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Abstract

Penalized estimation has become an established tool for regularization and model selection
in regression models. A variety of penalties with specific features are available and effective
algorithms for specific penalties have been proposed. But not much is available to fit models
that call for a combination of different penalties. When modeling rent data, which will be
considered as an example, various types of predictors call for a combination of a Ridge, a
grouped Lasso and a Lasso-type penalty within one model. Algorithms that can deal with
such problems, are in demand. We propose to approximate penalties that are (semi-)norms
of scalar linear transformations of the coefficient vector in generalized structured models –
such that penalties of various kinds can be combined in one model. The approach is very
general such that the Lasso, the fused Lasso, the Ridge, the smoothly clipped absolute deviation
penalty (SCAD), the elastic net and many more penalties are embedded. The computation is
based on conventional penalized iteratively re-weighted least squares (PIRLS) algorithms and
hence, easy to implement. Moreover, new penalties can be incorporated quickly. The approach
is extended to penalties with vector based arguments; that is, to penalties with norms of
linear transformations of the coefficient vector. A software implementation is available. Some
illustrative examples and the model for the Munich rent data show promising results.

Keywords: Model selection; Penalties; Generalized linear model (GLM); Structured regres-
sion; Ridge; Lasso; Grouped Lasso; SCAD; Elastic net; Fused Lasso.

1 Introduction
In recent years, model selection and regularization in regression models has been an area of
intensive research. Often, penalized approaches are the method of choice. Examples are Ridge
regression, the Lasso, the smoothly clipped absolute deviation penalty (SCAD), the fused Lasso,
the elastic net and the (adaptive) grouped Lasso, to mention only a few approaches (Hoerl and
∗Corresponding author: margret.oelker@stat.uni-muenchen.de
†Department of Statistics, Ludwig-Maximilians-Universität Munich; address: Akademiestraße 1, 80799 Mu-

nich, Germany; phone: +49 89 2180 3351
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Kennard, 1970; Tibshirani, 1996; Fan and Li, 2001; Tibshirani et al., 2005; Zou and Hastie,
2005; Yuan and Lin, 2006; Wang and Leng, 2008). The number of applications is huge: In
nonparametric regression, penalties smooth wiggly functions; for example, Eilers and Marx
(1996) work with Ridge penalties on higher order differences of B-spline coefficients. Meier
et al. (2009) select splines with a grouped Lasso-type penalty. For wavelets and signals, L0

penalties, or more general Lq penalties, 0 ≤ q ≤ 1, are employed (Antoniadis and Fan, 2001;
Rippe et al., 2012). Concerning categorical data, Bondell and Reich (2009) or Gertheiss and
Tutz (2010) work with fused Lasso type penalties. Fahrmeir et al. (2010) offer a flexible frame-
work for Bayesian regularization and variable selection; amongst others with spike and slab
priors.
Various efficient algorithms to solve the resulting optimization problems are available, be it in
linear models, generalized linear models (GLMs), hazard rate models or others. Least angle
regression (lars; Efron et al., 2004; Hastie and Efron, 2013) offers a conceptual framework to
compute the entire regularization path of the Lasso by exploiting its piecewise linear coefficient
profiles. Osborne and Turlach (2011) propose a homotopy algorithm for the quantile regression
Lasso and related piecewise linear problems. Meier et al. (2008) propose a coordinate-descent
algorithm for the group Lasso in logistic regression problems. Goeman (2010) solves Lasso,
fused Lasso and Ridge-type problems in high-dimensional models by a combination of gradient
ascent optimization with the Newton-Raphson algorithm. Friedman et al. (2010) use cyclical
coordinate descent algorithms, computed along a regularization path, for the elastic net and
related convex penalties. Ulbricht (2010) proposes a penalized iteratively re-weighted least
squares (PIRLS) algorithm for Lasso-type penalties in GLMs. The R-package mgcv (R Core
Team, 2013; Wood, 2011) offers a toolbox for generalized additive models and generalized Ridge
regression.
In the mentioned approaches, penalties have a specific purpose; for example, the selection of
variables in a linear predictor or of smooth non-linear effects. In applications, however, fre-
quently a combination of penalties is needed that serves different purposes. For illustration, we
consider the rent data of 1488 households in the city of Munich. To model the rent, continuous
covariates like the flat’s size and age, as well as some explanatory factors were collected. The
effect of the age of a flat is known to be non-linear (see, for example, Fahrmeir and Tutz, 2001)
and can be modeled by splines with a Ridge-type penalty on the curvature. When investigating
whether the effect of the residential area is linear or not, an additional grouped Lasso penalty
is helpful. As some levels of categorical predictors are only sparsely occupied, ordered factors
like the number of rooms of a flat require regularization, too. This can be done by employing
a fused Lasso type penalty on the dummy coefficients of these covariates. Hence, the overall
penalty is a sum of Ridge-, grouped Lasso- and Lasso-type penalties. We will use a generalized
structured regression model with Gamma distributed response.
Although the algorithm of Friedman et al. (2010) covers Ridge- and Lasso-type penalties within
one model via the elastic net, it does not allow for other penalties. The R-package mgcv allows
penalized smooth functions and penalized parametric terms, but penalties of parametric terms
have to be quadratic. Even though the algorithm of Ulbricht (2010) works for a family of
Lasso-type penalties, we found no algorithm obviously matching the requirements of our data.
As in Marx and Eilers (1998), many algorithms are based on Fisher scoring methods, which
are the default approach to estimate GLMs. For quadratic penalties, a penalty matrix is added
to the Fisher information matrix. See, for example, the PIRLS algorithm in R-package mgcv.
For non-quadratic penalties, approximations are available and again PIRLS algorithms are ap-
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plied: Fan and Li (2001) approximate the non-convex SCAD penalty quadratically. Ulbricht
(2010) adopts this idea for Lasso-type penalties. Rippe et al. (2012) approximate the L0 norm
quadratically by a re-weighted Ridge penalty. Hence, to combine different penalties that employ
different norms, quadratic approximations in PIRLS algorithms seem to be a natural choice.
In this paper, we show how penalties that are (semi-)norms of scalar linear transformations of
the coefficient vector, can be approximated quadratically within a general model structure as
in GLMs; the penalty is defined such that the Lasso, the fused Lasso, the Ridge, the SCAD,
the elastic net and other regularization terms for categorical predictors are embedded. The
approximation allows to combine all these penalties in one model. The estimation is based on
conventional PIRLS algorithms and hence, easy to implement. The approximation is based on
and generalizes the approaches of Fan and Li (2001) and Ulbricht (2010); it is not restricted to
penalties that are based on (functions of) absolute values but allows for penalties with general
norms. The approach is extended to penalties like the grouped Lasso; that is, to penalties with
norms of vectorial linear transformations of the coefficient vector.
The rest of the paper is organized as follows: Section 2 introduces the method and its derivation;
some technical remarks and the extension to vectorial linear transformations of the coefficient
vector are given. Section 3 gives some illustration; established algorithms and the new approx-
imation are compared. In Section 4, the Munich rent data is analyzed.

