
 

 

Abstract—Object detection is here considered as the problem 
of retrieving from scene data segments that belong to objects 
from the sought category. The method proposed and 
investigated works with dense range data, as can be acquired 
with low-cost sensors. It does not require any training, but just 
a single geometric prototype that may be taken from an 
internet repository. Experiments with various household and 
office scenes are reported, and the performance is quantified on 
a public dataset. One of the tested variants achieves an F-score 
and average precision of 94% at total recall, and a correct 
nearest-neighbor rate of 97%. 

I. INTRODUCTION 

The task of scene analysis is, broadly speaking, to assign 
labels to parts of the scene dataset, usually pixels, feature 
points, or 3D data points. The labels of interest are related to 
semantic categories, often generic object class labels (car, 
telephone, coffee mug etc.). The mainstream technique today 
trains classifiers, binary (for an object class versus 
background) or multiclass (for several object classes and 
background), on a very large set of labeled examples of the 
relevant objects and background [1, 2, 3, 4]. Considerable 
progress has been made along this line, on RGB images, 
range data, and RGB-D data. 

However, it is attractive to consider systems that would 
be able to find instances of generic categories just by 
knowing a single example. Such a system would need a 
measure of similarity between instances that roughly 
corresponds to our human category concept. It will be 
dependent upon the application domain, but should be valid 
across all the categories of interest. The appeal of such a 
system lies in the great flexibility and rapid adaptability it 
would offer when faced with changing demands and 
knowledge. 

This statement of a detection problem reframes scene 
analysis as a retrieval scenario. In the absence of classifiers 
that predict definite labels for objects and background, indeed 
without any background model at all, the best we can get is a 
ranked sequence of parts of the data that reflects gradual 
similarity to the queried prototype. 

Most work on shape retrieval is about drawing relevant 
3D models out of a database [5, 6]. The models are usually 
synthetic, complete, and lack physical scale. Shape similarity 
is then scale invariant and can be computed from integral 
shapes or their descriptors. 
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Figure 1.  Two tabletop scenes and their range data, in which various 
kinds of cups are detected and their segments labeled (red). 

In robotics, by contrast, object size is a major 
discriminating factor between semantic categories, 
determining in particular the object affordances. 
Additionally, objects in a real-world scene are not completely 
represented in the data, and the represented parts are 
corrupted by noise and sensing artifacts. Moreover, objects 
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do not appear in isolation, so object candidates must be found 
before comparisons can be made. 

In this article, a search and compare strategy for objects is 
investigated on scenes captured with a PrimeSense sensor. 
Only the range data are used, not the RGB data, so the 
methods are applicable to dense range sensing in general. For 
each sought category, a single geometric prototype is taken 
quite arbitrarily from the internet. The scene data are 
segmented into connected components, and an exploratory 
search for alignments of the prototype to segments is carried 
out. A set of similarity measures for the aligned object 
geometries is then tested for ranking the scene segments. 

The method is tested on table-top scenes taken in our lab 
with encouraging results. Quantitative evaluation is done on a 
large public dataset. It turns out that one of the tested 
similarity measures achieves excellent retrieval of object 
instances from the diversely populated scenes. 

II. METHODS 

We are given two dense sets of 3D data points, one from 
the scene to analyze and one as a geometric model, the 
prototype for the sought object category. The goal is to 
retrieve segments from the scene, ranked by shape similarity 
to the prototype. The following procedure is here proposed 
and investigated. 

A. Segment the scene data into object-related 
components. 

B. For each scene segment, compute an alignment 
of the geometric prototype, allowing for rigid 
motion and scaling. 

C. Evaluate the alignments of the prototype to the 
scene segments by similarity of the prototype 
and segment shapes; rank the alignments by 
shape similarity. 

D. For each point in each scene segment, determine 
the alignment from the similarity-ranked list that 
brings the prototype closest; the rank of a 
segment for retrieval is equal to the similarity 
rank of the alignment chosen by the majority of 
its points. 

Each of these steps is now explained in some detail. 

A. Scene Segmentation 
Segmentation into object-related components is facilitated 

by the fact that most objects in the real world are supported 
by a plane. By finding and removing the supporting plane 
from the scene data, different objects become disconnected in 
data space. A simple connectivity analysis can then split the 
data along object boundaries; see [7] for an implementation. 

This strategy brakes down in situations where different 
objects touch each other. A common extension then is to 
consider surface normal directions to still find object 
boundaries. This was not necessary, however, for the datasets 
used in this study. 

