N(w), and so every subset of N(w) is

an M-allowable set. Hence, we have Mw(q) = 1+4q+6q2+4q4+ q5. In this example,

we have Mw(q) 6= Rw(q), and Mw(q) 6= Pw(q), but Mw(q) = Iw(q).

Examples 6.4 and 6.5 above illustrate a fact we shall prove in Proposition 6.6:

if w ∈ Sn corresponds to a nonsingular Schubert variety, then Mw(q) coincides

with Rw(q) = Pw(q) = Iw(q). We will also soon see that in many cases where

w ∈ Sn corresponds to a singular Schubert variety, we still have Mw(q) = Iw(q).

Thus, the polynomial Mw(q) is an extension of Rw(q) to a polynomial which

coincides with Iw(q) in certain non-rationally smooth cases.

6.3 Results on Nonsingular Schubert Varieties of Type A

Proposition 6.6. Suppose w ∈ Sn corresponds to a nonsingular Schubert variety, and

let m and w′ be defined as in Theorem/Definition 2.10. Then the polynomial Mw(q)

satisfies the recursion relation

Mw(q) = [m+ 1]qMw′(q).

Since Mid(q) = 1 = Pid(q), it follows that Mw(q) = Pw(q) for all rationally smooth

elements w ∈ Sn.

Proof. Since w corresponds to a nonsingular variety, it must belong to one of the

two cases described in Theorem/Definition 2.10. Assume w belongs to Case 1.

Then n = w(d) > w(d+1) > · · · > w(n), m = n− d, and w′ is the element of Sn−1

obtained by deleting the entry n from the one-line expression of w.
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We will abuse notation and consider N((w′)−1) ⊂ N(w−1) in the following

way. If ei − ej ∈ N((w′)−1) for some 1 ≤ i < j < n, then ẽi − ej ∈ N(w−1) where

ẽi − ej =





ei − ej if j < d

ei − ej+1 if i < d ≤ j

ei+1 − ej+1 if d ≤ i < j

.

In other words, since the entries of w′ are in the same relative order in w, every

inversion of w′ corresponds to an inversion in w. Observe that since every linear

relation satisfied by roots in N((w′)−1) is also satisfied by the corresponding roots

in N(w−1), we in fact have M(w′) ⊂ M(w).

Suppose there is some relation (ei − ej) + (ej − ek) = ei − ek satisfied by

three roots in N(w−1). Then at most one of i, j, k can be equal to d, which means

that either one or three of these roots belongs to N((w′)−1). In fact, note that

N(w−1) \ N((w′)−1)) = {ed − ek : d < k ≤ n}. One immediate consequence of

this is the fact that #N(w−1)−#N((w′)−1) = n− d = m.

We will now illustrate why for any 0 ≤ k ≤ m, there is exactly one set in

M(w) consisting only of elements from N(w−1) \ N((w′)−1) of size k. Indeed, it

is clear that

∅, {ed − ed+1}, {ed − ed+1, ed − ed+1}, . . . , {ed − ed+1, . . . , ed − en} ∈ M(w).

Suppose for a contradiction that there is some set S ∈ M(w) consisting only of

elements in N(w−1) \N((w′)−1) which does not appear in this list. Then we can

find j < k such that ed − ed+k ∈ S and ed − ed+j /∈ S. However, this contradicts

the assumption that S is M-allowable, since these roots satisfy the relation (ed −

ed+j) + (ed+j − ed+k) = ed − ed+k. Let M(w/w′) denote the collection of these

M-allowable sets.
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Now, let M′ := {A ∪ B : A ∈ M((w′)−1), B ∈ M(w/w′)}. We will now

endeavor to show that for any integer k, the number of sets in M′ of size k is

equal to the number of sets in M((w−1) of size k. We will do this by constructing

a bijection of sets F : M(w−1) → M′.

Let S ∈ M(w−1). Let S1 = S ∩ (N(w−1) \N((w′)−1) and let S2 = S \ S1. Note

that S2 ∈ M((w′)−1). Say #S1 = k. Let S ′
1 = {ed − ed+1, . . . , ed − ed+k}. Using

this notation, define F : M(w−1) → M′ by F (S) = S ′ where S ′ := S ′
1 ∪ S2. To

see that F is injective, suppose F (S) = F (T ) where S = S1 ∪ S2, T = T1 ∪ T2,

S1, T1 ⊂ N(w−1) \N((w′)−1, and S2, T2 ∈ M((w′)−1). Then we must have S2 = T2

and #S1 = #T1. Assume for a contradiction that S1 6= T1. Then we can find

some root ed − ed+j ∈ S1 such that ed − ed+j /∈ T1, and we can find some root

ed − ed+k ∈ T1 such that ed − ed+k /∈ S1. Assume without loss of generality

that j < k. Then ed+j − ed+k ∈ N(w−1), so since T ∈ M(w−1), we must have

ed+j − ed+k ∈ T , so ed+j − ed+k ∈ T2 = S2. But then ed − ed+j, ed+j − ed+k ∈ S and

ed − ed+k /∈ S, which contradicts the assumption that S ∈ M(w−1). Hence F is

injective.

