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Abstract

We present a parametric finite element approximation of two-phase flow. This

free boundary problem is given by the Navier–Stokes equations in the two phases,

which are coupled via jump conditions across the interface. Using a novel variational

formulation for the interface evolution gives rise to a natural discretization of the

mean curvature of the interface. The parametric finite element approximation of

the evolving interface is then coupled to a standard finite element approximation

of the two-phase Navier–Stokes equations in the bulk. Here enriching the pressure

approximation space with the help of an XFEM function ensures good volume

conservation properties for the two phase regions. In addition, the mesh quality of

the parametric approximation of the interface in general does not deteriorate over

time, and an equidistribution property can be shown for a semidiscrete continuous-

in-time variant of our scheme in two space dimensions. Moreover, our finite element

approximation can be shown to be unconditionally stable. We demonstrate the

applicability of our method with some numerical results in two and three space

dimensions.
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1 Introduction

Numerical methods for two-phase incompressible flows have many important applications,
which range from bubble column reactors to ink-jet printing to fuel injection in engines
and to biomedical engineering. In contrast to one-phase flows, several new aspects arise
in the numerical treatment of two-phase flows. First of all a computational technique
for the numerical treatment of the unknown interface has to be developed. One class
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of approaches is based on interface capturing methods using an indicator function to
describe the interface. The volume of fluid (VOF) method and the level set method
fall into this category. In the former, the characteristic function of one of the phases is
approximated numerically, see e.g. [28, 42, 41]; whereas in the latter, the interface is given
as the level set of a function, which has to be determined, see e.g. [48, 45, 38, 25]. In
phase field methods the interface is assumed to have a small, but positive, thickness and
an additional parabolic equation, defined in the whole domain, has to be solved in these
so-called diffuse interface models. We refer to [29, 3, 36, 20, 33, 1, 27] for details. In this
paper we use a direct description of the interface using a parameterization of the unknown
surface. In such an approach the interface is approximated by a polyhedral surface, see
[17], and equations on the surface mesh have to be coupled to quantities defined on the
bulk mesh. We refer e.g. to [51, 5, 50, 22] for further details, and to [34, 39] for the related
immersed boundary method.

Secondly it is important to numerically approximate capillarity effects in an accurate
and stable way. In two-phase flows, or in free surface flows, capillarity effects, which
are given by quantities involving the curvature of the interface, often determine the flow
behaviour to a large extent. Typically an explicit treatment of surface tension forces (also
called capillary forces) leads to severe restrictions on the time step, see e.g. [5, 6], and
so more advanced approaches use an implicit treatment. This approach is discussed e.g.
in [25] for the level set approach, and in [5] for the parametric approach. We note that
an inadequate approximation of capillarity effects can trigger oscillations of the velocity
at the interface, which can lead to so-called spurious currents, see e.g. [31, 26, 10]. In
this paper we propose an implicit treatment of the surface tension forces that leads to an
unconditionally stable approximation of two-phase Navier–Stokes flow.

In each of the approaches mentioned above (parametric approach, level set method,
volume of fluid method, phase field method) surface tension forces, and hence curvature
quantities, have to be computed. A particular successful method, in the context of the
parametric approach and the level set method, is to compute the mean curvature of the
approximated interface with the help of a discretization of the identity

∆s ~x = κ ~ν . (1.1)

Here ~x is a parameterization of the interface, ∆s is the Laplace–Beltrami operator, κ is
the sum of the principal curvatures (often simply called the mean curvature) and ~ν is a
unit normal to the interface. This identity was used for the numerical approximation of
curvature driven interface evolution for the first time by Dziuk, [18]. Later this idea was
used in e.g. [5, 22, 26], among others, in the context of capillarity driven free surface and
two-phase flows. The approximation of curvature in the present paper also relies on the
identity (1.1).

A third important issue relevant for the simulation of two-phase flows is to ensure a good
approximation of the interface and in particular a good mesh quality during the evolution.
In phase field methods refinement of the mesh close to the interface and choosing the
interface width sufficiently small ensures good approximation properties of the interface.
However, this leads to high computational costs. In volume of fluid methods the interface
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has to be reconstructed after an advection step of the characteristic function. Although,
second order reconstruction methods exist, see e.g. [43, 40], it still remains challenging
to approximate geometric quantities, such as the mean curvature and the normal of the
interface, accurately.

