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6Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire Ecologie Microbienne Lyon, UMR5557, USC1193, Villeurbanne, France
7Laboratoire Analyses Bioinformatiques pour la Génomique et le Métabolisme, Genoscope-IG-CEA, Evry, France
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Abstract

Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed

differentmechanisms todealwith toxic compounds suchasarsenicandthis is to resistormetabolize thecompound.Here,wepresent

the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-

containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has

lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises

a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required

for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively,

a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental

pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel

functions.
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Introduction

To deal with high concentrations of toxic metals, micro-

organisms have evolved various strategies, which enable

them to detoxify their environment. These processes involve

physicochemical reactions, for example, precipitation or

solubilization, adsorption or desorption (Borch et al. 2010),

and metabolic oxido-reduction reactions (Gadd 2010). In

addition, most of the metallic elements found in the periodic

table may play a crucial role in microbial physiology, for

example, as components of metalloproteins, or as electron
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donors or acceptors in energy metabolism (Stolz 2011). Such a

metabolism may have been important in the early stages of

life, due to a high concentration of metals, including arsenic,

in the primordial planet (reviewed in van Lis et al. 2012).

In recent years, the various “omics” methods, which in-

clude genome sequencing, comparative genomics, and tran-

scriptome or proteome analysis, have allowed to address the

physiology of organisms in a global way. Such approaches

have therefore greatly improved the understanding of micro-

bial metabolism (Bertin et al. 2008; Holmes et al. 2009;

Wilkins et al. 2009), including the global functioning of eco-

systems, as recently demonstrated for an arsenic-rich microbial

community (Bertin et al. 2011). To date, the genomes of more

than 20 arsenic-metabolizing strains have been sequenced.

They originate from various environments, belong to unre-

lated taxonomic groups, and have different carbon and

energy requirements (reviewed in Bertin et al. 2012; van Lis

et al. 2013).

Regarding arsenic, which is mainly present in two oxidation

states in aquatic environments, that is, arsenite [As(III)] and

arsenate [As(V)], microorganisms have acquired various met-

abolic capacities. These include As(V) reduction, which is usu-

ally part of the resistance mechanism, but also functions

involved in As(III) oxidation or methylation (reviewed in Stolz

2011). Unlike arsenite methyltransferase genes, which are not

often found in bacterial genomes, genes encoding arsenite

oxidase are widespread in Bacteria and Archaea (Heinrich-

Salmeron et al. 2011 and reviewed in Osborne and Santini

2012). In Herminiimonas arsenicoxidans, the arsenite oxidase

aioBA genes are located in an arsenic genomic island, which

also contains genes involved in arsenic resistance and biosyn-

thesis of a molybdenum cofactor of the Aio enzyme (Muller

et al. 2007). Such a genetic organization has also been ob-

served in Thiomonas arsenitoxydans (Arsène-Ploetze et al.

2010; Bertin et al. 2012) and the presence of aio genes on

a plasmid has been reported in Nitrobacter hamburgensis and

Thermus thermophilus str. HB8 (Bertin et al. 2012). These ob-

servations suggest that aioBA genes may be acquired by hor-

izontal gene transfer.

The adaptative response to arsenic has been recently

shown as occurring in two steps (Cleiss-Arnold et al. 2010).

First, bacterial cells express various genes involved in defence

mechanisms, for example, oxidative stress and arsenic efflux.

Next, several metabolic activities are induced, including

arsenite oxidation which, in heterotrophic bacteria like

H. arsenicoxydans, may be principally considered as a detoxi-

fication mechanism (Muller et al. 2007). In contrast, in bacteria

that can grow autotrophically such as T. arsenitoxydans

(Arsène-Ploetze et al. 2010) arsenite oxidation is part of a

bioenergetic mechanism involved in energy generation.

Despite some similarities, the genome organization of these

two bacteria and their arsenic response, including biofilm for-

mation, have been shown to differ markedly (Marchal et al.

2010, 2011).

In their natural environment, bacteria usually grow in bio-

films, which are structured microbial communities embedded

in extracellular polymeric substances (EPS) composed of

sugars, proteins, and DNA (Hall-Stoodley et al. 2004;

McDougald et al. 2012). Even though biofilm formation can

be a problem in the field of human health, it allows bacteria to

survive and thrive in highly toxic environments, including those

characterized by high concentrations of heavy metals or met-

alloids such as arsenic (Guibaud et al. 2006; Muller et al.

2007). Unlike H. arsenicoxydans (Marchal et al. 2010),

T. arsenitoxydans has been shown to induce biofilm formation

in the presence of As(III) (Marchal et al. 2011). In addition,

after biofilm development, the induction of cell motility has

led to accelerated cell dispersion, an important process in the

colonization of alternative ecological niches.

To gain a better understanding of the genetic determinants

involved in the metabolism of arsenic, we have investigated

the response to As(III) in Rhizobium sp. NT-26, a motile, che-

molithoautotrophic arsenite oxidizer isolated from a gold mine

in Australia (Santini et al. 2000). This strain belongs to the

Rhizobiaceae family of the Alphaproteobacteria, which in-

cludes many species living in association with plants, such as

plant mutualists of the Rhizobium and Ensifer (formerly

Sinorhizobium) genera (Martens et al. 2007) and plant path-

ogens or plant growth-promoting rhizobacteria of the

Agrobacterium genus (Hao et al. 2011). The Rhizobium

sp. NT-26 genome was sequenced and annotated, and its

physiology was investigated using differential transcriptomics

and proteomics, and random mutagenesis. Remarkably, the

synthesis of flagella was shown to be controlled by arsenite,

suggesting a possible coordinate regulation between clusters

located on two genetic elements. Indeed, proteins involved in

As(III) oxidation were shown to be encoded by genes present

on a megaplasmid, whereas flagellar genes are located on the

chromosome.

Materials and Methods

Bacterial Strains, Plasmid, and Growth Conditions

Rhizobium sp. NT-26 and its mutant strains were cultivated at

28 �C in minimal salts medium (MSM) containing 0.04% yeast

extract (Santini et al. 2000) and supplemented with As(III) and

agar when required. Escherichia coli S17.1 lpir was cultivated

at 28 �C in Luria–Bertani (LB) (MP Biomedicals) medium sup-

plemented with 20 mg/l kanamycin (Sigma) for the mainte-

nance of the pTGN/mini-Tn5 gfp-km plasmid (Tang et al.

1999).

Random Mutagenesis and Screening

Using the suicide vector pTGN carrying the mini-Tn5 transpo-

son, random mutagenesis was performed to construct a

mutant library and to identify genes involved either in arsenite

oxidation or in motility. Mobilization of the plasmid was per-

formed using E. coli S17.1 lpir carrying plasmid pTGN as the
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donor and Rhizobium sp. NT-26 as the recipient. For conjuga-

tion, both strains in exponential phase, respectively, corre-

sponding to an optical density (OD) of 0.6 and 0.135 at

600 nm, were superposed on LB plates at 28 �C for 24 h. As

the Rhizobium sp. NT-26 strain used in this study is rifampicin

resistant (Santini and vanden Hoven 2004), mutants were

then selected on LB plates supplemented with 20 mg/l kana-

mycin and rifampicin.

Colonies from the library were screened for the loss of ar-

senite oxidation or the loss of motility. Briefly, mutants were

individually inoculated into 96-well microtiter plates contain-

ing MSM with 0.04% yeast extract and 8 mM As(III) and in-

cubated at 28 �C in 1.5% agar for 48 h or 0.3% agar for 24 h,

respectively. The library was screened in the following two

ways: 1) the silver nitrate method was used to detect arsenite

oxidation (Lett et al. 2001; Muller et al. 2003) and 2) the

diameter of the swarming ring was used to determine

whether the cells were motile (Muller et al. 2007). Each phe-

notype was subsequently confirmed on Petri dishes in the

corresponding medium. Mutants unable to oxidize arsenite

were also tested for motility and vice versa.

To identify the disrupted gene in each mutant, the genomic

region close to the mini-Tn5 insertion site was amplified by

inverse polymerase chain reaction (PCR). Total DNA was ex-

tracted with the Wizard Genomic DNA purification kit accord-

ing to the manufacturer’s instructions (Promega). One

microgram of DNA was digested with 50 U of restriction en-

zymes that do not cut the transposon sequence (ClaI or PstI) in

a 50ml reaction volume at 37 �C for 2 h. After precipitation by

ethanol and sodium acetate, digested DNA was ligated with

10 U of DNA ligase (Fermentas) in a volume of 20ml overnight

at 16 �C. PCR was carried out on 25 ng of this template in a

25ml volume reaction with iProof DNA Polymerase (Bio-Rad)

and Oend (ACTTGTGTATAAGAGTCAG) and Iend (AGATCTGA

TCAAGAGACAG) primers. The program used involved a de-

naturation step at 98 �C for 30 s, followed by 35 cycles of

denaturation at 98 �C for 10 s, annealing at 52 �C for 30 s

and elongation at 72 �C for 3 min, and a final elongation

step at 72 �C for 10 min. Amplification products were checked

on an agarose gel and sequenced with Oend by MilleGen

(http://www.millegen.com/, last accessed April 30, 2013).

The Blastn tool on the MaGe interface (Vallenet et al. 2006)

was used to align the sequences with that of the Rhizobium

sp. NT-26 genome allowing for identification of the disrupted

gene. For each mutant, the precise insertion site and orienta-

tion of the mini-Tn5 was determined by PCR, combining the

Oend and Iend primers with new specific primers (supplemen-

tary table S1, Supplementary Material online) designed

around each probable insertion site.

