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1. Introduction

Let R be a ring with 1 ¢ R and denote by M and N R-rightmo-
dules. If := EndR(N) , T:= EndR(M) , then HomR(M,N) is a

S-T-bimodule. Denote by U a S-T-submodule of HomR(M,N). Exam-
ples for U besides 0 are _i(M,N),V(M,N) and RAD(M,N) (defini-

tions later).

In the study of regularity properties of a ring, it is a tech-
nical tool, to consider two-sided ideals A of R and derive
properties of R from properties of A and the factorring R/A.
The similar procedure as in the ring case, that means to work
with HomR(M,N)/U, is not useful , since this is not any more

a "Hom".But we would like, to work still with the good proper-
ties of homomorphisms, these are the kernel, the image and the
product. Therefore we introduce the following definition.

1.1. Definition

f e HomR(M,N) is called U-regular :=;there exist
g c HomR(N,M) and u ¢ U such that

(1) f = fgf + u .

A subset of HomR(M,N) is called U-regular, if all of its ele-

ments are U-regular.

If U =0, then we have the normal regularity. We intend to
show, that U-regularity is a valuable notion for the study of

regularity in Hom.

2. Largest U-regular submodule of Hom

It is well-known, that in a ring R, there exists a largest

regular twc-sided ideal 2 and R/A has no nonzero regular two-
sided ideal. We intend to show, that this result is also true
in our general situation and can even be extended to the cate-

gory R-mod of all unitary R-rightmodules.



For f e HomR(M,N) we denote by < f, the S-T-submodule of
HomR(M,N) generated by f. Then we define

(2) Reg(U):= {f € Hom(M,N) | <£> is U—regular} .

First, we have some trivial remarks about Reg(U).

1.Remark: U € Reg(U) ; since if u e U, then wu = uQu + u
with the zeromapping 0 ¢ HomR(N,M). Hence u is U-regular and
since ¢uy < U also ¢u) is U-regular.

2.Remark: If Ul'UZ are S-T-submodules of HomR(M,N), then

Ul %-Uz implies Reg(Ul) = Reg(Uz).

3.Remark: If f is U-regular with (1) and if v e U, then also

f+v is U-regular, since by (1) we have

f+v = (f+v)g(f+v) + ul

ug; = u+v-fgv-vgf-vgv € U.

This implies also, that if <f» is U-regular also < f+v) is U-

with

regular.

Now we state our first theorem.

2.1.Theorem
Reg(U) is the largest U-regular S-T-submodule of HomR(M,N) and

(3) Reg(Reg(U)) = Reg(U) .

Proof. We give the proof in five steps.

1.Step. If f e Reg(U), s € S, then sf e <f, and hence

«£sf» = <f» ., Therefore also sf e€ Reg(U). Similar also

tt € Reg(U) for t e T.

2.S5tep. We show now: If fl,f2 € Reg(U), then ff=f1+f2 e Reg(U).

By assuption therc exists g, € Hom_(N,M), u, € U such that
Y 1 R

1
f1 = flglfl Uy and this implies
(4) f—fglf = fl-f

with

19157 8,-8,9,F,-F,9,F = v +fy

f3 = fz—flglfz-fzglf € <f2>

and than follows by (4)

(5) f3 = f—fglf-u1 = f(lT-glf)-u1 = (1S—fgl)f—ul .
Since f3 € <f2> it is U-regular, hence we have
(6) f3 = f3g3f3 + ug R Us e U .

Then (4),(5) and (6) together imply



f = fglf+f3+ul = fglf+f3g3f3+u1+u

= f(gl+(1T-glf)g3(lS—fgl))f + u

3

and a computation shows u € U. That means, that f =f1+f2
is U-regular.
3.Step. We prove now, that \f1+f2> is U-regular. For this, we

consider an arbitrary element of <f1+f2>:

n n n

- 1] SN T

} s, (f,+f5)t, = ?; s; £ty + Z s;f,t, ,s,es, t eT.
i=1 i=1 i=1 ’

Since the first sum on the right is in <f1> and the second in
<fz) these sums are elements in Reg(U). Then by the 2.step
the sum of these elements is U-regular. Therefore f1+f2 [
Reg(U). Togefiier we have proved, that Reg(U) is a U-regular
S-T-submodule of HomR(M,N).

