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TOTO-Modules 

K . I . BEIDAR AND F . K A S C H 

1 Introduction 
Given a ring R (with unity), we denote by Mod-i? the category of right i?-
modules. In what follows the term "module" wil l mean "right module". Let 
M £ Mod-i?. We denote by ER(M) the injective hull of M and by I M the 
identity endomorphism of M. When the context is clear, we shall write E ( M ) 
for E R ( M ) . Given a submodule NR C MR, we denote by ' NR —» MR the 
canonical embedding of modules. We shall write N C* M whenever TV is an 
essential submodule of M , and A r C e M whenever N is a direct summand of 
the module M. I f MR = KR © i ß , we denote by 7r# : MR —* KR the canonical 
protection of modules. 

Let M - MR and N — NR. Recall that / : MR —• N# is called partially 
invertible (briefly / is pi) whenever there exists g : NR —> MR such that 0 ^ 
/<? ~ ( / # ) 2 ( s e e [6])- I t is known that the following to conditions are equivalent: 

There exists / E Horn*(JV, M) such that 0^ fg= {fg)2; 

There exists h 6 Hom R ( iV. M ) such that 0 ^ gh =-- (gh)2. (1) 

(see [6] or [2]). Further, let n > 0, M i , M 2 , . . . , M n + i € Mod-i? and # G 
Homß(Mj , A f i + i ) , i = 1.2, . . . , n . 

I f 9i92 • • • 0n is pi- Then each gi is pi (2) 

according to [6, 1.3] (see also [2]). 
Let M , A r € Mod-R. Then the total T o t ( M , N) of M and N is defined as 

follows: 
To t (M, N) = {g € H o m ß ( M ? N) \ g is not pi} 

(see [6]). 

Theorem 1,1 Let M bc a right R-module. Thea the folioiving condiiions are 
equivalent: 
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(i) T o t ( M , N) = 0 for any N G Mod-i?. 

(ii) T o t ( M , C) — 0 for some cogenerator C of Mod-i?. 

(iii) M is a direct sum of injective simple submodules. 

A module MR. satisfying the equivalent conditions of Theorem 1.1, is called 
a left TOTO-module. Next, a family {7Q | i G 7} of submodules of MR is called 
independent whenever Yliei — © ie / iQ . . Further, M is said to be semiprime 
if for any 0 / m E M there exists / G Hom(M JR, i?#) such that mf(m) ^ 0. 
Since every endomorphism of the module RR is a left multiplication by an 
element of i?, we see that the module RR is semiprime i f and only i f the ring 
i? is semiprime. We set Tot(7?) — Tot(i?#, RR). In view of (1) we have that 
Tot(i?) — 0 i f and only i f every nonzero left (right) ideal of i? contains a nonzero 
idempotent 9see also [6]). Following [6], a ring R is said to be a TOTO-r ing i f 
Tot(i?) = 0. 

Theorem 1.2 Let 0 / M G Mod-i?. Then the following conditions are equiv
alent: 

(i) To t (L , M) = 0 for any L G Mod-i?. 

(ii) T o t ( P M) — 0 for sorne generator P of Mod-i? 

(iii) Every nonzero submodule of M contains a nonzero cyclic projective sub
module which is a direct summand of M. 

(iv) Every nonzero submodule of AI contains a nonzero projective submodule 
which is a direct summand of M. 

(v) M is a semiprime module with independent family {Pi \ i G 7} of projective 
submodules such that © ^ / P i M and each End(Pi) is a TOTO-ring. 

A module MR is called a Hght TOTO-module whenever i t satisfies the 
equivalent conditions of Theorem 1.2. Recall that a module M G Mod-i? 
is called torsionless (in sense of Bass) i f for any 0 ^ x G M there exists 
/ G M * = H o m ( M ß , RR) such that fx ^ 0. 

The goal of the present paper is to study left and right TOTO-modules and 
TOTO-rings. Besides Theorems 1.1 and 1.2 the following theorem is the main 
result of the present paper. 

Theorem 1.3 Let R be a ring. Then the follouring conditions are equivalent: 

(i) R is a TOTO-ring. 

(ii) R is a semiprime ring and there exists a family E = {e^ \ i G 7} of 
idempoteids such that YLizieiR ~ ©zG/^ii? C* R and each eiRei is a 
TOTO-ring. 