In level set methods the level set function is advected with the fluid velocity. This
typically leads to distortions of the level set function, which in turn leads to a poor
approximation of the interface. Hence so-called re-initialization steps have to be performed
frequently after some time steps, see e.g. [45, 38, 26] for details.

In the parametric approach the interface parameterization is transported with the help
of the fluid velocity, see e.g. [51, 5, 22]. Typically this leads to degeneracies in the mesh,
e.g. coalescence of mesh points and very small angles in the polyhedral interface mesh.
Often severe reparameterization steps have to be employed, or the computation even has
to be stopped. In our approach the interface is advected in the normal direction with the
normal part of the fluid velocity, but the tangential degrees of freedom are implicitly used
to ensure a good mesh quality. This treatment of the interface is based on earlier work of
the authors on the numerical approximation of geometric evolution equations and on free
boundary problems related to crystal growth, see e.g. [7, 8, 9, 11].

A fourth issue is the approximation of the pressure, which is discontinuous across
the interface due to capillarity effects. There are three approaches to handle this in
the parametric or level set approach for the interface, combined with a finite element
approximation of the fluid quantities. One is to use a fitted bulk mesh that is adapted to
the interface, see e.g. [22]. In the case of an unfitted bulk mesh, where the interface and
bulk meshes are totally independent, one can augment the pressure finite element space
with additional degrees of freedom in elements of the bulk mesh, which cut the interface.
This is an example of the extended finite element method (XFEM), see e.g. [25, 4]. A
simpler approach is just to adapt the bulk mesh in the vicinity of the interface, which we
adopt in this paper. However, the XFEM or the fitted approaches could be used in our
approximation, see Subsection 4.3 for a discussion of the latter.

Finally, a fifth issue is the volume (area in 2d) conservation of the two phases. We
achieve this by a very simple XFEM approach, where the pressure space is enriched by
one extra degree of freedom. This leads to exact volume conservation for a semidiscrete
continuous-in-time version of our scheme. Moreover, the fully discrete scheme shows good
volume conservation properties in practice.

To summarize, in this paper we extend our parametric approximation of two-phase
Stokes flow in [10] to two-phase Navier–Stokes flow with different densities. We present
a linear scheme, i.e. a linear system of equations has to be solved at each time level, for
this problem, which leads to an unconditional stability bound. Although, there already
exists such a stability bound for a nonlinear scheme for free capillary flows, see [5]; to our
knowledge the stability proof in this paper is the first one for a linear scheme, and the
first one for two-phase flows.

Finally, let us mention that developing and analyzing numerical methods for two-phase
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Figure 1: The domain Ω in the case d = 2.

flows is a very active research field, and we refer to [47, 2, 15, 16, 52, 32, 35] for some
examples of recent contributions.

The outline of the paper is as follows. In Section 2 we give a precise mathematical
formulation of the two-phase Navier–Stokes problem. In Section 3 we introduce a weak
formulation for the resulting problem that will form the basis of our novel finite element
approximation, which we consider in Section 4. There we show that our approximation
is unconditionally stable, and introduce our XFEM approach for volume conservation. In
Section 5 we discuss how the arising discrete system of linear equations at each time level
can be solved in practice. Finally, in Section 6 we discuss our mesh adaptation algorithms,
and then present several numerical experiments in Section 7.

2 The two-phase Navier–Stokes problem

In this paper we consider two-phase flows in a given domain Ω ⊂ R
d, where d = 2 or

d = 3. The domain Ω contains two different immiscible incompressible phases (liquid-
liquid or liquid-gas) which for all t ∈ [0, T ] occupy time dependent regions Ω+(t) and
Ω−(t) := Ω \ Ω+(t) and which are separated by an interface (Γ(t))t∈[0,T ], Γ(t) ⊂ Ω.
See Figure 1 for an illustration. For later use, we assume that (Γ(t))t∈[0,T ] is a sufficiently
smooth evolving hypersurface without boundary that is parameterized by ~x(·, t) : Υ → R

d,
where Υ ⊂ R

d is a given reference manifold, i.e. Γ(t) = ~x(Υ, t). Then V := ~xt . ~ν is the
normal velocity of the evolving hypersurface Γ, where ~ν is the unit normal on Γ(t) pointing
into Ω+(t).

