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“Network-Theoretic” Queuing Delay Estimation in Theme Park Attractions

Ajay Aravamudhan, Archan Misra, Hoong Chuin Lau

School of Information Systems, Singapore Management University
E-mail: {ajaysa,archam,hclau}@smu.edu.sg

Abstract— Queuing is a common phenomenon in theme parks
which negatively affects visitor experience and revenue yields.
There is thus a need for park operators to infer the real
queuing delays without expensive investment in human effort or
complex tracking infrastructure. In this paper, we depart from
the classical queuing theory approach and provide a data-driven
and online approach for estimating the time-varying queuing
delays experienced at different attractions in a theme park. This
work is novel in that it relies purely on empirical observations
of the entry time of individual visitors at different attractions,
and also accommodates the reality that visitors often perform
other unobserved activities between moving from one attraction
to the next. We solve the resulting inverse estimation problem
via a modified Expectation Maximization (EM) algorithm.
Experiments on data obtained from, and modeled after, a real
theme park setting show that our approach converges to a fixed-
point solution quite rapidly, and is fairly accurate in identifying
the per-attraction mean queuing delay, with estimation errors
of 7-8% for congested attractions.

I. INTRODUCTION

Correctly and robustly estimating the queuing (or ’wait-
ing’) time at different attractions of a theme park is a critical
operational imperative, as it directly affects both visitor
satisfaction and revenue yields. Knowledge of such queuing
delays can be used, for example, to offer dynamic itinerary
recommendations or to provide specially-timed passes, as a
means of alleviating peak loads at popular attractions. For
the most part, estimates of such likely delays have been
computed off-line (e..g, see [1]), as part of capacity plan-
ning and policy formulation, by applying models of visitor
movement that are typically computed based on aggregated
surveys (e..g, [6]) or, more recently, based on empirical data
collected via mobile devices (e.g., [3]).

In this paper, we instead propose and investigate a
more data-driven and online estimation approach, where
we try to infer the dynamically-varying queuing delays
actually experienced at different attractions, based purely
on empirical observations of the entry time of individual
visitors at different attractions. This approach posits that the
entry times serve as an indirect indicator of the queuing
delays experienced, as the time between two successive
entries will obviously be longer if the visitor spends a longer
time waiting in an intervening queue. More specifically,
this problem is based on the operational realities of a major

This research project is supported by the Singapore National Research
Foundation under its International Research Centre @ Singapore Funding
Initiative and administered by the IDM Programme Office.

theme park partner located in Singapore: the theme park
provides each visitor, or some fraction of the overall set of
visitors, with an electronic tag/card that he or she “taps”
only when entering an attraction, but not when exiting
the attraction. As a result of this “tapping” behavior, our
observable dataset consists of a set of V isit tuples of the
form:

〈Timestamp,CardID,AttrID〉

where AttrID refers to the ID of a specific attraction,
CardID is the identity associated with the electronic tag
(unique for each visitor) and Timestamp denotes the time at
which the visitor ‘taps’ the card (at some stage of “entering”
the attraction). Table I shows a small sample of taps recorded
for a set of three users.

Given such a corpus of V isit tuples (from different
visitors across all attractions), the problem of estimating
the queuing delay at individual attractions is an ‘inverse-
estimation’ problem. Fundamentally, the interval between
successive ‘tap’ timestamps by an individual provides the
total transit time between the corresponding attraction pair,
and the inverse estimation problem then becomes one of
identifying the fraction of this transit time that is spent
waiting in one or more queues.

Such problems have been addressed previously in Internet
tomography literature (e.g., [4], [8]). However, our problem
is unique due to the fact, that human beings (unlike objects
such as Internet packets or goods in a supply chain) do
not directly proceed from one attraction to the next, but
exercise “free will” to potentially engage in other unobserved
activities, of widely varying duration, between attraction

Timestamp CardID AttrID

2011-10-21 19:29:42 304101984 1
2011-10-21 19:31:44 303930755 6
2011-10-21 19:34:51 304193107 6
2011-10-21 20:10:06 303930755 1
2011-10-21 20:14:15 304193107 1
2011-10-21 20:19:43 304101984 6
2011-10-21 21:01:47 304193107 5
2011-10-21 21:05:19 304101984 5
2011-10-21 21:27:32 304101984 3
2011-10-21 21:09:02 303930755 5
2011-10-21 22:05:39 303930755 2

TABLE I: Snapshot of visitor activity history



visits. In other words, the time between consecutive ‘taps’
consists of not only one or more usually-deterministic and
well-known attraction delays (i.e., the time taken to complete
a ride) and one or more unknown queuing delays, but also an
unobserved ‘sojourn delay’. For example, one visitor might
take a short restroom break between two attractions, while
several others may collectively take a longer lunch break.

