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ABSTRACT 

RECOVERY FROM MUSCLE FATIGUE IN YOUNG AND OLDER ADULTS: 

IMPLICATIONS FOR PHYSICAL FUNCTION 

SEPTEMBER 2013 

STEPHEN A. FOULIS, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Jane A. Kent-Braun 

 As adults age, skeletal muscles become smaller and weaker, which can ultimately 

lead to declines in physical function and disability.  In general, older adults produce less 

isometric force and dynamic power than younger adults.  The effects of this weakness are 

amplified following a series of muscle contractions that result in muscle fatigue.  Since 

daily routines consist of repeated series of activity followed by rest, it is important to 

understand how muscle recovers from fatigue.  In particular, muscle power has been 

shown to be related to physical function and balance.  Thus, understanding the process of 

recovery from muscle fatigue will help in preventing declines in physical function in 

older adults.  This dissertation consisted of two studies designed to understand how 

muscle recover following fatigue and the implications of that recovery on physical 

function.  Study one examined recovery from muscle fatigue following a constrained 

task.  Young and older adults were fatigued to a similar degree using a dynamometer, and 

recovery of power at 4 velocities, central activation, pre-motor signaling, neural 

efficiency and contractile properties were recorded over an hour.  To evaluate the 

functional implications of the recovery, ratings of perceived exertion were collected and 
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the amount of fatigue following a second fatigue bout was also recorded.  The second 

study associated changes in physical function and balance with power following an 

ecologically-relevant fatiguing exercise.  Following a 30 minute treadmill walk, chair rise 

time and balance were measured during the period of recovery from this task.  As a result 

of fatigue, we saw increased power loss at high-velocities that did not recover over the 

course of an hour in older adults.  .  This finding was concurrent with other velocity 

specific changes in rates of force development, muscle acceleration, and pre-motor neural 

signaling.  Functionally, we saw an increased in perceived effort during contraction in 

older adults, and an increased fatigue during a second fatigue bout.  While chair rise 

didn’t differ as a group with fatigue, there was a significant relationship with loss of high-

velocity power and change in chair rise time over the hour recovery period.  Balance 

declined immediate post-fatigue but appeared to recover to a point of greater stability 

over an hour.  This dissertation provides novel insight about alterations in the recovery 

process following an acute bout of muscle fatigue, and ultimately provides data that may 

be useful for developing strategies to prevent disability in older adults. 
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PREFACE 

 Chapters 1 through 3 include the dissertation proposal as submitted to the 

Graduate School in March 2012.  During the IRB review process, the maximum vertical 

jump was removed from Study 2.  Chapter 4 and 5 correspond with Study 1 and 2, 

respectively.  In accordance with the wishes of the committee, these chapters are 

formatted as manuscripts to be submitted for peer-review. 
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GLOSSARY 

Disability- the interaction between individuals with a health condition, and personal and 

environmental factors 

Excitation-Contraction (EC) Coupling- link between excitation of the muscle membrane 

and the production of force that results from the release of calcium into the 

cytosol and the initiation of muscle contraction 

Fatigue- acute loss in force production capacity of a muscle in response to contractile 

activity 

Fatigue Resistance- ability to maintain or minimize the decline in maximal force 

production during muscle contractions 

Functional Reserve- strength above the minimum force needed to perform a task 

Low-Frequency Fatigue- fatigue that occurs during low- but not high-frequency 

stimulation, likely due to changes in Ca++ handling 

Muscle Power- Product of muscle force and velocity of contraction 

Neuromuscular Efficiency (NME)- ratio of force production to surface electromyography 

signal 

Physical Function- objective performance of everyday activities such as walking or 

getting up from a chair 

Rating of Perceived Exertion (RPE)- A 1-10 self-reported scale indicating one’s opinion 

of the amount of effort required for physical work 

Specific Strength- voluntary force per unit-cross sectional area 

Strength- Maximal force generating capacity of a muscle 

Symptomatic Fatigue- self-reported sense of exhaustion or tiredness 
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CHAPTER 1 

INTRODUCTION 

 The human population of the United States is getting older.  Current census 

projections suggest that the number of individuals over 65 years of age will increase from 

~35 million in 2000 to ~90 million by the year 2050 (198).  During this same time period, 

the proportion of the population over the age of 65 is projected to increase from ~12.5% 

to ~20%.  While this increase in the older population reflects an overall improvement in 

medical care, it also leads to myriad new health problems.  One such issue is the decline 

in neuromuscular function, which can lead to physical disability. 

As individuals age, they face an increased risk of disability.  According to a 2005 

report from the US Surgeon General, the number of individuals reporting a significant 

disability increases from ~11% at age 20 to 45% by age 65. This number increases to 

73% by age 80 (199).  In addition to the personal and societal burden of physical 

disability, the economic burden exceeded $300 billion during the 1990s, with that number 

expected to increase further.  Thus, understanding the mechanisms that lead to declines in 

neuromuscular function and the resulting disability is of great importance. 

There are a number of possible mechanisms that lead to declines in 

neuromuscular function.  One such mechanism is the age-related loss of strength and 

power.  With aging, there is a decrease in muscle mass, which is known as sarcopenia 

(70).  A number of studies have shown that both isometric strength (31, 32, 115, 155) and 

dynamic power (32, 53, 138) decline in older adults, changes that may or may not be 

associated directly with the loss of muscle mass.  Power, in particular, has been shown to 

be a strong predictor of physical function (50).   
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Changes in both the nervous system and within the muscle itself may contribute 

to these changes in force and power in old age.  Neural factors may include slowed rate 

of neuromuscular activation (46), slowed motor unit discharge rates (107), decreased 

neuromuscular efficiency (158), and alterations at the cortical level (101).  Within the 

muscle, changes such as slowed contractile properties (53, 120) and altered calcium 

(Ca++) handling (62, 180) may lead to declines in strength and power with age.  A key 

concept to be explored in the proposed work is the possibility that age-related muscle 

weakness may be of greater concern when combined with the effects of muscle fatigue, 

defined as acute loss in force production capacity of a muscle in response to contractile 

activity. 

A number of studies have demonstrated greater fatigue resistance, or less of a 

decline in muscle force in response to repeated muscle contractions, in older compared 

with younger adults during an isometric contraction protocol (17, 42, 65, 99, 110, 128).  

It has also been shown that this fatigue resistance may be lost and even reversed during 

high-velocity contractions (12, 31, 32, 53, 54, 145, 163).  However, the mechanisms 

governing the recovery from a bout of fatiguing exercise, and the impact on functional 

performance, are not well understood.  It has been shown that power may be slower to 

recover in older adults than young (120, 186).  Since the goal of the recovery process is 

to restore the neuromuscular system to homeostasis, a number of factors associated with 

muscle fatigue likely play a role in recovery of power.  Recovery of neural factors such 

as altered central drive (101), slowed discharge rates (51), and altered rates of 

neuromuscular activation (46) may limit power production.  Within the muscle, 

contractile properties slow during fatigue in response to alterations in pH and metabolite 
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concentrations.  It has been reported that contractile properties may be slower to recover 

in older adults (120), and that contractile properties are related to recovery of power (53, 

106). 

Furthermore, following fatiguing exercise, low-frequency force (i.e., force during 

electrical stimulation at < 20 Hz) may remain depressed for several hours (27, 68) due to 

impaired Ca++ release from the sarcoplasmic reticulum (207).  This low-frequency fatigue 

has been demonstrated in both young and old to a similar relative degree (7).  Similarly 

Kent-Braun et al reported a slowing of contractile properties consistent with changes in 

calcium kinetics during fatigue, but no differences by age (116).  However, given the 

lower absolute strength (100, 155) and slowed motor unit properties (107, 177) observed 

in aged individuals, it is possible that the real-world consequences of low-frequency 

fatigue are greater in older adults.  It has been shown in young adults that, in the presence 

of low-frequency fatigue, a second fatiguing bout can elicit greater fatigue than the 

original bout (192).  Thus, there may be further consequences to older adults as fatiguing 

exercise bouts accumulate over the course of the day.  

Even in the absence of fatigue, age-related muscle weakness can lead to older 

adults performing functional activities at a high percentage of their maximal strength 

(97).  As a consequence, older adults have a smaller functional reserve, or amount of 

strength that can be lost before task performance becomes impaired (28, 188, 212).  For 

example, even modest decreases in strength due to muscle fatigue have been shown to 

reduce functional performance (91, 120, 163) and balance (16, 69, 92).  Further, older 

women are at a greater risk of disability than older men (108, 131), perhaps due to their 

lower baseline muscle strength and power (81).  They presumably have a lower 
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functional reserve (131) and may be at an even greater risk of decreased physical function 

and balance following fatiguing exercise bouts.  As muscle force and power recover from 

fatigue, the decrements in physical function will likely be reversed, but the time course of 

this recovery has not been determined. 

The impact of muscle fatigue may extend beyond the acute muscle weakness it 

induces.  It has been suggested that older adults have greater symptomatic fatigue, or 

overall sense of exhaustion, than younger adults (8).  Likewise, the sense of effort during 

submaximal muscle contractions may be increased with low-frequency fatigue, since 

motor unit discharge rates (MUDR) at low, sub-maximal frequencies may not be 

sufficient to produce the same absolute force as before exercise (19).  It has been shown 

that neuromuscular efficiency (NME), or force divided by the rectified, integrated surface 

electromyography (EMG) amplitude during voluntary, submaximal contractions (158), is 

decreased for more than an hour following a fatigue bout (7).  Since most daily activities 

occur at a submaximal intensity (97), and low-frequency fatigue may have a greater 

effect on submaximal contractions where MUDR are lower (109, 207), age-related 

symptomatic fatigue may develop in part because older adults require greater effort to 

overcome low-frequency fatigue following physical activity.  Support for this novel 

hypothesis is provided by the observation that older adults have greater perceived 

exhaustion than young during submaximal fatigue bouts (5). 

Overall, while many investigators have studied the acute effects of muscle fatigue 

in older adults, there are few data about the degree and impact of muscle weakness during 

recovery from fatigue.  By better understanding the mechanisms of recovery following 
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fatigue, we may be able to develop better interventions to prevent physical disability in 

older adults. 

Significance of Dissertation 

 The goal of this project is to investigate the impact of muscle fatigue on physical 

function and balance, and to determine how this impact may differ in young and older 

adults.  In addition, this project will examine the role of the recovery of force and power 

in mediating the recovery of physical function.  Study 1 will compare the recovery of 

neural and muscular mechanisms of force and power production following fatigue.  Study 

2 will measure the recovery process of power and physical function in older adults.  

Throughout both studies, measurements of perceived exertion will be made in an attempt 

to link neuromuscular and symptomatic fatigue.  A summary of the proposed pathway 

and division of studies is provided in Figure 1. 

The knee extensor (KE) muscles will be studied, as weakness in these muscles is 

related to risk of mobility impairment (50, 211).  Given the weaker muscles of women, 

and their greater risk of disability (108, 131), the participants will all be female.  

Understanding the recovery of muscle force and power in the KE muscles may provide 

insight about declines in physical performance in older adults.  Ultimately, the data 

provided by this dissertation may be useful in developing novel strategies to prevent 

disability in older adults. 
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Study 1: Mechanisms of Recovery from Neuromuscular Fatigue in Young and 

Older Women 

The aim of Study 1 is to investigate the neural and muscular mechanisms of 

muscle power recovery following a fatiguing contraction protocol.  To provide a matched 

starting point for the recovery measures, young (30-40 years) and older (65-85 years) 

women will complete an isokinetic contraction protocol designed to fatigue the KE 

muscles to a similar extent, as well as to elicit low-frequency fatigue.  The fatigue 

protocol will be performed twice, on separate days, so that both central (i.e., neural) and 

peripheral (i.e., muscular) variables can be measured.  Maximal isometric force, the 

force-velocity relationship, and recovery of peripheral factors will be measured on one 

day, while neural recovery will be measured on a separate visit.  Muscular factors will 

include the 10/80Hz stimulated force ratio, as a measure of excitation-contraction 

coupling, and muscle contractile properties, elicited by electrical stimulation.  Neural 

factors will include measures of NME during submaximal and maximal contractions, the 

rate of neuromuscular activation, and the ratio of the voluntary to stimulated rates of 

force development, a measure of central drive.  In addition, ratings of perceived exertion 

(RPE) will be recorded as an index of effort, which may be associated with muscle 

fatigue.  Measures will be made at baseline and at regular intervals for 1 hour following 

the fatigue bout.  Following 1 hour of recovery on the peripheral measurement day, a 

second fatigue bout will be performed, with 10 minutes of additional recovery measures 

to observe any acute differences in the recovery process. 

H1.1: Relative recovery of isometric force will be similar in both age groups over the 

course of 1 hour, but recovery of power will be slower in the older group. 
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H1.2: Recovery of power during high-velocity contractions will be slower than recovery 

of power during slow-velocity contractions. 

H1.3: The 10/80 Hz ratio will decline to a similar extent in young and old during 

exercise, and recover at a similar rate. 

H1.4: Contractile properties will slow during fatigue, and will recover more slowly in the 

older than the young. 

H1.5: Rate of neuromuscular activation will be lower in both groups following fatigue, 

and slower to recover in the old. 

H1.6: The ratio of voluntary to stimulated rates of force development during maximal 

contractions will recover more slowly in the older adults than in the young. 

Exploratory Hypothesis 1.1: NME during submaximal contractions equal to 20% and 

50% of baseline maximal force will be higher in both groups following fatigue, but more 

so in the older adults. 

Exploratory Hypothesis 1.2: Perceived effort (RPE) during submaximal contractions 

will be increased following the fatigue protocol, and will remain elevated throughout the 

recovery protocol. 

Exploratory Hypothesis 1.3: When the fatigue bout is repeated after 1 hour of recovery, 

both groups will exhibit greater fatigue than the first bout, with the older adults showing a 

greater increase in the amount of fatigue. 
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Study 2: Recovery of Physical Function from Neuromuscular Fatigue in Older 

Women 

The aim of this study is to investigate the impact of a fatiguing task designed to 

simulate everyday activity on changes in balance and physical function in older women.  

Physical function will be measured as the time to complete 10 chair rises, and balance 

will be measured using measures of postural sway during quiet stance.  To complete this 

aim, participants will perform a 30-minute walking protocol on two separate days.  On 

one day, recovery of force and power will be measured for 1 hour, as done in Study 1.  

On the second day, chair rise time, balance, and maximal vertical jump force will be 

measured prior to, immediately following the fatigue task, and at regular intervals 

thereafter, for 1 hour.  During measures of physical function, participants will complete 

measures of perceived exertion to determine whether increased effort is required to 

perform the task. 

H2.1: Force and power will fall following the fatigue protocol. 

H2.2: Power during high-velocity contractions will be slower to recover than during low-

velocity contractions. 

H2.3: Chair rise time, balance, and maximal vertical jump force will decline following 

exercise. 

H2.4: Recovery of chair rise time, balance, and maximal vertical jump force will be 

associated with the recovery of power. 

Exploratory Hypothesis: Perceived exertion (RPE) of the physical function measures 

will be increased following the fatigue protocol, and will remain elevated throughout 

recovery.  
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Function, and Symptomatic Fatigue  
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CHAPTER 2 

LITERATURE REVIEW 

As individuals age, they become susceptible to a number of new health-related 

problems.  Older adults are at increased risk for a variety of cardiovascular (124) and 

metabolic (14) diseases.  In addition, a number of age-related changes occur in the 

nervous system and within skeletal muscles (6, 110, 111).  Changes in the neuromuscular 

system can affect muscle force-generating capacity.  Additional losses in force generation 

can occur during prolonged contractile activity.  Ultimately, these changes may lead to 

declines in physical function and balance in this population. 

The Aged Neuromuscular System 

Muscle Size and Strength 

 There are a number of alterations to the neuromuscular system that occur in older 

adults (6, 110, 111). Changes can occur at the level of the central nervous system, such as 

decreased excitability or inhibition of the brain and spinal neurons.  Downstream, 

changes in the periphery can occur at the level of the neuromuscular junction, 

sarcolemma, or within the contractile machinery of the muscle itself.  All of these 

changes can ultimately affect the ability of the muscle to perform its primary function: 

contracting and producing force.  These alterations in force-generating capacity may, in 

part, lead to disability.  A commonly-used definition for disability is  self-reported 

difficulty in performing everyday activities, such as walking (195). 

 One of the most common age-related changes reported in the literature is 

sarcopenia.  Sarcopenia can be defined as the age-related loss in skeletal muscle mass 

(70).With age there is an overall decline in lean muscle mass, and an increase in the 
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amount of fat and non-contractile tissue (96). While the decrease in muscle mass had 

been noted by physicians for years, it was not until the 1990s that this phenomenon 

gained significant attention.  

 Recently, researchers have attempted to quantify and understand these declines in 

muscle mass.  Horber et al used dual-energy x-ray absorptiometry (DEXA) to quantify 

appendicular lean mass in a cross-sectional study and observed a significant negative 

correlation between lean mass and age in 60 men (96). Notably, they observed only a 

trend for a decline in women.  Larger scale studies, such as the Health, Aging, and Body 

Composition Cohort also used DEXA to study sarcopenia in over 1600 older individuals 

(81).  At baseline, the average age of the participants was 73.  Following a 3-year period, 

they observed an average annual decline in leg muscle mass of approximately 1%, with 

men losing slightly more leg mass than women.  However, it is important to note that 

baseline leg muscle mass was 28% lower in the women, a difference that may have 

important consequences for physical function. 

 The loss of muscle mass appears to be more apparent in some muscles than in 

others.  Kent-Braun et al (117) used magnetic resonance imaging (MRI) to separate 

contractile and non-contractile mass within the tibialis anterior muscle.  Total cross-

sectional area (CSA) of the muscle was not different in young and old, and lean muscle 

area was only about 12% smaller in older adults than younger.  A separate study using 

similar techniques showed no significant change in muscle size of the dorsiflexors in 20-

year old, 60-year old, or 80-year old men (146).  Other muscle groups show a more 

profound decline in muscle size.  Macaluso et al (138) showed 25% less muscle mass in 

the KE muscles in older compared with young women.  Similarly, in the KE muscles, 
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Trappe et al (196)showed 27% less muscle mass in both older men and women, and 

Callahan & Kent-Braun (32) found a 28% decrease in size in older women.  When two 

antagonist muscle groups were studied in the same participants, Klein et al observed a 

greater decline in elbow extensor muscle CSA than elbow flexor CSA in older adults 

(121).  One of the factors that may contribute to the muscle-specific rates of decline in 

size may be changes in the pattern of use of muscle in old age (121).  In addition, fiber 

type may play a role, as atrophy of the Type II muscle fibers has been shown to be 

greater than atrophy of Type I fibers in older adults (132). 

 In addition to the decline in muscle mass, there is also a decline in muscle 

strength in old age (81, 100, 115, 155).  Voluntary isometric force has been shown to 

decline in a number of muscle groups.  In a cross-sectional study of the adductor pollicis 

muscle, Narici et al (155) reported that force began to decline in adults after age 59.  

Kent-Braun et al (115) observed a 24% lower force in ankle dorsiflexor strength in older 

(aged 65-83 years) men compared with young (aged 26-44 years) men, but no difference 

in young and older women.  McNeil et al (146) showed lower isometric force in 80-year-

old men compared with 20-year-olds, but no difference in 60-year-olds.  In agreement 

with the muscle-specific changes in muscle mass, greater muscle weakness has been 

observed in the KE muscles than the dorsiflexors.  Macaluso (138) showed a 43% decline 

in muscle torque of the KE of older women (mean age 70 years) compared with younger 

women (mean age 23 years).  Callahan et al (31) also showed a 25% decline in KE torque 

in healthy older women (mean age 71 years) relative to young women (mean age 26 

years).  In a cross-sectional study, Hunter et al (100) showed progressively lower strength 

of handgrip, plantar flexor, and KE muscle groups in women of increasing age.  Notably, 
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active individuals were stronger than inactive, but activity was not able to prevent the 

decline of strength in any muscle group. 

 Muscle velocity and power also decline with age.  A study by Lanza et al (129) 

indicated that fewer older adults were able to perform KE contractions at high velocities 

compared with young.  Similar results were obtained by Callahan et al (32).  Thus power, 

being the product of force and velocity, also declines with age.  Lanza et al. (129) 

demonstrated age-related declines in the torque-velocity and power-velocity relationships 

in both the ankle dorsiflexors and KE muscles in a mixed population of men and women 

(Figure 2.1).  A similar shift in the in the torque-velocity curve was observed by Callahan 

et al. (32) in the KE, such that older women had a lower V50, the velocity that elicited 

50% of peak isometric torque.  Peak power and velocity continue to decline throughout 

old age, as it has been shown that both of these variables are lower in 80-year-olds 

compared to 60-year-olds (145).  In a 12-year longitudinal study of older adults, a 2% 

yearly decline in dynamic muscle torque at 60°∙s-1 and a 2.5% per year decline at 240°∙s-1 

have been reported (77).  It has been suggested that this decline in power may be one of 

the most important determinants in the development of mobility disability in older adults 

(50). 

 Loss of muscle strength and mass may not occur in concert.  While some studies 

have shown no impairment in specific strength (isometric strength/muscle cross-sectional 

area; (78, 115), other studies have suggested a disconnect between the losses in muscle 

size and strength (63).  Macaluso (138) saw a greater difference in muscle strength than 

size in the KE of older adults compared with young, indicating lower isometric specific 

torque in this muscle group in older adults.  In a large-scale, longitudinal study of older 
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adults, Goodpaster (81) observed a three-fold greater loss of KE muscle strength 

compared with lean muscle mass over a three year period.  Callahan et al (32) have 

suggested that discrepancies between muscle size and strength may be greater at higher 

contraction velocities.  Changes in neural and contractile properties thus may play a role 

in altering the relationship between size and strength. 

Alterations in Neural Properties 

 At the neural level, modulation of muscle force is regulated primarily by two 

processes: recruitment and rate coding.  Recruitment is the increase in the number of 

activated motor units (MU), from smallest to largest, as force levels increase (93).  Rate-

coding refers to changing the rate at which the MUs are activated, with more force being 

produced at greater MUDR (151). 

 There are a number of age-related changes in the nervous system that can have an 

effect on force production (6, 66), ranging from alterations at the cortical level (101) to 

changes in the motor neuron itself (40).  It has been proposed that as individuals age, 

some of the faster motor neurons die off and the orphaned muscle fibers are then re-

innervated by surviving, inherently slower, motor neurons (66).  This process, known as 

MU remodeling, results in larger, slower MUs.   

One of the apparent consequences of these neural changes is lower maximal 

MUDR (47, 107, 162, 178).  Kamen et al (107) first showed that during maximal 

contractions of the first dorsal interosseous, older adults had slower maximal MUDR 

during than young.  However, no difference was observed in the discharge rates during a 

contraction at 50% of maximal voluntary contraction (MVC) force.  Connelly (47) later 

showed lower discharge rates across a range of submaximal and maximal intensities in 
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the tibialis anterior muscle in older adults.  A similar trend also has been observed in a 

number of other muscle groups (162, 178).  However, not all studies report differences in 

MUDR by age group.  Roos (176) found no difference in MUDR across a range of 

intensities between young and old in the KE, and Foulis et al (74) showed similar 

maximal MUDR in the tibialis anterior in young and old.  It is possible that physical 

activity patterns play an important role in moderating changes in MUDR with age, as a 

number of studies have shown an increase in MUDR even with short-term training (40).  

It is also possible that the response is muscle-group specific (52).   

The importance of slowed MUDR may be minimized, though, by an overall 

slowing of muscle contractile properties (177).  The force-frequency relationship has 

been shown to shift to the left in older adults (4, 155, 158, 194), allowing force to plateau 

at a lower activation frequency.  However, this altered relationship may not hold true for 

all muscle groups (52); therefore, it may not completely mitigate the importance of 

slowed discharge rates.  Additionally, slowed discharge rates may be important in the 

loss of power, especially during high-velocity contractions.  Harwood et al (87) found 

increased discharge rates in higher-velocity contractions of the anconeus muscle than 

slower. 

Changes in other neural properties may alter the ability of the nervous system to 

produce force.  Christie et al (40) showed a longer duration of the after-hyperpolarization 

period of the motor neuron in older compared with young women.  This change slows the 

ability of the motor neuron to produce additional action potentials, and thus is a potential 

mechanism for slowing discharge rates in older adults.  Decreases in the rate of 

neuromuscular activation have been reported in older adults with mobility impairment, 
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which may be a possible mechanism for lower power production (46, 172).  Changes also 

occur at higher centers of the nervous system (6).  Decrements in central activation in 

older adults have been reported (190), although most studies report no impairment during 

isometric contractions (7, 31, 43, 116, 119, 122).  Motor cortex excitability may also be 

reduced (161).  Additionally, a number of studies (121, 138) have shown an increase in 

antagonist coactivation, which may limit agonist force production. 

There is some evidence to suggest that older adults require greater neuromuscular 

effort during submaximal contractions.  Ng et al (158) found that older adults had a lower 

ratio of voluntary force production per unit surface EMG, termed elsewhere as NME.  It 

is possible that a higher EMG in older adults at the same relative force level as young 

adults may indicate a need for greater neuromuscular drive in order to achieve a given 

submaximal force level.  Since most daily activities occur at submaximal intensities, this 

result could have important implications for the amount of effort required for physical 

function and balance tasks in older adults. 

Alterations in Physical Function, Balance, and Symptomatic Fatigue 

 Muscle weakness due to age-related alterations in the neuromuscular system leads 

to declines in physical function, such as the ability to perform important everyday tasks 

such as walking or getting up from a chair.  For example, weakness of the KE and ankle 

dorsiflexor muscles has been associated with impairments in gait and balance, as well an 

increased frequency of falls compared to stronger individuals (211). 

Several investigators have proposed the concept that a minimum level of 

muscular strength is necessary to perform a variety of functional tasks (28, 188, 212).  

Above this minimum, people operate in a “functional reserve,” and increased strength 
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does not affect performance of a functional task.  However, when strength falls below 

this threshold, physical function declines, and eventually a point is reached where 

functional tasks can no longer be performed.  Some investigators have tested this concept 

of a strength threshold for physical function.  Rantanen et al (170) found that older 

women with an isometric KE torque below 2.3 Nm∙kg-1 body mass showed slowing of 

gait speed compared with those above this level.  Ploutz-Snyder et al (164) found longer 

chair rise time, slower gait speed, and longer stair ascent and descent times in older men 

and women who exhibited KE strength below 3.0 Nm∙kg-1 of body mass.  Recent work 

by Foulis et al (submitted) suggested that these functional reserve thresholds may also be 

associated with the intensity of daily physical activity, and that 10 minutes of daily 

moderate-to-vigorous physical activity (MVPA) may be sufficient to maintain physical 

function in older adults. 

Using surface EMG, Petrella (163) showed that older adults required relatively 

greater muscle activation than young in order to perform a sit-to-stand task from a chair.  

Furthermore, Hortobayagi (97) has shown that older adults may operate closer to their 

functional reserve threshold than younger adults during functional tasks.  By measuring 

peak KE torque during leg press exercise and 3 functional tasks, they determined that 

older adults perform chair rise, stair ascent, and stair descent tasks at 80%, 78%, and 88% 

of their maximal strength, respectively.  Thus, a transient decline in peak force by 12% 

would lead to temporary impairment in physical function, and any long-term decline 

could lead to permanent functional deterioration and disability.  Due to their low baseline 

strength, it is likely that older women work at an even greater percent of their maximal 

strength than men, and thus have a smaller functional reserve (108, 131).  This may, in 
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part, explain the greater incidence of physical disability in women.  Neural impairments 

may also contribute to the declines in physical function.  Clark et al (46) observed a 

lower rate of neuromuscular activation in older adults with mobility impairments 

compared with healthy older adults.  In addition, the rate of activation correlated with 

performance on a physical function battery. 

Similar to mobility function, the ability to maintain balance and prevent falls is 

associated with leg muscle strength.  Wolfson (211) demonstrated that increasing knee 

and ankle muscle strength results in improvements in function and balance.  Campbell 

(33) used a multiple regression model to determine that leg strength was a significant 

predictor of falls in older adults.  It has been suggested that lateral sway may be a potent 

predictor of falls (139), and that sway may be higher in people with muscle weakness 

(69). 

