
A Computational Dynamical Model of Human
Visual Cortex for Visual Search and

Feature-based Attention
David Graham Harrison

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Computing

September, 2012

The candidate confirms that the work submitted is his own, except where work

which has formed part of jointly-authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly

indicated below. The candidate confirms that appropriate credit has been given

within the thesis where reference has been made to the work of others.

The following articles have been published during the period of study for this PhD:

D. G Harrison and M. de Kamps. “A Dynamical Neural Simulation of Feature-

based Attention and Binding in a Recurrent Model of the Ventral Stream”, Pro-

ceedings of the 12th Neural Computation and Psychology Workshop, (2010), 40–

57. My contributions: The work in this paper is all my own. Other author con-

tributions: M. de Kamps provided supervision and corrections. Chapters based on

this work: Chapters 3 and 4.

D. G Harrison and M. de Kamps. “A Dynamical Model of Feature-Based Attention

with Strong Lateral Inhibition to Resolve Competition Among Candidate Feature

Locations”, Proceedings of the AISB 2011 Symposium on Architectures for Active

Vision, 2011. My contributions: The work in this paper is all my own. Other author

contributions: M. de Kamps provided supervision and corrections. Chapters based

on this work: Chapters 3 and 4.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledge-

ment.

© 2012 The University of Leeds and David Graham Harrison.

i

Acknowledgements

This PhD was funded by the White Rose University Consortium. I gratefully ac-

knowledge Jim Austin, Netta Cohen, Marc de Kamps. Kevin Gurney, Becky Nay-

lor, Simon O’Keefe, Tom Stafford and David Yates, who have all supported this

PhD through many discussions at White Rose ‘Active Vision Network’ meetings.

I am hugely grateful to Marc de Kamps for his supervision throughout my PhD.

Our meetings were frequently informal, which fostered an open environment to

discuss many ideas freely.

Finally, I would like to thank Elaine Duffin, who donated significant amounts of

her time to proof multiple drafts of this thesis. Her input has been hugely valuable

and improved this final copy greatly.

ii

Abstract

Visual attention can be deployed to locations within the visual array (spatial atten-

tion), to individual features such as colour and form (feature-based attention), or to

entire objects (object-based attention). Objects are composed of features to form

a perceived ‘whole’. This compositional object representation reduces the storage

demands by avoiding the need to store every type of object experienced. However,

this approach exposes a problem of binding these constituent features (e.g. form

and colour) into objects. The problem is made explicit in the higher areas of the

ventral stream as information about a feature’s location is absent. For feature-based

attention and search, activations flow from the inferotemporal cortex to primary vi-

sual cortex without spatial cues from the dorsal stream, therefore the neural effect

is applied to all locations across the visual field [79, 60, 7, 52].

My research hypothesis is that biased competition occurs independently for each

cued feature, and is implemented by lateral inhibition between a feedforward and a

feedback network through a cortical micro-circuit architecture. The local competi-

tion for each feature can be combined in the dorsal stream via spatial congruence

to implement a secondary spatial attention mechanism, and in early visual areas to

bind together the distributed featural representation of a target object.

iii

Contents

Acknowledgements . ii

Abstract . iii

Contents . vi

List of Tables . ix

List of Figures . xii

Glossary . xiii

1 Introduction 1
1.1 Structural organization of the Visual Brain 2

1.1.1 The Main Cortical Pathways involved in Cortical Vision . 2

1.1.2 Occipital Cortex . 3

1.1.2.1 Primary Visual Cortex (V1) 3

1.1.2.2 V2 . 4

1.1.2.3 V4 . 4

1.1.2.4 Middle Temporal (V5) 4

1.1.3 Inferotemporal Area . 5

1.1.4 Other Visually Related Cortical Areas 5

1.1.4.1 Lateral Intraparietal (LIP) 5

1.1.4.2 Frontal Eye Fields (FEF) 5

1.1.5 Columnar Organization of the Cortex 5

1.2 Visual Attention . 6

1.2.1 Spatial Attention . 7

1.2.2 Feature-based Attention 7

1.2.3 Object-based Attention 8

1.3 The Biased Competition Model 9

1.4 Feature-Similarity Gain versus Feature Matching 9

1.5 Attentional Capture . 11

iv

1.6 Visual Search . 11

1.7 Feature Binding . 14

1.8 Modelling Visual Attention . 15

1.9 Extant Models of Visual Attention 16

1.9.1 Closed Loop Attention Model 16

1.9.2 Deco & Rolls’ Model . 18

1.9.3 Dynamical Interacting Artificial Neural Network Application 19

1.10 Thesis Outline . 19

2 DIANNA 21
2.1 Motivation for DIANNA . 21

2.2 Architectural Overview . 23

2.2.1 The Project object . 24

2.2.2 DynamicNetwork Structure 25

2.2.3 Applying Patterns to a DynamicNetwork 25

2.2.4 Training Neural Networks 25

2.2.4.1 Training Artificial Neural Networks 26

2.3 Network Inputs . 28

2.3.1 Direct Input . 28

2.3.2 XML-based Input . 29

2.3.3 Image-based Input . 31

2.3.3.1 Gabor filters 31

2.3.4 Colour filters . 32

2.4 Circuit Editor . 33

2.5 An example DIANNA project 35

2.5.1 Project Format . 43

3 ANN Model 52
3.1 Learning for Feature-based Attention 52

3.1.1 Differences between feature types: form versus colour . . 53

3.1.1.1 Colour feature detection 53

3.1.1.2 Form feature detection 53

3.2 Neural Training . 54

3.2.1 Network-based feature learning 54

3.2.2 Layer-based feature learning 55

3.2.3 Reciprocal network . 57

3.2.3.1 Hebbian Learning 57

v

3.2.3.2 Active State Learning 57

3.3 Object recognition . 58

3.4 Visualization . 61

3.4.1 3D Network-based visualization 61

3.4.2 2D Layer-based visualization 62

3.5 Evaluation of Artificial Neural Networks for Feature-based Attention 64

3.5.1 The Model . 64

3.5.2 Evaluation Method . 67

3.5.3 Results . 68

3.5.4 Discussion of results . 70

4 Dynamical Model 73
4.1 Wilson-Cowan Dynamics . 74

4.2 Cortical Circuits . 76

4.2.1 The Perceptron Circuit 76

4.2.2 The Disinhibition Circuit 79

4.2.3 The Disinhibition Circuit with Lateral Inhibition 83

4.2.4 The LIP Circuit . 86

4.3 A Dynamical Model . 86

4.3.1 Results: Form Network 88

4.3.2 Results: Form Network with Lateral Inhibition 88

4.3.3 Results: Form and Colour Network with Lateral Inhibition 88

4.4 Discussion of Dynamical Simulation Results 95

5 Conclusion 97
5.1 Applicability to Computer Science 98

Bibliography 99

A Appendix A 108
A.1 Results for No-Opposition . 108

A.2 Results for Orthogonal Angles Input in Opposition 111

A.3 Results for Real and Imaginary Inputs in Opposition 114

A.4 Parametrization of Sigmoid Functions for Evaluation in section 4.3 117

vi

List of Tables

A.1 Results of i) for Square template. Forward network with the real

component of Gabor filters applied to V1 forward network. The

numbers represent the total activity in the difference network di-

vided by the total activity in the forward network. 108

A.2 Results of i) for Diamond template. Forward network with the

real component of Gabor filters applied to V1 forward network.

The numbers represent the total activity in the difference network

divided by the total activity in the forward network. 109

A.3 Results of i) for Circle template. Forward network with the real

component of Gabor filters applied to V1 forward network. The

numbers represent the total activity in the difference network di-

vided by the total activity in the forward network. 109

A.4 Results of i) for Triangle template. Forward network with the real

component of Gabor filters applied to V1 forward network. The

numbers represent the total activity in the difference network di-

vided by the total activity in the forward network. 110

A.5 Results ii) for Square template. Forward network with the real

component of Gabor filters applied to V1 forward network and the

real component of Gabor filters from lines orthogonal to each V1

filter applied as negative input. The numbers represent the degree

of mismatches between the stimulus and the attentional template. . 111

A.6 Results of i) for Diamond template. Forward network with the

real component of Gabor filters applied to V1 forward network.

The numbers represent the total activity in the difference network

divided by the total activity in the forward network. 112

vii

A.7 Results of i) for Circle template. Forward network with the real

component of Gabor filters applied to V1 forward network. The

numbers represent the total activity in the difference network di-

vided by the total activity in the forward network. 112

A.8 Results of i) for Triangle template. Forward network with the real

component of Gabor filters applied to V1 forward network. The

numbers represent the total activity in the difference network di-

vided by the total activity in the forward network. 113

A.9 Results of iii) for Square template. Forward network with the real

component of Gabor filters applied to V1 forward network and the

imaginary component applied as negative input. The numbers rep-

resent the total activity in the difference network divided by the

total activity in the forward network. 114

A.10 Results of iii) for Diamond template. Forward network with the

real component of Gabor filters applied to V1 forward network and

the imaginary component applied as negative input. The numbers

represent the total activity in the difference network divided by the

total activity in the forward network. 115

A.11 Results of iii) for Circle template. Forward network with the real

component of Gabor filters applied to V1 forward network and the

imaginary component applied as negative input. The numbers rep-

resent the total activity in the difference network divided by the

total activity in the forward network. 115

A.12 Results of iii) for Triangle template. Forward network with the

real component of Gabor filters applied to V1 forward network and

the imaginary component applied as negative input. The numbers

represent the total activity in the difference network divided by the

total activity in the forward network. 116

A.13 Parametrization of the Nodes of the forward networks and network

in section 4.3. The dynamical populations of the forward dynami-

cal networks are for e_p, i_p, e_n and i_n, as these vary based on

the size of the receptive fields. E is excitatory, I is inhibitory. . . . 117

A.14 Parametrization of the Nodes of the reverse networks in section

4.3. The dynamical populations are for e_p, i_p, e_n and i_n, as

these vary based on the size of the receptive fields. E is excitatory,

I is inhibitory. 117

viii

A.15 Parametrization of the Perceptron Circuit output nodes (p_out and

n_out) of the forward and reverse dynamical networks in section

4.3. E is excitatory, I is inhibitory. 118

A.16 Parametrization of the Disinhibition Circuit nodes of the dynamical

networks in section 4.3. E is excitatory, I is inhibitory. 118

ix

List of Figures

1.1 Approximate locations of visually related cortical areas. 3

1.2 Visual search tasks. 13

1.3 Example of an ambiguous representation of a visual scene in AIT. 15

2.1 High level view of the relationships between a Project object and

other classes. 23

2.2 Example Gabor filters, and their outputs when applied to a white

square. 32

2.3 Circuit editor application main interface. 33

2.4 Circuit editor application: a) Creating a new circuit member b)

Editing an existing circuit member and its connection weights. . . 34

2.5 ANN images for the XOR-Network 44

2.6 Simulation images for the XOR-Network 45

2.7 Plots of circuit activity for the output layer for the XOR-Network . 46

3.1 Connection structure of SOM to two forward network layers via

two intermediate layers . 60

3.2 3D View of CLAM ventral stream network. 62

3.3 Close up of 3D View of CLAM. 63

3.4 Plot of the SigmoidAlgorithm from eq. 3.2 with bias=0, β=1

and power=1 . 66

3.5 Images of the 4 shapes presented to the network. 68

3.6 Example ANN for the evaluation. 69

3.7 Results for evaluation of input to the ANN using only the real com-

ponent of a Gabor filter. 70

x

3.8 Results for evaluation of input to the ANN using only the real com-

ponent of a Gabor filter, with orthogonal line orientations as nega-

tive input. 71

3.9 Results for evaluation of input to the ANN using the real compo-

nent of a Gabor filter as positive input, and the imaginary compo-

nent as negative input. 72

4.1 Plot of positive sigmoid algorithm from eq. 3.2. 74

4.2 The perceptron circuit. 77

4.3 Plot of the dynamical behaviour of the perceptron circuit shown in

figure 4.2. 78

4.4 The disinhibition circuit. 79

4.5 Plot of the dynamical behaviour of the disinhibition circuit shown

in figure 4.4 with no input from the reverse network. 80

4.6 Plot of the dynamical behaviour of the disinhibition circuit shown

in figure 4.4 with matching inputs from the forward and reverse

networks. 81

4.7 Plot of the dynamical behaviour of the disinhibition circuit shown

in figure 4.4 with mismatched inputs from the forward and reverse

networks. 82

4.8 The disinhibition circuit with lateral inhibition. 84

4.9 Activity of the dynamical network with disinhibition after stimulus

onset. 89

4.10 Activity of the dynamical network with disinhibition after 350ms

after deployment of the attentional template. 90

4.11 Activity of the dynamical network with disinhibition and lateral

inhibition after stimulus onset. 91

4.12 Activity of the dynamical network with disinhibition and lateral

inhibition after 350ms after deployment of the attentional template. 92

4.13 Activity of the dynamical network with disinhibition and lateral

inhibition and colour channels after stimulus onset. 93

4.14 Activity of the dynamical network with disinhibition and lateral

inhibition and colour channels after 350ms after deployment of the

attentional template. 94

xi

4.15 Close up images of the layer from figures 4.10, 4.12 and 4.14

350ms after application of the attentional template, for each of the

dynamical networks. 95

xii

Glossary

AIT Anterior Inferotemporal.

ANN Artificial Neural Network.

CLAM Closed Loop Attention Model.

CPU Central Processing Unit.

DBN Deep-belief Network.

DIANNA Dynamical Interacting Artificial Neural Network Application.

EEG Electroencephalogram.

FEF Frontal Eye Fields.

fMRI Functional Magnetic Resonance Imaging.

IOR Inhibition of Return.

LGN Lateral Geniculate Nucleus.

LIF Leaky-integrate-and-fire.

LIP Lateral Intraparietal.

MIIND Multiple Instantiations of Interacting Neural Dynamics.

MST Medial Superior Temporal.

xiii

MT Middle Temporal.

PIT Posterior Inferotemporal.

PNG Portable Network Graphics.

PP Posterior Parietal.

RNG Random Number Generator.

SOM Self-Organizing Map.

XML Extensible Markup Language.

XOR Exclusive OR.

xiv

Chapter 1 1 Introduction

Chapter 1

Introduction

The amount of information reaching the retina is considerably more than the brain

can process [73], yet organisms still need to respond to their environment accu-

rately and rapidly to avoid threats, find and react to prey, or find a mate. Organisms

therefore require mechanisms to reduce the retinal input to a volume of data the

brain is capable of processing. Visual attention is a mechanism common among

higher animals (particularly mammals) to reduce detailed processing of the retinal

input to a smaller area of input which is considered salient to the organism’s current

task. A natural problem arises with this approach: which part of the visual scene

is the most salient in order to direct further cortical processing? For an organism

to ensure its survival it must be able to determine which portion of the visual field

to consider based upon its current situation and needs, and be able to switch this

“spotlight” [12] as new stimuli appear.

The brain is a highly complex structure, with 86.1× 109± 10% neurons making

103 inter-connections with other neurons, with 19% of these neurons in the cere-

bral cortex [1]. The cortical neurons are organized into functional structures at

various levels, from individual neurons to brain areas determined to be responsible

for particular functions. Cortical visual structures are located dorsally, with more

complex transformations of the stimulus driven neural activity occurring in anterior

brain areas. Furthermore, two streams of visual processing have been determined,

which interact to allow visual processing to be directed towards a salient location

within the visual scene.

Understanding the structure of the visual brain, those areas of the brain concerned

Chapter 1 2 Introduction

with vision, is complicated by the multiple scales on which the brain performs

its tasks. The scales range from the large number of tiny interactions between

connected neurons and the distributed and noisy interactions that occur between

neural populations at both the micro and macro scales (micro-circuits and brain

areas respectively). The variety of scales makes the study of cortical vision at any

one scale insufficient, so vision scientists create hypotheses and models of how the

brain performs these functions. A model should allow predictions of how the brain

will respond to particular stimuli, which can then be tested against observation in

psychophysical and biophysical studies, to evaluate the model’s plausibility.

This thesis presents a computational model of visual attention at multiple levels

of scale and interaction. The model comprises layers of neurons representing the

different cortical areas and their functions as composites of neural circuits. Us-

ing a dynamical model allows the time course of these neural interactions to be

studied and compared to observed brain dynamics through areal mean field tech-

niques, such as Electroencephalogram (EEG) and Functional Magnetic Resonance

Imaging (fMRI), which record activity from populations of neurons, not individual

cells.

1.1 Structural organization of the Visual Brain

Before presenting the model a discussion of the organization of the brain in terms

of visual processing is presented. While approximately 30 cortical areas are im-

plicated in visual processing [24], only the areas featured in the model of visual

attention presented in this thesis are described, and depicted in figure 1.1.

1.1.1 The Main Cortical Pathways involved in Cortical Vision

Ungerleider and Mishkin [74] showed two main visual pathways in the brain: the

ventral stream, passing from the occipital cortex ventrally to inferotemporal areas,

and a dorsal stream from occipital cortex to posterior-parietal areas via middle

temporal areas. A discussion of the visual cortical areas these pathways subsume

follows this section.

Ungerleider and Mishkin suggested the role of the ventral stream is the perception

of objects and form, and consequently termed it the ‘what’ pathway, while the

Chapter 1 3 Introduction

Figure 1.1: Approximate locations of visually related cortical areas.

dorsal stream, being concerned with spatial information, was termed the ‘where’

pathway [74, 46]. However, Milner and Goodale [30] (and Goodale [28, 29]) posit

the dorsal stream is involved in visually mediated action. In both interpretations

the ventral stream is primarily concerned with visual perception, while the dorsal

stream is concerned with spatial characteristics of vision, such as location, spatial

relationships between objects and motion.

1.1.2 Occipital Cortex

1.1.2.1 Primary Visual Cortex (V1)

The primary visual cortex, also known as V1, lies beneath the occipital bone at the

rear of the skull. This area receives incoming neural input from the basal ganglia,

and principally the Lateral Geniculate Nucleus (LGN), which in turn receives its

neural input from retinal ganglion cells. Area V1 has been extensively studied [57,

c. 2], and is the most spatially faithful brain area in terms of mapping to retinotopic

locations. A seminal study of neural responses to given stimuli [33] by Hubel and

Chapter 1 4 Introduction

Wiesel showed neurons in V1 are strongly tuned to lines of orientation, with the

highest spike rates elicited at the preferred line orientation and almost zero spikes

for stimuli in the orthogonal anti-preferred orientations. This study showed that V1

neurons respond to local neural activity soon after presentation of stimuli, but [38]

demonstrated V1 neurons respond to more global properties of the visual scene

after 100ms, due to interactions from higher brain areas.

Hubel and Wiesel [33] proposed the organization of V1 as columns of neurons,

with each column sensitive to lines of specific orientation. This columnar orga-

nization is found throughout the cortex, but Hubel and Wiesel were the first to

postulate a direct link between this columnar organization and function in V1 (see

1.1.5 for discussion of cortical columns).

1.1.2.2 V2

Area V2 receives strong input from V1, and outputs stimulus driven activity both to

the ventral stream areas of V3 (not shown in figure 1.1) and V4 and dorsal stream

area of V3 and V5/MT, and strong feedback connectivity to V1 [57, c. 3]. It is less

strongly orientation selective than V1, but codes for more complex conjunctions of

features [57, c. 3].

1.1.2.3 V4

Visual area V4 is sensitive to both colour and orientation [89], and shows the

strongest degree of attentional modulation of all visual areas: deployment of at-

tention can alter the firing rate of neurons by as much as 20% [47]. Similar to V2,

form features are complex conjunctions of features from the predecessor layer of

the ventral stream.

1.1.2.4 Middle Temporal (V5)

Area MT/V5 has a role in visual perception of motion. It is involved in the compu-

tation of whole object velocity and the , as its neurons are tuned to both direction

and speed of motion [42]. Its principle inputs are as few as five synapses from the

photoreceptors [6], and it provides strong retinotopy. This area is one of the main

Chapter 1 5 Introduction

inputs to the dorsal stream [74, 43] including Medial Superior Temporal (MST)

and Lateral Intraparietal (LIP), and projects to the Frontal Eye Fields (FEF) for the

preparation of eye movements.

1.1.3 Inferotemporal Area

The inferotemporal area responds to complex visual stimuli, such as faces [21].

The models presented in this thesis divide this region into two visual areas: the

Posterior Inferotemporal (PIT) and Anterior Inferotemporal (AIT) areas.

1.1.4 Other Visually Related Cortical Areas

1.1.4.1 Lateral Intraparietal (LIP)

Area Lateral Intraparietal (LIP) is located in the posterior parietal cortex, in the

dorsal stream. This area is involved with visual spatial attention, with LIP neurons

showing strong retinotopy [56]. LIP projects spatial information to the FEF.

1.1.4.2 Frontal Eye Fields (FEF)

The Frontal Eye Fields (FEF) is located in the prefrontal cortex, and is important

in the generation of voluntary saccades [63]. The models presented in this thesis

do not include this area.

1.1.5 Columnar Organization of the Cortex

The cortex is not simply a two dimensional structure, but is comprised of cortical

columns [51]. The cortical columns are composed of six layers, numbered from

the superficial layer 1, to the deepest layer 6. The relative thickness of these layers

varies by region throughout the cortex. While little is known of the functional

role of the superficial layers 1 and 2, layer 4 receives thalamic input, and layer 6

provides thalamic output [26, 27, 4]. Inter-columnar connections originating from

layers 3 and 6 to layer 4 are termed ‘feed-forward projections’, while those which

terminate in layers other than layer 4 are termed ‘feedback projections’ [4]. Within

Chapter 1 6 Introduction

a column there is significant inter-layer connectivity, with neurons projecting axons

outside of the cortical column also connected to neurons within the same column

[4].

While Mountcastle [51] postulated cortical columns as the functional unit of cor-

tical computation, cortical columns with differing functions within the same re-

ceptive field (such as detecting lines of differing orientation and ocular dominance

[33]), are termed cortical modules [51] or hypercolumns [27, 9].

1.2 Visual Attention

The amount of visual information entering the eye would overwhelm the brain’s

visual processing capability if the entire retinal input is processed equally at all

locations [65]. In order to perceive visual objects in detail, the object of interest is

brought into focus on the fovea. The mechanism by which we designate what is of

interest is described as visual attention. The ability to visually attend to an object

is so crucial to visual perception it has been argued that “to see is to attend” [88].

The mechanism of attention and how it may be captured or deployed is not well un-

derstood, in part due to technical difficulties in studying the brain and the complex-

ity of the brain itself, despite modern technological developments in biophysics,

such as fMRI which has provided a means for studying cortical activity in unanaes-

thetized subjects. However, fMRI traces have a poor spatial resolution of 3mm3

(approximately 7 million neurons) and a temporal latency due to measuring post

activity oxygen absorption from the blood [8]. Other forms of study include be-

havioural experiments (psychophysics) on humans providing an indirect view of

the brain, and animal experiments using techniques such as single electrode record-

ing. These techniques each have their problems for investigating brain function so

computer modelling presents a powerful technique to determine the function of vi-

sual cortex: a model can be tested for correctness by comparing against the vast

amount of experimental data gathered through psychophysical and single electrode

recording studies. Evaluation against these studies is difficult due to the large num-

ber of phenomena observed, some of which are contradictory. Also, fMRI detects

different activity to single electrode recordings as each voxel only provides a pop-

ulation average and it is consequently difficult to reconcile with single electrode

recordings as the effect on individual neurons, or the number of neurons respond-

Chapter 1 7 Introduction

ing, cannot be determined.