2 



(iii) Every projective right R-module is a right TOTO-module. 

(iv) Every torsionless right R-module is a right TOTO-module. 

(v) End(P) is a TOTO-ring for any projective right R-module P. 

(vi) End(M) is a TOTO-ring for any torsionless right R-module M. 

(vii) R has a faithful right TOTO-module. 

Further, if R is a TOTO-ring and 0 ^ e = e 2 £ R, then eRe is a TOTO-ring. 

The following result, proved in [9], wi l l be frequently used in the sequeh 

L e m m a 1.4 For g £ H o m # ( M , JV) the following conditions are equivalent: 

(a) g is pi. 

(b) There exist nonzero submodules A C® M, B N such that the map 
A3 g(a) £ B is an isomorphism. 

The total was defined in 1982 by F. Kasch and then studied in several papers 
by F. Kasch and W. Schneider (see [6, 7. 8, 9, 10]). Relationships of the total 
with Jacobson radical, singular ideal and cosingular ideal in Mod-i? have been 
studied recently in [2]. In the context of the radical theory i t was studied in [3] 
and its applications to the structure of rings were given in [1]. 

2 Left TOTO-modules 

Given a nonempty set I and a module CR, we denote by C1 the direct 
product of |i|~copies of CR. 

L e m m a 2.1 Let M,C £ Mod-i?, let AR C CR, let B C® M and let I be a 
nonempty set. Suppose that Tot(Af, C) — 0. Then: 

(i) To t (M, i4) = 0. 

(ii) T o t ( A f , C 7 ) - 0 . 

(iii) T o t ( M / B , C ) = 0. 

Proof. (i) Let n : CR —> AR be the canonical projection. Given a nonzero 
map / : MR —* AR, i^f is pi because T o t ( M , C) = 0, and so / is pi by (2). 
Therefore T o t ( M , A) = 0. 

(ii) Let / : MR —• CR be a nonzero map. Then there exists a canonical 
projection n : C1 —• C such that irf £ 0. Since T o t ( M , C) = 0, we conclude 
that 7r/ is pi and whence / is p i by (2). 
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(iii) Let TT : M —* M/B be the canonical projection. Given a nonzero map 
/ : {M/B}R -+ CR, fn is pi because T o t ( M , C) = 0. Therefore / is pi by (2) 
f o r c i n g T o t ( M / ß , C ) = 0. 

Proof of T h e o r e m 1.1. ( i ) = » ( ü ) is obvious. Assume that C is a cogen-
erator and T o t ( M , C) — 0. First we claim that M is completely reducible. I t 
is well-known that a module is completely reducible i f and only i f i t has no 
proper essential submodules (see [12, 20.2]). Therefore i t is enough to show 
that M has no proper essential submodules. Assume to the contrary that N is 
a proper essential submodule of M. Set L — M/N. By assumption there exists 
a nonzero map f : L R —> CR. Let <p : M —> C be the composition of the canon
ical projection M —• L w i th / : L —• C. By assumption T o t ( M , C) = 0 and 
so <f> is pi. Therefore by Lemma 1.4 there exist nonzero submodules A C E M 
and B C 0 C such the map A 9 O H 0(a) G B is an isomorphism. In particular 
A D N C A H ker(0) = 0, a contradiction. Thus M is completely reducible 
and so M = (BieiMi where each Mi is a simple submodule of M. Take any 
j G 7. Since C is a cogenerator, there exists a set I and a monomorphism 
/ : E(Mj) -+ C 7 . Set A = f(E(Mj)). By Lemma 2.1(ii), T o t ( M , C 7 ) - 0. 
Therefore Lemma 2.1(i) implies that T o t ( M , 4 ) = 0 and so T o t ( M , E(Mj)) = 0. 
Let ift : M —> E(M) be the composition of the canonical projection ix : M —> M j 
wi th • M j —• E(Mj). Making use of T o t ( M , E(Mj)) = 0, we conclude that 
ifi is partially invertible and so there exist nonzero submodules A C ® M and 
Bf C ® E(Mj) such that the map i ' 3 a H jp(a) G J3' is an isomorphism. 
Clearly .A' n ker(^) = 0 and ker(t^) = ker(7r). Since Mj is simple, 7T induces 
an isomorphism Af = M j . Next, as ß ' is a direct summand of the injective 
module E(Mj) and the injective hull of a simple module is indecomposable, 
B' = E(Mj). Since JB' = .A' = Mj, we conclude that each Mj is an injective 
simple module and so (iii) is satisfied, 