Let ρ(t) = ρ+ XΩ+(t) + ρ− XΩ−(t), with ρ± ∈ R≥0, denote the fluid densities, where
here and throughout XA defines the characteristic function for a set A. Denoting by
~u : Ω × [0, T ] → R

d the fluid velocity, by σ : Ω× [0, T ] → R
d×d the stress tensor, and by

~f : Ω× [0, T ] → R
d a possible forcing, the incompressible Navier–Stokes equations in the
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two phases are given by

ρ (~ut + (~u .∇) ~u)−∇ . σ = ~f := ρ ~f1 + ~f2 in Ω±(t) , (2.2a)

∇ . ~u = 0 in Ω±(t) , (2.2b)

~u = ~0 on ∂1Ω , (2.2c)

~u .~n = 0 , [σ~n + β ~u] .~t = 0 ∀ ~t ∈ {~n}⊥ on ∂2Ω , (2.2d)

where ∂Ω = ∂1Ω ∪ ∂2Ω, with ∂1Ω ∩ ∂2Ω = ∅, denotes the boundary of Ω with outer unit
normal ~n and {~n}⊥ := {~t ∈ R

d : ~t . ~n = 0}. Hence (2.2c) prescribes a no-slip condition on
∂1Ω, while (2.2d) prescribes a general slip condition on ∂2Ω. Here we assume that β ≥ 0
and note that β = 0 corresponds to the so-called free-slip conditions. Moreover, the stress
tensor in (2.2a) is defined by

σ = µ (∇ ~u+ (∇ ~u)T )− p Id , (2.3)

where Id ∈ R
d×d denotes the identity matrix, p : Ω × [0, T ] → R is the pressure and

µ(t) = µ+ XΩ+(t) + µ−XΩ−(t), with µ± ∈ R>0, denotes the dynamic viscosities in the two
phases. On the free surface Γ(t), the following conditions need to hold:

[~u]+− = ~0 on Γ(t) , (2.4a)

[σ ~ν]+− = −γ κ ~ν on Γ(t) , (2.4b)

V = ~u . ~ν on Γ(t) , (2.4c)

where γ > 0 is the surface tension coefficient and κ denotes the mean curvature of Γ(t),
i.e. the sum of the principal curvatures of Γ(t), where we have adopted the sign convention
that κ is negative where Ω−(t) is locally convex. Moreover, as usual, [~u]+− := ~u+−~u− and
[σ ~ν]+− := σ+ ~ν − σ− ~ν denote the jumps in velocity and normal stress across the interface
Γ(t). Here and throughout, we employ the shorthand notation ~g± := ~g |Ω±(t) for a function
~g : Ω × [0, T ] → R

d; and similarly for scalar and matrix-valued functions. The system
(2.2a–d), (2.3), (2.4a–c) is closed with the initial conditions

Γ(0) = Γ0 , ρ(·, 0) ~u(·, 0) = ρ(·, 0) ~u0 in Ω , (2.4d)

where Γ0 ⊂ Ω and ~u0 : Ω → R
d are given initial data.

3 Weak formulation

In preparation for the introduction of the weak formulation considered in this paper, we
note that the system (2.2a–d), (2.3), (2.4a–d) can equivalently be formulated as follows.
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Find time and space dependent functions ~u, p and the interface (Γ(t))t∈[0,T ] such that

ρ (~ut + (~u .∇) ~u)− µ∇ . (∇ ~u+ (∇ ~u)T ) +∇ p = ~f in Ω±(t) , (3.1a)

∇ . ~u = 0 in Ω±(t) , (3.1b)

~u = ~0 on ∂1Ω , (3.1c)

~u .~n = 0 , [µ (∇ ~u+ (∇ ~u)T )~n + β ~u] .~t = 0 ∀ ~t ∈ {~n}⊥ on ∂2Ω , (3.1d)

[~u]+− = ~0 on Γ(t) , (3.1e)

[µ (∇ ~u+ (∇ ~u)T ) ~ν − p ~ν]+− = −γ κ ~ν on Γ(t) , (3.1f)

V = ~u . ~ν on Γ(t) , (3.1g)

Γ(0) = Γ0 , ρ(·, 0) ~u(·, 0) = ρ(·, 0) ~u0 in Ω . (3.1h)

Moreover, we observe that for arbitrary functions ~v, ~w, ~ξ ∈ H1(Ω,Rd) it holds that