To prove that F is surjective, we will construct for it a right inverse G : M′ →

M(w−1). Let A ∪ B ∈ M′, so that A ∈ M((w′)−1) and B ∈ M(w/w′). Say

#B = k, i.e. suppose B = {ed − ed+1, . . . , ed − ed+k}. We will construct G(A ∪B)

algorithmically. Let S0 = A and let L0 ⊂ S0 be the set of all roots eh − ek ∈ S0

such that h > d.

- Let i1 ∈ {1, 2, . . . ,m} be minimal such that there is no element in L0 of the

form ed+i1 − ej for any j. Then let S1 = S0 ∪ {ed − ed+i1} and let L1 be the

set obtained from L0 by deleting any elements of the form eh − ed+i1 . Note

that we have ensured S1 ∈ M(w).
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- Let i2 ∈ {1, 2, . . . ,m} be minimal such that there is no element in L1 of the

form ed+i2 − ej for any j. Then let S2 = S1 ∪ {ed − ed+i2} and let L2 be the

set obtained from L1 by deleting any elements of the form eh − ed+i2 .

...

Continuing on in this fashion, we obtain sets S0, . . . , Sm, which can be shown

inductively to belong to M(w). Note that each Si is of the form Ai ∪ Bi where

Ai ⊂ N(w−1) \ N((w′)−1) is a set of size i. We will define G(A ∪ B) = Si. One

easily verifies that F ◦G is the identity on M′. Hence F is a bijection.

For each integer k, let bk denote the number of sets in M(w/w′) of size k and

let ak denote the number of sets in M(w′) of size k. In other words, we have

bk = 1 for each 0 ≤ k ≤ m and bk = 0 otherwise, and the closure polynomial

of w′ is given by Mw′(q) = a0 + a1q + · · · + a`(w
′)q`(w′). Define ai = 0 for any

i < 0 or i > `(w′). Then the number of sets in M(w) of size h for any integer h is

precisely the number of sets in M′ of size h:

ah · b0 + ah−1 · b1 + · · ·+ ah−m · bm = ah + ah−1 + · · · ah−m.

In other words, we have

Mw(q) = Mw′(q) + qMw′(q) + · · ·+ qmMw′(q)

= [m+ 1]qMw′(q).

We have now proved the desired claim for those elements w which belong to

Case 1 in Theorem/Definition 2.10. This entire proof needs only a slight modi-

fication to be applicable to those elements belonging to Case 2. If w belongs to

Case 2, then n = w−1(c) > w−1(c+ 1) > · · ·w−1(n), m = n− c, and w′ is obtained

from the one-line expression of w by deleting the n-th entry and flattening. In
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this case, it is even more straightforward to see that N((w′)−1) ⊂ N(w−1): if

ei− ej ∈ N((w′)−1), then ei− ej ∈ N(w−1). To complete the proof, simply replace

every instance of an element of the form ed− ed+j with the element ew−1(c+j)− en.

6.4 Results on Singular Schubert Varieties of Type A

In this section, we will show that we in fact have Mw(q) = Iw(q) in at least

all of the cases for which we have shown that Nw(q) = Iw(q) (see Chapter 5). Let

w ∈ Sn and assume w avoids the patterns 4231, 45312, 45213, and 35412, but not

the pattern 3412.

Lemma 6.7. Then for any 3412 pattern w(i)w(j)w(k)w(l) in w, the root ej − ek is

not a linear combination of the other vectors in N(w−1).

Proof. Let w(i)w(j)w(k)w(l) be a 3412 pattern in the one-line expression for w,

and suppose for a contradiction that ej − ek can be expressed as a linear com-

bination of the other vectors in N(w−1). Then one of the following three cases

must hold: there exists an entry w(m) > w(j) which occurs to the left of w(j),

there exists an entry w(m) between w(j) and w(k) with w(j) > w(m) > w(k), or

there exists an entry w(m) < w(k) to the right of w(k). In the first case, if w(m)

occurs to the left of w(i), then w contains the 4231 pattern w(m)w(i)w(j)w(k),

and if w(m) occurs between w(i) and w(j), then w contains the 35412 pattern

w(i)w(m)w(j)w(k)w(l). In the second case, the subword w(i)w(j)w(m)w(k)w(l)

must be an instance of one of the patterns 45213, 45312, or 35412. And in the

third case, the one-line expression of w will contain either the 45213 pattern

w(i)w(j)w(k)w(m)w(l) or the 4231 pattern w(j)w(k)w(l)w(m).
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Under these conditions on w, we know by Lemma 5.8 that we can find in-

dices i, j, k such that fl{i,j,j+1,k}(w) = 3412. Let s = sj (so fl{i,j,j+1,k}(ws) = 3142).

Throughout the rest of this section, we will consider w and s to be fixed.