( i ü ) = ^ ( i ) , Assume now that M — © i € / M i where each Mi is an injec
tive simple module. Let N be a right .R-module. I f H o m / ^ M , N) = 0, then 
T o t ( M , N) = 0 as well. Suppose that 0 : MR —» is a nonzero homomor-
phism. Then there exists j G i such that 0 M j ^ 0 and so Mj = 0 M j . In 
particular 4>Mj is injective and whence there exists a submodule L of N wi th 
JV = 0 M j 0 L . Since M = Mj © (©tjtjMj) and Mj 9 a 0a G is an 
isomorphism, Lemma 1.4 implies that 0 is pi . Therefore T o t ( M , N) — 0. 

We denote by Te the subclass of all left TOTO-modules of Mod-i?. The 
following two result follow immediately from Theorem 1.1. 

Corollary 2.2 The class Tt is closed under taking of arbitrary direct sums, 
submodules and homomorphic images. 

Given M,N G Mod-i?, we set 

I m ( M , i Y ) - J2 / ( A f ) . 
/€Hom(M,N) 
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Corollary 2.3 Let M,N G Mod-i?. Suppose that I m ( M , N) = N and M is a 
left TOTO-module. Then N is a left TOTO-modules as well. 

Proof. By Theorem 1.1, M is a completely reducible module and every 
simple submodule of M is injective. Since I m ( M , iV) — N, we conclude that 
N is completely reducible and every simple submodule of N is isomorphic to a 
submodule of M. Therefore every simple submodule of N is injective and so 
Theorem 1.1 yields that TV is a left TOTO-module. 

I t is easy to see (and well-known) that the maximal condition and the mini
mal condition for direct summands of a module M are equivalent. I f M satisfies 
one of them, we shall say that M has fccds, the finite chain condition for direct 
summands. 

Corollary 2.4 Let M be a right R-module. Then the following conditions are 
equivalent: 

(i) M i>s a direct sum of a finite number of injective simple modules. 

(ii) M is afinitely generated left TOTO-module. 

(iii) M has fccds and is a left TOTO-module. 

(iv) M has a finite Goldie dimension and is a left TOTO-module. 

(v) M is an Artinian (Noetherian) left TOTO-module. 

Moreover, RR is a left TOTO-module if and only if R is a semisimple Artinian 
ring. 

Given a subclass A4 of modules of Mod-i?, we set 

rR(M) = {a G R \ Ma = 0 for all M G M}. 

Clearly TJI{M) is an ideal of R . We continue our study of properties of the class 
Tt. 

Remark 2.5 The class Tt is closed under essential extensions if and only if 
every left TOTO-module is injective. 

Proof. Suppose that the class Tt is closed under essential extensions. Take 
any 0 ^ M G Tt. Then E(M) G Tt and so E(M) is completely reducible by 
Theorem 1.1. Therefore M is a direct summand of E(M) forcing M = E(M). 
The converese statement is obvious. 

Proposition 2.6 Let I — r^iTt). Then the class Tt is closed under direct 
producta if and only cf R / I is a semisimple Artinian ring. Moreover, if R is 
semisimple Artinian, then Tt = Mod-i?. 
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Proof. Set R ~ R/I. Clearly every M G Tt is naturally an i?-module. Sup
pose that the class Tt is closed under direct products. Then i t contains a module 
M such that the right i?-module R is embeddable into M. By Corollary 2.2, 
RR is a left TOTO-module. Since RR is a cyclic i?-module, i t is a completely 
reducible Artinian right jR-module. Therefore R is a semisimple Artinian ring. 

