Friedrich Kasch

Regularity in Hom

Verlag Reinhard Fischer

1. Introduction

Let R be a ring with 1 c R and denote by M and N R-rightmodules. If S:= $\operatorname{End}_R(N)$, T:= $\operatorname{End}_R(M)$, then $\operatorname{Hom}_R(M,N)$ is a S-T-bimodule. Denote by U a S-T-submodule of $\operatorname{Hom}_R(M,N)$. Examples for U besides 0 are $\Delta(M,N)$, $\nabla(M,N)$ and $\operatorname{RAD}(M,N)$ (definitions later).

In the study of regularity properties of a ring, it is a technical tool, to consider two-sided ideals A of R and derive properties of R from properties of A and the factorring R/A. The similar procedure as in the ring case, that means to work with $\text{Hom}_{\mathbb{R}}(M,N)/U$, is not useful , since this is not any more a "Hom".But we would like, to work still with the good properties of homomorphisms, these are the kernel, the image and the product. Therefore we introduce the following definition.

1.1. Definition

f ε $\text{Hom}_R(M,N)$ is called $\underline{\text{U-regular}}$: there exist g c $\text{Hom}_R(N,M)$ and u c U such that

$$(1) f = fgf + u.$$

A subset of $\operatorname{Hom}_{\mathbb{R}}(M,N)$ is called U-regular, if all of its elements are U-regular.

If U = 0, then we have the normal regularity. We intend to show, that U-regularity is a valuable notion for the study of regularity in Hom.

2. Largest U-regular submodule of Hom

It is well-known, that in a ring R, there exists a largest regular two-sided ideal A and R/A has no nonzero regular two-sided ideal. We intend to show, that this result is also true in our general situation and can even be extended to the category R-mod of all unitary R-rightmodules.

For f e $\text{Hom}_R(M,N)$ we denote by $<\!f\!>$ the S-T-submodule of $\text{Hom}_R(M,N)$ generated by f. Then we define

(2)
$$\operatorname{Reg}(U) := \left\{ f \in \operatorname{Hom}_{R}(M,N) \mid \langle f \rangle \text{ is } U\text{-regular} \right\}$$
.

First, we have some trivial remarks about Reg(U).

- 1.Remark: $U \subseteq \text{Reg}(U)$; since if $u \in U$, then u = u0u + u with the zeromapping $0 \in \text{Hom}_R(N,M)$. Hence u is U-regular and since $\langle u \rangle \subseteq U$ also $\langle u \rangle$ is U-regular.
- 2.Remark: If U_1, U_2 are S-T-submodules of $\operatorname{Hom}_R(M,N)$, then $U_1 \subseteq U_2$ implies $\operatorname{Reg}(U_1) \subseteq \operatorname{Reg}(U_2)$.
- 3.Remark: If f is U-regular with (1) and if $v \in U$, then also f+v is U-regular, since by (1) we have

$$f+v = (f+v)g(f+v) + u_1$$

 $u_1 = u+v-fgv-vgf-vgv \in U.$

with

This implies also, that if $\langle f \rangle$ is U-regular also $\langle f + v \rangle$ is U-regular.

Now we state our first theorem.

2.1.Theorem

Reg(U) is the largest U-regular S-T-submodule of $Hom_{\mathbf{R}}(M,N)$ and

(3)
$$Reg(Reg(U)) = Reg(U)$$
.

Proof. We give the proof in five steps.

- l.Step. If f \in Reg(U), s \in S, then sf \in \langle f \rangle and hence \langle sf \rangle \in \langle f \rangle . Therefore also sf \in Reg(U). Similar also ft \in Reg(U) for t \in T.
- 2.Step. We show now: If $f_1, f_2 \in \text{Reg}(U)$, then $f:=f_1+f_2 \in \text{Reg}(U)$. By assuption there exists $g_1 \in \text{Hom}_R(N,M)$, $u_1 \in U$ such that $f_1 = f_1g_1f_1 + u_1$ and this implies

(4)
$$f-fg_1f = f_1-f_1g_1f_1+f_2-f_1g_1f_2-f_2g_1f = u_1+f_3$$
 with

$$f_3 = f_2 - f_1 g_1 f_2 - f_2 g_1 f \in \langle f_2 \rangle$$

and than follows by (4)

(5)
$$f_3 = f - fg_1 f - u_1 = f(1_T - g_1 f) - u_1 = (1_S - fg_1) f - u_1$$
.

Since $f_3 \in \langle f_2 \rangle$ it is U-regular, hence we have

(6)
$$f_3 = f_3 g_3 f_3 + u_3$$
, $u_3 \in U$.