Three types of visual attention have been described: attention may be deployed to

a location (spatial attention), an individual object (object-based attention), or to a

collection of features (feature-based attention).

1.2.1 Spatial Attention

Visual attention can be deployed to locations in the visual field to increase neural

sensitivity for neurons whose receptive fields are enclosed within the attended lo-

cation. The neural effect of spatial attention is to increase the effective contrast of

stimuli within the locus of attention [80, 55] and to reduce the response of neurons

sensitive to unattended locations [72]. Treue and Martinez-Trujillo describe this

process as the contrast gain model of spatial attention [72].

After visual search has located candidate locations for the sought object, spatial

attention can then be applied to that location to further discern the candidate as the

search target. Motter [48] describes spatial attention in these situations as shrinking

the receptive field around the attended to object.

In order for spatial attention to be applied, the location of interest must first be

selected. If the location is unknown, a visual search must be performed to deter-

mine locations from known properties of the object before spatial attention can be

engaged. Neural mechanisms to determine the location for spatial attention have

been described in the literature, such as saliency [34] or priority maps [5]. Priority

maps, like saliency maps, code for a location of interest from visual stimuli, but

include top-down influences in addition to bottom-up. The model presented in this

thesis generates spatial saliency maps through the interaction of neural activity in

top-down and bottom-up visual pathways. Influence of top-down flow is neces-

sary to sustain output to the dorsal stream once a location for attention has been

determined. See [87] for a review of visual search.

1.2.2 Feature-based Attention

Feature-based attention describes the deployment of attention to known properties

of the visual scene. These properties are simple features such as colour, orientation

and direction of motion [71]. Feature-based attention enhances the response of

Chapter 1 8 Introduction

neurons which code for the attended to feature [44]. Feature-based attention is

used to detect the presence of the features in the visual scene into a retinotopic

map, which is then used to resolve the location of those detected features. As the

location of these features is not know prior to the onset of feature-based attention,

the feature templates must act across the visual field [75, 7, 44, 65, 8, 90].

The top-down feature template interacts with bottom-up activity in two ways. In

the feature-similarity gain principle [41] the sensitivity of neurons which code for

the presence of the attended feature is enhanced, whilst the activity of neurons

which do not code for the attended feature is suppressed.

This thesis presents a computational model of visual search which achieves a sim-

ilar effect using feature-based attention (see chapter 4). The model employs lateral

inhibition of cortical feature-binding circuits when those circuits receptive fields

contain non-matching features to an endogenously initiated attentional template.

The lateral inhibition from non-matching circuits subdues activity in neighbour-

ing populations, effectively removing external stimuli in their receptive fields from

further visual processing. Regions with few mismatches between the attentional

template and stimulus driven activity project excitatory activity to a separate cor-

tical area in the dorsal stream (for example, LIP), where the saccade necessary to

foveate the object may be generated.

1.2.3 Object-based Attention

Object-based attention may be described as an example of feature-based attention,

as evidence [53] suggests that object representations are composed of distributed

sub-object, feature building blocks bound together as the neural object represen-

tation as needed, or determined, by the visual stimulus. These features are bound

to each other through spatial relationships, such that attending to any component

feature of an object causes selection of all other object features [62]. This compo-

sitional object representation reduces the storage demands by avoiding the need to

store every type of object experienced (see section 1.7). The effect of object-based

attention has been described as a shrinking of the receptive fields of neurons around

the attended object [47].

Chapter 1 9 Introduction

1.3 The Biased Competition Model

In the biased competition model of feature-based attention [22], stimuli within a

feature-selective neuron’s receptive field compete for neural representation. When

only a preferred stimulus is present within the receptive field and matching feature-

based attention is applied, the response of the neuron is maximal. When an addi-

tional non-matching stimuli occurs in the receptive field the competition is biased

in favour of those stimuli which match the coded for feature, causing a suppressed

response to non-matching stimuli and increased response to the matching stimuli.

When attention is applied to the non-preferred stimulus, the response of the neuron

is suppressed, but still greater than the response of the neuron when the preferred

stimulus is absent.

This thesis presents a model implementing biased competition through layer-local

lateral inhibition in the ventral stream independently for each cued feature. The

biased competition is initiated by a top-down attentional template which acts across

all areas of the visual scene. The independent local competition for each feature is

combined in early visual areas and activates a spatial attention mechanism in the

dorsal stream via spatial congruence.

1.4 Feature-Similarity Gain versus Feature Matching

Treue and Martinez-Trujillo [72] performed experiments on macaque neurons in

area Middle Temporal (MT), and measured modulation of neuronal responses when

attention was directed to locations within the receptive field of these neurons. This

modulation was multiplicative only, and did not affect the response of the neuron

to any particular feature. This demonstrates the effect of spatial attention is inde-

pendent of the features presented [45, 64] (although the strength of the neuronal

modulation did vary with the contrast of the stimulus at the attended location).

However, measurements of neurons in area MT, which are sensitive to direction

of motion, showed variation in the neurons’ tuning curves when attention to an

object moving in specific direction was deployed, regardless of whether that ob-

ject lay within a neuron’s receptive field. When attention was directed to a feature

moving in the preferred direction of a neuron, responses were higher than when

attention was directed to the anti-preferred direction of motion. From this study

Chapter 1 10 Introduction

Treue and Martinez-Trujillo proposed the ‘feature-similarity gain model’, in which

the attentional state affects the neuronal response depending on the similarity of

the attended stimulus and a neuron’s preferred stimulus, in all neurons sensitive to

the attended stimulus, across the visual field.

An alternative hypothesis of attentional modulation of neuronal responses is de-

scribed by Motter [49, 50] as a correlation between how well a stimulus within

a neuron’s receptive field matches the attended stimulus, even when the attended

stimulus lies outside of the recorded neuron’s receptive field. This description of

neural modulation does not specify a neuron having a preferential feature to which

it responds, and suggests modulation of a neuron’s sensitivity to a given stimulus

in the presence of attention. This effect is termed ‘feature-matching’ by Treue and

Martinez-Trujillo [72].

In their study [72], Treue and Martinez-Trujillo found no evidence supporting the

‘feature-matching’ hypothesis of attention. However, their experimental stimuli

consisted of groups of dots moving in two (preferred and anti-preferred) directions.

Such simple movement is unlikely to require complex neural transformations of

stimulus evoked neural activity, whereas the detection of form features is a more

complex task, as simple features detected at lower visual areas are transformed into

object representations in AIT through interactions in the intervening ventral stream

layers.

The existence of the feature-similarity gain principle and the biased competition

model as mechanisms for feature-based attention are not mutually exclusive mech-

anisms. Rather, it has been argued that the feature-similarity gain principle predicts

the biased competition model [7]. Treisman and Gelade [71] detail a set of basic

features (such as orientation, colour and direction of motion) to which neurons are

sensitive. When attention is directed to one of these fundamental features, the ac-

tivity of neurons sensitive to that feature are modulated such that the response to

stimuli that match the coded for feature is increased, and the response of other neu-

rons which are not selective to the attended feature are suppressed. The selectivity

of feature-sensitive neurons is a continuum: a neuron sensitive to horizontal lines

will see a response gain to the presence of a horizontal line within its receptive field,

a depressed response for the presence of a vertical line and a diminished response

to intermediate orientations. The level of modulation depends on the similarity

between the coded for feature and the stimulus [41, 44]. Sàenz et al [60] present

Chapter 1 11 Introduction

results consistent with the feature similarity gain model [72] while showing that

the attentional effects are dependent on the presence of competing stimuli.

1.5 Attentional Capture

Visual attention may be deployed voluntarily, as in visual search or Posner (delayed-

match-to-sample) cuing paradigms, but may also be initiated from external stimuli.

Sudden changes in visual input, such as an unexpected flash, will create a neural

activity in populations coding for the location of the external change. This effect

of breaking into conscious perception of a salient but irrelevant stimulus at a non-

attended location is an example of ‘implicit attentional capture’ [67]. When atten-

tional mechanisms are not engaged, attention may be briefly captured by this new

stimulus, termed ‘explicit attentional capture’ [67]. Once the cause of stimulus has

been ascertained, the stimulus may be ignored, with a concomitant reduction in the

representative LIP activity, or actively attended, maintaining the location activity

in LIP.

1.6 Visual Search

Visual attention can be applied to objects, features or locations, and may be either

captured by incoming stimuli or voluntarily deployed by endogenous cortical ac-

tivity. For attention to be applied to an object, the object must be recognized from

its two dimensional retinal representation under varying conditions of lighting, ro-

tation and scale. This raises interesting questions in how objects are efficiently

stored in the brain such that recognition can occur invariant of the actual presenta-

tion (see section 1.7. When searching a cluttered visual scene, attention is deployed

to a number of spatial positions sequentially, many times per second, until the tar-

get object is found through recognition, or the search is abandoned [71, 85, 70].

Visual search is often guided by information outside the focus of attention, and

can be attracted to particular objects with such vigour that the object appears to

jump out from the background, such that they appear more salient. This shows the

deployment of attention can be stimulus driven as well as cortically driven.

In navigating the visual environment, people must attend to some objects and ig-

Chapter 1 12 Introduction

nore others. Guiding attention to the relevant object is easy in some instances, as

when picking out a red ball from a collection of blue balls, but more difficult in

others, as when attempting to find a suitable piece of a jigsaw puzzle. To quan-

tify how attention is used in these perceptual tasks, behavioural research has relied

extensively on analyses of visual search [21], in which observers attempt to find a

predefined target item in a display of accompanying non-target (distractor) items.

The measure of interest is often the change in reaction time (RT) or accuracy for

detecting the target, in relation to an increasing number of display items (display

size). As illustrated in panel (b) of Figure 1.2, the search target (e.g., a red circle)

may be a featural singleton, defined as an item that differs from all of the distractors

in a particular feature (e.g., colour, shape, or size). Detection of a singleton target

is highly efficient, and RT is relatively unaffected by the number of distractor items

[71]. In contrast, when the target and distractors share features (Figure 1.2, panels

(a) & (c)), search is less efficient, and target detection requires additional time as

display size increases.

Current theories of visual attention characterize the difference between panels (a)

and (b) in Figure 1.2 in terms of a continuum of search efficiency, rather than

as categorically different forms or stages of information processing [86]. Tries-

man and Gelade [71] and Itti and Koch [34] argue that search is highly efficient

(as in panel (b)) when driven entirely in a bottom up manner: that is, by salient

differences among the features of the display items. Conversely, Hochstein and

Ahissar [32] argue that the global saliency of such singletons amongst distractors

originates from feature categories maintained in higher visual areas, requiring a

top-down mechanism for ‘pop-out’ to occur. Van der Velde and de Kamps [77]

present a model of global visual saliency in which the bottom-up representation of

the distractor objects would overwhelm the neural representation of the singleton

without the interaction of a top-down attentional template. The van der Velde and

de Kamps model may still be described as highly efficient, as search is performed

by parallel processes.

In highly efficient search, the observer has the impression that the target pops out

of the display, capturing attention automatically. Successful performance in more

difficult search tasks (as in panel (a)) relies on top-down processing: that is, the

observer’s knowledge of the target and how it differs from the distractors. In this

type of inefficient or difficult search, there is typically a direct increase in RT as

a function of increasing display size, and thus the slope of the line of RT plotted

Chapter 1 13 Introduction

(a) (b)

(c) (d)

Figure 1.2: (a) Example of inefficient search (find the ’L’ amongst the ’T’s): no
immediate pop out of the ’L’, (b) Example of efficient search: pop out of the red
circle, (c) Reduced pop out due to the similarity between the purple-blue target and
the blue distractors, (d) Reduced pop out due to distractor-distractor dissimilarities.

against display size (or the RT×Display Size function) is useful as a metric of

search efficiency. Most instances of visual search, however, involve a combination

of bottom up and top-down effects.

These effects do not occur in entirely separate processing stages but instead interact

to determine performance. Top-down, knowledge-based processing can influence

attentional guidance even when search is highly efficient [84]. Similarly, top-down

knowledge of the relevant target feature can help observers to reduce or eliminate

distraction from salient but irrelevant display items [39]. Top-down knowledge is

applied through an attentional template [23], a form of visual working memory that

makes up the visuospatial sketchpad [2], which can be used to filter out parts of the

visual field when attending to a location, or as a map of features when searching

for or attending to an object.

Chapter 1 14 Introduction

The phenomenon of a globally salient singleton object to pop out and the diminish-

ing pop out observed with decreasing difference between targets and distractors is

so accepted as be included in most modern computational models of visual search.

Furthermore, the performance of each model at these tasks is a common metric for

inter-model comparisons [21]. Feature Integration Theory [71] and Guided Search

[85] support the idea of parallel feature processors updating a global saliency map

[34, 35]. This map is a neural representation of the visual field with activations cor-

responding to a likelihood that a particular location contains an object of interest

(i.e. a target) [87].

When parallel search fails to find the target, Guided Search uses the generated

saliency map to inform the attentional deployment processes of likely next loca-

tions to search for the target, in descending order of activation strength [83]. Some

form of Inhibition of Return (IOR) is needed to prevent the same location being

attended to multiple times. One method for implementing IOR is given by Clarke

et al [11], which uses two dimensional Gaussian masks to subdue activations in the

saliency map at an attended location, with the strength of the mask decaying over

time.

1.7 Feature Binding

The distributed representation of a scene in terms of the ‘what’ and the ‘where’

poses a problem of correctly binding together a perceived object and its position,

particularly in a multi-object scene. For example, if a scene containing a square to

the left of a circle is viewed, depictions of a square and a circle are determined by

the ventral stream (AIT), while their positions are determined by the dorsal stream

(Posterior Parietal (PP)). The binding problem arises as the distributed cortical rep-

resentation allows the scene to be interpreted either correctly with the square to the

left of the circle, or erroneously with the square to the right of the circle. Fur-

thermore, a representation of objects as a collection of features in AIT presents

a similar problem when resolving the properties of an individual object amongst

many. Consider figure 1.3, in which complex shapes in AIT are represented by

model neurons, with colour represented separately. The forward network causes

the neurons indicating the presence of a square and a circle to activate, but also

activates the neurons coding for red and green. The AIT representation is ambigu-

Chapter 1 15 Introduction

ous for this scene. However, the dorsal and ventral streams are connected in early

visual areas, allowing selection of a feature to create spatially related activity in

the dorsal stream. In turn, this spatial information from the dorsal stream on the

locations of each feature allows the colour and form of each object to be bound

together, such that the distributed representation for such a scene can be resolved.

This process involves feature-based attention to select candidate locations in the

retinotopic early visual areas, then spatial attention on these selected areas to in-

hibit distractor features. In the case of figure 1.3, attending to the square feature,

will allow the colour at the same location as the square feature to remain, binding

the two features together.

Figure 1.3: Example of an ambiguous representation of a visual scene in AIT.
When presented with either of the inputs, a red square and green circle, or green
square and red circle, the AIT representation is the same. This distributed repre-
sentation requires binding to resolve.

1.8 Modelling Visual Attention

A number of studies have found that feature-based attentional effects occur across

the visual field [79, 59, 60, 7, 52, 90]. The Sàenz et al studies [59, 60] used fMRI to

test if feature-based attention produces global modulation of cortical populations.

The studies presented overlapping fields of upwards or downwards moving dots

in one visual hemifield to which the subject’s attention was directed, and a single

field of moving dots in the contralateral hemifield. Every twenty seconds subjects

changed their attention between the upwards or downwards moving dots in the

Chapter 1 16 Introduction

attended to hemifield. This effectively alternated the trial conditions between at-

tended and ignored stimuli moving in the same direction, or in opposite directions.

Their results show that attention to a feature modulates responses of neurons sen-

sitive to that feature across the visual array, including the ignored stimuli in the

contralateral hemifield.

This thesis introduces a neural model of attention that postdicts this effect as neural

activations generated by AIT neurons in a feedback network are applied through-

out the visual field as a consequence of the inter-areal connection structure. The

neurons in a reverse network coding for features are modulated by task-relevant in-

formation originating in higher areas, such as prefrontal cortex, through object and

feature representations in AIT to the lower visual areas (V1). The model features

widening neural receptive fields in subsequently higher visual areas, such that the

receptive fields of neurons in AIT are the entire visual field. Furthermore, a recent

study by Zhang and Luck [90], using a similar experimental paradigm to Sàenz

et al but recording cortical activity via EEG, demonstrates this attentional mod-

ulation occurs only in cases where the attended to feature is in competition with

distractors. We interpret this result as a consequence of binding: without neural

activations from distractor features the representation in AIT is unambiguous, so

the attentional neural cascade is not required.

1.9 Extant Models of Visual Attention

A number of models of visual attention exist. This section discusses two existing

models with similar goals to this thesis.

1.9.1 Closed Loop Attention Model

The Closed Loop Attention Model (CLAM) of Visual Search proposed by van

der Velde and de Kamps [78] includes the generation of saliency maps that are

used to select a location to which attention is directed. CLAM consists of layers

of neural networks that mimic the layered organization of the human visual cortex,

including the two primary cortico-visual pathways identified by Mishkin et al [46]:

the ventral pathway from area V1 (striate cortex) to the anterior inferotemporal

Chapter 1 17 Introduction

cortex (AIT) responsible for object recognition; and the dorsal pathway from area

V1 to the Posterior Parietal (PP) region for spatial vision.

In CLAM, the binding problem of distributed features is resolved using a ‘black-

board’ [19] to tie together the distributed components of a scene using spatial in-

formation. The blackboard itself is simply the early layers of the visual streams,

where the layout of the neurons map topographically to the retina (retinotopic),

and so maintain good spatial congruity with the visual scene. As these areas are

common to both the ventral and dorsal stream, interaction between them can occur

[78]. The spatial map created in the ventral stream inhibits a spatial map of inputs

to the dorsal stream in a retinotopic manner, allowing location information about

a selected object to be passed into the dorsal stream in the form of a contrast map

[77].

Visual search comprises a bidirectional flow of activation between the lower and

higher visual areas, in terms of bottom up (stimulus driven) and top-down (atten-

tional/user driven) processes. CLAM models these flows by two neural networks

for each of the dorsal and ventral streams, with activations flowing from V1 to

higher visual areas in one network, and an identical network propagating activa-

tions from higher areas to V1. Each pair of networks interact through local mi-

crocircuits via a disinhibition mechanism to enhance or suppress activations of

features and positions [75]. In the bottom up flow, homogeneity in cells’ receptive

fields is penalized through layer local inhibition (e.g. the biased competition model

of Desimone and Duncan [21]). Combined with larger receptive field sizes in

higher visual areas, this mechanism can exhibit pop out of globally salient objects.

A similar mechanism models the effect of attention via the top-down flow, except

the top down maps generated by either the dorsal or ventral stream are primed for a

cued location (or object/feature set). Guided Search and Feature Integration Theory

[87] include an analogous processes of retrieving location information about ob-

jects of interest through interaction between feed-forward and feedback networks.

Unlike CLAM, both Guided Search and Feature Integration Theory resolve the sin-

gleton object in the feed-forward pathway of the ventral stream through the biased

competition model, although Feature Integration Theory models the interaction

between the feed-forward and feedback networks as enhancing activations rather

than suppression. The Normalization Model of Attention [54] uses a similar idea

of competition in maps to determine where to direct attention, although the model

has only a single stage, the authors posit that multiple stages of feature integra-

Chapter 1 18 Introduction

tion and attentional modulation in line with their model but occurring in each of

the visual layers will fit their simulation data to the electrophysiological data from

experiments.

CLAM is implemented using Multiple Instantiations of Interacting Neural Dynam-

ics (MIIND) [16], an open source library of tools for creating neural network sim-

ulations. MIIND includes advanced features that can be used to convert a bio-

logically unrealistic Artificial Neural Network (ANN) to more biologically plausi-

ble dynamical networks, with neural outputs being more accurately modelled with

population firing rates [17, 40]. This conversion is necessary as the networks can

only be trained as ANNs, but these networks do not correlate well with the proper-

ties of real cortical neurons [10].

1.9.2 Deco & Rolls’ Model

Deco and Rolls presented a Gabor wavelet based neuro-dynamical model of corti-

cal attention [20], which showed the shrinking of an AIT neuron’s receptive field

around an attended to object. The model was trained to recognize one of two ob-

jects in a cluttered visual environment. They presented the target object on a blank

background, and overlaid on a natural scene, with a distractor object in either the

same hemifield as the target, or the opposite hemifield. The model applied spatial

and object-based attention to find one of the two objects.

The results showed the attentional modulation via a learned template reduced the

effective receptive field size in AIT around the attended to object. This was a result

of local competition among neurons coding for different form features, with a bias

towards those neurons matching the attentional template, as predicted by the biased

competition model [23].

The model presented in this thesis tried to replicate this behaviour using an archi-

tecture of cortical micro-circuits. However, the model presented by Deco and Rolls

is only trained to recognize two different objects, while the model presented here

uses four object categories, which increases the degree of mismatches between the

stimulus and learned (attentional) representation. Their model also provides direct

feedback to modulate the visual stimuli, whereas the model presented herein per-

forms this modulation within cortical micro-circuits in intermediate layers of the

ventral stream.

Chapter 1 19 Introduction

1.9.3 Dynamical Interacting Artificial Neural Network Application

The Dynamical Interacting Artificial Neural Network Application (DIANNA), was

created to provide the flexibility missing from CLAM and MIIND for building

complex interactions amongst layers of neural circuits. MIIND does not provide

the ability to vary algorithm and circuit parameters within a single network. The

large variation in connectivity of individual ANN nodes, or dynamical populations,

does not allow a single set of algorithms or circuits to be tuned in a way that allows

all neurons to remain sensitive to small changes in incoming activity. DIANNA al-

lows increased control of these parameters by defining them over individual layers,

where neural input is more uniform in scale.

In de Kamps and van der Velde [18] these limitations of MIIND were not reached,

as each neural layer had the same dimension, and objects were only presented in

one of four non-boundary locations, and the neural activity in each of these loca-

tions did not interfere with other locations (see figure 1 in [18]), to the extent that

the network could have been split up into four separate networks for each quad-

rant. This thesis presents a model of translation invariance, so the neural activity

caused by each input pattern suffers from interference from other inputs, as well as

previous presentations of the same stimulus at different locations, which requires

extensions to de Kamps and van der Velde’s model. These extensions are not pos-

sible using the structural tools available MIIND, motivating the development of

DIANNA.

A detailed presentation of DIANNA is given in chapter 2.

1.10 Thesis Outline

Chapter 1: Introduction (this chapter) Introduces cortical visual areas and visual

attention modalities, and discusses models and theories of feature-based attention.

Chapter 2: DIANNA Describes the DIANNA software used to model the simula-

tions and circuits presented in this thesis, and its motivations.

Chapter 3: Modelling Feature-based Attention with ANNs The architecture of

the model is discussed at the level of interacting sub-networks and layers. Ap-

proaches to training the neural networks as top-down and bottom-up neural flows

Chapter 1 20 Introduction

are also discussed.

Chapter 4: Dynamical Modelling of Feature-Based Attention A review of the

techniques applied in modelling the neural dynamics. Discussion of the neural dy-

namics and demonstration of the behaviour of Wilson-Cowan populations at steady

states for a variety of squashing function algorithms. The developed model of vi-

sual attention is presented and evaluated against existing models of visual attention.