Conversely, assume that R is a semisimple Artinian ring. I t is enough to 
show that Tt — Mod-i?. Clearly Tt C Mod-i?. Consider R as a right i?-module. 
Obviously i? — © f = 1 M j where each Mi is a simple right i?-module (and also 
a simple right R-module). Since every module in Mod-i? is a direct sum of 
modules each of which is isomorphic to some Mi, in view of Theorem 1.1 i t is 
enough to show that each Mi is an injective i?-module. To this end choose any 
I < j < n and let write Mj = xR, where x G i? and x — x - f I G i?. Since 
I - TR{Tt) and x # I, there exists M G Tt with mx ^ 0 for some m G M. 
Clearly rax — by the definition of the Ä-module structure on M and so 
Mj = xR = mxi?. I t follows from Corollary 2.2 that mxR G 7^ and so Mj G 7^. 
Therefore Mj is injective by Theorem 1.1. The proof is complete. 

3 Right TOTO-modules 

Given a nonempty set I and a module PR, we denote by P ^ the direct 
sum of |i|-copies of PR. The proof of the following result is similar to that of 
Lemma 2.1 and is omitted. 

L e m m a 3.1 Let M.P G Mod-i?. let AR C PR, let BR C MR and let I be a 
nonempty set. Suppose that Tot(P. M) — 0. Then: 

(i) Tot(P/A,M) - 0. 

(ii) Tot(PVKM) = 0. 

(iii) Tot(P. B) = 0. 

Proof of Theorem 1.2. (i)n=»(ii) is obvious. Assume that Tot(P, M) = 0 
for some generator P . Clearly there exists a set I such that the module RR is a 
homomorrjhic image of P ( / ^ . It now follows from Lemma 3.1 that Tot(R,M) = 
0. Let N be a nonzero submodule of M. Pick 0 x e N and let a map 
/ : RR —> M be given by the rule f(r) = xr , r G i?.. since Tot(i?, M ) = 0, 
/ is pi and so there exist nonzero submodules A C E R and B C $ M such 
that A 3 a I—> /(a) G P is an isomorphism. Since A C e i?, i t is a cyclic 
projective module. Therefore BR is also a cyclic projective module. Clearly 
B = f(A) C xi? C A r and so (iii) is satisfied. 

( i ü )=» ( iv ) is obvious. We show that ( i v ) = » ( i ) . Let N G Mod-i? and 
let 0 i- f G Fiom(NR, MR). Then fN is a nonzero submodule of M and so 
i t contains a projective submodule B of M such that M = ß © D for some 
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submodule D of M. Let n : M —• B be the canonical projection. Then 
7r/ : AT —* B is an epimorphism and so there exists /1 : BR —• A/# such that 
(TT/ ) / I = l p . Therefore / is pi by (2) and whence Tot (TV, M) = 0. 

( i ) = » ( v ) . I t follows from Zorn's lemma that M contains a maximal inde-
pendent family {Pi \ i E / } of projective submodules. Suppose that P — ®ie /Pi 
is not an essential submodule of M and let L be a nonzero submodule of M 
with L n P = 0. By (iv), L contains a nonzero projective submodule, say Q. 
Clearly the family {Q} U {Pi \ i E 1 } is independent, a contradiction. There
fore P C* M. Next, let i E J . Given TV E Mod-Ä, Tot (AT, M) = 0 and 
so Tot(7V, Pi) = 0. In particular, Tot(Pi,Pj) = 0 and whence every nonzero 
element of the ring End(Pi) is pi . We see that End(Pj) is a TOTO-ring. Fur
ther, let 0 ^ x E M. By (iii) the submodule xR contains a a nonzero cyclic 
projective module C which is a direct summand of M . I t is well-known that 
CR = eÜR for some idempotent e e R. Let / : C# —• eP# be an isomorphism 
and let 7r : MR —> C# be the canonical projection. Clearly ir{xR) = C and so 
ei? = fn(xR) = {/7r(x)}ß forcing fir(x)r = e for some r € R. Denote by L r 

the map L r : P# —• P# given by L r ( a ) = ra, a E R. Set g = Lrfn and note 
that 

# : M # —* RR and <?(x) — rfn(x). 

We now have 

f7t(xg(x))r = f7r(x)g(x)r — /7r(x)r/7r(x)r = e 2 — e / 0 

and so x#(x) 7̂  0. Therefore M # is semiprime. 
( v ) = > ( i v ) . Let P = e i e / P i . We claim that End(P) is a TOTO-ring. 