2 Local Quadratic Approximations in PIRLS Algorithms
We consider a general model structure as in GLMs by assuming that the mean response µi =
E(yi|xi) is given by

µi = h(ηi).

Given the vector of covariates xi ∈ Rq, yi follows a simple exponential family (for details, see,
McCullagh and Nelder, 1983; Fahrmeir and Tutz, 2001). The conditional mean of response yi
is linked to a linear predictor ηi = xTi β, where β ∈ Rq is a coefficient vector and h is a
twice continuously differentiable inverse link function, often referred to as response function.
Vectors xi build the design matrix X = (xT1 , . . . ,x

T
n )

T ∈ Rn×q, which represents 1, . . . , p
covariates. By a general model structure, we mean that the covariates in design matrix X can
have any structure – provided that they can be parametrized as xTi β. In particular, we allow
for non-parametric terms that represent unknown functions. When for example, a continuous
covariate is modeled non-parametrically as f(xj), we assume that f(xj) is represented in X
by the evaluations of some basis functions. Categorical covariates are assumed to be properly
coded. We always include an intercept in the design matrix; and assume that the structure
of the coefficient vector is βT = (βT0 ,β

T
1 , . . . ,β

T
p ), where entries βj are vectors ∈ Rkj that

correspond to structures in the predictor space. A vector βj can, for example, contain the
coefficients of the basis functions of a smoothly modeled predictor, or the coefficients linked
to the dummies of a categorical predictor. In the penalized maximum likelihood framework
considered here, the objective function is

Mpen(β) = −ln(β) + Pλ(β), (1)
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where ln(β) denotes the log-likelihood of the exponential family based on n observations and
where Pλ(β) denotes the penalty. The general penalty that is considered, has the form

Pλ(β) =
L∑

l=1

λlpl(
∥∥aTl β

∥∥
Nl

), (2)

where functions pl are penalty functions, λl are tuning parameters, and ‖·‖Nl
denotes any (semi)

norm, for example ‖ξ‖Nl
= |ξ|r, r ≥ 0. ‖·‖Nl

is not restricted to (semi-)norms; it can be any
term that is meaningful as a penalty – for example an indicator for non-zero arguments, which
is often called L0 ”norm” (Donoho and Elad, 2003). Vectors al ∈ Rq build transformations of
the coefficient vector, for example, differences of adjacent coefficients. As in Ulbricht (2010),
in principal, there can be arbitrary many restrictions L. And as proposed by Ulbricht (2010),
for the penalty functions, we assume

1. pl : R+ → R+, pl(0) = 0
2. pl(ξ) is continuous and strictly monotone in ξ
3. pl(ξ) is continuously differentiable for all ξ 6= 0, such that p′l = dpl(ξ)/dξ > 0.

Together, pl, ‖·‖Nl
and vectors al define the type of the penalty. Note, that properties like

the curvature of pl(‖ξ‖Nl
) do depend on the properties of pl(ξ) and ‖ξ‖Nl

. When for example,
pl(ξ) and ‖ξ‖Nl

are convex for all l, and pl(ξ) is monotonically increasing as assumed, then
the penalty is convex. The flexibility of the penalty lies in the possible choices of the three
components. In the following some examples are given:
Elastic net : To penalize a scalar effect βj by the elastic net λl · |βj|+ λk · β2

j (Zou and Hastie,
2005), two penalty functions are needed; one denoted by pl(ξ) = ξ, ‖ξ‖Nl

= |ξ| and an indicator
vector al such that aTl β = βj; the other is pk(ξ) = ξ with ‖ξ‖Nk

= ξ2 and with the same
indicator vector al as before.
Adaptive Lasso: To penalize the effect of the j-th continuous covariate with the adaptive Lasso
(Zou, 2006), al is an indicator vector for the position of βj, ‖ξ‖Nl

is the absolute value |ξ| and
pl(ξ) = |aTl β̂ML|−1 · ξ, where β̂ML denotes the maximum likelihood (ML) estimate of β.
Penalized B-splines : When the continuous covariate xj is modeled non-parametrically, βj is a
sub-vector that represents coefficients on kj basis functions, for example, of cubic B-splines. To
penalize the roughness of f(xj) as proposed by Eilers and Marx (1996), there are kj−2 penalty
terms; vectors al build all needed second order differences (0, . . . , 0, 1,−2, 1, 0, . . . , 0)T ; for all
penalty terms one employs ‖ξ‖Nl

= ξ2, pl(ξ) = ξ and the identical tuning parameter λl.
Typically, the penalty is structured as Pλ(β) =

∑p
j=0

∑Lj

l=1 λjlpjl(
∥∥aTjlβj

∥∥
Nl

); that is, the effects
of each covariate are penalized separately. We will, however, use the general form (2), which
uses one index to denote the specific terms.
In common GLMs, the unpenalized optimization problem is β̂ = argminβ −ln(β). The equation
is solved iteratively by solving the linearized problem

slin(β) = s(β(k)) +H(β(k))(β − β(k)) = 0

for a given β(k) in each step, where s(β) = ∂ln(β)/∂β is the score function and H(β) =
∂2ln(β)/∂β∂β

T is the Hessian matrix. Rearranging gives

β̂(k+1) = β̂(k) −H(β̂(k))
−1s(β̂(k)),
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Norm Nl(ξ) Dl(ξ)
‖ξ‖1 = |ξ|

√
ξ2 + c (ξ2 + c)−1/2 · ξ

‖ξ‖22 = ξ2 ξ2 2ξ

‖ξ‖0 = Iξ 6=0
2

1+exp(−γ|ξ|) − 1 2γ
1+exp(−γ|ξ|)(1− 1

1+exp(−γ|ξ|))
ξ√
ξ2+c

‖ξ‖r = |ξ|r (ξ2 + c)r/2 rξ(ξ2 + c)r/2−1

Table 1: Examples for approximations of norms. Column Nl(ξ) gives direct approximations of the L1 norm,
of the quadratic term ‖ξ‖22 = ξ2, of the L0 norm and of the term ‖ξ‖r which is needed for Bridge penalties.
Column Dl(ξ) gives the (approximated) derivatives of Nl(ξ). c is a small positive number; c ≈ 10−5 worked
quite well in numerical experiments. The approximation of the L0 norm is motivated by the logistic function,
whereby γ is a large integer.

