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TOTO-Modules

K.I. BEIDAR AND F. KASCH

1 Introduction

Given a ring R (with unity), we denote by Mod-R the category of right R-
modules. In what follows the term “module” will mean “right module”. Let
M € Mod-R. We denote by Er(M) the injective hull of M and by 1, the
identity endomorphism of M. When the context is clear, we shall write E(M)
for Er(M). Given a submodule N C Mg, we denote by iy : Ng — Mg the
canonical embedding of modules. We shall write N C* M whenever N is an
essential submodule of M, and N C% M whenever N is a direct summand of
the module M. If Mg = Kr @ L, we denote by g : Mr — Kp the canonical
projection of modules.

Let M = Mgr and N = Np. Recall that f : Mg — Np is called partially
tnvertible (briefly f is pi) whenever there exists g : Ng — Mg such that 0 #
fa = (fg)? (see [6]). It is known that the following to conditions are equivalent:

There exists f € Hompg(N, M) such that 0 # fg = (fg)?:
There exists A € Homg(N, M) such that 0 # gh = (gh)%. (1)

(see [6] or [2]). Further, let n > 0, My, Ma,...,Mp+1 € Mod-R and g; €
HOIDR(}’VL‘,M".H), 1= 1,2,. coy M.

If g1g2...gn is pi. Then each g; is pi (2)

according to [6, 1.3] (see also [2]).
Let M, N € Mod-R. Then the total Tot(M,N) of M and N is defined as
follows:
Tot(M,N) = {g € Homg(M, N) | g is not pi}

(see [6]).

Theorem 1.1 Let M be a right R-module. Then the foliowing conditions are
equivalent:



(i) Tot(M,N) =0 for any N € Mod-R.
(11) Tot(M,C) = 0 for some cogenerator C' of Mod-R.
(iii) M is a direct sum of injective simple submodules.

A module Mg, satisfying the equivalent conditions of Theorem 1.1, is called
a left TOTO-module. Next, a family {K; | i € I} of submodules of My is called
independent whenever zie ; Ki = @ier K. Further, M is said to be semiprime
if for any 0 # m € M there exists f € Hom(Mg, Rgr) such that mf(m) # 0.
Since every endomorphism of the module Rg is a left multiplication by an
element of R, we see that the module Ry is semiprime if and only if the ring
R is semiprime. We set Tot(R) = Tot(Rg,Rg). In view of (1) we have that
Tot(R) = 0 if and only if every nonzero left (right) ideal of R contains a nonzero
idempotent 9see also [6]). Following [6], a ring R is said to be a TOTO-ring if
Tot(R) = 0.

Theorem 1.2 Let 0 # M € Mod-R. Then the following conditions are equiv-
alent:

(i) Tot(L,M) =0 for any L € Mod-R.
(i) Tot(P, M) =0 for some generator P of Mod-R

(iii) Every nonzero submodule of M contains a nonzero cyclic projective sub-
module which is a direct summand of M.

(w) Every nonzero submodule of M contains a nonzero projective submodule
which is a direct summand of M.

(v) M is a semiprime module with independent family { P; | i € I} of projective
submodules such that ®;c;P; C* M and each End(F;) is a TOTO-ring.

A module Mg is called a right TOTO-module whenever it satisfies the
equivalent conditions of Theorem 1.2. Recall that a module M € Mod-R
is called torsionless (in sense of Bass) if for any 0 # x € M there exists
f € M* =Hom(Mg. Rg) such that fz # 0.

The goal of the present paper is to study left and right TOTO-modules and
TOTO-rings. Besides Theorems 1.1 and 1.2 the following theorem is the main
result of the present paper.

Theorem 1.3 Let R be a ring. Then the following conditions are equivalent:
(i) R is a TOTO-ring.

(i) R is a semiprime ring and there exists a family E = {e; | i € I} of
idempotents such thai Zie[eiR = Dicre; R C* R and each e;Re; is a
TOTO-ring.