Indeed, since MR is semiprime, i t follows directly from the defmition that so is 
every its submodule. In particular, PR is semiprime. Let / : PR —> PR be a 
nonzero map. Choose j € I wi th f(Pj) ^ 0. Pick x E Pj wi th / ( x ) ^ 0. Since 
P is semiprime, there exists g : PR RR such that f(x)gf(x) ^ 0. Clearly 
f(xgf{x)) = f(x)gf(x) ^ 0 and so x s / ( x ) ^ 0. Let h : RR-> PR be given by 
/ i ( r ) = x r . Then: 

hgf:PR^PR, hgf(P)CxRCPj and hgf(z) = xgf(x)?0. 

We see that hgfip^x) = hgf(x) / 0 and hgfipj : Pj -* Pj. Since End(Pj) is 
a TOTO-ring, hgfip. is pi and whence / is pi by (2). Therefore End(P) is a 
TOTO-ring. 

Now let 0 ^ NR C MR. Since P = ® i G/Pz C* M , N C\ P ^ 0. Pick 
0 / 1/ G N D P. Since M # is semiprime, there exists 0 : M # —• P# with 
t/0(y) 7̂  0. Denote by ip the composition of 0 with RR —> M H , r >—> yr. Clearly 

V> : MR —> M R , V(M)CyRCP and r/>{y) = y<l>(y) ^ 0. 

Therefore -<pip(y) — v(y) T 0 and so i\)ip is pi because End(P) is a TOTO-ring. 
By (2), xj; is pi. Now Lemma 1.4 implies that there exist nonzero submodules 
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A C e M and B C® M such that A 3 a H-> ̂ (a) G B is an isomorphism. 
Being a direct sum of projective modules P;, i G /, P itself is projectve. Next, 
B - ip{A) C yR C N D P . Since B C @ M , the modular law implies that 
B P. Therefore B is projective. We see that B C TV and B C® M . Thus 
(iv) is fulfilled and the proof is thereby complete. 

We denote by % the subclass of all right TOTO-modules of Mod-P. The 
following result follows immediately from both Lemma 3.1 and Theorem 1.2. 

Corollary 3.2 The class Tr is closed under taking of arbitrary direct sums and 
submodules. 

Given M, TV G Mod-P, we set 

K e ( M , TV) = n / 6 H o m ( M , N ) K e ( / ) . 

Corollary 3.3 Let M , TV G Mod-P. Suppose that N is a right TOTO-module 
and Ke (M, TV) = 0. Then M ü a right TOTO-module as well. 

Proof. Since K e ( M , TV) = 0, M is isomorphic to a submodule of the direct 
product of some set of copies of TV. The result now follows from Corollary 3.2. 

Let R be a ring. Then Tot(P) = 0 i f and only i f every nonzero right (left) 
ideal of P contains a nonzero right (respectively, left) ideal of P generated by 
an idempotent. Therefore Theorem 1.2 implies 

Corollary 3.4 The following conditions are equivalent: 

(%) Tot(P) - 0. 

(ii) RR is a right TOTO-module. 

(iii) RR is a right TOTO-module. 

I t is easy to see that every TOTO-ring is a semiprime ring. 

Proposition 3.5 Let M G Mod-P be a right TOTO-module. Then M is tor
sionless. 

Proof. Indeed. let 0 ^ x G M . Then by Lemma 1.2 xR contains a projective 
submodule P which is a direct summand of M. Let n : MR —• PR be a canonical 
projection. Since P C xP, TTX 0. Every projective module is torsionless and 
so there exists f : PR -+ RR such that fnx ^ 0. Clearly fix G HOITI(MR, R R ) . 
Therefore M is torsionless. 

Proof of Theorem 1.3. ( i ) = > ( ü ) is obvious (take E = { ! } ) . Suppose that 
(ii) is satisfied. Clearly each e^P is projective and End(e$fi) — e^Pe^ is a TOTO-
ring. Clearly the family {e^P | i G 1 } of submodules of RR is independent. Since 
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R is semiprime, the module RR is also semiprime and so Theorem 1.2(v) implies 
that RR is a right TOTO-module. By Corollary 3.4, R is a TOTO-ring. 

( i ) = > ( i v ) . Let M be a right torsionless module and let / : NR — » MR be 
a nonzero module map. Then there exists g : MR —> RR such that gf ^ 0. 
Clearly gf G Eom(NRlRR). Since R is a TOTO-ring, P Ä is a TOTO-module 
by Corollary 3.4 and so gf is pi. We see that / is pi by (2) and whence M is a 
TOTO-module. 