which can be transformed to a Fisher scoring algorithm or an iteratively re-weighted least
squares algorithm. In order to use a PIRLS algorithm for the penalized optimization prob-
lem (1), penalized versions of the score function s(β(k)) and the Hessian matrix H(β(k)) or
the Fisher matrix are needed. In particular, derivatives of Mpen(β) or close approximations
are needed. To this end, non-differentiable norms ‖·‖Nl

are approximated. We assume that an
approximation Nl(ξ, T ) to each employed norm ‖·‖Nl

exists, such that

‖ξ‖Nl
= lim
T →B

Nl(ξ, T ),

where T denotes a set of possible tuning parameters and B denotes the set of boundary values
with ‖ξ‖Nl

= Nl(ξ,B). Nl(ξ, T ) is supposed to be at least twice continuously differentiable.
Moreover, we define Dl(ξ, T ) = ∂Nl(ξ, T )/∂ξ and assume that

∂ ‖ξ‖Nl

∂ξ
= lim
T →B

Dl(ξ, T ),

for all l, l = 1, . . . , L, and for all ξ for which ∂ ‖ξ‖Nl
/∂ξ is defined. To keep the notation simple,

we will write Nl(ξ) instead of Nl(ξ, T ), and Dl(ξ) respectively. Apart from this approximation,
the schedule is the same as for the unpenalized case: the penalized score function spen(β) is
linearized by a Taylor expansion; slinpen(β) = 0 is solved iteratively.

2.1 Examples for Approximations

Table 1 gives an idea of the approximations of different norms. As in Koch (1996) and Ulbricht
(2010), the L1 norm is approximated by Nl(ξ) =

√
ξ2 + c where c is a small positive number

(in our experience c ≈ 10−5 works well) and controls how close the approximation and the
L1 norm are. For c = 0, we have |ξ| =

√
ξ2. The first derivative of Nl(ξ) is ξ(ξ2 + c)−1/2

which is a continuous approximation for sign(ξ), ξ 6= 0, the first derivative of the L1 norm. For
illustration, see the upper panel of Figure 1. There is no need to approximate ‖ξ‖22 = ξ2 as
it is quadratic. The approximation of the L0 norm is motivated by the logistic function. We
choose Nl(ξ) = 2(1 + exp(−γ|ξ|))−1 − 1, where γ is a large integer. Accordingly, the derivative
is D(ξ) = 2γ/(1 + exp(−γ|ξ(k)|))(1− 1/(1 + exp(−γ|ξ(k)|)))(ξ2(k) + c)−1/2, whereby the absolute
value is approximated like defined above. Figure 1 illustrates these approximations (left panel)
and their derivatives (right panel). On top, the approximation of the L1 norm is shown. On
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bottom the L0 norm is approximated by Nl(ξ) = 2(1 + exp(−γ|ξ|))−1 − 1. The dashed lines
mark the exact norms and the exact derivatives based on sub-gradients at ξ = 0. For all plots,
we have used c = 0.01 and γ = 5 for illustrative reasons.
Combining these approximations with different functions pl(·) allows to approximate various
known penalties. Table 2 illustrates the variety of penalties that can be approximated. The
penalties are dissected in the underlying norm ‖ξ‖Nl

, functions pl and expressions aTl β. Of
course, other combinations of norms ‖ξ‖Nl

, functions pl and aTl β are possible. One could for
example think of an adaptively weighted Ridge penalty or L1-type penalties for coefficients
of splines. The Bridge penalty |ξ|r, r ≥ 0, for a metric covariate xj (Frank and Friedman,
1993) corresponds to Nl(ξ) = ‖ξ‖r with definitions pl(ξ) = ξ and aTl β = βj; however, matters
simplify a lot by employing the direct approximations for r ∈ {0, 1, 2}. The penalty proposed
by Gertheiss and Tutz (2012) for categorical effect modifiers fits in the framework as well. In
contrast to previous approaches, these penalties can be combined in one model whereby the
response yi|xi can follow any exponential family. Many models for other types of responses can
be re-parametrized – such that they fit in the framework of general structured models. The Cox
model (Cox, 1972) can be written as a time-discrete logit model (Fahrmeir and Tutz, 2001).
Sequential models for ordinal response can be written as binary models, too (Tutz, 2011).

2.2 Approximation of the Penalty

To approximate the penalty (2), a first order Taylor expansion at β(k) is employed. This ap-
proach extends Fan and Li (2001) and Ulbricht (2010). For the sake of simplicity, we write Nl(·)
andDl(·) respectively, for all penalty terms, even though not all norms have to be approximated.
As in Fan and Li (2001), the approximation is

Pλ(β) ≈ Pλ(β(k)) +∇Pλ(β(k))
T · (β − β(k)),

where

∇Pλ(β(k))
T · (β − β(k)) =

L∑

l=1

λl∇pl(
∥∥aTl β(k)

∥∥
Nl

)T (β − β(k)).

As Fan and Li (2001), in the following, we use the local approximation aTl β/aTl β(k) ≈ 1 for
β(k) close to β. Moreover, aTl βaTl (β − β(k)) is approximated by 1

2
(βTala

T
l β + βT(k)ala

T
l β(k))

via completing the square as proposed by Ulbricht, 2010. That gives

∇pl(
∥∥aTl β(k)

∥∥
Nl

)T (β − β(k)) =
∂pl(

∥∥aTl β(k)

∥∥
Nl

)

∂
∥∥aTl β(k)

∥∥
Nl

·
∂
∥∥aTl β(k)

∥∥
Nl

∂aTl β(k)

· ∂a
T
l β(k)

∂βT(k)
(β − β(k))

≈ p′l(
∥∥aTl β(k)

∥∥
Nl

) · Dl(a
T
l β(k))

aTl β(k)

aTl β · aTl · (β − β(k)),

≈ 1

2
p′l(
∥∥aTl β(k)

∥∥
Nl

) · Dl(a
T
l β(k))

aTl β(k)

(βTala
T
l β + βT(k)ala

T
l β(k))

=
1

2
(βTAlβ + βT(k)Alβ(k)),

where

Al = p′l(
∥∥aTl β(k)

∥∥
Nl

) · Dl(a
T
l β(k))

aTl β(k)

· alaTl .
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Figure 1: Graphical illustration for the approximation of the L1 and the L0 norm (left panel) and their derivatives
(right panel) with respect to ξ = aTl β. On top, the approximation of the L1 norm is shown. On bottom the
L0 norm is approximated by Nl(ξ) = 2(1 + exp(−γ|ξ|))−1 − 1. The dashed lines mark the exact norms and
the exact derivatives based on sub-gradients at ξ = 0. We use c = 0.01 and γ = 5. A similar figure for the
approximation of the L1 norm can be found in Ulbricht (2010).
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Penalty Covariate Penalty Terms
‖ξ‖Nl

