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ABSTRACT

TWISTED WEYL GROUP MULTIPLE DIRICHLET SERIES

OVER THE RATIONAL FUNCTION FIELD

SEPTEMBER 2013

HOLLEY A. FRIEDLANDER, B.A., UNIVERSITY OF

VERMONT

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul E. Gunnells

Let K be a global field. For each prime p of K, the p-part of a multiple Dirichlet

series defined over K is a generating function in several variables for the p-power

coefficients. Let Φ be an irreducible, reduced root system, and let n be an integer

greater than 1. Fix a prime power q ∈ Z congruent to 1 modulo 2n, and let Fq(T )

be the field of rational functions in T over the finite field Fq of order q. In this

thesis, we examine the relationship between Weyl group multiple Dirichlet series

over K = Fq(T ) and their p-parts, which we define using the Chinta–Gunnells

method [10]. Our main result shows that Weyl group multiple Dirichlet series of

type Φ over Fq(T ) may be written as the finite sum of their p-parts (after a certain

variable change), with “multiplicities” that are character sums. This result gives

vi



an analogy between twisted Weyl group multiple Dirichlet series over the rational

function field and characters of representations of semi-simple complex Lie algebras

associated to Φ.

Because the p-parts and global series are closely related, the result above follows

from a series of local results concerning the p-parts. In particular, we give an explicit

recurrence relation on the coefficients of the p-parts, which allows us to extend the

results of Chinta, Friedberg, and Gunnells [9] to all Φ and n. Additionally, we show

that the p-parts of Chinta and Gunnells [10] agree with those constructed using

the crystal graph technique of Brubaker, Bump, and Friedberg [4, 5] (in the cases

when both constructions apply).
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C H A P T E R 1

INTRODUCTION

In this chapter, we introduce Weyl group multiple Dirichlet series and summa-

rize our results. Given a positive integer n, a global field K containing all 2nth

roots of unity, and an irreducible, reduced root system Φ of rank r, Weyl group

multiple Dirichlet series are series in r complex variables, with analytic continua-

tion to Cr and a group of functional equations isomorphic to the Weyl group of

Φ. Section 1.1 provides the background information necessary to understand the

heuristic construction of these objects and Section 1.2 describes our contributions.

Section 1.3 concludes this chapter with a guide to the remainder of the text.

1.1 Background

A Dirichlet series is an infinite sum of the form

D(s) =
∑
n≥1

a(n)

ns
, a(n) ∈ C, (1.1)

where s is a complex variable. The coefficients a(n) often come from interesting

arithmetic situations. For instance, for p prime, the a(p) may count solutions to a

fixed system of polynomial equations modulo p. Typically (1.1) only converges for

<(s) � 0, but often can be shown to have nice analytic properties, like analytic
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continuation and a functional equation relating values at s to values at 1 − s. In

such cases, studying the analytic properties of D(s) frequently yields insight into

the a(n). In this section, we review examples of classical Dirichlet series and discuss

the heuristic construction of Weyl group multiple Dirichlet series. We end with a

non technical definition of Weyl group multiple Dirichlet series before describing

our results in Section 1.2

1.1.1 Dirichlet Series

The famous Riemann zeta function ζ(s) =
∑

n≥1 1/ns is the prototypical exam-

ple of (1.1). Initially only defined for <(s) > 1, the series ζ(s) has analytic contin-

uation to all of C and a functional equation that takes s to 1−s. As a consequence

of the fundamental theorem of arithmetic, we can write ζ(s) =
∏

p 1/(1 − p−s) as

an infinite product over all primes p; this expression is called an Euler product.

We call the factor 1/(1 − p−s) the “p-part” of ζ(s). In part due to its nice ana-

lytic properties, the Riemann zeta function is an invaluable tool for studying the

distribution of prime numbers.

Another class of Dirichlet series with arithmetic applications is that of Dirichlet

L-functions. For example, let m ∈ Z be a square-free fundamental discriminant (a

square-free integer congruent to 1 modulo 4), and consider the quadratic L-function

L(s, χm) =
∑
n≥1

χm(n)

ns
. (1.2)

Here χm(n) =
(
m
n

)
is the Kronecker symbol that, for n = p an odd prime, records

whether or not m is a square modulo p. More precisely,

χm(p) =

(
m

p

)
:=


0 if (m, p) 6= 1,

1 if m ≡ � (mod p),

−1 otherwise.

(1.3)

2



The symbol
(
m
2

)
is defined similarly, but depends on m modulo 8 (we have

(
m
2

)
is

0 if (m, 8) 6= 1, is 1 if m ≡ ±1 (mod 8), and is −1 otherwise). We extend
(
m
n

)
to

all n ∈ Z≥0 multiplicatively: if n = pk11 · · · pktt , then put
(
m
n

)
=
∏t

i=1

(
m
pi

)ki . The

quadratic Dirichlet series L(s, χm) has analytic continuation to C and a functional

equation of the form s 7→ 1 − s. It follows from the multiplicativity of χm that

we can also express (1.2) as an Euler product: L(s, χm) =
∏

p 1/(1 − χm(p)p−s).

As before, we call the factor 1/(1 − χm(p)p−s) the p-part of L(s, χm). Dirichlet

used the analytic properties of L(s, χm) to prove his famous theorem on primes in

arithmetic progressions, which says that for a, n ∈ Z with (a,m) = 1, there are

infinitely many primes p congruent to a modulo m. In other words, by studying the

analytic properties of L(s, χm), Dirichlet obtained information about congruences

modulo m.

We remark that L(s, χm) can be viewed as a twisted zeta function. In the

classical sense, to twist a Dirichlet series by a character χ means replacing the

coefficients a(n) in (1.1) with χ(n)a(n). This suggests thinking of L(s, χm) as the

zeta function ζ(s) twisted by χm. Note that for p prime, the value of χm(p) records

information about the quadratic field Q(
√
m): the situation χm(p) = 1 is equivalent

to p splits in Q(
√
m), the situation χm(p) = −1 is equivalent to p inert in Q(

√
m),

and if χm(p) = 0, then p ramifies in Q(
√
m). Thus, the twisted zeta function

L(s, χm) provides information not just about the distribution of primes of Q, but

about the splitting behavior of primes in the extension Q(
√
m).

As a third example of a classical Dirichlet series, we consider Kubota’s Dirich-

let series. The coefficients of Kubota’s Dirichlet series are Gauss sums. Though

perhaps not as familiar as Dirichlet characters, Gauss sums have many important

applications in number theory. For example, one place they arise is in the func-

tional equations of L-functions. Gauss sums are essentially finite Fourier trans-

3



forms. They are the convolution of a multiplicative character with an additive

character over a finite field. We describe Gauss sums and their properties in detail

in Section 2.1. For now, it is enough to know that these are functions g : Z≥0 → C

of the form

g(n) =
∑

a mod n

χ(n)e(n),

where χ is a multiplicative character and e is an additive character. For example,

we may take χ = χm to be the quadratic character defined by (1.3) and e to be the

additive character a 7→ e2πia. With this definition, Kubota’s Dirichlet series takes

the form

Z(s) =
∑
n≥1

g(n)

ns
. (1.4)

Unlike Dirichlet characters, Gauss sums are not in general multiplicative, but

they are twisted multiplicative: if (a, b) = 1, then we have

g(ab) = g(a)g(b)ϕ(a, b), (1.5)

where ϕ(a, b) is a product of roots of unity depending on a and b. This failure

of multiplicativity means that in general Z(s) does not have an Euler product.

However, (1.5) shows that we do have a twisted analogue of an Euler product. As

with ζ(s) and L(s, χm), the p-parts of Z(s) are generating functions

∑
k≥0

g(pk)p−ks = 1 + g(p)p−s,

in p−s for the p-power coefficients.

Kubota [20] discovered (1.4) as the Fourier coefficient of an Eisenstein series

on a metaplectic group (metaplectic groups are covers of reductive groups). The

analytic continuation and functional equations of (1.4) then follow directly from the

analytic properties of the Eisenstein series. The residues of Kubota’s Dirichlet series

are coefficients of generalized theta functions, which are higher order versions of

4



the quadratic theta function θ(z) =
∑

n∈Z e
2πin2z. Consequently, Kubota’s Dirichlet

series has deep connections with higher order reciprocity laws.

1.1.2 Multiple Dirichlet Series

Multiple Dirichlet series are the natural generalization of (1.1) to several vari-

ables:

D(s1, . . . , sr) =
∑

(n1,...,nr)∈(Z≥0)r

a(n1, . . . , nr)

ns11 · · ·nsrr
, a(n1, . . . , nr) ∈ C, (1.6)

where the si are complex variables. Like classical Dirichlet series, we hope that (1.6)

have nice analytic properties — not only should they converge in some complex half

space, they should also have analytic continuation to Cr and a group of functional

equations that intermixes all the variables s1, . . . , sr. In this case, the series (1.6)

are a tool for studying the coefficients a(n1, . . . , nr).

Like classical Dirichlet series, arithmetic questions often motivate the study of

multiple Dirichlet series. For example, suppose we are interested in the average

value of the class number in quadratic extensions Q(
√
m) (the class number of a

number field F is a statistic that measures how far the ring of integers OF is from

being a principal ideal domain — the class number is one if and only if every ideal

in OF is generated by a single element). The special value of L(s, χm) at s = 1

is closely related to the class number of the quadratic field Q(
√
m). To study the

values L(1, χm), it makes sense to replace a(m) with L(1, χm) in (1.1) and instead

study the analytic properties of this new series.

If we go further and replace the value 1 with a second complex variable s2, we

obtain a function of two complex variables

L(s1, s2) =
∑
m≥1

L(s2, χm)

ms1
. (1.7)

5



Unwinding (1.7) using (1.2), we obtain a double Dirichlet series of the form (1.6):

L(s1, s2) =
∑
n,m≥1

(
m
n

)
ms1ns2

. (1.8)

Thus, one natural way to construct multiple Dirichlet series is to consider Dirichlet

series whose coefficients themselves come from Dirichlet series.

A double Dirichlet series similar to (1.8) and a method for its analytic continua-

tion first appeared in a 1956 paper of Siegel [26]. In fact, Goldfeld and Hoffstein [15]

used a Dirichlet series roughly of this form to prove that there exists a constant

c such that
∑
|m|<X L(1, χm) ∼ cX logX, where the sum is taken over all funda-

mental discriminants (here “roughly” means that the coefficients include correction

factors to ensure the desired analytic properties). Put another way, Goldfeld and

Hoffstein [15] used a double Dirichlet series to obtain information about the asymp-

totic behavoir of the class number in quadratic extensions of Q.

We emphasize that the definition (1.8) does not meet the needs of first paragraph

of this section because it does not have the right analytic properties; we have not

correctly defined a(n,m) when n and m are not relatively prime or square free. But,

when the coefficients of (1.8) are assigned certain correction factors, e.g. [15], the

resulting double Dirichlet series satisfies a group of functional equations isomorphic

to the symmetric group S3 on three letters, which is the Weyl group of the root

system A2. These six functional equations are generated by the two relations:

σ1 :

 s1 7→ 2− s1

s2 7→ s1 + s2 − 1
and σ2 :

 s1 7→ s1 + s2 − 1

s2 7→ 2− s2

. (1.9)

Figure 1 shows the A2 root system (with base given by α1 and α2) and its Weyl

group (generated by the simple reflections σ1 and σ2 through the lines orthogonal

to α1 and α2 respectively). One easily checks that the set of reflections in the

complex plane generated by σ1 and σ2 form a group isomorphic to S3.

6



α1

α2

e

σ2

σ1

σ21

σ12σ121

Figure 1: A2 root system

We are now in a position to describe the construction of Weyl group multiple

Dirichlet series. From now on, fix an integer n ≥ 1, a global field K containing

all 2nth roots of unity, and an irreducible, reduced root system Φ of rank r. To

this data we associate a multiple Dirichlet series of the form (1.6), with analytic

continuation to Cr and a group of functional equations isomorphic to the Weyl

group of Φ. As we will see, Kubota’s Dirichlet series (1.4) is an example of a

rank one Weyl group multiple Dirichlet series and the double Dirichlet series (1.8)

corresponds, heuristically, to the case n = 2 and Φ = A2.

To build Weyl group multiple Dirichlet series for more general root systems,

we start by interpreting (1.8) more directly in terms of data attached to the root

system Φ = A2. For general n, this type of Weyl group multiple Dirichlet series

takes the form

Z(s1, s2;A2, n) ≈
∑

ci∈(OK\{0})/O×K

g(c1)g(c2)
(
c1
c2

)−1

n

|c1|s1|c2|s2
, (1.10)

where OK is the ring of integers of K with unit group O×K . Here
(·
·

)
n

is an nth

order power residue symbol, which we also use as the multiplicative character for the

Gauss sums g(ci), and |ci| denotes the norm of ci (see Section 2.1 for details). Again,

we caution the reader that (1.10) is only heuristic — the coefficients as written do

7



not yield the desired analytic properties when c1 and c2 are not relatively prime

or square free. Nonetheless, we can still use (1.10) to gain intuition about how

the construction of Weyl group multiple Dirichlet series might be axiomatized. We

do this by interpreting (1.10) as a multiple Dirichlet series arising from a labelled

graph that depends on Φ and n. We describe this construction below.

Associate a multiple Dirichlet series Z(s1, . . . , sr) with an r-vertex graph in the

following way: label the vertices 1 through r — one for each Gauss sum g(ci)

that appears in the heuristic coefficient of (c1, c2). If
(
ci
cj

)−1
also appears in this

coefficient, then join vertex i and j with an edge. In this way, one may think of the

Gauss sum g(ci) as the contribution of vertex i and of
(
ci
cj

)−1
as the contribution of

the ij-edge. Then, (1.10) corresponds to the graph shown in Figure 2, which (not

coincidentally) is the Dynkin diagram for the root system A2. Different Dynkin

(
c2
c1

)−1

g(c1) g(c2)

Figure 2: Graph heuristic for Z(s1, s2;A2)

diagrams give rise to different Weyl group multiple Dirichlet series. As another

example, consider the Dynkin diagram shown in Figure 3 for the root system D4.

If we follow the description above, we are led to the series

Z(s1, s2, s3, s4;D4) ≈
∑

ci∈(OK\{0})/O×K

g(c1)g(c2)g(c3)g(c4)
(
c2
c1

)−1(c3
c2

)−1(c4
c2

)−1

|c1|s1|c2|s2|c3|s3|c4|s4
.

This definition will be correct when the ci satisfy certain conditions. In Section

2.1, we give a precise construction of Weyl group multiple Dirichlet series such that

the resulting series have both meromorphic continuation and the desired group of

functional equations.

We now introduce our series of interest, saving the details for later sections. Let

8



(
c2
c1

)−1 (
c3
c2

)−1

(
c4
c2

)−1

g(c1) g(c2) g(c3)

g(c4)

Figure 3: Graph heuristic for Z(s1, s2, s3, s4;D4)

n and K be as above, and let s = (s1, . . . , sr) be an r-tuple of complex variables.

Fix an r-tuple m = (m1, . . . ,mr) of integers in OK . Define the degree n Weyl

group multiple Dirichlet series of type Φ over K with twisting parameter m by

Z(s; m;K,Φ, n) = Z(s; m, K) ≈
∑

ci∈(OK\{0})/O×K

H(c1, . . . , cr; m)

|c1|s1 · · · |cr|sr
. (1.11)

The coefficients H(c; m) = H(c1, . . . , cr; m) are complex numbers involving prod-

ucts of Gauss sums and nth roots of unity and are built using the combinatorics of

Φ. Like the quadratic Dirichlet characters χm, they depend on both the ci and the

twisting parameters mi; and like Gauss sums, they satisfy a twisted multiplicativity.