[(~v .∇) ~w] . ~ξ = (~v .∇) (~w . ~ξ)− [(~v .∇) ~ξ] . ~w

= 1
2

[
[(~v .∇) ~w] . ~ξ − [(~v .∇) ~ξ] . ~w

]
+ 1

2
(~v .∇) (~w . ~ξ) . (3.2)

For what follows we introduce the function spaces

U := {~φ ∈ H1(Ω,Rd) : ~φ = ~0 on ∂1Ω , ~φ .~n = 0 on ∂2Ω} , P := L2(Ω)

and P̂ := {η ∈ P :

∫

Ω

η dLd = 0} . (3.3)

Here and throughout Ld denotes the Lebesgue measure in R
d, while Hd−1 denotes the

(d− 1)-dimensional Hausdorff measure. Then we have for any ~v ∈ U that

(ρ, (~v .∇)φ) = (ρ,∇ . (φ~v))− (ρ (∇ . ~v), φ)

= −
〈
[ρ]+− ~v . ~ν, φ

〉
Γ(t)

− (ρ (∇ . ~v), φ) (3.4)

which holds for all φ ∈ W 1, 3
2 (Ω), and it is precisely this regularity that will be needed in

order to derive (3.5) below. Here and throughout (·, ·) denotes the L2–inner product on
Ω, while 〈·, ·〉Γ(t) is the L2–inner product on Γ(t). Hence, it follows from (3.1b,c), (3.2)
and (3.4) that

(ρ (~u .∇) ~u, ~ξ) = 1
2

[
(ρ (~u .∇) ~u, ~ξ)− (ρ (~u .∇) ~ξ, ~u)− 〈[ρ]+− ~u . ~ν, ~u . ~ξ〉Γ(t)

]

∀ ~ξ ∈ H1(Ω,Rd) . (3.5)

Next, on noting (3.1g), we have that

d

dt
(ρ~u, ~ξ) =

d

dt

(
ρ+

∫

Ω+(t)

~u . ~ξ dLd + ρ−

∫

Ω−(t)

~u . ~ξ dLd

)

= (ρ~ut, ~ξ)−
〈
[ρ]+− V, ~u . ~ξ

〉
Γ(t)

= (ρ~ut, ~ξ)−
〈
[ρ]+− ~u . ~ν, ~u . ~ξ

〉
Γ(t)

∀ ~ξ ∈ H1(Ω,Rd) . (3.6)
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Therefore, it follows from (3.6) that

(ρ~ut, ~ξ) =
1
2

[
d

dt
(ρ~u, ~ξ) + (ρ~ut, ~ξ) +

〈
[ρ]+− ~u . ~ν, ~u . ~ξ

〉
Γ(t)

]
∀ ~ξ ∈ H1(Ω,Rd) ,

which on combining with (3.5) yields that

(ρ [~ut + (~u .∇) ~u], ~ξ) = 1
2

[
d

dt
(ρ~u, ~ξ) + (ρ~ut, ~ξ) + (ρ, [(~u .∇) ~u] . ~ξ − [(~u .∇) ~ξ] . ~u)

]
. (3.7)

Finally, it holds on noting (3.1d,f) that for all ~ξ ∈ U

∫

Ω+(t)∪Ω−(t)

(∇ . σ) . ~ξ dLd = −(σ,∇ ~ξ)−
〈
[σ ~ν]+−,

~ξ
〉
Γ(t)

+

∫

∂Ω

(σ~n) . ~ξ dHd−1

= −2 (µD(~u), D(~ξ)) + (p,∇ . ~ξ) + γ
〈
κ ~ν, ~ξ

〉
Γ(t)

− β
〈
~u, ~ξ
〉
∂2Ω,~t

, (3.8)

where D(~u) := 1
2
(∇ ~u+ (∇ ~u)T ), and where

〈
~u, ~ξ
〉
∂2Ω,~t

:=
d−1∑

i=1

∫

∂2Ω

(~u .~ti) (~ξ .~ti) dH
d−1 ,

with {~ti}
d−1
i=1 denoting an orthonormal basis of {~n}⊥.