Chapter 5: Conclusion Closing remarks.

Chapter 2

Dynamical Interacting Artificial
Neural Network Application

The cortex is composed of a number of functional regions (brain areas), each with

a similar layered structure of cortical-columns, with recurrent connections between

layers within cortical columns, and between functional regions. A software appli-

cation was created for this PhD which allows modelling this regional and micro-

circuit structure with neuro-dynamical populations, and allows these networks to

be trained as Artificial Neural Networks (ANNs), prior to conversion to dynamical

networks. The software is called Dynamical Interacting Artificial Neural Network

Application (DIANNA).

2.1 Motivation for DIANNA

The general approach used by DIANNA is to create layers of dynamical circuits

and specify the connections between layers. All circuits within a layer are iden-

tical, but each circuit member population can be parametrized individually. The

simplest approach of modelling the structure of the cortex with DIANNA, is to

model functional regions as layers, and cortical columns as circuits. However, it

is also possible to model brain areas using a number of layers, and this approach

is useful when arbitrary connections are desired between circuits and layers. This

multi-layered approach was used to generate the networks in chapter 4, as the for-

ward and reverse dynamical networks were created from trained ANNs, while the

21

Chapter 2 22 DIANNA

intermediate (disinhibition) layer was implemented directly as a layer of dynamical

circuits.

DIANNA allows the creation and training of ANNs, and their subsequent con-

version to dynamical networks, maintaining the layer structure of the ANNs, but

replacing each ANN node with a dynamical circuit. Once a layer and connec-

tion structure has been established, DIANNA can train the ANN using a variety

of techniques, including backpropagation, and gradient descent. Once trained, the

ANNs can be converted to dynamical networks by replacing each ANN node with

a circuit, with a separate circuit design for each ANN. The conversion copies the

learned weights between ANN nodes to the appropriate circuit members via declar-

ative or programmatic rules. The conversion of ANNs to dynamical networks fol-

lows the method described by de Kamps et al in [17], but allows the mapping of

positive and negative weights to be performed between arbitrary circuit designs by

defining circuit populations with input roles which accept either positive or nega-

tive weights.

Once a dynamical network has been constructed, multiple simulations may be run

against this network by varying the network’s inputs. These inputs can be ob-

tained directly from images, read from Extensible Markup Language (XML) files,

or hand coded. A completed simulation can be visualized using DIANNA to show

the interactions over time of the network, from network, layer or circuit based per-

spectives.

DIANNA is based on the MIIND software [16], but is focused on the creation of

layered dynamical neural systems of arbitrary design. MIIND is wider in scope

(i.e. MIIND now provides simulating large populations of neurons via the pop-

ulation density equation described in [15]), and as such does not offer the same

flexibility as DIANNA in parametrization of connectivity and activation functions.

Running simulations in DIANNA is also highly parallel, scaling to use the number

of available Central Processing Units (CPUs). Also, training ANNs and simula-

tions of dynamical networks in DIANNA are highly stochastic, with the the order

of updates being randomized for each network step, using a time-based seed to the

Random Number Generator (RNG) for each network creation, training and simu-

lation run. While this prevents the exact duplication of results between runs, it also

prevents results relying on a given initial environment.

The backpropagation training algorithm in DIANNA is also more advanced than

Chapter 2 23 DIANNA

that of MIIND, allowing the use of thresholds (biases) for ANN nodes, batch and

online training, momentum, and reducing the learning rate over the course of train-

ing. There are also additional activation functions available in DIANNA over the

sigmoid function implemented in MIIND, including tanh and a Gaussian sigmoid

function. Where these activation functions range from -1 to 1, half-range functions

from 0 to 1 are implemented for use with dynamical systems. The dynamical sys-

tems are based on Wilson-Cowan dynamics [81, 82] which model the spike rate

of populations, so negative values would suggest negative spike rates, which are

implausible.

2.2 Architectural Overview

A DIANNA instance is organized through a management object: The Project.

This section describes the architecture of the Project as interacting high level

objects.

Figure 2.1: High level view of the relationships between a Project object and
other classes.

Chapter 2 24 DIANNA

2.2.1 The Project object

The Project object is the container for a project and all of its artifacts, such as

log files, networks and simulations. All paths in a Project are implicitly relative

to the Project file, managed by this Project object.

In addition to managing a Project‘s artifacts, the Project object acts as a reg-

istry for all objects created within a Project. This allows all interacting objects

to be managed by name. Internally the Project object manages separate look-up

tables for:

• LayerDescription objects

• ANN Network builder objects

• CircuitDescription objects

• Algorithm objects

• Dynamic networks

• Dynamic mappers

• Simulation descriptions

• Visualization descriptions

When instances of these classes are created they can be added to the Project

with the addX method on Project, where X is the object type to be added. These

methods add the instance to the appropriate registry under the object’s name. Fu-

ture references to these objects can then be retrieved from the Project by name.

The :ref:examples_page page shows many examples of this approach.

The Project manages a single collection of Node objects shared for all

DynamicNetwork objects in the Project. The number and type of nodes is deter-

mined by the LayerDescription objects referenced by each DynamicNetwork.

A DynamicNetwork maintains AbstractAlgorithm objects for excitatory and

inhibitory connections, and a CircuitDescription. This design means that

all layers in a DynamicNetwork have the same dynamics and circuit structure.

However, a Project does not limit the number of DynamicNetwork objects, so

greater flexibility can be achieved by having a DynamicNetwork for each layer,

with algorithms specified as desired.

Chapter 2 25 DIANNA

2.2.2 DynamicNetwork Structure

A DynamicNetwork‘s structure is defined by LayerDescription and

CircuitDescription objects. A LayerDescription specifies the number of

circuits in a two-dimensional sheet, as height and width, and has a third dimension

specifying the number of features in this layer. When the DynamicNetwork is

constructed, the Project allocates Node objects calculated as the number of fea-

tures multiplied by the number of circuits in each feature, multiplied by the number

of nodes in each circuit.

CircuitDescription objects consist of CircuitNodeRole objects which de-

scribe what role a Node plays within the circuit. Roles with the input property

allow incoming connections to the circuit, while roles with the output property

are used for visualization of the circuit’s activity. The CircuitDescription

includes connectivity information for all its internal connections.

After construction of a DynamicNetwork each layer has been converted to cir-

cuits. However, with the exception of intra-circuit connections specified in the

CircuitDescription, the network is disconnected. To create inter-circuit and

inter-layer connections DynamicMapper objects are needed. These objects spec-

ify how two layers are linked together through their circuits. Once a Dynamic-

Network has been converted to Nodes, DynamicMappers can be used to create

arbitrary connections between layers of different networks.

2.2.3 Applying Patterns to a DynamicNetwork

A LayerDescription specifies whether a layer is an input or output layer. The

CircuitDescription also specifies particular nodes as input or output nodes for

that circuit. Where a node is both an input node and exists in an input layer, input

patterns can be applied to the DynamicNetwork during a simulation.

See section 2.3.2 for details on the training file format.

2.2.4 Training Neural Networks

A Project manages Simulations of DynamicNetworks by evolving each node

by a small time value. A small time period improves accuracy of the simulation

Chapter 2 26 DIANNA

while increasing computational overhead. This overhead makes it infeasible to

train dynamical networks in the same way as ANNs. However, the alternative to

training an ANN is to specify all of the weights by hand, which again, is infeasible

for larger networks.

However, if the network is partially ordered, evolving this way is unnecessary as

the inputs to a node will not change during the time-course of a simulation. The

Backpropagation algorithm for training ANNs requires this partial ordering prop-

erty for the correct allocation of ‘blame’ to the source of the errors. So if even

part of a network is partially ordered it would be useful to be able to train this part

before weaving it into the larger population of networks managed by the Project.

A DynamicNetwork has a AbstractNetworkBuilder parameter for defining

an ANN from which connection weights can be extracted.

2.2.4.1 Training Artificial Neural Networks

The Backpropagation algorithm requires parameters not specified for

DynamicNetwork objects which do not have a backing ANN. These parameters

are used to configure a AbstractNetworkBuilder instance. The code below

shows how to configure a network trained via Backpropagation:

ann_param = SigmoidParameters(rate_max=2.0, noise=0.001)

ann_alg = GaussianAlgorithm("ann", ann_param)

project.addAlgorithm(ann_alg)

ann_mappers.append(BubbleANNMapper(0, 0, 1, 0, 1.0, 2.))

params = TrainingParameters(learning_rate = 1.0,

momentum = 0.0,

max_epochs = 25,training_set_mse = 1e-3,

log_file_name = fwd_log_file_name,

log_file_resolution = 5,

training_set_file_name = training_set_file_name,

use_batch = True, use_bias = False)

fwd_builder = BackpropNetworkBuilder(project,

"fnet",

trained_fwd_net_file_name,

Chapter 2 27 DIANNA

params,

("V1", "V2", "V4", "PIT", "AIT"),

ann_mappers,

ann_alg)

fwd_net_description = DynamicNetworkDescription("fnet",

"perceptron",

("V1", "V2", "V4", "PIT", "AIT"),

"exc", "inh",

fwd_builder)

project.addDynamicNetworkDescription(fwd_net_description)

See TrainingParameters for details of accepted parameters.

A TrainingParameters object is populated and used to configure a

BackpropNetworkBuilder object. This object will create a network named

“fnet” with the previously defined layers named “V1”, “V2”, “V4”, “PIT”, and

“AIT”. The layers are connected via the mappers defined in ANNMapper, only

one of which is shown in the code snippet. A DynamicNetwork is then created

with a named CircuitDescription “perceptron” and the AbstractNetwork-

Builder object, passed as the final constructor parameter.

After adding the DynamicNetwork to the Project the network not yet is avail-

able for use. At this time the NeuralNetwork has not been constructed, so

no Nodes have been created. This is because the Project lazy loads Neural-

Network s as required. In order to create this NeuralNetwork simply call:

Project.getNetwork("fnet")

This will return the in-memory NeuralNetwork if it exists, or load the

NeuralNetwork from disk, if it exists, or build the NeuralNetwork from its

description otherwise.

At this stage the NeuralNetwork is constructed, but its weights will be random.

The NeuralNetwork is trained via its AbstractNetworkBuilder object:

network.builder.trainNetwork()

This could take some time, depending on many factors, such as the size of the net-

work, the error rate sought, the number of training patterns, among many others.

Chapter 2 28 DIANNA

During training, progress information is written to a log file at the resolution speci-

fied in the TrainingParameters given to the The AbstractNetworkBuilder

instance used to construct the NeuralNetwork.

Once trained, the NeuralNetwork is written to disk at the location specified in the

AbstractNetworkBuilder constructor. Subsequent fetches of this network will

try to load this previously trained NeuralNetwork, and if not found will create

and train a new NeuralNetwork.

An ANN cannot be used directly with DynamicNetworks, and is transparently

converted into a DynamicNetwork of circuits as specified by the

CircuitDescription name given to the DynamicNetworkDescription con-

structor. Internally this is done by creating ANNToDynamicMapper objects which

map ANN nodes to circuit roles in the new DynamicNetwork. ANNs can output

positive and negative values. When mapped to a DynamicNetwork which out-

puts spike rates, negative values are nonsensical. During the conversion the ANN-

ToDynamicMapper maps positive output activity of the ANN node to a positive

input node in the circuit, and negative output activity to a different circuit node.

CircuitNodeRoles also have the positive property, which signifies whether

the output should be considered as positive or negative in sign, despite the output

always indicating a positive spike rate.

2.3 Network Inputs

The network receives input through specialized input layers. These layers con-

tain neurons which output a fixed spike rate which is determined by a variety of

methods: direct input, XML-based input or extracted from images via input filters

(Gabor filters, and colour filters).

2.3.1 Direct Input

Ad-hoc input patterns can be created through visualizing artificial neural networks.

By selecting individual nodes in input layers, an output rate can be specified di-

rectly. This method allows arbitrary patterns to be created and immediate feedback

of the network’s response to be visualized. At any point a dynamical simulation

can be created from patterns entered using this method and visualized separately

Chapter 2 29 DIANNA

for investigation of more complex neural dynamics. The direct input method also

allows editing of input patterns specified by alternative methods.

2.3.2 XML-based Input

For the trained network to generalize on novel inputs it must be trained on a large

number of inputs and their matching output patterns. Matching pairs of input and

output patterns for each neural network can be specified in an XML format and

passed to the network during training, or specified as input patterns for a dynamical

simulation. Collections of these input-output pairs can be created for training,

generalization and validation patterns. These patterns can be marshaled to XML

for storage in pattern files for reuse in future training or simulations.

The format of the XML is simple and the schema is provided below. Every in-

put neuron has its activity specified directly in the XML. The simplicity of this

approach allows pattern files to be reused for multiple networks and simulations

rather than be tied to network for which is was originally created.

The training file is a simple XML format, allowing hand editing of training data or

generation by external tools.

The training file has a root node training_set with three child nodes of:

• training_units: Patterns applied during training for the network to learn

from.

• generalization_units: Applied after each training epoch to test how

well the network can generalize to untrained input.

• validation_units: Applied after training is complete to test how well

the network performs on completely unseen data.

The generalization_units and validation_units can both be empty tags.

Each training unit consists of two patterns, the first is the input pattern, the second

the output pattern. The patterns must have the same dimensions (width, height,

and num_features) as the layers they will be applied to.

The DATA portion of the pattern is space separated input rates for each node. The

data is mapped to the input layer in row order, feature by feature. The following

Chapter 2 30 DIANNA

pseudo-XML describes the structure at the training_set level:

<training_set>

<training_units>

...

<training_unit />

...

</training_units>

<generalisation_units>

...

<training_unit />

...

</generalisation_units>

<validation_units>

...

<training_unit />

...

</validation_units>

</training_set>

The training_units, generalisation_units and validation_units tags

contain training_unit tags with the following format:

<training_unit>

<pattern height="1" width="1" num_features="5">DATA</pattern>

<pattern height="1" width="1" num_features="5">DATA</pattern>

</training_unit>

For example, given the LayerDescription:

<layer_description name="layer" height="2" width="2"

num_features="3"/>

This produces 12 nodes:

A B E F I J

C D G H K L

Given the pattern:

Chapter 2 31 DIANNA

<pattern height="2" width="2" num_features="3">

0 1 2 3 4 5 6 7 8 9 10 11

</pattern>

The inputs would be applied:

A B E F I J

0 1 4 5 8 9

C D G H K L

2 3 6 7 10 11

2.3.3 Image-based Input

2.3.3.1 Gabor filters

Input patterns can also be applied to the network as colour images (Red, Green, and

Blue channels), and processed via 2-dimensional Gabor filters into appropriate in-

put for each feature type [13, 14]. Gabor filters are comprised of a sinusoidal wave

with a given direction and wavelength, and a Gaussian mask with defined radius

and standard deviation. This mask can be applied such that a only a single half-

cycle of the wave is unmasked, thereby allowing the Gabor filter to only pass lines

of a single orientation (and multiple thicknesses, if multiple wavelengths are used

to define the sinusoidal waveform). The waveform includes real and imaginary

components, which are slightly offset from each other, such that in combination,

the Gabor filter is capable of differentiating between lines which pass from dark to

light (and vice versa). This allows a sense of which edge of the detected line is in-

ternal or external to a solid object to be imparted to the network, assuming that the

background remains constant across the image. Figure 2.2 shows example output

of 2-dimensional Gabor filters sensitive to lines of 0◦, 45◦, 90◦ and 135◦, applied

to an image containing the outline of a square.

Each feature within an input layer can have Gabor filters attached to process the

images for features of interest. Gabor filters can be constructed to detect lines of

a given orientation and spatial frequency and input to the receptive field of each

input neuron. For each form feature, Gabor filters with a common orientation but

Chapter 2 32 DIANNA

Input 0° 45° 90° 135°

Figure 2.2: An input image of the outline of a white square applied to Gabor filters
with orientations of 0°, 45°, 90°, and 135° (middle row), and their outputs (bottom
row).

different spatial frequencies can be constructed and applied via a FilterBank ob-

ject, which consolidates all contained Gabor filters into a composite which applies

input in the same way as a single Gabor filter, but provides detection of different

widths of line to the same input neurons. The filter bank may be comprised of

log-Gabor filters [25], where the spatial frequencies of each filter are separated on

a logarithmic scale, which perform better on natural images and are more robust

to multiple spatial frequencies than linear Gabor filters [25]. The idea of multiple

Gabor filters with different spatial frequencies and orientations but centred on the

same spatial location is termed a Gabor Jet and has been proposed as the basis for

V1 hypercolumns [9].

The receptive field properties of each input neuron such as its size, shape and over-

lap can be set for the input layer independently of the Gabor filter. The three colour

channels are collapsed to a grey-scale image for use with Gabor filters, as the colour

components are not generally meaningful in the context of line orientations. How-

ever, images of each colour channel may be applied separately, if combinations of

colour and form are needed.

By using Gabor filters, the suppression of neural activity to anti-preferred stimuli,

as discussed in section 1.4, can be performed by the application of Gabor filters

sensitive to orthogonally oriented lines as negative inputs to the same form feature.

2.3.4 Colour filters

In order to model the colour modality of feature based attention ‘Colour filters’

allow the extraction of single colour channels from images to be applied to input

Chapter 2 33 DIANNA

layers. The receptive field properties of each input neuron can be set independently,

as described previously for Gabor filters (see 2.3.3.1).

2.4 Circuit Editor

(a) (b)

Figure 2.3: Circuit editor application main interface, showing the disinhibition with
lateral inhibition circuit: a) names of circuit members, b) connection weights. Red
connections/weights are inhibitory. Red outlined nodes are input nodes to test the
circuit and are not part of the circuit itself.

In order to develop and test the functionality of cortical circuits, DIANNA includes

a graphical application for the creation and evaluation of circuits of Wilson-Cowan

populations (figures 2.3 and 2.4).

The circuit editor application allows arbitrary connection structures to be designed

and inputs applied to check the circuit’s behaviour. Inputs and weights can all

be varied independently. The designed circuits can then be output as XML for

inclusion into a DIANNA project file, or printed as Portable Network Graphics

(PNG) bitmaps or vector graphics for publication. The images of circuits shown

in this thesis were all generated using this tool.

Chapter 2 34 DIANNA

(a) (b)

Figure 2.4: Circuit editor application: a) Creating a new circuit member b) Editing
an existing circuit member and its connection weights.

Chapter 2 35 DIANNA

2.5 An example DIANNA project

This section provides an annotated example of using DIANNA to train an ANN

of 3 layers to solve the Exclusive OR (XOR) logical operation. This ANN is then

converted to a dynamical simulation.

First a Project object is created to hold all of the components of the ANN and

simulations:

project_desc = ProjectDescription("xor_network")

project_desc.setDescription(

"XOR network to demonstrate algorithm’s convergence speed")

project = Project(project_desc)

Three layers are then added to the Project. The first two layers (named “First”

and “Mid”) are 2 neurons high and 1 neuron wide. The “First” layer also acts

as the input layer. In DIANNA terms, this means inputs are applied directly to

layer “First”, rather than via a dedicated input layer, as is commonly seen in neural

network examples. Therefore the weights between layers “First” and “Mid” will

be altered by training, despite layer “First” also being an input layer.

project.addLayerDescription(

LayerDescription("First", 2, 1, 1, is_input=True)

)

project.addLayerDescription(

LayerDescription("Mid", 2, 1, 1)

)

project.addLayerDescription(

LayerDescription("Last", 1, 1, 1)

)

Next, some data for training is created. This is done algorithmically, and creates

4 input/output pattern pairs, matching the truth table for the XOR logical operator.

The training patterns are added to a TrainingSet, which is then wrapped in a

TrainingSetInputFilter object, which specifies to which layers the input and

output patterns correspond.

tus = [] for x in range(2):

Chapter 2 36 DIANNA

for y in range(2):

inPat = Pattern(2, 1, 1)

inPat.setAt(0,0,0,x*0.9)

inPat.setAt(0,1,0,y*0.9)

result = 0.0

if x != y:

result = 0.9

outPat = Pattern(1, 1, 1)

outPat.setAt(0,0,0,result)

tus.append(TrainingUnit(inPat, outPat))

Wrap the TrainingUnits in an InputFilter

training_set = TrainingSet(tus, [], [])

xor_input_filter = TrainingSetInputFilter(

project,

"First", "Last",

training_set)

A ZeroBasedSigmoidAlgorithm is then defined for all of the ANN nodes. By

varying the algorithm and parameters, the convergence speed can be greatly im-

proved. Training parameters are then specified. In this example, the training will

be completed when the mean-squared error of the training patterns is less than

1× 10−3. The bias, or threshold, of the ANN nodes is not trained. Momentum is

not used, as the patterns are applied randomly, and on-line training is used, whereby

the network weights are updated after each training pattern has been propagated

through the network (specified by use_batch=False).

The algorithms and TrainingParameters are used to create a BackpropNetwork-

Builder. This object will create the structure of the network, and will apply the

backpropagation algorithm during training.

Default parameters: noise=1, power=1

ann_param = AlgorithmParameters()

Converges in ~1480 epochs

ann_alg = ZeroBasedSigmoidAlgorithm(

"zero_based_sigmoid_n1_p1", ann_param)

Chapter 2 37 DIANNA

project.addAlgorithm(ann_alg)

Train forward net by setting up common training parameters

params = TrainingParameters(

learning_rate = 1.0,

momentum = 0.0,

max_epochs = 10000,training_set_mse = 1e-3,

input_filter = xor_input_filter,

log_file_name = "log.txt",

log_file_resolution = 1,

use_batch = False, use_bias=True)

Training params are used by a network builder object

xor_builder = BackpropNetworkBuilder(project,

"xor",

ann_filename,

params,

("First", "Mid", "Last"),

[], # Empty mappers object, as weights create manually

(ann_alg.getName(), # List of algorithms for each layer

ann_alg.getName(),

ann_alg.getName()))

Create the nodes

xor_builder.build()

The network is then constructed. However, at this point each node in the network

is disconnected. DIANNA is more suited to creating layered network architec-

tures with a common connection structure between nodes in each pair of layers.

This is performed via the creation of ANNMapper objects, which are passed to

the BackpropNetworkBuilder during its construction. As the XOR network is

small, the initial weights are specified by hand.

Get the network and nodes

net = xor_builder.getNetwork()

node_a = net._nodes[0]

node_b = net._nodes[1]

node_p = net._nodes[2]

node_o = net._nodes[3]

Chapter 2 38 DIANNA

node_z = net._nodes[4]

Manually create the connections as (predecessor_node, weight)

node_p.addIncoming(node_a, 2.0)

node_p.addIncoming(node_b, 3.0)

node_o.addIncoming(node_a, 1.0)

node_o.addIncoming(node_b, 2.0)

node_z.addIncoming(node_p, 2.0)

node_z.addIncoming(node_o, -1.0)

An equivalent structure, but with random weights between the nodes of each adja-

cent layer, could be created with the following ANNMapper objects:

first_to_mid_mapper = AllToAllRandomANNMapper(

"First", 0,

"Mid", 0,

3)

mid_to_last_mapper = AllToAllRandomANNMapper(

"Mid", 0,

"Last", 0,

3)

In this example, first_to_mid_mapperwill create connections between all nodes

in the “First” layer, to all nodes in the “Mid” layer, with a random weight in the

range -3.0 to 3.0. Likewise, mid_to_last_mapper will create random weights

between the middle and output layers within the same range.