In this paper, we shall show that this inverse estimation
problem can be modeled by a linear set of ‘network of
queues’ equations, driven by unobservables that include the
queuing delay and the ‘random’ sojourn delay between
attractions. Moreover, the sojourn delay itself can be modeled
as a mixture of distributions, each of which intuitively
corresponds to a different type of activity that a visitor
may undertake between attractions. We shall then derive
and evaluate a modified Expectation Maximization (EM)
algorithm to solve for the various unknowns of this ‘network
of queues’ model. The EM approach is necessary, as opposed
to more conventional MLE techniques, due to the underlying
mixture model, whereby it is not observable if the visitor’s
inter-attraction time is a result of just the queuing delay or
delays due to other intermediate activities.
Research Questions: As part of our investigation, we shall
address the following research questions:

• How do we statistically model the ‘random’ sojourn
delay (which differs for every individual and for every
attraction pair) in our inverse estimation framework?

• Given the pairwise inter-attraction ‘tap’ times for dif-
ferent individuals, how do model the queuing delay es-
timation problem, while incorporating the unobservable
‘sojourn delays’?

• How do we then statistically solve the resulting inverse
estimation problem?

Key Contributions: We believe that this paper makes the
following key contributions:

1) ‘Network of Queues’ Model: Based on the real-life
characteristics of theme park attractions, we develop
a ‘network of queues’ model, where each attraction is
modeled as a node that is preceded by a variable-delay
queue, with the visitor ‘tapping’ action performed either
before or after enduring the queuing delay.

2) Bimodal mixture for Sojourn Delay: We leverage
on the empirically-observed bimodal distribution (see
Figure 2) of the sojourn delay, aggregated across visi-
tors. This reflects the intutition that most visitors transit
between Attraction i and Attraction j either directly or
after a reasonably long gap, and allows us to model the
sojourn delay as a mixture of two Gamma-distributed
random variables.

3) Modified EM Algorithm: To solve the resulting inverse
estimation problem, we shall propose a modified Expec-
tation Maximization (EM) algorithm. More specifically,
unlike the basic EM algorithm, our modified ‘M’ step
consists of an additional regression process to determine
the best values (at present) of both the per-attraction
queueing delays and the two Gamma-distributed sojourn

variables. We shall show that this approach provides
reasonably good estimates of the queuing delays for our
experimental theme park layout.

II. RELATED WORK

Most of the prior work related to queuing delays in
theme parks focuses on the planning phase, and aims to
understand the likelihood and impact of the delays that may
result from different visitor movement and usage patterns.
In the pioneering work in [1], Ahmadi developed a series of
statistical movement models and evaluation criteria for ride
management, short-term capacity planning and visitor flow
management in a theme park environment, with a goal of
understanding how changes in movement behavior affect the
customer experience at different attractions. Motivated by a
study at Universal Studios Hollywood (USH), [9] developed
a flow management model that illustrates the impact of
visitor flows on the retail store sales and suggests tuning
the capacities and schedules of the major attractions so as
to increase visitor flows to high-profit retail areas. More
recently, the ability to capture individual-level preferences
of visitors via their personal mobile devices has enabled the
creation of more detailed person-specific movement models.
For exmple, [3] recently proposed a data-driven approach,
where the aggregate visit patterns to different attractions are
based on underlying agent models, which have been built
from individual-level movement data collected via mobile
devices.

All of these prior works do not attempt to dynamically esti-
mate the actual queuing delays, experienced during the daily,
“real-time operation” of the park. One example of operational
management of attraction delays is the FASTPASS system
(whose distribution mechanism has been studied in [7]) used
at Disneyland, which offers visitors special wait-free entry
to specific attractions at a later stipulated time, under certain
conditions. There appears to be little prior work in online
estimation of queuing delays, based on observed timestamps
of attraction visits.