Proposition 6.8. With w and s as above, we have Mw(q) = (q + 1)Mws(q).

Proof. Note that for any root ep − eq ∈ N((ws)−1), we have p < q with ws(p) >

ws(q). Then we necessarily have ws(p) appearing to the left of ws(q) in the one-

line expression of w, so w−1(ws(p)) < w−1(ws(q)). In other words, we have

s(p) < s(q) and w(s(p)) > w(s(q)), so es(p) − es(q) ∈ N(w−1).

Let s(N((ws)−1)) denote the set {es(p) − es(q) : ep − eq ∈ N((ws)−1)}. Note

that if p < q < r are indices such that ep − eq, eq − er ∈ N((ws)−1), then es(p) −

es(q), es(q)−es(r) ∈ s(N((ws)−1)) with (es(p)−es(q))+(es(q)−es(r)) = es(p)−es(r). Thus

for any integer C, the M-allowable sets in N((ws)−1) of size C are in bijection

with the M-allowable sets in s(N((ws)−1)) of size C.

Since ej − ej+1 is the only inversion of w which does not correspond to an

inversion of ws in the above way, we have N(w−1) = s(N((ws)−1))∪ {ej − ej+1}.

It follows that an M-allowable set S ⊂ N(w−1) of size C is either an M-allowable

set in s(N((ws)−1)) of size C, or it is the union of {ej−ej+1} with an M-allowable

set in s(N((ws)−1)) of size C − 1.

Hence if Mws(q) = b0 + b1q + · · · + b`(w)−1q
`(w)−1, then Mw(q) = a0 + a1q +

· · ·+ a`(w)q
`(w) where ai = bi−1 + bi for each 0 ≤ i ≤ `(w) (and where b−1 := 0 and

bl := 0). In other words, we have Mw(q) = (q + 1)Mws(q).

Observation 6.9. Under these conditions on w and s, Proposition 6.8 implies that

Mw(q) = Nw(q), since Mw(q) and Nw(q) satisfy the same recursive factorization and

since Mid(q) = 1 = Nid(q). It follows that Mw(q) = Iw(q) in at least all of the cases

where we have shown that Nw(q) = Iw(q) in Chapter 5.
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6.5 Future Work

The closure polynomial Mw(q) was developed before the discovery of the

inversion polynomial Nw(q), and was abandoned at that point because it seemed

from preliminary data that Nw(q) coincides with Iw(q) in more cases than does

Mw(q). For example, for w equal to the singular element 4231 ∈ S4, we have the

following polynomials.

Pw(q) = (1 + q)2(1 + q + 2q2 + q3)

Iw(q) = (1 + q)3(1 + q + q2)

Mw(q) = (1 + q)(1 + 3q + q2 + 3q3 + q4)

Nw(q) = (1 + q)3(1 + q + q2) = Iw(q)

Another advantage of Nw(q) over Mw(q) is that it is generally more straight-

forward to work with (compare the proof of Proposition 6.8 to the proof of

Proposition 5.10). However, both of these polynomials were developed for the

purpose of computing Iw(q) outside of type A. Thus, work on either polynomial

is unfinished, and both should be studied for other Weyl groups. It may turn

out that one or the other provides a better estimation of Iw(q) in general, or that

one or both provides other useful information which is interesting independent

of intersection cohomology.
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C H A P T E R 7

HEIGHT SEQUENCES

Let W be a Weyl group and let w ∈ W . Consider a factorization of a reduced

word for w of the form w = (w′)x where w′ is a reduced expression for an ele-

ment belonging to a maximal parabolic subgroup of W and x is a minimal coset

representative of that subgroup in W . Since this expression of w is reduced, the

associated ordered inversion set of w has the form

N(w) = {N(w′), β1, β2, . . . , β`(x)}.

Suppose hts(w) = (hts(w′), b1, b2, . . . , b`(x)) is the associated height sequence for

w.

Definition 7.1. With notation as above, we call the subsequence (b1, b2, . . . , b`(x)) of

hts(w) the ending height sequence of w with respect to this factorization.

In this chapter, we will describe a method for factoring any w ∈ W uniquely

as a product of an element of a fixed maximal parabolic subgroup and a coset

representative of that subgroup as described above. We will then seek to classify

the ending height sequences of elements w ∈ Sn with respect to this factoriza-

tion.

The results of this chapter were discovered throughout the course of our in-

vestigations into the Kazhdan-Lusztig basis elements Cw of the Hecke algebra
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and the intersection cohomology Poincaré polynomials Iw(q). This diversion

became an interesting side project, with applications to combinatorics indepen-

dent from the study of Schubert varieties.

7.1 Minimal Coset Representatives and Reduced Expressions

Let W be a Weyl group generated by the reflections 〈s1, s2, . . . , sn〉.

Definition 7.2. For any subgroup W ′ of W , a minimal coset representative of W ′ in

W is a coset representative of minimal length.