Penalty Function aTl β =

Lasso metric xj L1 pl(ξ) = ξ βj

Adaptive Lasso metric xj L1 pl(ξ) = ξ/|aTl β̂ML| βj

Ridge metric xj L2
2 pl(ξ) = ξ βj

SCAD metric xj L1 p′l(ξ) = βj{
Iξ≤λl +

(aλl−ξ)+
(a−1)λl Iξ>λl

}
Iξ 6=0

Elastic net metric xj 1. L1 pl(ξ) = ξ βj
2. L2

2 pk(ξ) = ξ βj

Fused Lasso kj ordered L1 pl(ξ) = ξ βj − βj−1,
covariates xj, j = s+ 1, . . . , t
j = s, . . . , t

Penalized f(xj), xj metric, L2
2 pl(ξ) = ξ βjk−2βj,k−1+βj,k−2

B-splines parametrized k = 3, . . . , kj
by kj coeff. βjk

Simultaneous nominal factor xj L1 pl(ξ) = ξ βjk−βjr, k > r ≥ 0
factor selection with kj coeff. βjk,
(Bondell and Re-
ich, 2009)

k = 1, . . . , kj

Sparse modeling ordinal factor xj L1 pl(ξ) = ξ βjk − βj,k−1,
of cat. variables with kj coeff. βjk, k = 1, . . . , kj
(Gertheiss and
Tutz, 2010)

k = 1, . . . , kj

Penalty for kj ordered L0 pl(ξ) = ξ βj − βj−1
signals covariates xj, j = s+ 1, . . . , t
(Rippe et al.,
2012)

j = s, . . . , t

Table 2: Examples for approximations of known penalties. The elastic net is made up by two terms with
separate tuning parameters λl and λk each. All the other penalties are governed by one penalty parameter λl,
even when they are defined by several terms. The fused Lasso consists out of kj − 1 terms related to divers
differences. The same holds for penalized B-splines (kj − 2 penalty terms), the penalties in Bondell and Reich
(2009) ( 12 (kj + 1)kj terms) and in Gertheiss and Tutz (2010) (kj terms). In penalty terms for factors, the
coefficient βj0 = 0 relates to the reference category; it is considered in the differences aTl β. The SCAD penalty
(Fan and Li, 2001) is defined by its derivative; parameter a, a > 2, is an additional tuning parameter. Fan and
Li (2001) recommend a = 3.7. In general, the derivatives of functions pl are amended by the factor Iξ 6=0 to
ensure that Al is a zero matrix (0)(q×q) when

∥∥aTl β(k)

∥∥
Nl

= 0.
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With Aλ =
∑L

l=1 λlAl, the penalty is locally quadratically approximated by

Pλ(β) ≈ Pλ(β(k)) +
1

2
(βTAλβ + βaT(k)Aλβ(k)). (3)

This approach shares the format of Fan and Li (2001) and Ulbricht (2010). However, in contrast
to Ulbricht (2010), it allows to approximate arbitrary terms that are meaningful as a penalty
in various ways.
The penalized versions of the score function and the Hessian matrix are spen(β) = s(β)−Aλβ
and Hpen(β) =H(β)−Aλ. By using the penalized score function, one obtains essentially the
same optimization problem as for usual GLMs. When solving the linearized problem slinpen(β) =

0 iteratively, one obtains β̂(k+1) = β̂(k) −Hpen(β̂(k))
−1spen(β̂(k)). To stabilize the estimation,

we use the Fisher information matrix F (β) = −E(H(β)). With the usual derivation, the
corresponding PIRLS algorithm with step length parameter ν, is

β̂(k+1) = β̂(k) − ν · (−F (β̂(k))−Aλ)
−1(s(β̂(k))−Aλβ̂(k))

= β̂(k) − ν · (F (β̂(k)) +Aλ)
−1(−s(β̂(k)) +Aλβ̂(k))

= β̂(k) − ν · (XTW(k)X +Aλ)
−1[−XTW(k)(D

−1
(k)(y − µ(k)) + Xβ̂(k)︸ ︷︷ ︸

ỹ(k)

−Xβ̂(k)) +Aλβ̂(k)]

= (1− ν) · β̂(k) + ν · (XTW(k)X +Aλ)
−1XTW(k)ỹ(k). (4)

Assuming a simple exponential family for yi|xi, i = 1, . . . , n, allows to define F (β̂a(k)) =

XTD(k)Σ
−1
(k)D(k)X =XTW(k)X, D(k) = diag(∂h(ηi(β̂(k)))/∂η), and Σ(k) = diag(σ2

i (β̂(k))), as
well as s(β̂(k)) =X

TW(k)D
−1
(k)(y−µ(k)), y = (y1, . . . , yn)

T , and µ(k) = (h(xT1 β̂(k)), . . . , h(x
T
n β̂(k)))

T .
Starting with an initial value β̂(0), this algorithm is iterated until convergence. The algorithm
is determined when |β̂(k+1) − β̂(k)|/|β̂(k)| ≤ ε, for fixed ε > 0.
The parameter ν, 0 < ν ≤ 1, in the algorithm is a step length parameter. In unpenalized
Fisher scoring algorithms, ν = 1; only, if it is necessary, the step length is halved. However,
when the objective function is nonstandard, it can be helpful to work with ν < 1 to control the
convergence of the algorithm and to avoid back-fitting steps.

2.3 Some Technical Comments

Newton-type algorithms are not unconditionally convergent. When the penalized Fisher infor-
mation matrix XTW(k)X +Aλ is positive definite, the optimization problem is strictly convex
and a descent direction in each iteration of algorithm (4) is guaranteed. If a solution exists,
the algorithm (almost) surely converges to the optimum – independently of the initial value
β̂(0). The penalized Fisher information matrix is positive definite, when the Fisher information
XTW(k)X and the penalty matrix Aλ are positive definite; or when one of the two matrices is
positive and the other is positive semi-definite; in some cases, the penalized Fisher information
will be positive definite for a positive semi-definite Fisher informationXTW(k)X and a positive
semi-definite penalty matrix Aλ.
For simple exponential families, like assumed here, the negative log-likelihood ln(β) is convex.
Hence, when the number of different observations is larger than the number of parameters
(n > q), the Fisher information is positive definite; the penalty matrix has to be at least pos-
itive semi-definite to assure the global convergence of algorithm (4). The penalty is convex
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when the functions pl(ξ) and ‖ξ‖Nl
are convex for all l, and pl(ξ) is monotonically increasing as

assumed. This is for example, the case for the (adaptive) Lasso, the fused Lasso or the Ridge
penalty. It does not apply to the SCAD penalty or the L0 penalty of Rippe et al. (2012).
In the n < q case, the Fisher information will be positive semi-definite; if the penalty matrix is
positive definite, the algorithm’s convergence is assured. However, when the penalized Fisher
information matrix is positive semi-definite, algorithm (4) will find descent directions in each
iteration; and it can happen that these directions are not unique.
In Ulbricht (2010), corresponding properties of PIRLS algorithms are described.
It is possible to estimate the degrees of freedom via the generalized hat matrix

H(k∗) =W
T/2
(k∗)X(XTW(k∗)X +Aλ)

−1XTW
1/2
(k∗).