Biofilm Quantification

Biofilm formation by Rhizobium sp. NT-26 wild-type and

mutant strains grown in the presence or absence of arsenite

was measured by the crystal violet method. Cultures were

grown in MSM medium containing 0.04% yeast extract sup-

plemented with and without 8 mM As(III) and incubated at

28 �C overnight with shaking (120 rpm). The cultures were

then diluted with fresh medium to an OD of 0.1 at 600 nm.

Each strain was tested with six replicates of 200ml in two flat-

bottomed polystyrene 96-well microtiter plates (Nunc).

Cultures were incubated at 28 �C for 24 h and 48 h without

agitation. Biofilm formation was quantified using crystal violet,

as previously described (Hommais et al. 2002). Briefly, after

removing the culture medium, wells were gently rinsed three

times with 0.1 M phosphate-buffered saline (PBS). To fix bio-

films, plates were dried at 55 �C for 25 min, then 200ml of

0.1% [w/v] crystal violet solution (Merck) was added to the

wells and the plates were incubated at 30 �C for 30 min. Free

crystal violet was removed and wells were washed three times

with PBS. Plates were dried at room temperature and the

biofilm was subsequently dissolved in 200ml of 95% [v/v] eth-

anol over 30 min. Finally, the absorbance was read at 595 nm

with a microplate reader (Synergy HT).

Pulsed-Field Gel Electrophoresis

Plasmid profiles were determined by a modified Eckhardt aga-

rose gel electrophoresis technique, as described previously

(Hynes and McGregor 1990). Rhizobium sp. NT-26 was

grown in LB until an OD of 0.5 at 600 nm was reached, and

150ml of culture were used per well. Electrophoresis was car-

ried out at 4 �C, 5 V for 30 min and 85 V for 7 h on a 0.7%

agarose gel containing 1% [w/v] sodium dodecyl sulfate (SDS)

(Ramı́rez-Bahena et al. 2012). Plasmid size was estimated by

comparison with those from Agrobacterium tumefaciens C58

(Wood et al. 2001).

Plant Trapping Tests

Nodulation experiments were performed under gnotobiotic

conditions. Seeds of Macroptilium atropurpureum, Vicia

faba, Phaseolus vulgaris, and Pisum sativum were surface ster-

ilized for 2 min in 95% ethyl alcohol and then three times for

3 min in 1% sodium hypochlorite, each time washed with

sterile water. Germination was carried out at 28 �C in dark

conditions on glass plates covered with sterile filter paper

moistened with sterile water. Pots with a capacity of 1.5 l

were filled with sterile vermiculite, and 200 ml of nutrient ster-

ile solution (Rigaud and Puppo 1975) was added per pot. Two

seedlings were sown in each pot and plants were inoculated

with a suspension of 105 CFU/ml 1 week after their transfer to

hydroponic growth. Rhizobium sp. NT-26 was grown on YMB

medium (Mannitol 0.7%, Yeast extract 0.2%, KH2PO4

0.02%, MgSO4 0.02%) and 1 ml of inoculum was applied

to each seedling. Plants were regularly observed for nodule

formation, and nodulation was quantified after inoculation as

described in Gremaud and Harper (1989).
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Genome Sequencing

The complete genome sequence of Rhizobium sp. NT-26 was

obtained by combining Sanger and 454 sequencing methods.

Sanger reads were obtained from a 10 kb insert library con-

structed after mechanical shearing of the genomic DNA and

cloning of the generated inserts into the plasmid pCNS, as

described previously (Muller et al. 2007). Plasmid DNA was

purified and end-sequenced (26,888 reads) by dye-terminator

chemistry with ABI3730 sequencers (Applied Biosystems) lead-

ing approximately to a 4� coverage. Reads were assembled

by Newbler with around 20� coverage of 454 GS FLX reads

(Roche) and validated via the Consed interface. Finishing steps

were performed using primer walking of clones, PCR and in

vitro transposition technology with the Template Generation

System II Kit (Finnzyme), corresponding to 252, 32 and 8,404

additional reads, respectively. Approximately 70� coverage of

36 bp Illumina reads were mapped in the polishing phase,

using SOAP (http://soap.genomics.org.cn/, last accessed April

30, 2013), as previously described (Aury et al. 2008).

Comparative Analysis of 24 Rhizobiaceae Genomes

The 23 genomes of Rhizobiaceae publicly available at the time

of experiments (supplementary table S2, Supplementary

Material online) were retrieved from ENA database (http://

www.ebi.ac.uk/ena/, last accessed April 30, 2013). A homol-

ogous gene family database was built under the HOGENOM

procedure (Penel et al. 2009) based on these 23 genomes and

the one of Rhizobium sp. NT-26. Homologous protein se-

quences were aligned using MUSCLE (v.3.8.31, default pa-

rameters) (Edgar 2004) and then retro-translated with the

pal2nal program (v.14) (Suyama et al. 2006). Nucleic acid

alignments were restricted to conserved blocks with Gblocks

(v.0.91b, minimum 50% of sequences in conserved and flank

positions and all gaps allowed, codon mode) (Castresana

2000) and gene trees were computed from these alignments

with PhyML (v.3.0, GTR + G8 + I model of evolution, best of

SPR and NNI moves, SH-like branch supports) (Guindon and

Gascuel 2003). All alignments and phylogenetic trees

are shown in supplementary methods S1 and S2,

Supplementary Material online. Replicon mapping and gene

content comparison were done with custom Python scripts.

Species Phylogenies

The “core” set contained 822 gene families present in every

24 strains in only one copy. The “ribosomal” set contained 51

gene families whose products were annotated as “ribosomal

protein” or related terms in at least one genome and were

present in at least 22 strains. Full alignments of both family

sets, and third codon-removed version of core family set were

concatenated and used for species tree construction with

RaxML (version 7.2.8-ALPHA, GTRCAT model with 50 cate-

gories, branch supports from 200 and 1,000 rapid bootstrap

trees for “core” and “ribosomal” alignments, respectively)

(Stamatakis 2006) (species trees are stored in supplementary

methods S3, Supplementary Material online).

Tree Pattern Matching

Phylogenetic trees of gene families were searched for partic-

ular phylogenetic patterns, that is, subtrees with specific ar-

rangement of relative branching leaves representing taxa,

with TPMS software (Bigot et al. 2012): “NT26outAgro”,

that is Rhizobium sp. NT-26 as a direct outgroup of

Agrobacterium genus; “NT26inAgro”, that is Rhizobium sp.

NT-26 as an ingroup of Agrobacterium and sister group of

A. tumefaciens. Both searches were made first without con-

sidering branch support and then matching only with >0.9

SH-like branch support at nodes of interest (supplementary

methods S4, Supplementary Material online).

Aio Phylogenies

Homologs of AioA, AioB, AioR, AioS, and AioX were retrieved

from the nr database at the NCBI (http://www.ncbi.nlm.nih.

gov/, last accessed April 30, 2013) using the BlastP program

(Altschul et al. 1997) with the protein sequences of Rhizobium

sp. NT-26 as queries and default parameters except the “Max

target sequences” parameter which was set to 1,000. For

each Aio protein, the 500 homologs displaying the highest

similarity with the sequence of Rhizobium sp. NT-26 were

retrieved and aligned using MAFFT (version 6, default param-

eters) (Katoh and Toh 2008). The resulting alignments were

trimmed using BMGE (default parameters) (Criscuolo and

Gribaldo 2010). Preliminary phylogenies were inferred using

the Neighbor-Joining method implemented in SeaView

(Poisson evolutionary distance) (Gouy et al. 2010). The robust-

ness of the resulting trees was estimated with the nonpara-

metric bootstrap procedure implemented in SeaView (100

replicates of the original alignments). Based on the resulting

trees, the closest relatives of Rhizobium sp. NT-26 sequences

were identified and used for more detailed phylogenetic anal-

yses. The corresponding sequences were realigned and the

resulting alignments trimmed using the same procedure.

Final phylogenetic analyses were performed using the maxi-

mum likelihood and Bayesian approaches implemented in

PhyML (version 3) (Guindon et al. 2009) and MrBayes (version

3.2) (Ronquist et al. 2012), respectively. PhyML was run with

the LG evolutionary model (Le and Gascuel 2008) and a

gamma distribution with four categories of substitution rates

(�4) and an estimated alpha parameter. The robustness of the

maximum likelihood trees was estimated by the nonparamet-

ric procedure implemented in PhyML (100 replicates of the

original alignments). MrBayes was run with a mixed substitu-

tion model and a �4 distribution. Four chains were run in

parallel for 1,000,000 generations. The first 2,000 generations

were discarded as “burnin.” The remaining trees were sam-

pled every 100 generations to build the consensus tree.
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Total RNA Extraction, Microarrays, and Data Analysis

A custom 15 K microarray with a probe length of 60 mer was

manufactured by Agilent Technologies following the protocol

used for H. arsenicoxydans (Weiss et al. 2009). Total RNA was

extracted from Rhizobium sp. NT-26 strain grown heterotro-

phically in MSM containing 0.04% yeast extract in the ab-

sence and presence of 5.3 mM As(III) until late log phase

(OD at 600 nm of 0.115 and 0.152, respectively) as described

previously (Santini et al. 2007). RNA quality was checked using

an Agilent Bioanalyzer. Ten micrograms of total RNA was re-

verse transcribed using the Fairplay III Microarray labeling kit

(Agilent Technologies) and cDNA were indirectly labeled using

Cy3 or Cy5 Mono reactive dyes (GE Healthcare). Labeled

cDNA quality and quantity were determined by spectroscopy

at 260, 280, 550, and 650 nm. The labeled Cy3 and

Cy5 target quantities were adjusted to 250 pmol, mixed to-

gether and concentrated with Microcon YM-30 (Millipore).

