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The Chlamydia trachomatis plasmid is a virulence factor. Plasmid copy number, C. trachomatis load and disease severity were
assessed in a treatment-naive population where trachoma is hyperendemic. By using droplet digital PCR, plasmid copy number
was found to be stable (median, 5.34 [range, 1 to 18]) and there were no associations with C. trachomatis load or disease severity.

Trachoma is caused by infection with ocular strains of Chla-
mydia trachomatis. The 7.5-kb C. trachomatis plasmid has

been shown to function as a virulence factor in animal models (1,
2). Phenotypic differences exist between plasmid-cured and wild-
type C. trachomatis strains with respect to infectivity, glycogen
accumulation, induction of inflammation, and activation of Toll-
like-receptor pathways (3, 4). Plasmid deletion mutagenesis stud-
ies showed that deletion of the plasmid-borne pgp4 gene results in
an in vitro phenotype identical to that of a plasmid-free strain (5).
This supports bacterial transcriptome analysis showing a decrease
in transcript levels of a subset of chromosomal genes in a naturally
occurring plasmid-free strain of C. trachomatis, demonstrating
that the plasmid is a transcriptional regulator of virulence-associ-
ated genes (6).

There is little information in the literature relating plasmid
copy number (per genome) to virulence (7–9). The mechanisms
of plasmid virulence are not clearly defined, particularly in natu-
rally occurring infections. We assessed plasmid copy number vari-
ation and its association with disease severity in ocular C. tracho-
matis infection from a treatment-naive population on the Bijagós
Archipelago of Guinea Bissau where trachoma is hyperendemic.

This study was conducted in accordance with the declaration
of Helsinki. Ethical approval was obtained from the Comitê Na-
cional de Ética e Saúde (Guinea Bissau), the LSHTM Ethics Com-
mittee (United Kingdom), and the Gambia Government/MRC
Joint Ethics Committee (The Gambia). Written (thumbprint or
signature) informed consent was obtained from all study partici-
pants or their guardians as appropriate. Following the survey all
communities on the study islands were treated with azithromycin
in line with WHO and national protocols.

Individuals from 300 randomly selected households from 38
villages on four islands were examined by a single trained exam-
iner using the simplified WHO and modified FPC grading systems
(10, 11). In the FPC system, follicles (F), papillae (P), and con-
junctival scarring (C) are separately scored on a scale of 0 to 3.
Active disease (TF [follicular trachoma] or TI [inflammatory tra-
choma] according to the simplified WHO system) equates to F2/3
and P3, respectively. C2/3 (and in some cases C1) is equivalent to
TS (trachomatous scarring). Both systems were used to provide
detailed phenotypic information and comparability with other
studies. Individuals’ age, sex, and ethnicity were recorded.

Swabs were taken from the left upper tarsal conjunctiva of each
participant using a validated procedure (12, 13). Swabs were col-

lected dry into microcentrifuge tubes (Simport, Canada), kept on
ice in the field, and frozen to �80°C within 8 h of collection.
Measures were taken to avoid cross-contamination in the field
and in the laboratory (13).

DNA extraction and droplet digital PCR (ddPCR) for detec-
tion of C. trachomatis plasmid were conducted as described pre-
viously (14). A second duplex assay was used to estimate plasmid
and chromosome (omcB) target concentrations within the same
reaction in plasmid-positive samples. We used published primer-
probe target sequences appropriate for quantitation of all geno-
vars of C. trachomatis (7, 14). We used a modified omcB probe to
improve quenching efficiency and reduce background fluores-
cence (Table 1). Methods for master mix preparation, droplet
generation, thermal cycling conditions, droplet reading, target
DNA concentration calculation, and retesting of saturated sam-
ples are described elsewhere (14). Estimated quantities of omcB
and plasmid are expressed as copies/swab. C. trachomatis load
refers to omcB copies/swab. Plasmid copy number (per genome)
was calculated using the plasmid/genome ratio.

Raw quantitation data were processed as previously described
(14). Geometric mean omcB load and linear and logistic regression
analyses (with odds ratios [OR]) were conducted in STATA 12
(Stata Corporation, College Station, TX) to examine associations
between plasmid copy number, load, and detailed clinical pheno-
type. C. trachomatis load and plasmid copy number data were
log(e) transformed, and robust standard error was used where
indicated.

Of 1,511 individuals enrolled, 1,508 individuals consented to
ocular assessment, and 1,507 conjunctival swabs were obtained.
The median age of participants was 13 years (1 month to 88 years),
and 57% were female. Most participants were of the Bijagós ethnic
group. The prevalence of active trachoma (TF/TI) in 1- to 9-year-
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olds was 21% (136/660) (95% confidence interval [CI], 17.89 to
24.11%). Overall, 11% had clinically active trachoma (164/1,508)
(95% CI, 9.42 to 12.58%). C. trachomatis plasmid DNA was de-
tected in 16% overall (233/1,507) (26% of 1- to 9-year-olds). All
samples were adequate according to criteria described previously
(14).

C. trachomatis load was estimated in 79% (184/233) of plas-

mid-positive samples. In 21% of samples where plasmid load was
very low, omcB was below the level of detection.

The geometric mean estimated number of omcB copies/swab
varied by clinical phenotype: 294 copies/swab (95% CI, 165 to
524) in 73 subjects with normal conjunctivae, 8,562 copies/swab
(95% CI, 5,412 to 13,546) in 92 with active trachoma, and 928
copies/swab (95% CI, 280 to 2,074) in 19 with scarring.