The approximated hat matrix is symmetric but not idempotent or a projection matrix. In
contrast to Ulbricht (2010), we prefer to estimate the hat matrix based on the estimates of the
final iteration. The estimated degrees of freedom for a given tuning are then the trace of the
hat matrix:

df = tr(H(k∗)).

In some exponential families, there is a scale parameter φ 6= 1. As φ and β are orthogonal
(see the mixed second derivatives ∂ln

∂φ∂β
given in Claeskens and Hjort, 2008), and when the

applied penalty gives consistent estimates, one can plug in φ̂ instead of φ; that corresponds to
quasi-likelihood approaches.

2.4 Tuning and Computational Issues

The performance of local quadratic approximations depends on the accuracy of the approxi-
mations Nl(ξ) and the choice of tuning parameters λ = (λ1, . . . , λL)

T . Of course, the more
precise approximations Nl(ξ) are, the more accurate is the proposed algorithm. The choice of
the tuning parameters is more complex, because one has to find L possibly different parame-
ters. However, penalized regression requires standardized data or data that is measured on a
comparable scale. Given the data is standardized and the penalty terms are comparable, many
approaches use one global tuning parameter. Bondell and Reich (2009) illustrate that weighting
the penalty terms adequately gives the same effect as standardization of the predictors. This is
especially helpful for categorical covariates that are hard to standardize and that can result in
many penalty terms. As proposed by Bondell and Reich (2009), the penalty terms connected
to a covariate xj are weighted such that they are of order kj, the number of (free) coefficients
related to xj. When, for example, a nominal factor with kj + 1 categories is penalized by
fused Lasso terms as proposed by Gertheiss and Tutz (2010), all pairwise differences of the kj
related dummy coefficients and the reference category are penalized absolutely. This results in
1
2
(kj + 1)kj differences. Hence, the difference of the dummies βjl and βjm is weighted by the

factor
2

kj + 1

√
njl + njm

n
,

where njl and njm denote the number of observations on the levels l and m of the predictor xj.
Weights for other penalties are derived analogously.
To allow for comparisons with conventional methods, we choose the global tuning parameter λ
by cross-validation. In numerical experiments, we employ K-fold cross-validation with the
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Figure 2: Coefficient paths for a linear model with an intercept and four metric predictors penalized by the
Lasso. On the left, the paths are computed by the lars algorithm; on the right, the penalty is approximated
quadratically. In both panels, the path related to the intercept is omitted.

predictive deviance as criterion or a generalized cross-validation criterion (GCV) as proposed
by O’Sullivan et al. (1986) and used in the R package mgcv. Both approaches seem to work
reasonable for the proposed approximations.
Even though the proposed algorithm can combine a variety of penalties, it is easy to implement.
In principle, it can be combined with any PIRLS algorithm – given, that additional quadratic
penalties may depend on estimates of the last iteration. Except for the approximation of
the penalty, the computational complexity is the same as for Fisher scoring algorithms. The
penalties mentioned here are implemented in the R package gvcm.cat (Oelker, 2013).

2.5 Extension to Vector-Valued Arguments

The penalties mentioned so far assume linear transformations aTl β of the coefficient vector.
That is, all norms ‖ξ‖Nl

have scalars as arguments. However, penalties employing vectorial
norms can be approximated in the same way. For illustration, in this section, the grouped Lasso
(Yuan and Lin, 2006) is considered. The grouped Lasso penalty is defined for a subvector of
coefficients βl as

λl(β
T
l Klβl)

1/2 = λl ‖βl‖Kl
, (5)

where the matrixKl ∈ Rr×r is symmetric and positive (semi-)definite; typically, it is an identity
matrix. The penalty implies that coefficients in βl are shrunken in a way that the whole group
of coefficients is set to zero. The grouped Lasso penalty (5) can be rewritten as

λlpl(‖Rlβ‖2), (6)

where pl(ξ) = ξ. The norm ‖·‖2 is the Euclidean norm and the matrix Rl ∈ Rq×q yields
βTRT

l Rlβ = βTl Klβl. ‖·‖2 corresponds to the norm ‖ξ‖Nl
in penalty (2). It can be ap-

proximated by ‖ξ‖2 ≈ (ξTξ + c)1/2, where c is a small positive real number. Following the
same schedule as in Subsection 2.2, an approximation of the penalty’s gradient at β = β(k) is
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Figure 3: Coefficient paths for a logistic model with an intercept and one ordered factor (8 levels) as predictor.
The coefficients are penalized by a Grouped Lasso penalty. On the left, the path is computed with R package
grplasso; on the right, the proposed quadratic approximation is employed.

obtained by:

∇pl(
∥∥Rlβ(k)

∥∥
2
) =

∂pl(
∥∥Rlβ(k)

∥∥
2
)

∂
∥∥Rlβ(k)

∥∥
2

·
∂
∥∥Rlβ(k)

∥∥
2

∂(Rlβ(k))TRlβ(k)

· ∂(Rlβ(k))
TRlβ(k)

∂β(k)

≈ p′l(
∥∥Rlβ(k)

∥∥
2
) · 1

2((Rlβ(k))TRlβ(k) + c)1/2
· 2RT

l Rlβ,

Yielding the approximation

∇pl(
∥∥Rlβ(k)

∥∥
2
)T (β − β(k)) ≈

1

2
(βTAgr

l β − βT(k)Agr
l β(k)), (7)

for β(k) close to β and Agr
l = p′l(

∥∥Rlβ(k)

∥∥
2
)((Rlβ(k))

TRlβ(k) + c)−1/2RT
l Rl.

In contrast to so far employed matrices Al, matrix Agr
l is spanned by the product RT

l Rl

and not by the product of vectors alaTl . Expression (7) fits exactly into the framework of
approximation (3). Penalties of type (6) can be added to penalty (2) without any problems.
To implement, for example, the penalty of Gertheiss et al. (2011), Rlβ is a vector of differences
of coefficients related to an ordinal factor of the form βjk − βj,k−1, k = 1, . . . , kj. To obtain a
penalty term of a comparable order, weights wl are set to

√
rl, where rl denotes the number of

differences in vector Rlβ.
Meier et al. (2009) propose a sparsity-smoothness penalty for high-dimensional additive models;
it can be written as a grouped Lasso-type penalty and fits in the framework of penalty (2), too.

