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ABSTRACT

The three dinensional state of stress in a finite thick
rectangular plate with a through-crack under tension is
i nvesti gat ed. It is found that the in-plane stresses and the
transverse normal stress are singular while the transverse
shear stresses are of the order of unity. The only type of
singularity encountered is that of inverse square root all
through the plate thickness including the corner points at the
plate  faces. The stress intensity factor which is found to
vary with 2 and the thickness ratio h/a drops rapidly in a
thin boundary | ayer near the plate faces, but w thout actually
vani shing there. The stress intensity factor reduces exactly
to that for the plane strain case when h/a —+=e& . Al the
three conponents of the displacenent field are finite at the
crack front.
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[ NTRCDUCTI ON

Recent studies (Hartranft and Sih, 1969;sih, W|lians and
Swedlow,1966; Folias, 1975  1980) in three di mensional (3-D)
cracked- pl ate probl ens with cracks emerging at the free
surfaces have rai sed sone questions such as, (1) the type of
singularities involved at the crack front, in particular, at
the corner points where the crack front penetrates the free
late faces, (2) the type of variation of the stress intensity
actor (SIF) across the plate thickness, in particular, near
the plate faces, (3) the finiteness or otherw se of the
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di spl acenent conponents at the crack front. The studies
carried out in the above mentioned references point ,to the
exi stence of the inverse square root singularity 1/(%)?2in the
stress field interior to the plate thickness wth a
predomnantly plane strain type of deformation; no nunerical
results are prsented there. wever, near the plate faces,
while the first two references do not throwan% light as to
either the type of stress singularity or the deformation
character,the Studies in next two references reveal a Possion's
rati o- dependent stress singularity, viz, 1/(E)%2+2f indicating
a displacenent singularity at the crack front for a;-n >1/4; in
contrast, in the first two references the displacement
finiteness condition at the crack front is enforced on the
sol uti on. The results of (Benthem 1976; Rawai, 1975) for
the stresses _near the corner point of a quarter plane crack
exhibit 1/(£)* singularity withee varying fromo to 1/2 in the
former's case and 1/2 to 1l in latter's investigation. The
experi nment al studies of reference (villarreal, Sh and
Hartranft, 1975) serve to confirmthe 8ualltat|ve results of
(Hartranft, 1969; Sih, 1966; Folias, 1975, 1980) regarding the
character of the singular deformation field interior to the
pl ate thickness; but, near the plate faces, a rapid decrease in
SIF val ues is indicated, suggesting a reduction In the strength
of singularity in the region.

In this paper, the 3-dinmensional state of stress in a thick
rectangular plate with a t.hrou?h—crack. under tension s
i nvest i gat ed. The mathematical Tornulation of the problemis
based on the 3-dinensional elasticity equations, (Lure, 1964).

The solution obtained satisfies, "exactly, the stress-free
conditions at the crack surfaces as also the plate faces; and
the boundary conditions (B.C) at the exterior edges of the
plate, including those of the applied tensile loading, are
satisfied in the | east square sense. It is found that the in-
| ane stresses and the transverse nornal stress are singular at
he crack front while the transverse shear stresses are of the
order of unity.

During the early stages of the fornulation of the present
probl em some interesting features concerning the singular
stress field at the crack front were observed. Sone of these
results were reported in (Bapu Rao, 198l). Subsequently,further
formul ation and nunerical studies werecarried out. In this
paper,only essential features of the formulation of the problem
and nurerical results for two typical problens of a thick plate
with a through-crack under tension are presented. hese
results and their conparisonwith existing results lead to some
i mportant concl usi ons.

FORMULATI ON F THE PRCBLEM

In viewof the cylindrical coordinate systemchosen (f,8,2) in
associ ation with the Cartesian coordinate system (x, ¥ ,%), See
Fig 1, it is necessary to consider for analysis only the



region defined by (-aj)g X ¢ (L-a), (-B)¢ ¥ ¢B and (-h)g 2 ¢h,
w th appropriate cont}.nuiafv]_ conditions at ZX=-aand boundary
ich are given as

condi tions at other edges,

Fig. L Coordinate systemand pl ate di mensi ons

at X=-0,, u =0, =(n, =0; at X=(L-Q), 0y = Oxy= 0xz=0 (1)

X2
at y=+B, gy S (applied tension), 03, = @I=0 il

The governing equations (G.E) of the problem are the 3-D
elasticity equations in terns of di Sﬁ| acenment  conponent s
(u,v,w). These equations as also those for the stress

components (ay 0o, Tve + Tz , Gp; r 0gz) are available in
(Hartranft, 1969; Lure, 1964). It is convenient to
nondimensionalize ( T, 8, Z) with respect toQ@ : r=r/a , 6=8,
and z=%/a where 2a is the crack |ength. The solution to GE
nust satisfy the followi ng boundary conditions :