Once the connection structure has been specified, the network is trained.

xor_builder.trainNetwork()

At this point, the ANN has been created, and the weights have been trained for

the network to perform the XOR operation on its inputs. The code following this

point of the example program demonstrates creating dynamical networks and sim-

ulations with DIANNA.

A Perceptron circuit is created using separate PositiveZeroBasedSigmoid-

Algorithms for the excitatory and inhibitory populations of the circuit. These

algorithms are created with identical parameters, except for the membrane time

Chapter 2 39 DIANNA

constant (the time_membrane parameter). A plot of these sigmoid functions is

show in figure 4.1.

exc_param = AlgorithmParameters(

time_membrane=1e-2,

rate_max=100.0,

power=1.0, noise=1.0,

max_update_step=5e-4)

exc_sigmoid_alg = PositiveZeroBasedSigmoidAlgorithm(

"exc_sigmoid_alg", exc_param)

inh_param = AlgorithmParameters(

time_membrane=5e-3,

rate_max=100.0,

power=1.0,

noise=1.0,

max_update_step=5e-4)

inh_sigmoid_alg = PositiveZeroBasedSigmoidAlgorithm(

"inh_sigmoid_alg", inh_param)

Add them to the project

project.addAlgorithm(exc_sigmoid_alg)

project.addAlgorithm(inh_sigmoid_alg)

The Perceptron circuit is then defined, specifying these algorithms for each popu-

lation in the circuit. These populations are created via CircuitNodeRole objects,

as each population plays a different role within the circuit. The Perceptron circuit,

and the roles each population plays within it are described in detail in section 4.2.1.

perceptron_sigmoid = CircuitDescription(

name="perceptron", number_of_nodes=6)

e_p = CircuitNodeRole("e_p", # Name

x_pos=3.0, y_pos=-2.0, z_pos=0.0, # Position

algorithm_name="exc_sigmoid_alg", # Algorithm

is_excitatory=True, # Inhibitory/Excitatory

is_input=True) # Receives input to the circuit

i_p = CircuitNodeRole("i_p", x_pos=-3.0, y_pos=-2.0, z_pos=0.0,

algorithm_name="inh_sigmoid_alg",

Chapter 2 40 DIANNA

is_excitatory=False, is_input=True)

e_n = CircuitNodeRole("e_n", x_pos=1.0, y_pos=-2.0, z_pos=0.0,

algorithm_name="exc_sigmoid_alg",

is_excitatory=True, is_input=True,

is_positive=False)

i_n = CircuitNodeRole("i_n", x_pos=-1.0, y_pos=-2.0, z_pos=0.0,

algorithm_name="inh_sigmoid_alg",

is_excitatory=False, is_input=True,

is_positive=False)

p_out = CircuitNodeRole("p_out", x_pos=3.0, y_pos=-2.0, z_pos=0.0,

algorithm_name="exc_sigmoid_alg",

is_excitatory=True, is_output=True)

n_out = CircuitNodeRole("n_out", x_pos=-3.0, y_pos=-2.0, z_pos=0.0,

algorithm_name="exc_sigmoid_alg",

is_excitatory=True, is_output=True,

is_positive=False)

Set up intra-circuit connections

p_out.addIncoming("e_p", 2.0)

p_out.addIncoming("i_n", -2.0)

n_out.addIncoming("e_n", 2.0)

n_out.addIncoming("i_p", -2.0)

Add roles to circuit description

perceptron_sigmoid.addCircuitNodeRole(e_p)

perceptron_sigmoid.addCircuitNodeRole(i_p)

perceptron_sigmoid.addCircuitNodeRole(e_n)

perceptron_sigmoid.addCircuitNodeRole(i_n)

perceptron_sigmoid.addCircuitNodeRole(p_out)

perceptron_sigmoid.addCircuitNodeRole(n_out)

Register circuit description in the project

project.addCircuitDescription(perceptron_sigmoid)

Next we create a DynamicNetwork. The network consists of the previously de-

fined layers, “First”, “Mid” and “Last”, and the circuits used to replace each ANN

Chapter 2 41 DIANNA

node in these layers. The DynamicNetwork constructor is passed the Builder

object used to create the earlier ANN, which is used by the DynamicNetwork ob-

ject to build its internal network structure, copying the weights from the trained

ANN. The DynamicNetwork is created at first use, so after the dynamic network

is defined, we get it from the Project object, which causes the network to be

constructed

Define a dynamic network.

dnet_description = DynamicNetworkDescription(

"xor", # Name

("perceptron", "perceptron", "perceptron",),

("First", "Mid", "Last"),

xor_builder,

dynamic_inputs=False)

project.addDynamicNetworkDescription(dnet_description)

Create the dynamic network

project.getDynamicNetworkByName("xor")

A simulation consists of constructed DynamicNetworks and InputPatterns to

apply to those networks. An InputPattern requires parameters for a Pattern

object, the names of the network and layer to which the Pattern is to be applied,

and the time at which to apply it. A list of InputPatterns to use in a simulation

is provided to the SimulationParameter constructor. Further parameters to the

SimulationParameter constructor are shown in the code snippet below.

The simulation is run from the start_time to the end_time in time steps of

network_step_time. The networks are updated at update_time intervals, and

the state of the networks is written to a results file at report_time intervals.

Progress information is written to a log file at log_time intervals. In the example

below, the simulation runs for 100ms, and the state of the simulation is recorded

every 1ms, resulting in 100 snapshots of the state of the networks being recorded.

Set the input to the simulation to be the second pattern

input_patterns = []

input_patterns.append(InputPattern(

"xor", "First", 0.0,

xor_input_filter.getInputPattern(1)))

Chapter 2 42 DIANNA

Define a simulation

simulation_description = SimulationParameter(

name="sim",

max_iterations = 100000,

start_time=0.0,

end_time=0.1,

report_time=1e-3,

update_time=1e-4,

network_step_time=1e-5,

log_time=1e-2,

input_patterns=input_patterns,

progress_file_name=simulation_progress_filename,

output_file_name=simulation_filename)

Add the simulation description to the project

project.addSimulationDescription(simulation_description)

project.createConnections()

Run all simulations

project.runSimulations()

In order to view the recorded simulation data, a Visualisation is created con-

taining each layer to be visualized, and a 2D position of that layer. The Visualisation-

Parameters object sets colours used for the visualization, and the initial camera

position and zoom-level.

A sample visualisation

vis_params = VisualisationParameters(

(1.0, 0.0, -1.0),

(0xFF0000, 0xFFFFFF, 0x0000FF, 0xF0F0F0),

SpatialPosition(), 5.0)

first_vis_layer = SpatialLayerDescription(project,

’xor’, ’First’, SpatialPosition(0, 0))

second_vis_layer = SpatialLayerDescription(project,

’xor’, ’Mid’, SpatialPosition(75, 0))

last_vis_layer = SpatialLayerDescription(project,

’xor’, ’Last’, SpatialPosition(150, 5))

Chapter 2 43 DIANNA

vis1 = Visualisation(project, ’vis1’, "sim", vis_params,

(first_vis_layer, second_vis_layer, last_vis_layer))

project.addVisualisationDescription(vis1)

Images of the simulation at frame 100, and plots of the activity of the output node

are shown in figure 2.6 and 2.7. Figure 2.5 shows the trained ANN with each

training pattern propagated through the network.

For larger networks and simulations, the creation of connections can be very time-

consuming. This connection structure can be written to a cache and used for sub-

sequent simulations. If the cache file exists, the connections will be read from it,

rather than created at runtime.

Write out the connection structure to a cache file

project.writeDynamicNetworksToCacheFile()

Finally, the Project object can be written to disk as an XML file.

Write the project to disk using a ProjectWriter object

writer = ProjectWriter(project)

writer.writeProject(project_filename)

2.5.1 Project XML Format

The project XML file is the central configuration location for the declarative defini-

tion of a DIANNA project, simulations and visualizations. An example of the XML

file format is given below, which is equivalent to the coded example described in

section 2.5. The XML may be hand coded and provided to DIANNA’s Project-

Runner application, along with the name of a simulation to run, and the number

of CPU cores to use for the simulation. The XML may also be created from the

programmatic approach by passing the Project object to a ProjectWriter as

shown in the previous section.

<?xml version=’1.0’ encoding=’UTF-8’?>

<project name="xor_network">

<project_description>

XOR network simulation with Perceptron Circuits

</project_description>

Chapter 2 44 DIANNA

xor:First xor:Mid xor:Last

(a)

xor:First xor:Mid xor:Last

(b)

xor:First xor:Mid xor:Last

(c)

xor:First xor:Mid xor:Last

(d)

Figure 2.5: ANN images for the XOR-Network. Input to the network is applied to
the two left hand nodes, and output is the right hand node. (a) Input of 0,0 shows
0 output. (b) Input of 0, 1 shows positive output. (c) Input of 1, 0 shows positive
output. (d) Input of 1, 1 shows 0 output. Red shows strong positive output, white 0
output. Negative output is set to blue in the Visualisation object, but is absent
in these results.

<layers>

<layer_description name="First"

height="2" width="1"

num_features="1" input="True"/>

<layer_description name="Mid"

height="2" width="1" num_features="1"

input="False"/>

<layer_description name="Last"

height="1" width="1"

num_features="1" input="False"/>

</layers>

<algorithms>

<zero_based_sigmoid_algorithm name="zero_based_sigmoid_n1_p1">

<algorithm_parameter rate_max="1.0" noise="1.0"

Chapter 2 45 DIANNA

xor:First xor:Mid xor:Last

(a)

xor:First xor:Mid xor:Last

(b)

xor:First xor:Mid xor:Last

(c)

xor:First xor:Mid xor:Last

(d)

Figure 2.6: Simulation images for the XOR-Network at the end of the simulation
(100ms, frame 100). Input to the network is applied to the two left hand nodes,
and output is the right hand node. (a) Input of 0Hz to both input population of
layer “First”. (b) Input of 0Hz to the top and 90Hz to the bottom input populations
of layer “First”. (c) Input of 90Hz to the top and 0Hz to the bottom input pop-
ulations of layer “First”. (d) Input of 90Hz to both input layer populations. Red
shows strong positive output, white 0 output. Negative output is set to blue in the
Visualisation object, but is absent in these results.

max_update_step="0.01" power="1.0" bias="0.0"

refractory_period="0.0"

time_membrane="1.0"/>

</zero_based_sigmoid_algorithm>

<positive_zero_based_sigmoid_algorithm

name="exc_sigmoid_alg">

<algorithm_parameter rate_max="100.0" noise="1.0"

max_update_step="0.0005"

power="1.0" bias="0.0"

refractory_period="0.0"

time_membrane="0.01"/>

</positive_zero_based_sigmoid_algorithm>

Chapter 2 46 DIANNA

0.00 0.02 0.04 0.06 0.08 0.10
Time (sec)

0.06

0.04

0.02

0.00

0.02

0.04

0.06

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [24, 25, 26, 27, 28, 29]

e_p

i_p

e_n

i_n

p_out

n_out

(a)

0.00 0.02 0.04 0.06 0.08 0.10
Time (sec)

0

20

40

60

80

100

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [24, 25, 26, 27, 28, 29]

e_p

i_p

e_n

i_n

p_out

n_out

(b)

0.00 0.02 0.04 0.06 0.08 0.10
Time (sec)

0

20

40

60

80

100

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [24, 25, 26, 27, 28, 29]

e_p

i_p

e_n

i_n

p_out

n_out

(c)

0.00 0.02 0.04 0.06 0.08 0.10
Time (sec)

0

20

40

60

80

100

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [24, 25, 26, 27, 28, 29]

e_p

i_p

e_n

i_n

p_out

n_out

(d)

Figure 2.7: Plots of circuit activity for the output layer for the XOR-Network. (a)
Input of 0Hz to each input layer population. (b) Input of 0Hz and 90Hz to the
input layer populations. (c) Input of 90Hz and 0Hz to the input layer populations.
(d) Input of 90Hz to both input layer populations. A description of each of the
populations of this circuit is given in section 4.2.1.

<positive_zero_based_sigmoid_algorithm

name="inh_sigmoid_alg">

<algorithm_parameter rate_max="100.0" noise="1.0"

max_update_step="0.0005" power="1.0" bias="0.0"

refractory_period="0.0"

time_membrane="0.005"/>

</positive_zero_based_sigmoid_algorithm>

</algorithms>

<circuit_descriptions>

<circuit_description name="perceptron" number_of_roles="6">

<circuit_node_role name="e_p"

x_pos="3.0" y_pos="-2.0" z_pos="0.0"

Chapter 2 47 DIANNA

excitatory="True" output="False"

input="True" positive="True"

algorithm="exc_sigmoid_alg"/>

<circuit_node_role name="i_p"

x_pos="-3.0" y_pos="-2.0" z_pos="0.0"

excitatory="False" output="False"

input="True" positive="True"

algorithm="inh_sigmoid_alg"/>

<circuit_node_role name="e_n"

x_pos="1.0" y_pos="-2.0" z_pos="0.0"

excitatory="True" output="False"

input="True" positive="False"

algorithm="exc_sigmoid_alg"/>

<circuit_node_role name="i_n"

x_pos="-1.0" y_pos="-2.0" z_pos="0.0"

excitatory="False" output="False"

input="True" positive="False"

algorithm="inh_sigmoid_alg"/>

<circuit_node_role name="p_out"

x_pos="3.0" y_pos="-2.0" z_pos="0.0"

excitatory="True" output="True"

input="False" positive="True"

algorithm="exc_sigmoid_alg"/>

<circuit_node_role name="n_out"

x_pos="-3.0" y_pos="-2.0" z_pos="0.0"

excitatory="True" output="True"

input="False" positive="False"

algorithm="exc_sigmoid_alg"/>

<connection from="e_p" to="p_out" weight="2.0"/>

<connection from="i_n" to="p_out" weight="-2.0"/>

<connection from="e_n" to="n_out" weight="2.0"/>

<connection from="i_p" to="n_out" weight="-2.0"/>

</circuit_description>

</circuit_descriptions>

<dynamic_networks>

<dynamic_network name="xor"

Chapter 2 48 DIANNA

dynamic_inputs="False"

dales_law="True"

use_bias="False">

<layers>

<layer>First</layer>

<layer>Mid</layer>

<layer>Last</layer>

</layers>

<circuit_names>

<circuit>perceptron</circuit>

<circuit>perceptron</circuit>

<circuit>perceptron</circuit>

</circuit_names>

<ann name="xor"

filename="WilsonCowanXORPerceptron.net"

type="backprop">

<algorithms>

<algorithm>zero_based_sigmoid_n1_p1</algorithm>

<algorithm>zero_based_sigmoid_n1_p1</algorithm>

<algorithm>zero_based_sigmoid_n1_p1</algorithm>

</algorithms>

<backprop_trainer>

<layers>

<layer>First</layer>

<layer>Mid</layer>

<layer>Last</layer>

</layers>

<mappers/>

<training_parameters learning_rate="1.0"

momentum="0.0"

use_batch="False"

use_bias="True"

relax="False"

max_epochs="10000"

training_set_mse="0.001"

validation_set_mse="0.0"

Chapter 2 49 DIANNA

generalisation_set_mse="0.0"

log_file_name="log.txt"

log_file_resolution="1"

noise_level="0.0"

noise_strength="0.0">

<layers_to_train>

<layer_name>*</layer_name>

</layers_to_train>

<filter_description type="trainingset_input_filter"

input_layer_name="First"

output_layer_name="Last"

x_scale="1.0"

y_scale="1.0"

filename="None">

<training_set>

<training_units>

<training_unit>

<pattern height="2" width="1" num_features="1">

0.0 0.0

</pattern>

<pattern height="1" width="1" num_features="1">

0.0

</pattern>

</training_unit>

<training_unit>

<pattern height="2" width="1" num_features="1">

0.0 0.9

</pattern>

<pattern height="1" width="1" num_features="1">

0.9

</pattern>

</training_unit>

<training_unit>

<pattern height="2" width="1" num_features="1">

0.9 0.0

</pattern>

Chapter 2 50 DIANNA

<pattern height="1" width="1" num_features="1">

0.9

</pattern>

</training_unit>

<training_unit>

<pattern height="2" width="1" num_features="1">

0.9 0.9

</pattern>

<pattern height="1" width="1" num_features="1">

0.0

</pattern>

</training_unit>

</training_units>

<generalisation_units/>

<validation_units/>

</training_set>

</filter_description>

</training_parameters>

</backprop_trainer>

</ann>

</dynamic_network>

</dynamic_networks>

<dynamic_mappers/>

<simulations>

<simulation name="sim" start_time="0.0" end_time="0.1"

report_time="0.001" update_time="0.0001"

step_time="1e-05" log_time="0.01"

max_iterations="100000"

progress_filename="WilsonCowanXORPerceptron.progress"

output_filename="WilsonCowanXORPerceptron_sim.data">

<description/>

<input_patterns>

<input_pattern network="xor" layer="First" time="0.0">

<pattern height="2" width="1" num_features="1">

0.9 0.9

</pattern>

Chapter 2 51 DIANNA

</input_pattern>

</input_patterns>

</simulation>

</simulations>

<visualisations>

<visualisation name="vis1" simulation="sim">

<description></description>

<parameters x="0.0" y="0.0"

high_colour="16711680" mid_colour="16777215"

low_colour="255" background_colour="15790320"

high_value="1.0" mid_value="0.0" low_value="-1.0"

zoom="5.0" frame="0" frame_step="1"/>

<layers>

<spatial_layer net="xor" layer="First"

x_pos="0" y_pos="0" scale="10.0"

layout="horizontal" show_ann="False"/>

<spatial_layer net="xor" layer="Mid"

x_pos="75" y_pos="0" scale="10.0"

layout="horizontal" show_ann="False"/>

<spatial_layer net="xor" layer="Last"

x_pos="150" y_pos="5" scale="10.0"

layout="horizontal" show_ann="False"/>

</layers>

</visualisation>

</visualisations>

</project>

Chapter 3

Modelling Feature-based
Attention with ANNs

This chapter discusses modelling Feature-based Attention using ANNs.

3.1 Learning for Feature-based Attention

From section 1.1, an image of the visual brain emerges as a distributed storage

medium, with no single area maintaining a representation of objects as a whole,

but as compositions of their constituent features. This distributed representation

allows greater number of objects to be detected than a localized representation,

which would have to store every combination of features for each object category,

but at the cost of more complex ‘recall’ of objects by engaging each associated

feature with the visual stimulus and using the presence and spatial relationships

between features to determine the existence of an object category in the visual field.

This linking together of disparate features to form a whole is termed ‘binding’.

In both CLAM and DIANNA the model comprises a distributed representation

of form as V1 feature layers sensitive to lines of orientation. By using the V1

layer as a common ‘blackboard’ [18, 76] for the ventral forward and reverse neural

streams, these distributed form features are bound together to allow the presence

of the object as a whole to be determined. Maintaining object representations in

a distributed fashion, rather than a Gestalt notion of a complete object, allows an

52

Chapter 3 53 ANN Model

object to still be detected when presented with occlusion by other objects, albeit at

a reduced strength of neural activity.

This idea of binding featural components at stimulus presentation in CLAM has

been incorporated into DIANNA. However, DIANNA extends this idea to use the

additional feature of colour.

3.1.1 Differences between feature types: form versus colour

In line with de Kamps and van der Velde’s argument [18] for a combinatorial rep-

resentation of real-world objects from separate features allowing novel objects to

be represented through binding of existing neural features, it would seem appropri-

ate that a mechanism for binding simple form features into complex objects would

provide similar efficiency gains. For this reason a different neural architecture is

proposed for dealing with form, where neural activity from simple V1 feature de-

tectors undergoes more complex transformations in higher layers of the ventral

stream, than colour, which would require no such transformations.

3.1.1.1 Colour feature detection

In DIANNA colour is modelled as a simple hierarchy of ventral stream layers (V1,

V2, V4, PIT, AIT), with each colour stream for red, green and blue segregated

from each other. The receptive fields of higher layers are mapped to predecessor

layers via Gaussian-shaped receptive fields, with higher strength connections at the

receptive field centre, and low strengths near the edge. No learning is performed

on this architecture, reflecting the simple nature of colour processing. Although it

should be noted that this is a simplification: in reality colour processing includes

such operations as colour constancy and luminance adjustment [61, 37].

3.1.1.2 Form feature detection

DIANNA models form feature detection in almost the same way as CLAM [78].

The mapping of lower layers to higher layers is initially determined via the same

Gaussian receptive field structure as in colour detection. However, inputs to V1

for each form feature have the real and imaginary components of Gabor filters

Chapter 3 54 ANN Model

applied in opposition: the real component is applied to V1 as positive input, and

the imaginary component as real valued negative input. In turn, orthogonal V1

form features input into V2 features, such that the V1 feature for 0◦ is input to a

V2 feature as positive values, and the V1 feature for 90◦ is input to the same V2

feature as negative values. Likewise V1 features for 45◦ and 135◦ are input to a

separate V2 feature. These two V2 feature layers feed into a common (for form)

V3 layer.

This mixing of form features allows binding of simple features (orientation of lines)

to be performed in higher layers, and for learning to occur. Clearly the process

of learning will change the weights between layers, breaking the initial Gaussian

receptive field structure of the form network. However, DIANNA departs again

from CLAM in that no learning is performed in the forward network. Learning is

performed instead purely in the reverse network, mapping AIT nodes to all lower

layer nodes with weights such that the reverse nodes’ activities match those of the

forward layer when the stimulus and attentional template are both present. This

method of learning is fast, as there are no hidden layers, allowing a simple delta-

rule gradient descent to be used as the learning algorithm, and allows learning

new attentional templates by adding new reverse AIT nodes without destroying the

weights from previously learned training sets.

3.2 Neural Training

3.2.1 Network-based feature learning

In CLAM the ventral stream is modelled with layers V1, V2, V4, PIT and AIT.

V1 consists of a number of feature detectors for lines of different orientation. AIT

consists of a number of populations representing each object type to be recognized

from its component straight lines. The CLAM approach to feature learning, the

network learns to associate V1 input to AIT output, but this is not achieved in a

well defined way. That is to say that the trained network does not yield layers

which perform as detectors of defined features; the representational knowledge is

truly distributed throughout the network.

The problem with this approach to learning features is that the literature shows

strong evidence for a separation of responsibility between each layer, which can-

Chapter 3 55 ANN Model

not be demonstrated within networks trained with this method. Furthermore, the

inclusion of more feature detectors only increases the crosstalk between the ex-

isting feature detectors. This also assumes that all features are detectable equally

strongly in all objects presented at all locations. This requires care to be taken in

the development of training patterns.

Training a five layered feed-forward network is also problematic. Backpropagation

of errors through four layers is computationally expensive. If objects are learned

at all scales, different features may be detected as salient at each scale, requiring

additional neural representations to be stored. Also if objects are not presented to

the network with care, artificial features caused by the presentation may be learned.

Boundary effects must also be considered if complete objects need to be presented

during training.

3.2.2 Layer-based feature learning

An alternative to training the network as a whole is to train each layer separately

on the inputs of its predecessor. This learning does not require backpropagation,

as training an individual layer removes the ‘hidden’ nodes that motivated the need

for backpropagation [58], and a simple delta learning rule will suffice.