(iv) = > ( i i i ) because every projective module is torsionless. 
( i i i ) = > ( i ) because RR is a projective module and so R is a TOTO-ring by 

Corollary 3.4. 
( i ) = > ( v i ) Let MR be torsionless. Then M is a right TOTO-module by (iv). 

I n particular, T o t ( M , M) = 0 and so End(MR) is a TOTO-ring. 
( v i ) = > ( v ) is obvious. 
(v) =4>(i) is obvious because RR is a projective module and R = End (/?#). 
( i )=» (v i ) Clearly RR is a faithful right TOTO-module by Corollary 3.4. 
(vi) = » ( i ) Let WR be a faithful right TOTO-module. Given 0 ^ r G Ä, by 

assumption there exists w G W wi th ^ 0. Dehne maps / : RR —> RR and 
<? : RR —• W H by / ( # ) = r x and #(x) = u>x, x e R. Then <?/ : P# —• 
Since gf(l) = wr ^ 0, also gf ^ 0. As Tct(P, W ) = 0, gf is pi. According to 
(2), / is pi which means that there exists s G R with 0 ^ rs = (rs)2. Therefore 
Tot(Ä) = 0 and R is a TOTO-ring. 

Remark 3.6 Le£ R be a TOTO-ring. Then R is left and right nonsingular 
ring. 

Proof. Let 0 / i E fi. Since Tot(i?) = 0, there exists y G R such that 
e = yx is a nonzero idempotent of R. Clearly rR(x) C rR(yx) — (1 — e)i? and so 
T\R(X) Hei? = 0. Therefore r# (x ) is not an essential right ideal for any 0 ^ x G R 
and whence P is right nonsingular. Analogously, R is left nonsingular. 

Let WR be a right TOTO-module. Then every simple submodule of W is 
projective by Theorem 1.2(iv) and so 

the socle Soc(W) of WR is projective. (3) 

Theorem 3.7 Let M G Mod-P. Then the following conditions are equivalent: 

(i) M is a right TOTO-module and every its cyclic submodule has fccds. 

(ii) M is a projective completely reducible modxde. 

In particular, if R is a TOTO-ring having fccds, then it is a semisimple Artinian 
ring. 

Proof. ( i ) = » ( ü ) In view of (3) i t is enough to show that M — Soc(A/). 
To this end, pick any 0 / x G M and set L = xR. Assume that x £ Soc(A/). 
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Then x Soc(L). Let K b e a submodule of L maximal wi th respect to the 
properties x £ K and Soc(L) CK. I f K — 0, then L is a simple module and 
so x € Soc(M), a contradiction. Therefore K ^ 0. By assumption L has fccds 
and whence K contains a submodule TV maximal with respect to the property 
N C® L . Suppose that N = K. Then K C© L and so K © K' = L for some 
submodule K' oi L . Since K is a maximal submodule of L , ÄT/ is simple, forcing 
üf' C Soc(L) C K, a contradiction. Therefore N C K. Choose iV^ C L R wi th 
N & N' ~ L . By the modular law, = N © (ÜT 0 iV 7 ) . Clearly K n A r / ^ 0. 

Further, since M is a right TOTO-module, it follows from Corollary 3.2 that 
L is so. By Theorem 1.2(iv), there exists a nonzero submodule T of K f l iV' 
wi th T C e L . I t now follows from the modular law that T C e N' and so 
i V © T C® L . Taking into account that iV c i V © T C X , we get a contradiction 
wi th the choice of N. Therefore M — soc(M). 

(ü)=»(i) . Since every submodule of M is its direct summand, we conclude 
that each submodule of M is projective and so M is a right TOTO-module by 
Theorem 1.2(iv). The last Statement is obvious. 

The following result follows immediately from Theorem 3.7. 

Corollary 3.8 Let M be a right R-module. Then the following conditions are 
equivalent: 

(i) M is a direct sum of a finite number of projective simple modules. 

(ii) M has fccds and is a right TOTO-module. 

(iii) M has a finite Goldie dimension and is a right TOTO-module. 

(iv) M is an Artinian (Noetherian) right TOTO-module. 
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