Muscle Fatigue 

Isometric Force and Dynamic Power 

 Muscle fatigue can be defined as the loss in the maximal force generating 

capacity of a muscle in response to exercise (79).  As early as 1954 (148), it had been 

shown that peak muscle isometric force production is reduced following a series of 

muscle contractions.  Many follow-up studies have confirmed this observation of 

decreased isometric force production in response to contractions (110).  Dynamic torque 

and power are also reduced with muscle fatigue (105).  Callahan et al (31) showed a 

decline in dynamic torque at 120°∙sec-1 following a dynamic fatigue protocol in the KE.  

Similar results were observed by Dalton (54) in the plantar flexors.  Following a fatigue 

protocol, Jones et al (106) demonstrated that there is a downward and leftward shift of the 
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force-velocity curve, and an overall depression of the power-velocity curve.  In addition, 

dynamic power loss during the protocol was greater than isometric torque, suggesting a 

primary impairment in velocity production with fatigue. 

Mechanisms of Muscle Fatigue 

As described by Bigland-Ritchie (18) and later adapted by Kent-Braun (111), 

fatigue can occur at any site along the pathway of force production (Figure 2.2).  Thus, 

the source of muscle fatigue is multifactorial.  Major sites of fatigue are within the 

muscle itself, through inhibition of the cross-bridges by metabolites or impairments in 

excitation-contraction (EC) coupling.  Alterations in neural activation, such as slowing of 

MUDR and decreased neuromuscular excitability, may also contribute to fatigue. 

Metabolic inhibition of contractile force has also been shown.  Early studies 

implicated lactate production as a key source of fatigue (73).  In response to fatiguing 

exercise, muscle increases its dependence on glycolysis, resulting in the production of 

lactic acid, which can then dissociate into lactate and proton (H+).  However, Chase and 

Kushmerick showed that lactate, per se, had no direct effect on muscle force production 

(36).  Instead, it was the decline in pH (increased [H+]) that led to lower force production.  

A number of studies, both in vitro and in vivo, have confirmed these results, thus 

implicating changes in muscle intracellular pH in the development of muscle fatigue (48, 

57, 71, 112, 114, 116, 149).   

The mechanism by which H+ alters force production appears to be through its 

interaction with Ca++.  In vitro experiments have shown that changes in pH alter the pCa-

force relationship (71).  Fabiato suggested that lower pH can decrease the release of Ca++ 

from the sarcoplasmic reticulum (SR).  In addition, it was suggested that H+ can compete 



 

20 

with Ca++ for the troponin binding site and thereby inhibit force production (71).  Under 

physiological conditions, though, pH does not drop low enough to affect Ca++ release, 

and [Ca++] is far greater than [H+], even at the lowest pH observed in fatigued muscle (2).  

Therefore, these mechanisms likely do not explain the effects of pH on muscle fatigue.  

Recently, Debold et al. suggested that low pH may increase the time that myosin is bound 

to actin, due to a slowing of ADP release from myosin (59).  It is also believed that the 

interaction of high [H+] with inorganic phosphate (Pi) may be important in the 

development of muscle fatigue (160). 

 The buildup of Pi is another metabolic consequence of muscle contraction.  To 

maintain constant ATP levels, phosphocreatine is broken down via the ATP-PCr pathway 

into its two constituents: creatine and Pi (2).  During high-intensity muscle contractions, 

Pi concentrations can increase by an order of magnitude (57).  Two forms of Pi exist, 

HPO4
2- and H2PO4

-, with the diprotonated form increasing in concentration as the muscle 

becomes more acidic (160, 208).  A number of studies have implicated Pi as a cause of 

muscle fatigue (48, 57, 116, 149, 179, 208).  The mechanism by which Pi leads to muscle 

fatigue is likely two-fold.  First, the release of Pi from myosin is a key step of the cross-

bridge cycle (197).  High [Pi] is thought to prevent the transition of the myosin from the 

weakly to strongly bound state (72).  In addition, there is likely an interaction between Pi 

and Ca++ (191).  It is believed that Pi can alter the release of Ca++ from the SR, and there 

is also evidence that Pi can bind to Ca++ and precipitate in the SR (3).  This hypothesis is 

supported by a depression in the pCa-force relationship with increased Pi in skinned 

muscle fibers (60), particularly at [Ca++] similar to those observed in muscle fatigue (61).  
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Thus, it appears that, within the muscle, both a decrease in pH and an increase of Pi are 

sources of fatigue. 

An important step in force production upstream of the accumulation of 

metabolites is the conversion of the electrical signal from the nervous system to a 

mechanical output (force) during a process known as EC coupling (67).  In response to 

depolarization of the sarcolemma, the dihydropyridine receptors (DHPR) signal the 

ryanodine receptors (RyR) on the SR.  This leads to a conformational change, allowing 

Ca++ release into the cytosol, where it binds to troponin and permits cross-bridge cycling.  

During fatiguing muscle contractions, there is evidence of a breakdown in EC coupling.  

This evidence originates from in vitro models.  Using isolated frog muscles, twitch torque 

was shown to decline following a stimulated fatigue protocol, despite no change in the 

action potential amplitude (82).  When caffeine was used to maximally stimulate the 

release of Ca++ from the SR, twitch force returned to the unfatigued level, showing a 

disconnect between the excitation signal and Ca++ release.  Human studies in vivo have 

shown that, following stimulated and voluntary fatigue protocols, force from a twitch and 

low-frequency (20 Hz) tetanus decline to a much greater extent than force from a high-

frequency (100 Hz) stimulus (68).  Because force production was impaired only at low 

frequencies of stimulation, and there were differences in the rates of metabolic and 20Hz 

force recovery, EC coupling failure was implicated as a source of fatigue, particularly 

long-lasting fatigue.  A number of subsequent studies have found similar results in vitro 

(207) and with human muscle in vivo (7, 11, 30, 167, 171, 181), under a variety of 

conditions. 
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 The mechanism of EC coupling failure is not well understood, although calcium 

appears to play a key role (27).  Early evidence pointed to a reduction in cytoplasmic 

[Ca++] in response to muscle activation (82).  This was first directly measured by 

Westerblad et al. using isolated mouse fibers (207).  Rates of Ca++ release, uptake, and 

Ca++-ATP pump activity are all reduced with fatigue (133), possibly because the presence 

of high levels of calcium during prior contractions activates other Ca++-sensitive proteins, 

which have an inhibitory effect on future Ca++ release from the SR (38).  Impaired Ca++ 

release does not appear to be of metabolic origin (68).  The reason high-frequency (50-

100Hz) force is unaffected while low-frequency (10-20Hz) force is depressed is that 

high-frequency stimulation releases Ca++ at a rate along the upper plateau of the pCa-

force relationship, while low-frequency stimulation is on the steep portion of the slope 

(207).  Thus, an inhibition of Ca++ release has a greater effect on low-frequency muscle 

activation.  The exact pathway of this inhibition is not known (125). 

 At the neural level, declines in MUDR have been reported in a number of studies 

of muscle fatigue (20, 22, 41, 51, 141, 167, 178).  Marsden et al. provide one of the 

earliest records of this phenomenon by reporting a profound decline in the discharge rates 

of a single nerve fiber during an MVC (141).  Bigland-Ritchie et al. later used micro-

electrodes inserted in the muscle to show a decline in mean MUDR during a sustained 

MVC (20).  In a follow-up study, both force and MUDR were shown to remain depressed 

following a fatiguing exercise bout when a cuff was applied to make the muscle ischemic 

(22).  Thus, the mechanism of the declines in MUDR appears to be due to a reflex 

affected by the intramuscular conditions.  When blood flow was restored, recovery 

occurred normally.   These data lead to the conclusion that there must be afferent 
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feedback, based on the metabolic condition of the muscle, which initiates a reflex that 

slows MUDRs.  It appears that the group III and IV afferent sensory neurons provide a 

reflex stimulus to increase MUDR, and this stimulus is damped during fatigue.  The 

stimulus that leads to the reflex inhibition is not yet known.  Some investigators have 

proposed the “muscle wisdom hypothesis” which suggests that MUDR is modulated in 

conjunction with contractile properties in order to optimize force production (142).  

However, Bigland-Ritchie demonstrated in unfatigued muscle that when contraction 

speed (21) and muscle length (23) are manipulated, MUDR do not appear to be affected.  

Other results have supported the muscle wisdom hypothesis, by showing a matching 

decline in relaxation time following muscle stimulation and MUDR during a fatiguing 

task (123).  Since group IV afferents are sensitive to changes in pH (55), changes in pH 

may lead to declines in MUDR (80), although this has not been directly tested. 

Consequences of Muscle Fatigue 

The combined neural and muscular changes that occur in the fatigued state may 

lead to alterations in neuromuscular efficiency.  Bigland-Ritichie first noted that, in 

response to a sustained submaximal contraction, there was an increase in surface EMG 

(19).  It was hypothesized that additional MUs were recruited in order to overcome low-

frequency fatigue.  This interpretation was further supported by Miller (150), who 

observed a decreased neuromuscular efficiency (force/EMG signal) during contractions 

at 60% of MVC following a four-minute contraction bout.  Similarly, Allman and Rice 

(7) observed an increase in EMG during submaximal contractions following a fatigue 

bout. 
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In response to fatigue of the leg muscles, there are acute declines in physical 

function and balance even in healthy younger individuals.  Petrella reported a decline in 

sit-to-stand transition time in response to a fatiguing bout of chair rises (163).  A number 

of studies have shown that balance measures of center of pressure velocity and surface 

area during quiet stance are both increased following fatiguing leg contractions (37, 49, 

204).  These changes suggest a decrease in postural control and balance.  Furthermore, 

the postural response to a balance perturbation is also impaired following fatigue (56), 

possibly indicating an increased risk of falls. 

Recovery from Muscle Fatigue 

 While much data exist on the acute effects of fatiguing exercise, less is known 

about the neuromuscular recovery from fatigue and its functional consequences.  In the 

absence of muscle damage, most studies report a rapid recovery of maximal force during 

which force returns to 80-90% of initial, although it often does not fully return to baseline 

within 10 minutes (12, 128, 150, 167).  However, some studies have shown complete 

recovery of force within 10 minutes (106).  Miller (150) showed near-complete recovery 

of maximal isometric force within 20 minutes following a 4 minute maximal contraction 

of the adductor pollicis.  This was matched by the time course of the recovery of pH and 

PCr, suggesting a metabolic basis for the recovery of maximal isometric force.  Klein 

(120) also showed complete recovery of maximal isometric force of the triceps surae 60 

minutes following fatiguing exercise. 

 Dynamic power may take longer to recover than isometric force.  While no direct 

comparison was made, data from Jones et al (106) suggests that power and velocity 

remain depressed following 6 minutes of recovery from KE muscle fatigue.  In particular, 
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this may be due to impairments in velocity.  Other studies have shown that power may 

remained depressed for over 30 minutes, possibly due to uncoupling of excitation-

contraction (167). 

 Perhaps due to its long-duration nature, the recovery of EC coupling is much 

more widely studied than other recovery measures.  Many of these studies show 

depression of force for hours to over a day (7, 11, 68).  Since the effects of EC coupling 

failure are most apparent during low-frequency stimulation, a decrease in the ratio of 

low-frequency to a high-frequency stimulated tetanic force is often used to assess the 

presence of low-frequency fatigue.  While high-frequency (50 or 100 Hz) force generally 

recovers within an hour, Edwards et al (68) showed that depression of 20-Hz stimulated 

force can last for over a day.  Similarly, data from Allman and Rice (7) showed a 

depression of the 10Hz-50Hz stimulated ratio for over an hour following a 5 minute 

intermittent isometric fatigue protocol.  Concurrent with their depressed power, Power et 

al (167) noted a depressed 10-50Hz ratio during 30 minutes of recovery following an 

eccentric fatigue protocol, possibly indicating a link between low frequency fatigue and 

power loss. 

 Most of the neural changes with fatigue recover relatively quickly.  M-wave 

amplitude in response to a single twitch is often used as a measure of peripheral 

excitability.  It has been shown to recover within 10 minutes following voluntary 

intermittent (7) and sustained (150) fatigue protocols.  Motor unit discharge rates also 

recover relatively quickly.  During a submaximal fatigue task designed to elicit fatigue to 

50% MVC, maximal MUDR were shown to recover as quickly as 1 minute following the 

task in young adults (51).  Bigland-Ritchie (22) showed a complete recovery of MUDR 
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within three minutes of non-occluded recovery following a 20-second maximal sustained 

hold.  Discharge rates did not recover when blood flow was occluded.  Since pH changes 

may have a relatively rapid early phase of recovery , slowed discharge rates with fatigue 

may be in response to feedback from the Group IV afferents, which are sensitive to 

changes in pH. 

Neuromuscular efficiency appears to have a prolonged recovery, similar to that of 

low-frequency fatigue.  Miller (150) observed that neuromuscular efficiency remained 

depressed for over 20 minutes of recorded recovery, despite a complete recovery of 

maximal force and PCr.  Since the recovery of neuromuscular efficiency matched the 

response of the potentiated twitch, the decreased neuromuscular efficiency was attributed 

to an increased activation of the muscle in order to release sufficient Ca++ as a 

consequence of low-frequency fatigue.  Allman and Rice (7) demonstrated that EMG 

during contractions at 60% of baseline MVC can be elevated for over an hour following a 

fatigue protocol. 

While the acute effects of muscle fatigue on function and balance tasks have been 

studied, the recovery of these tasks following a fatigue bout is not known.  Prior research 

has shown that there is a greater amount of fatigue during a subsequent low-frequency 

(20Hz) fatigue protocol imposed 15 minutes following an initial fatigue bout (192).  Due 

to the effects of EC uncoupling, the muscle may have been more sensitive to further 

perturbations, particularly in the low-frequency range.  Assuming that low-frequency 

stimulation might serve as an analog to submaximal discharge rates during balance and 

functional tasks, it is possible that there are long-term implications of muscle fatigue on 
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balance and physical function during the recovery period.  One such implication could be 

the need for greater activation in order to perform these tasks. 

Aging and Muscle Fatigue 

Fatigue Resistance in Older Adults 

 It is well documented that adults lose a considerable amount of muscle mass (78, 

81, 96, 117) and strength (45, 78, 110, 173) in old age.  However, there are a number of 

other age-related alterations to the neuromuscular system (110, 111).  Given the number 

of alterations in the aging neuromuscular system, it is not surprising that there are 

alterations in muscle fatigue in older adults.  While most of these changes may appear 

deleterious on a superficial level, many of these changes actually result in greater fatigue 

resistance in older adults under a variety of conditions (42, 111). 

 Isometric fatigue is generally reported to be less in older adults than in young 

(42).  Ditor and Hicks (65) showed a decrease in fatigability of the adductor pollicis 

following a three-minute intermittent fatigue protocol.  Kent-Braun and colleagues have 

shown fatigue resistance in older adults in the tibialis anterior muscle under a variety of 

conditions including incremental tasks (116), and intermittent MVCs with (43, 128, 182) 

and without (43, 127) blood flow.  Fatigue resistance is also maintained during isometric 

conditions when fatigue is measured as endurance time (99, 155).  However, isometric 

fatigue resistance is not universal even within the same participants.  Bemben (17)  

reported age-related fatigue resistance in the thumb adductors and ankle plantar flexors, 

but not the ankle dorsiflexors or finger flexors. 

 While isometric fatigue is generally less, older adults most often have been shown 

to have similar or greater fatigue under dynamic conditions.  Callahan et al observed 
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fatigue resistance to 4 minutes of isometric contractions of the KE muscles, but no 

difference in fatigue following a 4 minute dynamic protocol in the same individuals (31).  

In a follow-up study, Callahan and Kent-Braun (32) determined that relative dynamic 

fatigue resistance could be manipulated by altering contraction velocity.  Specifically, 

older adults fatigued less than young during isometric contractions, more than young 

during high-velocity contractions, and similar to young adults during contractions 

matched for relative position on the force-velocity relationship.  The dependence of age- 

related muscle fatigue resistance on contractile velocity has also been reported by other 

researchers (53, 54).  These studies are in agreement with data from Petrella (163), who 

showed that velocity decreased faster in older than young during a dynamic fatigue test 

with a constant resistance of 40% MVC.  The relative degree of velocity-dependent 

fatigue may be greater as age increases, as McNeil (145) showed greater power loss in 80 

year old men compared to 60 year old and young (22-33 year old) men.  Increased fatigue 

during dynamic contractions does not appear to influence the isometric response.  

Following a dynamic fatiguing task which induced greater power loss in old than young, 

isometric force was better preserved in the old compared to the young (54). 

Mechanisms of Alterations Muscle Fatigue in Older Adults 

 The mechanisms of age-related alterations in muscle fatigue are just as 

multifactorial as the causes of fatigue itself.  Muscle metabolism has been shown to be 

altered in older adults, likely leading to changes in muscle fatigue.  At the end of an 

incremental fatigue test, it has been shown that older adults have a higher pH, lower [Pi], 

and lower [H2PO4
-] (116).  This is likely due to alterations in energy production.  Lanza 

et al. showed that older adults depend more on oxidative phosphorylation and less on 
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glycolysis to produce ATP during a 60s MVC compared to a younger, activity-matched 

group (126).  This preference was not due to impaired glycolytic metabolism, as 

demonstrated during ischemic contractions (127). The reduced dependence on glycolysis 

in older adults leads to less H+ accumulation.  In addition, total ATP cost during 6 MVCs 

was lower in older adults, despite no differences in muscle strength, suggesting older 

adults are more economical at producing force than younger adults.  Tevald et al. 

supported this result by showing the ATP cost of contraction to be lower in older adults 

during stimulated twitches and tetani when compared to young (194).  Even though the 

slope of the fatigue-[H2PO4
-] relationship has been shown to be the same between young 

and old (116), suggesting that the metabolites have a similar effect on muscle fatigue, the 

decreased cost of contraction results in a decreased demand for ATP production and 

decreased buildup of these fatigue-inducing metabolites. 

 It is unclear whether EC coupling is altered in older adults.  Renganathan et al. 

have shown that muscles in older rats have a lower ratio of DHPR to RyR, suggesting 

that Ca++ release may be less responsive to neural activation (174).  Furthermore, the 

amount (62) and rate (180) of Ca++ released from the SR in isolated muscle fibers is also 

lower in aged animals.  These results would suggest that older adults may be more 

susceptible to low-frequency fatigue than young.  When this hypothesis was tested in 

humans, no difference in low-frequency fatigue was observed (7, 43, 182).  However, 

Power et al (166) did observe a greater decline in the 10/50 Hz tetanic ratio in older 

women during, and several minutes following, a fatiguing bout.  Thus, the limited 

literature on the subject would suggest that despite differences in Ca++ handling in resting 
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muscle, it is unclear whether alterations in EC coupling exist, and whether they may 

affect muscle fatigue in older adults. 

 Changes at the neural level may also contribute to the decreased isometric fatigue 

observed in older adults.  In conjunction with the slowing of contractile properties, which 

results in a leftward shift in the force-frequency relationship (4, 155, 158, 194), older 

adults use lower MUDR to achieve same relative forces as young (4).  This may lead to 

the decreased metabolic cost of contraction and reduced fatigue (194).  The results of 

studies of aging on the fatigue-induced declines in MUDR are inconclusive.  Rubinstein 

et al showed that, despite lower baseline strength and MUDR, there was better 

maintenance of force and maximal MUDR in older adults following a fatiguing test 

(178).  However, no age-related differences in the decline of MUDR were observed 

following sustained contractions at both 75% MVC (51) and 50% MVC (41).  Thus the 

potential impact of age-related alterations in MUDR on power are not known at this time. 

Consequences of Muscle Fatigue in Older Adults 

 Due to lower baseline isometric strength and dynamic power in older adults, it is 

likely that the acute consequences of muscle fatigue are greater in older adults than in 

young.  This is despite greater fatigue resistance of the old.  Allman and Rice (7) showed 

similar declines in the 10-50 Hz tetanic force ratio following a fatigue test, suggesting 

similar amounts of low-frequency fatigue in young and older individuals.  They also 

showed similar increases in surface EMG during contractions at 60% of baseline force.  

While this may suggest that EC uncoupling has a similar effect on young and older 

adults, it is difficult to directly assess from surface EMG whether or not young and older 

adults are using the same neural strategies to overcome low-frequency fatigue (39).  In 
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addition, it is important to note that Ng (158) showed baseline differences in 

neuromuscular efficiency only during low intensity (10-20% MVC) contractions, and not 

at 60% MVC. 

 There are also age-related alterations in the acute functional consequences of 

muscle fatigue (92).  This is not unexpected, as muscle power has been shown to be 

predictive of disability (50).  Maximal vertical jump height is diminished to a greater 

extent in older adults than in young for more than an hour following muscle fatigue 

(120), suggesting that other mobility tasks demanding power may also be affected.  

Helbostad (91) showed that, following a fatigue test involving repeated chair rises to 

exhaustion, several gait characteristics including step width, step length variability, and 

mediolateral trunk acceleration amplitude were all negatively affected.  Velocity of a sit-

to-stand transition also declined following a fatigue task (163).  While there was not a 

significant age-by-fatigue interaction in this study, there was an effect of age, such that 

older adults had lower velocities at both baseline and the fatigued condition. 

 Balance is also affected acutely by a bout of muscle fatigue in older adults (92).  

Although there was no young group for comparison, following dynamic fatigue of the 

ankle and knee muscles, Bellew et al found decreased balance performance on three 

functional balance tasks: modified Functional Reach Test, Lower-Extremity Reach Test, 

and Single-Limb Stance Time Test (16).  Egerton showed that young, healthy older, and 

balance-impaired older all had similar increases in mediolateral center of pressure 

displacement, a key predictor of balance, following fatiguing leg exercise(69).  While the 

change in postural control between groups was the same, baseline performance was 

impaired in the healthy older relative to the young, and moreso in the balance-impaired 
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older.  These results suggest that fatigue could be enough to the increase risk of falls in 

older adults, particularly those in the beginning stages of mobility impairment. 

Alterations in the Recovery from Muscle Fatigue in Older Adults 

 There are mixed results in terms of differences in the recovery of muscle fatigue 

in young and older adults.  Lanza et al (128) showed no age-by-time interaction during 

the recovery of isometric torque or dynamic power in the ankle dorsiflexors following 

fatigue.  Similarly, there were no effects of age during recovery of isometric force of the 

plantar flexors (51), dorsiflexors (116) or KE (120).   

 In contrast, there may be greater effects of age on the recovery of power 

following fatigue.  Power (166) showed that relative power loss following fatigue is 

greater in old than in young following 10 minutes of recovery.  Schwendner et al reported 

that older women with a history of falls had a slower recovery of power during the first 

few minutes following KE fatigue compared with young women (186).  In a study by 

Klein et al, maximal jump height, a measure dependent on muscle power, was lower in 

older, but not younger, adults for an hour after a fatiguing muscle task (120).  Since 

maximal isometric force had completely recovered, it is likely that this prolonged 

depression of power was due to impairment in muscle velocity production.  A number of 

studies have linked contractile properties to power production (32, 53, 106), and it has 

been shown that contractile properties may fatigue to a greater extent (53) and be slower 

to recover in older adults (120), although this is not always the case (116). 

 The process of recovery of EC coupling failure is not clear.  Powers (166) showed 

an initially lower 10-50 Hz stimulated ratio in older adults post fatigue, but by two 

minutes of recovery, there was no age-related difference for the remaining 30 minutes of 



 

33 

data collection.  Allman and Rice (7) showed no differences in the recovery of low 

frequency fatigue for 60 minutes following fatigue. 

 On the neural side, there are no reported differences by age in the recovery of the 

M-wave amplitude, suggesting no effect of age on the recovery of peripheral excitability 

(43, 116).  There have been some reports of slowing in supraspinal fatigue in older adults.  

Hunter et al (101) showed an increase in motor-evoked potential area in older adults over 

the first 10 minutes of recovery, despite a similar decline in this variable in young and old 

at the end of a fatiguing submaximal hold.  These results suggest an age-related alteration 

in the recovery of cortical excitability.  In the only known study measuring MUDR 

during recovery from fatigue, it appears that there is a slowed recovery of MUDRs in 

older adults (51).  However, this is confounded by the fact that the fatigue test was to task 

failure, and older adults took longer to reach task failure. 

 There are few data on the long-term functional consequences of the recovery from 

fatigue in aging adults.  Allman and Rice (7) showed no difference in young and old in 

the recovery of increased surface EMG during submaximal contractions following 

fatigue.  There currently are no studies tracking age-related alterations in physical 

function or balance through a recovery period.  However, given the possibility of a 

slower recovery of muscle power and velocity, it seems likely that functional 

performance and balance would be affected.  Since older adults already perform many 

functional tasks at greater than 80% of their muscular capacity (97), even a 20% 

reduction in force or power will lead to some functional impairment.  In addition, it is not 

known whether an initial fatiguing exercise bout can have an effect on fatigue resistance 

during subsequent exercise bouts.  Baudry et al (12) reported a protocol of 5 intermittent 
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bouts of 30 concentric contractions, with 1 minute of rest between each bout.  They 

showed a greater increase in fatigue in older adults compared to young after the first bout. 

Symptomatic Fatigue in Older Adults 

 Symptomatic fatigue can be defined as a subjective measure of overall tiredness 

or exhaustion and is a common complaint of older adults (8).  Symptomatic fatigue may 

be an early symptom of a disease process (8).  In particular, fatigue during daily activities 

has been correlated with the risk of disability (9) and even mortality (10).  Often, the 

exact source of symptomatic fatigue can not be identified (1).  Recently, muscle strength 

has been shown to be a modifier of the relationship between mobility-related 

symptomatic fatigue and physical function, in the form of walking speed (140). 

 Because of the relationship between strength and symptomatic fatigue, it is 

possible that there is a further connection between symptomatic and muscle fatigue.  

Based on the work of Manty et al, an acute decline in muscle force and power likely 

contributes to symptomatic fatigue (140).  If older adults lose power at a greater rate than 

young and are slower to recover it (120, 166), the accumulation of activities over the 

course of the day may lead to a greater accumulation of symptomatic fatigue. 

 Older adults likely are working at a greater relative workload during many daily 

tasks (97).  Although most tasks normally do not require maximal effort, the presence of 

EC uncoupling may necessitate increased neural activation in order to overcome the 

effects of EC coupling failure and produce submaximal levels of force (19, 109).  

Relative to young adults, weaker muscles and slower baseline MUDRs may require older 

adults to increase their neural input by a greater degree in order to produce sufficient 

force to perform functional tasks.  This hypothesis is supported by data from Allman and 
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Rice (5), who reported greater ratings of perceived exertion in older adults compared to 

young during an intermittent submaximal fatigue task.  However, there were no neural 

measures during this study, so this hypothesis has not yet been directly tested. 

Summary 

 Despite extensive research on muscle fatigue in older adults, there remains a 

number of gaps in the literature.  There is little information about the recovery of power, 

a key factor in physical function (50).  While Jones et al have provided some data in 

young adults regarding the acute change in the force-velocity relationship following 

fatigue (106), the acute effects in older adults, as well as the recovery of this relationship, 

are not yet known. 

 It is also clear that there are changes in neuromuscular efficiency in response to 

both age (159) and fatigue (7, 19, 150).  The decline in neuromuscular efficiency in 

response to fatigue may last more than an hour (7).  The functional consequences of age-

related changes in neuromuscular efficiency are not known. 

 There are also many questions remaining regarding EC coupling failure in older 

adults.  Evidence exists both supporting (62, 166, 180) and refuting (7, 43, 116)  greater 

EC coupling failure in the aging population.  Even if there is not greater failure in older 

adults, the functional consequence of low-frequency fatigue in performing everyday tasks 

has not been fully explored.  Given that older adults are generally weaker at baseline (78, 

100, 155), are performing tasks closer to their maximal effort (97), and have less of a 

functional reserve (28), they may have to work harder to overcome low-frequency fatigue 

(109), possibly leading to greater effort and symptomatic fatigue (8).  Additionally, it is 

possible that accumulation of low-frequency fatiguing bouts over the course of the day 
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may attenuate fatigue resistance, leading to a progressive increase in their symptomatic 

fatigue. 
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Figure 2.1: Torque-Velocity (left) and Torque-Power (right) Relationship in the KE 
of Young and Older Adults.  Young are shown in filled circles, older are shown in open 
circles. 
 