In this approach, V1 inputs to V2, which is then trained to respond to points of

intersection explicitly, or to learn other features of V1. V4 receives the output

pattern of V2 as input. V4’s output pattern is constellations of V2 features. In

turn this output pattern is used as input to PIT, and PIT to AIT, using the same

simplified supervised training mechanism of reducing errors via a delta rule (i.e.

by determining the error between desired and actual activity, and adjusting the

weights to reduce this difference).

The role of each layer can be more easily defined with this new approach:

• V2: Detects conjunctions of simple V1 features, but the features detected by

V4 and above are less clear:

• V4: Scale invariance is achieved/mediated by not outputting joined up shapes

from V2. If V4 also receives input from V1, then its role could be to learn co-

hesive shapes. V4 is also strongly linked to colour perception, itself another

strong binding feature. V4 then learns which V2 shapes are bound together,

Chapter 3 56 ANN Model

through learning binding relationships, potentially collaborating with colour

perception binding information from V4. In addition, by coalescing V1 and

V2 output streams, circles can still be detected as areas of lines without cor-

ners.

• PIT: Receives cohesive shapes from V4, and outputs learned associations.

Its output pattern is a halo around all coherent components.

• AIT: Represented as clusters of nodes which together encompass the whole

visual field. Each member of the cluster has a receptive field over part of

PIT. This allows features and objects from cluttered visual input to still be

resolved (overlaps excluded).

These features detection layers, with clearly defined responsibilities, will greatly

improve the feature matching ability of the network, and make the network’s be-

haviour considerably easier to understand. While these roles are arbitrary, they

must be performed somewhere along the visual pathway, with the ventral stream

being the most likely locations for each operation.

From a computational point of view, training a network this way is less intensive

as there are no hidden layers, so backpropagation is unnecessary. However, the

generation of training data becomes more of a challenge. Feature detectors for

each of the various stages can be borrowed from the Computer Vision community

to provide suitable target patterns for the supervised learning of each layer.

A similar approach has been taken by Hinton [31] to learn hand-written digits.

Hinton’s approach used a layered system of Restricted Boltzmann Machines using

layers of either stochastic binary neurons or real-valued ‘probability’ neurons. The

network is trained in a layer-by-layer approach to learn generative weights from

the layer above. The intermediate layers of binary neurons are often referred to as

‘feature detectors’, while the top two layers of real-valued neurons form an associa-

tive memory. After training, the network may be fine tuned via backpropagation.

Hinton termed this type of network a Deep-belief Network (DBN).

The construction of networks as layers of ‘Nodes’, defining connectivity between

layers, and backpropagation were existing functions of DIANNA. Adding DBN

functionality to DIANNA has simply required the addition of an additional ‘Node’

type and training algorithm.

Chapter 3 57 ANN Model

3.2.3 Reciprocal network

The neural input progresses from V1 to AIT in a feed-forward fashion. Each layer

therefore represents transformed neural “views” of the stimuli entering the eye. In

order to attend to a particular feature, these neural views need to be matched against

some form of attentional template. Two approaches to generating this attentional

template were evaluated.

3.2.3.1 Hebbian Learning

A reverse network is created with the same neural structure as the forward network,

but each connection in the forward network is reversed. The weights of these

connections are then trained via Hebbian learning: each pattern is applied to the

forward network, and if cell A causes cell B to fire, the corresponding connection

in the reverse network from B to A is strengthened by the activity of cell A in the

forward network. This method is the same as that presented in CLAM [78].

Some problems exist with this approach: firstly, the magnitude of connection

weights in the reverse network is dependent upon the number of input patterns

activating the corresponding forward node, therefore in the general case the con-

nection strength between two nodes in the reverse network does not match that of

the forward network. A second issue arising from this training method is the effect

of boundary neurons receiving less activity than central neurons leading to lower

weights in the reverse network, which causes the order of magnitude of weights in

the reverse network differing greatly across each neural layer. The high variability

of the reverse connection weights makes it impossible to parametrize an algorithm

to work across disparate layers, and even the same layer.

3.2.3.2 Active State Learning

In this method, the learning of weights in the reverse network is a straightforward

matching of the neural output of each feed-forward node at a time a stimulus match-

ing the attentional template is present in its receptive field. In order to propagate

the attentional template from higher brain areas to these feature layers, the AIT

neurons are directly connected to neurons in the reverse network matching each

neuron in each forward layer.

Chapter 3 58 ANN Model

Training this reciprocal network is straightforward, with the desired output being

to minimize the global error between activity in reverse neurons and activity in

their matching forward neurons, by calculating the error in activity between the

nodes in the forward network and those of the active state learning network for

each location. As there are no hidden layers in architecture, backpropagation is

not required, so a simple delta rule can be used to update the weights between the

reverse network AIT neurons and nodes in all other layers of the reverse network,

with the target output activity of the reverse network nodes being the activity of

the nodes in the same location of the forward network. This thesis terms a network

trained in such a way to reflect the state of a forward network an “active state

network”.

The structure of the layers in the reverse active state network are identical to the

layers of the forward network (or network ensemble) it was created from, in terms

of the layer sizes and micro-circuit structures (for the dynamical networks – see

chapter 4). However, as noted above, the inter-layer connection structure is entirely

different: each AIT node is completely segregated from its peers, so new attentional

templates can be learned without loss of previously learned templates. In terms of

biological realism, this architecture is unlikely. However, this mechanism could be

relayed via the thalamus, or simply propagated in a direct one-to-one mechanism

from higher to lower areas (only one neuron per layer would be necessary to carry

the selected attentional template) with an intermediary layer of neurons weighted

to match the forward activities in each layer.

3.3 Object recognition

In [78], CLAM demonstrates object recognition in the forward ventral stream by

having each AIT population correspond to an object category. The network is

trained using the network-based approach (see 3.2.1) with backpropagation. How-

ever, the presentation of objects occurs at only four distinct (non-overlapping) lo-

cations, with four different objects. This means the neural network has only to

learn to discriminate four patterns, and these weights could be learned at a single

location and copied to the other three. This thesis presents objects at all locations,

such that all object locations are exposed to significant overlap. The resulting inter-

ference from this overlap greatly reduces the network’s ability to learn the object

Chapter 3 59 ANN Model

categories. Additionally, learning a new object category requires the previously

learned categories to be relearned (although convergence will be quicker for these

already learned patterns). As more objects are learned by the network, the relative

strength of activity of the correct AIT population versus the other AIT populations

will be diminished. The number of objects able to be learned by this network is

therefore restricted.

The focus of CLAM, and this thesis, is feature-based attention, not object recogni-

tion. As such, the object recognition problems identified are not addressed. How-

ever, a Self-Organizing Map (SOM) [36] can be trained from the layers of the

forward network by mapping SOM locations to the ventral stream layers via an

intermediate layered network with a receptive field connection structure to the un-

derlying ventral stream layers. These receptive field inputs are summed to produce

the input value to the SOM for each neuron at each location. The intermediate

network has N features per layer, where each of the N features detects a different

spatial frequency and has a different receptive field size. Each feature in a given

layer of the intermediate network connects only to equivalent layer in the forward

network (i.e. the intermediate layer for V4 pools activity of neurons within the

forward network V4 only). In this way a codebook vector can be constructed from

activities within the hidden layers of the forward network. Figure 3.1 shows this

architecture graphically.

This architecture allows a SOM to be trained from a network by evolving the net-

work to a given input pattern and using the generated state as training data to the

SOM. The trained SOM clusters similar neural representations to spatially congru-

ent neurons. A bank of ‘grandmother neurons’ could be linked to each learned

cluster to provide object recognition in a spatially agnostic way. The use of a SOM

allows new object categories to be learned without needing to re-learn previous cat-

egories, and will scale better than backpropagation of the forward ventral stream,

as each layer is used in object recognition, rather than only PIT, as is the case with

CLAM.

Chapter 3 60 ANN Model

Figure 3.1: Connection structure of SOM (top) to two forward network layers
(bottom) via two intermediate layers (middle). Every SOM node connects to every
intermediary layer feature. Each intermediary layer pools neurons at distinct spatial
frequencies only from the equivalent layer of the forward network. The codebook
vector for the SOM is then the activities of all intermediary network nodes. Only
connections from one SOM node are shown.

Chapter 3 61 ANN Model

3.4 Visualization

The complexity of the visual system, particularly its implementations in CLAM

and DIANNA, poses problems of scale both structurally and in terms of the vol-

ume of simulation data the model generates. Previously these simulations were

checked by hand on test runs of small networks. This approach will not scale to

the large number of neurons and fine time graining required to run accurate simu-

lations. In order to more effectively check the accuracy of simulations, visualiza-

tions of the captured simulation data are necessary. The ability to watch activations

flowing through the network in response to stimuli allows researchers to visually

compare the simulation to their expectations and thus serves as a crude but expe-

dient means to check their models’ correctness. In addition, visualizations allow a

greater understanding of the model when presented to researchers unfamiliar with

the mechanism of visual search.

3.4.1 3D Network-based visualization

Prior to the development of DIANNA, early work was performed on extending

CLAM and producing visualizations of the large-scale networks produced. An

example 3D view of the CLAM model of the ventral stream is presented in figure

3.2.

The visualization leverages the hierarchical nature of CLAM to avoid overloading

the viewer with unnecessary levels of detail, providing an overview first, zoom and

filter, then details-on-demand as prescribed by Shneiderman [66]. As described

previously, the model comprises two largely independent streams of neural net-

works, composed of two feed-forward networks for bottom up and top down acti-

vations.

Further complexity (and biological accuracy) is added by modelling the nodes of

these feed-forward networks as populations of dynamical neurons (see chapter 4).

The visualization reduces the complexity by allowing the user to select which de-

tails to view in terms of streams, layers within those streams, circuits within layers,

and neurons within circuits. The part/whole relationship allows the use of trans-

parency to semi-automatically manage the level of detail in a similar fashion de-

scribed by Balzer and Duessen’s Hierarchical Nets [3] for software visualization.

Chapter 3 62 ANN Model

Figure 3.2: 3D View of CLAM ventral stream network. 5 pairs of layers repre-
senting V1, V2, V4, PIT, AIT (bottom to top), with the bottom layer of each pair
representing the forward network, and the top layer representing the reverse net-
work. Blue shows positive activity in neural populations, yellow negative activity,
and grey no activity.

In particular, the use of transparency to manage the level of detail: that is, the ar-

tificial neurons appear as opaque spheres when the position of the viewer is more

than a certain distance from them, otherwise the artificial neuron sphere is made

progressively more transparent, allowing inspection of the dynamical nodes within

(figure 3.3).

3.4.2 2D Layer-based visualization

DIANNA offers a number of visualizations of the component neural networks.

The main visualization presents the network as individual neural layers. Multiple

layers can be visualized simultaneously, and at arbitrary locations, to provide a

global view of the complete network’s behaviour. Visualizations are created as part

of a DIANNA project, and are stored in the project’s XML file. Each layer may

be added independently of the others, and viewed as either a dynamical network

layer, an ANN layer, or as a difference between activity in nodes of two other

layers (dynamical or ANN layers). Furthermore, the XML describes the global

visualization parameters, such as inputs, frames, camera position, necessary to load

Chapter 3 63 ANN Model

Figure 3.3: Close up of 3D View of CLAM. This shows the internal (dynamical)
cortical circuits within a network for ANN nodes close to the viewer. Blue shows
positive activity in neural populations, yellow negative activity, and grey no activ-
ity.

a visualization and generate an image from it unattended. This allows simulations

to be rendered remotely, such as via a web-service.

Each layer has inputs and outputs, and DIANNA allows each of these to be visual-

ized as a simple image. This will be particularly useful as the whole input-output

chain of the neural network can be visualized directly, particularly the receptive

field structure. The overlapping receptive fields naturally cause some blurring of

the image at each subsequent stage, causing errors to grow through the network.

A Gabor filter based approach allows each neuron’s receptive field to be repre-

sented as weighted incoming activity, as opposed to a simple point activation as is

performed in CLAM, and discussed below in sections 2.3.1 and 2.3.2. An image

based approach to visualizing layers provides an easy means of inspecting how

much this blurring obfuscates the input signal to AIT. Unless otherwise noted, all

network images herein were produced via DIANNA.

Chapter 3 64 ANN Model

3.5 Evaluation of Artificial Neural Networks for Feature-
based Attention

A number of approaches to modelling feature-based attention with ANNs have

been discussed in this chapter. In this section we introduce a common architecture

for evaluating the different approaches described. Only the form feature modality

of the ventral stream is evaluated, as the colour modality simply detects the pres-

ence of each colour, and its evaluation at the ANN level would not be informative.

However, its performance is discussed in chapter 4.

It should be noted that the ANNs are not composed of cortical circuits. These are

introduced into the model in chapter 4.

3.5.1 The Model

The model consists of two ANNs, one modelling the bottom-up flow of stimulus

activities and the other modelling the top-down flow. The bottom-up network is

a feed-forward network of five layers corresponding to V1, V2, V4, PIT and AIT

visual areas. V1 consists of 4 feature layers which detect lines of 0◦, 45◦, 90◦ and

135◦ orientations, and objects are presented via input filters (see section 2.3) in the

appropriate feature layer to simulate neural inputs from the LGN. The LGN is not

included in the model.

A widening receptive field in higher layers allows AIT neurons to project across the

entire V1 layer, allowing objects to be recognized in all locations. Each layer re-

ceives input from overlapping neighbourhoods of neurons in its preceding area and

outputs to the next higher area such that the effective receptive field size increases

towards higher visual areas. Evidence for the increasing receptive field structure

from V1 to V2 is provided by Sincich and Horton [68]. The forward network is

initially seeded with random weights connecting higher layers to their predeces-

sor layers with circular receptive fields. The network is then conditioned using

backpropagation with a low learning rate (0.1) for a small number of iterations

(5): input/output pattern pairs are iteratively applied to the network, output errors

are propagated back to the input layer, and network weights and neuron biases are

adjusted to reduce the error until a threshold is reached. Each neuron in the net-

work sums its input and applies this summed input through a sigmoidal squashing

Chapter 3 65 ANN Model

function to determine the output of the neuron.

Once the forward network has been prepared it is used to train the top-down ‘Ac-

tive State’ network (see section 3.2.3.2): each training pattern is evolved through

the forward network and conditions reciprocal connection weights in the reverse

network. This mechanism creates the attentional template. Note, that although the

forward networks are weakly trained, training is not actually required to evaluate

the performance of the reverse network, as the reverse networks is simply trained

to match the activities of the forward network for each pattern.

The architecture of both forward and reverse networks is:

• V1: 4 input form features of 40×40 neurons.

• V2: 2 layers of 40×40 neurons.

• V4: 1 layer of 40×40 neurons.

• PIT: 1 layer of 40×40 neurons.

• AIT: 1 layer of 4×1 neurons corresponding to each shape.

Orthogonal angles from V1 project to the same layer of V2, but their weights are

in opposition: V1 features for 0◦ and 90◦ project to one V2 feature as positive and

negative weights respectively, and V1 features for 45◦ and 135◦ to the second. Each

neuron receives activity from predecessor neurons in its receptive field, which are

summed and the result is passed through an activation function:

o = f (∑
i

wixi) (3.1)

where o is the activity of a node, wi is the weight of its ith input and xi is the activity

of another node which is connected to the ith input of this node. A SigmoidAlgorithm

is used for the ANN, as this allows the sigmoid function, f (x), to be smooth and is

defined as:

f (x) =
2

1+ e(−β∗(x−bias)power)
−1 (3.2)

β is a noise parameter, which alters the shape of the sigmoid function. The bias

parameter allows the function to be moved along the x-axis. The power parameter

Chapter 3 66 ANN Model

Figure 3.4: Plot of the SigmoidAlgorithm from eq. 3.2 with bias=0, β=1 and
power=1

allows the function to have inflection points about 0. In this particular case, it

means that for x→−∞, f (x) =−1 and x→∞, f (x) = 1. This form of the sigmoid

is adjusted such that 0 input activity produces 0 output activity, as shown in figure

3.4. The bias term allows the sigmoid to be moved along the x-axis, and is not the

same as the neuron’s threshold, which is simply deducted from the input (x) prior

to the activation function. While the effect is the same, the bias term is a property

of the algorithm, and is not affected by training.

The application of a pattern to the input layer of the forward network causes acti-

vations to be propagated through the intermediate layers where form features are

combined into successively more complex units, terminating in AIT. Consequently

the forward pass loses spatial information with each ascent to a higher visual area,

where the neurons are spatially unaware but activate strongly for the existence

of the features to which they are tuned occurring anywhere within their receptive

fields. Conversely, activation of the AIT neurons in the reverse network generates

a cascade from the feature domain to the spatial domain as each area passes activa-

tions to lower visual areas, with greater retinotopic fidelity. A corollary to the AIT

nodes being spatially agnostic is that the reverse network receives neural activity

throughout the lower visual areas.

Chapter 3 67 ANN Model

3.5.2 Evaluation Method

The neural inputs to the network are obtained from 2-dimensional log-Gabor filters

with spatial frequencies of 0.071, 0.101, and 0.143 (3 decimal places), orientations

0◦, 45◦, 90◦, and 135◦ with receptive fields of 10×10 pixels. The Gabor filters were

applied to a 240×240 pixel image, as depicted in figure 3.5. The V1 network con-

sisted of 4 features (1 for each orientation), each 40×40 neurons in size. Therefore

each input neuron’s receptive field overlapped its neighbours’ receptive fields by 6

pixels. For each orientation, the real component of the output of the Gabor filter

was applied as input to the network as a positive value, and the imaginary compo-

nent was applied as a real-valued negative input value. The use of the imaginary

component increases the amount of information extracted for each edge detected,

as it shows the transition (dark to light, or vice versa), slightly offset from the real

component. This mechanism then provides different inputs to the network when

an edge within a neuron’s receptive field is, for example, the left or right edge of a

solid shape.

The reverse (attentional template) network’s AIT node associated with each of the

learned types is directly provided an input of 0.75 (the value input for each cate-

gory during training of the reverse network). To generate statistics of the quality of

matching between the forward and reverse networks for template stimulus pairs, a

‘difference network’ was created. This network calculates the difference in activity

between each co-located neuron in the forward and reverse network for those for-

ward neurons whose activity is not 0. The numbers presented are the absolute value

of the total activity of this difference network for each combination of stimulus and

attentional template, divided by the total activity in each layer of the forward net-

work. This division was used as the activity of the forward network drives the total

inhibition in the dynamical network presented in chapter 4. No activation function

was applied to the output of neurons of the difference network.

Three experiments were performed with network inputs obtained from different

components of the Gabor filters:

i). Untrained forward network with the real component of Gabor filters applied

to V1 forward network.

ii). Untrained forward network with the real component of Gabor filters applied

to V1 forward network and the real component of Gabor filters from lines

Chapter 3 68 ANN Model

(a) Square. (b) Circle. (c) Diamond. (d) Triangle.

Figure 3.5: Images of the 4 shapes presented to the network. Each shape is pre-
sented individually to the network. The colour of the shape is not considered during
this evaluation. The cross within the centre of each shape is to distinguish squares
from diamonds, as otherwise, one is a 45◦ rotation of the other. It also serves to
provide richer input to the network.

orthogonal to each V1 filter applied as negative input.

iii). Untrained forward network with the real component of Gabor filters applied

to V1 forward network and the imaginary component applied as negative in-

put.

In all cases the forward networks were untrained. The reverse network is an ‘Active

State’ network trained for 20 epochs against the forward network, with a learning

rate of 0.15. The reverse network was trained without momentum, and both con-

nection weights and bias/threshold of the reverse ANN nodes were updated on-line

(after presentation of each training pattern).

The sum of differences in activity between forward and reverse network locations

is used a metric of how well the reverse network has learned the activities of the

forward network for each object type. Low values show a good correlation between

forward and reverse, while higher values show a poor match.

3.5.3 Results

The results are presented separately for each evaluation. The Appendix presents the

raw data in tabular form. The following plots show the the sum across the entire

network of mismatched activity between nodes in the same location of the forward

and reverse network, for layers V2, V4 and PIT, divided by the total activity in the

forward network, for layers V2, V4 and PIT. Only layers V2, V4 and PIT are used

for these results, as the disinhibition network introduced in chapter 4 operates only

Chapter 3 69 ANN Model

fnet:V1_form

fnet:V2_form

fnet:V4_form

fnet:PIT_form

fnet:AIT_form

rnet:rnet_V1_form

rnet:rnet_V2_form

rnet:rnet_V4_form

rnet:rnet_PIT_form

rnet:rnet_AIT_form

fnet:V1_form_diff

fnet:V2_form_diff

fnet:V4_form_diff

fnet:PIT_form_diff

fnet:AIT_form_diff

Figure 3.6: Example ANN for the evaluation. Each vertical network contains (from
the top) V1, V2, V4, PIT, AIT. V1 contains 4 input features: a central square (see
figure 3.5) is input to a Gabor filter bank, with the real component of the Gabor
filter applied as positive input, and the imaginary component as negative input,
for each of four orientations (clockwise from top-left: 0◦, 45◦, 90◦ and 135◦).
AIT consists of 4 features, for lines of each orientation. The left hand column
shows the forward network, the central column the reverse network, and the right
hand column the difference between them. Positive activity in the forward and
reverse network is shown in red, with negative activity shown in blue. The right
hand difference network shows red when the forward is positive and the reverse
negative, and blue when the forward is negative and the reverse is positive. The
difference network does not output when the sign of activity in the forward and
reverse network agree, or if the node in the forward network has no activity. The
response has been artificially enhanced for print.

on these layers. An example of the ANN is shown in figure 3.6.

Chapter 3 70 ANN Model

S D O T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Template Errors with No-Opposition

Template

D
iff

e
re

n
ce

 o
f T

e
m

pl
a

te
 v

s
S

tim
u

lu
s

S

D

O

T

Figure 3.7: Results of i). Forward network with the real component of Gabor filters
applied to V1 forward network. S=Square, D=Diamond, O=Circle, T=Triangle.

3.5.4 Discussion of results

When the reverse network is trained with images in all locations the training pat-

terns are forced to overlap. This dramatically reduces the degree of matching be-

tween the input stimulus (in the forward network) and the attentional template (in

the reverse network). In order to improve the matching between forward and re-

verse networks it is desirable to have greater heterogeneity in the input stimulus

for each input pattern. The results shown in figure 3.7 (and tables A.1, A.2, A.3

and A.4 in the appendix) demonstrate poorer matching between stimulus and atten-

tional template that the two other conditions (note the y-scale is smaller on figure

3.7 that both other conditions), as the input patterns are predominantly a single

level of input for the interior of the input pattern, so only the edges of the pattern

can be used to discriminate between different patterns. The overlap of the train-

ing patterns (shown in the V1 of the reverse network in figure 3.6) occurs across

the edges of each location, so the main location of interference between different

locations is also the most ‘information rich’ component of the pattern to learn.