As mentioned before, such online estimation of queuing
delays has, however, been addressed in the Internet “network
tomography” community, where end-to-end measurements of
Internet traffic properties are used to infer “hidden” bottle-
necks in the Internet core. More specifically, Coates et. al [4]
survey the use of signal processing and statistical estimation
techniques to uncover the available bandwidth and queuing
delays of intermediate network links, based on end-to-end
measurement of Internet traffic. Similarly, the problem of es-
timating the delays experienced by multicast packets and the
traffic loads between origin-destination pairs was addressed
in [8], which developed a maximum pseudo-likelihood esti-
mation technique (a modified version of classical MLE). In
general, the tomography approaches model the problem via
a linear network of edges and buffers; this can be applied
to our theme park-oriented formulation as well. However, as
explained earlier, our problem’s uniqueness lies in the need to
accommodate an additional, unobserved amount of visitor-
specific “sojourn delay” between attractions: we shall see



that solving the resulting mixture model is not possible using
the conventional MLE approaches, but requires a modified
version of the Expectation Maximization (EM) [5] algorithm.

III. EMPIRICAL DATASET AND OBSERVATIONS

Our techniques are developed and based on a real-world
dataset (similar to the representation in Table I) obtained
from our theme park partner. The data corresponds to a
specially themed 5-day event organized during Halloween
2011, and contains a total of 28,878 individual ‘tapping’
actions, corresponding to a total set of 9,324 visitors. For this
special event, the attractions were located fairly close to one
another; hence, visitors transited between the attractions only
on foot and along a clearly delineated path (transportation-
related delays, due to bus or monorail schedules, are thus not
relevant to this setting). Moreover, the transit time between
any two attractions is itself relatively small (less than 5
minutes).

Figure 1 shows the schematic layout of the 6 theme park
attractions associated with this special event. Each attraction
is associated with a buffer, representing the physical queue
that visitors experience before entering the event. Note that
the event (and our model) must distinguish between two
types of attractions:
• pre-queuing, where the visitor experiences the queuing

delay prior to ‘tapping’ the card, and
• post-queuing, where the visitor ‘taps’ first and then

experiences a possible queuing-related wait.
For our event, attractions 1-5 were of the pre-queuing type,
while attraction 6 was the only one of the post-queuing
variety. Figure 1 also shows a sample route (in dotted lines)
possibly taken by an individual visitor–in the example, the
visitor generates the ‘tap’ histories in the sequence {4,6,1,3}.
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Fig. 1: Six attraction park with heterogenous queues

A. Bimodal sojourn times

From the observed 〈Timestamp,CardID,AttrID〉 tu-
ples, we can construct a total inter-attraction delay table as
shown in Table II. In general, for any two attractions i and
j, we can find a set of inter-attraction delays, denoted by tij ,
of all people who tapped at i and tapped next at j.

Delay (mins) CardID

t15 59, 47 303930755, 304193107
t16 50 304101984
t52 57 303930755
t53 22 304101984
t61 38, 39 303930755, 304193107
t65 45 304101984

TABLE II: Inter-attraction time interval of visitors (corre-
sponding to Table I)
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Fig. 2: Bimodal distribution of inter-attraction times.

One of our key hypotheses is that the inter-attraction delay
is not just due to the queuing delays experienced prior to
entering each individual attraction, but also due to the fact
that visitors will possibly engage in additional unobserved
activities between different attractions. To validate this hy-
pothesis, Figure 2 plots the empirically observed histogram
of the inter-attraction delays across all attraction pairs (and
all days). Given that the actual travel time between attractions
is less than 5 minutes, the delays suggest that almost all
visitors experienced some degree of queuing delay during the
event. There is also clearly a significantly bimodal nature to
this delay. We believe that this can be directly attributed to
the choices visitors make while moving between attractions:
some visitors walk directly to the next attraction, while others
may choose to take photographs or have a meal, for instance.
This is reinforced by anecdotal observations that “typical”
queuing (or wait) times for visitors was often around 40-
60 minutes, suggesting that the large spread of the inter-
attraction times was driven by significant other ‘activity’
undertaken by the visitors between attractions. Accordingly,
in Section IV, we shall model the sojourn delay component,
denoted by d, as a mixture of two random variables.