The median plasmid copy number was 5.34 (1 to 18.03) (Fig.
1). Plasmid copy number was stable in infections across the four
study islands (Kruskal-Wallis H [�2] � 4.5001 [df � 3; P �
0.2123]). Plasmid copy number was not associated with the pres-
ence of active trachoma (OR, 1.00; 95% CI, 0.88 to 1.12; P �
0.960), severity of inflammatory (OR, 1.04; 95% CI, 0.927 to
1.162; P � 0.515) or follicular (OR, 1.03; 95% CI, 0.922 to 1.159;
P � 0.572) disease, or C. trachomatis load (Table 2). At lower
loads, the variance was highly heterogeneous (Levene’s W0 � 55.3;
df � 2; P � 0.000000001) (Fig. 2).

The theoretical advantages of ddPCR are presented by Hind-
son et al. (15). These include nanoliter-sized droplet partitioning
of the reaction, which promotes optimal primer-template inter-
action conditions robust to variation in PCR efficiency, thus en-
abling accurate estimation of both plasmid and omcB copy num-
bers within the same reaction. We have discussed the precision
and accuracy of our diagnostic ddPCR assay elsewhere (14).

TABLE 1 Primer and probe sequences for control and C. trachomatis
targets using the ddPCR systema

Molecular target and primer or probe Nucleotide sequence and modifications

Homo sapiens RNase P/MRP 30-kDa
subunit (RPP30) (internal
control)

Forward primer (RPP30-F) 5= AGA TTT GGA CCT GCG AGC G 3=
Reverse primer (RPP30-R) 5= GAG CGG CTG TCT CCA CAA GT 3=
Probe (RPP30_HEX_BHQ1) 5=HEX-TTC TGA CCT GAA GGC TCT GCG

CG-BHQ1 3=

C. trachomatis cryptic plasmid
pLGV440 (circular; genomic
DNA; 7,500 bp)

Forward primer (Ct-plasmid-F) 5= CAG CTT GTA GTC CTG CTT GAG AGA
3=

Reverse primer (Ct-plasmid-R) 5= CAA GAG TAC ATC GTT CAA CGA AGA
3=

Probe (Ct-plasmid_FAM_BHQ1)b 5= 6FAM-CCC CAC CAT TTT TCC GGA
GCG A-BHQ1 3=

Probe (Ct-plasmid_HEX_BHQ1)c 5=HEX-CCC CAC CAT TTT TCC GGA GCG
A-BHQ1 3=

C. trachomatis (serovar A) omcB gene
Forward primer (Ct-omcB-F) 5= GAC ACC AAA CGC AAA GAC AAC AC 3=
Reverse primer (Ct-omcB-R) 5= ACT CAT GAA CCG GAG CAA CCT 3=
Probe (Ct-omcB-FAM-BHQ1) 5= 6FAM-CCA CAG CAA AGA GAC TCC

CGT AGA CCG-BHQ1 3=
a MRP, mitochondrial RNA processing endoribonuclease; 6FAM, 6-carboxyfluorescein
reporter; BHQ1, black hole quencher 1; HEX, hexachlorofluorescein reporter.
b C. trachomatis plasmid probe used in screening (first) assay.
c C. trachomatis probe used in quantitative (second) assay.
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FIG 1 Distribution of plasmid copy number variation in naturally occurring ocular infections with C. trachomatis within the study population. se, standard
error.

TABLE 2 Relationship between plasmid copy number and
C. trachomatis loada

No. of omcB
copies/swab

No. of
samples

Plasmid copy no.

Variance Minimum Median Maximum

�100 41 19.8139 1 4.1514 18.0291
100–10,000 82 2.7136 1 5.3421 9.2819
�10,000 62 1.0814 3.6164 5.4261 8.3947

a Kruskall Wallis H (�2) � 4.58; df � 2; P � 0.10.
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There are a few published studies examining plasmid copy
number in reference strains of C. trachomatis (7–9, 16, 17). Pickett
et al. showed that across 12 C. trachomatis serovars, the plasmid
copy number was not significantly different, but there were vari-
ations depending on growth phase and condition during in vitro
culture (7). Seth-Smith et al. showed an increased plasmid copy
number in ocular relative to urogenital strains (8). We demon-
strate a stable plasmid copy number distribution in naturally oc-
curring ocular C. trachomatis infection that does not vary with
geographic location, clinical phenotype, or C. trachomatis load.
Our data show that ddPCR may have limitations in measuring
plasmid copy number in very-low-load infections (�200 omcB
copies/swab), where plasmid copy number variance is greatest.
This observation may reflect a breakdown in the assumptions re-
quired to apply the Poisson distribution to accurately estimate
load with ddPCR. Despite the caveats, our data suggest plasmid
copy number stability in naturally occurring ocular C. trachomatis
infection.

Maintenance of the plasmid at low copy numbers carries an
inherent risk during cell partition (18), but naturally occurring
plasmid-free strains are rare (19–21). A lower-risk, higher-copy-
number system is metabolically expensive but may confer a fitness
advantage. Thus, the maintenance of 5 or 6 plasmids per genome
may maximize infectivity or intracellular survival while provoking
minimal host immune response.

Though there is convincing evidence that the chlamydial plas-
mid is a virulence factor (3, 4, 6, 22–24), our data suggest that
plasmid copy number is not associated with disease severity and
that additive gene dosage effects do not appear to correlate with
pathogen virulence in vivo. This supports in vitro work showing no
association between plasmid copy number and tissue tropism (9).
Previous work in vitro and in animal models suggests that subtle
genomic differences between chlamydial isolates are associated
with differences in growth kinetics, immune responses, and pa-
thology (25, 26). Further epidemiological and in vitro studies us-
ing comparative pathogen genomics to examine these associations
are required to fully understand the relationship between disease
severity and chlamydial virulence.
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