4.Step. If V is also an U-regular S-T-submodule of HomR(M,N),
then for h e V also (h)< V. But then by definition of Reg(U)

h € Reg(U), hence V & Reg(U).

5.Step. Still we have (3) to prove. Since Reg(U) is a S-T-sub-
module of HomR(M,N) Reg(Reg(U)) is defined and since U € Reg(U)
it follows Reg(U) < Reg(Reg(U)). Now we show, that every Reg(U)-
regular element is also U-regular. Let f be Reg(U)-regular;

then we have

(7) f = fgf + w , w € Reg(U)
and for w exists an equation

(8) w = whw + u , uedlU.

By (7) we get

(9) w f(lT—gf) = (lS—fg)f
and (7),(8) and (9) together imply
f =fgf + whw + u = f(g+(lT-gf)h(ls-fg))f +u ,

hence f is U-regular. Now, if f € Reg{keg(U);, then <£f)> is

Reg(U)-regular, hence also U-regular, hence f € Reg(U). 0O

We intend to give examples for Reg(U) and discuss Reg(U) in



a special case. But first, we extend theorem 2.1. to the
category R-mod.

3. The largest W-regular ideal in R-mod.

An ideal W in R-mod is defined by two conditions:

(Id 1): For arbitrary modules M,N of R-mod is given a subgroup
W(M,N) of the additive group of HomR(M,N) .
(Id 2): For arbitrary modules M,N,X,Y of R-mod and arbitrary

f ¢ WM,N) , h e HomR(X,M) , k e HomR(N,Y)
is kfh e W(X,Y)

By this definition the ideal W is given by its "components"
W(M,N) and therefore Wr\HomR(M,N) = W(M,N). Examples for
ideals besides the 0-ideal are A, Y and RAD, for which we

now give the definitions:
A (M,N):={f e HomR(M,N)| ker(f) is large in M § ,
T (M,N):= {f e HomR(M,N)l ima(f) is small in N}
RAD(M,N):= Radical of HomR(M,N) .

Now, we come back to the general situation. For f € W we de-
note by’ £>»> the ideal in R-mod generated by f. We call

fe HomR(M,N) W-regular, if there exist g e HomR(N,M) and
we WIM,N) such that f =fgf + w . Now we define

REG(W)(M,N) := [ f ¢ Hom_ (M,N) | <<£2 is w-regularf .
Then ¢ £ < < f» and therefore
REG(W)(M,N) € Reg(W(M,N)) .

Realise the difference in the writing ! Now we have the ana-

loge theorem tc 2.1.



3.1. Theorem.

If W is an ideal in R-mod, then REG(W) is the largest W-regular
ideal in R-mod and

(10) REG(REG(W)) = REG(W) .

Proof: We use the proof of 2.1. with some obvious modifications.
In the steps 2.,3. and 5. only < f> has to be substituted by
&f). In the l.step, we have to consider s € HomR(N,Y), t e
HomR(X,M) for arbitrary modules X,Y. Similar in the 3,step

the s, resp. the ti have to be in HomR(N,Y) resp. in HomR(X,M)
and the sums have to be added in the sense of the 2.step in
REG(W)(X,Y) .3

Connected with this result, there are many questions. What are
the rings R such that

(11) REG(W) = R-mod

if W =0 ,A,VY, RAD ? It is obvious, that for a semi-simple
ring R (11) is satisfied for W = 0 and hence for any ideal.
Are there other rings, for which (11) is satisfied for any
proper ideal of R-mod ? How about rings R such that REG(W) = W
for one of the examples ? Does there exist for an arbitrary

ring R a smallest (or minimal) ideal W such that (11) is true

-

Obviously, it is also possible, to study W-regularity in more

general categories than R-mod .

4. Examples and special cases

First we give some results for Reg(U) by using continuity and
discretness properties. We need the following conditions

(compare [5]).
(Cl;M) : Every submodule of M is large in a direc¢lsummand of M.

(CZO;M): If a submoduie of M is isomorphic to M, then it is

a directsummand of M.

(C2;M,N): If a submodule of N is isomorphic to a direct summand
of M, then it is a direct summand of N.



If (Cl;M) and (C2;M):= (C2;M,M) are satisfied, then M is called

continuous.