Hybridization was performed for 17 h at 65 �C. Three distinct

biological RNA samples as well as dye swap experiments were

performed for each culture condition. Arrays were scanned as

described previously (Weiss et al. 2009). Data were acquired

by Genepix Pro 6.0 (Axon Instrument) and statistically ana-

lyzed as described previously (Koechler et al. 2010). Genes

having a BH adjusted P value lower than 0.05 were considered

as differentially expressed between the two conditions and

were retained for further study. Microarray data were depos-

ited in ArrayExpress (E-MEXP-3021).

Preparation of Proteins Extracts and 2D Gel
Electrophoresis

Experiments were performed with four protein extracts from

four replicates for each growth condition. Strain NT-26 was

grown heterotrophically in MSM containing 0.04% yeast ex-

tract in the absence or presence of 5.3 mM As(III). Exponential

phase cultures were harvested by centrifugation at 6,000� g

for 10 min at 4 �C. Pellets were suspended in 400ml of distilled

water supplemented with 1ml Benzonase Nuclease (Sigma)

and 4ml of Protease Inhibitor Mix (GE Healthcare). Cell sus-

pensions were sonicated on ice with 10 pulses of 30 s at 28%

of amplitude with 30 s intervals using a VC 750 sonicator

(Bioblock Scientific). Cellular debris were removed by two cen-

trifugations, the first at 6,000�g for 5 min and the second at

16,000� g for 90 min. Protein concentrations were measured

using the Bradford method (Bradford 1976).

Differential accumulation of proteins was either monitored

by Colloidal Brilliant Blue staining or DIGE (Marouga et al.

2005). For Colloidal Brilliant Blue staining experiments,

300mg of protein extract were diluted to a final volume of

350ml with rehydration buffer (8 M urea, 2% [w/v] CHAPS,

0.5% [v/v] IPG buffer pH 3-10, 40 mM DTT, and 0.01% [w/v]

bromophenol blue). For DIGE experiments, 50mg of protein

was adjusted to pH 8.8 by adding 50 mM Tris–HCl final con-

centration, and either stained with 400 pmol of Cy3 or Cy5

(GE Healthcare). In addition, 25mg of each 8 extracts (4 rep-

licates for 2 conditions) were pooled and stained with

1,600 pmol of Cy2 to serve as an internal standard. For the

staining, each CyDye DIGE fluor stock solution was diluted in

high grade dimethylformamide to a final concentration of

400 pmol/ml. One microliter of the dilution was added to

50mg of protein (Cy3 and Cy5) or 4ml to 200mg of the inter-

nal standard pool (Cy2) and kept in the dark and on ice for

30 min. The reaction was stopped by adding 1ml of a 10 mM

solution of lysine to 50mg of protein (4ml to 200mg) and then

1 volume of 2� sample buffer (9 M urea, 3 M thiourea,

130 mM DTT, 4% [w/v] CHAPS, 2% [v/v] IPG buffer

Pharmalyte 3-10) was added prior to incubation on ice for

10 min. One Cy3-labeled sample (condition 1) and one Cy5-

labeled sample (condition 2) were mixed with one-fourth of

the Cy2-labeled pool and rehydration buffer was added to

reach a volume of 350ml. Dye swap experiments were per-

formed for each culture condition.

For protein separation, samples were first loaded onto an

18 cm pH 4–7 IPG strip. IEF was conducted using the Ettan

IPGphor system (GE Healthcare), as previously described

(Weiss et al. 2009). The strips were equilibrated in SDS equil-

ibration buffer (30 mM Tris–HCl pH 8.8, 6 M urea, 34.5%

[v/v] glycerol, 2% [w/v] SDS, 0.01% [w/v] bromophenol

blue) supplemented with 1% [w/v] DTT for 15 min and

then with 2.5% [w/v] iodoacetamide for 15 min. SDS poly-

acrylamide gel electrophoresis was subsequently performed

using 11.5% SDS gels, using the Ettan DAltsix system (GE

Healthcare) with the following steps: 1 h at 60 mA, 80 V,

4 W and 1 h at 240 mA, 500 V, 52 W. Gels were stained

with Colloidal Brilliant Blue or digitized using a Typhoon

Scanner (GE Healthcare).

Differential protein expression analysis was performed as

previously described (Bryan et al. 2009; Weiss et al. 2009).

Spots were selected and identified by MALDI-TOF and Nano

LC-MS/MS, and data analysis were performed with Mascot

(Matrix Science Ltd.) as described previously (Bryan et al. 2009)

against a Rhizobium sp. NT-26 protein database. All identifi-

cations were incorporated into the “InPact” proteomic data-

base developed previously (http://inpact.u-strasbg.fr/~db/, last

accessed April 30, 2013) (Bertin et al. 2008).

Transmission Electron Microscopy

Rhizobium sp. NT-26 or the aioR mutant were grown in MSM

containing 0.04% yeast extract in the presence or absence of

8 mM As(III) for 24 h. A drop of culture was deposited onto

Formvar-coated nickel grids and after cell decantation, the

liquid excess was removed. Uranyl acetate 2% was added

to negatively stain bacteria and flagella and these samples

were dried. Grids were observed with a Hitachi H-600 trans-

mission electron microscope (TEM) at 75 kV and photo-

graphed with a Hamamatsu ORCA-HR camera using the

AMT software (Advanced Microscopy Techniques).
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Results and Discussion

General Genome Features

Chromosome, Plasmids, and Genomic Plasticity

The Rhizobium sp. NT-26 genome includes a single 4.2 Mbp

chromosome and two plasmids. The circular chromosome

consists of 4,239,731 bp with 4,380 coding sequences,

including 4,303 coding DNA sequences and 59 RNA genes,

and representing 90.28% of the whole genome (fig. 1).

Among these coding sequences (CDS), 34.40% are of un-

known function.

The mean G + C content of the chromosome is 61.97%

but its distribution is not homogenous (fig. 1), and the

Rhizobium sp. NT-26 chromosome exhibits 65 regions of ge-

nomic plasticity (RGP, supplementary table S3, Supplementary

Material online) (Vallenet et al. 2009) in comparison with that

of A. tumefaciens 5A. The G + C content of these regions,

their size (5–207 kb) and the codon adaptation index lower

than the average are characteristic of genomic islands (GEI)

(Juhas et al. 2009). Moreover, transposable elements and

tRNA encoding genes are present in several of these regions,

which further support the lateral transfer of these potential

genomic islands (Daubin et al. 2003). Such genetic events are

known to promote bacterial adaptation under environmental

stresses by the acquisition of various capacities through hori-

zontal gene transfer, an important mechanism of microbial

genome evolution (Juhas et al. 2009). In agreement with

this, more than 15 loci coding for metabolic functions that

may improve the fitness of the strain to its environment

were found among the 65 RGP identified in the genome of

Rhizobium sp. NT-26. These include amino acids and carbon

sources transport, inorganic carbon fixation, nitrogen metab-

olism, and sulfur oxidation (supplementary table S3,

Supplementary Material online).

The genomes of bacteria in the Agrobacterium and

Rhizobium genera are known to include several extrachromo-

somal replicons, which encode various functions required for

the adaptation to specific niches (López-Guerrero et al. 2012).

The Rhizobium sp. NT-26 genome comprises two plasmids,

including a megaplasmid of 322,264 bp containing 367

coding sequences (CDS) (fig. 1). The presence and the size

of the megaplasmid were confirmed experimentally by a mod-

ified Eckhardt gel electrophoresis method (supplementary fig.

S1, Supplementary Material online). The second plasmid is

15,430 bp and more than half of its CDS encode proteins

with unknown functions.

FIG. 1.—Circular representation of the Rhizobium sp. NT-26 genome. The chromosomal (A) and plasmidic (B) characteristics are 4,239-Mb long,

61.97% GC, 9 16S-23S-5S rRNA, 50 tRNA, and 4,294 CDSs; and 322-kb long, 60.19% GC, 0 16S-23S-5S rRNA, 0 tRNA, and 367 CDSs, respectively. From

outside, circles display 1) the GC percent deviation in a 1,000 bp window (GC window – mean GC); 2) and 3) predicted CDSs transcribed in the clockwise and

counterclockwise direction, respectively; red and blue colors correspond to validated annotations, orange to automatic annotation and purple to primary

automatic annotation; 4) GC skew (G + C/G�C) in a 1,000 bp window; 5) rRNA are shown in blue, tRNA in green, miscRNA in orange, transposable

elements in pink, and pseudogenes in gray. The regions with the genes coding for proteins involved in motility, reduction of arsenate or oxidation of arsenite

are highlighted in black, blue, or yellow, respectively. The figure does not represent the p2 plasmid and the scale between the two genetic determinants is

not respected (https://www.genoscope.cns.fr/agc/microscope/home/index.php, last accessed April 30, 2013).

Life in an Arsenic-Containing Gold Mine GBE

Genome Biol. Evol. 5(5):934–953. doi:10.1093/gbe/evt061 Advance Access publication April 14, 2013 939

 at U
C

L
 L

ibrary Services on January 8, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt061/-/DC1
https://www.genoscope.cns.fr/agc/microscope/home/index.php
http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/


The large plasmid harbors four different replication sys-

tems, in particular three repABC operons. The first one is du-

plicated. These two repABC operons are related to repABC of

Dinoroseobacter (>90% identity) of the Rhodobacteraceae, a

family of the Rhodobacterales. The third repABC operon is

related to repABC of Rhizobiales. The fourth replication

system is composed of a ParB/RepC replication system homo-

log of A. tumefaciens NCPPB925 plasmid origin of replication.

Such a redundancy is not rare in Rhizobiales. For example, two

replicons in R. etli CFN42, one in R. leguminosarum 3841 and

one in Ruegeria sp. PR1b contain two repABC operons (Zhong

et al. 2003; González et al. 2006; Young et al. 2006).