This means that all H(c; m) are determined by the p-power coefficients, for each

prime p dividing the ci, using a twisted analogue of an Euler product (cf. Section

2.3). For each prime p ∈ O×K and tuple ` = (l1, . . . , lr) ∈ (Z≥0)r of nonnegative inte-

gers (the tuple ` depends on p and m), the p-part of Z(s; m, K) is a generating func-

tion in the variables |p|−si for the p-power coefficients H(pk1 , . . . , pkr ; pl1 , . . . , plr).

These p-parts are constructed using an analogue of the Weyl character formula.

We describe this construction in detail in Section 2.2.

We remark that (1.11) is still not precise. In general, some care must be taken

when OK has class number greater than one and to ensure that the coefficients

H(c; m) are well defined up to multiplication of the ci by units. For now, (1.11) is

sufficient to describe our results. We make (1.11) precise in Chapter 2.
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When m = (1, . . . , 1), we say that Z(s; m, K) is untwisted. Otherwise, we

say it is twisted. This is meant to mirror the classical setting. Heuristically, the

twisted coefficients H(c; m) are obtained by multiplying the untwisted coefficients

H(c; 1, . . . , 1) by characters depending on the mi. As with the twisted zeta function

L(s, χm), we expect that twisted Weyl group multiple Dirichlet series encode addi-

tional arithmetic information related to extensions of K by the twisting parameters

mi.

1.2 Overview of Results

The results of this thesis are of two flavors: local and global. The local re-

sults concern the p-parts of Weyl group multiple Dirichlet series — these are the

analogues of the Euler factors of classical Dirichlet series. The global results are

statements about the full multiple Dirichlet series (1.11).

Let n ≥ 1 be an integer, and let q ∈ Z be a prime power such that q ≡

1 (mod 2n). Our global results require that K = Fq(T ) is the field of rational

functions in T over the finite field Fq of order q. In this case — in fact, if K/Fq

is any algebraic function field — Weyl group multiple Dirichlet series are rational

functions in several variables: q−s1 , . . . , q−sr . Given Φ and n, the denominators of

such functions are known, but the numerators are not fully understood. Fisher

and Friedberg [13, 14] and Chinta [8] compute examples for Φ = A2 and Φ = A3,

and Chinta and Mohler [11] treat the case Φ = Ar and n � r, but few other

examples appear in the literature. An understanding of these rational functions

would have several applications. For instance, like the Kubota series, in some cases

the residues of such series are coefficients of generalized theta functions. Having

an explicit rational function representation for these series would provide a testing

10



ground for conjectured values of these mysterious coefficients [8, 16,24].

Our main global contribution is Theorem 5.2.1, which shows that, after a vari-

able change, Weyl group multiple Dirichlet series over Fq(T ) can be written as

finite weighted sums of their p-parts. The weights on these sums are as simple

as possible; they are explicit character sums that come directly from the defining

series. We suggest thinking of Theorem 5.2.1 as an analogy between Weyl group

multiple Dirichlet series over Fq(T ) and characters of representations of the com-

plex semisimple Lie algebra g associated to Φ. This analogy is discussed in more

detail in Section 2.2.

Theorem 5.2.1 is actually a generalization of the well-documented [8, 11] sim-

ilarity between untwisted Weyl group multiple Dirichlet series over the rational

function field and their p-parts. Indeed, Chinta and Gunnells [10] use this similar-

ity as a basis for their combinatorial construction of the p-parts. Proposition 5.1.1

shows that in the untwisted case, a simple change of variables transforms the local

p-part into the global series. The situation is more complicated in the twisted case,

but Theorem 5.2.1 shows that, after this same variable change, the global series

is still in the C-span of the p-parts. After multiplying by a normalizing product

of zeta functions, the weights on the p-parts are actually certain coefficients of the

original series Z(s; m,Fq(T )). This fact is a consequence of Lemma 4.1.5, which

describes the support of a rational function closely related to the p-parts.

Proposition 5.1.1 allows us to apply results about the local p-parts to the global

series. Chinta, Friedberg, and Gunnells [9] previously detailed several properties of

the p-parts in the case n = 2 and Φ simply laced. In order for Theorem 5.2.1 to hold

in the most general context, we extend the results of [9] to general n and Φ. To this

end, Theorem 4.1.1 gives an explicit recurrence relation on the coefficients of the p-

parts. It is the main tool for proving Theorem 4.1.2, which extends [9, Theorem 3.2]

11



and shows that the support of any p-part is contained in a shifted weight polytope.

In addition, Theorem 4.3.3 addresses the extent to which these p-parts are uniquely

determined by the relations given in Theorem 4.1.1. Using the relationship between

Weyl group multiple Dirichlet series and their p-parts, we are also able to apply

Theorem 4.3.3 to the global series.

As a final application of Theorem 4.1.1, we connect the two main approaches to

define Weyl group multiple Dirichlet series. These approaches are that of Brubaker,

Bump, and Friedberg [4–6] and Chinta and Gunnells [10]. Brubaker, Bump, and

Friedberg’s method builds off [7] and uses combinatorial techniques related to crys-

tal graphs to define the p-parts. Their approach applies to Φ = Ar for all n [6]

and to general Φ when n � r [4, 5]. The method we adopt is that of Chinta and

Gunnells [10], which defines the p-parts by means of an averaging technique anal-

ogous to the Weyl character formula; their construction produces a global object

with the correct analytic properties for all n and all Φ.

The equivalence of [4–6] and [10] has been an open problem. For Φ = Ar, the

combined works of Chinta and Offen [12] and McNamara [21] resolve this question

affirmatively. For n = 2 and Φ simply laced, Chinta, Friedberg, and Gunnells [9]

provide further evidence by showing that the stable (see Section 4.2) coefficients

of the p-parts of (1.11) agree. (Mohler [23] also compares the stable coefficients

for Φ = Ar and n � r.) Our Theorem 4.1.1 allows us to compare the stable

coefficients of the p-parts of [4,5] and [10], for general n and Φ, and Theorem 4.2.1

shows they do indeed agree. In fact, for n� r, the stable coefficients are the only

nonzero coefficients of the p-parts. Thus, Theorem 4.2.1 shows that, in the cases

when both constructions apply, the methods to construct (1.11) of [4, 5] and [10]

agree in general.
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1.3 Guide to this Thesis

Chapter 2 explains how to build Weyl group multiple Dirichlet series using the

Chinta and Gunnells [10] construction of the p-parts. To begin, Section 2.1 provides

the preliminary definitions and facts needed for this construction. Because we are

ultimately interested in global series defined over the rational function field, we will

focus our definitions on this case. However, we note that the p-part construction

given in Section 2.2 is purely local — the same method applies to build Weyl group

multiple Dirichlet series over any global field K. We end this chapter with Section

2.3, which describes how to build Z(s; m,Fq(T )) from its p-parts using a twisted

analogue of an Euler product.

Chapter 3 derives the functional equations for Weyl group multiple Dirichlet

series Z(s; m,Fq(T )) over the rational function field. Arguments to obtain these

functional equations have previously appeared in the literature, but with limitations

on Φ. For example, [8] treats the case Φ = A2 and n arbitrary. To extend the

arguments of [8] to general Φ, we reference [10], which treats all Φ and n, but for

K any number field. It is clear that the arguments of [10] apply to function fields

as well, and the goal of this chapter is to make explicit how the arguments of [10]

work in the much simpler case when K = Fq(T ).

Chapter 4 describes our results that pertain to the p-parts of Weyl group mul-

tiple Dirichlet series. The goal of this chapter is to extend to general Φ and n the

results of [9], which address the local factors in the case that n = 2 and Φ is simply

laced. To this end, Theorem 4.1.1 gives a recurrence relation on the coefficients

of the p-parts that allows us to generalize all of the results of [9]. Theorem 4.2.1

shows that the support of the p-parts are contained in shifted weight polytopes,

and Theorem 4.3.3 shows that, up to finitely many coefficients, the p-parts are
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completely determined by the recurrence relations on their coefficients. Theorem

4.2.1 compares p-parts constructed via techniques of [4,5] and [10], and shows that,

in the cases when both constructions apply, the stable coefficients agree. Finally,

Lemma 4.1.5 is a vanishing result that describes the support of a rational function

closely related to the p-parts. This lemma is used to prove Theorem 5.2.1 in the

next chapter.

Chapter 5 gives our global results. Proposition 5.1.1 and Theorem 5.2.1 relate

Weyl group multiple Dirichlet series over the rational function field and their p-

parts. Theorem 5.2.1 draws an analogy between the rational functions associated

to twisted Weyl group multiple Dirichlet series over the rational function field and

characters of representations of the semisimple complex Lie algebra associated to

Φ. In particular, we show that Weyl group multiple Dirichlet series can be written

as a sum of local p-parts after a certain variable change, with weights given by

certain character sums. We end this last chapter with an example.
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C H A P T E R 2

CONSTRUCTION OF WEYL GROUP MULTIPLE

DIRICHLET SERIES

This chapter explains how to construct Weyl group multiple Dirichlet series

over the rational function field. After reviewing preliminary definitions and facts

in Section 2.1, we describe how to construct the p-parts using the Chinta–Gunnells

method in Section 2.2. We end with Section 2.3, which explains how to build Weyl

group multiple Dirichlet series over the rational function field from their p-parts

using a twisted analogue of an Euler product.

2.1 Preliminaries

2.1.1 Notation

As in the introduction, let Φ be an irreducible, reduced root system of rank

r, and let n be an integer greater than one. Fix a prime power q ∈ Z such that

q ≡ 1 (mod 2n). Let K = Fq(T ) be the field of rational functions in T over Fq.

Let O = Fq[T ] be the polynomial ring over Fq, and denote by Omon ⊂ O the set of

monic polynomials. For c ∈ O, define the norm to be |c| := qdeg c.
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Let K∞ = Fq((T−1)) denote the field of Laurent series in π∞ := T−1; this is the

completion of K at the place corresponding to π∞. We have O ⊂ K ⊂ K∞. For

f =
∑∞

i=−k aiπ
i
∞ ∈ K∞, define deg f to be the smallest i such that ai 6= 0. Note

that K∞ has ring of integers Fq[[π∞]] and maximal ideal (π∞) := π∞Fq[[π∞]].

2.1.2 Gauss Sums

The coefficients of Weyl group multiple Dirichlet series involve nth order Gauss

sums. To define these coefficients, we first must assign a Gauss sum g(c) to each

c ∈ Omon. After an appropriate identification of the residue field of c with the finite

field Fqdeg c , one sees that the g(c) can be identified with finite field Gauss sums; we

first define these.

Assume that q = pk, where p is necessarily an odd prime. Let µn = {a ∈ Fq :

an = 1} be the nth roots of unity in F×q , and fix an embedding ε : µn → C. Define

the multiplicative character χ : F×q → µn by a 7→ a(q−1)/n and the additive character

e0 : F×p → C by a 7→ exp 2πia/p. To extend e0 to Fq, put e∗ = e0 ◦ TrFq/Fp . By

definition, we have TrFq/Fp : a 7→ a + ap + ap
2

+ · · · + ap
k−1

. For t ∈ Z, define the

finite field Gauss sum

τ(εt) =
∑
a∈F×q

ε(χ(a))te∗(a). (2.1)

A detailed listing of the properties of these sums see can be found in [19, Section

8.2]. In particular, one can show that τ(εt)τ(ε−t) = q.

For the remainder of the text, we assume that P ∈ Omon is irreducible of norm

|P |. As we will no longer need to refer explicitly to the characteristic of Fq, from

now on we let p := |P |. We abuse notation and refer to the P -parts of our multiple

Dirichlet series as p-parts. Recall that with this notation, the p-parts are generating

functions in p−si for the P -power coefficients of Z(s; m,Fq(T )).
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Let c ∈ Omon. The multiplicative character we use to define the Gauss sums

g(c) is the nth order power residue symbol cf. [25, Chapter 3]. This symbol is

defined in the following way: let P ∈ Omon be irreducible and let a ∈ O. If P does

not divide a, define
(
a
P

)
n

to be the unique element in F×q such that(
a

P

)
n

≡ a
|P |−1
n mod P.

If P divides a, define
(
a
P

)
n

= 0. Using this definition, it is a simple exercise to show

that if α ∈ F×q , we have (
α

P

)
= α

q−1
n

degP .

We extend this symbol multiplicatively to all b ∈ O: if b = αP f1
1 · · ·P

ft
t , put(

a
b

)
n

=
∏t

i=1

(
a
Pi

)fi
n

. In particular, if α ∈ F×q , then
(
a
αb

)
n

=
(
a
b

)
n
.

The nth order reciprocity law cf. [25, Theorem 3.5] relates
(
a
b

)
n

to
(
b
a

)
n
. For

c ∈ O, let sgn(c) be the leading coefficient of c raised to the power q−1
n

. If a, b ∈ O

are relatively prime and non-zero, then(
a

b

)
n

= (b, a)∞

(
b

a

)
n

,

where

(b, a)∞ := (−1)
q−1
n

deg(a) deg(b) sgnn(a)deg(b) sgnn(b)− deg(a), (2.2)

is the Hilbert symbol at ∞. Note that for a, b ∈ Omon, our assumption q ≡ 1

(mod 2n) gives (
a

b

)
n

=

(
b

a

)
n

.

The additive character used to define g(c) acts on F∞. For a ∈ F∞, write

a =
∑∞

i=−N aiπ
i, and let ψ(a) = a−1 and ψ∗(a) = ψ(T 2a). Define e = e∗ ◦ ψ∗,

where e∗ is the additive character on Fq defined above. One can show that e

satisfies {x ∈ F∞ : e(xO) = 1} = O.
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Let m, c ∈ O and t ∈ Z. Define the Gauss sum

g(m, c; εt) = gt(m, c) :=
∑

y mod c

ε

((
y

c

)
n

)t

e(my/c), (2.3)

where the sum is only over y 6≡ 0 mod c. We denote g1(1, c) by g(1, c) or simply

g(c). In general g(cc′) 6= g(c)g(c′), but Gauss sums do satisfy a twisted multiplica-

tivity and several other identities that are useful for computation. As mentioned

earlier, the properties below follow directly from the corresponding properties of

finite field Gauss sums, cf. [19, Section 8.2].

1. If (c, c′) = 1, we have

gt(m, cc
′) =

(
c

c′

)t
n

(
c′

c

)t
n

gt(m, c)gt(m, c
′).

2. If (a, c) = 1, we have

gt(am, c) =

(
a

c

)−t
n

gt(m, c).

3. Let k, l ∈ Z≥0, and let φ(P l) = be the number of elements of (O/P lO)×.

Then

gt(P
l, P k) =


plgtk(1, P ) if k = l + 1;

φ(P k) if n|tk and l ≥ k;

0 otherwise.

(2.4)

4. If (t, n) = 1, then

gt(1, P )g−t(1, P ) = |P | = p.

2.1.3 Root Systems

The p-parts of Weyl group multiple Dirichlet series are built using data from

an irreducible, reduced root system Φ of rank r, cf. [17, Chapter 9]. The term
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“reduced” means that if α ∈ Φ, the only multiples we allow are ±α ∈ Φ. Let

{α1, . . . , αn} be the set of simple roots. Any root of Φ can be written as a Z-linear

combination of the αi. We say α ∈ Φ is positive (negative) if when written as a

sum of simple roots α =
∑
kiαi, all ki are nonnegative (nonpositive). We have

a decomposition Φ = Φ+ ∪ Φ− into positive and negative roots. Let Λ be the

root lattice of Φ, i.e. the Z-span of the simple roots. Define the generalized height

function d : Λ→ Z by

d : λ =
r∑
i=1

λiαi 7→
∑

λi.