(1) at the plate faces ( 2 = x h/a = t %), O, =0gz= 0z =0
(ii)at the crack surfaces (€ =+ W ), 0rg=Te =0gz =0

and al so those defined by egs. 1 and 2 The solutionto GE is
gi ven as

u'._': Re z VL & 4 :'\K)' OQ-LXQCP,G,AK) + X,-_(_r,e) =+ (3)
K=1
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@
+Z_ Fi(2)- oL, Xplr,e,2) , i=z1-3 (3)
L=
u,:-."‘*/a 9 'a-;_—_-.\’/a 9 'U.s:N/Q @)

W=, =[Ok S 0-am S B /ad

Cu=CoSAy-L/% o Sy=SinA, g 5 F3=— S5,2)-0173
F,=F,=Cy(2) = coslnif , S(z)=sintr¥s , X0 (6)
o, = 6/M- ) OC2='. Vp'e’/ae s OC:’:- 1 5 rk=AK-V3

"
xa=2;_1°m-1ﬂ(rk)-cosne , X= ;t‘m. I_Wnl)-Cosne  (7,8)

Xy=p [2/n+n]-[20-2p)-1n]- Ay’ r™*! cosne
m
— 2Mn- Ny r,'n-1' cos na ' (9)
N+1
X,==¥ (2/men)[4G-m +n]- Aq T scne
n
+ 2 MN-Np- r™ sinne (10)

i oegs. 3-10, I},\(z\k,r/;) and In(lmr/9) are nodified Bessel
functions of the rirst kind, and Ay are the conplex roots of
the equation Sin 2A 2Ax=0,(this equation i S obtained by
satisfying the stress free B.C's at plate faces). Here Cxand
S, are the values of C and s« at z=%) Punand (Nn ,tgnsAn)
ar& the unknown conpl ex and real constants respectively.

The first terns ineg 3 automatically satisfies the BC at
the plate faces by virtue of the equation Sin2A,+2 Ax=0,
( k=1,2,3,... ); these conditions are also satisfied
i ndependent |y bK the second and third terns of e 3 when
consi dered together, leading to the elimnation of sone of the
associ ated unknown constants. In order to satisfy the BC at
the crack surfaces (these B.C.'s are to be satisfied by all the
three terms ineg 3 considered together) it is wuseful to
express the stresses in the formof a power series in r, Sine
and Cosine functions of 8, and Fourier Series in %, This can
be acconplished by expressing (Cw,Scz/8) and (S¢,Ckz/8) in eq.

5in Fourier series of the formcCg(z) and sy (z), 1=1,2,3,...,
as also terns of the order of wunity  ©¢(z*), by takin

advant age of the power series formin r of Bessel functions an

bi harnoni ¢ functions, and by virtue of the existing Sine and
Cosine terns in@ present inegs. 7-10. It is nowappropriate
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to consider the range of n occurring in the expressions for the
stresses and displacenents, egs. 7-10. The range of n is
determned fromthe satisfaction of the finiteness condition of
di spl acenent conponents at the crack front. It is found that
there are four groups of n whose ranges are : n=2j+1/2, n=2j+1
and n=2j, 3=0,1,2,...; significantly the limt placed  is
on the |ower value of n,(n=-1/2). Satisfaction of the BC*at
the crack surfaces (by setting®=tWin the expressions for 0g .,
0oz randfre) Wi th respect to each power of r for_each range of n
lead to singular stresses. This nethod of satisfyi ng B.C's has
been enployed for a two dinensional bendi nﬂ problem of a
cracked plate, (Murthy, 1981), The B,C's at the exterior edges
of the PI ate as defined by egs. 1 and 2 are satisfied wth
respect to stress resultants (rather than unit stresses) and
average u over the thickness, in the |east square sense. The
satisfaction of all B.C.,'s nentioned above lead to the
determnation of all unknown constants for given plate
di mensions and h/a ratios.

RESULTS AND DI SCUSSI ONS

It is found that the in-plane stresses (6,,0re,f) and @z are

singular with a 1/ ¢ £)= singularity; the stresses ¢y and gz are
of the order of unity. The correspondi ng expressions are givenas

0r=K (2)-[Ya(272] (5 cos &, — COs 30/2) + O (¥

Tg=K2z):[Va (27)2]-(3 CO5 8% + C05 3642 )+ O (T)

“n
Oro=K @) [VacaFye] (Sin %+ Sin3efe) + O(F)
0z = K @ [4Me(2F)2]- COS ¥, + O(F)
Oy = o(F°) , Ggp=0(F°) e

negs. 11 and 12, R(z) is the stress intensity factor and £iz)
s the factor associated with the singular term of ¢ . The
orrespondi ng expressions are given as

!
|
C
K@= —2-(2Q)‘/2-6[{Re§ l(J“/gz)' PK(__yz) +4A_Lk+
oo =2}
(’/s‘)-}% ‘ac—na- Cot2) % {Re E:‘Azx' Py (13

(PUAL— O+ G ) — OHGIAT Toeva)t]
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Km=-2zasta[{ReL (Vms"): Kyt #A +

@ ¢ XD 2
) 0 (pms?)- Co@ x{ReX A A Py *
L= -

(-1)9'. (‘t’"’/a)z- te (-‘/z)} ] (14)