The smaller plasmid replication system is different from the

canonical repABC replication system. It is constructed as the

replication system described in pTAR of A. vitis (Gallie and

Kado 1988), that is, the origin region carries a repA-like

gene, a parA gene and a putative regulator locus coding for

a putative segregation protein. Besides these replication trans-

fer genes, the 15 kb plasmid harbors a toxin antitoxin system,

which may explain its maintenance in Rhizobium sp. NT-26.

Plasmidic Adaptive Traits

In symbiotic bacteria, plasmids are known to play a role in their

interaction with plants (López-Guerrero et al. 2012). In addi-

tion to multiple transposases and insertion sequences, the

megaplasmid identified in Rhizobium sp. NT-26 encodes a

putative type IV secretion system known to be involved in

conjugal DNA transfer, including between bacteria and

plants. Indeed, two complete tra clusters were found on the

322 kb plasmid: the first one is related to the type IV secretion

system found in the Rhizobium/Agrobacterium genus,

whereas the second one is related to the type IV secretion

system of marine bacteria members of the Rhodobacteraceae

family, that is, Oceanibulbus indolifex or Ruegeria sp. PR1b

plasmid pSD25. However, canonical nodABC genes coding

for proteins NodA (acetyl transferase), NodC (oligomerization

of N-acetyl-glucosamine), and NodB (chitooligosaccharide

deacatylase) that are required for the synthesis of the core

structure of lipo-chitooligosaccharide (i.e., Nod factor)

(Dénarié et al. 1996) were not identified in the genome of

Rhizobium sp. NT-26. CDS displaying some similarities with

other nod genes, that is, encoding enzymes that control spe-

cific substitutions on the chitooligosaccharide backbone, or

the fix operon are present (supplementary table S4, Supple-

mentary Material online), but these genes are also well con-

served in nonsymbiotic prokaryotes. Nevertheless, it has been

demonstrated that the nodulation of some Fabaceae by rhi-

zobia occurs in the absence of the nodABC genes and lipo-

chitooligosaccharidic Nod factors (Giraud et al. 2007). This

indicates that other signaling strategies can trigger nodule

organogenesis in some legumes. Nodulation assays on various

Fabaceae plants were therefore performed as previously de-

scribed (Gremaud and Harper 1989), but no nodules were

observed at 3 weeks after inoculation or later at 4 weeks

(data not shown).

Despite a lack of plant nodulation, root inoculation by

Rhizobium sp. NT-26 suggested a potential phytobeneficial

effect (fig. 2). Direct plant-growth promotion can be derived

from phosphorus solubilization (Richardson et al. 2009), pro-

duction of plant growth regulators (phytohormones) such as

auxins, gibberellins, and cytokinins (Spaepen et al. 2009), NO

production and/or by supplying biologically fixed nitrogen

(Creus et al. 2005). Increasing the bioavailability of phosphate

as micronutrient is mediated by bacterial phosphatase activity,

and a phosphatase homolog, that is, NT26v4_0651, is present

in the Rhizobium sp. NT-26 genome. Moreover, two main

classes of dissimilatory nitrite reductase (Nir) involved in NO

production exist among denitrifying bacteria: the heme-cyto-

chrome cd1 type encoded by nirS genes and the copper-con-

taining type encoded by nirK genes (Zumft 1997). A nirK

homolog but no nirS homolog was identified in the

Rhizobium sp. NT-26 genome. Finally, no other homolog of

classical phytobeneficial functions was identified when analyz-

ing the genome, for example, phytohormone synthesis such

as auxin by ipdC/ppdC or acetoin-2,3-butanediol by budABC,

or nitrogen fixation by nitrogenase nifHDK.

Indirect plant growth-promoting mechanisms used by

plant-growth-promoting rhizobacteria (PGPR) include in-

duced systemic resistance, antibiotic protection against path-

ogens, reduction of iron availability in the rhizosphere by

FIG. 2.—Phytobeneficial effect of Rhizobium sp. NT-26 on Phaseolus

vulgaris. Erlenmeyer flasks of P. vulgaris were inoculated with Rhizobium

sp. NT-26 on the left, and with water on the right.
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sequestration with siderophores, synthesis of fungal cell wall-

lysing or lytic enzymes, and competition for nutrients and col-

onization sites with pathogens (Dobbelaere and Okon 2007).

Rhizobium sp. NT-26 contains loci coding for polyketide

synthases (NT26v4_3331, NT26v4_3332, and NT26v4_

3333), which are involved in nonribosomal synthesis of anti-

biotics, or coding for proteins involved in siderophore trans-

port (NT26v4_2008, NT26v4_4195, and NT26v4_4199).

Taken together, these observations suggest that Rhizobium

sp. NT-26 does not exert any direct interaction with plants

but it may have an indirect role in plant growth and protection

by its metabolic activities in the rhizosphere.
Unlike H. arsenicoxydans (Muller et al. 2007) and T. arseni-

toxydans (Arsène-Ploetze et al. 2010), which metabolize and

provide resistance to arsenic using proteins encoded by chro-

mosomally borne genes, proteins involved in arsenic resistance

in Rhizobium sp. NT-26 are encoded by ars genes present on

both the chromosome and the megaplasmid. The aio genes

involved in arsenite oxidation are present only on the mega-

plasmid (fig. 1B), as shown in The. thermophilus str. HB8. The

Rhizobium sp. NT-26 aio cluster also contains genes coding for

phosphate transport and molybdenum cofactor biosynthesis,

as previously observed in other arsenite-oxidizing bacteria

(Arsène-Ploetze et al. 2010; Bertin et al. 2011). In addition,

like the metallo-resistant strain Cupriavidus metallidurans

(Janssen et al. 2010), the Rhizobium sp. NT-26 megaplasmid

contains numerous genes involved in resistance to heavy

metals such as chromium, cadmium, and mercury. These ob-

servations suggest a loss of most plasmid-encoded functions

known to be involved in bacteria–plant interactions and an

acquisition of multiple genes allowing the organism to grow in

its natural habitat, a goldmine known to contain toxic metals

and metalloids.

The gene cluster coding for arsenite oxidase contains 5 aio

genes in Rhizobium sp. NT-26. The survey of the nr database

revealed the existence of numerous homologs of AioA, AioB,

AioR, AioS, and AioX. Preliminary phylogenetic analyses of

AioA homologs showed that the sequence from Rhizobium

sp. NT-26 belongs to a well-supported clade of proteobacterial

sequences corresponding to the groups I and II, which

were recently described (Heinrich-Salmeron et al. 2011).

Subsequent phylogenetic analyses revealed that the

Rhizobium sp. NT-26 AioA branched among alphaproteobac-

terial sequences (group I), within a strongly supported

clade composed of sequences from various Agrobacterium

species and Sinorhizobium sp. M14 (Rhizobiaceae), from

Ochrobacterium tritici (Brucellaceae), and uncultured organ-

isms (bootstrap value [BV]¼ 98% and posterior probability

[PP]¼ 1.00, supplementary fig. S2A, Supplementary Material

online). Phylogenetic analyses of other Aio proteins showed

similar branching patterns (supplementary fig. S2B–E,

Supplementary Material online). This suggests that the five

aio genes have co-evolved, which is not entirely surprising

given that they are functionally related and clustered together

when present in a genome.

A careful examination of the taxonomic distribution

within the subgroups (supplementary fig. S2, Supplementary

Material online) revealed that only 2 Rhizobium/

Agrobacterium complete genomes contain the aio genes al-

though nearly 30 genome sequences are available at NCBI. In

addition, the relationships among the sequences were not

always in agreement within the phylogeny of species, for ex-

ample, the grouping of a member of Brucellaceae within

Rhizobiaceae. This strongly suggests that horizontal gene

transfers may have played a role in the spread of aio genes

among these species. The alternative hypothesis, that is the

presence of aio genes in the common ancestor of the

Rhizobium/Agrobacterium group followed by multiple inde-

pendent gene losses during the diversification of this lineage,

appears less likely and does not explain the discrepancies

among the Aio phylogenies and the taxonomy. On the con-

trary, these inconsistencies may be easily explained by the ini-

tial acquisition of the aio genes by one member of the

Rhizobium/Agrobacterium group followed by a few horizontal

gene transfers to related species or strains. Such transfers may

have been favored by the colocation of aio genes on genomes

and their location on plasmids in a few strains (e.g., pSinA in

Sinorhizobium sp. M14 and pAt5A for A. tumefaciens 5A).

Taxonomic Relationship of Rhizobium sp. NT-26 with
Other Rhizobiaceae

Rhizobium sp. NT-26 strain has been previously assigned to

the Rhizobium genus on the basis of 16S RNA sequence

(Santini et al. 2000), but its phylogenetic relationship with

other Rhizobiaceae remains quite unclear. Therefore, the se-

quence of the Rhizobium sp. NT-26 chromosome has been

compared with the sequences present in the “Prokaryotic

Genome DataBase” (PkGDB) (Vallenet et al. 2006) and

RefSeq (NCBI Reference Sequences) data banks. The highest

synteny conservation was observed with the A. tumefaciens

C58 circular chromosome, which is 67.85% of the CDS in this

genome share synteny with the chromosome of Rhizobium

sp. NT-26 and the average size of the syntons is 8.4 CDS. This

gene order conservation is higher than that observed with

Rhizobium spp. strains (6.9–7.4), suggesting a closer evolu-

tionary relationship of strain Rhizobium sp. NT-26 with the

Agrobacterium lineage. To determine more precisely the tax-

onomic position of Rhizobium sp. NT-26 among Rhizobiaceae,

we compared its genome with a set of 23 other sequenced

genomes of this family in a phylogenetic framework. We com-

puted maximum-likelihood (ML) trees based on the concate-

nated alignments of sequences of either all-homologous

genes that are common to and unique in all strains (822

“core” genes) or genes of ribosomal proteins (51 “ribosomal”
genes). Intriguingly, both data sets yielded phylogenies that

agree on all major splits in the taxon, but not on the position
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of Rhizobium sp. NT-26. According to core genes, this strain

branched as an “in-group” of the Agrobacterium subgroup,

being the brother clade of A. tumefaciens after the split with

A. vitis (fig. 3A). Instead, according to ribosomal genes, strain

NT-26 branched as an “out-group” of the Agrobacterium

clade that encompasses A. vitis and A. tumefaciens (fig. 3B).