Let W be the Weyl group of Φ. Let (·, ·) be a W -invariant symmetric, bilinear,

positive definite inner product on Λ ⊗ R, normalized such that the short roots all

have length one — this implies that for any α, β ∈ Λ, we have (α, β) ∈ 1
2
Z. We

have

‖α‖2 =



1 for all α in types A,D,E,

1 for α a short root in types B,C, F4, G2,

2 for α a long root in types B,C, F4,

3 for α a long root in type G2.

Let 〈αi, αj〉 = 2
(αi,αj)

(αj ,αj)
be the ij-entry of the Cartan matrix Cij =

(
c(i, j)

)
of Φ.

The Weyl group W is generated by the simple reflections

σj(αi) = αi − 〈αi, αj〉αj. (2.5)

For w ∈ W , let l(w) be the number of σj in any reduced expression for w, and let

sgn(w) = (−1)l(w). Let Φ(w) = {α ∈ Φ+ : wα ∈ Φ−} be the set of positive roots

made negative by w. One can show that #Φ(w) = l(w). If l(σiw) = l(w) + 1,

then [18, 5.6]

Φ(σiw) = Φ(w) ∪ {w−1αi}.
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In particular, if l(wσi) = l(w) + 1, then

Φ(σiw
−1) = Φ(w−1) ∪ {wαi}. (2.6)

Let {α̌i = 2αi
(αi,αi)

: i = 1, . . . , r} be the set of simple coroots. The fundamental

weights {$1, . . . , $r} of Φ are the corresponding dual basis, with respect to (·, ·). In

particular, we have 〈$i, αj〉 = δij, which means that we can write αj =
∑
c(j, i)$i

in terms of the fundamental weights using the Cartan matrix. Let L be the weight

lattice, generated by the fundamental weights. There is a partial order on L: we

say µ � ξ if µ− ξ =
∑
ki$i with all ki nonnegative. We say µ ∈ L is dominant if

〈µ, αi〉 ≥ 0 for all i = 1, . . . , r and regular dominant if the inequality is strict. Let

ρ =
∑r

i=1$i be the sum of the fundamental weights.

We associate a root system Φ with a complex semisimple Lie algebra g in the

following way: let g be a semisimple complex Lie algebra, and let h be a Cartan

subalgebra of g (a maximal abelian subalgebra) with dual h∗. For λ ∈ h∗, let

gλ := {a ∈ g : [h, a] = λ(h)a for all h ∈ h}.

Here [·, ·] is the Lie bracket. The roots of g are the set of all λ such that gλ is

non trivial. Together with the Killing form (cf. [17, Chapter 5]) as the invariant

symmetric bilinear form on g, the roots of g form a root system. A well known

result states that for any Φ, there exists a semisimple Lie algebra g whose root

system is isomorphic to Φ. In this case, we say that g corresponds to Φ. It is a

fact that two semisimple Lie algebras that correspond to isomorphic root systems

are isomorphic.

From now on, let g be a semisimple Lie algbera corresponding to Φ. Characters

of representations of g can be considered as functions supported on L. For example,

consider the group ring Z[L] with basis elements yλ, for each λ ∈ L. In other
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words, let y = (y1, . . . , yn) and for µ =
∑r

i=1 ki$i, put yµ = yk11 · · · ykrr . Let µ be a

dominant, integral weight, and let V = V (µ) be the finite dimensional, irreducible,

complex representation of g with highest weight µ (cf. [17, Chapter 21]). Denote

by Π(µ) the set of weights of V and by mξ(λ) the dimension of the weight space

Vµ. The formal character chµ of V is the sum

chµ =
∑
ξ∈Π(µ)

mµ(ξ)yξ.

In fact, chµ is given by the Weyl character formula (2.16). For example, when

Φ = A2, we have

ch0 = 1

chρ = y−2
1 y2 + y−1

1 y−1
2 + y−1

1 y2
2 + 2 + y1y

−2
2 + y1y2 + y2

1y
−1
2

ch3$1 = y3
1 + y1y2 + y2

1y
−1
2 + y−1

1 y2
2 + 1 + y−3

1 y3
2 + y1y

−2
2 + y−2

1 y2 + y−1
1 y−1

2 + y−3
2 .

2.2 Chinta and Gunnells p-Part Construction

As we mentioned in the introduction, the coefficients of Weyl group multiple

Dirichlet series are complicated expressions involving Gauss sums that are built

using combinatorial data from Φ. Recall that P is a prime of Fq(T ) and p = qdegP

is its norm. This section describes the Chinta–Gunnells method [10] to construct,

for each prime P , generating functions in p−s1 , . . . , p−sr for the P -power coefficients

of Z(s; m,Fq(T )). In Section 2.3, we explain how to build the global series from

these local factors using a twisted analogue of an Euler product.
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2.2.1 A Weyl Group Action

To construct the p-parts, we follow Chinta and Gunnells [10]. This construction

involves defining a Weyl group action on rational functions to construct an invariant

rational function by averaging. To define this action, fix an r-tuple of nonnegative

integers ` = (l1, . . . , lr) ∈ (Z≥0)r. The tuple ` is related to m and is also called a

twisting parameter. It determines a dominant weight

θ := θ(`) =
r∑
i=1

(li + 1)$i. (2.7)

The weight θ in turn determines an action of W on Λ by

w • λ = w(λ− θ) + θ. (2.8)

In particular, when w = σj is a simple reflection, we have

σj • λ = σjλ+ (lj + 1)αj.

Consider A = C[Λ], the ring of Laurent polynomials on Λ. The ring A consists

of all expressions f of the form f =
∑

β∈Λ cβx
β with cβ ∈ C almost all zero. Multi-

plication in A is defined using addition in Λ : xβxλ = xλ+β. For such an f , define

the support of f by supp f = {β : cβ 6= 0}. We identify A with C[x1, x
−1
1 . . . , xr, x

−1
r ]

via xαi 7→ xi. Then, define a change of variables action on A by

(σj(x))i = p−c(i,j)xix
−c(i,j)
j . (2.9)

Comparing with (2.5), one sees that (2.9) is essentially a reformulation of the

standard action of W on Λ (after the introduction of p-powers). If fβ(x) = xβ is a

monomial, then

fβ(wx) = pd(w−1β−β)xw
−1β.
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The action we want actually takes place on index n sublattice cosets of the field

of fractions Ã of A. Let

n(α) =
n

gcd(n, ‖α‖2)
, α ∈ Φ, (2.10)

and define Λ′ ⊂ Λ to be the sublattice generated by the set {n(α)α}α∈Φ. We have

a decomposition of Ã

Ã =
⊕

λ∈Λ/Λ′

Ãλ,

where Ãλ is the set of functions f/g ∈ Ã such that g lies in the kernel of the map

ν : Λ → Λ/Λ′. For positive integers a and m, let (a)m := a − mba/mc be the

remainder of a upon division by m. Note that

(−a)m =

 0 if (a,m) 6= 1,

m− (a)m otherwise.

Let k ∈ {1, . . . , r} and define δk,` = δk(λ) = d(σk • λ − λ). Let g∗t (1, P ) be the

normalized Gauss sum

g∗t (1, P ) =

 −1 if t ≡ 0 (mod n)(αk),

gt(1, P )/p otherwise,

and define polynomials

Pβ,`,k(xk) = (pxk)
lk+1−(δk(β))n(αk)

1− 1/p

1− (pxk)n(αk)/p
, (2.11)

Qβ,`,k(xk) = −g∗−‖αk‖2δk(β)(1, P )(pxk)
lk+1−n(αk) 1− (pxk)

n(αk)

1− (pxk)n(αk)/p
.

We finally state the Chinta–Gunnells action on Ã: the simple reflections σk takes

f(x) ∈ Aβ to f |`σk, where

(f |`σk)(x) = (Pβ,`,k(xk) +Qσ•β,`,k(xk))f(σkx). (2.12)

This action satisfies the defining relations for W :
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Theorem 2.2.1. [10, Theorem 3.2] The action of the generators (2.12) extends

to give an action of W on Ã.

2.2.2 The p-Parts and their Properties

We now define the p-parts of Weyl group multiple Dirichlet series as in [10]

using (2.12). First, let

∆(x) =
∏
α>0

(1− pn(α)xn(α)α),

D(x) =
∏
α>0

(1− pn(α)−1xn(α)α),

j(w,x) = sgn(w)
∏

α∈Φ(w)

pn(α)d(α)xn(α)α.

Let xi = p−si , and recall that we have identified xi with xαi , for i = 1, . . . , r.

The p-parts are defined in terms of the following W -invariant rational function [10,

Theorem 3.5]:

F (x, `) :=
1

∆(x)

∑
w∈W

j(w,x)(1|w)(x). (2.13)

The invariance of F (x; `) under the action (2.12) yields a “functional equation”.

Writing F (x, `) =
∑

β∈Λ/Λ′ fβ(x), where each fβ(x) ∈ Ãβ, we have

F (x; `) =
∑

β∈Λ/Λ′

(Pβ,`,k(xk) +Qσ•β,`,k(xk))fβ(σkx).

It is simple to check that Pβ,`,k(xk)fβ(σkx) ∈ Ãβ and Qσ•β,`,k(xk)fβ(σkx) ∈ Ãσk•β.

Since σk• is an involution, it follows from [10, Theorem 3.5] that

fβ(x) = Pβ,`,k(xk)fβ(σkx) +Qβ,`,k(xk)fσk•β(σkx). (2.14)

Rationality of F (x; `) will be key to our future arguments. In particular, we

have the following theorem:
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Theorem 2.2.2. [10, Theorem 3.5] The product N(x, `) := F (x, `)D(x) is poly-

nomial in the xi.

Here are some examples of these polynomials for n = 3 and Φ = A2.

NA2(x; 0, 0) = 1 + g1(p)x1 + g1(p)x2 + p2x2
1x2 + p2x1x

2
2 + g1(p)p2x2

1x
2
2 (2.15)

NA2(x; 1, 1) = 1 + g2(p)px2
1 + g2(p)px2

2 − g2(p)p3x3
1x

2
2 + g2(p)p4x3

1x
2
2 + p5x4

1x
2
2

− g2(p)p3x2
1x

3
2 + g2(p)p4x2

1x
3
2 − p4x3

1x
3
2 + p5x3

1x
3
2 + p5x2

1x
4
2 + g2(p)p6x4

1x
4
2

NA2(x; 3, 0) = 1− p2x3
1 + p3x3

1 + g1(p)p3x4
1 + g1(p)x2 − g1(p)p2x3

1x2 + g1(p)p3x3
1x2

+ p5x5
1x2 − p5x3

1x
3
2 + p6x3

1x
3
2 − g1(p)p5x4

1x
3
2 + g1(p)p6x4

1x
3
2 − g1(p)p5x3

1x
4
2

+ g1(p)p6x3
1x

4
2 − p7x5

1x
4
2 + p8x5

1x
4
2 + p8x4

1x
5
2 + g1(p)p8x5

1x
5
2

The polynomials N(x; `) are the p-parts of Z(s; m,Fq(T )). This means that

N(x; `) =
∑

k1,...,kr≥0

H(P k1 , . . . , P kr ;P l1 , . . . , P lr)xk11 · · ·xkrr .

In Section 2.3, we explain in more detail how to build Z(s; m,Fq(T )) from its

p-parts.

Remark. In fact, for K any global field, to construct Z(s; m, K), the p-parts N(x; `)

are defined in essentially the same way that we have outlined in this section. What

does change is the definitions of the Gauss sums and power residue symbols (that

must be modified to make sense over K) and the rule for building the global series

from its p-parts. See, for example, [10, Section 4] for the construction of Z(s; m, K)

over any number field K.

There is analogy between the p-parts of Weyl group multiple Dirichlet series

and characters of irreducible representations of g. Recall that the character chµ

for the irreducible representation Vµ of g of highest weight µ is given by the Weyl
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character formula (cf. [17, Chapter 24]):

chµ =

∑
w ∈ W (−1)l(w)yw(µ+ρ)∑

w∈W (−1)l(w)ywρ
. (2.16)

Then, we claim it is possible to write

F (x, `) :=

∑
w∈W j(w,x)(1|`w)(x)∑

w∈W j(w,x)
,

which is clearly analogous to the Weyl character formula. We remark that the

yµ, µ ∈ L form a basis for Z[L], whereas the xλ, λ ∈ Λ form a basis for Z[Λ]. To

compare, one writes elements of the root lattice in terms of the fundamental weights

using the Cartan matrix. Under this identification, we have Z[L] ' Q[Λ] ⊃ Z[Λ].

To prove the claim we must show that ∆(x) =
∑

w∈W j(w,x). For each w ∈ W ,

the set Φ(w) is uniquely determined w; if w1 6= w2, then Φ(w1) 6= Φ(w2). Since

l(w) = #Φ(w), to form each term of j(w,x) in the sum, we simply choose the (−1)

term from all factors of D(x) corresponding to α ∈ Φ(w) and the 1 term from each

of the factors of D(x) with α /∈ Φ(w).

In general, F (x; `) is a rational function in the xi. But, in some cases the p-

parts are true characters. When n = 1, the function F (x, `) is polynomial in the

xi and can be identified with the character of the irreducible representation of g

with lowest weight −θ. This follows from the fact that when n = 1, the product

of j(w,x) and (1|`w)(x) corresponds (after shifting and absorption of p-powers) to

the standard action of w on the monomial x−θ. When n > 1, the function F (x; `)

is not in general polynomial in the xi, but we will still think of it as a “metaplectic”

symmetric function.

As noted in the introduction, Brubaker, Bump, and Friedberg [4–6] define the p-

parts using crystal graphs, which is different from [10]. This crystal graph definition

(see also [1, 3]) is outside the scope of this thesis, but we make a few comments.
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When Φ is type A and n = 1, the approaches of [4–6] and [10] are equivalent by

Tokuyama’s formula [27]. We can view the left hand-side of N(x; `) = D(x)F (x; `)

as a p-deformed Weyl denominator — corresponding D(x) — times a p-deformed

character (the two deformations are not the same). By Tokuyama’s formula, the

numerator N(x; `) can be written as a sum over elements of a crystal graph. At

present, we do not have a metaplectic (n > 1) version of Tokuyama’s formula for all

Φ, although the existence of such a formula is conjectured. However, our Theorem

4.2.1 shows directly that the “stable” coefficients of the p-parts of [4,5] and [10] do

indeed agree.

2.3 Construction of the Global Series over Fq(T )

This section describes how to form the general coefficients of Weyl group mul-

tiple Dirichlet series from the p-parts. Recall that for P prime, the coefficient

H(P k1 , . . . , P kr ;P l1 , . . . , P lr) of Z(s; m,Fq(T )) is the xk11 · · · xkrr coefficient ofN(x; `).

The remaining coefficients are determined using the following twisted multiplica-

tivity: for fixed (c1 · · · cr, c′1 · · · c′r) = 1, we put

H(c1c
′
1, . . . , crc

′
r; m) = H(c1, . . . , cr; m)H(c′1, . . . , c

′
r; m)ϕ(c; c′),

where

ϕ(c; c′) =
r∏
i=1

(
ci
c′i

)‖αi‖2(c′i
ci

)‖αi‖2∏
i<j

(
ci
c′j

)2c(i,j)∏
i<j

(
c′i
cj

)2c(i,j)

.

We also impose the relation that if (c1 · · · cr;m′1 · · ·m′r) = 1, then

H(c1, . . . , cr;m1m
′
1, . . . ,mrm

′
r) =

r∏
j=1

(
m′j
cj

)−‖αj‖2
H(c1, . . . , cr;m1, . . . ,mr).

Using these properties, we see that up to a product of residue symbols, H(c; m)

equals the product over all P dividing the ci of H(P k1 , . . . P kr ;P l1 , . . . , P lr), where
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ki and li are determined by the conditions P ki||ci and P li ||mi.

