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Abstract
Pneumococcal conjugate vaccines (PCVs) have substantially reduced morbidity and mor-

tality of pneumococcal disease. The impact of the 7-valent PCV on all-serotype invasive

pneumococcal disease (IPD) among children was reported to vary between high-income

countries. We investigate the ability to predict this heterogeneity from pre-vaccination data.

We propose a parsimonious model that predicts the impact of PCVs from the odds of vac-

cine serotype (VT) among carriers and IPD cases in the pre-PCV period, assuming that VT

are eliminated in a mature PCV programme, that full serotype replacement occurs in car-

riage and that invasiveness of the NVT group is unchanged. We test model performance

against the reported impact of PCV7 on childhood IPD in high-income countries from a re-

cent meta-analysis. The odds of pre-PCV7 VT IPD, PCV schedule, PCV coverage and

whether a catch up campaign was used for introduction was gathered from the same analy-

sis. We conducted a literature review and meta-analysis to obtain the odds of pre-PCV7 VT

carriage in the respective settings. The model predicted the reported impact on childhood

IPD of mature PCV programmes; the ratio of predicted and observed incidence risk ratios

was close to 1 in all settings. In the high income settings studied differences in schedule,

coverage, and catch up campaigns were not associated with the observed heterogeneity in

impact of PCV7 on childhood all-serotype IPD. The pre-PCV7 proportion of VT IPD alone

also had limited predictive value. The pre-PCV7 proportion of VT carriage and IPD are the

main determinants for the impact of PCV7 on childhood IPD and can be combined in a sim-

ple model to provide predictions of the vaccine preventable burden of IPD.

Author Summary

Pneumococcal vaccines (PCVs) that protect children against 7, 10 and 13 of the most
pathogenic pneumococcal serotypes have substantially reduced childhood morbidity and
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mortality. A recent analysis that evaluated the impact of the 7 valent PCV in multiple
high income settings in North America, Europe and Oceania found that the magnitude of
all-serotype invasive pneumococcal disease reduction varied greatly between settings
(24%-83%). We explored potential sources for that variation, including differences in dis-
ease epidemiology before vaccination, vaccine coverage, vaccine schedules and the use of
catch-up campaigns for introduction. We find that differences in reported disease impact
among mature PCV programmes are likely to be unrelated to the differences in the vac-
cine programme but can be predicted from a simple model based on pre-vaccination epi-
demiology, in particular the proportion of vaccine serotypes detected among patients
with invasive pneumococcal disease and the proportion of vaccine serotypes that are
found in the nasopharynx of healthy individuals. This model presents a useful tool to esti-
mate the potential impact of PCVs (as a relative rate reduction), highlights the essential
role of pre-vaccination carriage in healthy individuals for disease impact of PCVs and can
estimate the prevented burden of disease where disease surveillance is unavailable.

Introduction
TheWord Health Organisation estimates that Streptococcus pneumoniae is associated with
about 5% of all-cause child mortality globally; over 90% of these pneumococcal deaths occur in
low income countries [1]. Pneumococcal conjugate vaccines (PCVs) are part of the routine in-
fant immunization schedule in most high income countries, resulting in a substantially reduced
burden of serious pneumococcal disease [2–4]. PCVs are also being introduced into the routine
vaccination programmes of low and middle income countries, partly with the financial support
of Gavi, the Vaccine Alliance [5–7]. PCVs provide protection against nasopharyngeal carriage
and disease for serotypes included in the vaccine (VT); these serotypes have been associated
with the majority of invasive pneumococcal disease (IPD) globally [8]. Protection against VT
nasopharyngeal carriage opens an ecological niche which is filled by the non-vaccine pneumo-
coccal serotypes (NVT); a process termed serotype replacement [9–11]. This increase in NVT
colonization prevalence results in an increased rate of NVT disease; however, because these se-
rotypes are inherently less likely to cause disease among young children than VT strains, there
is a substantial net benefit [12]. Understanding the interplay between VT protection and NVT
replacement is essential for the assessment of the total impact of PCVs [13,14].