Then (4),(5) and (6) together imply

$$f = fg_1f + f_3 + u_1 = fg_1f + f_3g_3f_3 + u_1 + u_3$$

= $f(g_1 + (1_T - g_1f)g_3(1_S - fg_1))f + u$

and a computation shows u ε U. That means, that f = f $_1$ + f $_2$ is U-regular.

3.Step. We prove now, that $\langle f_1 + f_2 \rangle$ is U-regular. For this, we consider an arbitrary element of $\langle f_1 + f_2 \rangle$:

$$\sum_{i=1}^{n} s_{i}(f_{1}+f_{2})t_{i} = \sum_{i=1}^{n} s_{i}f_{1}t_{i} + \sum_{i=1}^{n} s_{i}f_{2}t_{i}, s_{i}eS, t_{i}eT.$$

Since the first sum on the right is in $\langle f_1 \rangle$ and the second in $\langle f_2 \rangle$, these sums are elements in $\operatorname{Reg}(U)$. Then by the 2.step the sum of these elements is U-regular. Therefore f_1+f_2 e $\operatorname{Reg}(U)$. Together we have proved, that $\operatorname{Reg}(U)$ is a U-regular S-T-submodule of $\operatorname{Hom}_p(M,N)$.

4.Step. If V is also an U-regular S-T-submodule of $\operatorname{Hom}_R(M,N)$, then for h e V also $\langle h \rangle \subseteq V$. But then by definition of $\operatorname{Reg}(U)$ h $\in \operatorname{Reg}(U)$, hence $V \subseteq \operatorname{Reg}(U)$.

5.Step. Still we have (3) to prove. Since Reg(U) is a S-T-submodule of $Hom_R(M,N)$ Reg(Reg(U)) is defined and since $U \subseteq Reg(U)$ it follows $Reg(U) \subseteq Reg(Reg(U))$. Now we show, that every Reg(U)-regular element is also U-regular. Let f be Reg(U)-regular; then we have

(7)
$$f = fgf + w$$
, $w \in Reg(U)$

and for w exists an equation

(8)
$$w = whw + u$$
 , $u \in U$.

By (7) we get

(9)
$$w = f(1_T - gf) = (1_S - fg)f$$

and (7), (8) and (9) together imply

$$f = fgf + whw + u = f(g+(1_T-gf)h(1_S-fg))f + u$$
,

hence f is U-regular. Now, if $\bar{f} \in \text{Reg}(\text{Reg}(U))$, then $\langle f \rangle$ is Reg(U)-regular, hence also U-regular, hence f $\in \text{Reg}(U)$. \Box

We intend to give examples for Reg(U) and discuss Reg(U) in

a special case. But first, we extend theorem 2.1. to the category $R\text{-}\mathrm{mod}$.

3. The largest W-regular ideal in R-mod.

An ideal W in R-mod is defined by two conditions:

(Id 1): For arbitrary modules M,N of R-mod is given a subgroup $W(M,N) \mbox{ of the additive group of } Hom_{R}(M,N) \mbox{ .} \label{eq:weight}$

(Id 2): For arbitrary modules M,N,X,Y of R-mod and arbitrary

f c W(M,N) , h c
$$\operatorname{Hom}_R(X,M)$$
 , k c $\operatorname{Hom}_R(N,Y)$ is kfh e W(X,Y)

By this definition the ideal W is given by its "components" W(M,N) and therefore $W \cap Hom_R(M,N) = W(M,N)$. Examples for ideals besides the 0-ideal are \triangle , ∇ and RAD, for which we now give the definitions:

Now, we come back to the general situation. For f ε W we denote by $\langle \zeta f \rangle$ the ideal in R-mod generated by f. We call f ε Hom $_R(M,N)$ W-regular, if there exist g ε Hom $_R(N,M)$ and w ε W(M,N) such that f =fgf + w . Now we define

$$REG(W)(M,N) := \{ f \in Hom_p(M,N) | \langle \langle f \rangle \rangle \text{ is } W\text{-regular} \}.$$

Then $\langle f \rangle \subseteq \langle \langle f \rangle \rangle$ and therefore

$$REG(W)(M,N) \subseteq Reg(W(M,N))$$
.

Realise the difference in the writing ! Now we have the analoge theorem to 2.1.

3.1. Theorem.

If W is an ideal in R-mod, then $\operatorname{REG}(W)$ is the largest W-regular ideal in R-mod and

(10)
$$REG(REG(W)) = REG(W)$$
.