(1) Every projective right R-module is a right TOTO-module.
(iv) Every torsionless right R-module is a right TOTO-module.
(v) End(P) is a TOTO-ring for any projective right R-module P.

(vi) End(M) is a TOTO-ring for any torsionless right R-module M.

(vii) R has a faithful right TOTO-module.

Further, if R is a TOTO-ring and 0 # e = e € R, then eRe is a TOTO-ring.
The following result, proved in [9], will be frequently used in the sequel.

Lemma 1.4 For g € Homp(M, N) the following conditions are equivalent:

(a) g is pi.

(b) There ezist nonzero submodules A C® M, B C® N such that the map
A > aw g(a) € B is an isomorphism.

The total was defined in 1982 by F. Kasch and then studied in several papers
by F. Kasch and W. Schneider (see [6, 7. 8, 9, 10]). Relationships of the total
with Jacobson radical, singular ideal and cosingular ideal in Mod-R have been
studied recently in [2]. In the context of the radical theory it was studied in [3]
and its applications to the structure of rings were given in [1].

2 Left TOTO-modules

Given a nonempty set I and a module Cg, we denote by C’ the direct
product of |I|-copies of Ck.

Lemma 2.1 Let M,C € Mod-R, let AR C Cgr, let BC® M and let I be a
nonempty set. Suppose that Tot(M,C) = 0. Then:

(i) Tot(M, A) = 0.
(i) Tot(M,CT) = 0.
(4i) Tot(M/B,C) = 0.

Proof. (i) Let m : Cr — ARg be the canonical projection. Given a nonzero
map f : Mg — AR, iaf is pi because Tot(M,C) = 0, and so f is pi by (2).
Therefore Tot(M, A) = 0.

(ii) Let f : Mp — C% be a nonzero map. Then there exists a canonical
projection m : CT — C such that 7f # 0. Since Tot(M,C) = 0, we conclude
that f is pi and whence f is pi by (2).



(iii) Let m# : M — M/ B be the canonical projection. Given a nonzero map
f:{M/B}r — Cg, fmis pi because Tot(M,C) = 0. Therefore f is pi by (2)
forcing Tot(M/B,C) = 0.

Proof of Theorem 1.1. (i)==(ii) is obvious. Assume that C is a cogen-
erator and Tot(M,C) = 0. First we claim that M is completely reducible. It
is well-known that a module is completely reducible if and only if it has no
proper essential submodules (see [12, 20.2]). Therefore it is enough to show
that M has no proper essential submodules. Assume to the contrary that N is
a proper essential submodule of M. Set L = M/N. By assumption there exists
anonzero map f: Lg — Cgr. Let ¢ : M — C be the composition of the canon-
ical projection M — L with f : L — C. By assumption Tot(M,C) = 0 and
so ¢ is pi. Therefore by Lemma 1.4 there exist nonzero submodules A C® M
and B C® C such the map A > a — ¢(a) € B is an isomorphism. In particular
ANN C ANnker(¢) = 0, a contradiction. Thus M is completely reducible
and so M = @®;c;M; where each M; is a simple submodule of M. Take any
j € I. Since C is a cogenerator, there exists a set I and a monomorphism
f: E(M;) — Cl. Set A = f(E(M;)). By Lemma 2.1(ii), Tot(M,C’) = 0.
Therefore Lemma 2.1(i) implies that Tot(M, A) = 0 and so Tot(M, E(M;)) = 0.
Let ¢ : M — E(M) be the composition of the canonical projection m : M — M;
with iy, : M; — E(M;). Making use of Tot(M, E(M;)) = 0, we conclude that
1) is partially invertible and so there exist nonzero submodules A’ C® M and
B’ C® FE(M;) such that the map A’ 3 a — v(a) € B’ is an isomorphism.
Clearly A’ Nker(y) = 0 and ker(v) = ker(r). Since M; is simple, 7 induces
an isomorphism A’ = M;. Next, as B’ is a direct summand of the injective
module E(M;) and the injective hull of a simple module is indecomposable,
B’ = E(M;). Since B’ = A’ = M, we conclude that each M; is an injective
simple module and so (iii) is satisfied.