In addition, we define

X := H1(Υ,Rd) and K := L2(Υ,R) ,

where we recall that Υ is a given reference manifold. On combining (3.7) and (3.8), a
possible weak formulation of (3.1a–h), which utilizes the novel weak representation of κ ~ν
introduced in [7] for d = 2 and in [8] for d = 3, is then given as follows. Find time

dependent functions ~u, p, ~x and κ such that ~u(·, t) ∈ U, p(·, t) ∈ P̂, ~x(·, t) ∈ X, κ(·, t) ∈ K

and

1
2

[
d

dt
(ρ~u, ~ξ) + (ρ~ut, ~ξ) + (ρ, [(~u .∇) ~u] . ~ξ − [(~u .∇) ~ξ] . ~u)

]
+ 2 (µD(~u), D(~ξ))

−(p,∇ . ~ξ) + β
〈
~u, ~ξ
〉
∂2Ω,~t

− γ
〈
κ ~ν, ~ξ

〉
Γ(t)

= (~f, ~ξ) ∀ ~ξ ∈ U , (3.9a)

(∇ . ~u, ϕ) = 0 ∀ ϕ ∈ P̂ , (3.9b)

〈~xt − ~u, χ ~ν〉Γ(t) = 0 ∀ χ ∈ K , (3.9c)

〈κ ~ν, ~η〉Γ(t) + 〈∇s ~x,∇s ~η〉Γ(t) = 0 ∀ ~η ∈ X (3.9d)

hold for almost all times t ∈ (0, T ], as well as the initial conditions (3.1h). Here we
have observed that if p ∈ P is part of a solution to (3.1a–g), then so is p + c for an
arbitrary c ∈ R. We remark that (3.9a–d) in the case of Stokes flow, i.e. ρ+ = ρ− = 0,
with ∂1Ω = ∂Ω collapses to the weak formulation introduced by the present authors in
[10]. Similarly to [10], we have adopted a slight abuse of notation in (3.9a,c,d), in the
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sense that here, and throughout this paper, we identify functions defined on the reference
manifold Υ with functions defined on Γ(t). In addition, we observe that in the special
case ρ+ = ρ− > 0, µ+ = µ− > 0 and γ = 0, (3.9a,b) reduces to a weak formulation of the
incompressible Navier–Stokes equations in Ω.

We can establish the following formal a priori bound, where we first note that on
allowing time-dependent test functions ~ξ in (3.6), which yields the extra term (ρ~u, ~ξt)
on the right hand side of (3.6), we obtain the following amended version of (3.9a) for

time-dependent test functions ~ξ(·, t) ∈ U:

1
2

[
d

dt
(ρ~u, ~ξ) + (ρ~ut, ~ξ)− (ρ~u, ~ξt) + (ρ, [(~u .∇) ~u] . ~ξ − [(~u .∇) ~ξ] . ~u)

]

+2 (µD(~u), D(~ξ))− (p,∇ . ~ξ) + β
〈
~u, ~ξ
〉
∂2Ω,~t

− γ
〈
κ ~ν, ~ξ

〉
Γ(t)

= (~f, ~ξ) . (3.10)

Now choosing ~ξ = ~u in (3.10), ϕ = p in (3.9b), χ = γ κ in (3.9c) and ~η = γ ~xt in (3.9d)
we obtain, on using the identity

d

dt
Hd−1(Γ(t)) = 〈∇s ~x,∇s ~xt〉Γ(t) ,

that

d

dt

(
1
2
‖ρ

1

2 ~u‖20 + γHd−1(Γ(t))
)
+ 2 ‖µ

1

2 D(~u)‖20 + β 〈~u, ~u〉∂2Ω,~t = (~f, ~u) , (3.11)

where ‖ · ‖0 := [(·, ·)]
1

2 denotes the L2–norm on Ω. Moreover, the volume of Ω−(t) is

preserved in time. To see this, choose χ = 1 in (3.9c) and ϕ = (XΩ−(t) −
Ld(Ω−(t))
Ld(Ω)

) in

(3.9b) to obtain

d

dt
Ld(Ω−(t)) = 〈~xt, ~ν〉Γ(t) = 〈~u, ~ν〉Γ(t) =

∫

Ω−(t)

∇ . ~u dLd = 0 . (3.12)

4 Discretization

Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable
time steps τm := tm+1 − tm, m = 0, . . . ,M − 1. We set τ := maxm=0,...,M−1 τm. First we
introduce standard finite element spaces of piecewise polynomial functions on Ω.