Despite being consistently beneficial, substantial heterogeneity in the relative impact of
PCV7 on all-serotype IPD rates has been observed across settings, with impact estimates in
children younger than 5 years ranging from 24% to 83% in mature programmes [12]. This het-
erogeneity is thought to result from interactions of vaccine coverage, vaccination schedule, se-
rotype distribution, demographic structure and social mixing patterns, catch up campaigns at
introduction, time since PCV introduction, and disease surveillance sensitivity. The contribu-
tion of each of those factors to the observed heterogeneity in PCV impact on all-serotype IPD
is unclear. PCVs are amongst the most expensive vaccines that are routinely used for infant
vaccination. Although the Advance Market Commitment (AMC) and the support of Gavi, the
Vaccine Alliance substantially reduced the PCV price for low income countries [15] and pooled
procurement might help reducing the costs for middle income countries [16] PCVs pose a con-
siderable investment that requires robust evidence about its likely impact. A better understand-
ing of the main factors that determine the impact of PCVs is essential to reduce the uncertainty
around the impact and cost-effectiveness estimates of PCVs in PCV-naive countries, as well as
for the assessment of the likely impact of future PCV compositions and to inform programme
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maintenance justifications. While better impact predictions may help with a faster introduction
of PCVs globally, the justification of existing pneumococcal immunisation programmes will
become particularly important for countries that have introduced PCVs with financial support
from Gavi, the Vaccine Alliance and will graduate from that support. These countries have to
evaluate the merits of vaccination at or below the agreed tail price of PCV under the AMC
agreements, however, measuring disease impact is only possible in a limited number of coun-
tries. Disease impact models are therefore important for many countries.

Available methods to predict the likely impact of PCV on disease include models accounting
for carriage and disease serotype distribution and replacement as the main drivers for PCV im-
pact [14,17,18] and more complex transmission models [19–21]. To date little validation of the
models capability to accurately predict post vaccination changes in pneumococcal disease is
available. We evaluate the ability of the pre-vaccination pneumococcal serotype distribution in
both nasopharyngeal carriage and disease, vaccine coverage, schedule and catch up campaigns
to predict the impact of PCV7 on invasive pneumococcal disease in children less than five
years old and the importance of each of those factors for the accuracy of the prediction.

Materials and Methods

A predictor of PCV impact on pneumococcal disease
To predict the impact of PCV on pneumococcal disease we employ a model that is similar to
previous approaches and uses changes in pneumococcal carriage to predict the impact of PCV
on IPD [14,17,18,22].

For simplicity we assume a perfectly monitored homogenous population. Note that the
methods can be derived similarly if imperfect sensitivity of carriage and/or disease surveillance
and a heterogeneous population is assumed, as long as surveillance sensitivity and population
heterogeneity does not change after vaccination. In this population and in the absence of PCV
vaccination the rate of pneumococcal disease (D) per person-time can be expressed as a func-
tion of the rate of carriers (C) per person-time and the average ratio at which a carriage episode
results in disease (F = D/C), stratified by vaccine and non-vaccine serotypes respectively:

D ¼ CvtFvt þ CnvtFnvt:

The parameter F is also called the case to carrier or invasiveness ratio for VT or NVT, which
corresponds to the mean of the serotype specific invasiveness ratios weighted by serotype-spe-
cific carriage prevalence. We further assume that (i) vaccine serotype carriage will eventually
be eliminated through routine use of PCV (C�

vt ¼ 0), the superscript star indicating post vacci-
nation, (ii) that a proportion, l 2 ½0; 1� of pre-PCV VT carriage is replaced by NVT carriage
(C�

nvt ¼ lCvt þ Cnvt), and (iii) that the invasiveness ratio of the non-vaccine serotypes group re-
mains unchanged after vaccination (F�

nvt ¼ Fnvt). Then the rate of pneumococcal disease in a

mature PCV-vaccination programme (D�), when the programme has been in place long
enough for direct and indirect effects to become fully established, can be expressed as a func-
tion of pre-vaccination pneumococcal carriage rates and the invasiveness of the NVT group
of serotypes:

D� ¼ lCvt þ Cnvtð ÞFnvt:

Then the expected Incidence Rate Ratio (IRR), simplifies to:

IRR ¼ D�

D
¼ lcþ 1

d þ 1
;

where c and d are the odds of VT carriage and disease, respectively prior to vaccination. That is
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c = Cvt / Cnvt and d = Dvt / Dnvt. Note that, although technically c and d are the odds based on
disease and carriage rates, it is equivalent to calculate the odds based on counts even if carriage
and disease data arise from samples of different sizes or proportions of VT and NVT among
pneumococcal carriage and disease rates. For convenience we will mainly refer to
proportions hereafter.