In both cases, the conflicting bipartitions are well supported,

and removing third codon positions in the alignment of core

genes, because of the possible saturation of the substitution

signal in non-housekeeping genes, did not change the ob-

served pattern (supplementary methods S3, Supplementary

Material online). This suggests that among the core gene

set, which include the majority of the ribosomal gene set,

different genes have different histories, causing the average

history (core phylogeny) to be different from that of a subset

(ribosomal phylogeny). This may have been caused by hori-

zontal gene transfer to and from A. tumefaciens, A. vitis,

Rhizobium, or other more phylogenetically distant taxon

that would blur the signal for vertical inheritance.

We therefore computed individual phylogenies for all ho-

mologous families to determine what scenario each gene

supported. On a set of 2,878 homologous gene family trees

containing 3,537 Rhizobium sp. NT-26 genes, we searched

for subtrees displaying the unambiguous patterns of either

Rhizobium sp. NT-26 as a direct out-group of the

Agrobacterium clade (“NT26outAgro”) or as an in-group of

the Agrobacterium clade and a brother group of A. tumefa-

ciens (“NT26inAgro”). “NT26inAgro” was prevalent with 338

genes (268 considering only high branch support) versus 255

(146) for “NT26outAgro,” and even though the amount of

genes displaying such unambiguous patterns was relatively

low, “NT26inAgro” was significantly more frequent (w2 test,

P value< 10�3). The location of those genes along the chro-

mosome of Rhizobium sp. NT-26 showed no grouping with a

particular pattern that could support a large-scale transfer

event (Mann–Whitney–Wilcoxon test, P value >0.9; supple-

mentary fig. S3, Supplementary Material online). The homo-

geneous dispersal of phylogenetic signatures rather suggests

that numerous small-scale transfer events occurred, as ob-

served in the case of frequent homologous recombination

with partners of different taxa (Didelot et al. 2010).

Alternatively, our observations may be the consequence of a

FIG. 3.—Phylogeny of Rhizobium sp. NT-26 among Rhizobiaceae. ML phylogenies of 24 Rhizobiaceae including strain NT-26 were built from con-

catenated alignments of (A) 822 core genes and (B) 51 ribosomal genes. Branch supports are percentage of the 200 and 1,000 bootstrap trees having the

bipartition, respectively.
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poor resolution of phylogenies. This may be due to the fre-

quent artifacts in the phylogenetic reconstruction of the rela-

tionship of strain NT-26 to Agrobacterium, such as those

caused by the long branch leading to Rhizobium sp. NT-26.

In the future, more phylogenetic information might be pro-

vided by sampling strains branching at the base of the

Rhizobium/Agrobacterium group.

Most of Rhizobiaceae contain a secondary chromosome or

megaplasmids, generally referred to as chromids (Harrison

et al. 2010), that are members of a same family of large rep-

licons derived from a plasmid (Slater et al. 2009). Although

Rhizobium sp. NT-26 genome contains a megaplasmid with

chromid characteristics (Harrison et al. 2010), this megaplas-

mid show very limited homology with chromids of this fam-

ily (supplementary table S5, Supplementary Material online).

The absence of a typical Rhizobiaceae secondary replicon

makes the genome structure of Rhizobium sp. NT-26 un-

usual when compared with other members of the family.

Comparison of the homologous gene location in Rhizobium

sp. NT-26 and related organisms may help with the under-

standing of its evolution history. With this aim, the closest

homolog of each of its genes present in several strains of

Rhizobium and Agrobacterium were mapped along the

Rhizobium sp. NT-26 chromosome (supplementary fig. S4,

Supplementary Material online). It appeared that the vast ma-

jority of strain NT-26 chromosomal genes map to the princi-

pal chromosome in Rhizobium and A. vitis, suggesting that

the Rhizobium sp. NT-26 lineage has completely lost the sec-

ondary chromosome of the Rhizobium/Agrobacterium ances-

tor. The history of intragenomic translocations have been

documented in this taxon (Slater et al. 2009) and locating

Rhizobium sp. NT-26 genes whose homologs have migrated

at a specific divergence time would help to date the age of the

divergence of the Rhizobium sp. NT-26 lineage. In this respect,

its chromosome possesses a large chromosomal fragment

(spanning from 2.55 to 3.40 Mb), which is specifically present

on the secondary (linear) chromosome in A. tumefaciens (sup-

plementary fig. 3, Supplementary Material online), further

supporting a divergence of the Rhizobium sp. NT-26 lineage

predating the A. tumefaciens speciation and synapomorphic

translocation events. Similarly, strain NT-26 appears to have

conserved the majority of the genes that are specifically

borne by the secondary chromosome of R. rhizogenes (119

homologs in Rhizobium sp. NT-26 over 129 specific translo-

cated genes). If strain NT-26 belonged to the Rhizobium line-

age, the majority of these genes would probably have been

lost with this whole chromid, although we cannot rule out

potential translocations of those genes back to the main

chromosome along with the chromid loss. Taken together,

and even though our current data do not allow a more accu-

rate classification, our observations support the inclusion of

Rhizobium sp. NT-26 in the Agrobacterium subgroup.

Nevertheless, according to the current nomenclature (Young

et al. 2001), Rhizobium is still a valid genus name for strain

NT-26.

Finally, although chromosomes are mainly dedicated to

housekeeping functions, chromids carry genes involved in spe-

cific ecological functions, that is, legume symbiosis enabled by

symbiotic plasmids in Rhizobium and Sinorhizobium (Harrison

et al. 2010) and plant-related functions in A. tumefaciens C58

(Lassalle et al. 2011). All these functions relate to the interac-

tions inside the rhizosphere and soil that represent the canon-

ical habitat of Rhizobiaceae. The loss by Rhizobium sp. NT-26

of this large replicon housing rhizosphere-associated functions

may be related to the drastic shift in environment the lineage

has experienced. Indeed (discussed earlier), this loss coincides

with the gain of genes enabling resistance to heavy metals,

and arsenic and sulfur metabolisms, both traits with a poten-

tially great adaptive value in sustaining life on an arsenopyrite

(FeAsS)-containing rock.

Functional Approaches to Investigate Arsenic Metabolism
and Resistance

Proteomic and Transcriptomic Profiling

Genomic tools have been used to study the bacterial response

to arsenic mainly in arsenite-oxidizing Betaproteobacteria such

as H. arsenicoxydans, a chemoorganotroph (Carapito et al.

2006; Muller et al. 2007; Weiss et al. 2009), and T. arsenitox-

ydans, a chemolithoautotroph (Bryan et al. 2009; Arsène-

Ploetze et al. 2010). Arsenic metabolism was investigated in

the chemolithoautotrophic Alphaprotebacterium Rhizobium

sp. NT-26 by two complementary approaches: protein and

RNA profiling using 2D gel electrophoresis and DNA microar-

rays, respectively. The comparisons of expression were done

on proteins and RNA isolated from strain NT-26 grown het-

erotrophically with and without arsenite. The main results are

summarized in table 1 and a complete list of the data is pre-

sented in supplementary table S6, Supplementary Material

online.

The 2D gel proteomic profile of Rhizobium sp. NT-26

was quite similar to those previously obtained for H. arseni-

coxydans (Carapito et al. 2006) and T. arsenitoxydans (Bryan

et al. 2009), which are also neutrophilic bacteria. Sixty-three

spots showed a significant difference in their accumulation

pattern in strain NT-26 grown with and without As(III).

Their analysis by mass spectrometry led to the identification

of 141 proteins (supplementary table S6a, Supplementary

Material online), including arsenite oxidase, which was identi-

fied for the first time on 2D gels. Like membrane proteins,

such periplasmic proteins are often eliminated with cell debris

before their solubilization during sample preparation. Proteins

up- or downregulated with a fold-change ranging from +39.6

to �5.8 when Rhizobium sp. NT-26 was grown in the pres-

ence of As(III) had a molecular mass ranging from 15 to

109 kDa and a pI value from 4.2 to 7.9. Among them, 24%

were involved in cell envelope and cellular processes, 12% in
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transport and binding proteins, 11% in information and reg-

ulation pathways, 42% in metabolism, 1% in transcription,

and 10% were of unknown function.

The second approach used whole genome microarrays to

perform a differential expression profiling experiment. Under

As(III) stress, the transcript level of 199 genes, that is 4.5% of

the whole genome, showed an increase of up to more than

four times with a P value �0.05. At the same time, the ex-

pression of 416 genes, that is 9.5% of the whole genome,

decreased by up to more than three times (supplementary

table S6c, Supplementary Material online).