IV. PROBLEM DESCRIPTION

We first describe our mathematical model of queuing and
sojourn-induced delays and then explain how the observa-
tions in a multi-attraction theme park setting can be modeled
as a network graph and represented by an adjacency matrix
representation.



A. Mathematical Notation and Model

Table III shows the notations used in this paper. Visitors
to the theme park with N attractions move from attraction
to attraction until they leave the park. Each attraction i
has a queue associated with it, and we denote the queuing
delay experienced1 in the queue at i by qi. The sojourn
delays are denoted by d, and since we assume a bimodal
distribution, we denote the component distributions as d1 and
d2 (with d1 having the lower mean than d2, and implicitly
representing the case where the visitor moves directly from
one attraction to the next). We assume that the sojourn delay
d is independent of the attraction pair that the visitor is
traveling between (the model can be generalized to consider
pair-specific sojourn delays).
tij represents the set of observations of inter-attraction

duration between i and j, each element of which is denoted
by tkij , k ∈ {1, . . . , |tij |}, where |tij | represents the number
of observations of people tapping at attraction i followed by
attraction j. P k

ij(l) represents the probability (not observable,
but something that we must estimate) that the inter-attraction
duration tkij was caused by an individual while being subject
to a sojourn delay caused by dl, l ∈ {1, 2}. Intuitively, P k

ij(1)
represents the probability that tkij was generated by a visitor
moving directly from attraction i to j, whereas P k

ij(2) is the
corresponding probability that the visitor performed some
other activities during the intervening period.

We follow earlier research on the stochastic Orienteering
Problem which models the the inter-attraction duration via
a Gamma-distributed random variable [2]. As an extension,
the queue variables qi and the sojourn delay variables dl
are also Gamma distributed, with k being the shape and
θ the scale parameter. The mean of a Gamma distribution
is defined as kθ. For our formulation, we do not vary the
scale parameter θ. This is both mathematically expedient (as
it allows us to use the additive property of Gamma distri-
butions) and also intuitively appealing (as the queuing and
sojourn delays are typically roughly of the same magnitude–
e.g., tens of minutes). We denote the mean of the queue
delay variable qi as αi, and the mean of the sojourn delay
variable di as δi. We assume that the shape parameter for
all random variables is 1; therefore we can use the mean of
the distribution and the shape variable interchangeably.2

B. Network-Graph Representation

We now represent the set of observations tij by a set of
linear equations. To illustrate the generic process simply,
we consider (see Figure 3) a small four-attraction theme
park. In this example, attractions 1 & 2 are of the pre-
queuing type (visitors experience queuing delays before they
tap their pass), whereas 3 & 4 are post-queuing attractions.

1In the rest of this paper, we assume that each attraction’s queuing delay
is a time-invariant a constant. In subsequent work, which we do not cover
here due to space limitations, we have extended this model to capture the
fact that the queuing delay qi(t) does, in fact, vary with time.

2Our modeling approach, in fact, works well for any distribution that
shows additive properties, such as the Normal distribution. For the Normal,
which we have also successfuly modeled in our work, we would need to
estimate both the variance as well as the mean.

Symbol Description

N Number of attractions in the park
qi Random variable representing the distribution of the queuing

time at attraction i, i ∈ {1, . . . , N}
d̃ Random variable representing human sojourn delay, mixture

of component distributions dl
dl Random variable representing the jth, j = {1, 2} compo-

nent distribution of human sojourn delay
αi The estimated mean of the RV qi, i ∈ {1, . . . , N}
δl The estimated mean of the RV dl, l = {1, 2}
˜tij Random variable representing guest movement from attrac-

tion i to j, i, j ∈ {1, . . . , N}
tij The set of observations of guest movement from attraction i

to j, i, j ∈ {1, . . . , N}
tkij The kth observation of guest movement from attraction i to

j, i, j ∈ {1, . . . , N}
|tij | The number of observations of guest movement from attrac-

tion i to j, i, j ∈ {1, . . . , N}
Pk
ij(l) The probability mass of the kth observation of 〈i, j〉 move-

ment being generated by the dl (the human sojourn delay
RV).