In this section, we will discuss a method of unqiuely factoring an element

of W relative to a fixed maximal parabolic subgroup of W . In particular, we

will outline a method for factoring any w ∈ W into the form w′x where w′ is

an element of a fixed maximal parabolic subgroup W ′ of W , and x is a minimal

right coset representative of W ′ in W .

Lemma 7.3. Let W = W (An), let W ′ denote the parabolic subgroup 〈s1, s2, . . . , sn−1〉

of W , and let e ∈ W denote the identity element. Then {e, sn, snsn−1, . . . , snsn−1 · · · s1}

is a complete set of right coset representatives of W ′ in W .

Proof. We will explain why

W = {w′x : w′ ∈ W ′ and x ∈ {e, sn, snsn−1, . . . , snsn−1 · · · s1} }.

The set on the right is clearly contained in W . And the cardinality of the set on

the right is equal to

(#W ′) · (#{e, sn, snsn−1, . . . , snsn−1 · · · s1}) = (n!)(n+ 1) = (n+ 1)! = #W.
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Thus, for any w ∈ W (An), we can factor w into a reduced word of the form

w = w′snsn−1 · sk where w′ ∈ W (An−1). Inductively factoring an element w ∈ W

in this way produces the lexicographic reduced expression for w.

Example 7.4. Let w = 265314 ∈ W (A5). Then the inductive factorization described

above produces the following reduced expression for w.

w = [25314] · s5s4s3s2

= [2314] · s4s3s2 · s5s4s3s2

= [231] · e · s4s3s2 · s5s4s3s2

= [21] · s2 · e · s4s3s2 · s5s4s3s2

= s1 · s2 · e · s4s3s2 · s5s4s3s2.

Suppose now that we instead take W ′ to be the subgroup W ′ = 〈s2, s3, . . . , sn〉

in W . Then we similarly have

W = {w′x : w′ ∈ W ′ and x ∈ {e, s1, s1s2, . . . , s1s2 · · · sn} }.

Inductively factoring an element w ∈ W in this way produces what we will refer

to as the reverse lexicographic reduced expression for w.

Example 7.5. Using w = 265314 as in the last example,the reverse lexicographic re-

duced expression for w is obtained from the following inductive process.

w = [126534] · s1s2s3s4

= [126534] · e · s1s2s3s4

= [123654] · s3s4 · e · s1s2s3s4

= [123465] · s4s5 · s3s4 · e · s1s2s3s4

= s5 · s4s5 · s3s4 · e · s1s2s3s4.
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Henceforth, we will always choose to factor w ∈ W into its lexicographic re-

duced expression, and if W (An) is generated by the simple reflections s1, . . . , sn,

we will consider the maximal parabolic subgroup W (An−1) to be generated by

the subset s1, s2, . . . , sn−1.

We now wish to determine the order of the elements of N(w) if w ∈ W (An)

is expressed lexicographically. First, note that for any w′ ∈ W (An−1) and for any

j < n+ 1, we have

w′(ej − en+1) = ew′(j) − ew′(n+1) = ew′(j) − en+1.

Proposition 7.6. Let w ∈ W (An) with fixed reduced expression w = w′ x ∈ W (An),

where w′ is an element of the parabolic subgroup W (An−1) and x is a coset representative

of W (An−1) in W (An) of the form x = snsn−1 · · · sk for some 1 ≤ k ≤ n. Then N(w)

is ordered in the following manner.

N(w) = {N(w′), ew′(n) − en+1, ew′(n−1) − en+1, . . . , ew′(1) − en+1}.

Proof. Recall that for any 1 ≤ j ≤ n, we have sj(αi) = αi + αj if i = j ± 1,

sj(αi) = −αi if i = j, and sj(αi) = αi otherwise. We can now explicitly describe

the ordered set N(w):

N(w) = {N(w′), w′(αn), w
′sn(αn−1), . . . , w

′sn · · · s2(α1)}

= {N(w′), w′(αn), w
′(αn−1 + αn), . . . , w

′(α1 + · · ·+ αn)}

= {N(w′), w′(en − en+1), w
′(en−1 − en+1), . . . , w

′(e1 − en+1)}

= {N(w′), ew′(n) − en+1, ew′(n−1) − en+1, . . . , ew′(1) − en+1}.
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7.2 Classifying Ending Height Sequences in Type A

Let W = W (An). Throughout this section, we will only consider the lexico-

graphic reduced expression of any element w ∈ W . We will focus on two partic-

ular types of ending height sequences: Bell sequences and Catalan sequences.

Definition 7.7. A sequence of positive integers (am, am−1, . . . , a1) is called a Bell se-

quence if a1 = 1 and if for each 1 < i ≤ m, we have ai ≤ 1 + max{aj : 1 ≤ j < i}.

A Bell sequence is called a Catalan sequence if it satisfies the stricter condition that

ai ≤ 1 + ai−1 for each 1 ≤ i < m.