Adapted from Lanza 2003 (129) 
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Figure 2.2: Pathway of Force Production.  Alterations at any level can lead to muscle 
fatigue. 
 
From Kent-Braun 2009 (111) 
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CHAPTER 3 

PROPOSED METHODS 

Participants 

For study 1, the subject population will consist of 12 young (30-40 years old) and 

12 older (65-85 year old) women recruited from Amherst and surrounding communities 

using flyers, website posts, and mailings.  Because of their lower strength which can lead 

to a greater risk of disability (108, 131), the participants will all be female.  Sample sizes 

are based on the ability to detect a clinically relevant 10% difference in muscle power, 

with 80% power and a within-group standard deviation of 10% (Callahan, unpublished 

data).  Groups will be matched for physical activity, and all participants will be sedentary 

to recreationally active, defined as not exceeding the current physical activity 

recommendations of 75 minutes of vigorous, or 150 minutes of moderate physical 

activity per week, (156, 200).  Volunteers who participate in cycling, rowing and 

swimming will be excluded due to our inability to capture these activities using 

accelerometry.  In addition, no participants may have taken part in a strength training 

program in the past year, and their training status will be constant for at least the previous 

6 months.  

All participants will be relatively healthy, non-smokers and free of any limb 

injury that could affect physical performance.  No participants will have a history of 

metabolic disease, neurological disease, pulmonary disease, stroke, myocardial 

infarction, or heart revascularization surgery.  Women with other medical conditions may 

be included in the study as long as they have been clinically stable for at least 1 year and 

their disease would not have any effect on the outcome measures or participant safety.  
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Individuals on beta-blockers will be excluded from the study due to the possible effects 

of these drugs on exercise capacity.  Physician’s consent will be obtained for all older 

women prior to their participation in the study.  Before enrollment, all participants will 

read and sign an informed consent document as approved by the University of 

Massachusetts, Amherst human subjects review board, and in accordance with the 

Helsinki Declaration.  All subject information will be coded in accordance with HIPPA 

standards, ensuring subject confidentiality.  Participants will receive $50 compensation 

for completion of each study. 

For Study 2, a total of 24 older women will be studied, which will provide 80% 

power to detect a 6% change in muscle power from baseline based on a 10% standard 

deviation.  When possible, members of the older cohort from Study 1 will be included in 

Study 2.  Additional replacement participants will be recruited as necessary to attain a 

group size of 24.  All criteria for the study population will remain the same. 

Summary of Protocols 

Study 1 

 Study 1 will require 3 (young group) or 4 (older group) visits to the Muscle 

Physiology Lab at the University of Massachusetts, Amherst, plus 1 visit to the Amherst 

Community Health Center for an MRI.  To ensure complete recovery between visits, 

while minimizing any effects due to long-term changes, the time between visits will be at 

least 4 days, but no more than 2 weeks.  Participants will be asked to refrain from 

exercising for 24 hours and consuming caffeine for 8 hours prior to each visit, due to 

their influences on muscle function and fatigue. 
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Visit 1.1 (Paperwork Visit) is required only for the older women.  This additional 

visit for the older group is needed in order to fill out a letter to their personal physician 

prior to participating in the study.  During this visit, participants will fill out an informed 

consent, as well as health and fatigue questionnaires.  Participants will also complete the 

Short Physical Performance Battery (SPPB,(83, 84)), which measures physical function 

using chair rise time, balance time, and gait speed.  In addition, blood pressure and 

anthropometrics will be recorded during this visit. 

 Since the young do not have to complete Visit 1.1, they will begin Visit 1.2 

(Habituation) with the same paperwork, blood pressure and anthropometric 

measurements that the older women completed on the first visit.  All participants will 

then warm up with 5 minutes of light cycling (Schwinn, Nautilus, Inc., Vancouver, 

Washington) followed by stretches of the KE and flexor muscle groups.  They will then 

be positioned on a Biodex dynamometer (Biodex Medical Systems, Shirley, NY), with all 

settings recorded so that the participant is in the same position for all visits.  Participants 

will be familiarized with the stimulated and voluntary force measures, and the torque-

velocity measurements will be made.  Following these measures, participants will be 

familiarized with the fatigue task.  At the end of Visit 2, participants will receive an 

accelerometer (Actigraph, LLC Pensacola, FL) and activity log, and instructed in their 

use.  Accelerometer data will be used to calculate the participant’s physical activity level, 

in order to ensure that there is no difference across groups. 

 So that there is no effect of the order of the two fatigue visits, Visits 1.3 and 1.4 

will be blocked and sequentially assigned across study groups.  Thus, each group will 

have an equal number of individuals who complete each visit first.  Visit 1.3 (Recovery 
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of Power and Force) will consist of a warm-up, baseline strength measures, a unilateral 

fatigue protocol, and recovery measures of strength and 10 and 80 Hz stimulation.  

Primary outcome measures will include isometric force, power at 3 velocities, the 10/80 

Hz ratio and stimulated and voluntary contractile properties, to measure central and 

peripheral recovery.  Recovery measures will be made 0, 2, 5, 10, 30, 45 and 60 minutes 

post-exercise.  Following 1 hour of recovery, participants will repeat the fatigue protocol 

and measures of force and power again will be recorded.   

 Visit 4 (Neural Recovery) also will consist of a warm-up, baseline strength 

measures, a unilateral fatigue protocol, and recovery measures.  The recovery measures 

for this visit will consist of MUDR and NME measures at 20%, 50%, and 100% of 

MVIC, along with measures of perceived exertion during each contraction.  Recovery 

measures will again be made 0, 2, 5, 10, 30, 45 and 60 minutes post-exercise.  A final 

visit (Visit 1.5) to Amherst Community Health Center for magnetic resonance imaging 

(MRI) of the thigh will be scheduled either prior to Visit 3 or 4, or on a separate occasion, 

depending on scheduling.  A summary of procedures for each visit is provided in Figure 

3.1. 

Study 2 

 Study 2 will require 4 visits to the Muscle Physiology Lab at the University of 

Massachusetts, Amherst using the same guidelines on the spacing of visits and blocking 

of Visits 2.3 and 2.4 as used for Visits 1.3 and 1.4 in Study 1.  Visit 2.1 (Paperwork) will 

be the same as the first visit in Study 1, and will be waived for any participants of that 

study.  Visit 2.2 will begin with the same stretching and baseline strength measures as in 

Visit 1.2.  Participants will then perform contractions at a range of velocities to produce a 
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full force-velocity relationship.  The visit will end with an introduction to the treadmill 

protocol and the 3 measures of physical function.   

 Visit 2.3 (Recovery of Power and Force) will consist of a warm-up, baseline 

strength measures, a 30-minute walking protocol designed to induce muscle fatigue, and 

1 hour of recovery measures of isometric strength and power.  Visit 2.4 (Functional 

Recovery) will consist of a warm-up, baseline strength and physical function measures, 

the same walking protocol, and 1 hour of functional measures during recovery.  These 

functional measure will be time to complete 10 chair rises, balance during quiet stance, 

and maximal vertical jump force.  A summary of procedures for each visit in Study 2 is 

provided in Figure 3.2. 

Force Measurement- Dynamometry 

KE isometric torque and dynamic power will be measured during Visits 1.2, 1.3, 

and 1.4 for Study 1 and Visits 2.2 and 2.3 for Study 2.  Measurements will be made using 

a Biodex System 3 dynamometer, as has been done previously in our lab (31, 32, 129).  

Participants will be seated with the hips at 90° and a resting knee angle of 100° extension.  

Torque, velocity and position signals from the Biodex will be output to a customized 

Matlab (Mathworks, Natick, MA) program, where it will be saved for future analysis.  

All data will be recorded at 1000 Hz for voluntary contractions and 2500 Hz for 

stimulated contractions. 

Participants will perform maximal voluntary isometric contractions (MVIC), each 

sustained for approximately ~3-4 s.  Verbal encouragement will be provided by the 

investigator and visual feedback will be provided by way of a lighted box.  Participants 

will perform 3 MVICs, with 2 minutes of rest between contractions.  If 2 peak values are 
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not within 10% of each other, an additional MVIC will be obtained.  Peak torque (Nm) 

and the maximal rate of voluntary torque development (see Stimulated Measures) will be 

calculated from these contractions. 

Maximal voluntary dynamic torque (MVDC, Nm) and power (W) will be 

measured over a 70° range of motion (100°-170° of extension), for 10 velocities.  

Participants will be instructed to kick out as quickly and as hard as they can, relax as soon 

as they reach the end of their range of motion, and allow the lever arm to passively return 

the leg to resting position.  At each test velocity, participants will complete 2 series of 3 

rapid contractions, with each series separated by 2 minutes of rest. 

Following determination of peak isometric force, the baseline force-velocity 

relationship will be assessed during the second visit.  As done previously (32), peak 

MVDC will be measured at 10 velocities from 30-300° s-1 at 30° s-1 intervals.  Data will 

be expressed relative to MVIC, and fit to a second-order polynomial so that the velocity 

at which 50% (V50) and 75% (V75) of MVIC is generated can be calculated (Figure 3.3).  

The V50 will be used to characterize the participants based on their force-velocity 

relationship.  The V75 variable will be the velocity used for each individual for the fatigue 

test on Visit 3, as it has been shown to elicit similar fatigue in young and older adults 

(32). 

Muscle Stimulation 

 During Visits 1.2 and 1.3 of Study 1, muscle stimulation will be done over the 

motor point of the quadriceps muscles in order to determine muscle properties 

independent of input from the central nervous system.  One 7.6 x 12.7 cm self-adhesive 

electrode (FastStart; Vision Quest Industries, Irvine, California) will be placed over the 
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quadriceps, distal to the inguinal crease, and the other will be placed just superior to the 

patella.  Using a constant-current stimulator (DS7A; Digitimer, Hertfordshire, UK), 

stimulations will be induced at a current for which a 500 ms, 80 Hz train elicits 50% of 

MVIC force.  The pulse duration will be 200 μs. 

 Muscle contractile properties will be measured using the 80Hz isometric tetanic 

train (31, 32).  Peak torque, maximal rates of force development and relaxation, and half-

relaxation time will be calculated from the tetanus, as measures of peripheral function.  

The rate of force development during a MVIC will also be normalized to the stimulated 

rate of force development.  Any decrease in that ratio will be indicative of central drive 

failure (118).  To assess EC coupling, peak force during a 10-Hz, 0.5s stimulated 

isometric tetanic train will also be determined, and the ratio of 10/80 Hz calculated.  Any 

decrement of the 10/80Hz ratio will be indicative of EC failure (68, 206). 

Electromyography- Surface Electrodes 

Surface electromyography (EMG) will be recorded during Visit 1.4 of Study 1.  

Surface EMG will be collected using a bipolar electrode placed over the vastus lateralis 

muscle.  The electrode is a paired Ag/AgCl electrode (Therapeutics Unlimited, Iowa 

City, IA), 8-mm in diameter with a separation of 2 cm.  Signals will be amplified by a 

Theraputics amplifier (gain = 2,000), high-pass filtered (cutoff = 20Hz), and recorded at 

2500 Hz.  Surface EMG signals during 5-s isometric contractions at 20 and 50% of 

baseline MVIC torque will be used to calculate NME (NmV-1).  EMG data during a 0.5 s 

window corresponding to a plateau in force at target will be rectified and integrated.  The 

ratio of contractile torque (Nm) to rectified EMG signal (mV) will be calculated.  In 

addition, lag in neuromuscular activation (ms) and rate of neuromuscular activation (% 
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maximal EMG∙ms-1) will also be measured (46, 172).  As illustrated in Figure 3.4, the lag 

in neuromuscular activation is defined as the delay between the time at which EMG 

amplitude exceeds 3 SD of the resting amplitude and the time of initiation of force 

development.  Rate of neuromuscular activation is calculated as the derivative of the 

EMG signal, normalized to the maximal EMG signal from an MVIC, during that time 

period. 

Physical Function and Balance- Chair Rise and Force Plate 

 Physical function and balance will be measured during Visit 2.4 of Study 2.  

Physical function will be assessed using a series of 10 consecutive chair rises, as older 

adults perform that task at a high percentage of their maximal strength (97), and chair rise 

performance is affected by fatigue (163) in young and older adults.  Chair rise time (s) 

will be recorded as the time required to completely stand up and sit back down in a chair 

(seat height = 45 cm) 10 times, without the use of the arms.  Time will start by cue of the 

investigator and stop when the participant is seated in the chair for the 10th time.   

Balance will be assessed in the Motor Control Lab at the University of 

Massachusetts during quiet stance using 2 side-by-side force plates (AMTI, Newton, 

MA).  As is standard procedure for balance measures (44, 201), participants will place 

one foot on each plate parallel to each other and shoulder width apart.  Data will be 

recorded at 100 Hz using Qualisys track manager (Qualysis Medical AB, Gothenburg, 

Sweden).  Postural sway and time to contact of the stability boundary will be calculated 

separately in the anterior-posterior and medial-lateral directions, as done previously by 

Van Emmerik et al (201). 
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As an additional measure of dynamic function (120), participants will also 

complete a maximal vertical jump on the force platforms.  Participants will be instructed 

to jump as high as they can 3 times in a row with 5 seconds of rest between each jump.  

Maximal ground reaction forces will be recorded for each jump.  Peak ground reaction 

force normalized to body mass (N/kg) will be reported. 

Fatigue Test and Recovery 

Study 1 

For study 1, the fatigue test will consist of 4 minutes of MVDCs over the 70° 

range of motion at each participant’s V75 velocity (32).  Participants will be cued for all 

contractions by an auditory signal.  To maintain a constant 30% duty cycle for all 

participants, the timing of the contractions will be individualized for each participant, 

depending on their force-velocity characteristics.  Thus, the number of contractions will 

also vary by participant.  Fatigue will be calculated as:  

[(average peak power from the final 10s of contractions) / (baseline peak power) x 100] 

 Immediately after the protocol, and for one hour following, recovery measures 

will be collected.  During Visit 1.3 (Recovery of Power and Force), recovery measures of 

maximal isometric force and power will be made 0, 2, 5, 10, 30, 45 and 60 minutes post-

exercise.  To determine the effect of velocity on the recovery of power, peak power will 

be assessed at a slow velocity (30°∙s-1), a velocity relative to each participant’s own force-

velocity curve (V75) , and a fast velocity (270°∙s-1), which is the fastest velocity all older 

participants could attain in a prior study (129).  Stimulated 10Hz and 80Hz measures will 

also be recorded at 0, 10, 30, 45 and 60 minutes post-exercise, to provide measures of 

central and peripheral function.  Following 1 hour of recovery, participants will repeat the 
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same fatigue protocol, in order to determine the effects of a second fatiguing bout on 

force and power.  Recovery measures of maximal isometric force and power will again 

be made 0, 2, 5, and 10 minutes post-exercise. 

The fatigue protocol for Visit 1.4 (Neural recovery) will be the same as in Visit 

1.3.  Following the fatigue protocol, the rate of neural activation, RPE, and NME at 20%, 

50%, and 100% MVIC will be determined.  These measures will be repeated at 2, 5, 10, 

30, 45 and 60 minutes post exercise. 

Study 2 

 For Study 2, the fatigue test will consist of a 30-minute walking task on a 

treadmill.  Walking speed will be set at 3 mph.  At minutes 7,17, & 27, the treadmill 

grade will be increased to 5% for 2 minutes in order to simulate situations that require 

increased effort.  Immediately upon completion of the walking protocol, the participant 

will be transported by wheelchair to either the Muscle Physiology Lab (Visit 2.3) or the 

Motor Control Lab (Visit 2.4), for measures of the recovery of power or physical 

function, respectively. 

 At visit 2.3 (Recovery of Power and Force), participants will be seated on the 

Biodex, which will be set up in the correct position prior to the walking protocol.    

Measures of isometric force and power at 30°∙s-1, V75, and 270°∙s-1 will be recorded 2, 5, 

10, 30, 45 and 60 minutes post-exercise.  At Visit 2.4 (Functional Recovery), participants 

will be transported to the force platform, where they will immediately complete the 

balance test, chair rise task, and maximum vertical jump, in that order.  These measures 

will be repeated at 5, 10, 30, 45 and 60 minutes post exercise. 
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Muscle Size- MRI 

 To ensure maximal activation of the muscle in all participants, specific strength 

will be calculated as peak isometric torque (Nm) / maximal muscle cross-sectional area 

(cm2).  To measure muscle size, T1-weighted axial MRIs will be acquired along the 

length of the thigh, using a phased-array coil.  Images will be acquired at the Amherst 

Community Health Center, on a 1.5T GE system.  Image acquisition parameters will be 

as follows: echo time = 11 ms, matrix = 256, field of view = 300 x 300 mm, slice 

thickness = 6 mm, with no gaps. 

 A custom-written MATLAB program (32) will be used to separate and quantify 

the maximum fat-free muscle cross-sectional area (mCSA, cm2) for the KE muscles.  

Because it has been shown that differences between young and older participants in 

muscle contractile tissue can be obscured by the increase in intramuscular fat that also is 

present in older adults (175), this technique is an important step in calculating true 

contractile muscle size, and it has been used by our lab and others to successfully 

measure mCSA (90, 117, 146, 183).  The investigator will begin by visually inspecting 

the images until it appears that the quadriceps muscles are nearing peak CSA.  At that 

point, a circular region around the muscle of interest will be selected.  The software will 

produce a histogram showing the signal intensity of the pixels within this region, which 

typically consists of three distinct peaks.  The peak with the lowest intensity contains 

primarily bone and connective tissue, the center peak is the muscle region, and the 

highest-intensity peak contains mostly fat.  The investigator will select the left and right 

boundaries of the muscle peak to assign thresholds for each region.  The muscle will then 
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be outlined, carefully avoiding inclusion of any subcutaneous fat, and the software will 

compute the mCSA and percent fat area (%fCSA). 

 This process will be repeated for each of the neighboring slices, until the maximal 

mCSA is obtained.  A minimum of 10 slices will be analyzed, and each slice will be 

analyzed twice and averaged in order to minimize any error in threshold selection and 

muscle outlining.  Additionally, only one investigator will perform all analyses, thus 

eliminating any inter-investigator error.   The mean of the mCSA of the three largest 

consecutive slices will be recorded. 

Habitual Physical Activity Level- Accelerometry 

 To characterize habitual physical activity, Actigraph GT1M uniaxial 

accelerometers will be used to measure each participant’s physical activity level.  

Accelerometers will be worn at the hip, and data will be recorded using 60-s epochs for 

7-10 days, which has been shown to be sufficient to predict overall, light, and MVPA 

levels (86, 143).  Participants will also be given a diary to record daily activities, sleep 

schedule, illness, and activities they considered to be outside their normal habits.  A 

custom-written MATLAB program (Foulis, submitted) will be used to calculate total 

activity counts, as well as minutes spent in various activity levels, using established 

thresholds for Actigraph accelerometers (144, 144).   

Statistical Analyses 

 All analyses will be performed using SAS software (SAS Institute, Cary, NC).  

Significance will be established at the p ≤ 0.05 level.  Exact p-values, 95% confidence 

intervals for differences in means between groups, as well as mean ± SD will be 

provided.   
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Study 1 

 Subject characteristics and baseline values will first be tested for normality.  If the 

data are not normally distributed, a non-parametric analysis will be used to compare 

across groups.  When data are normally distributed, Levene’s test will be used to test for 

equal variance across groups.  Unpaired t-tests will be used to compare values across 

groups, with appropriate weighting of the variance if deemed appropriate by the outcome 

of the Levene’s test. 

All hypotheses for Study 1, except for Exploratory Hypothesis 1.3, will be tested 

over time and across groups by two-factor (age, time) repeated measures ANOVAs, using 

the MIXED procedure, using separate ANOVAs for each measure.  When significant 

age-by-time interactions are observed, data will be compared at each time point and 

adjusted for multiple comparisons, in order to determine at which time points group 

differences occurred.  Exploratory Hypothesis 1.3 will be tested with a three way (age, 

time, repetition) ANOVA to test across repetitions of the fatigue protocols. 

Study 2 

Subject characteristics and baseline values will be tested as in Study 1.  

Hypotheses 2.1, 2.2, 2.3, and the exploratory hypothesis will be tested over time with 

repeated measures (time) ANOVAs using the MIXED procedure.  Separate ANOVAs 

will be used for each variable.  In addition, linear regressions will be used to explore 

relationships between the recovery of power and physical function (H2.4). 
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Visit 1.1: Paperwork (Older only) 
 Informed Consent 
 Health & Safety Questionnaires 
 Fatigue Questionnaires 
 Letter to Physician 
 Anthropometrics & BP 
 Short Physical Performance Battery (SPPB) 

 
Visit 1.2: Habituation/Familiarization (and paperwork for Young) 

 Warmup/Stretching 
 Baseline MVIC 
 Stimulation: 10Hz Tetanus, 80 Hz Tetanus 
 Torque-Velocity Measures 
 Familiarization with KE Fatigue Protocol 
 Provide Physical Activity Monitor and Instructions 

 
Visit 1.3: Recovery of Power and Force 

 5 Minute Warm-up on Stationary Bike, Stretching 
 Baseline Measures 

• MVIC 
• Tetanic Stimulation: 10Hz, 80 Hz  
• MVDC: 30°∙s-1, V75, 270°∙s-1 

 4-Minute Biodex Isovelocity (V75) Fatigue Protocol 
 Recovery Measures at 0, 2, 5, 10, 30, 45 and 60 min:  

• MVIC, MVDC (30°∙s-1, V75, 270°∙s-1), 10Hz & 80 Hz Tetani 
 Repeat 4-Minute Biodex Isovelocity Fatigue Protocol 
 Recovery Measures 0, 2, 5, and10 min 

• MVIC, MVDC 
 
Visit 1.4: Neural Recovery 

 5-Minute Warm-up on Stationary Bike & Stretching 
 Baseline Measures 

• MVIC (with RPE) 
• Submax RPE: 20% & 50% MVIC 
• MVDC: V75 

 4-Minute Biodex Isovelocity (V75) Fatigue Protocol 
 Recovery Measures at 0, 2, 5, 10, 30, 45 and 60 min:  

• MVIC, 20% MVIC 50% MVIC (with RPE) 
Visit 1.5: MRI 

 Imaging of the KE Muscles 
 
Figure 3.1: Summary of Procedures for Study 1. 
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Visit 2.1: Paperwork 
 Informed Consent 
 Health & Safety Questionnaires 
 Fatigue Questionnaires 
 Letter to Physician 
 Anthropometrics & BP 
 Short Physical Performance Battery (SPPB) 

 
Visit 2.2: Habituation/Familiarization 

 Warmup/Stretching 
 Baseline MVIC 
 Torque-Velocity Measures 
 Familiarization with Treadmill Walking Protocol 
 Familiarization with the Functional Measures 
 Provide Physical Activity Monitor and Instructions 

 
Visit 2.3: Power Recovery 

 5 Minute Warmup on Stationary Bike & Stretching 
 Baseline Measures 

• MVIC 
• MVDC: 30°∙s-1, V75, 270°∙s-1 

 30-Minute Treadmill Walking Fatigue Protocol 
 Recovery Measures at 0, 2, 5, 10, 30, 45 and 60 min:  

• MVIC 
• MVDC (30°∙s-1, V75, 270°∙s-1) 

 
Visit 2.4: Functional Recovery 

 5 Minute Warmup on Stationary Bike & Stretching 
 Baseline Measures 

• Physical Function: 10x Chair Rise, Balance Maximum Vertical Jump Force 
• MVIC 
• MVDC: 30°∙s-1, V75, 270°∙s-1 

 10-Minute Treadmill Walking Fatigue Protocol 
 Recovery Measures at 0, 5, 10, 30, 45 and 60 min:  

• 10x Chair Rise 
• Balance 
• Maximum Vertical Jump 

 
Figure 3.2: Summary of Procedures for Study 2. 
  



 

54 

 
 
Figure 3.3: Example of Torque-Velocity Data from One Older Woman.  Data are 
normalized to peak force and fit by a second order polynomial, so that the velocity at 
which 50% (V50) and 75% (V75) of maximal isometric force can be calculated.  Callahan, 
Unpublished Data 
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Figure 3.4: Example of the Measurement of the Rate of Neuromuscular Activation.  
The lag in neuromuscular activation is determined as the time between the onset of the 
EMG signal and the initiation of force or power.  The rate of neuromuscular activation is 
then calculated as the derivative of the EMG signal during the lag period. 
 
Adapted from Clark 2011 (46) 
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Figure 3.5: Example of Foot Position on the Dual Force Platform Setup.  The 
participant’s feet are positioned shoulder width apart, with one foot each platform. 
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CHAPTER 4 

MECHANISMS OF RECOVERY FROM NEUROMUSCULAR FATIGUE IN 

YOUNG AND OLDER WOMEN 
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Abstract 

Changes in the neuromuscular system due to both old age and muscle fatigue can 

limit the ability to produce power.  While it has been shown that different aspects of the 

neuromuscular system may recover from fatiguing exercise at different rates, the effects 

age-related changes on this recovery process are not known.  We tested the hypotheses 

that fatiguing contractions would induce greater loss and slower recovery of power 

during high-velocity contractions in older compared with young women, and that these 

decrements would be accompanied by impairments in contraction velocity,  neural 

activation and contractile function in the older group.    Eleven young (25-37 years) and 

12 healthy older (66-81) women completed 4-min of maximal dynamic knee extension 

contractions designed to elicit similar fatigue (fall of power) in both age groups.  Power 

at 4 velocities, central activation, pre-motor signaling, neural efficiency, contractile 

properties and ratings of perceived exertion were measured before, immediately 

following and after 60 min of recovery from the contraction protocol.  Isometric torque 

and low-velocity power fatigued and recovered similarly in young and older women 

(p>0.58).  High-velocity power declined more in older (38%) than young (13%, p<0.01); 

in the older group this did not recover in 60 minutes (p<0.01).  Excitation-contraction 

coupling was impaired in both groups following and 60 minutes the fatigue bout 

(p<0.01), and tended  to be more impaired in the older (p=0.07).  In response to fatigue, 

the EMG:Torque ratio responded similarly in young and old during isometric 

contractions at 20% and 100% of maximal torque, but only the young had an increased 

ratio with fatigue at 50% of max.  Older adults also had an increase in perceived exertion 

during maximal isometric contractions following fatigue that did not return to baseline 
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over the hour.  This slower recovery of high-velocity power in older adults could lead to 

impairments in the ability to perform functional tasks following an exercise bout.
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Introduction 

There are a number of detrimental changes in the neuromuscular system which 

occur in old age (65+ years) that increase the risk of impairments in physical function.  

One such change is the age-related loss of muscle strength and power.  A number of 

studies have shown that both isometric torque (100, 155) and power, the product of 

torque and velocity, are lower in older adults (32, 53, 138) and in women (108, 131).  

Thus, older women are at particular risk for disability, as low muscle power has been 

shown to be a good predictor of impaired physical function (50). 

In response to exercise, there is a transient decrease in the ability to produce 

torque, a response that is termed muscle fatigue.  As a result, age-related muscle 

weakness in older adults may be of greater concern when combined with the effects of 

muscle fatigue (113). While a number of studies have demonstrated greater fatigue 

resistance in older compared with younger adults during isometric contraction protocols 

in a variety of muscle groups (42, 110), it has also been shown that this fatigue resistance 

may be lost and even reversed as contraction velocity increases (32, 53).  These results 

strongly suggest that there may velocity-dependent mechanisms contributing to muscle 

fatigue in older adults.   

In younger adults, it has been shown there are different rates of recovery of 

several neuromuscular processes that cause muscle fatigue (150).   Following fatiguing 

isometric contractions, it has been reported that torque, contractile function, and the ratio 

of surface electromyography (EMG):torque recover in a similar manner in both young 

and older adults (7).  However, many of these factors are already lower at baseline in 

older adults compared with young (46, 53, 62, 101, 120, 158, 180), possibly leading to 
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greater effects of these changes on torque  production, even if there are no age-related 

changes with fatigue.  Given the existing evidence of age-related changes in 

neuromuscular function and the velocity-dependence in the amount of fatigue in older 

adults (31, 32, 53), it is possible that there are differences in the recovery of power 

compared to isometric torque following a fatiguing exercise bout.  When a single velocity 

or resistance is used, studies have shown that power may be slower to recover in older 

adults than young (120, 186).  Many neuromuscular processes altered by fatigue may 

contribute to reduced power throughout the recovery process, such as altered central 

drive (101), slowed motor unit discharge rates (51), and reduced neuromuscular 

activation (46).  The recovery of these factors during dynamic contractions of fatigued 

muscles have not been thoroughly investigated.  Within the muscle itself, it has been 

reported that contractile properties, such as rate of torque relaxation, may be slower to 

recover in older adults (120).  While slowing of contractile properties may allow for 

maintained  isometric torque via a shift in the torque-velocity relationship, these changes 

may inhibit the production of power, particularly at high-velocities (53, 106).   