P̂k
ij(l) The normalized probability that the kth observation of 〈i, j〉

movement was caused by the use of the human delay RV dl.

TABLE III: Symbols used

1 2

3 4

t 32

T

T

T

T

Fig. 3: A four attraction theme park with heterogeneous
queues

The figure shows a path from attraction 3, where visitors tap
before queueing, to attraction 2, where visitors queue before
tapping. The random variable, t̃32, denoting the time taken
between taps at attraction 3 and attraction 2 is then governed
by the relationship:

t̃32 = q3 + q2 + d̃ (1)

where, as noted in Table III, qi is the queue delay random
variable and d̃ is the human sojourn delay random variable.
In other words, each of the individual observations in the set
t32 is a realization of the sum of the random variables q3, q2
and d̃.

Similarly, we can write the equations for the other r.v.s
t̃12, t̃14, and t̃34 in figure 3 as follows:

t̃12 = q2 + d̃ (2)

t̃14 = d̃ (3)

t̃34 = q3 + d̃ (4)

Proceeding in this fashion, we can then represent the
relationships between the random variables in Figure 3 via



the following matrix representation:

0 1 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 1 0 1
0 1 1 0 1
0 0 1 0 1
1 0 0 1 1
0 1 0 1 1
0 0 0 1 1




q1
q2
q3
q4
d̃

 =



t̃12
t̃13
t̃14
t̃21
t̃23
t̃24
t̃31
t̃32
t̃34
t̃41
t̃42
t̃43



(5)

Note that this matrix captures the relations between the
different random variables – our estimation problem is one
of estimating various parameters (e.g., the mean) of the
different r.v.s, given the set of empirical observations.

In general, this relationship can be expressed as:

A ∗Q = T, (6)

where A is the ‘routing adjacency matrix’, Q is the vector
of random variables whose parameters we have to determine
and T is the vector of random variables representing the
inter-attraction tap times.

The above equation models the relationship between the
distributions of the queue times, delays and movements.
Given the set of actual movement observations T , we shall
now address the question: “how do we compute the values
of αi and δi (i.e., the means of these random variables)?” In
other words, taking expectations on both sides of Equation 6,
we get the following relationship:

A ∗ E(Q) = E(T ). (7)

More specifically, looking at the eighth row of the above
equation, we have:

α2 + α3 + E[d̃] = E(t32), (8)

where α2 is the mean of q2, α3 is the mean of q3 and E(t32)
is the sample mean of the observation set t32.

V. EXPECTATION MAXIMIZATION ALGORITHM

We now present an EM-based method to solve Equa-
tion 7. The EM algorithm ([5], [10]) is an iterative method
for finding maximum likelihood estimates of parameters
in statistical models with unobserved latent variables. It
alternates between performing an expectation (E) step, which
computes the likelihood of the observation being generated
by a specific latent variable, and a maximization (M) step,
which computes the parameters of the latent variable that
maximize the expected likelihood found on the E step.

A. Description of EM for theme park queue estimation
We first outline the basic steps of the EM algorithm, using

the theme park of Figure 3 as reference. We start with ran-
domly chosen values for αi (the mean of the queuing delays),
and δl, the ‘human sojourn time’ means. Algorithm 1 outlines
the pseudocode for EM algorithm, which we describe in
detail next.

Algorithm 1: Expectation Maximization Algorithm
Data: A: routing matrix, T : vector of sets of sojourn

delays, tij∀i, j
Result: Estimates of αi,∀i ∈ {1, . . . , N}, δl,∀l ∈ {1, 2}
Initialization: Set αi, δl to 0 ∀i, l;
i←− 0, MaxIter ←− 50;
while i ≤MaxIter do

E-Step:;
m1 = A ∗ [α1 α2 . . . αN δ1]′ ;
m2 = A ∗ [α1 α2 . . . αN δ2]′ ;
for each tkij ∈ tij in T do

t1 = Γ(tkij ,m
1
ij , 1);

t2 = Γ(tkij ,m
2
ij , 1);

P̂ij
k
(1) = t1/(t1 + t2);