<u>Proof:</u> We use the proof of 2.1. with some obvious modifications. In the steps 2.,3. and 5. only $\langle f \rangle$ has to be substituted by $\langle f \rangle$. In the 1.step, we have to consider s ϵ $\operatorname{Hom}_R(N,Y)$, t ϵ $\operatorname{Hom}_R(X,M)$ for arbitrary modules X,Y. Similar in the 3,step the s_i resp. the t_i have to be in $\operatorname{Hom}_R(N,Y)$ resp. in $\operatorname{Hom}_R(X,M)$ and the sums have to be added in the sense of the 2.step in $\operatorname{REG}(W)(X,Y)$. \square

Connected with this result, there are many questions. What are the rings ${\tt R}$ such that

(11)
$$REG(W) = R-mod$$

if W = 0 , Δ , ∇ , RAD ? It is obvious, that for a semi-simple ring R (11) is satisfied for W = 0 and hence for any ideal. Are there other rings, for which (11) is satisfied for any proper ideal of R-mod ? How about rings R such that REG(W) = W for one of the examples ? Does there exist for an arbitrary ring R a smallest (or minimal) ideal W such that (11) is true ?

Obviously, it is also possible, to study W-regularity in more general categories than $R\text{-}\mathrm{mod}$.

4. Examples and special cases

First we give some results for Reg(U) by using continuity and discretness properties. We need the following conditions (compare |5|).

- (C1; M): Every submodule of M is large in a direct summand of M.
- (C2 $_{\rm O}$; M): If a submodule of M is isomorphic to M, then it is a direct summand of M.
- (C2;M,N): If a submodule of N is isomorphic to a direct summand of M, then it is a direct summand of N.

If (C1;M) and (C2;M):=(C2;M,M) are satisfied, then M is called continuous.

4.1.Teorem

- (i) If $(C2_0;M)$ is satisfied, then for every module N
- $(12) \qquad \triangle (M,N) \subseteq RAD(M,N) .$
- (ii) If (C1;M) and (C2;M,N) are satisfied, then
- (13) $RAD(M,N) \subseteq \Delta(M,N)$ and
- (14) $\operatorname{Reg}(\Delta(M,N)) = \operatorname{Hom}_{\mathbf{p}}(M,N)$.

Proof:

(i): We consider $f \in \Delta(M,N)$ and an arbitrary $g \in \operatorname{Hom}_R(N,M)$. For $x \in \ker(f)$ follows $(1_T-gf)(x) = x$, hence

(15) $\ker(f) \cap \ker(1_T^-gf) = 0$ and $\ker(f) \subseteq \operatorname{ima}(1_T^-gf)$.

Since $ker(f) \leq {^*M}$, (15) implies

(16)
$$\ker(1_{T}-gf) = 0$$
 , $\operatorname{ima}(1_{T}-gf) \leq {}^{*}M$.

Since 1_T -gf is a monomorphism, ima(1_T -gf) is isomorphic to M and then by ($C2_O$;M) it is a direct summand of M. Then (16) implies ima(1_T -gf) = M. Together, we see, that 1_T -gf is an automorphism, which means f \in RAD(M,N).

(ii): Assume now f \in Hom $_R(M,N)$, f $\notin \Delta(M,N)$. Then there exists $0 \not\models L \subseteq M$ such that $\ker(f) \cap L = 0$. By (C1;M) there exists $D \subseteq \overset{\bullet}{\oplus} M$ with $L \subseteq ^{\star} D$; then also $\ker(f) \cap D = 0$. If $\boldsymbol{\ell} : D \longrightarrow M$ is the inclusion, then $f \iota : D \longrightarrow M$ is a monomorphism. Then by (C2;M,N) $f \iota(D) = f(D)$ is a direct summand of N, hence $N = f(D) \oplus B$. Now, we define $g \in \operatorname{Hom}_{D}(N,M)$ by

$$g(f(x)):= x$$
 for $x \in D$
 $g(b):= 0$ for $b \in B$.

Then follows for $x \in D$

$$(1_{T}-gf)(x) = x - x = 0$$
,

hence $0 \neq D \leq \ker(1_T\text{-gf})$ and therefore $f \notin RAD(M,N)$, hence (13) is true. For the proof of (14) we assume $f \in \text{Hom}_R(M,N)$ and denote by D a complement of $\ker(f)$ in M such that

(17)
$$\ker(f) \cap D = 0$$
 , $\ker(f) + D \subseteq M$.