With this definition of H(c; m), we can now make explicit (1.11). Define degree

n Weyl group multiple Dirichlet series of type Φ over Fq(T ) with twisting parameter

m by

Z(s; m,Fq(T )) = Z(s; m) :=
∑

c∈Ormon

H(c; m)

|c1|s1 · · · |cr|sr
. (2.17)

We remind the reader that both Z(s; m) and its p-parts depend on Φ and n. Also,

because the coefficients are not, in general, multiplicative, Z(s; m) does not have

an Euler product.

Define the normalized series

Z∗(s; m) = Ξ(s)Z(s; m),

where

Ξ(s,Φ, n) = Ξ(s) =
∏

α=
∑
kiαi>0

ζO(1 + n(α)
r∑
i=1

ki(si − 1)), (2.18)

and ζO denotes the zeta function ζO(s) :=
∑

c∈Omon

|c|−s = (1− q1−s)−1.

Chinta and Gunnells [10, Theorem 6.1] show that for all Φ and n, the function

Z∗(s; m) has analytic continuation to Cr and satisfies a group of functional equa-

tions isomorphic to W . Actually, [10] treats Weyl group multiple Dirichlet series

over number fields, but it is clear that the arguments apply to function fields as

well.
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C H A P T E R 3

FUNCTIONAL EQUATIONS

In this chapter, we derive the functional equations of Z∗(s; m). Our contribution

is expository. Our main reference is [10], which derives the functional equations of

Z(s; m, K) for K any number field. It is clear that the arguments of [10] apply

to function fields as well, and the goal of this chapter explain the simplest case

K = Fq(T ). In particular, we obtain functional equations similar to those appearing

in [8], which treats the case K = Fq(T ) when Φ = A2.

To state the functional equations of Z∗(s; m), we first define a slightly more

general class of series. Let I = (I1, . . . , Ir) be an r-tuple of integers such that

Ij ∈ {0, . . . , n(αj)− 1}. Then define

Z(s; m, I) :=
∑

c∈Omon
deg cj≡Ij mod n(αj)

H(c; m)

|c1|s1 · · · |cr|sr

and

Z∗(s; m, I) = Ξ(s)Z(s; m, I),

where Ξ(s) is defined in (2.18) and n(αj) is defined in (2.10). Fix a simple reflection

σi ∈ W . We define an action of σi on the r-tuple of complex variables s by

(σis)j = sj − c(j, i)(si − 1),
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where c(j, i) is the Cartan integer. This action is consistent with the change of

variables action on monomials (2.9).

For m and I fixed, let Ji(m, I) = degmi −
∑

j 6=i c(j, i)Ij, and let σi • I be the

tuple whose jth entry is the αj coefficient of σi •
(∑r

i=1 Ijαj
)
. We will show that

Z∗(s; m, I) = |mi|1−siP ‖αi‖
2

Ii,Ji(m,I)
(si)Z

∗(σis; m, I) (3.1)

+ |mi|1−siQ‖αi‖
2

Ii,Ji(m,I)
(si)Z

∗(σis; m, σi • I),

where Pi,j(s) and Qi,j(s) are defined in (3.4).

Verifying (3.1) requires several steps. The crux of the argument uses the func-

tional equations of Kubota’s Dirichlet series, i.e. the rank one Weyl group multiple

Dirichlet series, which we state in (3.5). To derive (3.1), we fix cj for j 6= i and

define a new single variable Dirichlet series E(si; ĉi; m, Ii). Theorem 3.1.2 shows

that E satisfies functional equations of the same form as Kubtota’s Dirichlet series.

Writing Z∗(s; m, I) in terms of E(si; ĉi; m, Ii), we obtain (3.1).

3.1 Kubota’s Dirichlet Series

In this section, we define Kubota’s Dirichlet series over Fq(T ) and state its func-

tional equations. We also define the series E(si; a; m, Ii) and derive its functional

equations.

We previously defined Kubota’s Dirichlet series over Q in (1.4). The analogue

of (1.4) over Fq(T ) is

D(s,m; εt) =
∑

c∈Omon

g(m, c; εt)

|c|s
. (3.2)

To state the functional equations of (3.2), we also define a slightly more general
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class of series. Let 0 ≤ i ≤ n− 1 and m ∈ Omon be fixed. Define

D(s,m; εt, i) =
∑

c∈Omon
deg c≡i mod n

g(m, c; εt)

|c|s
, (3.3)

where the sum is taken over c ∈ Omon and where s is a complex variable. Also,

define the normalized series

D∗(s,m; εk, i) = (1− qn−ns)−1D(s,m; εk, i).

For integers i and j define

P t
i,j(s) = −(qx)1−(j+1−2i)n

q − 1

1− qn+1xn
(3.4)

Qt
i,j(s) = −τ(εt(2i−j−1))(qx)1−n 1− qnxn

1− qn+1xn
.

Note that both Pi,j(s) and Qi,j(s) depend only on the value of 2i − j mod n. It

is shown in [16, Proposition 2.1] (see also [8, 24]) that D∗ satisfies the following

functional equation:

D∗(s,m; εt, i) = |m|1−sP t
i,degm(s)D∗(2− s,m; εt, i) (3.5)

+ |m|1−sQt
i,degm(s)D∗(2− s,m; εt, degm+ 1− i).

In order to compare our notation with that of [10], we now express theD(s,m; εt, i)

in a slightly different way, namely, as sums over c in fixed equivalence classes of

K×∞/(K
×
∞)n. For this we follow [8,24]. For c, η ∈ K×∞, we say that c ∼ η if and only

if c/η ∈ (K×∞)n. For such an η, define

D(s,m; εt, η) =
∑
c∼η

gt(m, c)

|c|s
. (3.6)

The following lemma shows D(s,m; εt, π−i∞ ) = D(s,m; εt, i):

Lemma 3.1.1. Let i ∈ {0, . . . , n−1}. A monic polynomial c = c(T ) ∈ Omon ⊂ K×∞

satisfies c ∼ π−i∞ if and only if deg c ≡ i (mod n).
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Proof. The proof is an application of Hensel’s lemma. Suppose that c/π−i∞ ∈ (K×∞)n.

Then c/π−i∞ = (L(π∞))n, where we assume

L(π∞) = a−kπ
−k
∞ + a−k+1π

−k+1
∞ + · · ·+ a0 +

∞∑
j=1

ajπ
j
∞,

has degree −k. Clearing the denominator, we have c = π−i∞ (L(π∞))n; therefore,

deg c = −kn+ i ≡ i (mod n).

For the converse, suppose that deg c = k ≡ i (mod n), and write

c = T i+kn + a1T
i+kn−1 + · · ·+ ai+kn aj ∈ Fq,

= π−i−kn∞ + a1π
−i−kn+1
∞ ·+ai+kn.

Then

c/π−i∞ = π−kn∞ + a1π
−kn+1
∞ + · · ·+ ai+knπ

i
∞ = π−kn∞ (1 +X),

where X = a1π∞ + · · ·+ ai+knπ
i+kn
∞ ∈ (π∞). Define f(u) = un − (1 +X) ∈ K×∞[u].

Then (1 + X) ∈ (K×∞)n if and only if f(u) = 0 has a solution in K×∞. Note that

u = 1 is a solution modulo (π∞), and our assumption q ≡ 1 (mod 2n) implies f ′(u)

is a unit. By Hensel’s Lemma, there is a unique K×∞ solution to f(u) = 0.

There is yet another way to express the D(s,m; εt, π−i∞ ) that is useful for com-

paring [8, 24] with [10]. Essentially, one replaces the coefficients gt(m, c) in (1.4)

with gt(m, c)Ψi(c), where Ψi is a complex-valued function whose effect is to restrict

the sum to the equivalence classes [π−i∞ ] ∈ K×∞/(K×∞)n. For 0 ≤ i ≤ n− 1, define

Ψi(c) =


1 if c ∼ π−i∞ and c ∈ Omon,

(c, ε)−t∞ if c ∼ π−i∞ and c has leading coefficient ε,

0 otherwise.

The set {Ψi : 0 ≤ i ≤ n − 1} forms a basis for a more general space of functions

Mt(Ω), defined in [2, 10]. Let Ω = F×q K×n∞ . Note that Ω is maximal isotropic for
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the Hilbert symbol (2.2), in the sense that for any ε1, ε2 ∈ Ω, we have (ε1, ε2)∞ = 1.

Define Mt(Ω) as the space of functions Ψ : K×∞ → C that satisfy

Ψ(εc) = (c, ε)−t∞Ψ(c),

for all ε ∈ Ω. To see that the Ψi form a basis forMt(Ω), note that any Ψ ∈Mt(Ω)

is completely determined by its values on a set of representatives for K×∞/Ω. Thus,

dimM(Ω) = dimK×∞/Ω. The claim now follows from Lemma 3.1.1, which shows

that the representatives of K×∞/Ω are exactly π−i∞ , for i ∈ {0, . . . , n− 1}.

As mentioned in this chapter’s introduction, to obtain the functional equations

for Z∗(s; m) we consider a new series of one variable. Let i ∈ {0, . . . , r}, and fix

a = (a1, . . . , âi, . . . , ar) ∈ (Omon)r−1, where the hat means omit ai. For 0 ≤ j ≤

(n(αi)− 1), define

E(si, a; m, π−j∞ ) :=
∑

ci∈Omon
ci∼π−j∞

H(a1, . . . , ci, . . . , ar; m)

|ci|si
,

and let

E∗(si, a; m, π−j∞ ) = (1− qn(αi)(1−si))−1E(si, a; m, π−j∞ ).

The key step in proving the functional equations of Z∗(s; m) is to show that E∗

satisfies functional equations of the same form as the Kubota series (3.3). This is

the content of [10, Theorem 5.8]. To prove this, we rewrite E∗ in terms of Kubota

series and rational functions in q−si ; these rational functions are closely related to

the p-parts of Z∗(s; m) and satisfy their own functional equations.

To define the rational functions mentioned above, let P be prime and let k =

(k1, . . . , kr) be an r-tuple of nonnegative integers. Recall that i ∈ {0, . . . , r} is

fixed, and let li = ordP mi and n = n(αi). Writing β =
∑
kjαj, define a new tuple

33



k′ by setting
∑
k′jαj = σi • β. Then, define

N (P ;k)(x; m, αi) =
∑
j≥0

H(P k1 , . . . , P jn+(ki)n , . . . , P kr ; m)xjn+(ki)n ,

where as before (a)n = a− nba/nc. The rational functions we are interested in are

f (P ;k)(x; m, αi) =
N (P ;k)(x; m, αi)

1− pn−1xn

− δmki,k′ig(m−1
i P li , P ; ε‖αi‖

2(ki−k′i))p(ki−k′i−1)nx(ki−k′i)n
N (P ;k′)(x; m, αi)

1− pn−1xn
,

where δmi,j is 0 if i ≡ j mod m and 1 otherwise. These functions satisfy the following

functional equations [10, Theorem 4.1]:

f (P ;k)(x; m, αi)

f (P ;k)(1/(p2x); m, αi)
=

 (px)li+1−(k′i−ki)n if (k′i − ki)n 6= 0,

(px)li+1−n otherwise.
(3.7)

We are now in a position to sketch a proof of the following special case of [10,

Theorem 5.8].

Theorem 3.1.2 ( [10, Theorem 5.8]). Let a ∈ (Omon)r−1 be fixed, and let A =∏
j 6=i a

−c(j,i)
j , where c(j, i) is the ji-entry of the Cartan matrix for Φ. Put E(si, a; m, j) :=

E(si, a; m, π−j∞ ). Then

E∗(si, a; m, j) = |Ami|1−siP k
j,degmi

E∗(2− si, a; m, j) (3.8)

+ |Ami|1−siQk
j,degmi

E∗(2− si, a; m, degmi + 1− j).

Proof. Our proof is the same as that of [10, Theorem 5.8]. The general argument is

to write E∗(si, a; m, j) in terms of Kubota series D(si,m; εt, j) (for various j) and

the f (P ;k)(x; m, αi). The functional equations (3.8) then follow directly from the

functional equations (3.5) and (3.7).

To simplify notation, we assume that i = 1. Let P1, . . . , Pv be the prime divisors

of a2 · · · arm1 · · ·mr, with pj = |Pj|. Let S = {P1, . . . , Pv}. Write aj = P βj1 · · ·P βjv
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for j = 2, . . . , r and Am1 = P l1 · · ·P lr . Using the exact same argument as in [10],

one can show that

E(s1, a; m, j) = ξ
m−1∑

k1,...,kv=0

D(s1, P
(l1−2k1)n · · ·P (lv−2kv)n

v , ε‖α1‖, P−k11 · · ·P−kvv π−j∞ )

(3.9)

× C(k1, . . . , kr)
v∏
i=1

f (Pi;ki,b21,...,bri)(p−s1i ; m, α1),

where ξ and C(k1, . . . , kr) are products of residue symbols. In particular, for η′ ∼

P 2k1−l1−1 and Kj = lj − 2kj, we have [10, Lemma 5.9]

C(k1, . . . , kr)Ψ
(P

k1
1 ···P

kv
v )

I1

C(l1 − k1 + 1, . . . , lr − kr + 1)Ψ̂
(P

(l1+1−k1)n
1 ···P (lv+1−kv)n

v )
I1η′

=

(
m1P

K2
2 · · ·PKv

v

P 2k1−l1−1
1

)−‖α1‖2

,

(3.10)

where we define Ψ(a)(c) = Ψ(ac) and Ψ̂η(c) = (η, c)t∞Ψ(ηc). It is clear that Ψ̂η ∈

Mt(Ω) and depends only on the class of η ∈ K×∞/(K×∞)n.

The proof of (3.9) is a lengthy, but straightforward, computation with residue

symbols. The idea is to use twisted multiplicativity to rewrite the coefficients

H(c1, a2, . . . , ar) in terms of Gauss sums and prime power coefficients. This follows

from considering c1 = cc′, where we assume that (c, a2 · · · arm1 · · ·mr) = 1. Sum-

ming all relevant c, up to a product of residue symbols, we can write E(s1, a; m, j)

as the sum of the product of Kubota series of the form DS(s1;m; ε‖α1‖2 , η) and

polynomials N (P ;k)(p−s1i ; m, α1). Here DS(s;m; εt, η) is a generalization of (3.6);

for a finite set of primes S, it is defined exactly the same as (3.6), except that in

the sum, we restrict to only those c relatively prime to the elements of S.

To obtain D(s1;m, ε‖α1‖2 , η) from DS(s1;m, ε‖α1‖2 , η), we use the following result
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of [24] (see also [10, Lemma 5.4]) to “remove” primes from S one by one:

DS∪{P}(s,mP
i, εt, π−j∞ ) =

DS(s,mP i, εt, π−j∞ )

1− |P |n−1−ns (3.11)

− g(mP i, P i+1; εt)

|P |(i+1)s

DS(s,mP n−i−2, εt, π−i−j−1
∞ )

1− |P |n−1−ns ,

Making a change of variables and applying (3.10), we put the two terms on the

left-hand side of (3.11) together to obtain (after v iterations) (3.9).

It remains to see that (3.9) satisfies (3.8). For this, we first apply the functional

equations of D∗. Assume k = (k1, . . . , kr), where each kj ∈ {0, . . . , n(α1)− 1}, and

let

E = E(k) = P (l1−2k1)n · · ·P (lv−2kv)m
v

F = F (k) = P−k1 · · ·P−kvv .

Set e = degE and f = degF . It follows from (3.5) that

D∗(s1, E; ε‖α1‖2 , i− f) = |E|1−s1P ‖α1‖2
i−f,e (s1)D∗(2− s1, E; ε‖α1‖2 , i− f)

+Q
‖α1‖2
i−f,e (s1)D∗(2− s1, E; ε‖α1‖2 , e+ 1− (i− f)).