4.1.Teorgm

(i) If (Czo;M) is satisfied, then for every module N
(12) A(M,N) € RAD(M,N) .

(ii) If (C1l;M) and (C2;M,N) are satisfied, then

(13) RAD(M,N) € A(M,N)

and
(14) Reg( A (M,N)) = Hom (M,N) .
Proof:

(i): We consider f e A(M,N) and an arbitrary g ¢ HomR(N,M).

For x € ker(f) follows (lT-gf)(x)= x , hence
(15) ker(f)nm ker(lT-gf) = 0 and ker(f) & ima(lT-gf).
*
Since ker(f) € M , (15) implies
*
(16) ker(lT—gf) =0 |, ima(lT-gf) & M.

Since 1T—gf is a monomorphism, ima(lT—gf) is isomorphic to M
and then by (CZO:M) it is a direct summand of M. Then (16)
implies ima(lT—gf) = M. Together, we see, that lT-gf is an au-
tomorphism, which means f € RAD(M,N).

(ii): Assume now f € HomR(M,N) , £ ¢4&(M,N). Then there exists
0 # L € M such that ker(f)nL = 0. By (Cl;M) there exists

D Q"@)M with L é’D: then also ker(f)~nD = 0. If ¢&: D— M

is the inclusion, then f¢ : D — M 1is a monomorphism. Then
by (C2;M,N) f¢(D) = £(D) 1is a direct summand of N, hence

N = f(D) ® B. Now, we define g e HomR(N,M) by

g(f(x)):= x for Xx € D
g(b):= 0 for b e B .

Then follows for x € D

(lp=gf)(x) = x - x =0,



hence 0 # D < ker(lT—gf) and therefore £ ¢ RAD(M,N), hence
(13) is true. For the proof of (14) we assume f € HomR(M,N)
and denote by D a complement of ker(f) in M such that

*

(17) ker(f)AD = 0 , ker(f) + D& M .

i c® c *
By (Cl:M) exists D1 < M, D& Dl’ By (17) follows, that
also ker(f)n Dl = 0 and this implies Dl = D, since D was
maximal with this property. Therefore D & ® M. Then as before
N = f(D) ® B and D € ker(lT-gf) (with the same g as before).
Since f - fgf = f(lT- gf) = (ls- fg)f we get by using (17)

*
ker(f) + D & ker(f-fgf) &€ M.
Then with u:= f-fgf ¢ A (M,N) we have f = fgf + u. d

4.2. Corollary
If (Cl;M),(CZO;M) and (C2;M,N) are satisfied, then

A(M,N) = Rad(M,N).

A module M is called quasi-continuous, if (Cl1l;M) and the fol-
lowing (C3;M) are satisfied.

(C3;M) : If A and B are direct summands of M with AnB = 0,
then A+B is a direct summand of M.

A homomorphism f € HomR(M,N) is called partially invertible

= pi if it is a factor of a nonzero regular element or, equi-
valent, there exists g e HomR(N,M) with gf = (gf)2 * 0.
(there are more equivalent conditions for pi). Then we need
the total from M to N:

TOT(M,N) := {f e Hom(M,N) | £ is not pif .
(For the properties of these notions see |1]...[4])

4.3 Theorem.
Assume (Cl:M),(CZO;M),(C2;M3N) and (C3:M) or
(Cl;M),(CZo:M),(CZ;M,N) and (Cl;N),(C3;N) then

A(M,N) = RAD(M,N) = TOT(M,N) .



Before we give the proof, we would like to mention some special
cases, in which the assumptions look less complicated. If M is
injective, then (Cl;M),(Czo;M),(CZ;M,N) and (C3;M) are all
satisfied (for arbitrary N !). If M=N , then the conditions
above reduce to (Cl;M) and (C2:;M) (since (C3;M) follows from
(C2:M)).

Proof of 4.3.
By 4.2. we have only /A(M,N) = TOT(M,N) to show. Since always
A(M,N) € TOT(M,N) holds , only the opposite inclusion

is to prove. This we prove by contradiction. Assume

f e TOT(M,N) , £ ¢é A(M,N) ; then by 4.1. £ is A (M,N)-regular,
hence
(18) f = fgf +u , ue A(M,N) .