The analysis of segments to follow can tolerate some 
over-segmentation of objects. Under-segmentation, on the 

other hand, may cause mislabeling of data or prevent objects 
from being detected. 

Supporting planes may be sought globally or locally, the 
single strongest plane or multiple strong planes. For the 
datasets used in this study, featuring man-made indoor 
environments, a single global plane estimate turned out to be 
sufficient. See [4] for a similar analysis of outdoor scenes. 

The present segmentation procedure is as follows. 

a. Randomly draw 100,000 point triples from the 
scene. 

b. For each point triple, compute plane parameters 
(plane normal and normal component of the 
point triple center). 

c. Let the plane parameters vote for a region in the 
quantized parameter space. 

d. Initialize a mean shift procedure [8] in the region 
voted for, using all the plane parameters in that 
region. The converged mean location is the 
estimate of the dominant plane. 

e. Remove the data close to the dominant plane 
from the scene. 

f. Collect the remaining scene points in a voxel 
grid. 

g. Label the connected components on the voxel 
grid (26-neighborhood) as the scene segments. 

h. Transfer the segment labels from each voxel 
onto the data points they contain. 

A voxel size of 8 mm was used here for segmentation. 
Small segments containing less than 0.1% of all points were 
discarded. 

B. Prototype Alignment 
The geometric prototype of the sought object category is 

aligned with each of the scene segments. The goal is to bring 
corresponding parts of the scene and prototype shapes close 
to each other [9, 10]. The aligning transformation consists of 
a 6DoF rigid motion and isotropic scaling, i.e., a similarity 
transform. There are two stages of estimating the transform: a 
global pose clustering phase [11] and a local optimization 
phase, in the spirit of an ICP algorithm [12]. For each 
segment, the procedure is as follows. 

a. Randomly draw 1,000,000 pairs of surflets 
(points with local surface normal vector) from 
the scene. 

b. For each scene surflet pair, retrieve from a hash 
table a surflet pair from the prototype with 
roughly congruent geometry (point distance and 
normal orientations); compute a rigid 
transformation that aligns the scene surflets with 
the prototype surflets. 

c. Compute the 6 consistent parameters (similar to 
the exponential rotation parameters and the 
translation components) [13] for all the rigid 
motions. Let them vote for a region in the 
quantized parameter space. 



 

d. Initialize a mean shift procedure [8] in the region 
voted for, using all the motion parameters in that 
region. The converged mean location is the 
estimate of the initial rigid alignment. 

e. Refine the initial rigid alignment through an 
iterative procedure: each scene point is 
corresponded to its closest aligned prototype 
point; these correspondences are used to update 
pose and scale by minimizing the sum of 
squared point distances; at most 10 updates are 
allowed. The final similarity transformation is 
the estimate of the alignment. 

Because the shapes to be aligned differ, unlike in most 
work on alignment of 3D data, the parameters have to be 
chosen such that a suitable trade-off between different parts 
of the surfaces can be found. Hence, we need a rather coarse 
quantization of the pose parameter space and a large window 
for the mean shift procedure. In this study, the bin size was 
around 20 degrees along each of the rotational dimensions1 
and 10 mm along each of the translational dimensions. The 
initial size of the mean shift window was the same, and was 
shrunk as the local parameter density increased during 
convergence to the density maximum. 

C. Evaluation by Shape Similarity 
Having aligned the prototype to each scene segment, the 

shape distance can be measured by statistics of the point-wise 
distances between the two surfaces. However, the alignment 
allows for arbitrary scaling of the prototype, which does not 
seem right for comparing real objects, as physical scale is an 
important discriminating feature of object categories. Rather, 
the effect of scaling should be only on finding a suitable 
relative pose between prototype and segment. After aligning 
the scaled prototypes to the segments, we hence set the 
scaling factor of the aligning transform to unity. This 
corresponds to shrinking or expanding the aligned prototype 
about its center to its original size. The prototype is then 
compared to the scene segment; see Fig. 2 for an illustration. 

 
Figure 2.  Illustration of a prototype being up-scaled (blue) for scene 
alignment and rescaled to original size (red) for shape comparison. 