Furthermore, following fatiguing exercise, it has been shown that low-frequency torque 

(i.e., torque during electrical stimulation at < 20 Hz) can be depressed for several hours in 

young and older adults (68) due to impaired excitation-contraction coupling (207).  

However, several investigators have found no age-related differences in the degree of 

low-frequency fatigue (7, 116).  Given the numerous other neuromuscular changes 

observed in aged individuals, it is possible that the influence excitation-contraction 

coupling failure on torque and power production is greater in older adults, even in the 

absence of an age-related difference.   
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Functionally, reduced power during recovery may have a large impact on 

everyday life.  It has been reported in young adults that, when excitation-contraction 

coupling failure occurs, a second fatiguing bout can elicit greater fatigue than the original 

bout (192),  If this were the case in older adults, it is possible that increased effort is 

required to perform everyday activities as fatigue accumulates due to several bouts of 

physical activity over the course of the day.  Since many older adults already perform 

everyday activities at a high percentage of their maximal strength when unfatigued  (97), 

any increased neuromuscular effort in response to fatigue could lead to increased 

perceived effort of activities throughout the day. 

Overall, while many investigators have studied the acute effects of muscle fatigue 

in older adults, there are few data about the degree and impact of muscle weakness during 

recovery from fatigue, particularly in response to dynamic contractions.  Since any 

persistent decline in maximal power in the knee extensors could have a profound 

influence on the physical function in older adults (13, 50), the aim of this study was to 

provide unique insight into the changes in torque and power following muscle fatigue and 

throughout 60 min of recovery.  To explain any possible alterations in recovery in the 

older group, we quantified the changes contraction velocity, rate of isometric torque 

production, central and pre-motor activation, neural efficiency, and contractile properties.  

We hypothesized that older adults would have a slower recovery of high-speed power 

due to alterations in the recovery of these neuromuscular processes required for power 

production.  Finally, we tested the hypothesis that age-related impairments in the 

recovery of muscle power would lead to functional consequences: increases in both 

perceived exertion during contractions and fatigue during a second exercise bout. 
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Methods 

Participants 

Measures of neuromuscular function were collected in 11 young (age 25-37 

years) and 12 older (age 66-81 years) women before and following muscle fatigue.  All 

participants were relatively healthy, non-smokers and free of any limb injury that could 

affect physical performance during our testing.  No participants had a history of 

metabolic, neurological, or cardiopulmonary disease.  With the exception of one 

participant on a low dose beta-blocker (atenolol), no participant was on any medication 

with potential side effects on neuromuscular function.  Physician’s consent was obtained 

for all older women prior to their participation in the study.  Prior to enrollment, all 

participants read and signed an informed consent document as approved by the 

University of Massachusetts, Amherst human subjects review board. 

 Self-reported physical activity levels for all participants were below the ACSM 

recommendations of 75 minutes of vigorous, or 150 minutes of moderate physical 

activity per week (156).  To quantify habitual physical activity, participants wore 

Actigraph GT1M (Pensacola, FL) uniaxial accelerometers at the hip for 7-10 days.  Total 

activity counts, as well as minutes spent in moderate-vigorous activity (MVPA), were 

calculated using established thresholds for Actigraph accelerometers (76). 

Descriptive characteristics of anthropomorphic measurements and functional 

ability were collected on all participants.  Functional status was quantified using the Short 

Physical Performance Battery (SPPB, (83, 84)).  As a global measure of central motor 

function, participants completed a foot-tap test (115), during which they were instructed 

to tap their foot by hinging at the ankle as fast as they could for 10 s.  This was done one 
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foot at a time, with each foot repeated twice, and the fastest number of taps recorded.  

Participants also completed a 400m walk consisting of 10 loops of a 40m course at the 

fastest pace they thought they could maintain for the full course. 

Torque and Power Measurement 

Knee extensor torque and power were measured using a Biodex System 3 (Biodex 

Medical Systems, Shirley, NY) dynamometer, as previously described (32).  Briefly, 

participants were seated with the hips at 90° and a resting knee angle of 100° extension.  

Torque, velocity, and position signals from the Biodex were output to a customized 

Matlab (Mathworks, Natick, MA) program, where it was recorded at 2500 Hz. 

During the participant’s baseline testing visit, peak isometric torque (Nm), power 

(W), and the torque-velocity curve were measured.  Maximal voluntary isometric 

contraction torque (MVIC) was recorded during 3-4 s contractions of the knee extensors.  

Verbal encouragement was provided by the investigator and visual feedback was 

provided by way of a lighted box.  Participants performed 3 MVICs until the peak torque 

of two were within 10%, with 2 minutes of rest between contractions.  Peak torque (Nm) 

and the maximal rate of voluntary torque development (% peak torque·ms-1) were 

calculated from these contractions. 

Peak power was measured during dynamic contractions over a 70° range of 

motion (100°-170° of extension).  At each velocity, participants completed a series of 3 

rapid contractions cued by the investigator.  Each series was separated by 1 minute of 

rest.  Minimum time-to-target velocity (ms), i.e. the time from the beginning of torque 

development until the time at which the participant reached target velocity, was recorded 

for each set.  The torque-velocity curve was calculated by assessing peak torque for 10 
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velocities from 30-300° s-1 at 30° s-1 intervals (32).  Torque-velocity data were also 

expressed relative to MVIC and fit to a second-order polynomial so that the individual’s 

velocity at which 75% of MVIC (V75) was generated could be calculated.  The V75 was 

used to match all individuals for their same position on the torque-velocity curve, in order 

to provide a common relative torque level for the fatiguing contractions and recovery 

measures. 

Muscle Size 

 To normalize the torque data to muscle size, fat-free muscle cross-sectional area 

(mCSA) was determined from T1-weighted axial magnetic resonance images (MRI), 

acquired along the length of the thigh using a phased-array coil and a 1.5 tesla Siemens 

MRI system.  Image acquisition parameters were: echo time = 11 ms, matrix = 256, field 

of view = 300 x 300 mm, slice thickness = 4 mm, with no gaps. A custom-written 

MATLAB program was used quantify the maximum mCSA (cm2) and fat area (% total 

CSA) for the knee extensor muscles, by using the signal intensity of the pixels to 

distinguish the different tissues (32, 115).  Mean mCSA of the three largest consecutive 

slices was used to calculate specific torque (Nm·cm-2) and specific power (W·cm-2). 

Muscle Stimulation 

 Contractile properties, central motor drive, and low-frequency fatigue were 

assessed using stimulated isometric contractions of the quadriceps muscles.  One 7.6 x 

12.7 cm self-adhesive electrode (FastStart; Vision Quest Industries, Irvine, California) 

was placed over the quadriceps, distal to the inguinal crease, and the other was placed 

just superior to the patella.  Stimulations were induced using a constant-current stimulator 
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(DS7A; Digitimer, Hertfordshire, UK).  Target current was set so that a 500 ms, 80 Hz 

train elicited ~50% of MVIC torque. 

 Muscle contractile properties, including maximal rates of force development and 

relaxation (RFD and RFR, respectively; %peak·ms-1), and half-relaxation time (T1/2, ms), 

were calculated from the 80 Hz tetanus (31, 32).  The RFD during the MVIC was 

normalized to the RFD during the tetanus; a decrease in this voluntary:stimulated RFD 

ratio suggests a reduction in central motor drive (118).  Low-frequency fatigue was 

quantified by changes in peak torque during a 10-Hz, 500 ms train relative to that of the 

80 Hz stimulus.  Any decrement of the 10:80 Hz ratio is indicative of low-frequency 

fatigue, which likely reflects excitation-contraction coupling failure (68, 206). 

Surface Electromyography 

Surface electromyography (EMG) was collected using a bipolar paired Ag/AgCl 

electrode (Therapeutics Unlimited, Iowa City, IA) placed over the vastus lateralis muscle.  

Signals were recorded at 2500 Hz, amplified (gain = 2,000), and high-pass filtered (cutoff 

= 20Hz).  Two measures of the rate of neuromuscular activation of the muscle were 

determined at all velocities.  The delay between the time at which EMG amplitude 

exceeded 3 standard deviations of the resting amplitude and the time of initiation of 

torque development (pre-motor time, ms) was calculated (15).  In addition, the average 

EMG (%max) during the pre-motor period was also determined.   

The EMG:Torque ratio (mV·Nm-1) was used as a measure of neuromuscular 

efficiency.  Due to the complications of assessing the EMG:Torque ratio during dynamic 

contractions, it was instead assessed during isometric contractions at 20%, 50%, and 

100% of baseline MVIC.  Surface EMG signals were calculated during a 500ms window 
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corresponding to a plateau in torque.  All EMG data were normalized to the maximal 

EMG signal obtained during the baseline MVIC during a similar 500 ms window.  Any 

increase in the EMG:Torque ratio represented a decrease in neuromuscular efficiency. 

Fatigue Test and Recovery 

Participants were asked to refrain from exercising for 24 hours and from 

consuming caffeine for 8 hours prior to each visit, due to their influences on muscle 

function and fatigue.  The fatigue test consisted of 4 minutes of maximal dynamic 

contractions over the 70° range of motion at each participant’s V75 velocity (32).  

Participants were cued for all contractions by an auditory signal.  To maintain a constant 

30% duty cycle for all participants, the timing of the contractions and rest periods were 

individualized for each participant, depending on their V75.  Fatigue was calculated as:  

Average peak power from the final 3 contractions 

Average peak power from baseline and the first 3 contractions
  ×100% 

 Recovery measures were collected immediately following the final contraction, 

and 2, 5, 10, 30, 45, and 60 minutes following the fatigue test.  The fatigue test was 

repeated on two different days so that two separate sets of recovery measures could be 

collected.  The order of these two visits was randomized for each participant.  On one of 

the days, recovery measures were collected during an MVIC (0°∙s-1), at a velocity relative 

to each participant’s own torque-velocity curve (V75), and at a slow (30°∙s-1) and fast 

(270°∙s-1) absolute speed.  The speed of 270°∙s-1 was selected based on a prior study from 

our lab which indicated it was the fastest speed all participants could achieve (129).  The 

order of the slow and fast contractions was randomized across subjects.  At each 

contraction, peak specific torque (isometric) or power (dynamic), maximum rate of 

torque development (isometric) and time-to-target velocity (dynamic), pre-motor time, 
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and pre motor EMG were determined.  Immediately following the voluntary recovery 

contractions except after the 2 and 45 minutes post-fatigue time-points (omitted to 

minimized the number of stimulations, and therefore maximize subject comfort), 

stimulated 10Hz and 80Hz measures were also recorded to provide measures of central 

and peripheral function.  Again, the order of the stimulated contractions was randomized.  

In order to determine the effects of a second fatiguing bout following 1 hour of recovery, 

participants repeated the same fatigue protocol 2 minutes after the 60 minute recovery 

measure.  Measures of maximal isometric torque and power at all 4 velocities were 

measured again immediately following this second 4-minute fatigue bout. 

During the other testing visit, the recovery measures, performed at the same 

recovery times, consisted of the EMG:Torque ratio and ratings of perceived exertion 

(RPE, 1-10, (24)).  Due to the complications of assessing the EMG:Torque ratio during 

dynamic contractions, isometric contractions of 20%, 50%, and 100% MVIC were used 

to capture the changes in muscle efficiency and perceived effort with changing 

contraction intensity. 

Statistical Analyses 

 All analyses were performed using SAS software (SAS Institute, Cary, NC), with 

significance established at p ≤ 0.05.  Mean ± SE are provided.  Descriptive and baseline 

characteristics were compared across age groups using unpaired t-tests.  Group x time 

repeated-measures ANOVA was used to evaluate the hypotheses relating to the recovery 

(relative to baseline) of power and the neuromuscular mechanisms.  Each velocity or 

contraction intensity was tested independently.  Results of the rmANOVA were used to 

determine whether there was a difference by group in the recovery.  T-tests were then 
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used to compare the baseline to 0-minute recovery time point (0R) in order to determine 

the effects of fatiguing contractions.  Likewise, data at baseline and following 60 minutes 

of recovery (60R) were compared to evaluate the completeness of recovery.  To minimize 

the effects of multiple comparisons, only changes at these two time-points were tested.  

Both pairwise comparisons were assessed independently for each group unless there was 

no group effect and group x time interaction, in which case, data were collapsed by 

group.  Differences in specific torque and specific power following the second fatigue 

bout were evaluated using group x bout rmANOVA. 

Results 

Group Characteristics 

 Group characteristics are shown in Table 4.1.  Young and older did not differ in 

height, body mass, BMI, or total PA counts (p≥0.09).  However, MVPA was lower in the 

older group than in the young group (p=0.01).  All of the young women scored 12 on the 

SPPB, while 9 of the older women scored 12 and 3 scored 11.  Foot tap speed and 400m 

walk time were slower in the older women compared with the young(p≤0.03).   

Baseline Characteristics 

 Older adults had lower mCSA, and greater fat area than the young group (p<0.01 

for both).  There was no difference in V75 (young: 62.3±7.0, older: 62.9±5.7, p=0.94), as 

calculated from polynomial fits of the individual torque-velocity curves (Appendix G).  

The older women were weaker than young across all velocities (Figure 4.1), although, 

when normalized to mCSA, baseline specific isometric torque and power were similar 

across groups (p≥0.18). 
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Among the neuromuscular properties (Table 4.2), there were no group differences 

in voluntary or voluntary:stimulated RFD.  Time-to-target velocity at 30°s-1 and at V75 

were also similar across groups (Table 4.3).  In contrast, the older women were slower to 

attain the target velocity at 270°s-1, signifying slower knee extension acceleration.  Pre-

motor time was longer in the older at 30°s-1 and 270°s-1, but not at isometric or V75, 

indicating no consistent patterns.  Pre-motor EMG was similar across groups at all 

velocities.  The EMG:Torque ratio (Table 4.2) was greater in the older at 20% (young: 

0.56±0.04, older: 0.76 ± 0.07; p=0.04), possibly due to larger motor units or greater 

coactivation in the older.  This ratio was similar across groups at 50% (young: 0.53±0.03, 

older: 0.59 ± 0.04; p=0.39) and 100% (Young: 0.56±0.02, older: 0.58 ± 0.02; p=0.59) 

MVIC.   

Muscle stimulation data (Table 4.2) were available for all of the younger women 

and 9 of the older adults.  Baseline tetanic 80Hz torque was not different between young 

and older (young: 50.9±2.0%, older: 47.9 ± 2.0%, p=0.32), and was close to our target of 

50% MVIC.  For the contractile properties, 80Hz RFD was faster in the older than the 

young (Table 2).  In contrast, RFR and T1/2 were slower in the older, indicating slower 

contractile properties in older adults.  The baseline 10:80 Hz ratio was greater in the older 

adults than young, consistent with their slower muscle relaxation properties. 

Ratings of perceived exertion were similar at 20% MVIC (young: 1.1±0.2, older: 

1.0 ± 0.2; p=0.87), and tended to be lower in the older at 50% (young: 3.9±0.5, older: 2.5 

± 0.5, p=0.06) and 100% (young: 7.4±1.1, older: 4.9 ± 0.9, p=0.06) MVIC. 
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Torque and Power Recovery 

 Muscle fatigue in response to the protocol did not differ across groups and testing 

days (young: 80 ± 5%, 83 ± 6%; older: 71 ± 3%; 78± 3%; on testing day 1 and 2, 

respectively; p≥0.12).  Specific torque and power decreased in both groups at isometric, 

30°s-1, and V75 at the end of the fatigue bout (p<0.01, Figure 4.2).  At 270°s-1, peak 

specific power tended to be lower than baseline at 0R (p=0.07), and was significantly 

lower in the older (p<0.01).  Young and older had similar power decrements at isometric, 

30°s-1, and V75 velocities (p≥0.61); however, there was a significantly greater power 

decrement in the older compared to the young at 270°s-1 (p=0.02). 

At 60R, isometric torque remained depressed from baseline (p<0.01) however, 

this was similar in young and older adults (p=0.71).  Power at 30°s-1, and V75  in both 

young and older recovered to baseline (p≥0.17), with no difference by group (p≥0.58).  

Power at 270°s-1 recovered in the young (p=0.27), but not the older (p<0.01).  There was 

a significantly greater decrement in power at this velocity in the older than young 

(p<0.01). 

Neuromuscular Mechanisms of Recovery 

 Voluntary RFD (Figure 4.3) increased following the exercise in the older group 

(p=0.01), but not in the young (p=0.47). It tended to be different across groups (p=0.07).  

By 60R, it recovered to baseline in both groups (p≥0.37).  When normalized to the 80Hz 

stimulated RFD, the voluntary:stimulated RFD response differed by group, such that it 

was elevated from baseline in the older at 0R (p=0.02), but not the young (p=0.77); 

however there was no difference across groups (p=0.22).  It returned to baseline in the 

older by 60R (p=0.38), suggesting a transient increase in central motor drive in the older 
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following the fatigue bout.  The young remained unchanged from baseline and similar to 

the young (p≥0.51) 

In both groups, time-to-target (Figure 4.4) at 30°∙s-1 not differ from baseline at 0R 

(p=0.15).  Time-to-target was longer at 0R for both groups at V75 or 270°s-1 (p≤0.03) 

indicating slower acceleration, however there were no group differences (p=0.23).  By 

60R, time-to-target was similar to baseline at all velocities (p≥0.11) with no differences 

across groups (p≥0.31). 

 Under isometric condition, pre-motor time (Figure 4.5, left) was elevated relative 

to baseline in both groups at 0R (p=0.20), with no difference across groups (p=0.65).  At 

30°∙s-1 and V75, this time did not change at 0R (p≥0.25) in either group (p≥0.13).  At 

270°s-1, neither group was significantly different from baseline at 0R (p≥0.24); however, 

the older had less slowing of pre motor times than the young (p=0.05).  Following 60 

minute of recovery, isometric pre-motor time tended to remain elevated (p=0.07), in both 

groups to a similar extent (p=0.74).  At 30°∙s-1 and V75, it remained unchanged (p≥0.14) 

in both groups.  During contractions at 270°s-1, both groups were still similar to baseline 

(p≥0.88); however, the older continued to have less slowing of pre motor times than the 

young. 

 Isometric pre-motor EMG (Figure 4.5, right) was unchanged at 0R in the young 

(p=0.86), but was significantly increased in the older (p=0.01).  It trended to be greater in 

the young than older (p=0.09).  At 30°s-1, V75, and 270°s-1, there were no differences 

from baseline in either group (p≥0.13), nor were there differences across groups (p=0.55).  

By 60R, isometric, V75, and 270°s-1, pre-motor EMG responses were all similar to 

baseline (p≥0.32), with no differences across groups (p≥0.29).  However, at 30°s-1, the 
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young had a reduction in pre-motor EMG compared to baseline (p<0.01), while the older 

remained similar to baseline (p=0.69).  This resulted in a greater relative reduction in the 

pre-motor EMG in the younger than the older (p=0.01). 

 At 0R, during contractions at 20 % MVIC, there was no difference in the 

EMG:Torque ratio from baseline (p=0.25, Figure 4.6)  or across groups (p=0.28), 

indicating no change in neuromuscular efficiency.  At 50% MVIC, the ratio increased in 

the young at 0R (p<0.01) while the older remained unchanged (p=0.21), leading to a 

greater increase in the young compared to older (p=0.01).  At 100% MVIC, both groups 

increased their ratio similarly at 0R (p<0.01), with both groups increased to a similar 

extent (p=0.99).  By 60R, EMG:Torque ratio returned to baseline at all contraction 

intensities (p≥0.17), with no differences across groups (p≥0.58). 

 Of the contractile property measures (Figure 4.7), stimulated RFD did not change 

immediately post-exercise (p=0.20), but was elevated similarly in both groups at 60R 

(p=0.01).  Stimulated RFR was lower in both groups at 0R (p<0.01) but recovered by 

60R (p≥0.27).  Consistent with the RFR, half relaxation time was increased in both 

groups immediately at 0R (p<0.01), but no difference was found from baseline by 60R 

(p=0.77).  All of the contraction properties responded similarly across groups both 

immediately following the fatigue bout and following 60 minutes of recovery (p=0.11). 

The 10:80 Hz ratio (Figure 4.7, Bottom) was reduced at both time-points 

following the fatigue in both groups (p<0.01), indicating the presence of low frequency 

fatigue.  There was a trend for it to be lower at all time-points in the older group 

(p=0.07).  (Changes in peak tetanic torque at 10 Hz and 80 Hz can be found in Appendix 

G). 
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Functional Implications 

At 20% and 50% MVIC, ratings of perceived exertion (Figure 4.8) were increased 

at 0R (p<0.01) and responded similarly in both groups (p≥0.20).  During contractions at 

100% MVIC, RPE in the young did not increase significantly from baseline (p=0.23).  In 

the older it increased following fatigue (p<0.01), and tended to be to a greater extent than 

in than in the young (p=0.10).  This age-related different indicated greater perceived 

effort by the older during maximal contractions.  By 60R, RPE was and recovered to 

baseline at 20% and 50% MVIC in both group (p≥0.41).  At 100% MVIC, RPE remained 

elevated both relative to baseline (p=0.05), and relative to the young (p=0.04). 

 When the fatigue protocol was repeated after 60 min of recovery, specific torque 

and power were lower across all velocities at the end of the second fatigue bout compared 

with the end of the first (p≤0.03, figure in Appendix G).  There was no age-related 

difference in the change in the amount of fatigue following the second bout (p=0.33). 

Discussion 

 In the present study, we observed the hypothesized decrease in power, regardless 

of age, following the fatiguing knee extension exercise.  Our novel finding was a 

velocity-specific response in the recovery of torque and power which was altered in old 

age.  Power during slow speed contractions (Isometric, 30°s-1, V75) recovered similarly 

in young and older adults; however, as we hypothesized, older adults experienced greater 

loss of power during high-speed (270°s-1) contractions, and did not recover over the 

course of 60 min. Throughout the recovery period there were several differences in the 

recovery of neuromuscular properties across velocities, contraction intensities and age 

groups.  Functionally, we observed the hypothesized increase in perceived exertion at all 
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contraction intensities, in both age groups.  However, while perceived exertion during 

submaximal contractions decreased back to baseline in both groups within 60 min, RPE 

during maximal contraction remained elevated in the older group throughout the entire 

recovery period.  In addition, fatigue during a second 4-minute fatigue bout was greater 

than the first; however, contrary to our hypothesis this did not differ across groups. 

Torque and Power 

 When normalized to muscle mass, baseline torque and power was similar across 

all velocities.  Thus, at baseline, there was no impairment in the ability to produce power 

in older adults.  While baseline power did not differ, baseline time-to-target velocity at 

270°s-1 was lower in the older adults, indicating an impairment in velocity production, 

even prior to the exercise bout.  This is in agreement with findings that older adults tend 

to have difficulty reaching high contraction velocities (129, 169). 

By design, we achieved the same degree of fatigue in young and older adults at 

V75.  Indeed, prior work by our lab has shown that matching young and older adults for 

their same relative velocity during a fatigue protocol results in similar fatigue across 

groups (32).  This standardization of fatigue protocol is important in studies of dynamic 

fatigue since changes in the torque-velocity curve with aging (169) may result in biasing 

fatigue if an absolute velocity is chosen.  While studies have measured differences in 

muscle responses at a single velocity following fatigue protocols (32, 53), we are not 

aware of any prior aging studies which measured the changes across multiple velocities 

following a single-velocity fatigue bout.  Interestingly, our approach of measuring 

recovery of power across multiple velocities also revealed similar declines across age 

groups in isometric torque and 30° s-1 power following the fatigue bout, possibly due to 
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the fact that those velocities are relatively similar to the V75.  However, at 270°s-1, we 

observed a greater decline in power in the older adults compared to the young.  These 

results would suggest that following a fatiguing exercise bout, the ability of the muscle to 

generate velocity is affected to a greater degree than the ability to generate torque in older 

adults.  While the change in time-to-target velocity during the high-velocity contractions 

did not differ in young and old following fatigue, the older adults did have a lower 

baseline time-to-target, which may have contributed to these differences.  Relative to the 

younger women, the older women also had a lower change in pre-motor time with no 

change in EMG at 270°s-1 following the fatigue bout.  This may be due to greater 

musculotendon stiffness, as muscle stiffness has been shown to be related to power, but 

not isometric torque in older adults (102). 

In agreement with previous results by our lab and others (7, 128, 150), we 

observed an incomplete recovery of isometric torque in both groups following 60 

minutes.  However, in the tibialis anterior muscle, Lanza et al (128) showed incomplete 

recovery in young, but not older adults after 10 minutes of recovery following a dynamic 

fatigue both.  Nevertheless, in the Lanza study, there was greater fatigue in the young 

group compared to the older, which could account for differences in recovery.  Our 

deficits in MVIC following a dynamic fatigue protocol are in agreement with to that of 

Allman and Rice (7), who observed deficits in MVIC of 6% in the young and 9% in the 

older after 1 hour of recovery from an isometric elbow flexor fatigue bout which elicited 

similar fatigue in young and older adults. 

At 30°∙s-1 and V75, recovery was similar across groups and complete by 60 min 

post-exercise.  The similar response to the two velocities is not surprising considering the 
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average V75 (~62°∙s-1) was similar to 30°∙s-1.  However, there was a differential recovery 

across groups at 270°∙s-1, such that deficits in power were greater in the older adults than 

the young across all time-points, and, contrary to the young, the older did not fully 

recover to baseline following 60 min.  The complete recovery of power in the young, but 

not the older, is contrary to what Lanza et al (128) observed in the dorsiflexors following 

dynamic fatigue at 90°∙s-1.  Their observation of complete recovery in the old but not the 

younger after 10 minutes of recovery may again be affected by the greater fatigue they 

observed in the young, or their use of the same absolute velocity during the fatigue 

protocol in young and older adults.  Following eccentric contractions of the dorsiflexors, 

Power et al (166) observed both incomplete recovery and a greater isotonic power loss in 

older compared to young for their full 30 minutes of recovery measures.  Their low 

resistance (20% MVIC) is comparable to our high speed (270°∙s-1) contraction, as based 

on the torque-velocity curve in our older women, torque produced at 270°∙s-1 was 

approximately 33% of MVIC.  Notably, these authors also reported incomplete recovery 

in the young; however, this may be due in part to their use of eccentric contractions, 

which can induce muscle damage which can inhibit force production. 

The differential fatigue and recovery of isometric torque and high-velocity power 

is not surprising, as the development of force and velocity has been shown to be 

differentially regulated, even at the muscle fiber level (59, 60).  Specifically increased 

inorganic phosphate has been shown to decrease maximal isometric tension while not 

significantly affecting maximal shortening velocity in isolated muscle fibers (60).  

Changes in intracellular pH, however, affect maximal velocity production to a greater 

degree than force production (59).  When applied to an intact human, these changes, in 
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addition to possible alterations in neural input and Ca++ handling, could lead to a 

dissociation between decrements in isometric torque and dynamic power production. 

Neuromuscular Mechanisms of Recovery 

Under isometric conditions, we observed no change in the voluntary:stimulated 

RFD ratio in response to fatiguing exercise in the young; however in the older adults, we 

observed an increase immediately post-fatigue, followed by a decrease back to baseline 

by 60 min.  As we observed no change in stimulated RFD, the increase in the ratio was 

due to the increase in voluntary RFD.  This would suggest transient improved central 

drive following exercise in the older adults.  We are not aware of any data to suggest an 

increase in this drive following a fatiguing exercise bout.  The increase in this ratio, in 

conjunction with the temporary increase in isometric pre-motor EMG post-fatigue could 

indicate an increased initial neural burst to the muscle in older adults, which may allow 

for faster initial motor unit discharges and a more ballistic contraction (64) to try to 

maximize force production.  This transient increase in neural signaling in the older adults 

may be a compensation mechanism in the muscle to try and partially overcome the other 

neuromuscular changes which are depressing force production.  However, if this 

explanation is correct, the increase in neural signaling did not translate into a faster 

dynamic contraction, as time-to-target velocities either stayed the same or increased in 

the older adults with fatigue.  Future studies may want to include cortical excitability and 

indwelling EMG measures in order to determine the precise nature of these neural 

changes. 