Recall that P
‖α1‖2
i,j and Q

‖α1‖2
i,j depend only on the value of 2i−j modulo n = n(α1).

We have

2i− 2f − e = 2i−
v∑
j=1

degPj(−2kj − (lj − 2kj)n)

≡ 2i− n+
v∑
j=1

degPj(lj)n

≡ 2i− degAm1 mod n.

Thus, we see Pi−f,e(s1) = Pi,degAm1(s1) and Qi−f,e(s1) = Qi,degAm1(s1) do not de-

pend on k. The result now follows from [10] using (3.7).
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3.2 Functional Equations for Z∗(s; m)

We now derive the functional equations for Z∗(s; m). Fix a simple reflection

σi ∈ W , and let n = n(αi). We decompose the series in the following way:

Z∗(s; m, I) =Ξ(s)
∑

c=(Omon)r

cj≡Ij (mod n)(αj)

H(c1, . . . , ci, . . . , cr; m)

|c1|s1 · · · |cr|sr
(3.12)

=
Ξ(s)

ζ(nsi − n+ 1)

∑
c=(Omon)r−1

cj≡Ij (mod n)(αj)

1∏r
j=1,j 6=i |cj|sj

E∗(si, ĉi; m, Ii)

Let C =
∏

j 6=i c
c(j,i)
j . Applying (3.8) to E∗(si, ĉi; m, Ii, i), we have (3.12) equals

Ξ(s)

ζ(nsi − n+ 1)

∑
c=(Omon)r−1

cj≡Ij (mod n)(αj)

1∏r
j=1,j 6=i |cj|sj

|Cmi|1−si (3.13)

×
(
P
‖αi‖2
Ii,degCmi

(si)E∗(2− si, ĉi; m, Ii) +Q
‖αi‖2
Ii,degCmi

(si)E∗(2− si, ĉi; m, degCmi + 1− Ii)
)
.

Using the definition of C, we compute degCmi = degmi−
∑

j 6=i c(j, i) deg cj. Sub-

stituting this into (3.13), we have

Ξ(s)

ζ(nsi − n+ 1)
|mi|1−si

∑
c=(Omon)r−1

cj≡Ij (mod n)(αj)

1∏r
j=1,j 6=i |cj|sj−c(j,i)(si−1)

×
(
P
‖αi‖2
Ii,degmi−

∑
j 6=i c(j,i)Ij

(si)E∗(2− si, ĉi; m, Ii)

+Q
‖αi‖2
Ii,degmi−

∑
j 6=i c(j,i)Ij

(si)E∗(2− si, ĉi; m, degmi −
∑
j 6=i

c(j, i)Ij + 1− Ii)
)
.

Recall that σi permutes the positive roots of Φ other than αi. It follows that

Ξ(s)

ζ(nsi − n+ 1)
=

Ξ(σis)

ζ(n(2− si)− n+ 1)
.

Putting this together, we have

Z∗(s; m, I) = |mi|1−siP ‖αi‖
2

Ii,degmi−
∑
j 6=i c(j,i)Ij

Z∗(σis; m, I)

+ |mi|1−siQ‖αi‖
2

Ii,degmi−
∑
j 6=i c(j,i)Ij

Z∗(σis; m, σi • I).
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where σi • I is defined as in this chapter’s introduction.

It will be convenient to express this functional equation in a slightly different

way. Summing Z∗(s; m, I) over all I, we have

Z∗(s; m) = |mi|1−si
∑
I

(
P
‖αi‖2
Ii,degmi−

∑
j 6=i c(j,i)Ij

+Q
‖αi‖2
(σi•I)i,degmi−

∑
j 6=i c(j,i)Ij

)
Z∗(s; m; I).
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C H A P T E R 4

LOCAL RESULTS

This chapter describes our results related to the p-parts of Weyl group multiple

Dirichlet series. The p-part construction is purely local. This means that to build

Weyl group multiple Dirichlet series over any global field K as in (1.11), one uses

the same p-parts. Of course, the definitions for the Gauss sums and power residue

symbols must be modified, but after this is done, results of this section apply to

the p-parts of Weyl group multiple Dirichlet series defined over any global field K.

4.1 The Support of N(x; `)

The main goal of this section is to prove Theorem 4.1.2, thereby extending [9,

Theorem 3.2] to general n and Φ. The key tool will be Theorem 4.1.1, which gives

an explicit recurrence relation on the coefficients of N(x; `).

4.1.1 A Recurrence Relation

The invariance of F (x; `) under the W -action (2.12) induces a recurrence rela-

tion on the coefficients of the numerator, i.e. the p-parts. This relation is summa-

rized in Theorem 4.1.1 below.
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Theorem 4.1.1. Let N(x; `) =
∑
aλx

λ be the p-part of (1.11) defined as in [10].

The coefficients aλ satisfy a recurrence relation under the W -action. Fix a simple

reflection σk. Let µ = σk • λ, α = αk, n = n(αk), δ = δk(λ), and ν = n− (δk(λ))n.

Then, if δ ≡ 0 (mod n), we have

−pn+1aλ−nα + aλ = −p1−δ (aµ − pn+1aµ+nα

)
. (4.1)

Otherwise, we have

g‖α‖2δ(1, P )−1p1−νaλ−να + aλ = g‖α‖2δ(1, P )−1p1−δ (aµ + g‖α‖2δ(1, P )p−(ν−1)aµ+να

)
.

(4.2)

Proof. Let l = lk. If f ∈ Ã and g(x) ∈ Ãβ with β ∈ Λ′, then for all w ∈ W , we

have [10, Lemma 3.4]

(fg|`w)(x) = g(wx)(f |`w)(x). (4.3)

In particular, since D(x) ∈ Ã0, (4.3) implies (F |`σ)(x) = (N |`σ)(x)/D(σx). The

W -invariance of F (x; `) yields

N(x, `) =
D(x)

D(σx)
(N |`σ)(x). (4.4)

It is a simple calculation to check that

D(x)

D(σx)
=
pn+1xnα(1− pn−1xnα)

pn+1xnα − 1
. (4.5)

To isolate the terms on the right-hand side that contribute to the coefficient of

xλ, we use P and Q from (2.11) to define new functions

Pλ(x) = (1− 1/p)(px)l+1−(δ)n ,

Qλ(x) = −g‖α‖2δ(1, P )−1(px)l+1−n,

Rλ(x) = g‖α‖2δ(1, P )−1(px)l+1,
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Substituting (4.5) into (4.4) using (2.12), we obtain∑
(aλ−nαp

n+1 − aλ)xλ =
∑

aλ [Pλ(x) +Qλ(x) +Rλ(x)] pn−l+δxnα+σλ, (4.6)

where we have used that the change of variables action under σ takes xλ to

pd(σλ−λ)xσλ, that d(σλ−λ) = δ− l−1, and that g∗−k(1, P ) = gk(1, P )−1. A straight-

forward calculation shows that the terms on the right-hand side that contribute to

the coefficient of xλ are

aγPγ(x)pn−l+δk(γ)xnα+σγ, with γ = σ • λ+ να

aγQγ(x)pn−l+δk(γ)xnα+σγ, with γ = σ • λ

aγRγ(x)pn−l+δk(γ)xnα+σγ, with γ = σ • λ+ nα.

For convenience, we show the computation for Pγ. For any γ, the monomial con-

tribution from Pγ is

x(l+1−δ(γ))α+σγxnα = xσ•γ+(n−(δ(γ))n)α.

We need only check that the exponent is λ when γ = σ • λ + να. This requires

simplifying [σ • (σ • λ+ να)] + [(n− (δ(σ • λ+ να)))nα]. The first term is λ− να,

so it will suffice to show that the second term is να, or equivalently, that

(δ(σ • λ+ (n− (δ(λ))nα))n = (δ(λ))n.

We have δ(σ•λ)n = n−δ(λ)n. It follows that σ•λ+(n−δn(λ))α = σ•λ+δ(σ•λ)nα,

and

δ(σ • λ+ δ(σ • λ)nα) = (d(λ− σ • λ− 2δ(σ • λ)nα))n

= (δ(σ • λ)− 2δ(σ • λ)n)n

= (−δ(λ)− 2(n− δ(λ)n)n

= δ(λ)n.
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Checking the contributions for Qγ and Rγ is similar. For the Qγ term, this reduces

to showing that l + 1 + σγ = λ when γ = σ • λ. For the Rγ term, we must show

that (n+ l + 1)α+ σγ = λ when γ = σ • λ+ nα. These statements are both clear

from definition (2.8).

Collecting the coefficients of xλ and moving all of the terms of (4.6) to the

right-hand side, we obtain a five term recurrence relation:

0 = aλ − pn+1aλ−nα − (1− 1/p)p1+n+δ(γ)−δ(γ)naµ+(n−δ(λ)n)α

+ g‖α‖2δ(1, p)
−1p1−δ(λ)−naµ+nα − g‖α‖2δ(1, P )−1p1−δ(λ)aµ,

(4.7)

where in (4.7) we put γ = µ+ (n− (δ(λ)n)α.

We next apply (4.6) a second time, now with xµ+nα as the monomial on the

left-hand side. First, we calculate the contributions to the coefficient of xµ+nα on

the right-hand side. We have

aγPγ(x)pn−l+δ(γ)xnα+σγ, with γ = λ− (n− δ(λ)n)α

aγQγ(x)pn−l+δ(γ)xnα+σγ, with γ = λ− nα

aγRγ(x)pn−l+δ(γ)xnα+σγ, with γ = λ.

Again, when we collect the coefficients of xµ+nα, now moving all of the terms to the

left-hand side, and we obtain a second five-term recurrence relation. To compare

with (4.7), we have multiplied each term by g‖α‖2δ(λ)(1, P )−1p1−δ(λ)−n.

g‖α‖2δ(λ)(1, P )−1p2−δ(λ)aµ − g‖α‖2δ(λ)(1, P )−1p1−δ(λ)−naµ+nα + p1+naλ−nα

−paλ − (1− 1/p)g‖α‖2δ(λ)(1, P )−1p2−δ(λ)+δ(γ)−δ(γ)naλ−(n−δ(λ)n) = 0

(4.8)

where in (4.8) we put γ = λ− (n− δ(λ)n)α.

Adding (4.7) and (4.8) and simplifying, we obtain the n recurrence relations

(4.1) and (4.2) stated in the theorem. To simplify, note that when γ = λ − (n −
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δ(λn))α, we have

1− δ(λ) + δ(γ)− δ(γ)n = 1 + n− δ(λ)n.

Using the fact that (n− δ(λ)n) = (−δ(λ))n, we have

1− δ(λ) + δ(γ)− δ(γ)n = 1− µ(λ) + δ(λ) + 2n− 2δ(λ)n − (δ(λ) + 2(n− δ(λ)n)n

= 1 + 2n− 2δ(λ)n − (δ(λ)− 2δ(λ))n

= 1 + 2n− 2δ(λ)n − n+ δ(λ)n

= 1 + n− δ(λ)n.

Similarly, when γ = µ+ (n− δ(λ)n)α, we have

n+ δ(γ)− δ(γ)n = δ(λ)n − δ(λ)− n.

The result now follows by direct computation.

We note that a four term recurrence relation on the coefficients of N(x; `) equiv-

alent to Theorem 4.1.1 previously appeared in [9] for Φ simply laced and n = 2.

Also, [23] gives a five term recurrence relation equivalent to (4.7) for Φ = Ar and

n� r.

4.1.2 The Support of N(x; `)

Let θ be defined as in (2.7). A result of Chinta, Friedberg, and Gunnells [9,

Theorem 3.2] states that when n = 2 and Φ is simply laced, the support of N(x; `)

is contained in the shifted weight polytope Πθ, defined as the convex hull of the

points θ−wθ, for w ∈ W . In fact, Πθ is the weight polytope for the representation

of lowest weight −θ, shifted by θ. Our next theorem extends this result to general

Φ and n.
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Theorem 4.1.2. The support of N(x; `) is contained in Πθ.

Remark. Let Θ be the set of dominant weights in the representation of highest

weight θ. All points in the convex hull of Πθ can be written θ − wξ, for w ∈ W

and ξ ∈ Θ. To see this, recall that Πθ corresponds to the weight polytope for

the representation of lowest weight −θ, after shifting by θ. Reflection through the

origin takes the weight polytope for the representation Vθ of highest weight θ to

the weight polytope for the representation of lowest weight −θ. In particular, the

dominant weights of Vθ are taken to those of the representation with lowest weight

−θ.

Our proof follows [9]. We require a few geometric results whose proof can be

found in [9] as they do not require n = 2 or Φ simply laced. Note that Πθ is cut

out by the inequalities

〈w$i,x− (θ − wθ)〉 ≥ 0 w ∈ W, i = 1, . . . , r. (4.9)

Moreover, these inequalities are redundant in the sense of the following lemma.

Before we state the lemma, recall that for w ∈ W , the right and left descent sets

of W are

R(w) = {σi : l(wσi) < l(w)}

and

L(w) = {σi : l(σiw) < l(w)}.

Lemma 4.1.3. [9, Lemma 3.4] Let σk ∈ R(w) and let u = wσk. If k 6= j, the

inequalities

〈w$j,x− (θ − wθ)〉 ≥ 0
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and

〈u$j,x− (θ − uθ)〉 ≥ 0

are equivalent.

The second geometric lemma we require describes, for any λ ∈ Πθ, the final

point of support in the ray λ+mαk, for m ∈ Z, k = 1, . . . , r.

Lemma 4.1.4 (Lemma 3.5 [9]). Let µ = θ − wθ be a vertex of Πθ, and suppose

σk ∈ L(w). Then any lattice point of the form µ + mαk, where m is a positive

integer, lies outside of Πθ. Similarly, let u = σkw and let λ = θ − uθ. Then any

point of the form λ−mαk, where m is a positive integer, lies outside of Πθ.

We now continue to the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. The proof requires showing that aλ = 0 if λ violates the

inequalities (4.9) that cut out Πθ. We induct on the length of w. If l(w) = 0, then

aλ = 0 if λ violates the inequalities active at the origin (otherwise we would have

polar terms, a contradiction since N(x; `) is polynomial). Now suppose l(w) > 0

and that we have verified the inequalities at all vertices where θ−uθ, where l(u) <

l(w). Let σk ∈ R(w); since l(w) > 0, this set is nonempty. Lemma 4.1.3 then

implies that aλ = 0 unless λ satisfies

〈w$j,x− (θ − wθ)〉 ≥ 0,

for all j 6= k. Here we use induction, so that l(wσk) < l(w) implies

〈wσk$j,x− (θ − wσkθ)〉 ≥ 0,

for all j 6= k. If #R(w) > 1, all desired inequalities must hold for the support of

N(x; `) at the vertex θ − wθ (we have already shown that they hold for $j, j 6= k
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— simply choose σj ∈ R(w) with j 6= k to achieve the last inequality.) Thus, it

suffices to assume that R(w) = {σk}. In this case, we must show that aλ = 0 if λ

violates the inequalities:

〈w$k,x− (θ − wθ)〉, (4.10)

for some w ∈ W .

Our proof of (4.10) is by contradiction. Let σj ∈ L(w), and choose µ ∈ Λ such

that µ violates (4.10), but aµ 6= 0. Further, assume that aµ′ = 0 for all µ′ = µ+mαj

with m > 0 (we can find such a µ by Lemma 4.1.4.) If µ violates the inequalities

(4.10), so must all points µ+mαj with m > 0. In other words, δ is the final point

of support on the ray µ + mαj, m ∈ Z. Now apply Theorem 4.1.1 with σ = σj

to aµ, where aµ is the first coefficient on the right-hand side of the relation - this

means µ = σj • λ for some λ ∈ Λ. Here we set n = n(αj) and δ = δ(λ). We have

aµ+mαj = 0 for all m > 0, and if δ ≡ 0 mod n then gδ(1, P ) = −1, so the value of

δm(σ • µ), as far as the right-hand side is concerned, doesn’t matter.