Therefore, if c and d can be obtained from representative samples of the population, the ex-
pected percentage change in IPD after vaccination, one of the key measures of vaccine impact,
can be estimated from pre-vaccination data alone (given an informed assumption on the level
of replacement (λ) is available).

Data for the validation of the prediction model
To test the performance of our predictor and the potential importance of other factors in ac-
counting for the observed heterogeneity of PCV impact we compared the change in IPD rate
after routine use of PCV7 with model predictions that use pre-vaccination data on the propor-
tion of VT in IPD and pneumococcal carriage in a sample of the population from the same study
site or country. We assumed that carriage and disease in these sub-population were representa-
tive of that in the respective study site or country. We further assumed that the mean duration of
carriage for VT and NVT is similar which allowed the use of carriage prevalence for the calcula-
tion of the odds of VT carriage. We studied two predictions: (i) our main prediction that assumes
complete serotype replacement in nasopharyngeal carriage (λ = 1) as is observed in most settings
where PCV7 was introduced for routine vaccination and (ii) an alternative prediction that as-
sumes no serotype replacement in carriage (λ = 0). This prediction requires no carriage data be-

cause it reduces to IRR ¼ Dnvt
D
. This prediction illustrates the impact of assuming that all vaccine

preventable IPD is eliminated and does not take into account serotype replacement
Observed IRR. The impact of 7-valent pneumococcal conjugate vaccination on invasive

pneumococcal disease, as measured by incidence rate ratios (IRR), has recently been summa-
rized from country specific IPD disease rate surveillance data pre- and post- PCV routine use
[12]. We used the IRR estimates on all serotype IPD in children under 5 years of age three years
after the start of routine vaccination as the observed impact against which we assessed the pre-
dicted impact and the role of potential modifying factors on those estimates (see Table 1). Three
years has been deemed sufficient time to allow for almost complete elimination of VT disease
and completion of serotype replacement in carriage and disease in under 5 year old children in
the UK and US [4,23]. This may vary in other countries, depending on factors including vaccine
coverage and the use of catch up campaigns. However, Feikin and colleagues [12] reported a re-
duction of VT IPD in under 5 year old children that was significantly lower than 90% in the 3
years after introduction of vaccination in only 1 out of 14 settings. The mean reduction after 3
years was 91%. Sensitivity analyses which compare model predictions against observed impact
after 4, 5 and 6 years are reported in the appendix. Only data in under 5 year old children were
considered because carriage information in older age groups is sparse and indirect effects, both
VT elimination and serotype replacement, in those age groups, take longer to reach maximum
impact. To limit the potential bias of surveillance artefacts we excluded all settings that reported
a decrease of NVT IPD incidence after the introduction of PCV. Hence Norway was excluded
from the main analysis but was included in our assessment of model sensitivity and reported in
the appendix.

Pre-vaccination IPD serotype distribution data. In addition to the observed impact of
PCV7 on IPD, Feikin et al. [12] also reported the pre vaccination proportion of VT IPD for
each surveillance setting (see Table 1). The proportion of NVT IPD was calculated as
1-proportion of VT IPD.
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Pre-vaccination carriage serotype distribution data. Studies with carriage prevalence es-
timates for those settings where the impact of PCV7 on IPD was reported, or any subset of that
population, were identified through a systematic review, based on the citations retrieved in a
recent systematic review of nasopharyngeal carriage in adults and children [24] (Table 1 and
S1 Fig). In brief: MEDLINE and Embase electronic databases were used to retrieve articles up

Table 1. Description of the data.