These sequences are so named because the number of Catalan sequences on

the numbers {1, 2, . . . , n} is Cn, the n-th Catalan number. And similarly the num-

ber of Bell sequences on the numbers {1, 2, . . . , n} is the n-th Bell number [15].

Example 7.8. The lexicographic reduced expression of w = 265314 ∈ W (A5) is w =

(s1s2s4s3s2)s5s4s3s2, where w′ = s1s2s4s3s2 ∈ W (A4) and x = s5s4s3s2 is the mini-

mal coset representative of W (A4) in W (A5). The associated inversion set is ordered in

the following way:

v ∈ N(w) : e
1
−
e
2

e
1
−
e
3

e
4
−
e
5

e
1
−
e
5

e
3
−
e
5

e
4
−
e
6

e
1
−
e
6

e
3
−
e
6

e
5
−
e
6

htw(v) : 1 1 1 2 1 2 3 2 1

Thus, the ending height sequence of w is the sequence (2, 3, 2, 1). This ending height

sequence is Catalan.

Now consider the element w = 53241 ∈ W (A4), which has lexicographic reduced

expression (s1s2s1s3)s4s3s2s1. Associated to this reduced expression, we have

N(w) : e 1
−
e 2

e 1
−
e 3

e 2
−

e 3

e 1
−
e 4

e 1
−
e 5

e 4
−
e 5

e 2
−

e 5

e 3
−
e 5

ht : 1 2 1 1 3 1 2 1

.
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The ending height sequence for 53241 is therefore (3, 1, 2, 1), which is Bell but not Cata-

lan.

7.2.1 Bell Ending Height Sequences

In this section, we will show that every ending height sequence for w ∈

W (expressed lexicographically) is a Bell sequence, and every Bell sequence of

length n is obtained as the ending height sequence for some w ∈ W (expressed

lexicographically).

Proposition 7.9. The ending height sequence of any w ∈ W (An), when expressed

lexicographically, is a Bell sequence.

Proof. Let w ∈ W (An) and express w lexicographically. So w is of the form w =

(w′)snsn−1 · · · sk where w′ ∈ W (An−1). Then we know that, as an ordered set, we

have

N(w) = {N(w′), w′(αn), w
′sn(αn−1), . . . , w

′snsn−1 · · · sk+1(αk)}

= {N(w′), w′(αn), w
′(αn−1 + αn), . . . , w

′(αk + αk+1 + · · ·+ αn)}.

For notational purposes, define γj := w′(αj +αj+1 + · · ·+αn) for each k ≤ j ≤ n.

For each j ∈ {k + 1, k + 2, . . . , n}, define hj = max{htw(γi) : k ≤ i ≤ j − 1}

and define hk = 0. We will show that htw(γj) ≤ 1+hj for all j ∈ {k, k+1, . . . , n},

from which it follows immediately that the ending height sequence of w is a Bell

sequence. Fix an integer j ∈ {k, k + 1, . . . n}.

We will first show that it is impossible to express γj as a sum of distinct roots

in N(w′)∪{γj+1, γj+2, . . . , γn}. Suppose for a contradiction that we can find roots

β1, . . . , βm ∈ N(w′) ∪ {γj+1, γj+2, . . . , γn} such that γj = β1 + · · · + βm. Let u =

79



w′snsn−1 · · · sj+1. Then β1, . . . , βm ∈ N(u), so we have

u−1(γj) = u−1(β1 + · · ·+ βm) = u−1(β1) + · · ·+ u−1(βm) ≺ 0.

On the other hand, since γj = u(αj), we have u−1(γj) = αj � 0, a clear contradic-

tion.

Thus, any expression of γj as a sum of distinct elements of N(w) must involve

at least one of the roots γk, γk+1, . . . , γj−1. Let γm ∈ {γk, . . . , γj−1} be of maximal

modified height with respect to N(w) such that γj = α + γm for some α ∈ N(w).

We claim that htw(γj) = htw(α) + htw(γm) = 1 + htw(γm), from which it follows

immediately that htw(γj) ≤ 1 + hj . Since γj = α + γm, we have

htw(γj) ≥ htw(α) + htw(γm) ≥ 1 + htw(γm).

Suppose for a contradiction that htw(γj) 
 1+htw(γm). Let γj = β1+ · · ·+βhtw(γj)

be a longest expression of γj as a sum of distinct roots in N(w). Then each βi

has htw(βi) = 1 (otherwise a longer expression for γj could be found). Then

β2+· · ·+βhtw(γj) ∈ N(w) with htw(β2+· · ·+βhtw(γj)) = htw(γj)−1 
 htw(γm), which

contradicts the maximality of γm. Hence, we must have htw(γj) = 1 + htw(γm) ≤

1 + hj .

We now prove the other main result of this subsection.

Proposition 7.10. Every Bell sequence of length n is the ending height sequence of some

w ∈ W (An) expressed in its lexicographic reduced notation.