General Response to Arsenic Stress

Several proteins involved in arsenic resistance were shown

to be accumulated on 2D gels when the organism was

grown in the presence of As(III), for example, an ArsH1

NADPH-dependent FMN reductase and an ArsC1 arsenate

Table 1

Major Arsenic-Regulated Functional Categories Identified in Transcriptomics and Proteomics Experiments

Functional Category MaGe ID Gene Function FC

RNAa Proteina

Oxidative stress NT26v4_0103 rpoN RNA polymerase s54 factor 1.32

NT26v4_0389 katA Catalase A 1.37

NT26v4_0773 ohr Organic hyperoxide resistance 1.41

NT26v4_0799 sodB Superoxide dismutase 3

Carbon metabolism NT26v4_0674 cbbF Fructose-1.6-bisphosphatase 1.3

NT26v4_0670 cbbL RuBisCo large subunit 1.37

NT26v4_2684 cbbT Transketolase 3.4

NT26v4_0667 cbbE Ribulose-phosphate 3-epimerase 1.35

Nitrogen metabolism NT26v4_3645 norQ Putative NorD protein 1.52

NT26v4_3643 norC Nitric oxide reductase subunit C 1.42

NT26v4_3641 norE Involved in nitric oxide reduction 1.60

NT26v4_3654 nirV Involved in nitrite reduction 1.51

NT26v4_3653 nirK Cu-containing nitrite reductase 39.6

Arsenic metabolism NT26v4_p10030 aioA Arsenite oxidase large subunit 3.89 10

NT26v4_p10029 aioB Arsenite oxidase small subunit 4.27

NT26v4_p10118 arsC1b Arsenate reductase ArsC 22

NT26v4_p10122 arsH1 Arsenical resistance protein 2.9

Sulfur metabolism NT26v4_2623 soxG Sulfur oxidation protein �1.37

NT26v4_2619 soxV Sulfur oxidation protein �1.39

NT26v4_2618 soxW Thioredoxin �1.52

NT26v4_2617 soxX Sulfur oxidizing protein �1.68

NT26v4_2616 soxY Sulfur oxidation protein �1.45

NT26v4_2615 soxZ Sulfur oxidation protein �1.51

NT26v4_2882 cysT Sulfate/thiosulfate transport protein �1.72

Phosphate metabolism NT26v4_1226 phoE1 Phosphonate ABC transporter 1.45

NT26v4_0079 phoR Phosphate regulon kinase 1.32

NT26v4_p10016 phoE2 Phosphonate ABC transporter subunit 1.61

NT26v4_p10017 phoT2 Phosphonate ABC transporter subunit 1.42

NT26v4_p10024 pstS2 High-affinity phosphate transporter 3.7

Motility/biofilm NT26v4_0204 fliF Flagellar M-ring protein 1.44

NT26v4_0227 flaA Flagellin A 7.2

NT26v4_0228 fla Flagellin 9.7

NT26v4_0655 qseB Quorum sensing regulator QseB 1.39

NT26v4_2748 noeJ Mannose-1-P guanylyltransferase 1.41

NT26v4_1615 kdsA KDO 8-P synthase 1.40

Plant/bacteria interactions NT26v4_1705 cgmA Beta-1.2-glucan modification protein 1.7

NT26v4_p10302 avhB10 Type IV system transglycosylase 1.41

NOTE.—Induced and repressed functions are shown in blue and black, respectively. No value is indicated in the FC column if the gene is not statistically differentially
expressed in transcriptomics or if the protein has not been identified in proteomics. Complete data are presented in supplementary table S6, Supplementary Material online.

aFold-change observed in transcriptomics and proteomics data, respectively.
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reductase (table 1) with fold changes of 2.9 and 22, respec-

tively. These two proteins are encoded by an ars operon lo-

cated on the megaplasmid, which also contains genes coding

for an ArsB efflux pump and an ArsR regulator. Moreover, a

second operon located on the chromosome contains an arsA

gene coding for an ATPase associated with an ArsB arsenite

efflux pump. ArsA enables the strain to increase arsenic resis-

tance by ATP-dependent extrusion of the metalloid out of the

cell (Branco et al. 2008).

Microarray experiments showed that genes encoding the

two arsenite oxidase subunits, that is, the small subunit, AioB,

which contains the Rieske 2Fe-2S cluster and the catalytic

subunit, AioA, which contains a molybdopterin guanine dinu-

cleotide at the active site and a 3Fe–4S cluster (Santini and

vanden Hoven 2004), were about 4-fold induced in the pres-

ence of arsenite (table 1). In contrast, the expression of two

genes located downstream of the aioBA operon, that is, cytC

encoding the periplasmic cytochrome c552, which can serve as

an electron acceptor to the arsenite oxidase (Santini et al.

2007) and moeA1 encoding a molybdenum cofactor biosyn-

thesis gene, was not significantly affected under arsenite

stress (supplementary table S6c, Supplementary Material

online). These observations are further supported by proteo-

mic experiments showing that, among these proteins, AioA

was found to be preferentially accumulated in the presence of

As(III). All these results are consistent with previous data

(Santini et al. 2007), which suggests that the expression of

aioBA genes is induced by arsenite while genes located down-

stream are constitutively expressed even though they may

have a role in arsenic metabolism.

Located upstream of aioBA are two regulatory genes, aioS

and aioR, which encode a sensor histidine kinase and a re-

sponse regulator, respectively (Sardiwal et al. 2010). Both pro-

teins have been shown to be required for the transcriptional

regulation of the aioBA genes (Koechler et al. 2010; Sardiwal

et al. 2010). Moreover, it has been demonstrated that the

expression of the aioBA genes requires the RpoN alternative

sigma factor (s54) in H. arsenicoxydans (Koechler et al. 2010).

Similarly, a role for RpoN in arsenite oxidation has been re-

cently highlighted in A. tumefaciens 5A (Kang et al. 2012). In

this respect, a putative s54-dependent promoter region has

been detected upstream of the aioB gene in Rhizobium sp.

NT-26 (Santini et al. 2007), suggesting that it is also involved in

the expression of the aioBA operon in strain NT-26 (Sardiwal

et al. 2010). This hypothesis is supported by our transcriptomic

data, which revealed an induced expression of rpoN in

Rhizobium sp. NT-26 when it was grown in the presence of

As(III) (table 1), in contrast to the constitutive expression re-

cently observed in A. tumefaciens 5A (Kang et al. 2012).

Similarly, microarray and 2D-gel data showed a 2-fold increase

in the expression of genes coding for general chaperones, that

is, DnaK and GroEL, in the presence of arsenite (supplemen-

tary table S6a and c, Supplementary Material online), which is

in agreement with the role played by proteins of the

heat-shock family in As(III) oxidation in H. arsenicoxydans

(Koechler et al. 2010).

Rhizobium sp. NT-26 also tolerates arsenate concentration

greater than 0.5 M (Clarke A. and Santini J.M., unpublished

data), suggesting the existence of an alternative mode of re-

sistance. The first one is an Ars-type arsenic resistance system,

components of which were found to be upregulated when

the strain was grown with arsenite (discussed earlier) and the

second is the presence of a specific phosphate transport

system which is thought to limit arsenate entry into the cell

(Weiss et al. 2009). Indeed, in Rhizobium sp. NT-26, the arse-

nic genomic island contains a pst operon in the vicinity of the

aio operon. The pst operon encodes proteins implicated in the

specific transport of phosphate into the cell to maintain a

sufficient level of this ion despite the presence of arsenate, a

structural analog of phosphate (Muller et al. 2007; Cleiss-

Arnold et al. 2010). PstS2, a periplasmic protein involved in

phosphate transport and encoded by this operon, had a 3.7-

fold increase in expression when strain NT-26 was grown in

the presence of As(III) (table 1). The pst operon is regulated by

phoR, which encodes a membrane-associated protein kinase

that phosphorylates PhoB in response to environmental sig-

nals. Indeed, microarray data showed that the expression of

phoR was also upregulated in the presence of As(III) (table 1).

Moreover, the PhoR protein may be involved in biofilm forma-

tion as phoB overexpression has been shown to increase bio-

film formation in A. tumefaciens (Danhorn et al. 2004). This is

supported by the presence in the vicinity of the pho chromo-

somal operon of a cluster of genes involved in EPS biosynthesis

(NT26v4_1233–NT26v4_1263).

Arsenic is known to induce oxidative stress by generating

free radicals (Bernstam and Nriagu 2000). An induction of

genes involved in the resistance to such a stress has been

previously observed in Pseudomonas aeruginosa and in

H. arsenicoxydans under arsenite exposure (Parvatiyar et al.

2005; Weiss et al. 2009; Cleiss-Arnold et al. 2010). In

Rhizobium sp. NT-26, an increase in katA mRNA, which en-

codes a catalase involved in the protection against oxidative

stress by scavenging endogenously produced H2O2, was ob-

served in microarray experiments (table 1). Similarly, the ex-

pression of ohr, which promotes bacterial resistance to

hydroperoxide, was also up-regulated in Rhizobium NT-26

(table 1). Finally, results of the proteomic experiments

showed a 3-fold increase in the SodB superoxide dismutase

accumulation when strain NT-26 was grown in the presence

of As(III). These observations further support the strong link,

which exists in bacteria between arsenic response and protec-

tion against oxidative stress (Bertin et al. 2012).

Carbon, Nitrogen, and Energy Metabolism

Rhizobium sp. NT-26 is able to use various carbon or electron

sources for growth. Indeed, multiple carbohydrates such as

acetate, succinate, fumarate, lactate, glucose, fructose,
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xylose, and galactose are potential carbon sources for this

bacterium (Santini et al. 2000). Alternatively, Rhizobium sp.

NT-26 is able to grow chemolithoautotrophically in the pres-

ence of bicarbonate as a carbon source, oxygen as an electron

acceptor and arsenite as an electron donor (Santini et al.