In the case δ ≡ 0 (mod n), applying σj produces the left-hand side

−pn+1aλ−nαj + aλ.

Otherwise, we have

g‖α‖2δ(1, P )−1p1−δnaλ−δnαj + aλ.

One checks that aλ vanishes by the induction hypothesis, since l(σjw) < l(w)

implies λ = θ−σjwθ violates the inequalities active at θ−σjwθ. Again by Lemma

4.1.4, this means aλ−nα and aλ−δnαj also vanish. Therefore, the left-hand side

is identically zero; thus, aµ vanishes. It follows that aµ = 0 unless µ satisfies

(4.10).

Figures 4, 5, and 6 below illustrate Theorem 4.1.2 for the Φ = A2 and n = 3

p-parts, which appeared in (2.15).
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α1

α2

Figure 4: A2, N(x; 0, 0)

α1

α2

Figure 5: A2, N(x; 1, 1)

α1

α2

Figure 6: A2, N(x; 3, 0)

Our next result also concerns the support of the p-parts, but it has a different

flavor than Theorem 4.1.2. Instead of the support of N(x; `), we consider the sup-

port of the rational function f(x; `) := ∆(x)F (x; `) = N(x; `)∆(x)/D(x). Lemma

4.1.5 and its consequence, Corollary 4.1.6, are key tools in proving Theorem 5.2.1

in the next chapter.

Lemma 4.1.5. The support of j(w,x)(1|`w)(x) is contained in the cone determined

by Φ(w) and shifted by θ − wθ.

Proof. We prove by induction on l(w). When l(w) = 0, the statement is clear.

Now assume that l(wσk) = l(w) + 1. We wish to show that j(wσk,x)(1|`wσk)(x)

is supported on the cone determined by Φ(wσk) and shifted by θ − σkwθ. By our

assumption on the relative lengths of w and wσk one can show (see, for example, [18,

Section 5.6]) that Φ(wσk) = σk(Φ(w)) ∪ {αk}.
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Since j(w,x) ∈ Ã0 for all w, it follows from (4.3) that [j(w,x)f |`σk](x) =

j(w, σkx)[f |`(x)]. By [10, Lemma 3.3], up to sign we have

j(w, σkx) =
∏

α∈Φ(w)

pn(α)d(α)(σkx)n(α)α

=
∏

α∈σk(Φ(w))

pn(α)d(α)xn(α)α

=
∏

α∈Φ(wσk)\{αk}

pn(α)d(α)xn(α)α

= j(wσk,x)/pn(αk)d(αk)xn(αk)αk

where we have used that n(α) = n(σkα). From the above equality, we see

j(wσk,x)(1|lwσk)(x) = j(wσk,x)[(1|`w)|lσk](x)

= pn(αk)d(αk)xn(αk)αk (j(w, σkx)[(1|`w)|`σk](x))

= pn(αk)d(αk)xn(αk)αk ([j(w,x)(1|`w)]|`σk) (x).

Our inductive hypothesis implies that j(w,x)(1|`w)(x) is supported on the cone

defined by Φ(w) and shifted by θ − wθ. Thus, we can assume that

j(w,x)(1|`w)(x) =
∑

fβ(x),

where each fβ(x) is a monomial supported on Φ(w) shifted by θ − wθ.

Using (2.12), we have

([j(w,x)(1|`w)]|`σk) (x) =
∑

[Pβ,`,k(xk) +Qσk·β,`,k(xk)]fβ(σkx),

where, up to constants aβ, fβ(σkx) = aβp
d(σkβ−β)xσkβ. By definition, we see that

Pβ,`,k(xk)fβ(σkx) = xσk•βx−δk(β)n(αk)P̃ (xk)

and

Qσk•β,`,k(xk)fβ(σkx) = xσk•βx−n(αk)Q̃(xk),
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where P̃ (xk) and Q̃(xk) are rational functions supported on the ray determined by

αk. After multiplying by x
n(αk)
k , each of these two terms is supported on σk(Φ(w))∪

αk = Φ(wσk). Moreover, since the original cone had been shifted to the vertex

xw•0, which corresponds to w, the new cone is shifted to the vertex xσk•w•0, which

corresponds to a reflection under σk.

Using this result, we obtain the following corollary:

Corollary 4.1.6. The support of ∆(x)F (x; `) lies outside the polytope Πθ.

Proof. The result follows from the definition of ∆(x)F (x; `) =
∑

w∈W j(w,x)(1|`w)(x).

Figures 7, 8, and 9 below illustrate Corollary 4.1.6 for various ` when n = 3

and Φ is A2 and B2. The plotted points represent the nonzero coefficients of

f(x; `) = ∆(x)F (x; `), where as before xk11 x
k2
2 corresponds to xk1α1+k2α2 .

α1

α2

Figure 7: A2, f(x; 0, 0)

4.2 Stable Coefficients

Recall that there are two main methods to define p-parts of Weyl group multiple

Dirichlet series. These are the techniques of [4, 5] and [10]. In this section, we
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α1

α2

Figure 8: A2, f(x; 1, 1)

α1

α2

Figure 9: A2, f(x; 3, 0)

compare these methods in the “stable case”. The stable coefficients of the p-parts

are those attached to the vertices of the polytope Πθ. In fact, when n � r, these

are the only nonzero coefficients [4, 5]. In this situation, we say that we are in the

stable case. For the precise stability condition, see [5, (20)] (when Φ is type A, it

is enough to have n ≥
∑r

i=1(li + 1)). For each `, [4,5] defines the stable coefficients

by

Aλ =
∏

α∈Φ(w−1)

g‖α‖2dθ(α)(p
dθ(α)−1, pdθ(α)),

where λ = θ − wθ for some w ∈ W , and d`(α) := 〈θ, α〉.

Our next theorem compares the stable coefficients above with those constructed

in [10]. As in [9], we caution the reader that we now make a slight change in
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notation: the element w now corresponds to the coefficient of λ = θ − w−1θ. This

change is to aid the comparison of the sets Φ(w−1) and Φ(σkw
−1).

Theorem 4.2.1. Assume n� r, i.e. that we are in the stable case. Let θ−w−1θ =∑
kiαi, and let N(x; `) =

∑
aλx

λ be the p-part constructed via [10]. Then aλ = Aλ.

In other words, the stable coefficients of [4, 5] and [10] agree.

Proof. Our proof, as in [9], is by induction on l(w). Assume that a0 = 1. If

l(w) = 0, then we have an empty product and the statement holds trivially. Now,

suppose that the coefficients of [4, 5] and [10] agree on all v ∈ W with l(v) ≤ l(w).

Let µ = θ−σjw−1θ, with l(σjw
−1) = l(w−1)+1, i.e. µ = σj •λ and µ < λ. Applying

(4.1) or (4.2) with aµ on the right-hand side, the outer terms vanish by Lemma

4.1.4. We have,

aµ = g‖αj‖2δ(λ)(1, P )pδ(λ)−1aλ,

where we have used that when δ(λ) ≡ 0 (mod n)(αj), we have g‖αj‖2δ(λ)(1, P ) = −1.

Comparing with
∏

α∈Φ(σjw−1) g‖α‖2δ(α)(P
dθ(α)−1, P dθ(α)), it follows from (2.6) and our

induction hypothesis that the product over α ∈ Φ(w−1) is just the coefficient of aλ.

It remains to show

g‖wαj‖2dθ(wαj)(P
dθ(wαj)−1, P dθ(wαj)) = g‖αj‖2δ(λ)(1, P )pδ(λ)−1.

In the case when δ ≡ 0 (mod n)(αj) we are done by property (2.4). In the

case δ 6≡ 0 (mod n(αj)), property (2.4) implies it is sufficient to show that δj(λ) =

dθ(wαj). By definition, we have

δ(λ) = d(µ− λ)

= d(

(∑
i

kic(i, j)

)
αj − (lj + 1)αj)

=
∑

kic(i, j)− lj − 1

51



On the other hand, we have

dθ(wαi) = 〈θ, wαj〉

= 〈σjw−1θ,−αj〉

= 〈θ −
∑

kiαi,−αj〉

= −lj − 1 + 〈
∑

kiαi, αj〉

=
∑

kic(i, j)− lj − 1

This implies the result.

4.3 Unstable Coefficients

In the final section of this chapter, we address the extent to which N(x; `) =∑
aλx

λ is completely determined by Theorem 4.1.1. Our main result is Theorem

4.3.3, which states that the set of all such N(x; `) form a C-vector space with

dimension at most the number of regular dominant weights in the representation

Vθ of highest weight θ. This result extends [9, Theorem 5.7] to general n and Φ,

and shows that when ` = (0, . . . , 0), the p-part N(x; `) is completely determined

by Theorem 4.1.1 after setting a0 = 1.

To prove Theorem 4.3.3, we require a few more geometric facts. Again we

follow [9]. Recall that by Theorem 4.1.2, the support of N(x; `) =
∑
aλx

λ consists

of all λ = θ − wξ such that w ∈ W and ξ ∈ Θ. For any ξ ∈ Θ, define Oξ :=

{θ−wξ : w ∈ W} to be the W -orbit of the coefficient aθ−ξ under the • action. Let

O = {Oξ : ξ ∈ Θ} be the set of all such orbits. There is a natural partial order

on O given by the poset relation on the weights: we say Oξ ≤ Oξ′ if and only if

ξ � ξ′. Under this identification of ξ with θ − ξ, the condition ξ � ξ′ becomes
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(θ − ξ) � (θ − ξ′).

Lemma 4.3.1. [9, Lemma 5.3] Let λ = θ− uPξ be a vertex of Πξ, where P ⊂ W

is the stabilizer of ξ, and suppose u ∈ uP is the unique maximal element in this

coset. If w = σku and l(w) > l(u), then µ − θ − wPξ is a different vertex of Πξ.

Moreover, if any point of the form µ + mαk, m ≥ 1 lies in an orbit O ∈ O, we

have O > Oξ. Similarly, if any point of the form λ−mαk, m ≥ 1 lies in an orbit

O ∈ O, we have O > Oξ.

A similar statement is true if σk fixes a vertex of Πξ.

Lemma 4.3.2. [9, Lemma 5.5] Let λ = θ − uPξ be a vertex of Πξ. Let w = σku

with l(w) > l(u), and suppose µ− θ−wPξ equals λ. Then if any point of the form

µ + mαk, m ≥ 1 lies in an orbit O ∈ O, we have O > Oξ. Similarly, if any point

of the form λ−mαk, m ≥ 1, lies in an orbit O, we hve O > Oξ.

We now come to the main result of this section:

Theorem 4.3.3. Let ` ∈ (Z≥0)r. Define Θ+ to be the set of all regular dominant

weights in the representation of highest weight θ. Suppose that the coefficients aθ−ξ

of N(x; `) are known for all ξ ∈ Θ+. Then, N(x; `) is completely determined by

the relations (4.1), (4.2) after setting a0 = 1.

Proof. We induct on the poset O. First, we know all the points in the orbit Oθ by

Theorem 4.2.1. Let ξ ∈ Θ with ξ 6= θ, and assume we know all of the coefficients

for orbits O > Oξ. There are two possibilities, either ξ is regular (meaning #Oξ =

#W ), or not.

Suppose first that ξ is regular, and let λ = θ−ξ. By assumption the value of aλ,

the coefficient associated with ξ, is known. We must show that we can determine

aδ for all δ ∈ Oξ. Any such δ is of the form θ − wξ = w • λ, w ∈ W and thus can
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be obtained by successively applying simple reflections σj. From relation (4.1) or

(4.2), we see that when we apply σj to aλ, the outer term on the left-hand side is

either θ− (ξ+µnαj), or θ− (ξ+nαj), where n = n(αj) and ν = n−µ(λ)n. In both

cases, these terms come from a previously determined orbit by Lemma 4.3.1, Oξ′ ,

where Oξ′ > Oξ. Applying σj • (θ − ξ′) we get the outer term on the right-hand

side, so this term also belongs to Oξ′ and hence is previously determined. Since we

know three out of four terms of the relation, aδ is determined.

Now, assume that ξ is not regular. Since #Oξ < #W , there exists a simple

reflection σj such that aλ is taken to itself under relation (4.1) or (4.2). By Lemma

4.3.2, all other aλ′ involved in the recurrence are predetermined; therefore we know

aλ. We may now successively apply (4.1) or (4.2) to determine the remaining

coefficients θ − wξ in the orbit Oξ.

Corollary 4.3.4. When ` = (0, . . . , 0), N(x; θ) is completely determined by the

relations from (1) after setting the constant term to 1.

Proof. The proof is identical to that of [9, Corollary 5.8].
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C H A P T E R 5

GLOBAL RESULTS

In this chapter, we state our global results. These results describe the relation-

ship between Weyl group multiple Dirichlet series over the rational function field

and their p-parts. Section 5.1 discusses the untwisted case, and Section 5.2 consid-

ers the twisted case. Combining the results of these two sections gives an analogy

between Weyl group multiple Dirichlet series over the rational function field and

characters of representations of g, which we will discuss in more detail in Section

5.2. We end this chapter with an example.

In what follows, we abuse notation and refer to F (x; `), defined in (2.13), instead

of N(x; `), as the p-parts (cf. Section 2.3). Let Xi = q−si . Under this identification,

we put Z∗(X; m) = Z∗(s; m).

5.1 The Untwisted Case

To prove Theorem 5.2.1, we exploit the similarity between untwisted Weyl group

multiple Dirichlet series over Fq(T ) and their untwisted p-parts. Recall that we

say Z(s; m) is untwisted when m = (1, . . . , 1). Similarly, the untwisted p-part

corresponds to ` = (0, . . . , 0). A simple variable change transforms one into the

other. Chinta [8] previously noted this fact for arbitrary n and Φ = A2, as did
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Mohler [23] for n � r and Φ = Ar. Proposition 5.1.1 gives the exact relationship

between the untwisted p-parts and global series for general Φ and n.

Proposition 5.1.1. Let τ(εk) and gk(1, P ) be the Gauss sums defined by (2.1)

and (2.3), respectively. Let F̃ (X; 0, . . . , 0) denote F (x; 0, . . . , 0) after the variable

change 
si 7→ 2− si

p = |P | 7→ 1/q

g∗k(1, P ) 7→ τ(εk)

, (5.1)

Then, we have

Z∗(X; 1, . . . , 1) = F̃ (X; 0, . . . , 0).

In other words, (5.1) transforms the untwisted p-part to the rational function cor-

responding to the untwisted Weyl group multiple Dirichlet series over Fq(T ).

Proof. Notice that (5.1) takes the functional equations of the p-parts (2.14) to the

functional equations of Z∗(X; m) (3.1). To see this, let β =
∑r

j=1 βjαj, and let

(σi • β)j denote the αj coefficient of σi • β. A simple computation shows that

(σi • β)j =

 βj if i 6= j,

1− βi −
∑

j 6=i βjc(j, i) if i = j.

It follows that δi(β) = 1−
∑

j 6=i c(j, i)βj−2βi. Put I = βi and J = −
∑

j 6=i c(j, i)βj.

Then, (5.1) takes Pβ,0,i(xi) and Qβ,0,i(xi) of (2.11) to P̃
‖αi‖2
I,J (si) and Q̃

‖αi‖2
I,J (si) of

(3.4), respectively.

Furthermore, these two functions have the same polar behavior. Notice that

(5.1) takes ∆(x)−1 to Ξ(X). By definition, we have

∆(x) =
∏
α>0

(1− pn(α)d(α)xn(α)),
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and

Ξ(X) =
∏

α=
∑
kiαi>0

ζO(1 + n(α)
r∑
i=1

ki(si − 1)).