In order to increase the heterogeneity of each input pattern for experiment (ii), or-

thogonal Gabor filters were applied as negative inputs (the results are shown in

Chapter 3 71 ANN Model

S D O T
0

0.2

0.4

0.6

0.8

1

1.2

Errors for Orthogonal in Opposition

Template

D
iff

e
re

n
ce

 o
f T

e
m

pl
a

te
 v

s
S

tim
u

lu
s

S

D

O

T

Figure 3.8: Results ii). Forward network with the real component of Gabor filters
applied to V1 forward network and the real component of Gabor filters from lines
orthogonal to each V1 filter applied as negative V1 input. S=Square, D=Diamond,
O=Circle, T=Triangle.

figure 3.8 and tables A.5, A.6, A.7 and A.8 in the appendix). The output of these

Gabor filters provide a marked increase in the variation of the input activity within

each training pattern, leading to an improvement in the network’s ability to dis-

criminate between the input patterns for each template. This is likely caused by the

positive and negative components summing to only a small activity at each input

node. The small activity at the edges of the input patterns is further obfuscated by

subsequent patterns presented in neighbouring locations which overlap.

The results for the third experiment (figure 3.9 and tables A.9, A.10, A.11 and

A.12 in the appendix) show a considerable improvement over the previous results

in terms of the magnitude of the difference of errors between template-stimulus

matches template-stimulus mismatches. The results were obtained by applying the

real and imaginary components of the Gabor filters in opposition (real component

is positive input to V1; the imaginary component is negative input). Because the

real and imaginary components of the Gabor filter are offset from each other, they

are applied to neighbouring input nodes, and so do not suffer the same attenuation

as experiment ii (applying orthogonal lines in opposition to V1). Moreover, this

Chapter 3 72 ANN Model

S D O T
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Errors for Imaginary in Opposition

Template

D
iff

e
re

n
ce

 o
f T

e
m

pl
a

te
 v

s
S

tim
u

lu
s

S

D

O

T

Figure 3.9: Results of iii). Forward network with the real component of Gabor
filters applied to V1 forward network and the imaginary component applied as
negative input. S=Square, D=Diamond, O=Circle, T=Triangle.

approach provides a different input for the left edge, versus the right edge or an in-

put pattern, which improves the matching between neurons whose receptive fields

are placed on the boundary of inputs. This approach leads to a greater variety in

input activities (a more ‘textured’ input to V1). Therefore there is greater informa-

tion provided to the network for each pattern, allowing the network to discriminate

between input patterns more effectively, leading to a more accurate matching of

the stimulus and attentional template.

Chapter 4

A Dynamical Model of Visual
Attention

In this chapter, a dynamical model extending the ANN model introduced in chap-

ter 3 is presented. The dynamical model is implemented in DIANNA, following

the procedure in MIIND [16] described by de Kamps et al in [17], and discussed

in chapter 2. The procedure detailed in [17] can be used to convert a biologically

unrealistic ANN to more biologically plausible dynamical networks, with neural

outputs being more accurately modelled with population firing rates [17, 40] us-

ing Wilson-Cowan population dynamics [82]. This conversion is necessary as the

networks can only be trained as ANNs, due to the limitation of backpropagation

and gradient descent requiring a partial ordering of the neurons (activities may only

progress from layer N to layer N or N+1) [58]. The dynamical networks presented

in this chapter are highly recurrent, so backpropagation is inappropriate for these

networks. Also, the computational overhead of evolving these dynamical networks

of partial differential equations makes their training computationally intractable,

as network training requires the presentation and evolution of large numbers of

training patterns. It should be noted that Wilson-Cowan dynamics uses “coarse

time graining” as a means to convert these partial differential equations to ordinary

differential equations [82].

Conversion of the ANNs to a dynamical system is necessary as ANN nodes do

not correlate well with the properties of real cortical neurons [10]. Furthermore,

ANNs only show the steady state of the network, as a consequence of their partial

73

Chapter 4 74 Dynamical Model

ordering, whereas conversion of the ANN to a dynamical simulation allows the

time-course of the system to be visualized and explored.

An additional consideration is that a population of spiking neurons can only have

a positive spike rate, so the sigmoid function used in equation 3.2 is replaced by

a positive only sigmoid function, where negative input activity is squashed to 0

output. In order to carry the negative ’signal’, each ANN neuron is converted to a

circuit of spiking neurons, in which some of the neurons convey the negativity of

the input as positive rates, but their output is considered to be implicitly negative.

The “perceptron circuit” described by de Kamps and van der Velde [17] is used as

a basis for this conversion, and its function and embellishments from their work

are described in section 4.2.1.

Figure 4.1: Plot of positive sigmoid algorithm from eq. 3.2 with bias=0, and β=1,
where the output values are minimally bounded to 0.

4.1 Wilson-Cowan Dynamics

Wilson-Cowan dynamics [82] is a simplified model of the behaviour of a group of

spiking neurons. The population firing rate of a group of neurons is the fraction

of neurons that fire in a short time window, ∆t, divided by ∆t. Wilson-Cowan

dynamics is given by:

Chapter 4 75 Dynamical Model

τ
dE
dt

=−E + f (∑
i

wiEi) (4.1)

Here, E is the population firing rate of the group, Ei are the firing rates of other

populations which are connected to the group via weighted connections i (with

weight wi). f (x) denotes the sigmoidal squashing function applied to the sum of

these weighted inputs. τ is the mean membrane time constant of this population.

Although the original motivation for these dynamics has been criticized, the dy-

namics can also be inferred from sophisticated methods for modelling population

dynamics and has recently been shown to reproduce neuronal dynamics very reli-

ably in some cases [69].

Equation 4.1 gives a very direct interpretation for the activation in ANNs (as given

by equation 3.1): if dE
dt = 0, equation 4.1 reads:

E = f (∑
i

wiEi) (4.2)

i.e. if the sigmoids are identical in both equations, the equations are identical as

well. The sigmoid in equation 4.1 arises from neuroscience considerations and will

not be of the form of equation 3.2, but this is a minor issue.

This gives a direct interpretation for the activation of ANNs: they represent steady

state activations of neural populations described by Wilson-Cowan dynamics. While

equation 4.1 looks similar to equations describing Leaky-integrate-and-fire (LIF)

neurons, LIF neurons describe discontinuous behaviour of individual neurons: the

membrane potential is reset after a spike. It is therefore incorrect to associate these

dynamics with population dynamics.

This suggests a direct possibility for converting ANNs into networks of dynami-

cal simulations, following the procedure in [17]. Dynamical networks can be used

to simulate networks of populations described by Wilson-Cowan dynamics. The

most direct way of associating ANNs with neural dynamics is to generate Wilson-

Cowan dynamical simulations from a trained ANN such that there is a one-to-one

mapping between nodes of the ANN and the dynamical network. The weights in

the dynamical network are the same as the weights between corresponding nodes

in the ANN, with the exception of negative weights in the ANN mapping to neg-

ative roles in dynamic network circuits, and positive weights mapping to positive

Chapter 4 76 Dynamical Model

roles. An example of the different positive/negative roles assumed by member

populations of a circuit of the dynamical network is shown in figure 4.2.

4.2 Cortical Circuits

In the conversion from the ANN based model from chapter 3, each ANN node is

replaced by a collection of dynamical nodes, representation populations of spiking

neurons. This section discusses these collections as cortical circuits.

4.2.1 The Perceptron Circuit

The perceptron circuit is used in the conversion from an ANN to replace each ANN

node, and is shown in figure 4.2. The roles of the circuit populations are:

i_p (and i_n) Inhibitory input population (positive/negative): This population in-

hibits the negative input populations i_n and e_n, and the negative output

population n_out. This population also receives inhibition from i_n when

negative input is applied to the circuit, to provide a degree of filtering of

noisy inputs.

e_p (and e_n) Excitatory input population (positive/negative): This population

projects excitatory activity to p_out on positive input, and receives inhibi-

tion from i_n on negative input.

p_out (and n_out) Excitatory output population (positive/negative): This popula-

tion is receives excitatory input from e_p on positive input, and is inhibited

by i_n on negative input. This node (and its negative counterpart, n_out)

may be considered as the output of the circuit.

The above descriptions of the roles of the named circuit populations is mirrored

for the negative populations in the right-hand half of figures 4.2 (those populations

whose names replace ‘p’ with ‘n’).

When converting the ANN to a population-based model a complication arises in

the representation of negative ANN weights as the firing rate of a collection of neu-

rons. This impedance was overcome by replacing each ANN node in the forward

and reverse networks with a micro-circuit of six neural populations with four input

Chapter 4 77 Dynamical Model

(a) Perceptron (b) Perceptron with input of 100%
to p_in

(c) Perceptron with input of 100%
to p_in and 50% to n_in

Figure 4.2: The perceptron circuit: e_p - Excitatory positive input; i_p - Inhibitory
positive input; e_n - Excitatory negative input; i_n - Inhibitory negative input;
p_out - Positive output; n_out - Negative output; p_in - positive input; n_in - neg-
ative input. Red connections are inhibitory and black connections are excitatory.
The nodes whose names are in red are external inputs to the circuit, and not part
of the circuit itself. Node colour: black 0% activity, white 100%. A plot of the
dynamics of this circuit is shown in figure 4.3.

nodes and two output nodes: one coding for positive ANN weights and the other

coding for negative weights (see figure 4.2). Both of these nodes output positive

spike rates, but the negative nodes’ outputs are implicitly considered as negative

values. The p_in and n_in nodes are not part of the circuit, but driver nodes to test

the functionality. Positive input to e_p and i_p nodes ensures that the positive out-

put population (p_out) of a circuit fires exclusively (see figure 4.3), as i_p inhibits

activity of the negative output node, n_out.

Chapter 4 78 Dynamical Model

0.00 0.01 0.02 0.03 0.04 0.05
Time (sec)

0

10

20

30

40

50

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [0, 1, 2, 3, 4, 5]

e_p

i_p

e_n

i_n

p_out

n_out

Figure 4.3: Plot of the dynamical behaviour of the perceptron circuit shown in fig-
ure 4.2. The connection weights from inhibitory populations was -2.0, and from
positive populations 2.0. The circuit received a constant input spike rate of 100Hz
(i.e. p_in from figure 4.2 was outputting spikes at 100Hz). The squashing al-
gorithm used is a PositiveZeroBasedSigmoidAlgorithm, with parameters
rate_max=100.0, power=1, noise=1. The excitatory populations (e_p, e_n, p_out,
n_out) have a membrane time constant of 1×10−2, and inhibitory populations (i_p,
i_n) have a membrane time constant of 5× 10−3. Populations e_n, i_n and n_out
are all 0 in this plot.

This circuit departs from that of [17] in that the i_p and i_n populations inhibit both

negative or positive inputs respectively, as DIANNA connects layers by mapping

receptive fields algorithmically using distance between nodes, whereas MIIND (as

used by [17]) uses a more prescribed approach where connections are mapped be-

tween layers using stride lengths and receptive field sizes. The DIANNA approach

is less precise than that taken by MIIND, but allows connections to be mapped

between arbitrary sized layers. A consequence of this mapping is that perceptron

circuits in DIANNA often receive both positive and negative input simultaneously.

Another advantage of this cross inhibition is that recurrent connections in DIANNA

may selectively inhibit positive or negative inputs, which may allow the output of

Chapter 4 79 Dynamical Model

the perceptron circuit to switch the ‘sign’ of its output if the circuit is receiving

both positive and negative inputs.

4.2.2 The Disinhibition Circuit

(a) Disinhibition with no input (b) Disinhibition with input of 100% posi-
tive input from forward (f_p_out) and reverse
(r_p_out) networks

(c) Disinhibition with input of 100% posi-
tive input from forward network (f_p_out) and
100% negative from reverse network (r_n_out)

(d) Disinhibition with input of 100% pos-
itive input from forward network (f_p_out)
and 100% positive input from reverse network
(r_p_out) networks and 90% negative from re-
verse network (r_n_out)

Figure 4.4: The disinhibition circuit. See text for explanation of circuit roles. Red
connections are inhibitory, black connections are excitatory. The nodes whose
names are in red are external inputs to the circuit, and not part of the circuit itself.
Node colour: black 0% activity, white 100%. Plots of the dynamics of this circuit
are shown in figures 4.5, 4.6 and 4.7.

The disinhibition circuit determines if there is matching of the activity in the for-

ward and reverse networks in terms of whether both have the same sign (positive

Chapter 4 80 Dynamical Model

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time (sec)

0

10

20

30

40

50

60

70

80

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

e_dis_p

i_dis_p

i_gat_p

e_rev_p

e_dis_n

i_dis_n

i_gat_n

e_rev_n

i_rev_n

i_rev_p

Figure 4.5: Plot of the dynamical behaviour of the disinhibition circuit shown in
figure 4.4 with no input from the reverse network. The circuit received a con-
stant positive input spike rate of 100Hz from the forward network (i.e. f_p_out
from figure 4.4 was outputting spikes at 100Hz). The squashing algorithm used is
a PositiveZeroBasedSigmoidAlgorithm, with parameters rate_max=100.0,
power=1, noise=1. The excitatory populations (e_*) have a membrane time con-
stant of 1×10−2, and inhibitory populations (i_*) have a membrane time constant
of 5×10−3.

or negative). The strength of this agreement determines the degree of output of

the disinhibition circuit, as either excitatory output in matching cases, or inhibitory

output on mismatches. The member populations and their roles are:

e_dis_p Excitatory output population (positive): This population receives excita-

tory input from the forward positive population (f_p_out in figure 4.4). This

population is active when the forward and reverse node activities match. This

node (and its negative counterpart, e_dis_n) may be considered as the output

of the circuit. When the forward and reverse networks do not match, this

node is inhibited (to extinction) by i_gat_p.

Chapter 4 81 Dynamical Model

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time (sec)

0

10

20

30

40

50

60

70

80

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

e_dis_p

i_dis_p

i_gat_p

e_rev_p

e_dis_n

i_dis_n

i_gat_n

e_rev_n

i_rev_n

i_rev_p

Figure 4.6: Plot of the dynamical behaviour of the disinhibition circuit shown in
figure 4.4 with matching inputs from the forward and reverse networks. The cir-
cuit received a constant positive input spike rate of 100Hz from the forward net-
work (i.e. f_p_out), and a positive input spike rate of 100Hz from the reverse
network (i.e. r_p_out) from 50ms onwards. The squashing algorithm used is
a PositiveZeroBasedSigmoidAlgorithm, with parameters rate_max=100.0,
power=1, noise=1. The excitatory populations (e_*) have a membrane time con-
stant of 1×10−2, and inhibitory populations (i_*) have a membrane time constant
of 5×10−3.

i_gat_p Inhibitory gating population (positive): This population receives exci-

tatory input from the forward positive population (f_p_out in figure 4.4),

and inhibits the positive output. When the reverse network matches the for-

ward, this node receives strong inhibition from i_dis_p, allowing output from

e_dis_p (signalling a match between bottom-up and top-down networks).

i_dis_p Inhibitory disinhibition population (positive): This population is active

when the reverse network has positive activity. It strongly inhibits the i_gat_p

population, allowing e_dis_p to output if there is any input to e_dis_p from

the forward network’s positive population (f_p_out). In other words, this

population disinhibits the e_dis_p population.

e_rev_p Excitatory reverse population (positive): This population receives excita-

tory activity from the reverse network’s positive input (r_p_out in figure 4.4)

Chapter 4 82 Dynamical Model

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time (sec)

0

10

20

30

40

50

60

70

80

S
p
ik

e
 R

a
te

 (
sp

ik
e
s/

se
c)

Spike rates of populations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

e_dis_p

i_dis_p

i_gat_p

e_rev_p

e_dis_n

i_dis_n

i_gat_n

e_rev_n

i_rev_n

i_rev_p

Figure 4.7: Plot of the dynamical behaviour of the disinhibition circuit shown in
figure 4.4 with mismatched inputs from the forward and reverse networks. The
circuit received a constant positive input spike rate of 100Hz from the forward net-
work (i.e. f_p_out), and a negative input spike rate of 100Hz from the reverse
network (i.e. r_n_out) from 50ms onwards. The squashing algorithm used is
a PositiveZeroBasedSigmoidAlgorithm, with parameters rate_max=100.0,
power=1, noise=1. The excitatory populations (e_*) have a membrane time con-
stant of 1×10−2, and inhibitory populations (i_*) have a membrane time constant
of 5×10−3.

and enables the disinhibition of e_dis_p by activating the i_dis_p population

to inhibit the gating node (i_gat_p). Similar to the perceptron circuit, it also

receives inhibitory input from i_rev_n to filter noisy inputs from the reverse

network.

i_rev_p Inhibitory reverse population (positive): This acts as a filter for noisy

input from the reverse network by inhibiting both i_rev_n and e_rev_n, so

the circuit will only output the strongest reverse input (see 4.4 d)).

The above descriptions of the roles of the named circuit populations is mirrored for

the negative populations in the lower half of figures 4.4 (those populations whose

names end with ‘n’).

During the conversion to a dynamical network the forward and reverse networks

Chapter 4 83 Dynamical Model

are coupled through another cortical circuit joining the positive and negative popu-

lations of the forward and reverse networks (see figure 4.4). The circuit acts to gate

activations between the two networks through a disinhibition mechanism driven

by matching activations in the joined forward and reverse networks. For a posi-

tive activation in the forward network (from f_p_out) the output and gating nodes

of the disinhibition circuit (e_dis_p and i_gat_p respectively) receive activations

from the forward network, such that the output node (e_dis_p) is excited and in-

hibited equally after a brief settling period in which the output of the gating node

(i_gat_p) catches up with the innervation of the disinhibition circuits output node

(e_dis_p, or e_dis_n), driving the spike rate of this population to 0 (see figure 4.5).

This steady state is maintained by activations in the forward network sustaining

the input to the circuit from f_p_out. If a positive activation occurs in the feed-

back network (node r_p_out), the disinhibition node (i_dis_p) is activated in the

disinhibition circuit causing the gating node (i_gat_p) to be inhibited, allowing the

output node (e_dis_p) of the disinhibition circuit to output spikes. This scenario

is shown in figure 4.6, where matching (positive) input is applied to the reverse

network from 50ms onwards. A similar mechanism occurs for matching negative

activations in the forward and reverse networks. Note that in cases of mismatched

activations, the output node of the disinhibition circuit will not emit spikes as the

gating nodes (i_gat_p or i_gat_n) will not be inhibited by their disinhibition nodes

(i_dis_p or i_dis_n respectively), as shown in figure 4.7.

4.2.3 The Disinhibition Circuit with Lateral Inhibition

The disinhibition circuit with lateral inhibition extends the disinhibition circuit

with the addition of four new populations. The description of the populations

common to this circuit and the disinhibition circuit without lateral inhibition are

omitted for brevity, but are explained in section 4.2.2 above.

i_f_gli Forward gating of lateral inhibition population: This population receives

excitatory input from the forward positive and negative populations, and in-

hibits the i_r_gli gating population, allowing lateral inhibition to occur when

there is unmatched forward and reverse activity.

i_r_gli Reverse gating lateral inhibition population: This population receives ex-

citatory activity from the reverse network to inhibit lateral inhibition. It is

inhibited by the i_f_gli population when there is activity in the forward net-

Chapter 4 84 Dynamical Model

(a) Disinhibition LI (b) Disinhibition LI with input of 100% posi-
tive input from forward and reverse networks

(c) Disinhibition LI with input of 100% positive
input from forward network and 100% negative
from reverse network

(d) Disinhibition LI with input of 100% nega-
tive input from reverse network

Figure 4.8: The disinhibition circuit with lateral inhibition. See text for explanation
of circuit roles. Red names are input nodes, red connections are inhibitory. Node
colour: black 0% activity, white 100%

work. The purpose of this population is to prevent lateral inhibition in areas

with no forward activity, so that neighbouring populations which may have

matching activity are not attenuated.

i_ili Inhibition of lateral inhibition population: When the disinhibition circuit re-

ceives matching input from the forward and reverse networks, this popu-

lation receives strong excitatory activity from e_dis_p and e_dis_n popula-

tions, and inhibits i_li to extinction, preventing lateral inhibition when the

stimulus and attentional template match.

i_li Lateral inhibition population: This population receives excitatory activity from

the reverse network via e_rev_p and e_rev_n, so is only active when attention

is deployed. However, it receives strong inhibition from both i_ili and i_ili

Chapter 4 85 Dynamical Model

so that its activity is extinguished when there is no forward activity, or when

the forward and reverse activity matches. When active, the i_li population

inhibits its neighbouring cortical circuits’ e_dis_p and e_dis_n populations.

Chelazzi and collaborators have demonstrated that when several features in AIT

compete with each other, and one of them is task-relevant, then it will suppress

the other features’ activation. Subsequently feature-based activation is relayed to

all positions in lower areas of visual cortex where it can interact with the visual

stimulus information that is present there [10]. It has been shown [75] that consis-

tency checks can be performed by local cortical circuits. These local circuits have

a higher activation if the locally present visual stimulus information matches the

feature that corresponds to the feature-based attention activation, i.e. when local

bottom-up stimulus-driven information matches attention-driven top-down infor-

mation. It has been demonstrated by van der Velde and de Kamps [75] and in

experiment (iii) in chapter 3, that there are many more such local matches at the

retinotopic position where the feature of interest resides, i.e. by matching top-down

and bottom-up information it is possible to isolate the retinotopic position of the

relevant feature in low visual areas, where position information is present, unlike

in higher areas such as AIT.

Spurious matches at locations which do not match the attentional template do oc-

cur, as the response of each neuron can be only positive, negative or silent. In the

forward network silent neurons generally occur at locations where there is no stim-

ulus, which leaves neurons for locations with a distractor stimulus a 50% chance of

matching the attentional template in the top-down network, as the network matches

the sign of activity in the forward and reverse network, which can only be positive

or negative if there is a stimulus within their receptive field.

Each neuron in the forward network responds to local activity received from prede-

cessor layers in a bottom-up fashion, so there is no mechanism which allows these

spurious matches to be detected as such by the responding neuron. Likewise, there

is no mechanism which allows correctly matching neurons to determine they are

part of a neighbourhood matching the attentional template. However, the degree of

mismatches, where there is activity in both forward and reverse networks, but of

different sign, is lower where the top-down network activity matches the stimulus-

driven forward network. By using these mismatched populations to inhibit activity

in neighbouring populations of the same layer (lateral inhibition) these areas of

Chapter 4 86 Dynamical Model

spurious matches can be attenuated, which will reduce the propagation of activity

from non-matching locations to higher areas of the ventral stream, or reduce the

activity of those areas to the dorsal stream.

4.2.4 The LIP Circuit

Once the retinotopic position is found, it can be transferred to the parietal cortex

(area LIP) to prepare a saccade, or local information can be reprocessed, for ex-

ample, to discover which other features belong to this particular object as demon-

strated in [18]. This is an interpretation of binding as a two-step process, rather

than as a state [76].

The LIP circuit is a simple circuit of a single excitatory population receiving pro-

jections from e_dis_p and e_dis_n disinhibition populations from all disinhibition

layers (V2, V4 and PIT).

4.3 A Dynamical Model

An ANN model of the ventral stream was created with the following layers:

The architecture of the network is:

• V1: 4 input form features of 40×40 neurons.

• V2: 2 layers of 40×40 neurons.

• V4: 1 layer of 40×40 neurons.

• PIT: 1 layer of 40×40 neurons.

• AIT: 1 layer of 4×1 neurons corresponding to each shape.

This network was trained using backpropagation for 5 epochs with 256 training

samples of the 4 shapes from figure 3.5 in 16 overlapping locations. The inputs

were applied from Gabor filters with line orientations 0◦, 45◦, 90◦ and 135◦, with

the real component of the Gabor filter applied as positive input to V1, and the

imaginary component applied as negative input.