By (Cl;M) exists $D_1 \subseteq {}^{\bigoplus}M$, $D \subseteq {}^{\bigstar}D_1$. By (17) follows, that also $\ker(f) \cap D_1 = 0$ and this implies $D_1 = D$, since D was maximal with this property. Therefore $D \subseteq {}^{\bigoplus}M$. Then as before $N = f(D) \bigoplus B$ and $D \subseteq \ker(1_T - gf)$ (with the same g as before). Since $f - fgf = f(1_T - gf) = (1_S - fg)f$ we get by using (17)

$$ker(f) + D \subseteq ker(f-fgf) \subseteq {}^*M.$$

Then with $u:=f-fgf \in \Delta(M,N)$ we have $f=fgf+u.\Box$

4.2. Corollary

If (C1;M),(C2,M) and (C2;M,N) are satisfied, then

$$\triangle(M,N) = Rad(M,N)$$
.

A module M is called quasi-continuous, if (C1;M) and the following (C3;M) are satisfied.

(C3;M): If A and B are direct summands of M with $A \cap B = 0$, then A+B is a direct summand of M.

A homomorphism f ε Hom $_R(M,N)$ is called <u>partially invertible</u> = pi if it is a factor of a nonzero regular element or, equivalent, there exists g ε Hom $_R(N,M)$ with gf = $(gf)^2 \ddagger 0$. (there are more equivalent conditions for pi). Then we need the total from M to N:

$$\text{TOT}(M,N) \, := \, \left\{ \, f \, \, \varepsilon \, \, \text{Hom}_{\mathbb{R}}(M,N) \, \, \, \, \middle| \, \, f \, \, \text{is not pi} \right\} \ .$$

(For the properties of these notions see |1|...|4|)

4.3 Theorem.

Assume (C1;M),(C2
$$_{\rm O}$$
;M),(C2;M,N) and (C3;M) or (C1;M),(C2 $_{\rm O}$;M),(C2;M,N) and (C1;N),(C3;N) then

$$\triangle(M,N) = RAD(M,N) = TOT(M,N)$$
.

Before we give the proof, we would like to mention some special cases, in which the assumptions look less complicated. If M is injective, then (C1;M),(C2;M),(C2;M,N) and (C3;M) are all satisfied (for arbitrary N !). If M=N , then the conditions above reduce to (C1;M) and (C2;M) (since (C3;M) follows from (C2;M)).

Proof of 4.3.

By 4.2. we have only $\triangle(M,N) = TOT(M,N)$ to show. Since always $\triangle(M,N) \subseteq TOT(M,N)$ holds , only the opposite inclusion is to prove. This we prove by contradiction. Assume $f \in TOT(M,N)$, $f \notin \Delta(M,N)$; then by 4.1. f is $\Delta(M,N)$ -regular, hence

(18)
$$f = fgf + u$$
, $u \in \Delta(M,N)$.

Since $f \notin \Delta(M,N)$ also

(19)
$$gf = (gf)^2 + gu \notin \Delta(M,N)$$
, $fg = (fg)^2 + ug \notin \Delta(M,N)$.

Here, we used the fact, that \triangle is an ideal in R-mod. Now we have also to use the fact, that TOT is a semi-ideal in R-mod. Since f e TOT(M,N), then also gf e TOT(M,M) (= TOT(T)), gf e TOT(N,N) (= TOT(S)). Now we consider the images \overline{gf} resp. \overline{fg} in $T/\triangle(T)$ resp. $S/\triangle(S)$ (with $\triangle(T):=\triangle(M,M),\triangle(S):=\triangle(N,N))$. Then by (19)

$$\overline{0} \neq \overline{gf} = (\overline{gf})^2$$
 , $\overline{0} \neq \overline{fg} = (\overline{fg})^2$.

Now, we need an assumption to be able to lift idempotents from $T/\Delta(T)$ to T or from $S/\Delta(S)$ to S. This is the case, if M or N is quasi-continuous ((C1) and (C3)). We consider the first case. Assume $e=e^2\in T$, such that $\overline{e}=\overline{gf}$ ($\frac{1}{7}$ 0). Then e=gf+h, $h\in\Delta(T)$ and by 4.2 also $h\in RAD(T)$. But then follows ($\frac{1}{7}$ 2,33) $e=gf+h\in TOT(T)$, which is impossible for an idempotent $e^{\frac{1}{7}}$ 0. Contradiction! The proof is similar in the second case.

If we compare 4.1. (including 4.2) with 4.3., we have the following interesting situation. If $f \in Hom_p(M,N)$, $f \notin RAD(M,N)$,

then by 4.1. and 4.2.

$$f = fgf + u$$
 , $u \in RAD(M,N)$

and by 4.3. there exists $h \in Hom_p(N,M)$ such that

hf =:
$$e = e^2 \neq 0$$
.