In this study, some variants of shape distance measures 
based on point-wise distances have been evaluated. Perhaps 
the most straightforward one takes the sum of point distances, 

1 Note that a homogeneous quantization in the consistent rotation space 
gives rise to an inhomogeneous quantization of rotation angles [13]. 

symmetrically from scene segment to prototype and 
reversely, 

 

where  is a scene segment and  is the set of points of 
the aligned prototype, re-scaled to original size,  is 
the prototype point closest to  and  is the 
segment point closest to . This measure has been used 
in [4]. It may be preferable, however, to normalize the sums 
by the number of points, making the shape distance 
independent from point numbers, thus obtaining 

 

 

A more robust version, tolerating more local deviation 
between shapes, is obtained by using the median of the point 
distances, instead of their mean, 

 

 

The Hausdorff shape distance is obtained by taking the 
maximum of the point distances, 

 

 

Again, a more robust variant of the Hausdorff distance 
involves computing the mean of point distances separately 
for the two directions (segment to prototype and reversely) 
before taking the maximum, 

 

 

Yet more robust is taking the median of point distances in 
each direction, 

 

 

Now, most of the time a segment of the scene data will 
represent only part of an object, while the prototype is a 
complete model. Therefore, a non-symmetric similarity 
measure that tolerates a high proportion of prototype points 
being distant from the segment while being strict with 
deviations of segment points from the prototype may be 
desirable. Such a measure is 

 

 

Each alignment of the prototype to a segment gives rise to 
a shape distance value by one of these measures. The 
alignments are then ranked according to shape distance, 
lower values giving higher ranks. 

D. Segment Ranking 
The final goal of the algorithm is the ranking of scene 

segments for retrieval. The retrieval rank of each segment is 



 

inherited from the similarity rank of the alignments as 
follows. 

a. For each point in the segment, find the 
alignment of the prototype that makes the 
minimum Euclidean distance to that point; cast a 
vote for that alignment. 

b. The segment adopts for retrieval the similarity 
rank of the alignment that has received the most 
votes. 

The rationale of this procedure is that different segments 
belonging to the same over-segmented object can all be 
retrieved together at a high rank, even if some of these 
segments give rise to rather low-similarity ranked alignments 
of the prototype. Thus, parts of an over-segmented object will 
be reunited at the ranking stage, if one of its segments, say, 
the geometrically most informative one, yields an alignment 
superior to those found for the others and matching all object 
parts. Using instead the similarity ranks from the alignments 
directly for segment retrieval would make it impossible to 
recover from over-segmentation. 

 
Figure 3. The five prototype shapes taken from the internet and used in the 
present experiments: “coffee mug”, “soda can”, “bowl”, “cereal box”, 
and“cap”. 

III. EXPERIMENTS 

A. Qualitative 
A series of experiments was carried out on tabletop 

scenes shot in our lab with a PrimeSense sensor. These 
scenes contained six different kinds of cups in diverse 
arrangements together with other objects. A synthetic 3D 
mug model was taken from the internet [14] as the prototype, 
shown in Fig. 3. Using the derived mug points as the 
prototype, it was possible to successfully retrieve the various 
cups from the scenes in sequences, without false positives or 

with just little contamination by small false segments, until 
total recall was reached. Figure 1 shows two typical example 
scenes and their segments retrieved as cup. 

An arrangement encountered in these scenes was stacked 
cups. Multiple cups in a stack could mostly not be separated 
into different segments by the method used here. Rather, a 
cup stack got labeled jointly as a single cup segment. 
However, stacking cups with objects of a different type may 
well have produced false labeling of a potentially under-
segmented scene. 

Over-segmentation of the scenes often occurred, e.g. 
separating front and back sides of a cup. These cup parts, 
however, were usually retrieved together as a single entity, 
being properly joined at the ranking stage (section II.D.). 

B. Quantitative
For collecting quantitative results, a public dataset was 

used. The dataset provided by Lai et al. [15, 3] contains 8 
large scenes showing office and kitchen environments, 
reconstructed with data from a moving PrimeSense sensor. 
Apparently, the alignment of individual frames has 
introduced some gross errors in two of the scenes; however, 
this did not have a strong negative effect on the results. 

In this scene labeling benchmark, the five object 
categories “bowl”, “cap”, “cereal box”, “coffee mug”, and 
“soda can” have to be detected. From these sought categories, 
each scene contains between 2 and 11 objects, for which 
ground truth labeling is provided. Altogether there are 19 
different objects appearing in the 8 scenes, together with 
walls, doors, and furniture. In our present retrieval set up, the 
particular combination of objects and scenes gives rise to 29 
queries with between 1 and 3 relevant objects to be returned. 

The prototype for “coffee mug” was the same as used for 
the qualitative experiments. For “bowl”, “cap”, and “soda 
can”, synthetic models were likewise taken from the internet 
[16, 17, 18], shown in Fig. 3. The dimensions of the soda can 
model were adapted to fit a 330 ml Coca Cola can [19]. For 
“cereal box”, a box model was synthesized with dimensions 
equal to Kellogg's Frosted Flakes [20]. 