P̂ij
k
(2) = t2/(t1 + t2);

M-Step:;
for each tij ∈ T do

w1
ij = tij ∗ Pij(1);

w2
ij = tij ∗ Pij(2);

W = [w1
ijw

2
ij ]
′;

Q = NNLSE(A′,W );

i← i+ 1;

1) The “E” step: For observations between attractions 3
and 2, we can write:

tk32 = q3 + q2 + d̃;∀k = 1, . . . .., |t32| (9)

We first estimate the relative probabilities for each of the
|t32| observations that it came from the Gamma-distributed
random variable d1, or from the RV d2. As the sum of two
independently distributed Gamma random variables with the
same scale parameter is also Gamma, we will get:

P k
32(1) = Γ(tk32, α3 + α2 + δ1, 1) (10)

P k
32(2) = Γ(tk32, α3 + α2 + δ2, 1) (11)

We can then compute the normalized probability for the
observation tk32 coming from either of these two distributions
as:

P̂ k
32(1) =

P k
32(1)

P k
32(1) + P k

32(2)
P̂ k
32(2) =

P k
32(2)

P k
32(1) + P k

32(2)
(12)

In this way, we can compute the relative normalized prob-
abilities P̂ k

ij(m),m = {1, 2};∀k ∈ |tij | for all pair-wise
observations, thereby completing the E step.

2) The “M” step: In the M-step, for each pairwise at-
traction 〈i, j〉, we weigh each observation tkij by the relative
probability of it coming from the appropriate ‘mixture’
distribution. To illustrate the process, we continue with the
observations of the transitions between attractions 3 and 2.

We now create separate weighted equations for each of
the two ‘human sojourn’ RVs, i.e., ∀k ∈ 1 . . . |t32|:

tk32 ∗ P̂ k
32(1) = q3 + q2 + d1 (13)

tk32 ∗ P̂ k
32(2) = q3 + q2 + d2 (14)



By the sufficient statistic property of all the readings we will
get the following relationships:

α3 + α2 + δ1 =

∑|t32|
k=1 t

k
32 ∗ P̂ k

32(1)∑|t32|
k=1 P̂

k
32(1)

(15)

α3 + α2 + δ2 =

∑|t32|
k=1 t

k
32 ∗ P̂ k

32(2)∑|t32|
k=1 P̂

k
32(2)

(16)

Repeating this for all pairs of observations, we will get two
values for each tij , one drawn from a combination of queuing
delays and sojourn delay variable d1, and the other drawn
from a combination of queuing delays with sojourn delay
variable d2. If we denote the sample mean of the observed
sojourn delays between attractions i and j as w1

ij and w2
ij ,

where w1
ij & w2

ij are drawn from d1 and d2 respectively, we
obtain the equations as shown in Equation 17.

3) Least Square Error Regression: From Equation 17, we
obtain a set of simultaneous equations, where the number
of equations is greater than the number of unknowns. We
then use the Non-Negative Least Square Error (NNLSE)
regression to find the ‘best fit’ estimate that most closely
satisfies the set of equations. This is done at the end of the M-
Step, and the estimates of the NNLSE regression are used as
input to the subsequent E-Step, until the solution converges.
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VI. EXPERIMENTAL RESULTS

We now study the estimation accuracy and other perfor-
mance characteristics of the proposed EM algorithm. As the
theme park dataset does not contain the “ground truth” for
queuing delays, we resort to the use of a synthetic dataset. In
this approach, the trace of visitor movements and wait times
are generated using a synthetic movement model, whose
parameters mimic the real-world dataset (we use the same
transition probabilities, and number of visitors observed, for

the 6-node theme park layout presented in Figure 1), but
with artificially-generated queue and human sojourn delays.
Table IV presents the specific parameters used for this data
generation. We focus on two key metrics: a) the estimation
accuracy and b) the speed of EM convergence.