2000). Transcriptomics and proteomics experiments revealed

that several genes and proteins involved in the fixation of CO2

via the Calvin cycle were upregulated with a fold change rang-

ing from 1.3 to 3.4 when strain NT-26 was grown in the

presence of As(III) (table 1). This is in agreement with the pro-

teomics results obtained in T. arsenivorans, where an accumu-

lation of the ribulose-1,5-biphosphate carboxylase/oxygenase

large subunit and of the fructose-1,6-biphosphate has been

observed when the organism was grown in the presence of

As(III) (Bryan et al. 2009). Both strains may thus improve their

capacity to fix CO2 when arsenite is present.

In addition, our microarrays data showed that the expres-

sion of nirV encoding a protein involved in nitrite reduction

was induced. Moreover, 2D-gel data showed that NirK, which

also participates in the reduction of nitrite to nitric oxide, was

39.6 times more accumulated when strain NT-26 was grown

in the presence of arsenite. These experiments also showed an

induction of several genes of the norEFCBQD nitric oxide re-

ductase gene cluster when Rhizobium sp. NT-26 was grown in

the presence of As(III) (table 1). These genes encode proteins

that catalyze the reduction of nitric oxide to nitrous oxide, that

is, norQ, norE and norC coding for a protein involved in nitric

oxide reduction, a nitric oxide reductase activating protein,

and the small subunit of the nitric oxide reductase, respec-

tively. This suggests that the chemolithoautotrophic bacterium

Rhizobium sp. NT-26 may fix CO2 and couple nitrite reduction

with As(III) oxidation. However, as no growth was observed

with arsenite on either nitrate or nitrite, arsenite oxidation

using nitrite as electron acceptor in autotrophic conditions

seems unable to support sufficient energy (ATP) generation

to sustain growth.

Rhizobium sp. NT-26 has been shown to grow with hydro-

gen sulfide, elemental sulfur, and thiosulfate (Santini J.M.,

unpublished data). In agreement with these observations, a

sox cluster implicated in the oxidation of thiosulfate is present

in the Rhizobium sp. NT-26 genome. Nevertheless, many

genes involved in sulfur metabolism, that is, soxGVWXYZ

and cysT were downregulated by up to 2-fold when the

strain was grown in the presence of arsenite (table 1). Our

results therefore suggest that, even though Rhizobium sp. NT-

26 may be able to grow by using sulfur as an electron donor,

the strain represses sulfur oxidation when grown in the pres-

ence of As(III). One hypothesis may be that, in such a case, the

strain expresses a repressor of the sox genes. Their products

serve for the oxidation of thiosulfate to sulfate and the reac-

tion intermediates, that is, sulfite, sulfide, and hydrogen sul-

fide, have been shown to inhibit arsenite oxidase activity

(Lieutaud et al. 2010).

Physiological and Genetic Approaches: Flagellar Motility
and Biofilm Formation

Flagellum Cascade Features

Rhizobium sp. NT-26 is motile by the means of two subter-

minal flagella (Santini et al. 2000). Genes involved in their

biosynthesis are organized in a large chromosomal cluster

of 55 genes showing a perfect synteny with those of S. meli-

loti. In this flagellar regulon, visN and visR form part of the

master operon and encode the proteins forming the VisNR

heterodimer that acts as a global transcriptional regulator.

This master regulator activates the expression of genes lo-

cated in the cascade that encode flagella, motor, and che-

motaxis proteins (Sourjik et al. 2000). In Rhizobium sp. NT-26,

microarray data showed that the expression of fliF, coding for

the flagellum M-ring protein, was induced when the organ-

ism was grown in the presence of As(III) (table 1).

Furthermore, proteomic data showed a 9.7- and 7.2-fold-in-

crease in the accumulation of flagellin proteins Fla and FlaA,

respectively (table 1). The expression of qseB was also induced

when Rhizobium sp. NT-26 was grown in the presence of

As(III). QseB has been shown to participate in the flagellum

and motility bacterial regulatory network via a quorum-sens-

ing mechanism. Indeed, in E. coli, qseBC expression enhances

the transcription of flagellar genes in response to the auto-

inducer by a direct binding of QseB to the flhDC master

operon promoter (Clarke and Sperandio 2005). Finally, micro-

array data showed the induction of genes possibly involved in

the synthesis of an exopolysaccharide matrix in Rhizobium sp.

NT-26, that is, noeJ, coding for a mannose-1-phosphate gua-

nylyltransferase and kdsA, coding for a 2-dehydro-3-deoxy-

phosphooctonate aldolase. These observations suggest that

As(III) has an impact on flagellum synthesis, that is to say

motility, and biofilm formation in Rhizobium sp. NT-26, as

observed in H. arsenicoxydans (Muller et al. 2007; Marchal

et al. 2010). To test this hypothesis, swarming assays were

performed on 0.3% agar plates. The presence of As(III) was

shown to increase the swarming ring by up to 2-fold in the

presence of 8 mM As(III) (fig. 4A). Remarkably, cell observa-

tion under a TEM revealed that flagellum biosynthesis oc-

curred immediately in the presence of 8 mM As(III) while

more than two days were needed to observe flagella in the

absence of arsenite (fig. 4B and C), providing evidence that

arsenite promotes motility in Rhizobium sp. NT-26. In addi-

tion, a two-fold reduction in biofilm formation was observed

in the first 24 h of growth in the presence of As(III) (fig. 4D),

which suggests a preferential development as motile plank-

tonic cells rather than as unflagellated sessile cells as in H.

arsenicoxydans (Marchal et al. 2010).

Random Mutagenesis

The Rhizobium sp. NT-26 genome organization suggests that

motility and arsenite oxidation depend on genes located on its
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chromosome and on its megaplasmid, respectively. With the

aim to analyze the possible link between these physiological

processes, a mutant library was constructed by random trans-

poson mutagenesis (Tang et al. 1999). The motility of 6,000

kanamycin-resistant transposition derivatives was tested on

semisolid medium, which led to the isolation of 22 motility-

deficient mutants. The mutations that resulted in a loss of

motility were identified by sequencing the mini-Tn5 transpo-

son insertion sites. Fourteen mutations were shown to directly

disrupt motility genes (table 2), and the proteins encoded by

these genes are either structural or regulatory components of

the flagellum cascade, that is, 5 Flg proteins (FlgE, FlgF, FlgG,

FlgI, and FlgL), 5 Fli proteins (FliF, FliK, Flip, and FliR), 1 Flh

protein (FlhA), and 1 Vis protein (VisR). No flagellin-defective

mutant was obtained, which may be explained by the pres-

ence of four different flagellin-encoding genes on the

chromosome.

Similarly, six mutations resulting in a lack of arsenite ox-

idation as compared with the wild-type and motility mu-

tants were obtained after screening 6,000 kanamycin-

resistant clones with the silver nitrate method (Muller

et al. 2007) (table 2). First, two mutations were identified

in the arsenite oxidase genes, that is, aioA and aioB. One

mutation was also shown to affect aioR, which encodes the

regulatory protein of the AioRS two-component system. No

oxidation of As(III) to As(V) was detected by HPLC-ICP-AES

(Muller et al. 2007) in this mutant, as compared with com-

plete As(III) oxidation determined in the motility mutant de-

ficient in the flagellum master regulator VisR. A fourth

mutation was located in the moeB gene involved in the

synthesis of the molybdopterin cofactor required for arse-

nite oxidase activity. Finally, the inactivation of the aioX

gene, which is located upstream of aioSR, also resulted in

a loss of arsenite oxidation in Rhizobium sp. NT-26. In

A. tumefaciens 5A, the periplasmic AioX has been recently

shown to be involved in the regulation of As(III) oxidation

(Liu et al. 2012).

To determine the link between As(III) oxidation and coloni-

zation properties in Rhizobium sp. NT-26, the ability of various

mutants to move and to form a biofilm was evaluated in the

presence of arsenite (fig. 5). Mutations in flagellar genes re-

sulted in a loss of motility and in a decrease in biofilm forma-

tion. Indeed, all the mutants we tested were nonmotile

(fig. 5A) and lost between 12% and 45% of their ability

to form a biofilm when compared with the wild-type strain

(fig. 5B). This observation demonstrates that, although

FIG. 4.—Motility phenotype of Rhizobium sp. NT-26 grown at different concentration of arsenite. (A) Swarming diameter measured after 48h in MSM

containing 0.04% yeast extract and supplemented by different concentrations of As(III). Results are the mean values of three independent experiments. (B)

and (C) TEM observations of Rhizobium sp. NT-26 at 24 h of culture, without or with 8 mM As(III), respectively. The scale bar corresponds to 500 nm and the

pictures are representative of 10 pictures. (D) Biofilm formation by strain NT-26, without or with 8 mM As(III) visualized by the crystal violet method. Results

are the mean values of 24 replicates.
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Rhizobium sp. NT-26 has a preferential motile life style in the

presence of arsenite, flagella have a role as adhesive append-

ages in the first steps of biofilm formation, which has been

shown previously in other studies (Kirov et al. 2004; Nejidat

et al. 2008). This result is in agreement with those obtained

with H. arsenicoxydans, where mutations resulting in

nonfunctional flagella led to a more rapid adhesion as com-

pared with the wild-type. Finally, aioA and aioR mutants were

less motile and formed 30% and 45%, respectively, less bio-

film than the wild-type (fig. 5), further supporting the role of

motility and flagella in biofilm formation.

Regulation of Flagella Synthesis by AioR

The “omics” data showed that flagellar proteins and genes

were upregulated when strain NT-26 was grown in the

presence of arsenite (table 1). Remarkably, both aioA and

aioR mutations resulted in a moderate reduction in motility

(fig. 5A). This can be explained by the reduction in energy

available to the cells as they are unable to metabolize ar-

senite (Santini et al. 2000). In addition, TEM observations of

the aioR mutant, affected in the two-component signal

transduction system, revealed the presence of flagella in

the early log phase of growth even in the absence of

As(III), which suggests that AioR may be involved in the

repression of motility when no arsenite is present (fig. 6).