3 Illustrations
In this section, the proposed method is illustrated. In order to show that the approximations
work, we compare the coefficient paths of penalties computed by different algorithms. We give
an example for a model with a L0 type penalty. Finally, we illustrate how the approximation
works for penalized smooth functions.
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Figure 4: Coefficient paths for a logistic model with an intercept and four metric predictors; each predictor
is regularized by an elastic net penalty. On the left, R package glmnet is employed for computation; on the
right, the elastic net penalty is quadratically approximated. In both panels, the path related to the intercept is
omitted.

3.1 Comparison of Methods

When the penalty consists of one norm only, one can compare different algorithms with the
proposed quadratic approximation. Yet, the results depend on many parameters: on the choice
of the tuning parameters for the approximation, on the choice of λ, on the criterion chosen for
cross-validation, on the folds for cross-validation and so on. Hence to judge how the proposed
approximation works, we compare the coefficient paths of different penalties (the Lasso, the
grouped Lasso, the elastic net).
At first, the approximation of the Lasso is compared with the solution of the lars algorithm.
We consider a linear model with four continuous predictors and n = 400 observations. The four
predictors are drawn from a Uniform distribution on (0, 2). The predictor of the model for an
observation i is denoted by

ηlassoi = β0 + xi1β1 + xi2β2 + xi3β3 + xi4β4, (8)

where β0 denotes the intercept of the model. The true coefficient vector is βtrue = (0.2, 0.7,−0.5, 1, 0)T .
That is, there is one non-influential predictor to detect. Figure 2 shows the resulting coefficient
paths. The left panel shows the solution computed by lars. There are four break points in
the piecewise linear coefficient path, each marked by a vertical line. In the right panel, the
coefficient path obtained with the proposed quadratic approximation is shown. The vertical
lines mark the break points of the lars solution; they correspond exactly to the break points of
the quadratic approximation.
In what follows, we assume a logistic model. The true predictor is

ηlogistici = β0 + xi1β1 + xi2β2 + xi3β3 + xi4β4 + uTi5β5,

where u5 is an ordered factor with 8 levels; it is dummy coded and drawn from a multino-
mial distribution with equal probability for each level. x1, . . . , x4 are continuous predictors
drawn from a Uniform distribution on (0, 2). The data generating coefficients are βtrue =
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Figure 5: Coefficient paths (left panel) and GCV score (right panel) for a Poisson model with an intercept
and four metric predictors; each predictor is regularized by an L0 penalty. As the GCV score has no unique
minimum, λCV is the maximal penalization parameter that minimizes the GCV score.

(0.2, 0,−.5, 1, 0, , 0.3, .7, .7, 0.4, 0.4, 0.4, 0.4)T ; that is, β5 is a vector of seven coefficients corre-
sponding to the dummies of u5.
We consider two models: In the first one, the predictor is ηgroupedi = β0 + uTi5β5. It contains the
dummy coded ordered factor only. The dummy coefficients are penalized by a grouped Lasso
penalty. We compare the solution of the coordinate-descent algorithm proposed by Meier et al.
(2008) in the R package grplasso (Meier, 2013) with the quadratic approximation. Figure 3
shows the coefficient paths. In contrast to Figure 2, the path of the intercept is added; the
x-axis depends on the (scaled) values of λ instead of ‖β‖1. Again, structure and range of the
two paths are almost identical.
In the second model, the predictor is ηelastici = β0+xi1β1+xi2β2+xi3β3+xi4β4; that is the influ-
ential factor u5 is ignored. All coefficients are penalized by the elastic net. Figure 4 illustrates
the resulting coefficient paths. On the left, the paths are computed by the coordinate descent
algorithm of Friedman et al. (2010) available in R package glmnet. On the right, the paths
obtained with the proposed local quadratic approximation is shown. Again, the two solutions
coincide.

3.2 Penalties Based on the L0 Norm

Apart from well known penalties like the Lasso or the elastic net that are based on the L1 norm
or on Ridge type penalties, alternative penalties are made available by our approach. In this
Section, we consider a model for count data with Poisson distributed responses. The model
contains an intercept and four metric covariates, whereby the predictor x4 is non-influential:
βtrue = (−1, 0.5, 0.4, 0.2, 0)T . The ideal penalty should uncover that the effect of this predictor
is zero – without any shrinkage effects on the other coefficients. Therefore, we use the L0

penalty

Pλ(β) = λ
4∑

l=1

‖βl‖0 ,
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Figure 6: Coefficient paths (left panel) and GCV score (right panel) for a Poisson model with an intercept and
seven metric predictors; whereby four predictors are truly non-influential. Each predictor is regularized by an
L0 penalty.

where ‖ξ‖0 denotes Iξ 6=0. This penalty is neither convex nor concave. The solution obtained for
a set of initial values β(0) has not to be the global optimum. However, starting with β(0) = (0)T

works well. The tuning parameters of the approximation are set to c = 10−5 and γ = 50. In
the left panel of Figure 5, the coefficient paths for the considered model are shown. The dotted
line marks the model chosen by the generalized cross-validation criterion of O’Sullivan et al.
(1986). For λCV = 2.69, the coefficient related to x4 is zero; the remaining coefficients are not
shrunken, the mean squared error is 0.0225 and hence, relatively small. The right panel of
Figure 5 shows the GCV score; like the coefficient paths, it is a step function. As the GCV
score has no unique minimum, λCV is defined to be the maximal penalization parameter that
minimizes the GCV score.
L0 penalization is challenging, when there are several non-influential predictors, because the
penalty is neither concave nor convex. Hence, to challenge the proposed approximation, the
above setting is extended by three more non-influential predictors x5, x6 and x7. βtrue is
(−1, 0.5, 0.4, 0.2, 0, 0, 0, 0)T ; that is, half of the coefficients is truly zero. Figure 6 shows the
resulting coefficients paths (left) and the GCV score (right). For the optimal model, λCV = 1.05.
All but one truly zero coefficient is detected (β̂6 = −0.01); the mean squared error is 0.0226.
For λ ∈ (1.05, 2.69], the true model is detected. As there are only marginal difference in the
GCV score for λCV = 1.05 and λ = 2.69, one would probably choose λCV = 1.69; and hence,
the right model.