Parameter Value

Number of attractions (N ) 6
Number of observations (|tij |) [100, 500]
Proportion of sojourn delay 15(70%) 35(30%)
Maximum number of iterations 50

TABLE IV: Parameters for numerical evaluation

A. Estimation Accuracy

Variable Mean Delay Estimated Error

q1 4.00 4.90 +22.5%
q2 8.00 7.86 -1.75%
q3 12.00 12.95 +7.92%
q4 16.00 16.55 +3.44%
q5 20.00 21.35 +6.75%
q6 24.00 25.03 +4.29%

d1 15.00 16.12 +7.47%
d2 35.00 35.38 +1.08%

TABLE V: Estimation Accuracy Results

Table V shows the converged estimates (for both the
queuing and sojourn delays) after the algorithm finishes
running. The algorithm performs well as the queue delay
increases; for smaller delays the error is as high as 22%,
whereas for higher values, the error is under 5%. (While
different runs of the EM algorithm can converge to slightly
different values depending on the starting point, the trend of
greater error for smaller queue delays holds.) This property
works to our advantage, as the park operator is principally
interested only in those attractions that are ‘congested’-i.e.,
are experiencing fairly significant wait times.

B. Varying the relative proportion of sojourn delay variables

We observe the performance of the algorithm when the rel-
ative proportions of the component distributions are changed.
Specifically, we change the ratios of d1 and d2 variables, and
observe the changes in the estimated values of αi (the means
of the qi variables). Variations in sojourn delay mixture
proportions occur because visitors may decide on a particular
behavior more than another.

We tabulate the results in table VI. We observe that as the
percentage of people who travel faster between attractions
(i.e., with sojourn times generated according to d1) increases,
the estimated queue delays also increases. Conversely, as
more visitors exhibit higher sojourn delay, the queuing delays
are under-estimated.

C. Convergence Speed

Figure 4 shows rate of convergence for q3, for different
proportions of sojourn delay variables d1 and d2. We note
that q3 converges fairly fast (around the 20th iteration)
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and that this rate of convergence seems to be essentially
unaffected by different mixture proportions.

VII. CONCLUSION

In this paper, we have addressed the problem of dy-
namically estimating the queuing-related wait times at dif-
ferent theme park attractions, based on electronic records
of visitor entry times, instead of the traditional methods
of using pre-computed models of movement behavior. This
estimation problem is challenging as the inter-attraction tap
time interval arises not just from queuing delays, but from
additional unpredictable and unobserved sojourn delays due
to individualized visitor behavior. We characterize such a
delay as a mixture model of two Gamma-distributed random
variables, and then apply a modified EM algorithm (with the
M-step consisting of an additional regression operation) to
jointly identify the unknown parameters of both the queuing
and sojourn delay distributions. Synthetic behavorial traces,
based on a real-world theme park setting and empirically
gathered visitor tap time records, show that our statistical de-
lay estimator converges to a fixed-point solution quite rapidly
and is fairly accurate in identifying the mean queuing delay,
with estimation errors of ≤ 7−8% for congested attractions.
Note that this technique can be applied for dynamic delay
estimation in other ‘networked’ queuing systems–e.g., for

estimating congestion in road networks based on the times
at which specific vehicles pass different toll booths.

In ongoing work, we have been addressing two important
open questions. First, the solution presented here assumes
that the queuing delay distribution is uniform throughout the
entire observation period. In reality, as user arrivals are not
time-homogeneous, the distribution of the queuing delays
will vary with time. More recently, we have extended this
approach to perform continually-updated delay estimation in
an online fashion, where the tap data is viewed as a con-
tinuously arriving data stream. In this approach, successive
time intervals are assumed to have different distributions
for the queuing random variables, with some correlation
among successive intervals (as delays usually do not change
abruptly, but build up or recede gradually). Second, to
generalize this work to other layouts, we need to study the
sensitivity of the results to the mix of pre-queue and post-
queue attractions (as their relative order changes the number
of unobserved variables that contribute to a single inter-tap
duration).
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Variable Mean Delay 30%-70% 50%-50% 70%-30%

q1 4.00 3.67 3.88 4.24
q2 8.00 6.56 8.15 9.14
q3 12.00 10.67 12.19 13.27
q4 16.00 14.56 15.92 17.69
q5 20.00 17.61 20.07 22.02
q6 24.00 21.79 24.07 26.16

d1 15.00 15.59 14.86 16.01
d2 35.00 34.04 34.96 34.64

TABLE VI: Effect of change in mixture composition (ratio
of d1 : d2 observations) on queuing delay estimates
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