(ifi)=>(i). Assume now that M = @®;c;M; where each M, is an injec-
tive simple module. Let N be a right R-module. If Homp(M, N) = 0, then
Tot(M,N) = 0 as well. Suppose that ¢ : Mg — Ng is a nonzero homomor-
phism. Then there exists j € I such that #M; # 0 and so M; = ¢oM;. In
particular ¢M; is injective and whence there exists a submodule L of N with
N = ¢M; ® L. Since M = M; & (®:%;M;) and M; 3 a — ¢a € ¢M; is an
isomorphism, Lemma 1.4 implies that ¢ is pi. Therefore Tot(M, N) = 0.

We denote by 7, the subclass of all left TOTO-modules of Mod-R. The
following two result follow immediately from Theorem 1.1.

Corollary 2.2 The class Ty is closed under taking of arbitrary direct sums,
submodules and homomorphic images.

Given M, N € Mod-R, we set

Im(M,N)= Y f(M;.
f€Hom(M,N)



Corollary 2.3 Let M, N € Mod-R. Suppose that In(M,N) = N and M is a
left TOTO-module. Then N is a left TOTO-modules as well.

Proof. By Theorem 1.1, M is a completely reducible module and every
simple submodule of M is injective. Since Im(M, N) = N, we conclude that
N is completely reducible and every simple submodule of N is isomorphic to a
submodule of M. Therefore every simple submodule of N is injective and so
Theorem 1.1 yields that N is a left TOTO-module.

It is easy to see (and well-known) that the maximal condition and the mini-
mal condition for direct summands of a module M are equivalent. If M satisfies
one of them, we shall say that M has fceds, the finite chain condition for direct
summands.

Corollary 2.4 Let M be a right R-module. Then the following conditions are
equivalent:

(i) M is a direct sum of a finite number of injective simple modules.
(i) M is a finitely generated left TOTO-module.
(1)) M has feeds and is a left TOTO-module.

(iw) M has a finite Goldie dimension and is a left TOTO-module.
(v) M is an Artinian (Noetherian) left TOTO-module.

Moreover, Ry is a left TOTO-module if and only if R is a semisimple Artinian
TINg.

Given a subclass M of modules of Mod-R, we set
rr(M) ={a€ R| Ma =0 for all M € M}.

Clearly rp(M) is an ideal of R. We continue our study of properties of the class
7.

Remark 2.5 The class T¢ is closed under essential extensions if and only if
every left TOTO-module is injective.

Proof. Suppose that the class Ty is closed under essential extensions. Take
any 0 # M € T,. Then E(M) € T; and so E(M) is completely reducible by
Theorem 1.1. Therefore M is a direct summand of F(M) forcing M = E(M).
The converese statement is obvious.

Proposition 2.6 Let I = rg(7;). Then the class Ty is closed under direct
products if anc only if R/I is u semisimple Artinian ring. Moreover, if R is
semisimple Artinian, then T, = Mod-R.



Proof. Set R = R/I. Clearly every M € T, is naturally an R-module. Sup-
pose that the class Ty is closed under direct products. Then it contains a module
M such that the right R-module R is embeddable into M. By Corollary 2.2,
Rp is a left TOTO-module. Since Rp is a cyclic R-module, it is a completely
reducible Artinian right R-module. Therefore R is a semisimple Artinian ring.