Segmentation produced between 16 and 41 data segments 
containing more than 0.1% of all scene points. Most 
segments produced were smaller than that and were hence 
discarded. Figure 4 shows the segments retained from three 
example scenes. 

Segments were retrieved in ranked order from each scene 
until all relevant segments were found (total recall). For the 
three example scenes, Fig. 4 shows the resulting labels at 
total recall for three different queries: the correct segments 
got labeled in these examples. 

Some performance measures were computed for the 
retrieval experiment: mean precision at total recall, F-score at 
total recall, correct nearest-neighbor rate, and average 
precision. They are shown in Table 1 for the seven shape 
distance measures defined in section II.C. Additionally, the 
table shows the chance level performance, i.e., what is 
achieved when segments are retrieved in random order from 
the scenes. The chance level performance gives an idea of the 
task complexity and of the proposed solutions’ quality. 



 

Figure 4. Three scenes from the dataset of Lai et al. [15, 3] (top, middle, and bottom rows). The left column shows the segments with more than 0.1% of the
scene points. The right column shows segments in red color retrieved after querying for their category: a cap (top row), three soda cans (middle row), a coffee
mug (bottom row). Note that the dominant supporting plane is removed from the scenes. 



  

TABLE 1. PERFORMANCE MEASURES OF SEGMENT RETRIEVAL. 

 mean 
precision 

F-score nearest-
neighbor 

average 
precision 

chance level 0.15 0.26 0.05 0.16 

sum 0.73 0.84 0.62 0.74 

mean 0.78 0.88 0.79 0.83 

median 0.78 0.87 0.76 0.81 

max 0.65 0.79 0.55 0.67 

maxmean 0.72 0.84 0.59 0.72 

maxmedian 0.76 0.86 0.69 0.78 

max2median 0.89 0.94 0.97 0.94 

 

Evidently, all the tested variants of shape distance 
perform well above chance level. The Hausdorff distance 

 is the least adequate, owing probably to the extreme 
influence that single outlier points have. The second weakest 
distance measure is , the one used in [4], while its 
normalized variant  achieves a significant improvement. 
It seems, therefore, that a distance measure that grows with 
the number of points in the scene segment and prototype 
unduly penalizes object size or point density. The top 
performing measure from this set is, by a large margin, 

, which treats distances from scene segment points 
to the closest prototype point and in the reverse direction 
differently. This measure seems to respect most adequately 
the fact that scene data is generally incomplete. 

Although the F-score shown in Table 1 for the best 
variant is superior to the ones published in [3] on the same 
dataset, the results are in fact difficult to compare. Lai et al. 
presented experiments with a number of classifiers, trained 
on the five sought object classes and the background class. In 
particular, their training set contained 14 of the 19 specific 
scene objects. For classification, they optimized over a set of 
class labels, rather than ranking for class membership as done 
here. Moreover, their F-score was computed on a per-pixel 
basis, while the present one is per segment. 

Nonetheless, it is quite interesting that such high retrieval 
performance for object categories can be achieved by a 
method that does not need any training and does not make 
use of the RGB channels of the dataset. 

C. Computation Time 
The algorithm is currently implemented in Mathemtica 

with some linked C functions. It was run on 5 CPU cores in 
parallel. For ranking the about 30 segments of an average 
scene, the present implementation took between 10 and 15 
seconds. It is to be expected that a pure C++ implementation 
can reduce this time significantly, as can utilization of more 
CPU cores. 

IV. CONCLUSION 
A method for retrieval of object-related segments from 

scene data by category has been proposed and some variants 
investigated. The method is entirely based upon geometric 
data, i.e., shape information. It requires no training but only a 
single geometric prototype. It has shown excellent 

performance on our tabletop scenes and a public dataset of 
office and kitchen environments. 

The limitations of the method are mainly in its critical 
dependence upon useful scene segmentation. If segment 
boundaries are unlikely to coincide with object boundaries, 
the presented technique may easily fail. Generally, under-
segmentation seems to pose harder problems than over-
segmentation, as the latter can be fixed at the segment 
ranking stage. 

One point to be clarified in the future is the range of 
shape variation that can be tolerated, before the simple 
measures of shape similarity proposed here will no longer be 
informative. It is clear, however, that this range may be 
increased by employing more than one prototype for 
representing a shape category. Another interesting parameter 
to explore will hence be the number of geometric prototypes 
that define a shape category. 
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