AioR may thus interact, directly or indirectly, with compo-

nents of the flagellar cascade.

To identify possible AioR-binding sites in the Rhizobium

sp. NT-26 genome, multiple sequence alignments of all

aioBA regulatory sequences available in databases were

performed with fuzznuc (Rice et al. 2000). This enabled

us to suggest the possible existence of two AioR putative

binding sites upstream of the aioBA transcriptional start

site, that is, GT[CT]CGN(6)CG[GA]AC in the Rhizobiales

strains and GTTNCN(6)GNAAC in the Burkholderiales

Table 2

Rhizobium sp. NT-26 Mutants Isolated on the Basis of a Loss of Motility or Arsenite Oxidation

Mutant MaGe IDa Gene Function Gene Locationb Insertionc

Motility

2B5 NT26v4_0222 flgI Flagellar P-ring protein precursor 221267–222391 258I-O

2D6 NT26v4_0245 flhA Flagellar biosynthesis protein 243262–245349 38I-O

4H7 NT26v4_0204 fliF Flagellar M-ring protein 206351–208027 477I-O

5B7 NT26v4_0226 fliP Flagellar biosynthetic protein 224272–225009 109O-I

6E4 NT26v4_0220 flgG Flagellar basal-body rod protein 219981–220769 182I-O

10A11 NT26v4_0248 Putative FlgJ-like protein 246658–247212

10G2 NT26v4_2965 Conserved hypothetical protein 2880029–2881285 44O-I

16B6 NT26v4_0245 flhA Flagellar biosynthesis protein 243262–245349 55I-O

16B7 NT26v4_0240 flgL Flagellar hook-associated protein 240428–241549 11I-O

18D11 NT26v4_0238 flgE Flagellar hook protein 237398–238930 363I-O

20E7 NT26v4_0246 fliR Flagellar biosynthetic protein 245378–246130 110O-I

23E5 NT26v4_0214 flgF Flagellar basal-body rod protein 216054–216788 44O-I

29G6 NT26v4_0247 Putative FliR/FliJ-like chaperone 246137–246553 91I-O

35A8 NT26v4_2314 Putative two-component sensor histidine kinase 2263060–2264472 113O-I

37C12 NT26v4_2314 Putative two-component sensor histidine kinase 2263060–2264472 48O-I

37H1 NT26v4_2267 Putative ATP-dependent hydrolase protein 2217585–2219546 337O-I

38B4 NT26v4_0206 visR Master transcriptional regulator of flagellar regulon 209070–209798 53O-I

38G3 NT26v4_0204 fliF Flagellar M-ring protein 206351–208027 235I-O

39G12 NT26v4_2671 Conserved protein of unknown function 2586119–2587117 94O-I

40E5 NT26v4_0234 fliK Flagellar hook-length regulator 234324–235835 83I-O

50E11 NT26v4_0250 Conserved integral membrane protein of unknown function 247603–248142 92O-I

61C2 NT26v4_3970 Conserved exported protein of unknown function 3918374–3918853 196I-O

Arsenite oxidation

8G1 NT26v4_p10026 aioX Putative periplasmic phosphite-binding-like protein precursor; PtxB-like protein 23892–24806 275I-O

11B3 NT26v4_4048 moeB Putative molybdopterin biosynthesis protein MoeB 3998958–3999725 245O-I

24B7 NT26v4_p10028 aioR Two-component response regulator 26262–27584 65I-O

37C3 NT26v4_p10026 aioX Putative periplasmic phosphite-binding-like protein precursor; PtxB-like protein 23892–24806 191I-O

55H7 NT26v4_p10029 aioB Arsenite oxidase small subunit 27721–28248

60E6 NT26v4_p10030 aioA Arsenite oxidase large subunit 28261–30798 818I-O

aIdentification number of the gene in the MaGe interface.
bPosition of the corresponding gene on the chromosome or the plasmid.
cPosition of the codon immediately upstream of the transposon insertion site. Subscripts indicate the orientation of the insertion.

Andres et al. GBE

948 Genome Biol. Evol. 5(5):934–953. doi:10.1093/gbe/evt061 Advance Access publication April 14, 2013

 at U
C

L
 L

ibrary Services on January 8, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/


strains. In contrast, strains lacking the two-component

system aioSR operon did not harbor any of these putative

AioR-binding sites, which further supports a role for these

motifs in the regulation of aioBA operon expression by

AioR. Although the GT[CT]CGN(6)CG[GA]AC putative bind-

ing site was found at 49 locations on the Rhizobium sp.

NT-26 chromosome, it is only in the upstream region of the

aioBA operon that this motif was associated with the -12/-

24 s54-dependent promoter sequence needed for the

RpoN-dependent transcription initiation of arsenite oxidase

genes (Koechler et al. 2010). Moreover, no clear connection

could be observed between those putative binding sites

and motility-related genes. Nevertheless, a search of the

whole genome of strain NT-26 with a relaxed version of

the pattern allowing any nucleotide at its degenerated po-

sitions, GTNCGN(6)CGNAC, yielded 39 more hits than with

the canonical pattern. This low number of new hits sug-

gests that the presence of this signature is not due to

chance and this sequence may therefore have a potential

regulatory role. None of the new hits was associated with a

RpoN motif site although one hit was found within the

coding sequence of the flagellar master regulatory gene

visN. Therefore, although we cannot rule out an indirect

effect of AioR by controlling another regulatory protein, we

can hypothesize that the binding to this mildly degenerate

motif of unphosphorylated AioR in the absence of arsenic

would result in a visN repression and a delayed motility.

Such a transcriptional repression via binding of the coding

sequence of target genes has already been observed for

other regulatory proteins and two-component system reg-

ulators, for example, OxyR (Zheng et al. 2001) and PrrA

(Eraso et al. 2008). Taken together, our results demonstrate

the importance of arsenite oxidation in the behavioral re-

sponse of Rhizobium sp. NT-26, suggesting that arsenic

metabolism enhances the ability of the organism to explore

and colonize its environment.

FIG. 5.—Percentage of motility and biofilm formation in various mutants as compared with Rhizobium sp. NT-26 wild-type strain. The left and the right

panels show the results obtained in mutants affected in motility and As(III) oxidation, respectively. (A) % of swarming motility measured after 24h. Results are

the mean values calculated from the % of three independent experiments. In each experiment, mutant and wild-type strains were tested in triplicates. (B) %

of biofilm formation visualized by crystal violet coloration. Results are the % calculated from the mean values of six replicates for each strain.
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FIG. 7.—Conceptual representation of the Rhizobium sp. NT-26 response to arsenite exposure. This representation takes into account our genomic,

transcriptomic, proteomic, and physiological results as well as data from the literature. Numbers 1 to 9 represent biological functions and the approximate

genomic location of the gene clusters encoding their corresponding proteins. 1 and 9: arsenate reduction; 2: phosphate and arsenate transport; 3 and 4:

arsenite and sulfur oxidation, respectively; 5: carbon fixation; 6 and 7: nitrate and nitrite reduction, respectively; 8: motility. Block, dashed, dotted, and

standard arrows symbolize chemical reactions, electron flow, transport/utilization of molecules and signaling/regulatory pathways, respectively. When

highlighted in dark blue, light blue, yellow or gray, elements have been identified as being induced by proteomic, induced by transcriptomic, repressed

by transcriptomic, and present in the genome, respectively. For clarity reasons, proteins for which the exact function is still unknown but that are related to

the different processes are not shown, the protein complexes of the respiratory chain, that is the NADH dehydrogenase, the fumarate reductase, the

cytochrome bc1 and the cytochrome c oxidase are designated by Nuo, Sdh, Cyt bc1, and Cox, respectively, plasmid p2 is not shown and only one flagella is

represented. Finally, Cyt c and c552 are for cytochrome c and cytochrome c552, respectively, and NT26v4_4001 is a homolog of qseC.

FIG. 6.—TEM observations of the aioR mutant. The aioR mutant was cultivated 24 h (A) in the absence of As(III) and (B) in the presence of 8mM As(III).

Pictures are representative of 10 photographs. The scale bar corresponds to 500nm.
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Conclusion

This study extends our knowledge of the physiological re-

sponse to arsenic in arsenite-oxidizing bacteria. Our results

provide for the first time a reference set of genomic, transcrip-

tomic, and proteomic data of an Alphaproteobacterium iso-

lated from an arsenopyrite-containing goldmine, which

allowed us to propose a model for the Rhizobium sp. NT-26

response to arsenite exposure (fig. 7). Although phylogeneti-

cally related to the plant-associated bacteria, strain sp. NT-26

has lost the major colonizing capabilities needed for symbiosis.

Instead, this bacterium has acquired on a megaplasmid the

various genes which allow it to metabolize arsenate.

Remarkably, a link between flagellar motility/biofilm formation

and arsenite oxidation was observed although the genes re-

quired for these physiological activities are carried by different

genetic determinants, that is, the chromosome and the mega-

plasmid, respectively. This suggests the existence of a mecha-

nism, probably indirect and which remains to be characterized

at a molecular level, of a coordinate regulation of these two

important biological processes. This underlines the importance

of arsenite oxidation in the colonization of arsenic-rich ecosys-

tems, a toxic element widespread on Earth. Importantly, our

data also illustrate the major contribution of environmental

pressure on the evolution of bacterial genomes, which results

in a gain and loss of multiple functions, improving the fitness

of the strains to extreme ecological niches.

Supplementary Material

Supplementary figures 1–4, tables S1–S6, and methods S1–S4

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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