Vaccine
schedule

Catch
up

PCV7
coverage*

Sites VT
%

N
IPD

Sites VT% N
PNC

Source Observed Predicted
(λ = 1)

Predicted /
Observed

Invasive Pneumococcal
Disease

Pneumococcal Carriage IRR

ABCs 3+1 Y 39% Active Bacterial
Core
surveillance
USA

88% 715 Atlanta 61.5% 91 [45] 0.33 (0.27
to 0.41)

0.31 (0.23
to 0.44)

0.95 (0.64 to
1.41)

AIP 3+1 Y 46% Alaska 81% 95 8 rural villages 55.4% 377 [46]

Anchorage 53.8% 171 [47]

Pooled estimate 54%
(25% to
77%)

0.40 (0.22
to 0.73)

0.41 (0.21
to 0.87)

1.01 (0.42 to
2.68)

AUSI 3+PPV Y 77% Australia
Indigenous

66% 100 Remote
community in
northern
Australia

30.0% 80 [48] 0.60 (0.29
to 1.22)

0.49 (0.35
to 0.65)

0.80 (0.37 to
1.72)

AUSN 3+0 Y 90% Australia non-
Indigenous

89% 1245 Darwin 80.8% 125 [48] 0.46 (38 to
0.57)

0.57 (0.40
to 0.90)

1.25 (0.81 to
2.05)

DEN 2+1 Y 89% Denmark 70% 455 Roskilde 33.2% 247 [49] 0.39 (0.27
to 0.57)

0.45 (0.38
to 0.53)

1.15 (0.77 to
1.73)

E&W 2+1 Y 89% England &
Wales

78% 3450 Hertfordshire 67.1% 85 [9]

Oxford 56.4% 349 [50]

London 57.1% 119 [51]

Sheffield 68.5% 111 [52]

Oxfordshire 56.7% 60 [53]

Oxfordshire 64.2% 95 [54]

Pooled estimate 61%
(54% to
68%

0.55 (0.50
to 0.61)

0.57 (0.48
to 0.69)

1.03 (0.85 to
1.30)

NAV 3+1 Y 68% Navajo and
White Mountain
Apaches

58% 100 Navajo and
White Mountain
Apaches

38.0% 258 [55] 0.76 (0.38
to 1.28)

0.68 (0.52
to 0.85)

0.89 (0.42 to
1.86)

NCK 3+1 Y 47% Northern
California
Kaiser
Permanente

81% 88 California 60.0% 5 [56] 0.70 (0.38
to 1.53)

0.48 (0.19
to 204.55)

0.71 (0.22 to
2.45)

NLD 3+1 N 94% Netherlands 74% 245 Western
Netherlands

55.4% 213 [57]

Rotterdam 54.5% 220 [58]

Pooled estimate 52%
(21% to
79%)

0.53 (0.33
to 0.86)

0.56 (0.33
to 1.17)

1.06 (0.53 to
2.45)

Description of study sites contributing information about pre-PCV IPD cases [12] and NP colonization characteristics, in children less than 5 years of age.

Where multiple studies on nasopharyngeal carriage per IPD setting were included also a pooled estimate (S1 Fig) is presented.

*average vaccine coverage in the first 3 years after introduction of PCV7

doi:10.1371/journal.pcbi.1004173.t001
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to 23rd August 2013 (i.e. week 35) employing the following combination of search terms:
‘(pneumonia OR pneumoniae OR pneumococcal OR pneumococcus) AND (carriage OR colo-
nization OR colonisation)’ in the title or the keywords or the abstract. Articles which fulfilled
the eligibility criteria by providing (i) pneumococcal nasopharyngeal carriage prevalence esti-
mates (ii) in a population not previously exposed to PCV, with (iii) nasopharyngeal sampling
and transport procedures as well as S. pneumoniae culture based onWHO guidelines and
(iv) where the study was not restricted to specific serotypes or to S.pneumoniae with specific
patterns of antibiotic sensitivity were retrieved.

Of the 376 studies that provided pre-PCV NP carriage estimates, 360 were excluded because
they were not in populations where the disease impact was monitored, or because they did not
report the proportion of under 5 year old children with nasopharyngeal carriage of any of the
serotypes included in PCV7. 16 studies provided data on carriage serotype distribution before
introduction of PCVs (Table 1). The carriage data were extracted by two reviewers indepen-
dently and discrepancies were resolved by consensus.