Conversely, assume that R is a semisimple Artinian ring. It is enough to
show that 7; = Mod-R. Clearly 7; C Mod-R. Consider R as a right R-module.
Obviously R = @7 ,M; where each M; is a simple right R-module (and also
a simple right R-module). Since every module in Mod-R is a direct sum of
modules each of which is isomorphic to some M;, in view of Theorem 1.1 it is
enough to show that each M; is an injective R-module. To this end choose any
1 <j <nandlet write M; = ZR, wherez € RandZ =z +1 € R. Since
I = rr(7;) and z & I, there exists M € T, with mz # 0 for some m € M.
Clearly mZ = mx by the definition of the R-module structure on M and so
M; = TR = mzR. It follows from Corollary 2.2 that mzR € T, and so M; € Tg.
Therefore M is injective by Theorem 1.1. The proof is complete.

3 Right TOTO-modules

Given a nonempty set I and a module Pg, we denote by P!} the direct
sum of |I|-copies of Pr. The proof of the following result is similar to that of
Lemma 2.1 and is omitted.

Lemma 3.1 Let M. P € Mod-R. let Agr C Pg, let B C Mg and let I be a
nonempty sel. Suppose that Tot(P, M) == 0. Then:

(i) Tot(P/A.M) = 0.
(ii) Tot(PU).AT) = 0.
(iii) Tot(P.B) = 0.

Proof of Theorem 1.2. (i)==>(ii) is obvious. Assume that Tot(P, M) =0
for some generator P. Clearly there exists a set I such that the module Ry is a
homomorphic image of P{). It now follows from Lemma 3.1 that Tot(R, M) =
0. Let N be a nonzero submodule of M. Pick 0 # z € N and let a map
f : RpR — M be given by the rule f(r) = zr, r € R. since Tot(R, M) = 0,
f is pi and so there exist nonzero submodules 4 C® R and B C® M such
that A > a — f(a) € B is an isomorphism. Since A C%¥ R, it is a cyclic
projective module. Therefore Bp is also a cyclic projective module. Clearly
B = f(A) C zR C N and so (iii) is satisfied.

(ili)==(iv) is obvious. We show that (iv)==-(i). Let N € Mod-R and
let 0 # f € Hom(Ngr, Mg). Then fN is a nonzero submodule of M and so
it contains a projective submodule B of M such that M = B @ D for some



submodule D of M. Let m : M — B be the canonical projection. Then
nf : N — B is an epimorphism and so there exists h : Bp — Np such that
(rf)h = 1p. Therefore f is pi by (2) and whence Tot(N, M) = 0.

(i)=>(v). It follows from Zorn’s lemma that M contains a maximal inde-
pendent family {P; | 7 € I'} of projective submodules. Suppose that P = @ P;
is not an essential submodule of M and let L be a nonzero submodule of M
with LN P = 0. By (iv), L contains a nonzero projective submodule, say Q.
Clearly the family {Q} U {P; | i € I} is independent, a contradiction. There-
fore P C* M. Next, let i € I. Given N € Mod-R, Tot(N,M) = 0 and
so Tot(N, P;) = 0. In particular, Tot(P;, P;) = 0 and whence every nonzero
element of the ring End(F;) is pi. We see that End(P;) is a TOTO-ring. Fur-
ther, let 0 # =z € M. By (iii) the submodule zR contains a a nonzero cyclic
projective module C' which is a direct summand of M. It is well-known that
Cr 2 eRp for some idempotent e € R. Let f : Cp — eRg be an isomorphism
and let 7 : Mr — Cpg be the canonical projection. Clearly m(zR) = C and so
eR = frn(zR) = {fn(z)}R forcing fr(z)r = e for some r € R. Denote by L,
the map L. : Rg — Rp given by L.(a) = ra, a € R. Set ¢ = L, fm and note
that

9g:Mp— Rp and ¢(z) =rfn(x).

We now have

fr(zg(@))r = fr(z)g(z)r = fa(z)rfn(z)r =e* =e#0

and so zg(z) # 0. Therefore Mp is semiprime.