 At baseline, we observed a greater EMG:Torque ratio in the older at 20% MVIC, 

but no difference across groups at 50% or 100% MVIC.  This response is in agreement 
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with the findings of Ng and Kent-Braun (158), who only found a difference in this ratio 

at low torque levels and attributed it to either the larger motor units in older adults or 

increased antagonist co-activation.  Immediately following the fatigue protocol, we 

observed no change in the ratio in either group at 20% MVIC, an increase only in the 

young at 50% MVIC, and an increase in both groups at 100% MVIC.  No prior study has 

measured changes in this ratio following exercise in young and older adults across a 

range of intensities.  This differential response by age group across intensities indicates a 

difference in neural strategy of modulating torque production following the fatigue 

protocol.  It is possible that younger individuals depend more on agonist activation to 

achieve 50% torque post-fatigue, while the older may depend more on decreasing 

antagonist co-activation.  However, we did not record any measures of antagonist activity 

in the present study.  Allman and Rice (7) found that EMG at 60% MVIC increased by 

19% in the young and 13% in the old in the dorsiflexors, with no difference by group.  

Their findings, combined with ours, could indicate a threshold level for increased activity 

in the older between 50-60%, such that there is a change in neural strategy within this 

range.  Finally, we observed a relatively rapid recovery of the EMG:Torque ratio in the 

young at 50% MVIC and both groups at 100% MVIC.  Other groups have observed 

slower recovery of this ratio in both young (150) and older (7) adults following fatiguing 

exercise.  The reason for these differences in recovery speed is unclear, but it may be due 

to the muscle group or the dynamic nature of this fatigue protocol.  While the presence of 

this change in neural strategy during submaximal isometric contractions may seem trivial 

for the development of power, there is prior evidence to suggest an incomplete ability to 

activate the muscle during dynamic contractions in young adults (157).  Thus, 
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submaximal central activation during maximal dynamic contractions may be similar to 

that of submaximal isometric contractions, providing a link between our intensity-

specific and velocity-specific measures.   

 Our protocol induced a number of changes in contractile properties, with few 

differences across groups.  The increase in RFD at the end of the recovery period may 

support the possibility of a stiffer muscle, which might contribute to lower power.  

However, the lack of a difference in the change in RFD across groups would seem to 

suggest this effect is not the primary cause of difference in the recovery of high-velocity 

power.  In agreement with previous studies (7, 128), stimulated rates of force relaxation 

and half-relaxation time had transient increases with fatigue and returned to baseline 

shortly thereafter.  While these changes may not be the primary sources of long-term 

changes in power with recovery observed in this study, the slowing of muscle may limit 

power production during the initial portions of recovery, particularly at higher velocities. 

 Low-frequency fatigue, as measured by the 10:80 Hz ratio, was present in both 

groups following fatigue, and did not recover in either group over the course of 60 min.  

This is consistent with findings from other researchers (7, 166), who have shown no 

recovery in this ratio in the hour following fatiguing exercise.  Furthermore, low-

frequency fatigue has been suggested to be linked to long-term depression of muscle 

power (166) and decreased torque production in response to a second fatigue bout (192), 

as was the case in our study.  In addition, we did observe a trend (p=0.07) for greater 

low-frequency fatigue in the older group.  This would indicate greater excitation-

contraction coupling failure in the older compared to the young.  It has been suggested 

that older adults may have impaired calcium handling (62, 180).  While many studies 
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have shown similar responses of fatigue on excitation-contraction coupling in young and 

older adults (7, 116, 165), this is the first study we are aware of to suggest a greater in 

older adults.  Further investigation into this trend is needed. 

Mechanisms of Differences in Recovery in Young and Older Adults 

 We observed several differences in the recovery of young and older adults which 

could contribute to the differences in the recovery of high velocity power.  We observed a 

trend for differences in EC coupling across groups at both 0R and 60R.  Thus, this is an 

obvious candidate for the differential recovery. It is also possible that there are different 

causes of the reduction in power at 0R and 60R.  We observed age related changes in the 

EMG:Torque ratio and pre-motor signaling during isometric contractions following the 

exercise bout, which could perhaps indicate age-related changes in neural signaling may 

limit power in the early phases of recovery from fatigue. It also possible that some of the 

variables which showed deficits at baseline in older compared to young, and decreased 

similarly in young and older following the fatigue bout played a role.  If there is a non-

linear relationship between the changes in these variables and the changes in power, it is 

possible the older fell below some critical threshold where these mechanisms became 

limiting factors in power production.  Thus changes in contractile properties or time-to-

contact (i.e. muscle acceleration) may have contributed to the loss in power if the older 

fell below this critical threshold. 

Functional Implications 

 In response to the fatigue protocol, we saw no group differences in ratings of 

perceived exertion at 20% or 50% MVIC; differences were apparent at 100% MVIC.  

Following the exercise, RPE during maximal contractions was elevated only in the older 
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group and remained elevated for the full 60 min of recovery.  This result suggests to us 

that older adults may exhibit greater symptomatic fatigue in response to exercise.  

Furthermore, it is possible that older adults change their physical activity patterns 

following a fatiguing exercise bout due to this increase perceived exertion.  This is 

particularly notable since many everyday tasks, such as getting up from a chair or 

walking up the stairs, are performed at a relatively high level of their maximal strength 

(97).  Our observation of increased fatigue with a second fatigue bout could further 

augment this symptomatic fatigue.  Thus, our results indicate that repeated bouts of 

activity may lead to an accumulation of symptomatic fatigue throughout the day, 

providing a novel link between symptomatic and muscle fatigue.  Future studies may 

want to directly assess intra-day changes in symptomatic fatigue in response to 

accumulation of activities of daily living as well as exercise.   

 The observation that high-velocity contractions may not recover in older adults 

following a fatiguing exercise bout could have important implications for physical 

function.  Baseline muscle power has been correlated with physical performance and gait 

speed in older adults.  While a direct correlation of the effects of changes in power due to 

fatigue on physical function have not been tested, a number of studies have shown 

concurrent declines in physical function in response to fatigue (92, 163).  In particular, 

Klein et al (120) showed that maximal jump height in older adults, a measure highly 

dependent on knee extensor power, was depressed an hour after exercise.  Since older 

adults already perform many of their everyday activities close to their functional reserve 

threshold (28, 97), the level of strength required to perform a task unimpaired, even a 

short-term decline in strength could have important implications for physical function.  
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Our results indicate that velocity may be affected more than just torque production 

following fatiguing exercise in older adults.  Thus, interventions in older adults to prevent 

disability may want to focus more on preventing the impairments in producing high-

velocity contractions following exercise, rather than solely focusing on maximizing 

torque production.  High-speed power training has been shown to increase peak power 

and velocity of dynamic contractions in older adults (184); however, the impact of this 

training on fatigue and recovery are not known. 

Conclusions 

 This study provides the first detailed analysis of the age-related differences in 

neuromuscular response during and following 60 minutes of recovery from fatiguing 

dynamic exercise.  We have shown differences in the fatigue and recovery of high-

velocity power production, excitation-contraction coupling, neural modulation of 

isometric torque, and perceived effort in older adults.  While we have provided novel 

insight into the possible mechanisms of slowed recovery of power in older adults, future 

studies should use more direct methods to assess the precise physiological processes 

which may limit this recovery.  
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Table 4.1: Group Characteristics 
 

Variable  Young (n=11) Older (n=12) 
Age (years)  30.3 (1.3) 70.7 (1.4) 

95% CI 
p-value 

 36.0 – 43.7 
<0.01 

Height (m)  1.65 (0.02) 1.64 (0.02) 

95% CI 
p-value 

 -0.06 – 0.06 
0.97 

Body Mass (kg)  64.3 (2.5) 72.1 (4.3) 

95% CI 
p-value 

 -3.0 – 18.7 
0.15 

BMI (kg·m-2)  23.7 (0.7) 26.7 (1.5) 

95% CI 
p-value 

 -0.6 – 6.6 
0.09 

Physical Activity 
  (counts·day-1·1000-1) 

 268 (24) 218 (22) 

95% CI 
p-value 

 -109 – 27 
0.23 

MVPA (min·day-1)   36.8 (4.5) 19.9 (3.4) 

95% CI 
p-value 

 -26.1 - -3.4 
0.01 

400m Speed (m·s-1)   1.70 (0.05) 1.35 (0.04) 

95% CI 
p-value 

 -0.50 - -0.24 
<0.01 

mCSA (cm2)   51.9 (2.3) 38.6 (1.3) 

95% CI 
p-value 

 -18.8 - -7.9 
<0.01 

Intramuscular Fat  
  (% total CSA) 

 6.36 (1.04) 14.08 (1.37) 

95% CI 
p-value 

 4.10 – 11.35 
<0.01 

BMI: Body Mass Index; MVPA: Moderate-vigorous physical activity; mCSA: maximal 
knee extensor ean muscle cross-sectional area.  Data are mean (SE), as well as 95% CI, 
and p-values for the difference across groups.   



 

86 

Table 4.2: Baseline Isometric Measures 
 
 

V75: Velocity at which 75% of MVIC was generated; RFD: Rate of Force Development; 
RFR: Rate of Force Relaxation; T1/2: 80 Hz Half-relax Time; Data are mean (SE), as well 
as 95% CI, and p-values for the difference across groups. 
  

Variable Young Older 

Vol RFD 
(%·ms-1) 

0.77  
(0.23) 

0.78 
 (0.23) 

95% CI 
p-value 

-0.42 – 0.56 
0.76 

Vol:Stim 
RFD  

0.53  
(0.05) 

0.47  
(0.06) 

95% CI 
p-value 

-0.26 – 0.08 
0.26 

Stim RFD 
(%·ms-1) 

1.47 
(0.06) 

1.87 
(0.10) 

95% CI 
p-value 

0.16 - 0.65 
<0.01 

Stim RFR 
(%·ms-1) 

-1.18 
(0.04) 

-0.88 
(0.06) 

95% CI 
p-value 

0.16-  0.45 
<0.01 

T1/2 (ms) 112.4 
(4.6) 

138.1 
(5.6) 

95% CI 
p-value 

7.1 – 27.0 
<0.01 

10:80 Hz 0.46 
(0.02) 

0.56 
(0.01) 

95% CI 
p-value 

0.04 – 0.14 
<0.01 
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Table 4.3: Baseline Dynamic Measures 
 

 Isometric 30°∙s-1 V75 270°∙s-1 

Variable Young Older Young Older Young Older Young Older 

Time-to-
Target (ms) 

-- -- 77.7  
(4.4) 

77.6 
(8.2)  

92.1  
(4.6) 

110.6  
(10.7) 

165.6  
(9.5) 

213.3 
(16.0) 

95% CI 
p-value 

 -19.9 – 19.7 
0.99 

-6.4 – 43.4 
0.14 

8.8 - 86.4 
0.02 

Pre-Motor 
Time (ms) 

48.3  
(9.1) 

51.6 
(7.2) 

57.8 
(7.5) 

110 
(18.0) 

58.6 
(8.1) 

65.3 
(7.3) 

50.2 
(4.1) 

94.0 
(14.0) 

95% CI 
p-value 

-20.7 – 27.3 
0.77 

10.2 – 94.1 
0.02 

-16.0 – 29.3 
0.55 

12.1 – 77.3 
0.01 

Pre-Motor 
EMG (%) 

9.59 
(1.75) 

11.64 
(1.99) 

13.24 
(3.11) 

20.95 
(3.34) 

13.49 
(2.53) 

19.02 
(2.81) 

13.41 
(3.50) 

19.28 
(2.55) 

95% CI 
p-value 

-3.1 – 7.6 
0.39 

-1.8 – 17.2 
0.11 

-1.4 – 14.2 
0.10 

-3.0 – 14.8 
0.18 

V75: Velocity at which 75% of MVIC was generate;  Data are mean (SE), as well as 95% 
CI, and p-values for the difference across groups.  
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Figure 4.1: Baseline Torque and Power.  Absolute torque and power were lower in 
older women at all velocities (p<0.01), but did not differ across groups when normalized 
to muscle cross-sectional area (p≥0.18).  Data are mean+SE.  * indicates p≤0.05 across 
groups for that velocity. V75: Velocity at which 75% of maximal isometric torque was 
generated. 
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Figure 4.2: Fatigue and Recovery of Specific Torque and Specific Power.  Isometric 
torque declined in both groups with fatigue and did not return to baseline following 60 
minutes of recovery. Power at 30°∙s-1 and V75 declined with fatigue and recovered by 60R 
in both groups.  At 270°∙s-1, power declined only in the older group and remained 
depressed after 60 minutes of recovery.  Data are mean and SE.  At 0 and 60 min of 
recovery: * indicates young different from baseline; #older different from baseline; 



 

90 

†young different from older (p<0.05). V75: Velocity at which 75% of maximal isometric 
torque was generated.  
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Figure 4.3: Fatigue and Recovery of Voluntary RFD and Voluntary:Stimulated 
RFD ratio.  Both voluntary isometric RFD (top) and the voluntary:stimulated RFD ratio 
(bottom) increased only in the older group, but returned to baseline with 60 minutes of 
recovery.  Data are mean and SE.  At 0 and 60 min of recovery: # indicates older 
different from baseline (p<0.05). 
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Figure 4.4 Fatigue and Recovery of Time-to-Target Velocity.  Time-to-target did not 
change in either group at 30°∙s-1.  At V75 and 270°∙s-1 it increased in both groups to a 
similar degree at the end of the fatigue bout, but recovered to baseline after 60 minutes.  
Data are mean and SE.  At 0 and 60 min of recovery: * indicates young different from 
baseline; # older different from baseline. V75: Velocity at which 75% of maximal 
isometric torque was generated.   
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Figure 4.5: Fatigue and Recovery of Pre-Motor Time (left) and Average Pre-Motor 
EMG (right).   
During isometric contractions, pre-motor times increased following fatigue in both 
groups to a similar extent, but recovered to baseline by 60 minutes.  At 270°∙s-1, older had 
a lower premotor time throughout the 60 minutes of recovery (group p=0.05); however, 
neither group significantly differed from baseline.  Pre-motor EMG increased in the older 
under isometric conditions only immediate following fatigue.  At 30°∙s-1, pre-motor EMG 
did not differ post-fatigue, but in the younger, it was significantly lower than both the 
older and baseline following 60 minutes of recovery.  Data are mean and SE.  At 0 and 60 
min of recovery: * indicates young different from baseline; # older different from 
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baseline; † young different from older (p<0.05). V75: Velocity at which 75% of maximal 
isometric torque was generated.  
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Figure 4.6: Fatigue and Recovery of EMG:Torque Ratio.  Post-fatigue, the 
EMG:Torque ratio did not change in either group at 20% maximum voluntary isometric 
contraction torque (MVIC), increased only in the young at 50% MVIC, and increased in 
both groups at 100% MVIC.  The ratio returned to baseline following 60 minutes of 
recovery.  Data are mean and SE.  At 0 and 60 min of recovery: * indicates young 
different from baseline; # older different from baseline; †Young different from older 
(p<0.05). 
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Figure 4.7: Fatigue and Recovery of Stimulated Measures.  Maximum 80 Hz RFD did 
not change with fatigue, but was elevated in both groups similarly following 60 minutes 
of recovery. RFR and T1/2 slowed similarly in both groups with fatigue and recovered to 
baseline by 60 minutes.  The 10:80 Hz ratio was depressed at both 0R and 60R in both 
groups.  Across all time points, it was a trend for the ratio to be lower in the older than 
young (group p=0.07).  Data are mean and SE.  At 0 and 60 min of recovery: * indicates 
young different from baseline; # older different from baseline (p<0.05). 
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Figure 4.8: Changes in Perceived Exertion.  Following fatigue, ratings of perceived 
exertion increased in both groups to a similar degree at 20% and 50% maximum 
voluntary isometric contraction torque (MVIC) post-fatigue, but returned to baseline by 
60 minutes.  At 100% MVIC, RPE increased post-fatigue only in the older group, and 
remained elevated for the 60 minutes of recovery. Data are mean and SE.  At 0 and 60 
min of recovery: * indicates young different from baseline; # older different from 
baseline; † young different from older (p<0.05). 
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CHAPTER 5 

RECOVERY OF POWER AND PHYSICAL FUNCTION FOLLOWING 

NEUROMUSCULAR FATIGUE IN OLDER WOMEN 
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Abstract 

 Low muscle power, particularly at high contraction velocities has been linked to 

functional impairments in older adults.  Any delay in the recovery of muscle power 

following fatiguing exercise could lead to lasting effects on physical function; but this 

hypothesis has not been evaluated in the context of aging.  No study has identified how 

reductions in power lead to decrements in physical function for an hour after exercise.  

To test the hypothesis that the recovery from fatigue of power and physical function are 

linked, 17 healthy older (66-81 years) women completed a 30 min walking protocol 

designed to induce neuromuscular fatigue, followed by 60 min of recovery.  

Dynamometry was used to quantify fatigue and recovery of knee extensor muscle power 

at 3 different velocities.  Function was quantified as time to perform 5 chair rises, and by 

measures of center of pressure (COP) range (mm), COP velocity (mm∙s-1) and time-to-

contact (TtC, s) in the anterior-posterior (AP) and medial-lateral (ML) directions during 

quiet stance.  Power declined at all velocities immediately after walking (p<0.01) and 

remained depressed after 60 min of recovery.  Postural stability decreased following the 

walk, indicated by increased AP and ML range and COP velocity, and showed a mixed 

pattern of recovery.  Following 60 min of recovery, COP range remained elevated, but 

average COP Velocity in both directions was reduced and AP TtC was elevated, 

suggesting increased stability relative to baseline.  Correlation analyses of  high-speed 

power (270°·s-1) and balance measures suggested greater power declines was associated 

with greater instability immediately following the walk (due to weakness), but greater 

stability following 60 min of recovery.  Decreased high-velocity power was also 

associated with slower chair rise times both following the walk and after 60 min of 
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recovery.  Walking induced marked declines in muscle power that did not recover for at 

least 1 hour; and this deficit was associated with transient decrements in physical 

function.  These results provide compelling new evidence of neuromuscular changes in 

older women that may place them at greater risk for functional deficits following 

everyday tasks such as walking.  
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Introduction 

As individuals age, they become susceptible to a number of health problems 

affecting balance and muscle function.  More specifically, in older adults, there is 

increased prevalence of visual, vestibular, and somatosensory dysfunction (6, 111, 137). 

Impairments in neuromuscular function in older adults include changes in motor unit 

firing behavior (107), sarcopenia (70), and reduced muscle power (81, 100).  Ultimately, 

the combination of these changes can lead to poor physical function, i.e. the inability to 

do every day mobility tasks, in this population. 

Muscle power, the product of torque and velocity, has been shown to be a 

predictor of physical dysfunction in older adults (13).  For example, older adults with 

muscle weakness have slower chair rise times and gait speeds (26).  This may be related 

to the concept that a minimum amount of power is necessary to perform a variety of 

functional tasks (28, 188, 212).  Above this minimum, people operate in a “functional 

reserve,” where higher power does not affect performance of a given task.  However, 

when power falls below this threshold, physical function declines, and eventually reaches 

a point where functional tasks can no longer be performed.  Due to muscle weakness, 

older adults may operate closer to their functional reserve threshold than younger adults 

during everyday tasks (97).  Thus, even small changes in the amount of power they can 

produce, for instance as a result of fatigue, may have severe impacts on physical function. 

Older adults show reduced balance performance compared with young adults.  

For instance, it has been shown that older adults have greater anterior-posterior (AP) and 

medial-lateral (ML) range and velocity of their center of pressure (COP) during quiet 

stance with eyes open (168).  Furthermore, older adults have a shorter time to contact 



 

102 

(TtC) of the stability boundary, a measure which takes into account COP position and 

velocity in relationship to the base of support (203).  These changes in COP and TtC 

characteristics may be indicative of impaired balance (69) and ultimately an increased 

risk of falls (33).  Lower extremity muscle weakness, along with reduced neuromuscular 

control, proprioception, vision and vestibular function, all contribute to this impaired 

balance (137).  Studies have shown correlations among leg strength and COP sway (137), 

functional balance batteries (89), as well as improvements in balance following strength 

training (25). 

Transient declines in power, such as those from muscle fatigue in response to 

exercise, can lead to declines in physical function (91, 154, 163).  While it has been 

shown that older adults fatigue less than young adults during isometric tasks, older adults 

fatigue to a greater extent during high-velocity dynamic tasks (42), resulting in greater 

power losses.  Thus, the functional consequences of weakness may be amplified 

following fatiguing dynamic exercise in older adults.  Gait characteristics (91) and sit-to-

stand transitions (163) are altered following fatiguing exercise in older adults, possibly 

due to changes in postural control.  In addition, several measures indicate balance is 

altered following fatiguing tasks in both young (153) and older adults (16, 69, 134).  

While researchers have shown functional effects from muscle fatigue induced in the 

laboratory by strength machines and dynamometers in older adults, these fatigue 

protocols may not reflect the activities of daily living, such as walking, that may 

contribute to fatigue in a “real-world” setting. 

It is reasonable to theorize that 1) there are deficits in physical function and power 

following a fatiguing walking task, and 2) recovery of physical function may require the 
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recovery of muscle power.  We have shown that recovery of power during high-velocity 

contractions is slower in older adults and incomplete following 60 min of recovery 

(Foulis, Chapter 4).  Because it has been suggested that postural control during quiet 

stance is achieved, in part, through short ballistic contractions (136), lingering 

decrements in power at high-velocities could be detrimental to the maintenance of 

balance after a fatiguing bout of exercise.  

We are not aware of any study that has quantified changes in physical function in 

concert with measures of muscle power following fatiguing exercise in older adults.  

Thus, the aim of this study was to evaluate the impact of a fatiguing walking task on 

changes in power, balance, and physical function in older women.  We hypothesized that 

1) a 30 min walking task would decrease knee extensor muscle power; 2) power at high 

velocities would be more affected by the walking task than lower velocities; 3) physical 

function and balance control would be reduce following the walk; and 4) these power 

declines would be associated with reduced physical function and increased instability.  

For the purposes of this study, physical function was assessed using chair rise time and 

measures of balance during quiet stance. 

Methods 

Participants 

Seventeen community-dwelling older (66-81 years) women participated in the 

study.  Women were recruited because older women are at a greater risk for disability 

than males due to their generally lower muscle strength (108).  All participants were 

relatively healthy, non-smokers and free of any leg injury that could affect physical 

performance.  No participants had a history of metabolic, neurological, cardiovascular 
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(except for controlled hypertension), or pulmonary disease.  With the exception of one 

participant on a low-dose beta-blocker (atenolol), no participant was on any medication 

known to affect the outcome measures of this study.  All participants read and signed an 

informed consent document as approved by the University of Massachusetts, Amherst 

human subjects review board.  Physician’s consent was obtained prior to participation.  

Each participant made 4 visits to the Muscle Physiology Lab: one for consenting, one for 

habituation, and two for testing. 

 All participants were sedentary to recreationally active by self-report, defined as 

not currently training or participating in organized athletic activities.  No individuals 

were engaged in any strength training programs.  To quantify habitual physical activity, 

participants wore Actigraph GT1M (Pensacola, FL) uniaxial accelerometers at the hip for 

7-10 days.  Total daily activity counts, as well as minutes spent in moderate-vigorous 

activity (MVPA), were calculated using established thresholds for Actigraph 

accelerometers (75).   

All participants completed a habituation visit prior to the two testing visits.  

Descriptive variables, including anthropomorphic measurements, functional ability, and 

symptomatic fatigue were collected during this visit.   Functional status was quantified 

using the Short Physical Performance Battery (SPPB; (83, 84)), 10-s foot-tap speed 

(115), and 400 m walk time (10 loops of a 40 m course; (187)).  Symptomatic fatigue was 

determined using a validated questionnaire (PROMIS 7a short form (34)).  In addition, 

participants were familiarized with the power and functional testing measures. 
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Muscle Power Measures 

Knee extensor torque and power were measured using a Biodex System 3 

dynamometer (Biodex Medical Systems, Shirley, NY), as described previously (32).  

Briefly, participants were seated with the hips at 90° and a resting knee angle of 100° 

extension.  Torque, velocity, and position signals were collected at 2500 Hz using a 

customized Matlab (Mathworks, Natick, MA) program. 

Maximal voluntary isometric contraction torque (MVIC, Nm) was recorded 

during 3-4s contractions of the knee extensors.  Participants were allowed to select the 

leg to be tested.  Verbal encouragement was provided by the investigator and visual 

feedback about torque production was provided using a lighted box.  Participants 

performed 3 MVICs with 2 minutes of rest between contractions.  Additional MVICs 

were performed if peak torque of 2 of the first 3 were not within 10% of each other.  Peak 

power (W) was measured during dynamic contractions over a 70° range of motion (100°-

170° of extension).  Participants completed a series of 3 rapid contractions at each 

velocity.  The torque-velocity curve was calculated for each participant using peak torque 

at 10 velocities from 30-300° s-1 at 30° s-1 intervals (32).  Each contraction series was 

cued by the investigator, and separated by 1 minute of rest.  Peak torque at each velocity 

was expressed relative to MVIC and fit to a second-order polynomial so that the velocity 

at which 75% of MVIC (V75) was generated could be determined.  The V75 provided a 

summary variable representing each individual’s overall torque-velocity characteristics, 

as well as a common relative velocity at which to perform the strength measures at 

baseline and during recovery. 
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Physical Function and Balance 

The effects of muscle fatigue on physical function were determined by measuring 

balance during 30s of quiet stance and time to complete 5 rapid chair rises prior to, and 

throughout 60 min of recovery from the walking task.  Balance was using two side-by-

side force plates (AMTI, Newton, MA) to measure ground reaction forces under each 

foot.  These forces were used to compute measures of COP excursion and TtC of the base 

of support.  Reflective markers were placed bilaterally on the halluces, metatarsal heads 1 

and 5, center of the heels, and medial and lateral malleoli.  As is standard procedure for 

balance measures (44, 201), participants placed one foot on each plate parallel to each 

other and shoulder width apart.  During the recordings, participants were instructed to 

place their arms across their chest and stand as still as possible for 30 s.  Data were 

recorded at 120 Hz using Qualisys track manager (Qualysis Medical AB, Gothenburg, 

Sweden).   

Changes in COP were quantified by calculating the range (mm) and average 

velocity (mm∙s-1) separately for the anterior-posterior (AP) and medial-lateral (ML) 

directions over the 30 s.  Measures of TtC (s) of the COP to the stability boundary were 

calculated with the Slobounov technique (189), using a rectangular boundary identified 

by the toe, heel, and fifth metatarsal markers.  While COP is often used to measure 

balance, TtC may be a better measure of balance as it also takes into account spatial and 

temporal information about the individual’s limit of stability as defined by the perimeter 

of their feet during quiet stance (85).  The Slobounov method was selected as it best 

captures overall postural control by including information about the instantaneous 

position, velocity and acceleration of the COP; in contrast, other techniques for 
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calculating TtC omit acceleration, and thus may miss important information (85).  From 

these calculations, average and minimum TtC were calculated, again in the AP and ML 

separately.  Average TtC is a measure of the overall stability and postural control during 

the 30 s.  To capture the periods of least stability, while avoiding transient motions, 

minimum TtC was calculated as the average of the minima for successive 100 ms epochs 

throughout the 30 s. 

Following the balance test, a chair was brought to the participants and they 

completed 5 timed chair rises with their arms folded across their chest.  Chair rises were 

selected as a representative measure of physical function because older adults perform 

that task at a high percentage of their maximal strength (97), and chair rise performance 

has been shown to be affected by fatigue in young and older adults (163).  Chair rise time 

(s) was recorded as the time required to stand up completely and sit back down in a chair 

(seat height = 45 cm) 5 times as fast as possible.  Time was started by cue of the 

investigator and stopped when the participant was seated in the chair for the 5th time. 

Fatigue Protocol and Recovery Measures 

To allow accurate quantitation of fatigue-induced changes in and recovery of both 

power and physical function (balance, chair rise), participants performed the walking task 

on two days, and either power of function measures were obtained.  The trials were 

separated by at least 48 hours, and the order of the 2 visits was randomized.  The timing 

of all recovery measures was consistent on both days, occurring 2, 5, 10, 30, 45, and 60 

minutes following the walk. 