We abstracted information on the number of carriers of encapsulated pneumococci (assum-
ing that vaccination has no impact on non-encapsulated pneumococci and that those do not
substantially contribute to serotype replacement) and the proportion carrying serotypes in-
cluded in PCV7. In longitudinal studies with repeated sampling of the same individuals, the av-
erage VT and NVT carriage prevalence was calculated and the study size was assumed to be
the number of unique study participants. We did not account for differences in age distribution
due to non-random sampling from the under 5 year old population. Each of the included car-
riage studies was conducted only on a small subset of the respective populations monitored for
IPD. We assumed that the carriage serotype distributions in those studies are representative of
the carriage serotype distributions found in the populations that were monitored for IPD.

Where multiple studies on nasopharyngeal carriage were conducted within different subsets
of the same population that were monitored for IPD, the results from those studies were com-
bined via a Bayesian random effects meta-analysis.

Data on other potential sources of heterogeneity in PCV impact. Feikin et al. [12] re-
ported information on potential sources of heterogeneity for the impact of vaccination includ-
ing the average vaccine coverage in the first 3 years after introduction of PCV7, the routine
vaccination schedule and whether PCV was introduced with a catch up campaign among older
children (Table 1).

Statistical analysis
To calculate the predicted IRRs and its corresponding distributions we assumed that both the
proportion of VT among carriers and among IPD were samples from binomial distributions
and drew 10,000 bootstrap samples. Where the proportion of VT carriers was derived through
the Bayesian meta-analysis we drew the bootstrap samples from the respective posterior distri-
bution instead (S2 Fig). Similarly, we assumed that the observed IRR were samples from log-
normal distributions with confidence bounds matching those reported by Feikin et al [12].

We calculated the marginal distribution of observed IRRs for a specific schedule, coverage
range or the use of a catch-up campaign upon implementation by bootstrap sampling from the
respective observed IRR distributions (S3 and S4 Figs). The different impact of, e.g. a 3+1
schedule versus a 2+1 schedule, on the observed IRR was estimated through the ratio of the
marginal distribution of IRRs of the 3+1 schedule settings and the marginal distribution of
IRRs of the 2+1 schedule settings. A ratio centered around 1 indicates that the average impact
of PCV7 in settings with either a 2+1 or a 3+1 schedule was similar.

Colonisation Is Needed for PCV Impact Prediction
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We estimated the setting specific performance of our predicted IRRs by calculating the ratio
of the predicted IRR to the observed IRR. A ratio of 1 is indicative of a perfect prediction. Non-
parametric bootstrapping methods were used to infer confidence intervals.

All analysis was performed in R version 3.1 [25].

Results
The summary analysis of PCV impact on IPD three years after introduction of PCV7 [12] in-
cluded data from 13 sites that met the inclusion criteria: indigenous and non-indigenous Aus-
tralia, Calgary, Denmark, England and Wales, Crete, the Netherlands, Scotland, Switzerland,
the US general population (Active Bacterial Core Surveillance), Alaska, Navajo Nation and
Northern California (Kaiser Permanente). We identified childhood NP carriage information
stratified by VT and NVT from the pre-PCV era from 9 of the 13 sites (Table 1). No carriage
information was available in any healthy subpopulation of Calgary, Crete, Scotland and Swit-
zerland. In England andWales, Netherlands and Alaska more than one carriage study was
identified. There was little or moderate heterogeneity between the study estimates of VT car-
riage proportion within the different sub populations of the same setting. Respective studies
were pooled through Bayesian random effects meta-analysis to provide a single estimate of the
proportion of VT among carriers for each setting (Table 1 and S2 Fig).

Fig. 1 illustrates how the serotype distributions in pneumococcal carriage and disease shape
the predicted incidence risk ratios in the prediction model: the higher the proportion of VT in
disease, the higher the predicted impact (lower IRR) and the lower the proportion of VT in car-
riage the higher the predicted impact. In particular this shows how serotype replacement in na-
sopharyngeal carriage and differences in serotype distribution in carriage prior to vaccine
introduction can lead to vastly different vaccine impact predictions in two settings with similar
contribution of VT to the pneumococcal disease burden.