(v)=>(iv). Let P = ®;c1P;. We claim that End(P) is a TOTO-ring.
Indeed, since My is semiprime, it follows directly from the definition that so is
every its submodule. In particular, Pg is semiprime. Let f : P — Pg be a
nonzero map. Choose j € I with f(P;) # 0. Pick z € P; with f(z) # 0. Since
P is semiprime, there exists g : P — Rpg such that f(z)gf(z) # 0. Clearly

f(zgf(z)) = f(z)gf(z) # 0 and so zgf(z) # 0. Let h: Rp — Pg be given by
h(r) = zr. Then:

hgf: Pr — Pr, hgf(P)SzRC P; and hgf(z) =zgf(x)#0.

We see that hgfip,(z) = hgf(z) # 0 and hgfip, : P; — P;. Since End(P;) is
a TOTO-ring, hgfip, is pi and whence f is pi by (2). Therefore End(P) is a
TOTO-ring.

Now let 0 # Ng € Mpg. Since P = @/ P, C* M, NN P # 0. Pick
0 £y € NN P. Since Mp is semiprime, there exists ¢ : Mp — Rp with
yé(y) # 0. Denote by ¥ the composition of ¢ with Rg — Mg, r + yr. Clearly

Y:Mp— Mg, Y(M)CyRCP and 9(y)=yo(y) #0.

Therefore ¢ip(y) = ¥(y) # 0 and so Yup is pi because End(P) is a TOTO-ring.
By (2), ¢ is pi. Now Lemma 1.4 implies that there exist nonzero submodules



A C® M and B C® M such that A 3> a — %(a) € B is an isomorphism.
Being a direct sum of projective modules P;, i € I, P itself is projectve. Next,
B = y(A) C yR C NN P. Since B C® M, the modular law implies that
B C® P. Therefore B is projective. We see that B C N and B C® M. Thus
(iv) is fulfilled and the proof is thereby complete.

We denote by 7, the subclass of all right TOTO-modules of Mod-R. The
following result follows immediately from both Lemma 3.1 and Theorem 1.2.

Corollary 3.2 The class T, is closed under taking of arbitrary direct sums and
submodules.

Given M, N € Mod-R, we set

Ke(M, N) = NyeHom(m, Ny Ke(f).

Corollary 3.3 Let M, N € Mod-R. Suppose that N is a right TOTO-module
and Ke(M,N) = 0. Then M is a right TOTO-module as well.

Proof. Since Ke(M,N) = 0. M is isomorphic to a submodule of the direct
product of some set of copies of N. The result now follows from Corollary 3.2.

Let R be a ring. Then Tot(R) = 0 if and only if every nonzero right (left)
ideal of R contains a nonzero right (respectively, left) ideal of R generated by
an idempotent. Therefore Theorem 1.2 implies

Corollary 3.4 The following conditions are equivalent:
(i) Tot(R) = 0.
(it) Rg is a right TOTO-module.
(iti) rR is a right TOTO-module.
It is easy to see that every TOTO-ring is a semiprime ring.

Proposition 3.5 Let M € Mod-R be a right TOTO-module. Then M is tor-
stonless.

Proof. Indeed. let 0 # z € M. Then by Lemma 1.2 zR contains a projective
submodule P which is a direct summand of M. Let 7 : Mp — Pg be a canonical
projection. Since P C zR, mx # 0. Every projective module is torsionless and
so there exists f : P — Rp such that frz # 0. Clearly fr € Hom(Mg, Rg).
Therefore M is torsionless.

Proof of Theorem 1.3. (i)==(ii) is obvious (take F = {1}). Suppose that
(i) is satistied. Clearly each e; R is projective and End(e; R) = e; Re; is a TOTO-
ring. Clearly the family {e;R | ¢ € I} of submodules of Rp is independent. Since



R is semiprime, the module Ry is also semiprime and so Theorem 1.2(v) implies
that Rp is a right TOTO-module. By Corollary 3.4, R is a TOTO-ring.

(i)=>(iv). Let M be a right torsionless module and let f : Ng — Mpg be
a nonzero module map. Then there exists ¢ : Mp — Rpg such that gf # 0.
Clearly gf € Hom(Ng, Rgr). Since R is a TOTO-ring, Rg is a TOTO-module
by Corollary 3.4 and so gf is pi. We see that f is pi by (2) and whence M is a
TOTO-module.