Xn egs. 13 and 14- pk(—y;)'A“'/a and Eo ey Pre the unknown constants

referred to earlier with respect to n=-1/2. Here,Ag¢and Gt are

tons 0fAxand 1T ; G is the shear modulus. It can
\;nowr:)biue‘v\c?;ldo from egs. 11 ' that the only type of singularity
e

i £ all &through the
i of inverse sguare roo e
ety W t??x‘éluding the corner points where the

plate thickness oo N ceces. In reierence (Foliass 1975) a

penetrates the
. L= Lot e , s

Poisson's ratio- dependant 1/(r) t{pe of slngularity was
exhibitedy INn the present analysis, £ is noted, nNO such
dependence on g is imposed. The angular variation of
gingular stresses are identical to those oOf (Hartranft, 1969).
The SIF is found to depend on z and h/a ratio. It ean be noted
from sg. 53 that it does mot vanish at the plate faces anyd,
therefore,the in-plane stresses preserve their 1/(D)2
singularity all thtough the plats thickness including the
corner points at the plateé faces. It should also bé observed
from eq. 14 that KXz) vanishes at the plate faces, thereby
leading tO vanlshing of ¢z here. It IS interesting t¢ note that
the expressions for Kfz) and K(a)® reduce exactlg to those for
the plane Strain case when 2h—»9% (8—+); thus plans strain
results sare recovered from egg. 1l and 12. It IS noteworthy
that all the three displacement components are finite ah the
crack front. In contrast; in (Folias, 1975), they were found
to be singular for certain yalues of ;n (pn>)4) in the vicinity
of the corner polnts.

The preceding disecusgion was made without any reference to
numerieal results Dut, solely from the nature Of  the
mathematical expresalons presented in eqs. 11-14 and also those
not presented here to save space. Therefore, It will Bbe
interesting tO discuss the numerical results obtained. Pig, 2
shows the distribution of SIF across the plate thickness for

the case with B/L = 0.878, & /L = 0.5 and h/a =§= 15
and for applied tensile lovading. Corresponding  results
obtained finite element method, (FEM), (Raju and Kewmaii,

1977y and the boundary integral eguations method, (BIE),(Tan
and Fenner, 19791 are alse presented for comparison purposes.
The K wvalueg from the plate middle plane z=0 to ahout 2z=0.6§
are in good agreement With those of FEM and BIE. At 250, the &-
value ©&f the present method is about 1,438 while that Of FEM
is 1.401; 3% is of interest to mote that the corresponding
plane gtrain value is equal to about 1.43. In fact, ag can be
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Fig. 2 SIF distribution across plate thickness
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Fig. 3 SIF distribution across plate thickness
(normal i zed by nid-pl ane val ue)

observed from FHg. 2, the singular deformation character is
nmore or less equal to that of plane strain in the region
interior to the plate thickness z=0,0-0.6 € ; this is in
agr eenent with the qualitative behaviour redicted in
(Hartranft, 1969; Sih, 1966; Folias, 1975) ftor this zone.
However, beyond this zone, the K-value increases gradual ly with
increase in z upto a maxi numval ue and then drops rapidly in a
snal | boundary | ayer near the plate faces. The location and
magni tude of the naxinumvalue of the present nethod are
different fromthose of (Raju, 1977; Tan, 1979). Al so, the K
value at =z=(Q (free plate faces) is much less than those of
these references; when conmpared to the md-plane value the
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percentage drop is about 19.86 for the present case. In this
connection it should be pointed out that the FEM can not
represent accurately drastic changes in slopes such as those
realized in present K-distribution in the boundary Tayer

region. However, the slopes encountered at points z=#£ and at
z=§ for the FEMcase (see Pig. 2) do suggest a trend which
leads to a larger drop than numerically 1ndicated. Pig. 3

shows a conparison of the SIP distributions across the
thi ckness normalised by the K(e) value (nid-plane value) for
the case with @ =1.316 obtained in this rpaper and by the
hotoel astic nethod (villarreal, 1975). As can be observed
romthis figure, the agreenent between the two distributions
is reasonablly good for the region, z=(0.0-0.85) 8§
approximately); the predomnantly plane strain type of
ehavi our observed here confirns the qualitative results of
(Hartranft, 1969; sih, 19663 Polias, 1975) for this region.
Al'though for larger values of z increasing differences are
observed, the significant feature noticed herelies in the
qualitatively identical distributions of the two nethods, all
through the thickness except in a small region z=03to 0:37%

aﬁprom mately. At the plate faces, the percentage reduction in
the SIF value is found to be 45 as against 40 (approxi mately)
of (Villerreal, 1975).

Based on the nature of the nmathematical description of the
singular field and the physical character of the nunerically
evaluated SIF distribution, vpyified by experinmental results,
it can be concluded that 1/{¥®M\is the only the of singularitK
present all through the plate thickness, although the strengt
of singularity decreases near the plate faces. Secondly, the
region interior to the plate thickness experiences a nore or
| ess plane strain type of singular deformation;, but, near the
plate faces, there is a clear departure fromthis behaviour as
suggested by the rapid decrease in SIF values. The displacements
are finite at the crack front all through the plate thickness.
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