Fig 1. Overview of the impact of model parameterisation on the predictions. The predicted IRRs in
pneumococcal disease are shown in dependence of the proportions of VTs in carriage and IPD before
vaccination. Shades of green represent predicted IRRs corresponding to a predicted reduction in disease.
The height of the red triangle is determined by the extent of serotype replacement (shown for λ = 1). The data
on pre-vaccination PCV7 VT proportions in carriage and disease from the setting listed in Table 1 and their
respective binomial confidence bounds are superimposed to illustrate the effect of differences in serotype
distribution in both carriage and disease on the predicted impact of vaccination on pneumococcal disease.

doi:10.1371/journal.pcbi.1004173.g001
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There was little difference between the average observed impact of PCV7 between settings
with either different schedules or different coverage levels (S3 and S4 Figs). The impact in set-
tings using a 2+1 schedule was slightly higher than in 3+1 schedule settings and the impact in
3+0 and 3+1 schedule settings was similar; ratio of IRRs 0.87 (0.20 to 2.91) and 1.00 (0.24 to
3.61). In settings with an average vaccine coverage of under 70% and those with a coverage be-
tween 70% to 90% the impact of PCV7 was similar to the impact in settings where vaccine cov-
erage had been over 90%; ratio of IRRs 1.00 (0.39 to 2.42) and 0.95 (0.26 to 4.18). Settings
which used a catch-up campaign for introduction of PCV7 reported on average a 25% (-65% to
325%) higher impact than those which had not.

Assuming no serotype replacement in carriage (λ = 0) for the prediction led to consistent
overestimation of vaccine impact (Fig. 2). With the assumption of complete serotype replace-
ment in carriage (λ = 1), however, we were able to closely predict the impact of routine PCV7
use on paediatric IPD 3 years after introduction (Fig. 2 and Fig. 3). The corresponding ratios of
predicted and observed IRRs are provided in Table 1.

Discussion
Routine pneumococcal conjugate vaccination has led to sustained reductions of all-serotype in-
vasive pneumococcal disease in children, albeit of varying absolute and relative magnitudes
across various countries and surveillance sites. Here we aimed to understand the factors related
to the observed heterogeneity of PCV7 impact on IPD in children under five years of age 3
years after the start of routine vaccination so that estimates of that impact could reliably be pro-
duced for countries without disease impact data. Our analysis shows that the proportion of
VT-IPD in the pre-PCV period, which is sometimes used as a measure of the potential vaccine
preventable burden of S. pneumoniae, is consistently overestimating the observed impact of
PCVs on overall IPD because it ignores the effect of serotype replacement. However, when sup-
plemented by the odds of VT carriage pre-PCV in the same population our proposed model,
assuming full serotype replacement in carriage, is highly predictive for the observed relative im-
pact (IRR) of PCVs on overall IPD.

Fig 2. Model predictions in comparison to observed IRR. Comparison of predicted and observed impact of PCV7 on all-serotype IPD in children younger
than 5 years, including confidence intervals, assuming no serotype replacement (left panel) or full serotype replacement (right panel) of VT carriage with NVT
carriage. ABCs, AIP, AUSI, AUSN, DEN, E&W, NAV, NCK and NLD represent the Active Bacterial Core surveillance USA, Alaska (Calgary), Australia
Indigenous, Australia non- Indigenous, Denmark, England &Wales, Navajo andWhite Mountain Apaches, Northern California Kaiser Permanente and
Netherlands respectively.

doi:10.1371/journal.pcbi.1004173.g002
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We find that in the studied sites neither differences in schedule nor vaccine coverage sub-
stantially contributed to the heterogeneity of IPD impact observed from surveillance three
years after the introduction of PCV7. While there is little doubt that sufficient vaccine coverage
is essential for the success of a PCV programme we find that even in those settings where the
average vaccine coverage during the first 3 years after implementation was below 70% the ob-
served impact of vaccination was similar to settings with higher coverage. This may be due to
the strong herd protection induced by PCV7 in high income countries, even at low coverage
levels, which has helped to control VT transmission and as a consequence VT IPD. We find
some evidence of a higher impact of vaccination in settings that introduced PCV with a catch-
up campaign, albeit with substantial heterogeneity of PCV impact between those settings.