Following a set of baseline measures, the participant began the fatigue protocol, 

which consisted of 30 min walking on a treadmill.  On the first fatigue test day, treadmill 
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speed (incline = 0°) was increased over the first 30 s until the average overground 

walking speed from the individual’s 400 m walk test was attained.  At that point, 

participants were asked if they thought they could maintain that speed for the full 30 min.  

If the participant could not, treadmill speed was reduced in 0.045 m·s-1 increments every 

10s until the participant was confident that they could compete the task.  At minutes 7, 

17, and 27, the grade of the treadmill was increased to 3% for 1 minute in order to 

provide a slight challenge and to simulate a hill that the participant might encounter in 

everyday life.  After 1 minute, the grade was returned to level.  During the final 30 s, the 

treadmill was gradually slowed to 0.4m∙s-1 before stopping.  Participants then stepped off 

the treadmill and continued walking overground for ~2 min at approximately the same 

pace.  This approach allowed us to eliminate potential motion after-effects caused by 

walking on the treadmill (88), as well as transport the participant to the Biodex or force 

platforms for their recovery measures.  This process was repeated for both fatigue tests; 

the same treadmill speed was used on both days. 

Baseline measures of power or function were collected immediately prior to the 

walking protocol, using the dynamometer or force platform, respectively.  The first 

recovery measure was collected 2 min following completion of the overground portion of 

the walk, which allowed time to position the participant for data collection.  Additional 

measures were collected at 5, 10, 30, 45 and 60 min of recovery.  To capture the effects 

of the walking task on muscle function across a range of velocities, peak torque and 

power were assessed during contractions at at 0°∙s-1 (MVIC), 30°∙s-1 , V75, 270°∙s-1.  

Contraction order was randomized.  These four velocities were selected to allow 

evaluation of velocity-specific deficits in power output in response to the fatiguing walk 
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on both an absolute and relative scale.  The speed for the high-velocity contractions was 

chosen because it was the fastest velocity all older participants could be expected to attain 

(129).  Fatigue was quantified as any deficit in power production in response to the walk.  

Following the fatigue protocol on the function testing visit, participants completed a 30 s 

quiet stance balance test, followed by 5 chair rises at each recovery time.  For the balance 

testing, participants were positioned on the force platforms and stood quietly for 1 minute 

prior to the start of the 30-s data collection period.  On both fatigue days, participants 

remained seated between each set of recovery measures, and were asked to remain as still 

and relaxed as possible. 

Statistical Analyses 

 All analyses were performed using SAS software (SAS Institute, Cary, NC), with 

significance established at the p ≤ 0.05 level.  To test hypothesis 1, separate paired t-tests 

were used to compare baseline to (2R), in order to determine the fatiguing effects of 

walking, and baseline to the 60 min recovery (60R) point, to evaluate the completeness of 

recovery.  A two-factor (velocity, time) repeated measures ANOVA was used to test 

hypothesis 2 regarding velocity-dependent changes in torque or power in response to and 

during the recovery from the walking task.  The velocity x time interaction was 

partitioned to determine differences in the amount of power deficit across velocities 2R 

and 60R.  Changes in chair-rise, COP, and TtC during the recovery period also were 

assessed by using paired t-tests to compare 2R and 60R to baseline, in order to test 

hypothesis 3.  Intermediate recovery time-points are reported, but no formal hypotheses 

were tested for these time-points.  To test the relationships among changes in power with 

changes in the functional and balance measures (hypothesis 4), linear correlation was 
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used to calculate correlation coefficients.  Correlation coefficients (r) and p-values are 

provided, as well as mean ± SEM or mean and 95% (unadjusted) confidence intervals 

(CI) for differences from baseline, as appropriate. 

Results 

Group Characteristics 

Participant characteristics are summarized in Table 5.1.  Prescription medication 

use was typical of this age group; medications included anti-hypertensives, 

antidepressants, anti-inflammatories, synthetic thyroid hormone, and statins.  Only 4 of 

the 17 participants met the American College of Sports Medicine physical activity 

guidelines, defined as 150 minutes of MVPA per week (156); the group average was 126 

weekly minutes of MVPA. 

Thirteen of the 17 participants scored 12 out of 12 on the SPPB, suggesting no to 

minimal impairments in physical function.  The remaining individuals scored an 11, with 

1 losing a point on the balance subscore and the other 3 on the chair rise test; overall, 

these individuals had only minor disturbances to physical function (84).  Chair rise and 

400 m walk times were generally faster than the average times reported from a large-

scale study of older women having characteristics similar to those in the present study 

(193).  Likewise, foot tap speed was generally faster than those previously reported in 

older women (115).  The group had an average PROMIS t-score of 43.7±1.8, indicating 

slightly less than average symptomatic fatigue than the mean of the general United States 

population (t-score=50).  Baseline MVIC (32) and V75 (Foulis, Chapter 4) was similar 

literature values for comparable study cohorts.  
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Fatigue Task Performance 

 Average walking speed for the fatigue test was 1.35 ± 0.05 m·s-1.  For 13 of the 

17 participants, this was the same speed as their over-ground 400m test.  Speeds for the 

other 4 participants were reduced by up to 0.13 m·s-1.  During the protocol, 16 of the 17 

completed the full 30 min on the treadmill, including all 3 incline challenges.  Due to 

fatigue in 1 participant, walking was stopped at the 27 minute mark after only 2 of the 

incline challenges were completed.  Walking duration and intensity was matched across 

both days for all individuals. 

Effects of the Walking Task on Muscle Torque and Power 

 Changes in muscle torque and power in response to the walking task are shown in 

Figure 5.1.  At 2R, torque and power had decreased from baseline at all velocities 

(p≤0.03), indicating significant fatigue from the task.  The velocity x time rmANOVA 

indicated no difference in fatigue across velocities (p=0.75).  At 60R, torque and power 

had recovered by different amounts across the velocities (p<0.01): isometric torque had 

returned to baseline (p=0.07), while peak power for all dynamic contractions remained 

depressed (p<0.01).   

Functional Performance 

 At 2R, COP range (Figure 5.2) increased in both the AP and ML directions during 

quiet stance (p≤0.03).  This range remained elevated in the AP direction (p=0.03) and 

tended to be elevated in the ML direction (p=0.06) at 60R.  Average COP velocity 

(Figure 5.3) differed from baseline in both the AP and ML direction.  In the AP direction 

it tended to increase from baseline at 2R (p=0.08) and then decrease below baseline by 

60R (p=0.01).  In the ML direction, average velocity was unchanged from baseline at 2R 
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(p=0.14) but, as in AP, it decreased to below baseline by 60R (p=0.01).  Peak COP 

velocity did not change from baseline at any point following the walking task (p≥0.28). 

 Average AP TtC (Figure 5.4) did not differ from baseline at 2R (p=0.51) but 

tended to be higher at 60R (p=0.09).  Average ML TtC did not differ from baseline at 

either time point (p≥0.41).  The average minimum AP TtC for 100 ms epochs (Figure 

5.5) was not different from baseline at 2R (p=0.45) and was longer than baseline at 60R 

(p<0.01).  In the ML, minimum TtC did not change from baseline at the 2R or 60R time-

point (p≥0.20). 

 Results of the chair rise task are shown in Figure 5.6.  Mean chair rise times did 

not change from baseline at 2R or following the 60 minutes of recovery (p≥0.45).  

Overall, the balance measured indicated that the fatigue task induced increases in 

COP Range and COP Velocity at 2R; and increases in COP Range and average TtC and 

decreased COP velocity at 60R.  In contrast, chair rise performance was unaffected by the 

fatigue task. 

Relationships among Changes in Muscle Power and Physical Function 

As hypothesized, there were associations between fatigue-induced changes in 

power at 270°∙s-1 and changes in balance and chair rise measures.  Changes at 2R in high-

velocity power (270°∙s-1) were associated with the relative increase in AP COP range at 

this time point (r=-0.54, p=0.02; Figure 5.7).  There were no significant relationships 

with COP range at baseline or 60R in the AP, or at either time-point in the ML (|r|≤0.39, 

p≥0.13).  The relative decrease in average AP COP velocity tended to be correlated with 

power deficit at 270°∙s-1 (r=0.45, p=0.06) at 60R; however, this was not the case in the 

ML, or at any other time point in the AP (|r|≤0.33, p≥0.19).  There were no relationships 
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among any of the TtC measures and the strength measures (|r|≤0.33, p≥0.19).  Individuals 

with greater decline in power at 270°∙s-1 at 2R and 60R had a greater relative increase in 

chair rise time at those time-points (r=-0.55, p=0.02; r=-0.52, p=0.03, respectively; 

Figure 5.8).   

There were no relationships among any of the functional measures and isometric 

torque or power at 30°∙s-1 or V75 at fatigue or at the end of recovery (|r|≤0.38, p≥0.13), 

except for one significant correlation among power at V75 and ML average COP velocity 

(r=-0.51, p=0.04) at 60R.  Because no other associations were observed in the ML, or at 

V75, this one relationship likely a spurious result. 

Discussion 

The results of this study indicate that 30 min of moderate-paced walking causes 

significant fatigue in the knee extensor muscles of older women.  Following 60 minutes 

of recovery, isometric torque had returned to baseline, but muscle power remained 

depressed at all three velocities.  Balance during quiet stance was altered immediately 

following the walking task, but these measures recovered to baseline within 60 minutes.  

Following this fatiguing exercise, changes in balance in the AP, but not ML, direction 

were associated with changes in muscle power at 270°∙s-1.  Although there was no change 

in mean chair rise time in response to the walking protocol, changes in chair rise time 

were associated with changes in high-velocity power, both immediately and 60 minutes 

following the walk.  These data provide new evidence of striking alterations in 

neuromuscular and physical function in older women following a walking task designed 

to reflect potential physical challenges encountered in everyday life.  Both acute changes 

associated with fatigue in response to the walk and prolonged alterations that could be 
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expected to impact function in daily activities were observed.  The implications of these 

results include possible changes in the physical activity recommendation in order to 

suggest avoiding behaviors following exercise which may place older adults at risk for 

falling; as well as possible design changes in areas where adults do a lot of walking. 

Fatigue and Recovery of Muscle Power 

 A novel finding of this study is that a 30-minute, moderately intense walking task 

with 3 uphill challenges caused significant muscle fatigue in healthy older women that 

lingered for at least one hour (Figure 5.1).  While isometric torque recovered to baseline 

within the 60-min recovery period, power at all three contraction velocities did not.  

There was a significant effect of velocity at 60R but not 2R, indicating that the power 

loss was greater during high-speed than low-speed contractions.  Indeed, rather than 

recover, power at 270°∙s-1 declined further at 60R compared with 2R.  Thus, the 

mechanism for the depression of high-velocity power may be based more on the failure 

of the muscle to generate velocity rather than produce force.  This concept would be 

consistent with findings prior studies in our lab, which have shown both greater deficits 

in the power-velocity curves (129) and greater fatigue at high velocities (32) in older 

adults compared to young. 

 Power deficits at 2R ranged from 8% for the MVIC to 13% during the maximal 

contraction at 270°∙s-1 (Figure 5.1).  These values are similar to, or slightly greater, than 

those observed at the same time point in the knee extensors muscles of older women 

following a 4-min isovelocity fatigue protocol on a dynamometer (Foulis, Chapter 4).  

While we did not measure muscle shortening velocity in this study, loaded shortening 

velocity in older adults during walking was reported to be 97°·s-1 (103), a value 
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remarkably similar to the average contraction velocity of 63°·s-1 during the knee 

extension fatigue protocol in our recent study (Foulis Chapter 4).  These commonalities 

in methodology and results provide a possible link between these two fatigue protocols 

and indicate the relevance of results of lab studies to real-world situations.  The amount 

of fatigue we observed in the fatigue protocol was less than the fatigue observed in other 

studies of knee extensor fatigue at similar velocities (32, 113), most likely due to the 

rapid recovery of torque that can be expected during the first two minutes of the recovery 

period. 

A key result of this study was that power did not return to baseline after 60 

minutes of recovery.  Notably, the power deficits at 270°∙s-1 following 60 minutes of 

recovery (23%) were similar between the current study and our recent study, in which 

knee extensor fatigue was accomplished using a dynamometer (Foulis Chapter 4).  Given 

the similar fatigue in both protocols, it is likely that the mechanisms governing fatigue 

and the recovery of muscle power in that study are applicable to the present study.  In our 

previous study and studies by other researchers (165, 167), incomplete recovery of high-

speed power coincided with the presence of low-frequency fatigue.  This finding would 

implicate impairments in excitation-contraction coupling in the reduction in the ability to 

produce power.  Excitation-contraction coupling failure has been observed following a 

variety of exercises (125), and has been shown to last more than 24 hours following 

fatigue (68).  Thus, it is possible that a similar mechanism is responsible here for the 

decrements in power.  Moreover, given that coactivation of antagonist muscles is greater 

as age, muscle fatigue, and velocity increase (121, 205), antagonist activation of the 

hamstrings is limiting power production.  However, we have no measures of coactivation.  
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It is also possible that there was muscle damage in response to the walk which led to 

increased stiffness (98) and therefore decreased power (102).  Future studies may want to 

include measures of excitation contraction coupling, coactivation, and muscle damage in 

order to determine the exact mechanisms of the incomplete recovery of power after 

fatiguing lower limb exercise. 

This prolonged depression of high-velocity (i.e. 270°∙s-1) power has important 

implications for physical function in older adults.  For example, unloaded knee extension 

velocity has been shown to be 265°∙s-1 during stair descent in health older adults (103).  

Falls on stairs, particularly during stair descent, contribute significantly to the number of 

fall related deaths every year (29).  Any weakness at these high-velocities, even for a 

brief period in response to prior physical activity, could place older adults at increased 

risk of falling.  

Fatigue and Recovery of Functional Performance 

 The increased COP range and trend for an increase in COP velocity at 2R may 

represent reduced postural control as a result of exercise.  These findings are in 

agreement with the work of others who have noted increases in COP displacement in 

older adults following fatiguing calf contractions (152) and a bout of self-paced circuit-

training (69).  Following 60 minutes of recovery, we found that COP range remained 

elevated (Figure 5.2).  Nardone et al (153) noted an increase in the amount of COP sway 

in younger individuals following fatiguing treadmill walking.  Sway recovered to 

baseline within 15 minutes.  Similarly, our data decreased in that time frame, but then 

began a secondary increase.  While the increased COP range at the 60R time-point would 

suggest increased instability, that interpretation is contradicted by the decreased average 
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COP velocity and increased minimum TtC that were also observed at the end of the 

recovery period, outcomes considered indicative of greater stability.  It is possible that 

that the reduction in these latter variables below baseline is the result of a learning effect, 

as previously suggested by Nardone et al (154).  During repeated balance trials with no 

exercise perturbation, they observed increased stability over time.  In this case, the 

increased COP range could still represent some degree of increased instability, while the 

reduced COP velocity would be due to a learning effect.  Thus, following 60 min of 

recovery, older adults may be drifting at a slower velocity, perhaps due to a difference in 

the nature of their shifts in COP (i.e. trunk vs. full body sway).  Another possibility is that 

these individuals are actually more stable 60 min after walking.  A number of 

investigators have suggested that TtC may be a better measure of balance because it takes 

into account spatial characteristics (85), and our TtC measure showed increased stability.  

Thus, it is also possible that balance is not impaired at the 60R time-point, and the 

increased COP range is instead due to greater exploratory behavior as a result of 

increased comfort with the measure (202). 

We noted that an increase in high-velocity, but not isometric or low-velocity, 

fatigue was associated with both a greater AP COP range at 2R and slower average AP 

velocity at 60R.  These relationships may indicate that reduced power is related to 

instability at the 2R time-point, but greater stability at 60R.  The potential mechanism for 

the reversal in this relationship is unclear, but may be due in part to some of the factors 

responsible for prolonged fatigue.  For example, reduced strength may play a prominent 

role in the immediate instability, but compensation in balance may have occurred through 

improvements in another mechanism, such as somatosensory or vestibular function, by 
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60R.  Joint proprioception (95) and vestibular input (135) have been shown to be reduced 

in young adults following exercise.  To our knowledge, there are no studies of recovery 

of these measures following exercise in aging.  Following 60 minutes of sitting after the 

exercise, it is also possible that tissue stiffness, particularly those at the ankle, is 

increased.  This stiffness may hinder power production (102), yet provide stability (209).  

Loram and Lakie (136) have suggested that resting stiffness of the calf muscles in young 

adults is insufficient for complete balance control.  Thus, immediately following the 

exercise, weakness may impair balance.  However, an increase in muscle stiffness over 

the following hour may augment balance under quiet stance.  This may not be the case 

when it comes to balance during more challenging dynamic postural conditions and in 

response to perturbations, when the ability to produce quick forceful motions is 

instrumental for preventing falls. 

We observed relationships among power and balance primarily in the AP 

direction.  Motion in the AP direction has been hypothesized be dependent on muscle 

strength due to the multiple joint that require muscular support in that direction (58).  In 

particular, balance in the AP was associated with high-velocity power.  This result is 

consistent with Loram and Lakie’s hypothesis (136) that rapid ballistic contractions are 

needed to maintain balance in the AP.  The increased instability post-fatigue may be due 

to the inability to make these rapid postural adjustments.  Balance in the ML may be less 

susceptible to fatigue due because of the mechanical advantage due to the rigid structure 

of the legs in that direction.   

Our changes in COP velocity and TtC characteristics following the walk were 

modest with respect to the changes in power.  It is possible that power was not the 
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limiting factor in determining changes in these variables.  While knee extensor strength 

has been correlated with postural sway in older adults (137), Menz showed that tactile 

sensitivity was more predictive of sway than baseline strength (147).  Thus, while 

strength may play a dominant role some tasks, it may play a secondary role in postural 

control during quiet stance in healthy, older adults.  Impaired recovery of power may 

have a greater effect under more challenging balance conditions, such as with the eyes 

closed or during reaching tasks, as well as during dynamic balance tests, such as walking.  

Further research is needed to investigate mechanisms of and the relationships between 

this power impairment and dynamic balance tests. 

 We observed a relationship such that greater deficit of power at 270°∙s-1 was 

associated with slower chair-rise times.  Hortobagyi et al (97) showed that a group of 

older adults used 80% of their leg strength to get up from a chair.  Thus, if fatigue in 

these individuals was greater than 20%, they would not have been able to complete the 

chair rise without an altered strategy.  While our 270°∙s-1 condition is faster than the 

138°∙s-1 observed by Hortobagyi et al (97) during the chair rise task in older adults, we 

did not find a change in mean chair rise time, even though there was an average decline 

in power of 23%.  This may be due to the multiple redundancies inherent in the ability to 

do tasks (130).  In response to fatigue induced by walking, an altered strategy may have 

been used by our participants in order to minimize decrements in function.  Further 

studies should investigate changes in the way the task is performed in response to 

fatiguing exercise.  It is also possible that our participants had a sufficient functional 

reserve.  If this is the case, then in agreement with the non-linear nature of the functional 

reserve described by Buchner et al (28), large changes in power (i.e. due to fatigue) could 
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result in only small changes in physical function.  Those individuals with greater slowing 

of chair rise time may have been closer to their functional reserve.  Because we have 

shown that fatigue is greater following a second fatigue bout performed one hour after the 

first (Foulis Chapter 4), accumulation of walking bouts over the course of the day may 

have a greater impact on function over the course of the day. 

Several investigators have reported improvements in physical function in 

response to traditional resistance (35) and high-velocity (94) training to increase muscle 

power.  These interventions might also improve physical function following walking by 

increasing their functional reserve.  However, if these individuals still fatigue beyond 

their function reserve threshold, it is unclear whether these interventions confer an 

additional benefit by expediting the recovery of power following fatigue.  It is possible 

that novel interventions may need to be developed to improve recovery of velocity and 

power. 

Limitations 

 This study did not include a control group of young adults, so we cannot ascertain 

the extent to which our results are specific to aging.  However, given the functional 

importance of our findings in older adults, we consider this limitation to be minor relative 

to the importance of the knowledge gained.  We did not include measures of perceived 

effort, or any mechanistic measures of the causes of fatigue, which limits the 

interpretability of our results to some extent.  However, this design decision was made in 

order to avoid distracting or overloading our participants during the functional tasks, as 

such distractions could have affected our measures.  Given the similar amount of fatigue 

observed in this and our previous study (Foulis, Chapter 4), we can infer that the 
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mechanisms contributing to the recovery of power are similar across the two studies.  

However, future studies that include measures of perceived exertion, neuromuscular 

activation, and contractile properties in order to evaluate the relationships among 

symptomatic fatigue, muscle fatigue, and physical function in response to a walking task 

would be valuable. 

 By design, all of the participants in this study were healthy and no significant 

impairment in mobility function, as indicated by their high SPPB scores.  None of these 

women had a history of falls.  The effect of 30 min of walking may be greater in 

individuals with existing mobility impairments.  It also is important to note that the first 

measure following the fatigue test occurred 2 minutes after the participants finished 

walking.  During that time, it is likely that there was some recovery of strength and 

function that our measures did not capture.  In general, torque and power recover rapidly 

in the first 2 minutes following fatiguing exercise (Foulis Chapter 4, (128, 165)); this 

recover could translate into recovery of functional measures, as well.  Thus, we may have 

underestimated the effects of the walking task on fatigue and function in this group.  

During the first few minutes off the treadmill, relationships between power and balance 

could be confounded by motion after effects (88).  By including a 2-min delay and the 

over-ground walk before the first recovery measure, we suggest that our results are more 

indicative of the results related to fatigue as opposed to transient impact of this illusory 

effect. 

For technical reasons, power was only measured in the knee extensors.  We used 

the response in the knee extensors to represent all of the muscles responsible for chair 

rise and balance.  Indeed, at baseline, knee extensor power is strongly linked to a number 
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of functional tasks, particularly in older adults with muscle weakness (50).  However, a 

number of studies have suggested that the ankle dorsi- and plantarflexors may play a 

more prominent role in maintaining balance during quiet stance (210) under unfatigued 

conditions, and it may be strength changes in those muscles that most affect balance 

(137).  The difference in muscle groups may alter some of the relationships among 

changes in power and function.  While the walking task would likely also fatigue the 

muscles at the ankles, it is possible that the fatigue response in those muscle is different 

from the knee extensors due to differences in activation during walking (185).  It is also 

possible that these distal muscles have different recovery properties, particularly 

considering that the tibialis anterior and soleus have a greater proportion of type I fibers 

than the knee extensors (104). 

Finally, we had no measures of sensory function in our participants.  Sensory 

function may play a bigger role in postural control than strength in older adults (147).  

Future studies should assess changes in visual, vestibular, and somatosensory function 

with fatigue in order to determine how potential changes in the sensory system may affect 

balance. 

Conclusions 

We provide novel evidence that 30 min of moderate treadmill walking is 

sufficient to induce significant fatigue of the knee extensor muscles of healthy older 

women, and limit their power production in a velocity-dependent manner for at least an 

hour.  Notably, fatigue of high-velocity power was associated with changes in physical 

function, both at fatigue and at the end of the recovery period.  These results indicate that 

neuromuscular and physical function may be compromised for some period of time in 
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healthy older adults following a physical challenge as common as walking.  While older 

adults should not be discouraged from physical activity, the results of this study suggest a 

critical need to determine the mechanisms and duration of this period of vulnerability.  

Certainly, any additional challenges to physical function may increase risk of mobility 

impairments to an unacceptable level in this population.  It may be important to raise 

awareness in older adults about the possible effects of walking or other tiring exercise on 

physical function, so that they may adapt their behavior in order to prevent problems 

during this recovery period.  Additional research is needed to determine how to prevent 

these lingering decrements in power in order to minimize the risk of falls and disability in 

older adults. 
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Table 5.1: Group Characteristics 
 Mean (SEM) Range 

Anthropometrics   

Age (years) 70.7 (1.2) 66 - 81 

Height (m) 1.62 (0.02) 1.49 - 1.71 

Mass (kg) 67.4 (3.0) 52.2 - 98.2 

BMI (kg·m-2) 25.8 (1.3) 17.5 - 36.3 

Physical Activity   

Activity (counts·day-1·1000-1) 193 (21) 81 - 390 

MVPA (min·day-1) 18.0 (4.0) 0.9 - 58.7 

Symptomatic Fatigue   

PROMIS (t-score) 43.7 (1.78) 29.4 - 63.4 

Functional Characteristics   

400m speed (m·s-1) 1.37 (0.05) 1.01 - 1.68 

Foot Taps (#∙10s-1) 48 (10) 33 - 66 

Chair rise, 5x (s) 8.91 (0.78) 4.34 - 16.12 

Knee extensor MVIC (Nm) 115.2 (5.52) 80.9 - 149.3 

V75 (°·s-1) 54.7 (4.7) 22.4 - 95.1 

BMI: Body Mass Index; MVPA: Moderate-Vigorous Physical Activity; PROMIS: 
Patient Reported Outcomes Measurement Information System (34); MVIC: Maximum 
Voluntary Isometric Contraction; V75: Velocity at which 75% of MVIC torque was 
generated. 
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Figure 5.1: Absolute (left) and Relative Recovery (right) of Torque and Power for 
the 4 Contraction Velocities.  Isometric torque and power at all velocities decreased 
from baseline following the walk (p ≤0.03, all).  Following 60 minutes of recovery, there 
was differential recovery across velocities such that isometric torque recovered, while 
dynamic power remained depressed.  Left: mean ± SEM; right: mean and 95% CI for 
difference from baseline; *p<0.05 for difference from baseline.  V75: Velocity at which 
75% of MVIC torque was generated.  
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Figure 5.2: Absolute (left) and Relative (right) Recovery of Center of Pressure 
(COP) Range in the AP (top) and ML (bottom) Directions.  AP and ML ranges were 
elevated 2 min after the walking exercise (p≤0.03).  While AP range remained elevated 
after 60 min of recovery (p=0.03), ML range only tended to be elevated (p=0.06).  Left: 
mean ± SEM; right: mean and 95% CI for difference from baseline; *p<0.05 for 
difference from baseline.  AP: anterior-posterior; ML: medial-lateral.  
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Figure 5.3: Absolute (left) and Relative (right) Recovery of Average Center of 
Pressure (COP) Velocity in the AP (top) and ML (bottom) Directions.  Average AP 
velocity tended to be elevated in the AP (p=0.08) but was not different from baseline at 
2R.  In both directions, velocity decreased with time and was slower than baseline 
following 60 min of recovery (p≤0.01). Left: mean ± SEM; right: mean and 95% CI for 
difference from baseline; *p<0.05 for difference from baseline. AP: anterior-posterior; 
ML: medial-lateral. Increase in COP velocity is indicative of greater instability. 
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Figure 5.4: Absolute (left) and Relative (right) Recovery of Average Time-to-Contact 
(TtC) in the AP (top) and ML (bottom) Directions.  Average AP TtC did not increase 
immediately following fatigue but tended become longer by 60 min post-exercise 
(p=0.09).  There was no change in ML at either 2R or 60R. Left: Mean ± SEM; Right: 
Mean and 95% CI for difference from baseline. AP: anterior-posterior; ML: medial-
lateral. Increased  tC is indicative of greater stability. 
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Figure 5.5: Absolute (left) and Relative (right) Recovery of Minimum Time-to-
Contact (TtC) in the AP (top) and ML (bottom) Directions.  AP minimum TtC at 2 
min recovery did not differ from baseline (p=0.40), but increased throughout recovery to 
become longer by 60 min post (p<0.01).  In the ML, minimum TtC was not different 
from baseline at either 2R or 60R (p≥0.20).  Left: mean ± SEM; right: mean and 95% CI 
for difference from baseline; *p<0.05 for difference from baseline.  AP: anterior-
posterior; ML: medial-lateral. Increased TtC is indicative of greater stability. 
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Figure 5.6: Absolute (left) and Relative (right) Recovery of Chair Rise Time.   There 
was no difference from baseline at 2R or 60R (p≥0.45).  Left: mean ± SEM; right: mean 
and 95% CI for difference from baseline. 
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Figure 5.7: Associations Between High-Velocity Power and Balance.  The change in 
high-velocity (270°·s-1) power at fatigue was negatively associated with the change in AP 
COP range (top), indicating that fatigue was associated with instability.  At 60R, the 
power deficit at 270°·s-1 was positively correlated with COP Velocity (bottom), 
suggesting that greater residual weakness was associated with increased stability. 
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Figure 5.8: Associations Between High-Velocity Power and Chair Rise Time.  
Correlations of the percent changes of power at 270°·s-1 and chair rise at 2R (middle) and 
60R (bottom) showed a significant relationship such that individuals with a greater 
decrease in power had a greater slowing of chair rise time. 
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CHAPTER 6 

SUMMARY 

 The goals of this dissertation were to identify how muscles recover following a 

bout of fatiguing exercise, determine how this recovery differs in young and older adults, 

and assess the role of the recovery of force and power in mediating the recovery of 

physical function.  The two studies of this dissertation determined the pattern of recovery 

of muscle power following two distinct bouts of muscle fatigue.  While it has been 

established that there are velocity-dependent differences in the pattern of fatigue in young 

and older adults, prior studies had neither investigated recovery of power across a range 

of velocities, nor the effects of aging on this recovery.  Study 1 monitored recovery of 

power following fatigue induced by maximal knee extensions using a dynamometer.  