Since f ¢ /A(M,N) also
(19) gf = (gf)% + gu ¢ A(M,N) , fg = (£fg9)2 + ug ¢ H(M,N) .

Here, we used the fact, that A is an ideal in R-mod. Now we
have also to use the fact, that TOT is a semi-ideal in R-mod.
Since f € TOT(M,N), then also gf e TOT(M,M) (= 'TOT(T)) ,

gf € TOT(N,N) (=-TOT(S)). Now we consider the images 5? resp.
fg in T/A(T) resp. S/ A(S) (with A(T):=4(M,M), A(S):= A(N,N)).
Then by (19)

04 gf = (gf)% |, 04 fg = (Fq)° .

Now, we need an assumption to be able to 1lift idempotents from
T/A(T) to T or from S/A(S) to S. This is the case, if M or N
is quasi-continuous ((Cl) and (C3)). We consider the first
case. Assume e = e e T , such that € = gf (4 0). Then

e=gf + h, hed(T) and by 4.2 also h € RAD(T). But then
follows (|2],33) e = gf + h € TOT(T), which is impossible
for an idempotent e % 0. Contradiction ! The proof is similar

in the second case.p

If we compare 4.1. (including 4.2) with 4.3., we have the
following interesting situation. If f e HomR(M,N), f ¢ RAD(M,N),



then by 4.1. and 4.2.
f = fgf + u , u e RAD(M,N)

and by 4.3. there exists h € HomR(N,M) such that
hf =: e = e 0.

Is there a connection between g and h ? In general: Is there
a connection between RAD(M,N)-regqular elements,which are not

in RAD(M,N), and pi-elements ?

If we dualise the assumptions in 4.1.,4.2. and 4.3., then the
dual results are true (For the dual conditions, called dis-

cretness conditions, see |5]).

We consider now the special case M = R. Then HomR(R,N) is a
S-R-bimodule and

B : HomR(M,N)ﬁf;——» f(l) e N

is a S-R-isomorphism. If U eéHomR(M,N)R , then := B(U) is a

*
S-R-submodule of N. Further HomR(N,R) = N 1is the dual module
of N, which is a R-S-bimodule. This situation with B = 0 was

studied by J.Zelmanowitz ([6]).
By applying B8 on (1), it follows
£(1) = £(g(£f(L))) + u(l) = £(L)g(£(1)) + u(l).

If we write x:= f(1l), b:= u(l) and gx:=g(x) , then we have the

following reguliarity conditaion:

(21) X = xgx + b , xe N, beB

Now for x € N (x> is the S-R-submodule of N generated by x.
Then

Reg(B):= {x € N | ¢x> is B—regularf

and by thenrem 2.,1. we know, that Reg(R) is the largest

B-regular S-R-submodule of N and

Reg(Reg(B)) = Reg(B) .



Also, we will specialize 4.1.,4.2.and 4.3. on this case. In
the assumptions (Cl;M) ... we have now M = R, considered as

R-rightmodule. We denote for x € N

Ann(x):={r e R | xr = O} .
Then
BA(RN) ={x e N | Ann(x) <* R, f
and
BRAD(R,N) =‘{x eN|JgeN [l-gx is a unite in R]g.

* *
If r e R, g e N, then also rg € N . Therefore if all 1l-rgx,
r € R are units, then gx € Rad(R). Since for Rad(N) and all
*
g € N we have g(Rad(N)) & Rad(R), it follows

(22) Rad(N) € B(RAD(R,N)) .

Question: Under which conditions for R and N holds the equality

in (22) ? If N is projective, then the equality is satisfied

N}

(as to see by using a dual basis). What about other conditions

Now, we consider the image B8(f) of a pi-homomorphism
%*
f e HomR(R,N). If f is pi, then there exists g € N such that

:= gf is an idempotent # 0. Therefore

gf(r) g(f(l)r) = g(f(1l))r

(gfgf)(r) = gf(f(g(1l))r) = g(£(1))g(£f(1))r .

By applying B, we get the following condition for x € N to be

a pi-element:

X is pi ¢==)>there exists g € N* such that
g(x) is an idempotent $ 0 in R.
Then
Tot(N):= B(TOT(R,N)) ={x & N | x is not pi} )

Now, every one can translate the results 4.1.,4.2. and 4.3.

and the dual results in this situation.
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