Using that ζO(s) = 1
1−q1−s we rewrite

Ξ(X) =
∏

α=
∑
kiαi>0

1

1− q1−(1−n(α)d(α)+n(α)
∑r
i=1 kisi)

=
∏
α>0

1

1− qn(α)d(α)Xn(α)
.

The claim now follows from the fact that (5.1) sends pnxni to qnXn
i .

We have shown that both F̃ (X; 0, . . . , 0) and Z∗(X; 1, . . . , 1) satisfy the same

functional equations and have the same polar behavior. In addition, both have

constant term equal to one. Applying Theorem 4.3.3 and Corollary 4.3.3, both

functions are uniquely determined by their functional equations; thus, they must

be equal.

If we replace li = degmi for i = 1, . . . , r in the proof above, we see that even in

the twisted case, Weyl group multiple Dirichlet series over the rational function field

and their p-parts satisfy (up to (5.1)) the same functional equations. It follows that

many of the results of Chapter 4 apply to the global series. In particular, Theorem

4.3.3 shows that, up to a finite number of coefficients, Z∗(X; m) is completely

determined by its functional equations.

5.2 The Twisted Case

We are now able to state the main contribution of this chapter, Theorem 5.2.1.

This result gives an analogy between Weyl group multiple Dirichlet series over

the rational function field and characters of representations of g. In particular,

Theorem 5.2.1 shows that we can uniquely write Z∗(X; m) as a weighted sum of

p-parts F̃ (X; `).
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Theorem 5.2.1. Let m ∈ Or, and put ` = (degm1, . . . , degmr). For ease of

notation, let F̃ (X; θ) denote F (x; `) after applying (5.1), where θ is given by (2.7).

Let Θ be the set of dominant weights in the representation of highest weight θ, and

let Θ+ ⊂ Θ be the subset of regular dominant weights. Then, we have

Z∗(X; m) =
∑
ξ∈Θ+

Mθ−ξF̃ (X; ξ)Xθ−ξ,

where for λ =
∑r

i=1 λiαi, the coefficients Mλ are the character sums

Mλ =
∑

c∈(Omon)r

deg ci=λi

H(c; m).

Remark. The Mλ are the Xλ coefficients of Z(s; m) — the original series, without

the normalizing factors — expressed as a power series in Xi = q−si .

Proof. The proof is in three steps. The first two show that the set {F̃ (X;λ) :

λ ∈ Θ+} forms C-basis for Z∗(X; m). In the third step, we use Lemma 4.1.5 to

compute the coefficients Mλ.

We begin by showing that any rational function whose denominator equals the

that of Z∗(X; m) and that satisfies functional equations of the form (3.1), can be

written as ∑
ξ∈Θ+

mξF̃ (X; ξ)Xθ−ξ, mξ ∈ C. (5.2)

Let F(X) = N (X)/D(X) be a function satisfying these hypotheses, and write

N (X) =
∑

λ bλX
λ. By proposition 5.1.1 and Theorem 4.3.3, the polynomial N (X)

is completely determined by the values {bθ−ξ : ξ ∈ Θ+} and the recurrence relations

(4.1) and (4.2).

Recall that all p-parts have constant coefficient equal to one. Let mθ := b0

be the constant coefficient of N (X). By Theorem 4.2.1, the stable coefficients of
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Ñ(X; θ) and mθN (X) agree. Write

N (X) = mθÑ(X; θ) + Eθ(X),

where Eθ(X) is a polynomial supported on the orbits Oξ′ = {Xθ−wξ′ : w ∈ W}. All

such ξ′ satisfy ξ′ ≺ θ, since θ is the unique maximal element of Θ. Let Sθ be the set

of all such ξ′. Choose a maximal element ξ ∈ Sθ with respect to the partial order on

L. If ξ is not regular, then there exists a simple reflection taking ξ to itself. It follows

that the Xξ coefficients of both N (X) and Ñ(X; θ) are completely determined by

the (3.1) together with the coefficients associated to orbits Oξ′′ , where ξ′′ is such

that ξ′′ � ξ. If the Xξ coefficient of Eθ(X) is nonzero, we contradict the maximality

of ξ. Thus, ξ is regular. In addition, we insist that ξ ∈ Θ, which implies ξ is the

unique maximal element of Sθ.

Maximality of ξ ∈ Sθ implies that Eθ(X)Xξ−θ satisfies a “global version” of the

relations (4.1) and (4.2) corresponding to taking θ = ξ. Let mξ be the constant

coefficient of Eθ(X)Xξ−θ, and write

Eθ(X) = mξÑ(X; ξ)Xθ−ξ + Eξ(X),

where Eξ(X) is supported on the orbits Oξ′ with ξ′ ≺ ξ. By the same argument

as above, the maximal such ξ′ is regular. Continuing in this fashion, after finitely

many (#Θ+) iterations, our error term will vanish. This proves the first statement.

Now we claim that any rational function of the form (5.2) with denominator

equal to that of Z∗(X; m) satisfies the functional equations (3.1). It is enough to

show that for all ξ ∈ Θ+, the p-parts F̃ (X; ξ) satisfy the same functional equations

as F̃ (X; θ). This claim follows immediately from [12] and [22]. For Φ type A, Chinta

and Offen [12] define a Weyl group action on rational functions that is independent

of θ. Equation [12, (9.2)] shows that this θ-independent action is equivalent to the
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action (2.12) of [10]. In [22], McNamara generalizes the action of [12] to all Φ. For

the reader’s convenience, we also provide a direct proof.

To simplify notation, we work with the p-parts directly. It is enough to show

that F (x; ξ)xθ−ξ is invariant under the |θw action. Note by definition, F (x; ξ) is

invariant under the |ξw action. By definition (2.8), for w ∈ W , we have

w •ξ (λ) + (θ − ξ) = w •θ λ+ (θ − ξ). (5.3)

Let fβ(x) = xβ ∈ Aβ. We claim (5.3) implies

(f |ξw)(x)xθ−ξ = (fxθ−ξ|θw)(x).

To see this, let σk be a simple reflection. Writing ξ =
∑

(li+1)$i, we put (ξ)k = lk.

Recall that Pβ,ξ,k and Qβ,ξ,k depend only on δξ,k(β) and lk. It follows from (5.3)

that δθ,k(β + θ − ξ) = δξ,k(β). Let C = −
∑

i c(i, k). A simple calculation shows

that (qxk)
C = (fβ+θ−ξ(σkx))/(fβ(σkx)xθ−ξ).

Now write θ =
∑

(aj + 1)$j, ξ =
∑

(bj + 1)$j and θ− ξ =
∑
kiαi. (All weights

of the representation of g of highest weight θ are an integral root distance from θ.)

Using the Cartan matrix to base change, we have (θ)k − (ξ)k =
∑
kic(i, k) = −C.

The claim now follows from the definition of the action in (2.12).

Using Theorem 2.2.1, for all u ∈ W , we have((
(1|ξw)(x)xθ−ξ

)
|θu

)
(x) = (1|ξwu)(x)xθ−ξ.

This proves the second statement.

It remains to identify the coefficients Mλ. We now show that mξ = Mθ−ξ, where

Mλ is the Xλ coefficient of Z(s; m), written as a power series in the Xi = q−si .

For each ξ ∈ Θ+, we have F̃ (X; ξ) = f̃(X; ξ)/∆̃(X). It follows that

∑
ξ∈Θ+

mξF̃ (X; ξ) =
1

∆̃(X)

∑
ξ

mξf̃(X; ξ)Xθ−ξ. (5.4)
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Since Z∗(X; m) = Ξ(s)Z(s; m) and Ξ(s) = ∆̃(X)−1, from (5.4) we have

Z(s; m) :=
∑
λ

Mλx
λ =

∑
ξ∈Θ+

mξf̃(X; ξ)Xθ−ξ.

Writing both sides as power series in the Xi, the constant coefficient of every series

on the right-hand side is one. To equate mξ with Mθ−ξ, we induct on the weight

of ξ. It is clear that mθ = M0 = 1. Choose ξ ≺ θ, and suppose that m′ξ = Mθ−ξ′

for all ξ′ � ξ. By Lemma 4.1.5, the f̃(X; ξ′)Xθ−ξ′ are supported outside or on

the boundary of the Π′ξ. This means that scaling f̃(X; ξ′)Xθ−ξ′ by Mθ−ξ′ does not

affect the coefficients of f̃(X; ξ)Xθ−ξ. Since the constant coefficient of f̃(X; ξ)Xθ−ξ

is one, we must have mξ = Mθ−ξ′ . Combining this statement with the first two

claims concludes the proof.

Theorem 5.2.1 gives an analogy between Weyl group multiple Dirichlet series

over the rational function field and characters of representations of the semisimple

complex Lie algebra g associated to Φ. This analogy makes use of the analogy

discussed in Section 2.2 between the p-parts of Weyl group multiple Dirichlet se-

ries and characters of highest weight representations of g. We note that unlike

usual characters of representations of g, whose expression in terms of character of

highest weight representations usually involves a sum over all dominant weights,

here we need only look at the “metaplectic” symmetric functions (i.e. the p-parts)

corresponding to the regular dominant weights.

Theorem 5.2.1 gives a way to compute the rational functions Z∗(s; m) by com-

puting finitely many series coefficients of Z(s; m) and finitely many p-parts. Of

course, computing the p-parts is implicit in computing the series coefficients, as

these must be known in order to determine the H(c; m). We hope that this result

will prove useful for computing examples, which is important to both formulating

and testing conjectures. At present, there are several techniques for computing
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the p-parts, and there is active work to show that these different methods coincide

with the approach of [10] that we have outlined here. A computationally efficient

technique to compute the p-parts would give, via our theorem, a relatively fast

way to compute examples of Weyl group multiple Dirichlet series over the rational

function field.

5.3 An Example

In this section, we apply Theorem 5.2.1 to an example for Φ = A2. We take

q = 7 and n = 3. Note that q ≡ 1 (mod 2n). We choose m = (T 3 + 5T + 2, 1),

where T 3 + 5T + 2 is irreducible over F7.

To apply Theorem 5.2.1, we put li = degmi and θ = 4$1 + $2. Note that

α1 = 2$1 −$2 and α2 = 2$2 −$1. One can show

Θ+ = {θ, 2($1 +$2), $1 +$2},

and

{θ − ξ : ξ ∈ Θ+} = {0, α1, 2α1 + α2}.

Let X = (X1, X2) where Xi = q−si . Theorem 5.2.1 implies that

Z∗(X; m) = M0F̃ (X; 3, 0) +Mα1F̃ (X; 1, 1)X1 +M2α1+α2F̃ (X; 0, 0)X2
1X2, (5.5)

where

M0 = H(1, 1; m) = 1,

Mα1 =
∑
c1 deg 1

H(c1, 1; m),

M2α1+α2 =
∑
c1 deg 2

∑
c2 deg 1

H(c1, c2; m).
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The Mλ can now be computed directly (preferably, using a computer algebra sys-

tem).

To compute Mα1 , note that by degree constraints, all c1 in the sum are necessar-

ily relatively prime to m1 = T 3 +5T+2 and m2 = 1. Using twisted multiplicativity,

we have H(c1, 1;T 3 + 5T + 2, 1) = H(c1, 1; 1, 1)
(
T 3+5T+2

c1

)−1
. Since deg c1 = 1 im-

plies c1 is irreducible, the coefficient H(c1, 1; 1, 1) is simply the x1 coefficient of the

p-part N(x; (0, 0)) — this is g(1, p). It follows

Mα1 =
∑

deg c1=1

g(1, c1)

(
T 3 + 5T + 2

c1

)−1

.

Computing this term in Magma gives Mα1 = τ(ε)(−0.5 + 2.598i).

Computing M2α1+α2 is similar. Again, by degree constraints, all c1, c2 in the

sum are relatively prime to (m1,m2), so we have H(c1, c2;T 3 + 5T + 2, 1) =

H(c1, 1; 1, 1)
(
T 3+5T+2

c1

)−1
. Moreover, deg c2 = 1 implies c2 is irreducible. To com-

pute H(c1, c2; m), we decompose c1 into irreducibles and consider the corresponding

p-parts. Table 1 below shows the computation of H(c1, c2; 1, 1) in each of the dif-

ferent cases. We denote by NP the p-part N(x; (0, 0) corresponding to the prime

P .

Table 1: Computing H(c1, c2; 1, 1)

c1, such that H(c1, c2; 1, 1)

c1, c1 is irreducible [x1]Nc1 ∗ [x2]Nc2 = g(c1)g(c2)
(
c1
c2

)−1

(c2)2, c2 is irreducible [x2
1x2]Nc2 = |c2|2

P 2, P 6= c1 [x2
1]NP ∗ [x2]Nc2 = 0

P1P2, P1 6= P2, Pi 6= c1 [x1]NP1 ∗ [x1]NP2 ∗ [x2]Nc2 = g(P1)g(P2)g(c2)
(
P1

P2

)2(P1

c2

)−1(P2

c2

)−1

Pc2, P 6= c2 [x1]NP ∗ [x1x2]Nc2 = 0

Using Magma we compute M2α+α2 ≈ τ(ε)3(6.5 + 2.598i).

Remark. To simplify the computation of the Gauss sums, we used the following

very useful fact: for c ∈ A, let µ(c) denote the usual mobius function, which takes
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value 1 if c is square free and has an even number of irreducible factors, −1 if

c is square free and has an odd number of irreducible factors, and 0 otherwise.

Then [24, Theorem 2.1]

g(1, c) = µ(c)

((
c′

c

)
3

)
(−τ(ε))deg c.

Remark. We note that Mα1 and M2α1+α2 are algebraic. In fact, they live in the

compositum of Q(ζ3) and Q(ζ7 + ζ−1
7 ), where ζa denotes a primitive ath root of

unity.

Let τ1 = τ(ε) and τ2 = τ(ε2). Applying (5.1) to the p-parts of (2.15), we have

Ñ(X; 0, 0) = 1 + qτ1X1 + qτ1X2 + q4X2
1X2 + q4X1X

2
2 + q5τ1X

2
1X

2
2

Ñ(X; 1, 1) = 1 + q2τ2X
2
1 + q2τ2X

2
2 + q5τ2X

3
1X

2
2 − q6τ2X

3
1X

2
2 + q7X4

1X
2
2 + q5τ2X

2
1X

3
2

− q6τ2X
2
1X

3
2 + q7X3

1X
3
2 − q8X3

1X
3
2 + q7X2

1X
4
2 + q9τ2X

4
1X

4
2

Ñ(X; 3, 0) = 1 + q3X3
1 − q4X3

1 + q4τ1X
4
1 + qτ1X2 + q4τ1X

3
1X2 − q5τ1X

3
1X2 + q7X5

1X2

+ q6X3
1X

3
2 − q7X3

1X
3
2 + q7τ1X

4
1X

3
2 − q8τ1X

4
1X

3
2 + q7τ1X

3
1X

4
2 − q8τ1X

3
1X

4
2

+ q10X5
1X

4
2 − q11X5

1X
4
2 + q10X4

1X
5
2 + q11τ1X

5
1X

5
2

For a monomial Xλ and polynomial f(X), let [Xλ]f(X) denote the correspond-

ing coefficient of f(X). As a check, we also compute independently the coefficients

[X1X
2
2 ]Z and [X2

1X
2
2 ]Z. Using similar methods as outline above, we use Magma to

compute that [X1X
2
2 ]Z = −171.5−891.140i and [X2

1X
2
2 ]Z = −1453.720+1910.890i.