This study also provided details on the possible mechanisms governing recovery during 

the 60 minutes that follow muscle fatigue.  Prior studies have shown that age-related 

weakness and muscle fatigue can each affect physical function, but no study has 

attempted to follow both of these factors throughout recovery in older adults.  Study 2 

examined the relationships among the recovery of power and physical function using a 

more ecological walking task that caused a similar degree of knee extensor fatigue as the 

dynamometer-based protocol used in Study 1.  Together, these studies provide novel 

insight about the impact of muscle fatigue on older adults.   

A summary of the changes with fatigue and recovery observed during Study 1 are 

shown in Table 6.1.  We observed similar decrements and recovery of power at low 

velocities in both age groups.  However, in support of our hypothesis, recovery was 

slower (H1.1) and power loss at high-velocities was greater (H1.2) in the older compared 



 

135 

with young women.  Thus, we demonstrated an age-related difference in the recovery of 

power that is velocity dependent.  In terms of the mechanisms governing this recovery, 

the 10:80 Hz ratio declined and did not recover in both groups, indicating the presence of 

excitation-contraction coupling failure.  Contrary to our hypothesis (H1.3), we did not 

observe similar EC coupling failure in young and old: the ratio tended to decline to a 

greater extent in the older.  This result is consistent with data showing impairments in 

calcium handling with aging (62, 180).  We were correct in hypothesizing a slowing of 

contractile properties post-fatigue (RFR, and T1/2, H1.4); however, there was no 

difference across age groups.  These changes recovered relatively quickly, indicating they 

were not the primary limiters in power production during the recovery period.  Under 

isometric conditions, we detected an increase in pre-motor time with fatigue that was not 

different across age-groups (adapted from H1.5).  Concurrently, we observed an increase 

in pre-motor EMG and the voluntary:stimulated rate of force development ratio only in 

the older women (H1.6).  This increase in central drive may reflect a need to increase 

torque production in compensation for other neuromuscular alterations (such as EC 

coupling failure) that depress torque with fatigue in this population.  Both pre-motor 

measures recovered to baseline by 60 minutes.  This finding was contrary to our 

hypotheses of reduced and slower neural input to the muscle with fatigue.   

 None of our exploratory hypotheses for Study 1 were supported.  At 20% MVIC 

we observed no change in the EMG:torque ratio with fatigue (Exploratory H1.1).  At 

50% MVIC we observed a greater ratio (i.e. reduced efficiency) in only the young group 

following the fatigue bout, suggesting age-related differences in the neural mechanisms 

of modulating intermediate levels of torque production following fatigue.  In both groups, 
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this ratio increased during maximal contractions, but to a similar extent.  In addition, we 

observed a transient increase in perceived effort during contractions of 20% and 50% 

MVIC following the fatigue bout, but these were similar in both groups and recovered 

within 60 minutes (Exploratory H1.2).  In the older group, we observed an increase in 

perceived effort during maximal contractions that lasted for the full hour.  This increase 

in perceived effort, along with the greater fatigue observed during a second fatiguing 

exercise bout (Exploratory H1.3), may explain the greater symptomatic fatigue that has 

been reported previously in older adults (1). 

 Thus, for Study 1, we observed a greater deficit in older adults in high-velocity 

power immediately following the kicking exercise, as well as following the 60 minutes of 

recovery.  While it would appear impairments in excitation-contraction coupling may be 

a mechanism based on our results, we also observed age related changes in the 

EMG:Torque ratio and pre-motor signaling during isometric contractions.  It is likely that 

some of these neural alterations may also contribute to the long-duration deficit in power.  

It also possible that some of the variables that showed age-related deficits at baseline, and 

decreased similarly in young and older following the fatigue bout played a role in the 

differential deficits between the two groups.  Thus changes in contractile properties or 

time-to-target (i.e. muscle acceleration) may have contributed to the loss in power if the 

older fell below some critical threshold. 

 The second study provided evidence of a power decline following 30 minutes of 

moderately intense walking that was associated with changes in physical function in older 

women.  A summary of the power and functional alterations with fatigue and recovery 

are found in Table 6.2.  The first two hypotheses for this study were supported; decreased 
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torque and power were observed following the walk (H2.1).  Although isometric torque 

recovered, high-velocity power did not (H2.2), demonstrating again a velocity-

dependence on the recovery process.  The results from the hypotheses regarding physical 

function were equivocal.  As a group, there was no significant decline in chair rise time 

following the fatigue bout (H2.3).  Notably, however, individual changes in chair rise 

time were associated with changes in power (H2.4).  This relationship was true both 2 

and 60 minutes following the fatigue bout, demonstrating the important role of power in 

maintaining physical function. We also observed increases in COP range and velocity 

following the walk, indicating increased instability (H2.3).  Following 60 minutes of 

recovery, COP range remained elevated, but COP velocity was reduced and AP TtC was 

increased, indicating increased stability.  While the changes in the AP direction were 

associated with fatigue of high-velocity power (H2.4), it may be that other processes, 

such as muscle stiffness, also played a role in the recovery process, as this may decrease 

power but improve measures of balance. 

 In summary, in Study 2, we again observed a decrement in muscle power at high-

velocities following the treadmill walk that lasted throughout the 60 minutes of recovery.  

Functionally, changes in high-velocity power were associated with impairments in chair 

rise and balance.  After 60 minutes of recovery, increased musculoskeletal stiffness may 

improve static balance and while still limiting power production.  However, this 

prolonged power loss may be a hindrance during more challenging, dynamic postural 

tasks. 
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Significance 

 This dissertation addressed the nature of recovery of muscle power following 

fatigue in young and older women, as well as the potential implications of altered power 

recovery on physical function in older women.  A novel finding of this dissertation was 

the prolonged impairment of high-velocity power following muscle fatigue in older 

women.  Notably, this slow recovery of power decrement was not present in younger 

adults, and it occurred both under controlled settings using a dynamometer and in 

response to treadmill walking designed to mimic real-world activity.  Thus, this pair of 

studies provides “bench-to-bedside” translation of research relevant to the prevention of 

falls, and ultimately disability, in older adults.  Older adults should be aware of this 

delayed power recovery as it could affect their ability to maintain balance following 

exercise.  While older adults should not be discouraged from physical activity, some 

behavioral modification might be advised to prevent falls during this recovery period.  

Modifications could include avoiding unstable positions and increasing active 

concentration on balance. 

 The combination of these studies has captured both the mechanisms and 

implications of recovery from muscle fatigue.  Many researchers have studied power loss 

(32, 105, 128, 166), neuromuscular recovery (7, 150, 167), and functional implications of 

fatigue (91, 134, 154), but not all three.  This dissertation quantified both the changes that 

occur due to fatigue, and how these changes recover over the course of an hour following 

two distinct types of exercise.  Further, we assessed how recovery is different in older 

women compared with young women.  Specifically, we observed age-related alterations 

in recovery of pre-motor neural signaling, excitation-contraction coupling, and 
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neuromuscular efficiency following knee extension contractions which resulted in ~25% 

drop in muscle power.  Functionally, these changes led to increased perceived effort, 

increased fatigue during a second exercise bout (in both young and old), slowed chair rise 

times, and impairments in balance in older women.  Thus, we have identified key 

mechanisms for age-related changes in recovery of muscle power, as well as potential 

functional implications of those alterations.  While this list of mechanisms and functional 

alterations is not complete, it provides an important starting point for identifying changes 

in the recovery process with aging.  The results of this study may prove valuable in 

developing interventions to prevent the decline in muscle power, and ultimately 

preventing physical disability, in older adults. 

Future Directions 

 This dissertation provides an important step in understanding the mechanisms and 

implications of the recovery of muscle power following fatiguing exercise in both young 

and older adults.  Many of our recovery measures provide only indirect assessments of 

the function of the neuromuscular system.  More direct measures of cortical and spinal 

excitability (transcranial magnetic stimulation), motor unit discharge rates (indwelling 

electromyography), coactivation (multiple surface electrodes) and muscle calcium 

handling (biopsy) function may better able to assess quantify the specific mechanisms of 

neuromuscular recovery that our results indicate may play a role in the recovery process.  

A neuromuscular model of fatigue and recovery could also be developed to determine the 

relative influence of each of these processes on muscle power. 

 The protocol used in Study 2 evaluated only one type of physical function (chair 

rise) and one test of balance (eyes open, quiet stance).  However, there are a number of 
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activities of daily living that could be affected to varying degrees by fatigue induced by 

walking.  Impairments in these activities may not have been captured using only these 

two tests.  Given the slow recovery of high-velocity power observed in this study, the 

impact of incomplete recovery of muscle power should be investigated using more 

difficult balance tasks.  These tests could include quiet stance with the eyes closed, 

reaching, and recovery from perturbations, all of which have been shown to be reduced in 

older adults in the absence of fatigue (92).  Functional tasks of a dynamic nature and 

those that require rapid movements may be particularly affected by this prolonged loss of 

power, which could help to precisely identify key moments when older adults are at high 

risk of falling. 

 All of the participants in these studies were relatively healthy, with minimal 

mobility impairments.  It remains to be determined whether there are greater decrements 

in power in older adults showing the signs of physical impairments.  These individuals 

are at a greater risk of falls, even in the absence of muscle fatigue.  We have previously 

shown that mobility impaired individuals produce less torque and have greater torque 

variability during a dynamic fatigue protocol (113).  Whether this variability is indicative 

of differences in the mechanisms of fatigue and recovery is not known.  It is possible that 

greater variability and power loss could combine to provide momentary weakness, which 

could lead to falls.  The implications of this variability in power production may be 

particularly true during the prolonged depression of high-velocity power. 

The goal of this dissertation was to better understand the recovery from muscle 

fatigue, in order to provide data that could ultimately be used to prevent disability in 

older adults.  These data suggest that older adults need to be careful in the hour following 
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exercise as there may be lingering weakness, which could increase their risk of falls.  

Behavioral modification should be suggested in order to avoid activities that may put 

older adults at high risk of falls during this hour.  In the long term, developing training 

protocols to target the specific causes of power loss and slowed recovery in older adults 

may be possible in order to minimize the risk of functional decline and falls associated 

with old age.  This combination of behavioral and physical interventions could lead to 

increased quality of life in older adults, prevent a number of detrimental health outcomes 

related to prolonged bed rest and hospital stays that occur as a result of falls, and 

ultimately decrease the financial burden of health care on society. 
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Table 6.1: Study 1 Summary 

Values represent where differences (p≤0.05) were present for young compared with older 
(Y v O), young compared with baseline (Y ΔBaseline), and older compared with baseline 
(O ΔBaseline). Italicized values represent trends (p≤0.10).  Shaded boxes indicate data 
not collected.  0: Isometric; 30: 30°·s-1; V75: Velocity at which 75% of MVIC was 
generated; 270: 270°·s-1; 20%: 20% MVIC; 50%: 50% MVIC; 100%: 100% MVIC; 
RFD: Rate of Force Development; RFR: Rate of Force Relaxation; T1/2: Half-relaxation 
Time.  NS: No significant difference 
  

 Baseline 
Fatigue 

(0R) 
Recovery 

(60R) 

 O v Y 
Y 

ΔBaseline 
O 

ΔBaseline O v Y 
Y 

ΔBaseline 
O 

ΔBaseline O v Y 
   Power and Velocity       

Specific Power NS ↓0, ↓30, 
↓V75, 
↓270 

↓0, ↓30, 
↓V75, 
↓270 

↓270 ↓0 ↓0, ↓270 ↓270 

Time-to-Target 
Velocity 

↑270 ↑V75, 
↑270 

↑V75, 
↑270 

NS NS NS NS 

   Neuromuscular Variables       

Central Motor 
Drive  
(Vol:Stim RFD) 

NS NS ↑0 NS NS NS NS 

Voluntary RFD NS NS ↑0 ↑0 NS NS NS 

EMG:Torque ↑20% ↑50%, 
↑100% 

↑100% ↑50% NS NS NS 

Pre-Motor 
Activation 
(Pre-Motor EMG) 

NS NS ↑0 ↑0 ↑30 NS ↑30 

Pre-Motor Delay 
(Pre-Motor Time) 

↑30, 
↑270 

↑0 ↑0 ↓270 ↑0 ↑0 NS 

Stimulated RFD ↑Yes NS NS NS ↑Yes ↑Yes NS 

Stimulated Torque 
Relaxation 
(80Hz RFR & 
T1/2) 

↓Yes ↓Yes ↓Yes NS NS NS NS 

EC Coupling 
(10:80 Hz) 

↓Yes ↓Yes ↓Yes ↓Yes ↓Yes ↓Yes ↓Yes 

   Functional  Variables       

Perceived 
Exertion 

↓50%, 
↓100% 

↑20%, 
↑50%, 
↑100% 

↑20%, 
↑50%, 
↑100% 

↑100% NS ↑100% ↑100% 

Power following 
2nd Fatigue Bout 
compared to 1st 

 ↓0, ↓30, 
↓V75,  
↓270 

↓0, ↓30, 
↓V75, 
↓270 

NS    
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Table 6.2: Study 2 Summary 
 Fatigue (2R)  

ΔBaseline
Recovery (60R)  

ΔBaseline
Specific Power  ↓0, ↓30, ↓V75, ↓270 ↓30, ↓V75, ↓270 

   Functional Changes   

Chair Rise Time NS NS 

Balance   

     COP Range ↑AP, ↑ML ↑AP, ↑ML 

     COP Average Velocity 
     (↑: Greater Instability) 

↑AP ↓AP, ↓ML 

     TtC Average 
     (↑: Greater Stability) 

NS ↑AP 

     TtC Minimum 
     (↑: Greater Stability) 

NS ↑AP 

Values represent where differences (p≤0.05) compared with baseline. Italicized values 
represent trends (p≤0.10).  .  0: Isometric; 30: 30°·s-1; V75: Velocity at which 75% of 
MVIC was generated; 270: 270°·s-1; AP: Anterior-Posterior; ML: Medial-Lateral; COP: 
Center of Pressure; TtC: Time-to-Contact.  NS: No significant difference 
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APPENDIX A 

INFORMED CONSENT DOCUMENT 

INFORMED CONSENT DOCUMENT 
University of Massachusetts 

Amherst, MA 01003 
 

 
Project Title:  Recovery from Muscle Fatigue in Young and Older Women 
 
Principal Investigators: Jane A. Kent-Braun, Ph.D. (413-545-9477) 
 Stephen A. Foulis, M.S.   (413-545-5305) 
 
Your written informed consent is required prior to participation in this project.  Please 
read this document carefully and then sign your name on the last page if you agree to 
participate.  This document is in accordance with the Assurance of Compliance with the 
Office of Human Research Protection Regulations approved by the Faculty Senate of 
the University of Massachusetts.   
 
Purpose:  The purpose of the study is to learn more about how aging affects recovery 
from muscle fatigue.  In particular, we seek to investigate how the recovery process is 
different in young and older adults, and how that may affect physical function. 
 
Eligibility:  To participate in this study, you must be in good physical health and 
between the ages of 25 and 40 or 65 and 85 years old.   
 
Definitions:  The following terms will be referred to throughout the study.  These are the 
names of the main techniques that we will be using: 
  

Isometric contractions.  A contraction of your muscle that produces force, but 
no movement (i.e., static) is referred to as isometric. 
Dynamic contractions.  A contraction of your muscle that produces force and 
movement is referred to as dynamic. 
Electrical Stimulation.  This technique uses self-adhesive, rubber pads applied 
to the skin of your leg.  These electrode pads are used to stimulate your muscle 
to contract. 
Fatigue.  This term refers to the drop in strength that normally occurs in 
response to repeated strenuous muscle contractions. 
Physical Function.  This term refers to the ability to do everyday activities such 
as standing up from a chair, or balancing while standing still. 
Muscle Activation.  Comparisons will be made between the force you can 
generate with your leg, and that produced by electrical stimulation.  This 
comparison will give information regarding your nervous system’s ability to fully 
activate the muscles of your leg. 
EMG- electromyography.  This technique uses small metal discs that are taped 
to your leg.  These discs record the electrical signal of your muscle during 
exercise.  
MRI- Magnetic Resonance Imaging.  This technique uses radio waves and a 
large magnet to receive information about the size and shape of your muscles. 
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Procedures:   
Pre-Screening - Prior to all studies, you will be screened by telephone interview for 
general health, medical history, current medications, usual physical activity level, and 
eligibility for the study.  If you are qualified and agree to participate, you will be invited to 
the Muscle Physiology Laboratory at the University of Massachusetts, Amherst, for 
further study. 
Visit 1 - Screening (Muscle Physiology Lab, UMass) - You will be asked to complete a 
detailed medical history form, a Physical Activity Readiness Questionnaire, a safety 
checklist, and fatigue questionnaires.  We will measure your height and weight, and the 
blood pressure in your arm.  We will then ask you to perform several tests of physical 
function: 

 Balance: You will be asked to balance with your feet in various placements. 
 Walking speed: You will be asked to walk along a 6 meter path. 
 Chair Rise: You will be asked to stand up from a seated position and return to 

the seated position 5 times. 
If you are over the age of 65, we will, with your permission, obtain approval from your 
personal physician before proceeding with any further testing.  This visit will take ~1 
hour. 
Visit 2 – Familiarization, 400 Meter Walk, Activity Monitoring (Muscle Physiology 
Lab, UMass) – After a brief warmup on an exercise bike, you will undergo tests of your 
muscle strength and ability to contract your muscles forcefully.  You will sit in a 
comfortable chair and your leg will be fitted to an apparatus that will measure muscle 
strength.  You will be strapped snugly to the chair to reduce extra movement.  Three 
electrodes (EMG) will be placed on your thigh to record the voluntary and stimulated 
electrical activity of your muscles during this visit.  In addition, two self-adhesive 
electrode pads will be applied to your leg to allow for electrical stimulation to be used to 
contract the muscles of your thigh.  You will perform a series of voluntary contractions of 
your knee extensor muscles at a range of speeds and will also undergo electrical 
stimulation to determine some of the properties of your muscle.  The electrical 
stimulation will last for less than one second.  It will be uncomfortable, but not 
dangerous.  You will also be introduced to the fatigue protocol described below. 

You will then be asked to walk 400 meters, about length of 4 city blocks, at the 
quickest pace that you can maintain for the entire walk.  We will monitor your heart rate 
and rate of perceived exertion during the walk.  If you experience any symptoms (i.e., 
chest pain, shortness of breath, extreme fatigue, dizziness, etc.) during these 
procedures, notify the investigator immediately.   

Once the walk is complete, you will receive a physical activity monitor (a small 
portable device that records your motion). You will be asked to wear this monitor around 
your waist during waking hours for 10 days.  In addition, you will be asked to keep a 
simple diary of your physical activities during those 10 days.  You will return the activity 
monitor and diary at a future visit. 

This entire visit will take ~2 hours. 
 
For the remaining visits you will be asked to complete one of two fatigue and recovery 
protocols: 
 
 Protocol A ____________ 
   (subject initials here) 

Visit 3A – Fatigue & Muscle Recovery (Muscle Physiology Lab, UMass) - After 
the brief warmup on an exercise bike, you will be seated in the same exercise 
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chair as Visit 2.  Following some resting strength measures, you will complete a 
4-minute dynamic muscle contraction protocol designed to fatigue your muscle.  
At intervals over the hour following the protocol, you will perform voluntary 
dynamic contractions and undergo stimulated muscle contractions to monitor the 
recovery of your muscle.  At the end of one hour, you will repeat the same 
fatiguing protocol, and be observed for an additional 10 minutes of recovery. This 
visit will take ~2 hours. 
Visit 4A – Fatigue & Neural Recovery (Muscle Physiology Lab, UMass) - You 
will again be seated in the same chair as Visit 3A and complete the same resting 
strength measures and then perform the 4-minute fatigue protocol.  During the 
hour following the protocol, you will perform isometric (static) contractions at 3 
different force levels. This visit will take ~2 hours. 
Visit 5A – MRI (Amherst Community Health Center, University Drive, Amherst) - 
While lying still in a large magnet, images of your leg will be taken.  During this 
procedure, you will hear loud banging noises.  For this reason you will be given 
earplugs or a headset to wear.  This visit will take ~45 minutes 

 Protocol B ____________ 
   (subject initials here) 

Visit 3B – Fatigue & Muscle Recovery (Muscle Physiology Lab, UMass) - After 
a brief warmup on an exercise bike, you will be seated in the same exercise chair 
as Visit 2.  Following some resting strength measures, you will be moved to a 
treadmill where you will walk for up to 30 minutes.  While on the treadmill, the 
investigator will be at your side to assist as needed.  At the end of the walk, you 
will be re-seated on the exercise chair.  At intervals over the hour following the 
protocol, you will perform voluntary dynamic contractions to monitor the recovery 
of your strength.  This visit will take ~2 hours. 
Visit 4B – Fatigue & Functional Recovery (Muscle Physiology Lab and Motor 
Control Lab, UMass) – After a brief warmup and resting strength measures as 
done in Visit 3B, you will perform resting measures of 2 measures of physical 
function: 

 Standing Balance: You will stand still on a force platform which is 
capable of detecting small changes in your balance. 

 Chair Rise:  You will be asked to rise and sit down in a chair 10 times, 
as fast as you can. 

You will be moved to a treadmill and complete the same walking task from Visit 
3B.  At the end of the walk, and at intervals over the hour following the walk, you 
repeat the 3 measures of physical function.  This visit will take ~2 hours. 

 
Study Timeline:  All testing will be completed within 3 weeks. 

Testing Day Procedure Approximate Duration 

1 Screening 1 hour 
2 Familiarization,  

400 Meter Walk, 
Activity Monitoring 

2 hours 

3 Fatigue & Recovery Test 1 2 hours 

4 Fatigue & Recovery Test 2 2 hours 

5* (Protocol A 
only) 

MRI  
(Amherst Community Health Center) 

45 minutes 
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Possible Risks and Discomforts:  The following risks and discomforts may be 
associated with the procedures described above. 
 

 Physical Function Testing – During any type of exercise, especially strenuous 
exercise, there are slight health risks, along with the possibility of fatigue, 
cardiovascular events, muscle soreness, and falls.  These risks are minimal 
during the type of self-paced testing used here, particularly in healthy individuals.  
Study personnel will be monitoring you closely for your safety and guarding to 
prevent falls. 

 
 Muscle Contractions and Fatigue Protocol – You may experience slight muscle 

soreness during and/or after this portion of the testing; the soreness will not 
interfere with your daily activity, and will subside within 2-3 days.  You will feel a 
strong buzzing during the electrical stimulation.  The discomfort with electrical 
stimulation is of a moderate degree.  We expect that your muscle will fatigue 
during the fatigue testing.  During the walking protocol, there are slight risks of 
cardiovascular events and falls.  These risks are small in individuals with no prior 
history of cardiovascular, respiratory, or musculoskeletal disease or injury.  To 
minimize the risk of any adverse events, you will be given a warmup period, and 
your heart rate will be monitored during the fatigue task.  You are also 
encouraged to report any abnormal discomfort.  If the researchers see anything 
abnormal, or you ask us to stop, the session will be stopped immediately. 

 
 Magnetic Resonance Imaging (MRI) – The United States Food and Drug 

Administration (FDA) has set guidelines for magnet strength and exposure to 
radio waves, and we carefully observe those guidelines.  There are no known 
negative effects at the amount of exposure you will see during this study.  Some 
people may feel uncomfortable or anxious during the MRI.  If this happens to 
you, you may ask to stop the study at any time and we will take you out of the 
MR scanner.  On rare occasions, some people might feel dizzy, get an upset 
stomach, have a metallic taste or feel tingling sensations or muscle twitches.  
These sensations usually go away quickly but please tell the research staff if you 
have them.   

MRI poses some risks for certain people.  If you have a pacemaker or 
some metal objects inside your body, you may not be in this study because the 
strong magnets in the MR scanner might harm you.  Another risk is a metallic 
object flying through the air toward the magnet and hitting you.  To reduce this 
risk we require that all people involved with the study remove all metal from their 
clothing and all metal objects from their pockets.  Nothing metal can be brought 
into the magnet room at any time.  Also, once you are in the magnet, the door to 
the room will be closed so that no one from outside accidentally goes near the 
magnet. 

 We want you to read the questions on the MR Safety Questionnaire and 
answer them very carefully.  Those questions are for your safety.  Take a 
moment now to be sure that you have read the MR safety sheet and be sure to 
tell us any information you think might is important.  Even if you think that it is 
probably okay, we would rather have you ask us to make sure. 

Please note: The MRI is for research purposes only and is not in any way 
a clinical scan to diagnose diseases for you.  The scans in this study are not 
designed for diagnosis.  If we see something on your scan that might be 
medically significant, we will ask a radiologist or another physician to review the 
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relevant images.  If that person recommends that you should seek medical 
advice, then the primary investigator, or consulting physician, will contact you, 
talk with you about the situation, and recommend that you seek medical advice 
as a precautionary measure.  At that point, the decision to seek advice or 
treatment is completely up to you and your doctor.  The researchers for this 
project, the consulting physician, or the Amherst Community Health Center are 
not responsible for any exam or treatment that you receive based on these 
findings.  

 
Confidentiality:  Your records will be kept as confidential as is possible under the law.  
No individual identities will be used in any reports or publications resulting from this 
study. 
 
In Case of Injury: In the unlikely event of an injury resulting directly from participation in 
this study, we will do everything we can to assist you in seeking medical treatment.  The 
University of Massachusetts does not have a program for compensating subjects for 
injury or complications related to human subjects research.   
  
Benefits:  You will receive no direct benefit from participating in this study. You may 
receive more precise information about your muscle function and a clearer idea about 
how it may be influenced by age.  Any information that is obtained from this study will be 
made available to your physician upon request.  The purpose of these studies is to 
provide the investigators with information which may have a positive impact on the 
management of muscle fatigue in aging. 
 
Costs and Reimbursement:  No costs will be charged to you if you participate in this 
study.  You will receive $50 for completion of the entire study.  In the event that you do 
not complete the study, you will be compensated $10 for each visit you complete.  A 
check will be mailed to your home in about six weeks.  
 
Withdrawal of Participation:  Participation in this research is voluntary.  You have the 
right to refuse or to withdraw at any point in this study without prejudice.  You will be 
compensated for the portions of the study that you have completed as described above. 
 
Information:  You are encouraged to ask questions about the study.  The investigators 
will attempt to answer all of your questions to the best of their knowledge.  The 
investigators fully intend to conduct the study with your best interest, safety, and comfort 
in mind. Please address any questions regarding the study to Stephen Foulis, M.S. at 
(413) 545-5305 or Jane Kent-Braun, Ph.D. at (413) 545-9477.  If you would like to 
discuss your rights as a participant in a research study or wish to speak with someone 
not directly involved in the study, you may contact the Human Subjects Administrator at 
humansubjects@ora.umass.edu  (413) 545-3428. 
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______________________________________________________________________ 
Participant’s Name    Address 
 
______________________________________________________________________ 
Signature  Phone Number 
 
______________________________________________________________________ 
Witness  Date 
 
The investigator has read and understands the regulations for the Protection of Human 
Research Subjects (45 CFR 46) and agrees to comply with all the clauses of the said 
document to the best of her ability.  The investigator also pledges to consider the best 
interests of the subject beyond the explicit statement contained in the aforementioned 
regulations and to exercise professional expertise to protect the rights and welfare of the 
subject. 
 