Is there a connection between g and h ? In general: Is there a connection between RAD(M,N)-regular elements,which are not in RAD(M,N), and pi-elements ?

If we dualise the assumptions in 4.1.,4.2. and 4.3., then the dual results are true (For the dual conditions, called discretness conditions, see |5|).

We consider now the special case M = R. Then $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R},\mathbb{N})$ is a S-R-bimodule and

$$\beta : \text{Hom}_{R}(M,N) \ni f \longmapsto f(1) \in N$$

is a S-R-isomorphism. If $U = Hom_R(M,N)_R$, then B := B(U) is a S-R-submodule of N. Further $Hom_R(N,R) = N^*$ is the dual module of N, which is a R-S-bimodule. This situation with B = 0 was studied by J.Zelmanowitz (|6|).

By applying B on (1), it follows

$$f(1) = f(g(f(1))) + u(1) = f(1)g(f(1)) + u(1).$$

If we write x:= f(1), b:= u(1) and gx:=g(x), then we have the following regularity condition:

(21)
$$x = xgx + b$$
 , $x \in N$, $b \in B$.

Now for $x \in N \langle x \rangle$ is the S-R-submodule of N generated by x. Then

Reg(B):=
$$\{x \in N \mid \langle x \rangle \text{ is B-regular}\}$$

and by theorem 2.1. we know, that Reg(B) is the largest B-regular S-R-submodule of N and

$$Reg(Reg(B)) = Reg(B)$$
.

Also, we will specialize 4.1.,4.2.and 4.3. on this case. In the assumptions (C1;M) ... we have now M = R, considered as R-rightmodule. We denote for $x \in N$

$$Ann(x) := \{ r \in R \mid xr = 0 \}$$
.

Then

$$\beta \triangle (R,N) = \{x \in N \mid Ann(x) \leq R_R \}$$

and

$$\text{BRAD}(R,N) \ = \ \left\{ \ x \ \in \ N \ \left| \ \ \right\} \ g \ \in \ N \ \left[\ 1 \text{-gx is a unite in } R \right] \right\} \,.$$

If r e R, g e N^{*}, then also rg e N^{*}. Therefore if all 1-rgx, r e R are units, then gx e Rad(R). Since for Rad(N) and all g e N^{*} we have $g(Rad(N)) \subseteq Rad(R)$, it follows

(22)
$$Rad(N) \subseteq \beta(RAD(R,N))$$
.

Question: Under which conditions for R and N holds the equality in (22) ? If N is projective, then the equality is satisfied (as to see by using a dual basis). What about other conditions ?

Now, we consider the image B(f) of a pi-homomorphism $f \in \operatorname{Hom}_R(R,N)$. If f is pi, then there exists $g \in N^*$ such that e := gf is an idempotent $\frac{1}{2}$ 0. Therefore

$$gf(r) = g(f(1)r) = g(f(1))r$$

= $(gfgf)(r) = gf(f(g(1))r) = g(f(1))g(f(1))r$.

By applying B, we get the following condition for $x \in N$ to be a pi-element:

x is pi $\Leftarrow==>$ there exists g \in N * such that g(x) is an idempotent $\frac{1}{2}$ 0 in R.

Then

$$\label{eq:total_continuous} \text{Tot}(\,N\,) := \, \left\{\, x \,\, \, \, \varepsilon \,\, \, \, N \,\, \, \, \, | \,\, \, x \,\, \, \text{is not pi} \, \right\} \,\, .$$

Now, every one can translate the results 4.1.,4.2. and 4.3. and the dual results in this situation.

REFERENCES

- 1| Schneider, W.: Das Total von Moduln und Ringen.
 Algebra Berichte 55, 1987, Verl.R.Fischer, München.
- |2| Kasch,F.: Partiell invertierbare Homomorphismen und das Total. Algebra Berichte 60, 1988, Verl.R.Fischer,München.
- |3| Kasch,F.: The total in the category of modules.

 General algebra 1988, Elsevier Sc.Publ.B.V.(North-Holland).
- |4| Kasch, F.u. Schneider, W.: The total of modules and rings.
 Algebra Berichte 69, 1992, Verlag R. Fischer, München
- |5| Mohamed,S.H.and Müller,B.J.: Continuous and discrete modules. London M.S., Lecture notes ser.147, 1990.
- [6] Zelmanowitz,J.:Regular modules.
 Transactions of the AMS, 163 (1972), 341 355.

Friedrich Kasch Mathematisches Institut der Universität München Februar 1996