3.3 Nonparametric Terms

In many applications, the effect of a continuous covariate is non-linear and one wants to allow
for unspecified smooth functions in the predictor. As it is a common choice, we assume that the
smooth functions are modeled by penalized cubic B-splines with equidistant knots κ1, . . . , κMj

as proposed by Eilers and Marx (1996). That is, we assume that fj(xj) is represented by Bjβj

15



0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x1, n = "M"

sp
(x

1,
 n

 =
 "

M
")

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x1, n = "M"

sp
(x

1,
 n

 =
 "

M
")

Figure 7: Resulting estimate for the predictor ηi = β0 + f1(x1) in a model with Poisson distributed response.
The data generating effect of x1 is linear. f1(x1) is represented by transformed B-spline basis evaluations with
20 knots and penalized like described below. On the left, λ1 = λ2 = 0 holds; on the right, λ is chosen by
cross-validation. Dotted vertical lines mark the knots of the underlying B-spline basis evaluations.

where Bj ∈ Rn×(Mj−4) is the matrix of basis function evaluations, and βj is penalized by

Mj−6∑

i=1

(βji − 2βj,i+1 + βj,i+2)
2 = βTj (∆

2)T∆2βj, (9)

where ∆2 ∈ R(Mj−6)×Mj denotes the matrix of second order differences with full row rankMj−6.
An attractive approach that centers the smooth function fj(xj) = Bjβj for a given set of knots
and that offers a decomposition of the function into a linear and a non-linear part is based on
the representation of Fahrmeir et al. (2004). The coefficient vector βj is decomposed into a
linear part βlinj = (βintj , βslopej )T and into coefficients βnonlinj that model the deviation from the
linear trend. One obtains

βj = Ψlinβlinj + Ψnonlinβnonlinj ,

with

Ψlin =




1 κ1
1 κ2
...

...
1 κMj−4




and with Ψnonlin = (∆2)T
(
∆2(∆2)T

)−1. It holds, that ∆2Ψlin = 0 and that Ψlin∆2 = 0.
That is, Ψnonlin ∈ R(Mj−4)×(Mj−6) represents the space of penalty (9); Ψlin ∈ R(Mj−4)×2 its
nullspace. βintj is incorporated in the (global) intercept β0; βslopej and βnonlinj represent the cen-
tered smooth function fj(xj). Instead of second order differences, the penalty

∑Mj−6
i=1 (βnonlinji )2

is sufficient. Hence, we obtain the same effect as Eilers and Marx (1996) by means of a struc-
tured representation with a less complex penalty.
The decomposition of Fahrmeir et al. (2004) allows to distinguish linear and nonlinear functions
more easily: We apply a grouped Lasso penalty on the coefficients βnonlinj ; if the deviation from
the linear trend is selected, it is selected at once. Moreover, the slope βslopej is penalized by a
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Variable Description

rent the rent of the flat, response

1 numbrooms the number of rooms in the flat, ordered factor with 6 levels,
dummy coded, reference category are flats with one room

2 location the urban district in which the flat is, nominal factor with 25 levels,
dummy coded, reference is category 1, that is the city center

3 age the age (in years) of the flat in 2007, continuous covariate
4 residentialarea the residential area of the flat, continuous covariate

Table 3: Details of the variables in the Munich rent dataset (Fahrmeir et al., 2007).

Lasso penalty:
Pj(βj) = α|βslopej |+ (1− α)

∥∥βnonlinj

∥∥
2
, (10)

where α is an additional tuning parameter that allows to weigh the two parts of the penalty
separately. Hence, depending on the tuning, the smooth function fj can be estimated to be
nonlinear, linear or non-influential. We consider the same Poisson data as in Section 3.2. The
impact of all covariates is linear. Even though, we fit a model with the predictor

ηi = β0 + f1(x1)

and penalty (10) for f1(x1) which is represented by βslope1 and βnonlin1 . Figure 7 shows the
resulting functions f1(x1) for λ1 = λ2 = 0 (left panel) and for cross-validated tuning (right
panel). The effect is detected to be linear.

4 Rents in Munich
Most major cities and many large communities in Germany conduct surveys to construct and
publish rental guides. These guides are consulted to determine suitable rents for public and
private properties. To model the rent of 1488 households in the city of Munich collected in
2007 (Fahrmeir et al., 2007), continuous covariates like the flat’s size and age, as well as some
explanatory factors for a flat’s quality and equipment are available. As the rent is positively
skewed, a structured regression model with Gamma distributed response is assumed. The effect
of the age of a flat is known to be non-linear (see, for example, Fahrmeir and Tutz, 2001); it
is considered by a spline with a Ridge-type penalty on the effects’ curvature. We want to
determine whether the effect of the residential area is linear or not. This is reached by the
penalty described in Section 3.3; it requires a Lasso and a grouped Lasso penalty. As some
levels are only sparsely occupied, ordered factors like the number of rooms of a flat require
regularization, too. We want to employ an adaptive fused Lasso type penalty on the dummy
coefficients of these covariates. Table 3 gives the exact definitions of the employed predictors.
For an observation i, the predictor is

ηi = β0 + x
T
i1β1 + x

T
i2β4 + f3(xi3) + f4(xi4),

where transposed vectors xTi denote covariates that are related to more than one coefficient.
The overall penalty is a sum of Ridge-, grouped Lasso- and Lasso-type penalties; it is denoted
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Figure 8: Graphical illustration of the impact of the nominal factor location on the rent. The map depicts the
25 districts of the city of Munich. District 1 denotes the city center, that is the reference category; the remaining
districts correspond to one dummy coefficient each. The colors are allocated according to the regularized
estimates. As the city center is the most expensive district, all coefficients are negative. The fused Lasso
penalty on all pairwise differences of coefficients shrinks the estimates; nine clusters of districts with similar
effects are detected. Districts in cluster 1: 18, 21, 23; in cluster 2: 9, 10; in cluster 3: 6, 7, 11, 15, 19; in
cluster 4: 8, 14, 17, 22; in cluster 5: 20, 25. The effect of districts 2–5, and 12 is set to zero; the effect of these
districts on the rent is the same as in the city center. The graphic is based on a figure of Dörrbecker (2007);
it is manipulated with the GNU Image Manipulation Program (GIMP Team, 2012) and with the R package
EBImage (Pau et al., 2012).

by

P (β) = λ
4∑

l=1

Pl(βl),

where P1(β1) =
∑6

r=2w1r|β1r − β1,r−1| is the fused Lasso penalty for the ordered factor numb-
rooms with reference β11 = 0. P2(β2) =

∑
r>sw2rs|β2r − β2s| denotes the penalty for the flats’

location. In contrast to P1 all pairwise differences are considered as the location is a nominal
factor.
Weights w1r and w2rs contain both, the weights that account for a different number of lev-
els/of observations on each level (see Section 2.4) and the adaptive weights |βML

1r − βML
1,r−1|−1,

|βML
2j − βML

2s |−1 respectively (see Zou, 2006). Adaptive weights come along with quite huge
penalty terms, when the according inverse differences are small. In this case, the penalty terms
related to other predictors may become negligible. However, even with adaptive weights, the
penalty terms of different predictors should be comparable.
To this end, one can abandon the idea of one global tuning parameter and introduce a tuning
parameter λ1 for the comparable but adaptively weighted penalty terms and the parameter
λ2 for non-adaptively weighted penalty terms. λ = (λ1, λ2) is determined by cross-validation.
However, to avoid multi-dimensional cross-validation, we propose to rescale adaptively weighted
penalty terms such that the overall penalty of one predictor is again of order kj, the number
of (free) coefficients related to xj. For predictor x1, the number of rooms in a flat, we have for
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Figure 9: Estimates of functions f3 and f4. In the left panel, the impact of the age of a flat is illustrated. The
age is measured in years; a flat built in 2007 is aged zero. On the right, the effect of the residential area is
shown. The residential area is measured in square meters. The y-axis corresponds to the effect of the age, the
residential area, respectively, on the predictors ηi.