Chapter 4 87 Dynamical Model

After training was complete, a complementary reverse network was trained from

the forward network using the ‘Active State’ training algorithm discussed in section

3.2.3.2 for 20 epochs, with a learning rate of 0.15.

The trained ANNs was then converted to a dynamical network by replacing each

ANN node with a perceptron micro-circuit, in the manner described by de Kamps

and van der Velde in [17]. A disinhibition network with 3 layers of matching

dimensions to V2, V4 and PIT of the previously trained ANNs with each ‘node’

being a disinhibition circuit of Wilson-Cowan populations was then created. The

forward and reverse layers were connected to the disinhibition layer as described in

section 4.2.2. In addition, a LIP layer was created with the same dimensions as the

others. Both the ANN and dynamical networks used sigmoid algorithms (Zero-

BasedSigmoidAlgorithm for the ANNs and PositiveZeroBasedSigmoid-

Algorithm for the dynamical networks). For the the dynamical networks, the

membrane time constant for excitatory populations was 1×10−3 and 5×10−4 for

the inhibitory populations. Further parametrization of these networks is provided

in the appendix (section A.4).

Two non-overlapping input patterns were applied to the forward network and al-

lowed to propagate to AIT and the network was allowed to settle for a period of

150ms. At this time an attentional template matching one of the patterns was acti-

vated in the AIT layer of the reverse network.

In all images in the results sections, input to the form network was from Gabor

filters with line orientations 0◦, 45◦, 90◦ and 135◦ applied to V1 features top-left,

top-right, bottom-left and bottom-right respectively. The imaginary component of

each Gabor filter was applied as negative input. Additionally for colour networks,

input was applied via colour input filters for each of the colour channels red, green

and blue.

For the form-only simulations, dynamical simulations were run for all combina-

tions of shape, with shapes applied in non-overlapping locations. Only images of

simulations with inputs of a square in the top-left, a triangle (bottom-left), diamond

(top-right) and a circle (bottom-right) of the visual array are provided in the results

section. For form-and-colour simulations, results are presented for an input array

of the same four form objects, with a distractor object sharing the target object’s

colour.

Chapter 4 88 Dynamical Model

4.3.1 Results: Form Network

Figures 4.9 and 4.10 show the activity of the dynamical networks 150ms after cue

onset and 350ms after application of the attentional template for square, respec-

tively. The network does not use lateral inhibition to reduce the effect of spurious

(sparse) matches.

The visual array for this experiment is a square (top-left), triangle (bottom-left),

diamond (top-right) and a circle (bottom-right).

4.3.2 Results: Form Network with Lateral Inhibition

Figures 4.11 and 4.12 show the activity of the dynamical networks 150ms after

cue onset and 350ms after application of the attentional template. The network

uses lateral inhibition to penalize mismatched activity in the forward and reverse

networks.

The visual array for this experiment is a square (top-left), triangle (bottom-left),

diamond (top-right) and a circle (bottom-right).

4.3.3 Results: Form and Colour Network with Lateral Inhibition

Figures 4.13 and 4.14 show the activity of the dynamical networks 150ms after cue

onset and 350ms after application of the attentional template. The simulation in-

cludes colour channels to demonstrate the effect of searching for multiple features.

To allow colour mixing, the colour attentional template is applied as negative green

and blue and positive red, to match pure red colour in the stimulus. The network

uses lateral inhibition to penalize mismatched activity in the forward and reverse

networks.

The visual array for this experiment is a red square (top-left), green triangle (bottom-

left), red diamond (top-right) and a blue circle (bottom-right).

Chapter 4 89 Dynamical Model

fnet:V1_form

fnet:V2_form

fnet:V4_form

fnet:PIT_form

fnet:AIT_form

rnet:rnet_V1_form

rnet:rnet_V2_form

rnet:rnet_V4_form

rnet:rnet_PIT_form

rnet:rnet_AIT_form

disinhibition:V2_di

disinhibition:V4_di

disinhibition:PIT_di

lip:LIP

Figure 4.9: Activity of the dynamical network with disinhibition after stimulus
onset. The network on the left (vertically) shows the forward network carrying
the stimulus of a square (top-left), triangle (bottom-left), diamond (top-right) and
a circle (bottom-right). The central network is the reverse network carrying the
attentional template. The right-hand column shows LIP layer on the top row, and
the disinhibition layers for V2, V4, and PIT below. Red shows positive activations,
blue shows negative activations.

Chapter 4 90 Dynamical Model

fnet:V1_form

fnet:V2_form

fnet:V4_form

fnet:PIT_form

fnet:AIT_form

rnet:rnet_V1_form

rnet:rnet_V2_form

rnet:rnet_V4_form

rnet:rnet_PIT_form

rnet:rnet_AIT_form

disinhibition:V2_di

disinhibition:V4_di

disinhibition:PIT_di

lip:LIP

Figure 4.10: Activity of the dynamical network with disinhibition after 350ms
after deployment of the attentional template for ‘square’. The network on the left
(vertically) shows the forward network carrying the stimulus of a square (top-left),
triangle (bottom-left), diamond (top-right) and a circle (bottom-right). The central
network is the reverse network carrying the attentional template. The right-hand
column shows LIP layer on the top row, and the disinhibition layers for V2, V4,
and PIT below. Red shows positive activations, blue shows negative activations.

Chapter 4 91 Dynamical Model

fnet:V1_form

fnet:V2_form

fnet:V4_form

fnet:PIT_form

fnet:AIT_form

rnet:rnet_V1_form

rnet:rnet_V2_form

rnet:rnet_V4_form

rnet:rnet_PIT_form

rnet:rnet_AIT_form

disinhibition:V2_di

disinhibition:V4_di

disinhibition:PIT_di

li:V2_li

li:V4_di

li:PIT_di

lip:LIP

Figure 4.11: Activity of the dynamical network with disinhibition and lateral inhi-
bition after stimulus onset. The network on the left (vertically) shows the forward
network carrying the stimulus of a square (top-left), triangle (bottom-left), dia-
mond (top-right) and a circle (bottom-right). The central network is the reverse
network carrying the attentional template. The right-hand column shows LIP layer
on the top row, and the disinhibition layers for V2, V4, and PIT below. Red shows
positive activations, blue shows negative activations.

Chapter 4 92 Dynamical Model

fnet:V1_form

fnet:V2_form

fnet:V4_form

fnet:PIT_form

fnet:AIT_form

rnet:rnet_V1_form

rnet:rnet_V2_form

rnet:rnet_V4_form

rnet:rnet_PIT_form

rnet:rnet_AIT_form

disinhibition:V2_di

disinhibition:V4_di

disinhibition:PIT_di

li:V2_li

li:V4_di

li:PIT_di

lip:LIP

Figure 4.12: Activity of the dynamical network with disinhibition and lateral inhi-
bition after 350ms after deployment of the attentional template for ‘square’. The
network on the left (vertically) shows the forward network carrying the stimulus of
a square (top-left), triangle (bottom-left), diamond (top-right) and a circle (bottom-
right). The central network is the reverse network carrying the attentional template.
The right-hand column shows LIP layer on the top row, and the disinhibition layers
for V2, V4, and PIT below. Red shows positive activations, blue shows negative
activations.

Chapter 4 93 Dynamical Model

fnet:V1_form

fnet:V2_form

fnet:V4_form

fnet:PIT_form

fnet:AIT_form

rnet:rnet_V1_form

rnet:rnet_V2_form

rnet:rnet_V4_form

rnet:rnet_PIT_form

rnet:rnet_AIT_form

fnet_colour:V1_colour

fnet_colour:V2_colour

fnet_colour:V4_colour

fnet_colour:PIT_colour

fnet_colour:AIT_colour

rnet_colour:rnet_colour_V1_colour

rnet_colour:rnet_colour_V2_colour

rnet_colour:rnet_colour_V4_colour

rnet_colour:rnet_colour_PIT_colour

rnet_colour:rnet_colour_AIT_colour

disinhibition:V2_di

disinhibition:V4_di

disinhibition:PIT_di

disinhibition_colour:V2_di_colour

disinhibition_colour:V4_di_colour

disinhibition_colour:PIT_di_colour

lip:LIP

Figure 4.13: Activity of the dynamical network with disinhibition and lateral in-
hibition and colour channels after stimulus onset. From the left, the networks are
the forward form network carrying the stimulus of a red square (top-left), green
triangle (bottom-left), red diamond (top-right) and a blue circle (bottom-right); the
reverse form network carrying the attentional template; the forward colour network
showing red, green and blue channels (left to right), and the reverse colour network;
disinhibition layers for V2, V4, and PIT below for form with the LIP layer above;
the disinhibition layer for colour, showing red colour channel, green and blue (left
to right). Red shows positive activations, blue shows negative activations.

Chapter 4 94 Dynamical Model

fnet:V1_form

fnet:V2_form

fnet:V4_form

fnet:PIT_form

fnet:AIT_form

rnet:rnet_V1_form

rnet:rnet_V2_form

rnet:rnet_V4_form

rnet:rnet_PIT_form

rnet:rnet_AIT_form

fnet_colour:V1_colour

fnet_colour:V2_colour

fnet_colour:V4_colour

fnet_colour:PIT_colour

fnet_colour:AIT_colour

rnet_colour:rnet_colour_V1_colour

rnet_colour:rnet_colour_V2_colour

rnet_colour:rnet_colour_V4_colour

rnet_colour:rnet_colour_PIT_colour

rnet_colour:rnet_colour_AIT_colour

disinhibition:V2_di

disinhibition:V4_di

disinhibition:PIT_di

disinhibition_colour:V2_di_colour

disinhibition_colour:V4_di_colour

disinhibition_colour:PIT_di_colour

lip:LIP

Figure 4.14: Activity of the dynamical network with disinhibition and lateral inhi-
bition and colour channels after 350ms after deployment of the attentional template
for ‘square’ and ‘red’. From the left, the networks are the forward form network
carrying the stimulus of a red square (top-left), green triangle (bottom-left), red
diamond (top-right) and a blue circle (bottom-right); the reverse form network car-
rying the attentional template; the forward colour network showing red, green and
blue channels (left to right), and the reverse colour network; disinhibition layers for
V2, V4, and PIT below for form with the LIP layer above; the disinhibition layer
for colour, showing red colour channel, green and blue (left to right). Red shows
positive activations, blue shows negative activations.

Chapter 4 95 Dynamical Model

4.4 Discussion of Dynamical Simulation Results

lip:LIP

(a) LIP layer, form only, no
lateral inhibition.

lip:LIP

(b) LIP layer, form only, with
lateral inhibition.

lip:LIP

(c) LIP layer, colour and
form, with lateral inhibition.

Figure 4.15: Close up images of the LIP layer from figures 4.10, 4.12 and 4.14
350ms after application of the attentional template, for each of the dynamical net-
works.

By observing the activity in the LIP layers in figures 4.15 (a) and (b) it can be

seen that 350ms after application of the attentional template there is a larger and

stronger area of activity in the top-left quadrant, matching the location of the tar-

get object, the square. While the strength of activity in LIP is lower for the the

simulation with lateral inhibition (figure 4.15 (b)), the area of activity in location

of LIP corresponding to the distractor objects, is smaller than the simulation with-

out lateral inhibition (figure 4.15 (a)). An area based winner-take-all circuit (not

implemented) would still select the location of the target object. The fact that the

overall LIP activity is lower with lateral inhibition is unsurprising, as the networks

are identical except for the addition of extra inhibitory populations.

The results for the simulation with the addition of the colour channels shows a far

stronger selection of the target location (4.15 (c), the top-left blob of colour shows

the location of the target object), as this simulation has twice the ‘evidence’ for

the location of the target as both colour and form are used to find the target, and

their results are combined by the spatially binding effect of LIP. Also, the top-

right location corresponds to the location of an input stimulus sharing a feature of

the attentional template (the red colour of the diamond object), but its location is

inhibited by mismatches in the form feature modality. The process of selection

on two features occurs in parallel, so there is no time penalty in using multiple

Chapter 4 96 Dynamical Model

feature modalities. This is in line with observations from [71, 70]. Furthermore, if

it is assumed that the visual system needs to accrue a threshold amount of neural

activity in LIP before preparing a saccade to the target, the time to find the target in

a visual search task should be less when multiple features are used, as this threshold

of ‘evidence-based’ neural activity would be met sooner.

The use of colour provides a stronger area of neural activity in the ventral stream, as

the propagation of form-induced neural activity is edge based, while colour is block

based. The ventral stream activity sums to stronger, spatially congruent activity in

LIP. Also, the block nature of colour allows the disinhibition network to more

effectively block the distractor object, as the locations of mismatched colour as not

sparse, as they may be with form processing.

Chapter 5

Conclusion

Contrasting the results of the dynamical models of form with and without lateral

inhibition shows that biased competition improves the detection of the target ob-

ject over a distractor, albeit at a lower activity with lateral inhibition than without.

This competition helps to reduce the interference arising in the attentional tem-

plate caused by presentation of the same object in different locations of a neuron’s

receptive field. This interference is an inherent consequence of striving for transla-

tion invariance, as neurons must learn multiple neural representations of the same

object. This is exhibited as a lower degree of matching between the learned atten-

tional template and the stimulus evoked neural trace in the feed-forward network.

As discussed in section 4.2.3, the perceptron circuit can only adopt 2 states when

a stimulus is applied to its receptive field. Therefore, a poor match between the

learned attentional template and the neural representation of the stimulus will lead

to a greater degree of mismatches. A weak lateral inhibition from these mis-

matched populations can extinguish excitatory activity in areas of poor matching,

but only if the number of inhibitory populations in a local neighbourhood is great

enough for the sum of all inhibitory activity to exceed the excitatory input to er-

roneously matched populations. By utilizing independent matching networks, the

level of inhibition can be increased, as a location is observed by multiple receptive

fields, with each capable of inhibiting local mismatches.

The results of the dynamical model with the two feature modalities of colour

and form (section 4.3.3) demonstrates the interaction of multiple matching sub-

networks upon the same location of the visual array improves the matching be-

97

Chapter 5 98 Conclusion

haviour of the network ensemble as a whole. This combination occurs through an

additive process of each modality’s ‘evidence’ for the presence of the feature at a

given location: activity from matching locations of all engaged attentional feature

streams is projected onto a common neural layer in the dorsal stream (LIP). This

supports the hypothesis that biased competition occurs independently for each fea-

ture modality, and can be combined from separate streams using a connectionist

approach.

Furthermore, the results of the simulation of multiple feature modalities (form and

colour) demonstrates a resolution to the binding problem arising from a distributed

representation of object properties through spatial congruence. The inclusion of

multiple feature detectors takes no additional processing time, making use of the

highly parallel nature of the visual cortex to detect the presence of target object

more robustly.

5.1 Applicability to Computer Science

Visual search is important as it provides a means to study the deployment of visual

attention. Visual attention is important as an effective means to drastically reduce

the huge amount of information reaching the eye, to a volume of data that can be

processed in near real time. Understanding how attention is deployed has poten-

tial benefits to computer vision in general, as humans currently process visual in-

put much faster than non-biological algorithmic computer vision techniques. One

reason for this disparity may well be that the use of attention allows the slower

computing hardware of the brain (in contrast to a computer) to be directed at a

much smaller proportion of the visual input. Of course, the human brain is a mas-

sively parallel computer of slow processing units versus the serial but incredibly

fast processing power of a modern computer, but as computers are moving towards

multiple cores (potentially many thousands of cores) the lessons learned from the

study of human visual processing may become more directly applicable to conven-

tional computer vision in the near future.

Bibliography

[1] F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. L.

Ferretti, R. E. P. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel. Equal

numbers of neuronal and nonneuronal cells make the human brain an iso-

metrically scaled-up primate brain. The Journal of Comparative Neurology,

513(5):532–541, 2009. 1

[2] A. Baddeley. Working memory: Looking back and looking forward. Nature

Reviews Neuroscience, 4(10):829–839, October 2003. 1.6

[3] M. Balzer and O. Deussen. Hierarchy Based 3D Visualization of Large Soft-

ware Structures. In VIS ’04: Proceedings of the conference on Visualization

’04, page 598.4, Washington, DC, USA, 2004. IEEE Computer Society. 3.4.1

[4] T. Binzegger, R. J. Douglas, and K. Martin. Cortical architecture. In

M. De Gregorio, V. Di Maio, M. Frucci, and C. Musio, editors, BVAI, volume

3704 of Lecture Notes in Computer Science, pages 15–28. Springer, 2005.

1.1.5

[5] J. W. Bisley. The neural basis of visual attention. The Journal of Physiology,

589(1):49–57, 2011. 1.2.1

[6] R. T. Born and D. C. Bradley. Structure and function ofvisual area MT. An-

nual Review of Neuroscience, 28:157–89, 2005. 1.1.2.4

[7] G. M. Boynton. Attention and visual perception. Current Opinion in Neuro-

biology, 15(4):465–469, 2005. (document), 1.2.2, 1.4, 1.8

[8] G. M. Boynton. A framework for describing the effects of attention on visual

responses. Vision Research, 49(10):1129–1143, 2009. 1.2, 1.2.2

99

Bibliography 100

[9] J. Buhmann, M. Lades, and C. von der Malsburg. Size and distortion invariant

object recognition by hierarchical graph matching. In Proceedings of Inter-

national Joint Conference on Neural Networks, pages 411–416, 1990. 1.1.5,

2.3.3.1

[10] L. Chelazzi, E. K. Miller, J. Duncan, and R. Desimone. A neural basis for

visual search in inferior temporal cortex. Nature, 363:345–347, 1993. 1.9.1,

4, 4.2.3

[11] A. D. F. Clarke, M. J. Chantler, and P. R. Green. Modeling visual search on a

rough surface. Journal of Vision, 9(4):1–12, 4 2009. 1.6

[12] F. Crick. Function of the thalamic reticular complex: the searchlight hypoth-

esis. Proceedings of the National Academies of Sciences USA, 81(14):4586–

4590, 1984. 1

[13] J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency,

and orientation optimized by two-dimensional visual cortical filters. Journal

of the Optical Society of America A, 2(7):1160–1169, 1985. 2.3.3.1

[14] J. G. Daugman. Complete discrete 2-d gabor transforms by neural net-

works for image analysis and compression. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 36(7):1169–1179, 1988. 2.3.3.1

[15] M. de Kamps. A simple and stable numerical solution for the population

density equation. Neural Computation, 15(9):2129–2146, 2003. 2.1

[16] M. de Kamps, V. Baier, J. Drever, M. Dietz, L. Mösenlechner, and F. van der

Velde. The state of MIIND. Neural Networks, 21(8):1164–1181, 2008. 1.9.1,

2.1, 4

[17] M. de Kamps and F. van der Velde. From artificial neural networks to spik-

ing neuron populations and back again. Neural Networks, 14(6-7):941–953,

2001. 1.9.1, 2.1, 4, 4.1, 4.2.1, 4.3

[18] M. de Kamps and F. van der Velde. Using a recurrent network to bind form,

color and position into a unified percept. Neurocomputing, 38-40:523–528,

2001. 1.9.3, 3.1, 3.1.1, 4.2.4

101 Bibliography

[19] M. de Kamps and F. van der Velde. Neural blackboard architectures: the

realization of compositionality and systematicity in neural networks. Journal

of Neural Engineering, 3(1):R1–R12, 2006. 1.9.1

[20] G. Deco and E. T. Rolls. A neurodynamical cortical model of visual attention

and invariant object recognition. Vision Research, 44:621–642, 2004. 1.9.2

[21] R. Desimone and J. Duncan. Neural mechanisms of selective visual attention.

Annual Review Neuroscience, 18:193–222, 1995. 1.1.3, 1.6, 1.6, 1.9.1

[22] J. Duncan, G. Humphreys, and R. Ward. Competitive brain activity in visual

attention. Current Opinion in Neurobiology, 7:255–261, 1997. 1.3

[23] J. Duncan and G. W. Humphreys. Visual search and stimulus similarity. Psy-

chological review, 96(3):433–458, July 1989. 1.6, 1.9.2

[24] D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in

the primate cerebral cortex. Cerebral Cortex, 1:1–47, 1991. 1.1

[25] D. J. Field. Relation between the statistics of natural images and the response

properties of cortical cells. Journal of the Optical Society of America A,

4(12):2379–2394, 1987. 2.3.3.1

[26] C. D. Gilbert. Microcircuitry of the visual cortex. Annual Review of Neuro-

science, 6:217–47, 1983. 1.1.5

[27] C. D. Gilbert and T. N. Wiesel. Functional organization of the visual cortex.

Progress in Brain Research, 58:209–18, 1983. 1.1.5

[28] M. A. Goodale. Visual pathways supporting perception and action in the

primate cerebral cortex. Current Opinion in Neurobiology, 3(4):578–585,

1993. 1.1.1

[29] M. A. Goodale. Transforming vision into action. Vision Research,

51(13):1567–1587, 2011. 1.1.1

[30] M. A. Goodale and A. D. Milner. Separate visual pathways for perception

and action. Trends in Neurosciences, 15(1):20–25, 1992. 1.1.1

[31] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep

belief nets. Neural Computation, 18:1527–1554, 2006. 3.2.2

Bibliography 102

[32] S. Hochstein and M. Ahissar. View from the top: Hierarchies and reverse

hierarchies in the visual system. Neuron, 36:791–804, 2002. 1.6

[33] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. Journal of Physiology,

160:106–154, 1962. 1.1.2.1, 1.1.5

[34] L. Itti and C. Koch. A saliency-based search mechanism for overt and covert

shifts of visual attention. Vision Research, 40:1489–1506, 2000. 1.2.1, 1.6

[35] C. Koch and S. Ullman. Shifts in selective visual attention. Human Neurobi-

ology, 4(4):219–227, 1985. 1.6

[36] T. Kohonen. Self-organizing maps, volume 30 of Information sciences.

Springer, 3 edition, 2001. 3.3

[37] H. Komatsu. Mechanisms of central color vision. Current Opinion in Neuro-

biology, 8(4):503–508, 1998. 3.1.1.1

[38] V. A. F. Lamme and P. R. Roelfsema. The distinct modes of vision offered by

feedforward and recurrent processing. Trends in Neurosciences, 23(11):571–

579, 2000. 1.1.2.1

[39] A.B. Leber and H.E. Egeth. It’s under control: Top-down search strategies

can override attentional capture. Psychonomic Bulletin & Review, 13(1):132–

138, 2006. 1.6

[40] S. P. MacEvoy, T. R. Tucker, and D. Fitzpatrick. A precise form of divisive

suppression supports population coding in the primary visual cortex. Nature

Neuroscience, 12(5):637–645, April 2009. 1.9.1, 4

[41] J. C. Martinez-Trujillo and S. Treue. Feature-based attention increases the

selectivity of population responses in primate visual cortex. Current Biology,

14(9):744–751, 2004. 1.2.2, 1.4

[42] D. C. Maunsell, J. H. Van Essen. Functional properties of neurons in middle

temporal visual area of the macaque monkey. i. selectivity for stimulus direc-

tion, speed, and orientation. Journal of Neurophysiology, 49(5):1127–47, 5

1983. 1.1.2.4

103 Bibliography

[43] J. H. Maunsell and W. T. Newsome. Visual processing in monkey extrastriate

cortex. Annual Review of Neuroscience, 10:363–401, 1987. 1.1.2.4

[44] J. H. R. Maunsell and S. Treue. Feature-based attention in visual cortex.