(iv)==>(iii) because every projective module is torsionless.

(iii)==>(i) because Rpg is a projective module and so R is a TOTO-ring by
Corollary 3.4.

(i)==(vi) Let Mg be torsionless. Then M is a right TOTO-module by (iv).
In particular, Tot(M, M) = 0 and so End(Mpg) is a TOTO-ring.

(vi)==(v) is obvious.

(v)==(i) is obvious because Rp is a projective module and R = End(RRg).

(i)=>(vi) Clearly Rp is a faithful right TOTO-module by Corollary 3.4.

(vi)==>(i) Let Wg be a faithful right TOTO-module. Given 0 # r € R, by
assumption there exists w € W with wr # 0. Define maps f : Rg — Rpg and
g: Rgp = Wg by f(z) = rz and g(z) = wz, £ € R. Then gf : Rg — Whp.
Since gf(1) = wr # 0, also gf # 0. As Tct(R,W) =0, gf is pi. According to
(2), f is pi which means that there exists s € R with 0 # rs = (rs)2. Therefore
Tot(R) = 0 and R is a TOTO-ring.

Remark 3.6 Let R be a TOTO-ring. Then R is left and right nonsingular
ng.

Proof. Let 0 # =z € R. Since Tot(R) = 0, there exists y € R such that
e = yz is a nonzero idempotent of R. Clearly rr(z) C rr(yz) = (1 —€)R and so
rr(z)NeR = 0. Therefore rr(z) is not an essential right ideal for any 0 # z € R
and whence R is right nonsingular. Analogously, R is left nonsingular.

Let Wg be a right TOTO-module. Then every simple submodule of W is
projective by Theorem 1.2(iv) and so

the socle Soc(W') of Wg is projective. 3)
Theorem 3.7 Let M € Mod-R. Then the following conditions are equivalent:
(i) M is a right TOTO-module and every its cyclic submodule has fecds.
(i1) M is a projective completely reducible module.

In particular, if R is a TOTO-ring having fceds, then it is a semisimple Artinian
Ting.

Proof. (i)==(ii) In view of (3) it is enough to show that M = Soc{M).
To this end, pick any 0 # z € M and set L = zR. Assume that z & Soc(M).



Then z ¢ Soc(L). Let K be a submodule of L maximal with respect to the
properties £ ¢ K and Soc(L) C K. If K = 0, then L is a simple module and
so z € Soc(M), a contradiction. Therefore K # 0. By assumption L has fceds
and whence K contains a submodule N maximal with respect to the property
N C® L. Suppose that N = K. Then K C® L and so K ® K’ = L for some
submodule K’ of L. Since K is a maximal submodule of L, K’ is simple, forcing
K’ C Soc(L) C K, a contradiction. Therefore N C K. Choose N C Lp with
N & N’ = L. By the modular law, K = N & (K N N’). Clearly K N N' # 0.

Further, since M is a right TOTO-module, it follows from Corollary 3.2 that
L is so. By Theorem 1.2(iv), there exists a nonzero submodule T of K N N’
with T C% L. It now follows from the modular law that T C® N’ and so
N@T C® L. Taking into account that N C N&T C K, we get a contradiction
with the choice of N. Therefore M = soc(M).

(i1)==>(i). Since every submodule of M is its direct summand, we conclude
that each submodule of M is projective and so M is a right TOTO-module by
Theorem 1.2(iv). The last statement is obvious.

The following result follows immediately from Theorem 3.7.

Corollary 3.8 Let M be a right R-module. Then the following conditions are
equivalent:

(i) M is a direct sum of a finite number of projective simple modules.
(ii) M has fecds and is a right TOTO-module.
(iit) M has a finite Goldie dimension and is a right TOTO-module.
(i) M is an Artinian (Noetherian) right TOTO-module.
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