The method for prediction of the impact of PCV7 builds on the idea that, because of sero-
type replacement, the case to carrier ratio of serotypes or serotype groups is an important de-
terminant for the success of pneumococcal conjugate vaccines, as has been proposed earlier in
similar model approaches [9,14,17,18,22,26]. A model using the inherent link of carriage and
IPD has been proposed for monitoring IPD through post PCV nasopharyngeal carriage in the

Fig 3. Model validation.Distributions of the ratio of predicted and observed IRR for each setting assuming full serotype replacement. A value of 1 represents
perfect agreement between prediction and observation.

doi:10.1371/journal.pcbi.1004173.g003
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absence of IPD surveillance and has been shown to provide valid predictions for most of the 5
studied sites [18]. Similar models have used pre-vaccination carriage prevalence and IPD inci-
dence to predict the impact of pneumococcal vaccines on IPD. One was validated against a sin-
gle estimate of IPD impact from US ABC data [22]. We present here a minimalistic tool that
utilises information on the serotype distribution of carriage and IPD before vaccination to pre-
dict disease impact. We show that the predicted IPD impact closely matches the observed im-
pact in those nine sites and that the model is able to replicate the substantial heterogeneity of
impact among sites. We find that a pre-PCV serotype specific case series of IPD (e.g. through
sentinel surveillance or surveillance data where the denominator data are unclear), rather than
IPD incidence as used in previous approaches, and a cross-sectional carriage study, provide
sufficient data to predict the percentage reduction in IPD after maturity of the PCV pro-
gramme has been reached. If supplemented by pre-PCV pneumococcal disease incidence data,
the absolute impact of PCV can be estimated. This study for the first time uses the observed im-
pact of PCV7 from multiple sites to rigorously test the predictive ability of the model while
showing that differences in schedule, coverage and the use of catch-up campaigns are unlikely
to have had a major contribution to the observed heterogeneity in PCV7 impact on IPD. How-
ever we cannot fully rule out that other factors, including changes in testing practices and anti-
biotic usage, have contributed to the heterogeneity in IPD impact among settings.

The methodology employed here bases predictions on the combined information of sero-
type distribution in IPD and carriage prior to vaccination. It is essential that these data come
from the same or well matched populations for the prediction to be valid. While data on IPD
usually result from routine surveillance of a defined population which ideally is representative
of the epidemiology of IPD in the country, nasopharyngeal carriage surveys may be conducted
among a group that may not be representative of the population studied for IPD. If the serotype
distribution in the carriage study population is not representative of that in the disease surveil-
lance population the resulting estimate can be misleading. Similarly, if serotypes that are hardly
observed in carriage (serotype 1) or epidemic serotypes (serotypes 1 or 5) contribute substan-
tially to the local IPD burden the performance of the model may be impaired. Here we test the
predictive ability of the model using IPD surveillance data from large geographic regions paired
with data on nasopharyngeal carriage from relatively small population samples of the same
geographic regions. We find that in instances where carriage estimates are available from dif-
ferent population subgroups than that of the IPD surveillance population (see Table 1) there
was only limited heterogeneity between them suggesting that those samples were representative
of the carriage epidemiology in the country. However, the pneumococcal serotypes are affected
by secular changes [27] which could also result in a temporal mismatch of carriage and IPD data.
The impact of PCV on IPD incidence in Greece and Canada was only reported in Crete and Cal-
gary (IRR 0.61 (0.06 to 6.50) and 0.56 (0.22 to 1.42)) for which no carriage data was available.
However, carriage data were available from other regions of Greece and Canada [28–31]. If used
to predict the impact of PCV7 we estimated a likely IRR of 0.29 (0.00 to 1.49) and 0.46 (0.20 to
0.78) for Greece and Canada respectively assuming full serotype replacement.