Trends in Neurosciences, 29(6):317–322, 2006. 1.2.2, 1.4

[45] C. McAdams and J. H. Maunsell. Effects of attention on orientation-tuning

functions of single neurons in macaque cortical area v4. Journal of Neuro-

science, 19:431–441, 1999. 1.4

[46] M. Mishkin, L. G. Ungerleider, and K. A. Macko. Object vision and spatial

vision: two cortical pathways. Trends in Neurosciences, 6:414–417, 1983.

1.1.1, 1.9.1

[47] J. Moran and R. Desimone. Selective attention gates visual processing in the

extrastriate cortex. Science, 229(4715):782–784, 1985. 1.1.2.3, 1.2.3

[48] B. C. Motter. Focal attention produces spatially selective processing in visual

cortical areas v1, v2, and v4 in the presence of competing stimuli. Journal of

Neurophysiology, 70(3):909–119, 1993. 1.2.1

[49] B. C. Motter. Neural correlates of attentive selection for color and luminance

in extrastriate area v4. Journal of Neuroscience, 14:2178–2189, 1994. 1.4

[50] B. C. Motter. Neural correlates of feature selective memory and pop-out in

extrastriate area v4. The Journal of Neuroscience, 14(4):2190–2199, 1994.

1.4

[51] V. B. Mountcastle. An organizing principle for cerebral function: The unit

model and the distributed system. In G. M. Edelman and V. B. Mountcastle,

editors, The Mindful Brain, pages 7–50. MIT Press, 1978. 1.1.5

[52] M. M. Müller, S. Andersen, N. J. Trujillo, P. Valdés-Sosa, P. Malinowski,

and S. A. Hillyard. Feature-selective attention enhances color signals in early

visual areas of the human brain. Proceedings of the National Academy of

Sciences, 103(38):14250–14254, 2006. (document), 1.8

[53] R. A. Rensink. Seeing, sensing and scrutinizing. Vision Research, 40:1469–

1487, 2000. 1.2.3

Bibliography 104

[54] J. H. Reynolds and D. J. Heeger. The normalization model of attention. Neu-

ron, 61(2):168–185, 2009. 1.9.1

[55] T. Reynolds, J. H. Pasternak and R. Desimone. Attention increases sensitivity

of v4 neurons. Neuron, 26(3):703–714, 2000. 1.2.1

[56] D. L. Robinson, E. M. Bowman, and G. B. Stanton. Parietal association cortex

in the primate: sensory mechanisms and behavioral modulations. Journal of

Neurophysiology, 53:910–932, 1978. 1.1.4.1

[57] E. T. Rolls and G. Deco. The Computational Neuroscience of Vision. Oxford

University Press, 2002. 1.1.2.1, 1.1.2.2

[58] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations

by back-propagating errors. Nature, 323(6088):533–536, 10 1986. 3.2.2, 4

[59] M. Sàenz, G. T. Buracas, and G. M. Boynton. Global effects of feature-based

attention in human visual cortex. Nature Neuroscience, 5:631–632, 2002. 1.8

[60] M. Sàenz, G. T. Buracas, and G. M. Boynton. Global feature-based attention

for motion and color. Vision Research, 43(6):629–637, 2003. (document),

1.4, 1.8

[61] S. J. Schein and R Desimone. Spectral properties of V4 neurons in the

macaque. Journal of Neuroscience, 10(10):3369–3389, 1990. 3.1.1.1

[62] M. A. Schoenfeld, C. Tempelmann, A. Martinez, J. M. Hopf, C. Sattler,

H. J. Heinze, and S. A. Hillyard. Dynamics of feature binding during

object-selective attention. Proceedings of the National Academy of Sciences,

100(20):11806–11811, 2003. 1.2.3

[63] M. A. Segraves and M. E. Goldberg. Functional properties of corticotec-

tal neurons in the monkey’s frontal eye field. Journal of Neurophysiology,

58:1387–1419, 1987. 1.1.4.2

[64] E. Seidemann and W. T. Newsome. Effect of spatial attention on the responses

of area mt neurons. Journal of Neurophysiology, 81:1783–1794, 1999. 1.4

[65] J. T. Serences and G. M. Boynton. Feature-based attentional modulations in

the absence of direct visual stimulation. Neuron, 55(2):301–312, 2007. 1.2,

1.2.2

105 Bibliography

[66] B. Shneiderman. The eyes have it: A task by data type taxonomy for in-

formation visualizations. In Proceedings of the IEEE Symposium on Visual

Languages, pages 336–343. IEEE Computer Society Press, 1996. 3.4.1

[67] D. J. Simons. Attentional capture and inattentional blindness. Trends in

Cognitive Sciences, 4(4):147–155, 4 2000. 1.5

[68] L. C. Sincich and J. C. Horton. The circuitry of v1 and v2: Integration of

color, form, and motion. Annual Review of Neuroscience, 28:303–326, 2005.

3.5.1

[69] T. P. Trappenberg. Fundamentals of Computational Neuroscience. Oxford

University Press, 2002. 4.1

[70] A. Treisman and S. Sato. Conjunction search revisited. Journal of Experi-

mental Psychology: Human Perception and Performance, 16(3):459–478, 8

1990. 1.6, 4.4

[71] A. M. Treisman and G. Gelade. A feature-integration theory of attention.

Cognitive Psychology, 12(1):97–136, 1980. 1.2.2, 1.4, 1.6, 1.6, 4.4

[72] S. Treue and J. C. Martinez-Trujillo. Feature-based attention influences mo-

tion processing gain in macaque visual cortex. Nature, 399:575–579, 1999.

1.2.1, 1.4

[73] J. K. Tsotsos. Analyzing vision at the complexity level. Brain & Behavioral

Sciences, 13(3):423–445, 1990. 1

[74] L. G. Ungerleider and M. Mishkin. Two cortical visual systems. In D. J. Ingle,

M. A. Goodale, and R. J. W Mansfield, editors, Analysis of Visual Behavior,

pages 549–586. MIT Press, Cambridge, MA, 1982. 1.1.1, 1.1.2.4

[75] F. van der Velde and M. de Kamps. From knowing what to knowing where:

Modeling object-based attention with feedback disinhibition of activation.

Journal of Cognitive Neuroscience, 13(4):479–491, 2001. 1.2.2, 1.9.1, 4.2.3

[76] F. van der Velde and M. de Kamps. Neural blackboard architectures of com-

binatorial structures in cognition. Behavioral and Brain Sciences, 29:37–70,

2006. 3.1, 4.2.4

Bibliography 106

[77] F. van der Velde and M. de Kamps. A neural model of global visual saliency.

In S. Vosniadou, D. Kayser, and A. Protopapas, editors, Proceedings of the

European Cognitive Science Conference, pages 383–388, New York, 2007.

Lawrence Erlbaum. 1.6, 1.9.1

[78] F. van der Velde, M. de Kamps, and G. T. van der Voort van der Kleij.

CLAM: Closed-Loop Attention Model for visual search. Neurocomputing,

58-60:607–612, 2004. 1.9.1, 3.1.1.2, 3.2.3.1, 3.3

[79] D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch. Attentional

selection for object recognition: A gentle way. In BMCV ’02: Proceedings

of the Second International Workshop on Biologically Motivated Computer

Vision, pages 472–479, London, UK, 2002. Springer-Verlag. (document), 1.8

[80] A. B. Watson and J. A. Solomon. Model of visual contrast gain control and

pattern masking. Journal of the Optical Society of America, 14(9):2379–

2391, 1997. 1.2.1

[81] H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in local-

ized populations of model neurons. Biophysical Journal, 12(1):1–24, 1972.

2.1

[82] H. R. Wilson and J. D. Cowan. A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Biological Cybernetics,

13:55–80, 1973. 2.1, 4, 4.1

[83] J. M. Wolfe. Guidance of visual search by preattentive information. In Lau-

rent Itti, Geraint Rees, and John K. Tsotsos, editors, Neurobiology of Atten-

tion, pages 101–104. Academic Press, Burlington, 2005. 1.6

[84] J. M. Wolfe, S. J. Butcher, C. Lee, and M. Hyle. Changing Your Mind: On the

Contributions of Top-Down and Bottom-Up Guidance in Visual Search for

Feature Singletons. Journal of Experimental Psychology: Human Perception

and Performance, 29(2):483–502, 2003. 1.6

[85] J. M. Wolfe, K. R. Cave, and S. L. Franzel. Guided search: An alternative

to the feature integration model for visual search. Journal of Experimental

Psychology: Human Perception and Performance, 15(3):419–433, 1989. 1.6,

1.6

107 Bibliography

[86] J. M. Wolfe and T.S. Horowitz. What attributes guide the deployment of

visual attention and how do they do it? Nature Reviews Neuroscience,

5(6):495–501, 2004. 1.6

[87] J. M. Wolfe and J. Reynolds. Visual search. In Allan I. Basbaum, Akimichi

Kaneko, Gordon M. Shepherd, Gerald Westheimer, Thomas D. Albright,

Richard H. Masland, Peter Dallos, Donata Oertel, Stuart Firestein, Gary K.

Beauchamp, M. Catherine Bushnell, Jon H. Kaas, and Esther Gardner, ed-

itors, The Senses: A Comprehensive Reference, pages 275–280. Academic

Press, New York, 2008. 1.2.1, 1.6, 1.9.1

[88] S. Yantis. To see is to attend. Science, 299(5603):54–56, 2003. 1.2

[89] S. M. Zeki. The functional organization of projections from striate to pres-

triate visual cortex in the rhesus monkey. Cold Spring Harbor Symposia on

Quantitive Biology, 40:591–600, 1976. 1.1.2.3

[90] W. W. Zhang and S. J. Luck. Feature-based attention modulates feedforward

visual processing. Nature Neuroscience, 12(1):24–25, 2009. 1.2.2, 1.8

Appendix A

A.1 Results for No-Opposition

Template Stimulus Layer Diff/Fwd Total
S S V2 0.0447029185

V4 0.088589653
PIT 0.1835468939 0.3168394654

D V2 0.1186126568
V4 0.1209828352
PIT 0.1979577249 0.4375532168

O V2 0.1024939413
V4 0.130410896
PIT 0.2374141795 0.4703190169

T V2 0.1244667159
V4 0.2060411806
PIT 0.2932683461 0.6237762425

Table A.1: Results of i) for Square template. Forward network with the real com-
ponent of Gabor filters applied to V1 forward network. The numbers represent the
total activity in the difference network divided by the total activity in the forward
network.

108

109 Appendix A

Template Stimulus Layer Diff/Fwd Total
D S V2 0.1155588227

V4 0.192191824
PIT 0.2695640014 0.5773146482

D V2 0.0319419408
V4 0.0908731337
PIT 0.1508581333 0.2736732077

O V2 0.0879963822
V4 0.1532529391
PIT 0.2358068365 0.4770561579

T V2 0.1329452345
V4 0.2314114161
PIT 0.2942349409 0.6585915914

Table A.2: Results of i) for Diamond template. Forward network with the real
component of Gabor filters applied to V1 forward network. The numbers repre-
sent the total activity in the difference network divided by the total activity in the
forward network.

Template Stimulus Layer Diff/Fwd Total
O S V2 0.0970650277

V4 0.1368158789
PIT 0.2217076827 0.4555885892

D V2 0.0584158979
V4 0.099048181
PIT 0.1366951917 0.2941592705

O V2 0.0454473734
V4 0.078346959
PIT 0.1691495671 0.2929438995

T V2 0.126654708
V4 0.2009494188
PIT 0.2640806878 0.5916848145

Table A.3: Results of i) for Circle template. Forward network with the real com-
ponent of Gabor filters applied to V1 forward network. The numbers represent the
total activity in the difference network divided by the total activity in the forward
network.

Appendix A 110

Template Stimulus Layer Diff/Fwd Total
T S V2 0.152910901

V4 0.2215226557
PIT 0.3061916613 0.6806252181

D V2 0.1652449781
V4 0.2039918852
PIT 0.2823904124 0.6516272757

O V2 0.150200195
V4 0.2113811667
PIT 0.3074547185 0.6690360801

T V2 0.04727072
V4 0.1044881343
PIT 0.2100816483 0.3618405026

Table A.4: Results of i) for Triangle template. Forward network with the real com-
ponent of Gabor filters applied to V1 forward network. The numbers represent the
total activity in the difference network divided by the total activity in the forward
network.

111 Appendix A

A.2 Results for Orthogonal Angles Input in Opposition

Template Stimulus Layer Diff/Fwd Total
S S V2 0.1148962291

V4 0.1352048731
PIT 0.1399642519 0.390065354

D V2 0.2048881775
V4 0.2397062557
PIT 0.2391446602 0.6837390934

O V2 0.2723207094
V4 0.243137216
PIT 0.2409175135 0.7563754389

T V2 0.2865657232
V4 0.2821677105
PIT 0.2699174126 0.8386508462

Table A.5: Results ii) for Square template. Forward network with the real com-
ponent of Gabor filters applied to V1 forward network and the real component of
Gabor filters from lines orthogonal to each V1 filter applied as negative input. The
numbers represent the degree of mismatches between the stimulus and the atten-
tional template.

Appendix A 112

Template Stimulus Layer Diff/Fwd Total
D S V2 0.237710016

V4 0.2860965291
PIT 0.2805243364 0.8043308816

D V2 0.1046090556
V4 0.0930898629
PIT 0.1016954223 0.2993943408

O V2 0.2340739594
V4 0.2127463689
PIT 0.211079126 0.6578994544

T V2 0.2846291193
V4 0.2669070529
PIT 0.2512482668 0.8027844389

Table A.6: Results of i) for Diamond template. Forward network with the real
component of Gabor filters applied to V1 forward network. The numbers repre-
sent the total activity in the difference network divided by the total activity in the
forward network.

Template Stimulus Layer Diff/Fwd Total
O S V2 0.2273044826

V4 0.2112432252
PIT 0.2078553791 0.6464030869

D V2 0.23103539
V4 0.1915407565
PIT 0.1924575678 0.6150337142

O V2 0.0923904829
V4 0.10696771
PIT 0.1073279069 0.3066860998

T V2 0.2763950741
V4 0.2496982392
PIT 0.2346463363 0.7607396497

Table A.7: Results of i) for Circle template. Forward network with the real com-
ponent of Gabor filters applied to V1 forward network. The numbers represent the
total activity in the difference network divided by the total activity in the forward
network.

113 Appendix A

Template Stimulus Layer Diff/Fwd Total
T S V2 0.2724194872

V4 0.3859057528
PIT 0.3770801022 1.0354053422

D V2 0.2525733057
V4 0.3732934474
PIT 0.3543090019 0.9801757549

O V2 0.3040699209
V4 0.423244342
PIT 0.406980653 1.1342949159

T V2 0.0987018712
V4 0.1115619782
PIT 0.1197312061 0.3299950555

Table A.8: Results of i) for Triangle template. Forward network with the real com-
ponent of Gabor filters applied to V1 forward network. The numbers represent the
total activity in the difference network divided by the total activity in the forward
network.

Appendix A 114

A.3 Results for Real and Imaginary Inputs in Opposition

Template Stimulus Layer Diff/Fwd Total
S S V2 0.1391488765

V4 0.2783221196
PIT 0.3410666449 0.758537641

D V2 0.2578198488
V4 0.364239496
PIT 0.3414717518 0.9635310965

O V2 0.328718476
V4 0.4912222935
PIT 0.490603361 1.3105441305

T V2 0.4066341853
V4 0.5326675406
PIT 0.5867942192 1.5260959451

Table A.9: Results of iii) for Square template. Forward network with the real
component of Gabor filters applied to V1 forward network and the imaginary com-
ponent applied as negative input. The numbers represent the total activity in the
difference network divided by the total activity in the forward network.

115 Appendix A

Template Stimulus Layer Diff/Fwd Total
D S V2 0.3485902614

V4 0.4645730624
PIT 0.4169869882 1.2301503119

D V2 0.0710264734
V4 0.1858715102
PIT 0.2604600815 0.5173580651

O V2 0.3548840646
V4 0.3952283988
PIT 0.3368511781 1.0869636415

T V2 0.543546789
V4 0.5829837109
PIT 0.6101884317 1.7367189316

Table A.10: Results of iii) for Diamond template. Forward network with the real
component of Gabor filters applied to V1 forward network and the imaginary com-
ponent applied as negative input. The numbers represent the total activity in the
difference network divided by the total activity in the forward network.

Template Stimulus Layer Diff/Fwd Total
O S V2 0.3759263706

V4 0.404318849
PIT 0.4532924464 1.233537666

D V2 0.4331560205
V4 0.3964700007
PIT 0.3605512311 1.1901772523

O V2 0.1260106661
V4 0.2040522259
PIT 0.2294532939 0.5595161858

T V2 0.4623294853
V4 0.5890424126
PIT 0.5584010876 1.6097729854

Table A.11: Results of iii) for Circle template. Forward network with the real
component of Gabor filters applied to V1 forward network and the imaginary com-
ponent applied as negative input. The numbers represent the total activity in the
difference network divided by the total activity in the forward network.

Appendix A 116

Template Stimulus Layer Diff/Fwd Total
T S V2 0.4755586031

V4 0.5101123133
PIT 0.4138883765 1.3995592929

D V2 0.6078516536
V4 0.6491298697
PIT 0.4910842215 1.7480657449

O V2 0.5156615328
V4 0.5678328001
PIT 0.5037186382 1.5872129711

T V2 0.0523878513
V4 0.1493678525
PIT 0.1575733356 0.3593290393

Table A.12: Results of iii) for Triangle template. Forward network with the real
component of Gabor filters applied to V1 forward network and the imaginary com-
ponent applied as negative input. The numbers represent the total activity in the
difference network divided by the total activity in the forward network.

117 Appendix A

A.4 Parametrization of Sigmoid Functions for Evaluation
in section 4.3

Network Type Layer τ Max Rate Power Noise
ANN N/A V1 N/A 1 1 1.5
Dyn E V1 1×10−3 100 1.0 1.5
Dyn I V1 5×10−4 100 1.0 1.5
ANN N/A V1 N/A 1 1 1.2
Dyn E V2 1×10−3 100 1.0 1.2
Dyn I V2 5×10−4 100 1.0 1.2
ANN N/A V4 N/A 1 1 1.0
Dyn E V4 1×10−3 100 1.0 0.2
Dyn I V4 5×10−4 100 1.0 0.2
ANN N/A PIT N/A 1 1 1.0
Dyn E PIT 1×10−3 100 1.0 0.2
Dyn I PIT 5×10−4 100 1.0 0.2
ANN N/A AIT N/A 1 1 1.5
Dyn E AIT 1×10−3 100 1.0 1.0
Dyn I AIT 5×10−4 100 1.0 1.0
LIP E LIP 1×10−3 100 1.0 0.5

Table A.13: Parametrization of the Nodes of the forward networks and LIP network
in section 4.3. The dynamical populations of the forward dynamical networks are
for e_p, i_p, e_n and i_n, as these vary based on the size of the receptive fields. E
is excitatory, I is inhibitory.

Network Type Layer τ Max Rate Power Noise
rANN N/A All N/A 1 1 1.5
rDyn E All 1×10−3 100 1.0 1.0
rDyn I All 5×10−4 100 1.0 1.0

Table A.14: Parametrization of the Nodes of the reverse networks in section 4.3.
The dynamical populations are for e_p, i_p, e_n and i_n, as these vary based on
the size of the receptive fields. E is excitatory, I is inhibitory.

Appendix A 118

Name Type Layer τ Max Rate Power Noise
p_out E All 1×10−3 100 1.0 1.0
n_out E All 5×10−4 100 1.0 1.0

Table A.15: Parametrization of the Perceptron Circuit output nodes (p_out and
n_out) of the forward and reverse dynamical networks in section 4.3. E is excita-
tory, I is inhibitory.

Name Type τ Max Rate Power Noise
e_dis_p E 1×10−3 100 1.0 1.25
i_dis_p I 5×10−4 100 1.0 1.25
e_rev_p E 1×10−3 100 1.0 1.25
i_gat_p I 5×10−4 100 1.0 1.25
e_dis_n E 1×10−3 100 1.0 1.25
i_dis_n I 5×10−4 100 1.0 1.25
e_rev_n E 1×10−3 100 1.0 1.25
i_gat_n I 5×10−4 100 1.0 1.25
e_r_n E 1×10−3 100 1.0 1.25
i_r_n I 5×10−4 100 1.0 1.25
e_r_p E 1×10−3 100 1.0 1.25
i_r_p I 5×10−4 100 1.0 1.25
e_f_in E 1×10−3 100 1.0 1.25
i_gat I 5×10−4 100 1.0 1.25
e_dis E 1×10−3 100 1.0 1.25
i_dis I 5×10−4 100 1.0 1.25
i_ili I 5×10−4 100 1.0 1.25
i_li I 5×10−4 100 1.0 1.25

Table A.16: Parametrization of the Disinhibition Circuit nodes of the dynamical
networks in section 4.3. E is excitatory, I is inhibitory.

	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Glossary
	Introduction
	Structural organization of the Visual Brain
	The Main Cortical Pathways involved in Cortical Vision
	Occipital Cortex
	Primary Visual Cortex (V1)
	V2
	V4
	Middle Temporal (V5)

	Inferotemporal Area
	Other Visually Related Cortical Areas
	Lateral Intraparietal (LIP)
	Frontal Eye Fields (FEF)

	Columnar Organization of the Cortex

	Visual Attention
	Spatial Attention
	Feature-based Attention
	Object-based Attention

	The Biased Competition Model
	Feature-Similarity Gain versus Feature Matching
	Attentional Capture
	Visual Search
	Feature Binding
	Modelling Visual Attention
	Extant Models of Visual Attention
	Closed Loop Attention Model
	Deco & Rolls' Model
	Dynamical Interacting Artificial Neural Network Application

	Thesis Outline

	DIANNA
	Motivation for DIANNA
	Architectural Overview
	The Project object
	DynamicNetwork Structure
	Applying Patterns to a DynamicNetwork
	Training Neural Networks
	Training Artificial Neural Networks

	Network Inputs
	Direct Input
	XML-based Input
	Image-based Input
	Gabor filters

	Colour filters

	Circuit Editor
	An example DIANNA project
	Project XML Format

	ANN Model
	Learning for Feature-based Attention
	Differences between feature types: form versus colour
	Colour feature detection
	Form feature detection

	Neural Training
	Network-based feature learning
	Layer-based feature learning
	Reciprocal network
	Hebbian Learning
	Active State Learning

	Object recognition
	Visualization
	3D Network-based visualization
	2D Layer-based visualization

	Evaluation of Artificial Neural Networks for Feature-based Attention
	The Model
	Evaluation Method
	Results
	Discussion of results

	Dynamical Model
	Wilson-Cowan Dynamics
	Cortical Circuits
	The Perceptron Circuit
	The Disinhibition Circuit
	The Disinhibition Circuit with Lateral Inhibition
	The LIP Circuit

	A Dynamical Model
	Results: Form Network
	Results: Form Network with Lateral Inhibition
	Results: Form and Colour Network with Lateral Inhibition

	Discussion of Dynamical Simulation Results

	Conclusion
	Applicability to Computer Science

	Bibliography
	Appendix A
	Results for No-Opposition
	Results for Orthogonal Angles Input in Opposition
	Results for Real and Imaginary Inputs in Opposition
	Parametrization of Sigmoid Functions for Evaluation in section 4.3