The rational function D(X) and power series expansion of Ξ(X) involve all

higher order terms, so [X1X
2
2 ]Z and [X2

1X
2
2 ]Z should agree with the corresponding

coefficients on the right hand side of (5.5). It follows from the theorem that we

should have

[X1X
2
2 ]Z = [X1X

2
2 ]Ñ(X; 3, 0) + [X2

2 ]Mα1Ñ(X; 1, 1)X1,
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or equivalently, that [X1X
2
2 ]Z = q2τ2Mα1 . Similarly, we should have

[X2
1X

2
2 ]Z = [X2

1X
2
2 ]Ñ(X; 3, 0)+[X1X

2
2 ]Mα1Ñ(X; 1, 1)X1+[X2]M2α1+α2Ñ(X; 0, 0)X2

1X2,

or equivalently, that [X2
1X

2
2 ]Z = qτ1M2α1+α2 . It’s easy to check that these identities

hold.

Figure 10 below shows the support of the numerator of the global series Z∗(X; m),

expressed in terms of the p-parts. The support of Ñ(X; 3, 0) is shown in blue, the

support ofMα1Ñ(X; 1, 1)X1 is shown in red, and the support ofM2α1+α2Ñ(X; 0, 0)X2
1X2

is shown in green.

θ

α1

α2

Figure 10: The support of the numerator of Z∗(X; m)
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A P P E N D I X

MAGMA CODE

/*Program to compute coefficients of Weyl group mutliple Dirichlet series.

Input required: q=p^n*/

/*Defines the complex field*/

C<i>:=ComplexField();

/*Defines the finite field with q elements*/

k<t>:=GF(q);

/*Defines \pi*/

PI:=Pi(C);

/*Define the integers*/

Z:=IntegerRing();

/*Defines the rational fucntion field over F_q*/

r<X>:=FunctionField(k);

/*Defines the polynomial ring over F_q*/

A<y>:=PolynomialRing(r);

/*Defines the polynomial ring over the rational function field over F_q*/

RA<Y>:=PolynomialRing(k);

/*Defines the rational function field as an algebraic function field

(in the language of Magma), i.e. as a finite extension of the rational

function field*/

R<x>:=FunctionField(y-X);

/*Sets a primitive cube root of unity of F_q*/

CRU:=RootOfUnity(3,k);

/*Our choice of twisting parameter*/

m1:=x^3+5*x+2;

Pl1:=Places(R,1);

pl1:=#Pl1;

Pl2:=Places(R,2);

pl2:=#Pl2;

N:=function(P);
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/*Given a place P of F_q(T), output the norm of the corresponding monic,

irreducible polynomial*/

return q^(Degree(P));

end function;

/*Given a place P of F_q(T), output the corresponding monic, irreducible

polynomial*/

ul:=function(P);

return r!UniformizingElement(P);

end function;

epsilon:=function(a);

/*embeds the cube roots of unity mu_3 of F_q into C*/

if a eq CRU then

return Exp(4*PI*i/3);

else if a eq CRU^2 then

return Exp(2*PI*i/3);

else if a eq CRU^3 then

return 1;

else

return 0;

end if;

end if;

end if;

end function;

chicube:=function(a);

/*multiplicative character from F_q->mu_3*/

if a ne 0 then

return a^(Z!((q-1)/3));

else

return 0;

end if;

end function;

cr:=function(a);

/*mbeds chi(F_q)->C*/

if chicube(a) ne 0 then

return epsilon(chicube(a));

else

return 0;

end if;
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end function;

cres:=function(a,P);

/*Given a place P and a polynomial a, computes the cubic residue a on P*/

F<y>,m:=ResidueClassField(P);

if m(a) ne 0 then

b:=m(a^(Z!((N(P)-1)/3)));

return epsilon(b);

else

return 0;

end if;

end function;

cres2:=function(a,P);

/*Given a place P and a polynomial a, computes the cubic residue a on P,

specific to rational function field --- agrees with cres*/

u:=RA!UniformizingElement(P);

n:=RA!a;

b:=Resultant(u,n);

return epsilon(chicube(b));

end function;

cresd:=function(P);

/*Given a place P, computes the cubic residue of P’ on P, where P’ is the

derivative of the polynomial corresponding to P*/

F<y>,m:=ResidueClassField(P);

b:=m(Derivative(ul(P))^(Z!((N(P)-1)/3)));

return epsilon(b);

end function;

cresd2:=function(P);

/*Given a place P, computes the cubic residue of P’ on P, where P’ is the

derivative of the polynomial corresponding to P, specific to rational

function field --- agrees with cresd*/

u:=RA!UniformizingElement(P);

b:=Resultant(u,Derivative(u));

return epsilon(chicube(b));

end function;

tau:=function(FD);

/*Computes the finite field Gauss sum for F_q, using the embedding epsilon*/

t:=0;

for j in FD do

68



t+:=cr(j)*Exp(2*PI*i*Z!TraceAbs(j)/Characteristic

(FD));

end for;

return t;

end function;

taupow:=function(FD,a);

/*Computes the finite field Gauss sum for F_q, using the embedding

epsilon^a*/

t:=0;

for j in FD do

if j ne 0 then

t+:=(cr(j)^a)*Exp(2*PI*i*Z!TraceAbs(j)/

Characteristic(FD));

end if;

end for;

return t;

end function;

gaupr:=function(P);

/*Computes the Gauss sum for a place P using Patterson’s Theorem 2.1*/

return -cresd(P)*(-tau(k))^(Degree(P));

end function;

M10:=function(m);

/*Given a twisting paremeter m=(m1,1), m1 irreducible, compute the x

series coefficient of Z(s,m)*/

s:=0;

for j in [2..#Pl1] do

if cres(m,Pl1[j]) ne 0 then

s+:=gaupr(Pl1[j])*cres(m,Pl1[j])^(-1);

end if;

end for;

return s;

end function;

M21:=function(m);

/*Given a twisting parameter m=(m1,1), m1 irreducible, compute the x^2y

series coefficient of Z(s,m)*/

s:=0;

/*Run over all 2|1*/

for j1 in [1..#Pl2] do

for j2 in [2..#Pl1] do
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if cres(m,Pl2[j1]) ne 0 then

s+:=gaupr(Pl2[j1])*gaupr(Pl1[j2])*cres(ul

(Pl2[j1]),Pl1[j2])^(-1)*cres(m,Pl2[j1])^(-1);

end if;

end for;

end for;

/*Run over all (11|1)*/

for j1 in [2..#Pl1] do

if cres(m,Pl1[j1]) ne 0 then

s+:=q^(2)*cres(m,Pl1[j1])^(-2);

end if;

end for;

/*Run over all 11|1*/

for j1 in [2..#Pl1] do

for j2 in [j1+1..#Pl1] do

for j3 in [2..#Pl1] do

if j2 ne j3 and j1 ne j3 then

if cres(m,Pl1[j1])*cres(m,Pl1[j2]) ne 0 then

s+:=gaupr(Pl1[j1])*gaupr(Pl1[j2])

*gaupr(Pl1[j3])*cres(ul(Pl1[j1]),Pl1[j2])^2*cres(ul(Pl1[j1]),Pl1[j3])^(-1)

*cres(ul(Pl1[j2]),Pl1[j3])^(-1)*cres(m,Pl1[j1])^(-1)*cres(m,Pl1[j2])^(-1);

end if;

end if;

end for;

end for;

end for;

return s;

end function;

M12:=function(m);

/*Given a twisting parameter m=(m1,1), m1 irreducible, compute the xy^2

coefficient of Z(s,m)*/

s:=0;

/*Run over all 1|2*/

for j1 in [1..#Pl2] do

for j2 in [2..#Pl1] do

if cres(m,Pl1[j2]) ne 0 then

s+:=gaupr(Pl2[j1])*gaupr(Pl1[j2])*cres(ul

(Pl1[j2]),Pl2[j1])^(-1)*cres(m,Pl1[j2])^(-1);

end if;

end for;

end for;

/*Run over all (1|11)*/
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for j1 in [2..#Pl1] do

if cres(m,Pl1[j1]) ne 0 then

s+:=q^(2)*cres(m,Pl1[j1])^(-1);

end if;

end for;

/*Run over all 1|11*/

for j1 in [2..#Pl1] do

for j2 in [j1+1..#Pl1] do

for j3 in [2..#Pl1] do

if j2 ne j3 and j1 ne j3 then

if cres(m,Pl1[j3]) ne 0 then

s+:=gaupr(Pl1[j1])*gaupr(Pl1[j2])

*gaupr(Pl1[j3])*cres(ul(Pl1[j1]),Pl1[j2])^2*cres(ul(Pl1[j1]),Pl1[j3])^(-1)

*cres(ul(Pl1[j2]),Pl1[j3])^(-1)*cres(m,Pl1[j3])^(-1);

end if;

end if;

end for;

end for;

end for;

return s;

end function;

M22:=function(m);

/*Given a twisting parameter m=(m1,1), m1 irreducible, compute the x^2y^2

series coefficient of Z(s,m)*/

s:=0;

/*Run over all 2|2*/

for j1 in [1..pl2] do

for j2 in [1..pl2] do

if j1 ne j2 then

s+:=gaupr(Pl2[j1])*gaupr(Pl2[j2])*cres(ul

(Pl2[j1]),Pl2[j2])^(-1)*cres(m,Pl2[j1])^(-1);

end if;

end for;

end for;

/*Run over all (11|11) */

for i1 in [2..pl1] do

s+:=gaupr(Pl1[i1])*q^2*cres(m,Pl1[i1])^(-2);

end for;

/*Run over all (11|1)1 */

for i1 in [2..pl1] do

for i2 in [2..pl1] do

if i1 ne i2 then
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s+:=gaupr(Pl1[i1])*q^2*cres(ul(Pl1[i1]),Pl1

[i2])^2*cres(ul(Pl1[i2]),Pl1[i1])^(-2)*cres(m,Pl1[i1])^(-2);

end if;

end for;

/*Run over all 1(1|11) */

end for;

for i1 in [2..pl1] do

for i2 in [2..pl1] do

if i1 ne i2 then

s+:=gaupr(Pl1[i1])*q^2*cres(ul(Pl1[i1]),Pl1

[i2])^2*cres(ul(Pl1[i2]),Pl1[i1])^(-2)*cres(m,Pl1[i1])^(-1)*cres(m,Pl1[i2])

^(-1);

end if;

end for;

end for;

/*Run over all 2|11*/

for i1 in [2..pl1] do

for i2 in [i1+1..pl1] do

for j1 in [1..pl2] do

s+:=gaupr(Pl1[i1])*gaupr(Pl1[i2])*gaupr(Pl2

[j1])*cres(ul(Pl1[i1]),Pl1[i2])^(2)*cres(ul(Pl1[i1]),Pl2[j1])^(-1)*cres(ul

(Pl1[i2]),Pl2[j1])^(-1)*cres(m,Pl2[j1])^(-1);

end for;

end for;

end for;

/*Run over all 11|2*/

for i1 in [2..pl1] do

for i2 in [i1+1..pl1] do

for j1 in [1..pl2] do

s+:=gaupr(Pl1[i1])*gaupr(Pl1[i2])*gaupr(Pl2

[j1])*cres(ul(Pl1[i1]),Pl1[i2])^(2)*cres(ul(Pl1[i1]),Pl2[j1])^(-1)*cres(ul

(Pl1[i2]),Pl2[j1])^(-1)*cres(m,Pl1[i1])^(-1)*cres(m,Pl1[i2])^(-1);

end for;

end for;

end for;

/*Run over all 11|11*/

for i1 in [2..pl1] do

for i2 in [i1+1..pl1] do

for j1 in [2..pl1] do

for j2 in [j1+1..pl1] do

if i1 ne j1 and i1 ne j2 and i2 ne

j1 and i2 ne j2 then

s+:=gaupr(Pl1[i1])*gaupr
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(Pl1[i2])*gaupr(Pl1[j1])*gaupr(Pl1[j2])*cres(ul(Pl1[i1]),Pl1[i2])^2*cres(ul

(Pl1[j1]),Pl1[j2])^(2)*cres(ul(Pl1[i1]),Pl1[j2])^(-1)*cres(ul(Pl1[i2]),Pl1

[j1])^(-1)*cres(ul(Pl1[i1]),Pl1[j1])^(-1)*cres(ul(Pl1[i2]),Pl1[j2])^(-1)

*cres(m,Pl1[i1])^(-1)*cres(m,Pl1[i2])^(-1);

end if;

end for;

end for;

end for;

end for;

return s;

end function;
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[6] Ben Brubaker, Daniel Bump, and Solomon Friedberg. Weyl group multi-
ple Dirichlet series, Eisenstein series and crystal bases. Ann. of Math. (2),
173(2):1081–1120, 2011.

[7] Benjamin Brubaker, Daniel Bump, Gautam Chinta, Solomon Friedberg, and
Jeffrey Hoffstein. Weyl group multiple Dirichlet series. I. In Multiple Dirichlet
series, automorphic forms, and analytic number theory, volume 75 of Proc.
Sympos. Pure Math., pages 91–114. Amer. Math. Soc., Providence, RI, 2006.

[8] Gautam Chinta. Multiple Dirichlet series over rational function fields. Acta
Arith., 132(4):377–391, 2008.

[9] Gautam Chinta, Solomon Friedberg, and Paul E. Gunnells. On the p-parts
of quadratic Weyl group multiple Dirichlet series. J. Reine Angew. Math.,
623:1–23, 2008.

[10] Gautam Chinta and Paul E. Gunnells. Constructing Weyl group multiple
Dirichlet series. J. Amer. Math. Soc., 23(1):189–215, 2010.

74



[11] Gautam Chinta and Joel B. Mohler. Sums of L-functions over rational function
fields. Acta Arith., 144(1):53–68, 2010.

[12] Gautam Chinta and Omer Offen. A metaplectic Casselman-Shalika formula
for glr. Amer. J. of Math., to appear.

[13] Benji Fisher and Solomon Friedberg. Sums of twisted GL(2) L-functions over
function fields. Duke Math. J., 117(3):543–570, 2003.

[14] Benji Fisher and Solomon Friedberg. Double Dirichlet series over function
fields. Compos. Math., 140(3):613–630, 2004.

[15] Dorian Goldfeld and Jeffrey Hoffstein. Eisenstein series of 1
2
-integral weight

and the mean value of real Dirichlet L-series. Invent. Math., 80(2):185–208,
1985.

[16] Jeffrey Hoffstein. Theta functions on the n-fold metaplectic cover of SL(2)—
the function field case. Invent. Math., 107(1):61–86, 1992.

[17] James E. Humphreys. Introduction to Lie algebras and representation theory,
volume 9 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1978.
Second printing, revised.

[18] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1990.

[19] Kenneth Ireland and Michael Rosen. A classical introduction to modern num-
ber theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New
York, second edition, 1990.

[20] Tomio Kubota. Some results concerning reciprocity and functional analysis.
In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1,
pages 395–399. Gauthier-Villars, Paris, 1971.

[21] P. J. McNamara. The metaplectic Casselman-Shalika formula. eprint
arXiv:1103.4653.

[22] P.J. McNamara. Metaplectic Whittaker functions and crystal bases. Duke
Math J., 156(1):29–31, 2011.

[23] J.B. Mohler. Residues of Weyl Group Multiple Dirichlet Series. PhD thesis,
Lehigh University, 2009.

[24] S. J. Patterson. Note on a paper of J. Hoffstein. Glasg. Math. J., 49(2):243–
255, 2007.

75



[25] Michael Rosen. Number theory in function fields, volume 210 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2002.

[26] Carl Ludwig Siegel. Die Funktionalgleichungen einiger Dirichletscher Reihen.
Math. Z., 63:363–373, 1956.

[27] Takeshi Tokuyama. A generating function of strict Gel′fand patterns and
some formulas on characters of general linear groups. J. Math. Soc. Japan,
40(4):671–685, 1988.

76


	Twisted Weyl Group Multiple Dirichlet Series Over the Rational Function Field
	Recommended Citation

	tmp.1386003320.pdf.5hmGV