Our predictions are formed on the grounds of three major assumptions: (i) that vaccine se-
rotypes will eventually be eliminated in the post vaccination era, (ii) that VT carriage is re-
placed by NVT carriage to a proportion λ = 1 (complete replacement) and (iii) that the average
pathogenicity of non-vaccine serotypes remains unchanged after vaccination. In most settings
almost complete elimination of both vaccine serotype carriage and disease has been observed
[9–12] and the competition of NVTs has a potential supporting role in this which could help
elimination even under low coverage or high infection pressure [19,32,33]. However, evidence
that vaccine serotypes are eliminated in a mature programme is still sparse in low- and middle-
income settings and it is yet unclear if in settings with high transmission PCVs will still induce
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sufficient herd protection to interrupt VT transmission. Hence by assuming elimination of VT
carriage and disease in our model we predict the potentially vaccine preventable burden when
accounting for serotype replacement. We explore the prediction for scenarios without serotype
replacement and with complete serotype replacement and use the latter as the most likely sce-
nario which we validated against the observed impact of PCV7 on childhood IPD. While full
serotype replacement has been frequently reported from carriage surveys in mature pneumo-
coccal conjugate vaccination programmes [34,35] not all studies fully support this finding [10].
The presented model provides the flexibility to explore deviating assumptions on the propor-
tion to which NVT replace VT in carriage. The average pathogenicity of the NVT group can
change following vaccination if NVT serotypes of high pathogenicity disproportionally replace
compared with NVT serotypes of lower pathogenicity as was observed following PCV7 when
there was a substantial rise in both carriage and disease due to serotype 19A. However, the car-
riage prevalence rank order of serotypes were found to be associated with the size of their cap-
sule and therefore is thought to be generally stable [36] and to increase proportionally after
vaccination [14]. Furthermore the invasive potential of serotypes has found to be a globally sta-
ble property which is also constant with time [37–39].

We excluded Norway from the analysis where unlike any other setting a 40% reduction in
post vaccination NVT IPD was reported [12]. Pre-PCV7 carriage information was reported
from two sites in Norway leading to a pooled estimate for the proportion of VT among carriers
of 0.52 (0.22 to 0.80) [40,41]. From the serotype distribution in both carriage and IPD we predict
an IRR for all-serotype IPD of 0.52 (0.31 to 1.21) in a mature programme. By contrast, Feikin
et al. estimate 0.17 (0.13 to 0.23) from surveillance data (S5 Fig). However, the estimate for the
observed impact is based on the extrapolation of a pre vaccination increase in IPD which runs
the potential risk of overestimation of the vaccine impact [42]. Without accounting for pre vac-
cination trends the IRR from routine IPD surveillance is estimated at 0.46 (0.32 to 0.65), as was
estimated elsewhere [12,43], and is in line with our prediction. While only in Norway a signifi-
cant reduction of NVT IPD in children was estimated it may reflect the inherent limitations of
an ecological design to estimate the impact of vaccination after the start of routine vaccination;
its susceptibility to other factors that impact on IPD incidence. We further studied the sensitivity
of the models predictive value to the delay between the start of vaccination and the impact esti-
mate from surveillance. As our base case we presented all analysis in comparison to the observed
IRR three years after the introduction of PCV7. Three years were chosen as a trade-off between
allowing sufficient time for herd effects and serotype replacement to stabilise and including as
many data sets in the analysis as possible. We find that the predictive ability of our model is not
affected by the choice of longer post vaccination periods (S6 Fig).

As estimates of PCV7 impact from low- and middle-income countries are only recently be-
coming available, we could only validate our method against the use of PCV7 in high-income
countries and its effects in children. The validity of our results should hold for other pneumo-
coccal disease endpoints, including non-bacteraemic pneumonia, other age groups, in particu-
lar the elderly, and conjugate vaccine formulations of higher valency; data to validate this
expectation are only recently becoming available. The importance of carriage data to estimate
the dynamic effects of vaccination has been increasingly recognised [44]. However, still only
limited information on nasopharyngeal carriage in older age groups, particularly in elderly is
collected [24] and in many settings no carriage information is available.

The potential importance of pneumococcal carriage for supporting the licensing of pneu-
mococcal conjugate vaccines has recently been outlined [44]. We add to this by making the
case for data on pneumococcal carriage to supplement that on IPD for predicting the likely im-
pact of PCV vaccination. We present evidence that the heterogeneity in the observed impact of
PCV7 on IPD is largely due to a combination of carriage and IPD of VTs and that other factors
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including vaccine schedule, coverage or the use of catch up campaigns have a minor role. This
method could prove useful to assess the potential impact of future conjugate vaccine formula-
tions, aid with the impact assessments of PCVs into countries where population based surveil-
lance of IPD is not possible, and provide an impact prediction tool to countries who have not
yet introduced PCV. With a growing body of evidence on the impact of different PCV formula-
tion and from low income countries further validation will be essential to determine the full po-
tential of this simple model.
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