 
_____________________________________________________________________ 
Jane Kent-Braun, Ph.D.    Date 
 or 
Stephen A. Foulis, MS 
 
Principal Investigators 
Department of Kinesiology 
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APPENDIX B 

TELEPHONE SCREENING FORM 

Date: ________  Screened by: _____________   Group:  __________  Status: ________________ 
 

TELEPHONE SCREENING 
1) Explain: all visits: paperwork/SPPB, Habituation (stim.); Fatigue, Time commitment 

Contact Info:       Descriptive Info: 
Name ______________________________           Sex _____ Age_____ DOB_______ 
Phone # ____________________________    Height______ Weight _______ 
Email _______________________________  BMI_______ 
Address _____________________________      
Qualifying Questions: 

1) How would you describe your current health status in general? 
___________________________________ 

2) Do you have any physical limitations that keep you from doing usual activities of daily living? 

______________________________________________________________________________ 
3) Has your doctor ever told you not to exercise? Y ____ N ____ If so, why? 

___________________________ 

4) How often, if at all, do you exercise? And what do you do?  

Type: Frequency: Duration/Intensity: Since when?  
    
    
 

5) Do you smoke/have you ever been a smoker? Y___N___ How long ago? (must be 2 yrs 
ago)____________ 

6) Have you ever had an MRI? Y___N___ Are you able to receive an MRI? Y___N___ (metal 
fragments, implants, claustrophobia)? 
________________________________________________________________ 

7) Do you have any problems with your lower legs, feet, ankles, or knees? 
__________________________________ 

VL leg  ____R____L____  
8) Does your medical history include any of the following?  

Surgeries: Diabetes? Neurological/ 
Neuromuscular? 

Pulmonary? Coronary? Joint 
Problems? 
 
 

If yes, explain: 
_____________________________________________________________________________ 
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8) Current Medications: 

Drug Name  Classification Dosage Frequency Duration Prescribed 
for? 

      
      
      
      
      

 

9) Is fatigue a problem for you? ______________________ Leg fatigue? _____________________ 

10) Doctor’s Info: 

Name: Office: Last Visit: 
Recruiting Purposes: 

1) How did you hear about the study? _______________ 

2) Have you ever participated in a research study before? Y ____ N ____ 

3) Would you be willing to participate in the future? Y____ N ____ 

Next step:  
1) If we call you back and miss you, is it OK to leave a message? (privacy)  Y____N____ 

2) Do you have any questions or concerns about what we’ll be doing/asking you to do throughout 
this process? 
_________________________________________________________________________ 

Follow up, if approved:  
1) Need transportation? Y___N___ If yes: from where? _________ If no: Parking Pass ________ 

2) Scheduling:  

First Visit Date/Time __________  
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APPENDIX C 

PHYSICAL ACTIVITY READINESS QUESTIONNAIRE 

 
 
1. Has a doctor ever said you have a heart condition and recommended only 

medically supervised activity? 
 
  YES_______  NO_______ 
 

2. Do you have chest pain brought on by physical activity? 
 
  YES_______  NO_______ 
 

3. Have you developed chest pain in the last month? 
 
  YES_______  NO_______ 
 

4. Do you tend to lose consciousness or fall over as a result of dizziness? 
 
  YES_______  NO_______ 
 

5. Do you have a bone or joint that could be aggravated by the proposed physical 
activity? 

 
  YES_______  NO_______ 
 

6. Has a doctor ever recommended medication for your blood pressure or a heart 
condition? 

 
  YES_______  NO_______ 
 

7. Are you aware through your own experience, or a doctor’s advice, of any other 
physical reason against your exercising without medical supervision? 

 
  YES_______  NO_______ 
 
Note:  If you have a temporary illness, such as a common cold, or are not feeling well at 

this time – POSTPONE. 
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APPENDIX D 

MEDICAL HISTORY FORM 

Please fill out and sign in ink. This record is confidential. 
 

Do you take any prescribed or over-the-counter medications? Please include vitamins, herbs, or 
other dietary supplements. If yes please list the dose, frequency and the duration of use. 
______________________________________________________________________________
__________________________________________________________________ 
 

Have you ever been told by a physician that you should not exercise? 
Yes ____ No ____ If yes, please explain: _____________________________ 
________________________________________________________________________ 
 

Do you have or have you EVER had any of the following problems? Check if YES and provide 
details below. 
____ Heart disease/rheumatic fever  ____ Thyroid disorder  ____Asthma 
____ High blood pressure    ____ Claustrophobia  ____Allergies 
____ Elevated Cholesterol   ____ Anemia   ____Stroke 
____ Epilepsy or seizure disorder  ____Diabetes   ___Dizziness 
____ Blurred or double vision 
____ Orthopedic or joint problems (e.g., arthritis) 
____ Shortness of breath or difficulty in breathing 
____ Phlebitis, blood-clots, varicose veins, peripheral vascular disease   

 

Lifestyle 
Do you smoke cigarettes?   Yes ____ No ____ 
Do you drink alcohol?     Yes ____ No ____ 
Do you get regular exercise?    Yes ____ No ____ 
      If yes, number of times per week ________ 
Have you had surgery?     Yes ____ No ____ 
      If yes, when was this? _________________ 
 
Is there any other information or concerns you have that you feel we should know about before 
you participate in the study? If yes please explain.   
___________________________________________________________________________ 
___________________________________________________________________________ 
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APPENDIX E 

MRI SAFETY QUESTIONNAIRE 

Yale University School of Medicine 
Magnetic Resonance Research Center 
300 Cedar Street 
New Haven, CT  06510             
Name:                                                                                  Date of birth:                                        
Today’s date:                                       
 
Please read the following questions carefully.  It is very important for us to know if you have any metal devices or 
metal parts anywhere in your body.  If you do not understand a question, please ask us to explain! 
 
1.  Yes   No  Do you have a heart pacemaker? (if you have a pacemaker, you cannot have an MRI) 

2.  Yes   No  Did you ever have a device implanted somewhere in your body like a heart defibrillator? 

3.  Yes   No  Did you ever have an aneurysm clip implanted during brain surgery? 

4.  Yes   No  Do you have a Carotid Artery Vascular clamp? 

5.  Yes   No  Do you have nerve stimulators (neuron-stimulators also called TENS or wires)? 

6.  Yes   No  Do you have any devices to make bones grow (like bone growth or bone fusion stimulators)? 

7.  Yes   No  Do you have implants in your ear (like cochlear implants)? 

8.  Yes   No  Do you have a Vagus nerve stimulator to help you with convulsions or with epilepsy? 

9.  Yes   No  Do you have a filter for blood clots (Umbrella, Greenfield, bird’s nest)? 

  10.  Yes   No  Do you have embolization coils (Gianturco) in your brain? 

  11.  Yes   No  Do you have implants in your eyes?  Have you ever had cataract surgery? 

  12.  Yes   No   Do you have any stents (small metal tubes used to keep blood vessels open)? 

  13.  Yes   No  Do you have an implanted pump to deliver medication? 

  14.  Yes   No   Do you have an artificial arm or leg? 

  15.  Yes   No  Do you wear colored contact lenses? 

  16.  Yes   No  Do you wear a patch to deliver medicines through the skin?    

  17.  Yes   No  Do you have shrapnel or metal in your head, eyes or skin? 

  18.  Yes   No  Have you ever worked with metal? (For example in a machine shop)? If yes, we need to obtain Orbit x-rays. 

  19.  Yes   No  Have you ever had metal removed from your eyes by a doctor? 

  20.  Yes   No  Have you ever had a gunshot wound?  Or a B-B gun injury? 

  21.  Yes   No  Do you have body-piercing or jewelry on your body? 

  22.  Yes   No  Do you have permanent eye liner? 

  23.  Yes   No  Do you use a hearing aid? 

  24.  Yes   No  Do you wear braces on your teeth or have a permanent retainer? 

  25.  Yes   No  Do you have a “shunt” (a tube to drain fluid) in your brain, spine or heart? 

  26.  Yes   No  Do you have metal joints, rods, plates, pins, screws, nails, or clips in any part of your body? 

  27.  Yes   No  Do you have a tattoo? (We need to make sure it does not heat up during the MRI) 

  28.  Yes   No  Do you get upset or anxious in small spaces? 

  29.  Yes   No  Do you have asthma? Have you ever had an allergic reaction? If yes, to what? __________________ 

  30.  Yes   No   Have you ever had any surgery? Please list all ___________________________________ 

FOR WOMEN 
 31.   Yes   No  Are you breastfeeding? 
 32.   Yes   No  Do you use a diaphragm, IUD, or cervical pessary? 
 33.   Yes   No  Do you think there is any possibility that you might be pregnant? Date of last menstrual period  _______ 

FOR MEN 
 34.   Yes   No  Do you have a penile implant? 
 
Weight _______________________________     Height __________________________________ 
 
Signature: _________________________________________________  Date: ___________________________________



 

155 

APPENDIX F 

PROMIS FATIGUE QUESTIONNAIRE 

Patient-Reported Outcomes Measurement Information System (PROMIS) 
Fatigue Short Form 

 
Please respond to each question by marking one box per row. You may skip questions. 
 
 
In the past 7 days… 
 
  Never Rarely Sometimes Often Always 

1. How often did you feel tired? □ 
1 

□ 
2 

□ 
3 

□ 
4 

□ 
5 

2. How often did you experience extreme 
exhaustion? 

□ 
1 

□ 
2 

□ 
3 

□ 
4 

□ 
5 

3. How often did you run out of energy? □ 
1 

□ 
2 

□ 
3 

□ 
4 

□ 
5 

4. How often did your fatigue limit you at 
work  

(include work at home)? 

□ 
1 

□ 
2 

□ 
3 

□ 
4 

□ 
5 

5. How often were you too tired to think 
clearly? 

□ 
1 

□ 
2 

□ 
3 

□ 
4 

□ 
5 

6. How often were you too tired to take a bath 
or shower? 

□ 
1 

□ 
2 

□ 
3 

□ 
4 

□ 
5 

7. How often did you have enough energy to 
exercise strenuously? 

□ 
1 

□ 
2 

□ 
3 

□ 
4 

□ 
5 
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APPENDIX G 

SUPPLEMENTAL MATERIAL FROM STUDY 1 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Specific Torque and Power by Age Group and Collapsed by Group 
 

Isometric Group: p=0.89 Time: p<0.01 Group x Time: p=0.53 
Torque Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -25.77 -11.53 -23.86 -10.23 -22.78 -12.92 
2r -11.54 -0.63 -11.35 -0.90 -9.88 -2.33 
5r -9.64 0.72 -7.75 2.17 -7.21 -0.04 
10r -9.26 0.19 -9.03 0.02 -7.79 -1.25 
30r -10.95 -0.58 -12.36 -2.43 -10.17 -2.99 
45r -11.03 -1.63 -8.53 0.47 -8.44 -1.93 
60r -9.88 -0.07 -10.92 -1.53 -8.99 -2.21 

 
30°·s-1 Group:p=0.97 Time: p<0.01 Group x Time p=0.59 
Power Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -23.09 -8.81 -23.65 -9.98 -21.32 -11.44 
2r -8.51 5.15 -7.69 5.39 -6.14 3.32 
5r -10.62 3.29 -7.80 5.52 -7.22 2.41 
10r -4.64 8.32 -4.15 8.26 -2.54 6.43 
30r -10.24 1.93 -9.21 2.45 -7.98 0.45 
45r -10.41 7.77 -12.34 5.07 -8.77 3.81 
60r -7.58 3.53 -7.17 3.47 -5.79 1.91 

 
V75 Group: p=0.95 Time: p<0.01 Group x Time: p=0.64 
Power Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -28.31 -10.25 -31.01 -13.72 -27.07 -14.57 
2r -15.83 5.01 -9.59 10.37 -9.72 4.70 
5r -15.13 -0.44 -12.82 1.24 -11.87 -1.70 
10r -13.89 4.94 -9.88 8.15 -9.19 3.85 
30r -16.25 3.07 -16.03 2.47 -13.37 0.00 
45r -13.28 5.70 -15.39 2.77 -11.62 1.52 
60r -12.08 6.61 -15.17 2.73 -10.94 1.99 

 
270°·s-1 Group: p=0.01 Time: p<0.01 Group x Time: p=0.04 
Power Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -26.76 1.49 -52.08 -23.84 -35.28 -15.31 
2r -12.45 1.84 -21.25 -6.97 -14.76 -4.66 
5r -11.14 15.72 -37.34 -10.47 -20.30 -1.31 
10r -13.20 16.63 -31.73 -1.90 -18.10 2.99 
30r -15.97 14.04 -39.68 -9.68 -23.43 -2.21 
45r -10.05 22.32 -34.84 -2.46 -17.70 5.19 
60r -5.90 19.92 -36.08 -10.27 -17.21 1.04 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Voluntary RFD by Age Group and Collapsed by Group 
 

 Group: p=0.59 Time: p<0.01 Group x Time: p=0.07 
 Younger Older Collapsed 

 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -24.86 52.10 11.72 85.40 4.45 57.73 
2r -24.09 16.08 -10.32 28.13 -11.45 16.35 
5r -24.58 14.36 -11.21 26.07 -12.32 14.64 
10r -5.85 21.49 2.12 28.29 2.05 20.98 
30r 3.78 34.18 -13.00 16.10 -0.25 20.79 
45r -7.47 32.63 -13.77 24.62 -4.87 22.89 
60r -11.25 28.97 -13.60 24.90 -6.66 21.17 

 
 
Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Stimulated:Voluntary RFD by Age Group and Collapsed by Group 
 

 Group: p=0.71 Time: p=0.04 Group x Time p=0.02 
 Younger Older Collapsed 

 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -27.58 36.63 8.19 75.53 -0.07 46.45 
5r -30.26 -0.41 -27.89 4.52 -24.53 -2.50 
10r -16.07 10.12 -10.77 16.69 -9.49 9.48 
30r -6.80 27.66 -28.02 9.23 -12.17 13.20 
60r -19.26 20.09 -29.47 11.80 -18.47 10.05 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Time-to-Target Velocity by Age Group and Collapsed by Group 
 

30°·s-1 Group:p=0.25 Time: p=0.52 Group x Time p=0.32 
 Younger Older Collapsed 

 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -59.47 69.17 -1.64 121.52 -12.13 76.92 
2r -31.98 27.14 -0.44 56.16 -7.74 33.18 
5r -21.21 30.80 -3.07 46.73 -4.69 31.31 
10r -33.23 32.54 -1.57 61.41 -7.98 37.55 
30r -21.53 38.93 -0.56 57.33 -2.38 39.47 
45r -14.79 39.18 -6.28 45.38 -2.81 34.55 
60r -7.91 35.98 -11.04 30.98 -3.19 27.20 

 
V75 Group: p=0.23 Time: p=0.65 Group x Time: p=0.23 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r 4.29 30.64 -9.75 15.48 1.05 19.29 
2r -12.38 20.43 -15.15 16.26 -9.07 13.65 
5r -5.53 30.79 -11.52 23.26 -3.32 21.82 
10r -5.18 36.22 -24.94 14.70 -9.13 19.53 
30r -1.64 36.98 -19.64 17.34 -5.10 21.63 
45r -10.46 27.54 -14.31 22.07 -6.94 19.36 
60r -6.86 26.01 -14.67 16.80 -6.06 16.70 

 
270°·s-1 Group: p=0.48 Time: p=0.01 Group x Time: p=0.88 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r 9.53 43.20 7.05 41.61 13.29 37.41 
2r 0.17 31.30 -4.60 26.52 2.34 24.35 
5r 1.86 25.35 0.23 23.73 4.48 21.10 
10r -3.35 20.01 -4.89 18.47 -0.70 15.82 
30r 7.19 36.48 -3.02 26.27 6.37 27.09 
45r 0.11 32.08 -8.77 23.20 0.35 22.96 
60r -1.78 24.78 -11.07 15.49 -2.53 16.25 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Pre-motor Time by Age Group and Collapsed by Group 
 

Isometric Group: p=0.65 Time: p=0.07 Group x Time: p=0.64 
 Younger Older Collapsed 

 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -27.26 103.01 36.08 149.95 22.19 108.70 
2r -20.53 69.47 -16.44 70.64 -5.52 57.09 
5r -56.82 157.47 -7.64 198.76 -1.44 147.33 
10r -26.02 95.37 3.33 119.55 6.05 90.08 
30r -31.97 172.76 -2.13 194.37 12.32 154.20 
45r -10.99 236.17 -30.42 207.59 14.81 186.37 
60r -52.40 171.42 -22.54 191.76 -5.40 149.53 

 
30°·s-1 Group: p=0.13 Time: p=0.23 Group x Time p=0.17 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -27.63 89.11 -74.45 38.17 -34.25 46.85 
2r -19.84 89.59 -81.59 23.93 -34.98 41.03 
5r -22.69 30.81 -28.95 23.21 -18.08 19.27 
10r -5.31 70.44 -49.51 23.01 -16.56 35.87 
30r -17.27 96.64 -68.76 40.30 -26.70 52.15 
45r -29.63 68.38 -72.24 21.60 -36.90 30.95 
60r -37.09 34.14 -48.67 19.52 -32.68 16.63 

 
V75 Group: p=0.43 Time: p=0.37 Group x Time: p=0.31 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -55.85 39.97 0.07 91.81 -14.16 52.17 
2r -33.24 28.83 -24.88 34.55 -20.17 22.80 
5r -80.05 55.20 -29.22 102.90 -35.06 59.47 
10r -38.25 61.89 -2.76 93.11 -6.16 63.15 
30r -26.41 41.86 -29.56 35.80 -18.21 29.05 
45r -26.03 69.39 -40.26 51.10 -19.47 46.57 
60r -16.15 53.10 -15.76 50.54 -6.03 41.90 

 
270°·s-1 Group: p=0.05 Time: p=0.08 Group x Time: p=0.07 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -29.34 22.82 -42.02 11.18 -27.97 9.29 
2r -19.72 27.11 -53.70 -6.87 -29.85 3.26 
5r -7.12 45.05 -60.87 -8.70 -26.35 10.53 
10r -17.84 26.90 -23.42 21.31 -14.08 17.55 
30r -15.43 37.48 -53.37 -1.57 -26.73 10.29 
45r -13.00 51.93 -54.69 8.64 -24.46 20.90 
60r -34.10 29.46 -32.41 29.81 -24.05 20.43 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Pre-motor EMG by Age Group and Collapsed by Group 
 

Isometric Group: p=0.09 Time: p=0.02 Group x Time: p=0.62 
 Younger Older Collapsed 

 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -65.14 76.96 21.20 161.43 -1.30 98.52 
2r -52.32 10.40 -7.95 54.77 -20.95 23.40 
5r -54.14 9.65 -15.24 48.55 -25.35 19.76 
10r -47.51 63.00 0.93 111.44 -7.10 71.03 
30r -21.10 68.84 -4.89 86.96 0.31 64.59 
45r -34.30 34.06 -15.21 53.14 -14.74 33.59 
60r -53.96 18.69 -30.07 42.58 -31.38 20.00 

 
30°·s-1 Group: p=0.61 Time: p<0.01 Group x Time p<0.01 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -13.11 95.51 -13.84 90.16 2.08 77.28 
2r -25.22 39.32 -11.30 51.26 -8.95 35.99 
5r -42.25 18.18 -22.35 35.50 -23.65 18.19 
10r -38.70 20.19 -28.25 28.13 -25.04 15.73 
30r -40.07 85.65 -62.79 57.58 -33.42 53.61 
45r -58.82 12.01 -43.70 24.11 -41.11 7.92 
60r -67.83 -15.36 -20.19 30.05 -36.49 -0.17 

 
V75 Group: p=0.82 Time: p=0.14 Group x Time: p=0.04 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -25.47 46.04 -17.53 53.08 -11.09 39.16 
2r -22.49 33.82 -29.54 26.78 -17.77 22.05 
5r -48.45 15.93 -31.68 32.70 -30.64 14.89 
10r -52.38 14.75 -35.45 31.68 -34.08 13.38 
30r -53.07 9.38 -32.46 30.73 -33.57 10.85 
45r -32.62 36.67 -54.94 14.35 -33.63 15.36 
60r -37.92 24.44 -42.63 19.74 -31.14 12.96 

 
270°·s-1 Group: p=0.79 Time: p=0.05 Group x Time: p=0.19 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -32.47 56.10 -12.83 72.91 -9.89 51.75 
2r -23.07 41.78 -17.85 44.24 -11.17 33.72 
5r -38.05 30.82 -31.62 34.32 -24.97 22.71 
10r -25.72 33.92 -35.03 22.07 -21.83 19.45 
30r -61.46 24.64 -28.82 53.16 -32.84 26.60 
45r -7.86 71.40 -42.60 30.50 -14.09 39.82 
60r -49.65 26.31 -19.90 52.82 -23.90 28.68 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for EMG:Torque Ratio by Age Group and Collapsed by Group 
 

20% 
MVIC Group: p=0.28 Time: p<0.01 Group x Time: p=0.33 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -6.03 24.72 -11.83 17.61 -4.53 16.76 
2r -15.11 2.19 -16.68 -0.12 -13.42 -1.44 
5r -13.75 7.23 -19.97 0.12 -13.85 0.67 
10r -9.37 9.95 -22.07 -3.58 -12.95 0.42 
30r -2.57 21.60 -11.47 11.67 -3.56 13.17 
45r -11.20 25.09 -22.08 12.67 -11.44 13.68 
60r -17.04 9.39 -21.43 3.88 -15.45 2.85 

 
50% 
MVIC Group: p=0.19 Time: p<0.01 Group x Time p<0.01 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r 19.64 43.45 -4.16 18.63 11.15 27.63 
2r -16.51 3.01 -10.03 8.66 -10.47 3.04 
5r -4.88 16.45 -16.59 3.84 -7.68 7.09 
10r -4.96 17.20 -14.65 6.58 -6.63 8.71 
30r -0.47 23.30 -8.80 13.95 -1.23 15.22 
45r -9.50 19.79 -16.92 11.12 -9.02 11.26 
60r -16.48 14.59 -20.00 9.74 -13.79 7.71 

 
100% 
MVIC Group: p=0.94 Time: p<0.01 Group x Time: p=0.93 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r 17.51 48.49 18.30 47.96 22.35 43.79 
2r -7.55 13.81 -3.14 17.31 -2.29 12.50 
5r -11.93 5.72 -9.90 6.99 -8.39 3.83 
10r -10.48 12.72 -9.84 12.37 -6.84 9.22 
30r -4.24 19.22 -7.27 15.19 -2.39 13.85 
45r -9.51 17.83 -8.51 17.67 -5.09 13.83 
60r -10.39 20.04 -9.25 19.88 -5.46 15.60 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Stimulated Measures by Age Group and Collapsed by Group 
 

RFD Group: p=0.54 Time: p=0.01 Group x Time: p=0.54 
 Younger Older Collapsed 

 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -0.28 23.38 -14.01 12.15 -3.51 14.13 
5r 5.14 25.29 -0.20 22.25 5.58 20.66 
10r 1.84 23.64 -1.44 22.67 3.55 19.80 
30r -0.56 19.62 -1.36 21.02 2.15 17.22 
60r 0.63 19.18 -0.36 20.15 2.99 16.81 

 
RFR Group: p=0.11 Time: p<0.01 Group x Time p=0.12 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -37.73 -21.61 -38.41 -20.59 -35.59 -23.58 
5r -6.56 1.17 -0.12 8.57 -2.14 3.67 
10r -7.87 10.52 1.75 22.08 -0.23 13.47 
30r -6.87 14.04 0.19 23.36 -0.12 15.48 
60r -7.81 3.50 -3.77 8.72 -4.05 4.37 

 
T1/2 Group: p=0.44 Time: p<0.01 Group x Time: p=0.23 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r 13.91 51.47 18.64 60.17 22.05 50.04 
5r -11.43 6.10 -10.96 8.87 -8.47 4.76 
10r -12.06 1.21 -18.66 -3.98 -13.32 -3.43 
30r -7.95 8.23 -20.02 -2.03 -11.49 0.60 
60r -2.10 16.42 -16.13 4.35 -6.27 7.54 

 
10:80Hz 
Ratio Group: p=0.07 Time: p<0.01 Group x Time: p=0.82 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -22.59 -4.71 -32.42 -12.65 -24.76 -11.43 
5r -9.16 3.07 -18.93 -4.26 -12.09 -2.54 
10r -21.99 -9.89 -26.46 -13.07 -22.36 -13.34 
30r -21.65 -8.49 -26.39 -11.64 -21.98 -12.10 
60r -16.08 -4.64 -20.73 -8.09 -16.65 -8.13 
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Main effects, Interaction, and 95% Confidence Intervals for Changes from Baseline 
for Ratings of Perceived Exertion by Age Group and Collapsed by Group 
 

20% 
MVIC Group: p=0.43 Time: p<0.01 Group x Time: p=0.20 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r 0.29 0.98 0.21 0.87 0.35 0.83 
2r -0.09 0.45 -0.30 0.22 -0.12 0.26 
5r -0.31 0.13 -0.40 0.02 -0.29 0.01 
10r -0.27 0.45 -0.34 0.34 -0.20 0.29 
30r -0.13 0.50 -0.47 0.14 -0.21 0.23 
45r -0.21 0.75 -0.48 0.44 -0.21 0.46 
60r -0.54 0.36 -0.45 0.41 -0.37 0.26 

 
50% MVIC Group: p=0.30 Time: p<0.01 Group x Time p=0.69 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -0.05 1.69 0.58 2.25 0.51 1.72 
2r -0.66 0.11 -0.53 0.20 -0.49 0.05 
5r -0.72 -0.01 -0.59 0.09 -0.55 -0.06 
10r -0.80 0.07 -0.59 0.25 -0.57 0.04 
30r -0.33 0.51 -0.18 0.65 -0.13 0.46 
45r -0.70 0.43 -0.46 0.62 -0.42 0.36 
60r -0.90 0.17 -0.45 0.58 -0.52 0.22 

 
100% 
MVIC Group: p=0.05 Time: p=0.04 Group x Time: p=0.33 

 Younger Older Collapsed 
 Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI 
0r -0.31 1.22 0.60 2.07 0.36 1.42 
2r -0.75 0.93 0.28 1.89 0.00 1.17 
5r -1.08 0.54 0.14 1.69 -0.24 0.88 
10r -1.43 0.52 0.07 1.93 -0.40 0.95 
30r -1.40 1.04 -0.43 1.91 -0.57 1.12 
45r -1.80 0.71 -0.21 2.21 -0.64 1.10 
60r -1.85 0.57 0.01 2.33 -0.57 1.10 
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Absolute (top) and Relative (bottom) Torque-Velocity Curves 
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Recovery of Rate of Activation in Absolute Units.  This measure was proposed in 
Chapter 4, but due to a lack of confidence in the measure, this data was excluded from 
the document. 
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Recovery of Rate of Activation Relative to Baseline.  This measure was proposed in 
Chapter 4, but due to a lack of confidence in the measure, this data was excluded from 
the document. 
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Recovery of 10 and 80Hz Tetanic Torque Relative to Baseline.  There were no 
differences by group at either frequency (p≥0.18).  At both frequencies, the 0R and 60R 
torques were lower than baseline in both groups (p<0.01). 
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Effects of a Repeated Fatigue Bout on Torque and Power Following 60 Minutes of 
Recovery.  There was a significantly greater fatigue during the second bout for all 
velocities (p≤0.03). 
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Comparison of Fatigue Bouts across Visits.  There was no difference in fatigue by 
group (p=0.12) or visit (p=0.28). 
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APPENDIX H 

SUPPLEMENTAL MATERIAL FROM STUDY 2 
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Absolute (top) and Relative (bottom) Torque-Velocity Curves 
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Sample Baseline COP Recording from 1 Older Participant.  Location of the markers 
and COP are labeled. 
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Recovery of Peak COP Velocity.  There were no differences from baseline at 2r or 60r 
(p≥0.28) 
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Recovery of Minimum TtC Based on a Single Point within the 30 Second Recording 
Period.  There were no significant changes from baseline in either direction at the 2r or 
60r (p≥0.23). 
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Preliminary Data Assessing Recovery of COP Range During the Chair Rise Task.  
Range was assessed only during the times when the participant was supporting at least 
25% of their body weight.  There was no significant change from baseline at either time-
point (p≥0.32). 
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