Proof. Let a = (an, an−1, . . . , a1) be a Bell sequence of length n. We will show

by induction that there exists some w ∈ W (An) of the form (w′)snsn−1 · · · s1,

with w′ ∈ W (An−1), such that the ending height sequence of w with respect to

this factorization is a. This statement is certainly true when n = 2. Indeed,
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the element s2s1 ∈ W (A2) has ending height sequence (1, 1) and the element

(s1)s2s1 ∈ W (A2) has ending height sequence (2, 1).

Assume that for any Bell sequence of length n − 1, there exists some w′′ ∈

W (An−2) such that the ending height sequence of (w′′)sn−1sn−2 · · · s1 is precisely

that Bell sequence. Then we can find an element v ∈ W (An−1) and an element

v′ ∈ W (An−2) such that v = (v′)sn−1 · · · s1 and v has ending height sequence

(an−1, an−2, . . . , a1).

Define elements w1, w2, . . . , wn ∈ W (An) as follows.

w1 = s1s2 · · · sn−1(v
′)snsn−1 · · · s1

...

wn−1 = sn−1(v
′)snsn−1 · · · s1

wn = (v′)snsn−1 · · · s1

We will now explore properties of these elements w1, . . . , wn and show that at

least one of them has the ending height sequence a.

Firstly, we clearly have v−1(n) = 1, and so the one-line expression for v has

the form v−1 = Y1 Y2 . . . Yn−1 1. Computing the elements w−1
1 , . . . , w−1

n in terms of

the entries of v−1, we have.

w−1
1 = (n+ 1)Y1 Y2 · · · Yn−2 Yn−1 1

w−1
2 = Y1 (n+ 1)Y2 · · · Yn−2 Yn−1 1

...

w−1
n−1 = Y1 Y2 Y3 · · · (n+ 1)Yn−1 1

w−1
n = Y1 Y2 Y3 · · · Yn−1 (n+ 1) 1

Observe also that, as ordered sets, the final n elements of N(wi) are precisely

si · · · sn−1v
′(αn), si · · · sn−1v

′(αn−1 + αn), . . . , si · · · sn−1v
′(α1 + αn)
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where the first element is

si · · · sn−1v
′(αn) = si · · · sn−1(αn) = αi + αi+1 + · · ·+ αn.

For any 1 ≤ j ≤ n−1 and any 1 ≤ i ≤ n, let yji = si · · · sn−1v
′(αj + · · ·+αn). Then

from Proposition 3.6, it is clear that

htwi
(yji ) ≡ htwi

(esi···sn−1v′(j) − en+1)

= 1 + the length of the longest decreasing subword of w−1
i

between index si · · · sn−1v
′(j) and index n+ 1

= 1 + the length of the longest decreasing subword of v−1

between index v′(j) and index n

= htv(ev′(j) − en+1)

≡ aj .

It follows that each wi has ending height sequence of the form (bi, an−1, . . . , a2, a1)

for some bi ≥ 1. We will now compute each bi.

For each i, we have bi = htwi
(esi···sn−1v′(1) − en+1), i.e. bi is the longest decreas-

ing subword of the one-line expression of w−1
i between the entry n + 1 and the

entry 1. From observing the one-line expressions of each w−1
i above, we can now

easily conclude that bn = 1, and for each 1 ≤ i � n we have bi+1 ≤ bi ≤ 1 + bi+1.

Finally, note that b1 is equal to 1+ the length of the longest subword of w−1
1 be-

tween the entry n + 1, which occurs in index 1, and the entry 1, which occurs in

index n + 1. This means that b1 is equal to 1 more than the length of the longest

decreasing subword of v−1, i.e.

b1 = 1 +max{an−1, an−2, . . . , a1}.

To summarize, we have shown that for any integer value b between 1 and

1 + max{an−1, . . . , a1}, the sequence (b, an−1, an−2, . . . , a1) is obtained as the end-
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ing height sequence of wi for some 1 ≤ i ≤ n. In particular, the sequence

(an, an−1, . . . , a1) is obtained as the ending height sequence of one of the elements

wi.

From these results, we can conclude:

Corollary 7.11. A sequence of numbers a is an ending height sequence of an element

w ∈ W (with respect to its lexicographic reduced expression) if and only if a is a Bell

sequence.

Example 7.12. Consider the Bell sequence a = (3, 3, 2, 1) of length 4. We will follow

the construction of the proof of Proposition 7.10 to find an element w ∈ W (A4) with

this ending height sequence.

First we must find an element v ∈ W (A3) (possibly through an iterative process)

which has the ending height sequence (3, 2, 1). One choice is the longest element v =

(s1s2s1)s3s2s1. With notation as in the proof, we have v′ = s1s2s1, and we define the

elements w1, w2, w3, w4 ∈ W (A4) as follows.

w1 = s1s2s3(v
′)s4s3s2s1 = 54321 ⇒ w−1

1 = 54321

w2 = s2s3(v
′)s4s3s2s1 = 54312 ⇒ w−1

2 = 45321

w3 = s3(v
′)s4s3s2s1 = 54213 ⇒ w−1

3 = 43521

w4 = (v′)s4s3s2s1 = 53214 ⇒ w−1
4 = 43251

Each of these expressions is reduced, and the associated ending height sequences are
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given by:

w1 : (4, 3, 2, 1)

w2 : (3, 3, 2, 1)

w3 : (2, 3, 2, 1)

w4 : (1, 3, 2, 1).