example:

P1(β) =
1∑6

r=2 |βML
1r − βML

1,r−1|−1
6∑

r=2

wlevel1r

|β1r − β1,r−1|
|βML

1r − βML
1,r−1|

,

where weights wlevel1r =
√

n1r+n1,r−1

n
adjust for the different number of observations on each level

of x1. There is no need to adjust for the number of penalty terms as they are already of order 5.
Functions f3 and f4 are represented by decomposed cubic B-spline functions based on 20 equidis-
tant knots, see Section 3.3. The effect of the flats’ age f3 is penalized by P3(β3) =

∑14
r=1(β

nonlin
3r )2;

that is, by a Ridge penalty on the curvature of the function. Due to the cubic decomposed
B-splines with 20 knots, penalty P3 relates to 14 coefficients and is of order 14. Hence, no
additional weighting is needed.
The coefficients related to f4 are penalized by P4(β4) = α|βslope4 |+(1−α)w4

√∑14
r=1(β

nonlin
4r )2 as

described in Section 3.3; that is, by a Lasso penalty on the linear effect and by a grouped Lasso
penalty on the deviations from this linear effect. Weight w4 guarantees that the grouped Lasso
penalty is of the right order (see Section 2.5). Parameter α is an additional tuning parameter
that allows to weight the two components of the penalty. In order to separate it strictly from
the global tuning parameter, it is limited to the range (0, 1). As the global tuning parameter λ,
it will be chosen by cross-validation.
In the resulting model, the tuning parameters are chosen by 5-fold cross-validation with the
predictive deviance as loss criterion and set to (λ, α) = (4.55, 0.3). It turns out that all pre-
dictors effect upon the response. Figure 8 shows how the districts of Munich are clustered by
penalty P2. The map depicts the 25 districts of the city of Munich. District 1 denotes the
city center, that is the reference category; the remaining districts correspond to one dummy
coefficient each. The colors are allocated according to the regularized estimates. As the city
center is the most expensive district, all coefficients are negative. The fused Lasso penalty on
all pairwise differences of coefficients shrinks the estimates; five clusters of districts with similar
effects are detected. The effect of the districts 2–5 and 12 is set to zero; they are fused with
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the city center. The cluster correspond to what one would expect. Flats in these districts
are highly requested. Figure 9 illustrates smooth functions f3 and f4. The effect of the flats’
age is actually non-linear (left panel). It captures the urban development of Munich: After
World War II, many flats were constructed; flats build subsequent to the war (1945-1965),
have a clearly negative impact on the rent. The more lately the flats are constructed the more
expensive they become. Flats that where constructed in the beginning of the 20th century
(1900-1930), seem to be of a higher value and outbalance the disadvantages of age. A few very
old, extensively redecorated flats give the positive effect for flats build in the 19th century. The
right panel of Figure 9 depicts the effect of the residential area. It is nearly linear. There are
only small deviations from a linear trend with slope 0.01. The dummy coefficients for two and
three rooms are fused with the reference category “one room”. Four and more rooms rooms have
a negative impact on the response; the categories for five and six rooms are fused: β4 = −0.01,
β15 = −0.10, β16 = −0.10).
Overall, the model seems to give a realistic picture of how the rents are arranged. Especially
the effect of the flats’ age has a close match in history. Of course, one could argue for many
other models. One could spend more time on additional factors. One could think of different
penalties, too. For example, the location is so far considered as a nominal factor; all pairwise
differences of dummy coefficients are penalized. Instead, the penalty could take account of
the spatial structure. One could consider only differences of neighbored districts or weight the
differences by the length of their joint boundary.

5 Concluding Remarks
We propose a general approach to combine different types of penalties in one generalized struc-
tured regression model. It allows for example, for penalized smooth functions, Lasso-regularized
predictors and categorical predictors penalized by a grouped Lasso in one predictor. The re-
sponse can follow any exponential family. This is challenging because the objective function
combines various potentially non-differentiable terms like norms, quadratic terms, absolute val-
ues or indicators. To solve this problem, we employ a local quadratic approximation for the
penalty that is based on ideas of Fan and Li (2001) and Ulbricht (2010). The approximation
is iteratively updated in a PIRLS algorithm. That gives an algorithm of similar complexity
as for usual GLMs; however, coefficient paths and cross-validation scores have to be computed
separately. In comparison to other (straight forward) optimization methods like Nelder-Mead
or Newton-type algorithms, the PIRLS framework turns out to be more stable. We provide an
implementation of the algorithm in R package gvcm.cat (Oelker, 2013).
We choose the tuning parameters by cross-validation and propose a weighting scheme to ad-
just for differently weighted or scaled predictors. Alternatively, tuning parameters could be
estimated in a mixed model framework. Confidence regions can be constructed by bootstrap
methods.
As shown in the paper, the algorithm can be easily extended to vector valued penalties like the
grouped Lasso. Moreover, the approach allows to implement many penalties that have not been
explored so far; only boosting and Bayesian approaches provided such a variety of penalties as
proposed in this paper.

20



Acknowledgements
This work was partially supported by DFG project “Regularisierung für diskrete Datenstruk-
turen”.

A Appendix: Illustration of R package gvcm.cat

R code to reproduce some of the results in Section 3.

B Appendix: Districts in the City Munich

Number District

Downtown 1 Altstadt, Lehel
2 Ludwigvorstadt, Isarvorstadt
3 Maxvorstadt
4 Schwabing West
5 Au, Haidhausen
6 Sendling
7 Sendling, Westpark
8 Schwanthaler Höhe
9 Neuhausen, Nymphenburg
25 Laim

East side 13 Bogenhausen
14 Berg am Laim
15 Trudering, Riem
16 Ramersdorf, Perlach
17 Obergiesing
18 Untergiesing, Harlaching
19 Thalkirchen, Obersendling, Forstenried, Fürstenried, Solln

West side 10 Moosach
11 Milbertshofen, Am Hart
12 Schwabing - Freimann
20 Hadern
21 Pasing, Obermenzing
22 Aubing, Lochhausen, Langwied
23 Allach, Untermenzing
24 Feldmoching, Hasenbergl

Table 4: Overview on the districts in the City of Munich (Fahrmeir et al., 2007). The numbering corresponds
to the labels in Figure 8 and to the naming of the according dummy coefficients.
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