Thus w2 is an element in W (A4) with ending height sequence a.

7.2.2 Catalan Ending Height Sequences

In this subsection, we will connect Catalan ending height sequences to the

notion of pattern avoidance. In particular, we will show that if w ∈ W (An)

avoids the pattern 53241, then the ending height sequence of w with respect to

its lexicographic reduced expression is a Catalan sequence, and conversely that

every Catalan sequence arises as the ending height sequence of an element in

W (An) avoiding the pattern 53241.

Proposition 7.13. Suppose w ∈ W (An) (with fixed lexicographic reduced expression)

has a non-Catalan ending height sequence. Then w contains the pattern 53241.

Proof. The element w expressed lexicographically has the form w = w′x where

w′ ∈ W (An−1) and x is a coset representative of W (An−1) in W of the form x =

snsn−1 · · · sk. Note that if x = e, the ending height sequence of w has length 0 and

is trivially Catalan. We will assume therefore that 1 ≤ k ≤ n.

We know that we can write

N(w) = {N(w′), ew′(n) − en+1, ew′(n−1) − en+1, . . . , ew′(k) − en+1}.
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For each 1 ≤ i ≤ n, let hi denote the modified height of the inversion ew′(i)− en+1

in N(w), so that the ending height sequence of w is given by (hn, hn−1, . . . , hk).

Since this sequence is non-Catalan by assumption, there is some j ∈ {k, k +

1, . . . , n} for which hj ≥ 2 + hj−1. By Proposition 3.6 we know that the one-line

notation expression of w−1 must contain a decreasing subword of length 3+hj−1

of the form

[r1, r2, r3, · · · , r2+hj−1
, r3+hj−1

]

where r1 = w−1(w′(j)) and r3+hj−1
= w−1(n+1). Note that for any k < p ≤ n+1,

we have w(p) = w′sn · · · s1(p) = w′(p − 1), so w−1(w′(p − 1)) = p. In particular,

we have r1 = w−1(w′(j)) = j + 1 and we also have w−1(w′(j − 1)) = j.

Now, if j occurs anywhere before r3 in w−1, then w−1 would contain the sub-

word

[j, r3, · · · , r2+hj−1
, r3+hj−1

]

which would imply that hj−1 ≥ 1+hj−1, a clear contradiction. So j occurs some-

where after r3 and before 1, which means that w−1 contains the 53241 pattern

occurring in the subword [(j + 1), r2, r3, j, r3+hj−1
]. Then w contains the pattern

(53241)−1 = 53241 as well.

Proposition 7.14. Every Catalan sequence of length n arises as the ending height se-

quence of an element in W (An) which avoids the pattern 53241.

Proof. Let a = (an, an−1, . . . , a1) be any Catalan sequence of length n. Then the

sequence of length n− 1 given by (an−1, an−2, . . . , a1) is certainly a Bell sequence,

so by the proof of Proposition 7.10, we can find some v ∈ W (An−1) with fixed

lexicographic reduced expression v = v′sn−1sn−2 · · · s1, v′ ∈ W (An−2), such that
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v has ending height sequence (an−1, an−2, . . . , a1). Define

wn := (v′)snsn−1 · · · s1, and

wi := sisi+1 · · · sn−1(v
′)snsn−1 · · · s1 for each 1 ≤ i ≤ n− 1.

Denote the ending height sequence of wi as (bi, an−1, . . . a1) for each 1 ≤ i ≤ n.

Assume by induction that v avoids the pattern 53241, and suppose for a con-

tradiction that wi contains the pattern 53241. Since 53241 is an involution, this

means that v−1 also avoids 53241 and w−1
i also contains 53241.

Observe that

(wi)
−1(j) =





v−1(j) if j < i

n+ 1 if j = i

v−1(j − 1) if j > i

and thus, in one-line notation, we can write

v−1 = [v−1(1), v−1(2), . . . , v−1(n− 1), 1, n+ 1]

w−1
n = [v−1(1), v−1(2), . . . , v−1(n− 1), n+ 1, 1]

w−1
n−1 = [v−1(1), v−1(2), . . . , n+ 1, v−1(n− 1), 1]

...

w−1
2 = [v−1(1), n+ 1, v−1(2), . . . , v−1(n− 1), 1]

w−1
1 = [n+ 1, v−1(1), v−1(2), . . . , v−1(n− 1), 1].

(Here we can see that the entry (n+ 1) moves from the upper right corner of the

diagram down to the lower left corner of the diagram).

For notational brevity, let y = sisi+1 · · · sn−1. Since wi = yv′snsn−1 · · · s1, the

final n elements of the set N(wi) (ordered according to the fixed reduced expres-

sion of wi) are precisely

{eyv′(n) − en+1, eyv′(n−1) − en+1, . . . , eyv′(1) − en+1}.
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As sets, we have

{e1−en+1, e2−en+1, . . . , en−en+1} = {eyv′(1)−en+1, eyv′(2)−en+1, . . . , eyv′(n)−en+1}.

Note that

an = ht(ey(v′(n)) − en+1) = ht(ei − en+1),

an−1 = ht(ey(v′(n−1)) − en+1),

...

a1 = ht(ey(v′(1)) − en+1)

and note also that

y(v′(n− 1)) = sisi+1 · · · sn−1(v
′(n− 1)) =





1 + v′(n− 1) if v′(n− 1) ≥ i

v′(n− 1) if v′(n− 1) < i
.

We will proceed by considering the three cases v′(n − 1) < i, v′(n − 1) = i,

and v′(n − 1) > i. In each case, we will find a contradiction of the hypotheses,

allowing us to conclude the desired claim.

Case 1: Suppose v′(n− 1) < i. We have w−1
i (v′(n− 1)) = v−1(v′(n− 1)) = n. So in

the one-line expression for w−1
i , the entry n appears to the left of n+ 1 = w−1

i (i).

If (n + 1) r2 r3 r4 1 is a subword of w−1
i in the same relative order as 53241, then

the pattern n r2 r3 r4 1 is also an occurrence of the pattern 53241 which appears

in both w−1
i and v−1. This contradicts the assumption that v and v−1 avoids the

pattern 53241.

Case 2: Suppose v′(n− 1) = i. Then we have

an−1 = htwi
(e1+v′(n−1) − en+1) = htwi

(ei+1 − en+1)

where w−1
i (i + 1) = v−1(i) = v−1(v′(n − 1)) = s1s2 · · · sn−1(v

′)−1(v′(n − 1)) = n.

This implies that w−1
i contains a 653241 pattern in the subword

w−1
i (i)w−1

i (i+ 1) r2 r3 r4 1 = (n+ 1) (n) r2 r3 r4 1.
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However, this means that v−1 contains the pattern 53241 in the subword (n) r2 r3 r4 1,

a contradiction.

Case 3: Suppose v′(n− 1) > i. Then an−1 = htwi
(e1+v′(n−1) − en+1), where

w−1
i (1 + v′(n− 1)) = v−1(v′(n− 1)) = s1 · · · sn−1(v

′)−1(v′(n− 1)) = n.

Since n appears to the right of w−1(i) = n + 1 in the one-line expression of w−1
i ,

we know that the longest decreasing subword of w−1
i between the entries n + 1

and 1 is strictly longer than the longest decreasing subword of w−1
i between n

and 1. In other words, we must have ain 
 an−1, so by the hypothesis that a is a

Catalan sequence, we have ain = an−1 + 1.

Now consider the element w−1
i+1. This element has ending height sequence

(ai+1
n , an−1, . . . , a1). First suppose that v′(n−1) 
 i+1. Then an−1 = htwi+1

(e1+v′(n−1)−

en+1) by the same reasoning as for w−1
i above, and we have w−1

i+1(1 + v′(n− 1)) =

v−1(v′(n − 1)) = n. So as was the case for w−1
i above, we have ai+1

n 
 an−1, and

so ai+1
n = 1 + an−1 = ain. This contradicts the maximality of i.

Then v′(n−1) = i+1. We have an−1 = htwi+1
(e1+v′(n−1)−en+1) = htwi+1

(ei+2−

en+1). Since n+1 = w−1
i+1(i+1) > w−1

i+1(i+2), we know that the longest decreasing

subword of w−1
i+1 between n+1 and 1 is strictly longer than the longest decreasing

subword in w−1
i+1 between w−1

i+1(i+2) and 1. This implies that htwi+1
(ei+1−en+1) 


htwi+1
(ei+2 − en+1), so ai+1

n 
 an−1. This again results in the equality ai+1
n =

1 + an−1 = ain, which contradicts the maximality of i.

Since every case results in a contradiction of the hypotheses, we can conclude

that w−1
i (and thus wi) avoids the pattern 53241.
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A P P E N D I X A

DESCRIPTION OF SOFTWARE DEVELOPED

Throughout the course of this work, we found it beneficial to develop pro-

grams using the programming language Python and the Python-based software

system Sage to do the following.

• Compute the distance enumerating polynomial Rw(q) in type A.

• Compute the closure polynomial Mw(q) for w belonging to a general Weyl

group.

• Compute the heights associated with a reduced word for for w when w

belongs to a general Weyl group.

• Compute the inversion polynomial Nw(q) for w belonging to a general

Weyl group.

• Compute the Lascoux element Lw when w is any fixed reduced word of an

element w belonging to a general Weyl group.

The source code for any of these programs is available upon request.
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