Let Ω be a polyhedral domain. For m ≥ 0, let T m be a regular partitioning of Ω into
disjoint open simplices, so that Ω = ∪om∈T mom. Let Jm

Ω be the number of elements in T m,
so that T m = {omj : j = 1, . . . , Jm

Ω }, and set hm := maxj=1,...,Jm
Ω
diam(omj ). Associated

with T m are the finite element spaces

Sm
k := {χ ∈ C(Ω) : χ |om∈ Pk(o

m) ∀ om ∈ T m} ⊂ H1(Ω) , k ∈ N ,
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where Pk(o
m) denotes the space of polynomials of degree k on om. We also introduce the

space of discontinuous, piecewise constant functions

Sm
0 := {χ ∈ L1(Ω) : χ |om∈ P0(o

m) ∀ om ∈ T m} .

Let {φm
k,j}

Km
k

j=1 be the standard basis functions for Sm
k , k ≥ 0. We introduce Imk : C(Ω) →

Sm
k , k ≥ 1, the standard interpolation operators, such that (Imk η)(~pmk,j) = η(~pmk,j) for

j = 1, . . . , Km
k ; where {~pmk,j}

Km
k

j=1 denote the coordinates of the degrees of freedom of Sm
k ,

k ≥ 1. In addition we define the standard projection operator Im0 : L1(Ω) → Sm
0 , such

that

(Im0 η) |om=
1

Ld(om)

∫

om
η dLd ∀ om ∈ T m .

Let (Um,Pm), with U
m ⊂ U, be a pair of finite element spaces on T m that satisfy the

LBB inf-sup condition. I.e. there exists a constant C0 ∈ R>0 independent of h
m such that

inf
ϕ∈P̂m

sup
~ξ∈Um

(ϕ,∇ . ~ξ)

‖ϕ‖0 ‖~ξ‖1
≥ C0 > 0 , (4.1)

where ‖ · ‖1 := ‖ · ‖0+ ‖∇ · ‖0 denotes the H
1–norm on Ω, and where P̂m := P

m∩ P̂, recall
(3.3); see e.g. [24, p. 114]. For example, we may choose

(Um,Pm) = ([Sm
2 ]d ∩ U, Sm

1 ) (4.2a)

for the lowest order Taylor–Hood element, also called the P2-P1 element, or

(Um,Pm) = ([Sm
2 ]d ∩ U, Sm

0 ) (4.2b)

for the P2-P0 element, or

(Um,Pm) = ([Sm
2 ]d ∩ U, Sm

1 + Sm
0 ) (4.2c)

for the P2-(P1+P0) element. For the LBB stability of (4.2a) in the case ∂1Ω = ∂Ω we
refer to [14, p. 252] for d = 2 and to [12] for d = 3, while the stability of (4.2b) is shown
in [14, p. 221]. The LBB stability of (4.2c) is shown in [13] for d = 2 and d = 3. Here the
results for (4.2a,c) need the weak constraint that all the elements om ∈ T m have a vertex
in Ω. The LBB stability of (4.2a–c) for the general case ∂2Ω 6= ∅ then follows trivially

from (4.1), since the space U is now less constrained. Let {{φUm

i ~ej}
d
j=1}

Km
U

i=1 and {φPm

i }
Km

P

i=1

denote the standard basis functions of Um and P
m, respectively, where {~ej}

d
j=1 denotes

the standard basis in R
d.

The parametric finite element spaces in order to approximate ~x and κ in (3.9a–d),
are defined as follows. Similarly to [8], we introduce the following discrete spaces, based
on the seminal paper [18]. Let Γm ⊂ R

d be a (d − 1)-dimensional polyhedral surface,
i.e. a union of nondegenerate (d − 1)-simplices with no hanging vertices (see [17, p. 164]
for d = 3), approximating the closed surface Γ(tm), m = 0, . . . ,M . In particular, let
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Γm =
⋃Jm

Γ

j=1 σ
m
j , where {σm

j }
Jm
Γ

j=1 is a family of mutually disjoint open (d−1)-simplices with

vertices {~qmk }
Km

Γ

k=1. Then for m = 0, . . . ,M − 1, let

V (Γm) := {~χ ∈ C(Γm,Rd) : ~χ |σm
j

is linear ∀ j = 1, . . . , Jm
Γ } =: [W (Γm)]d ⊂ H1(Γm,Rd) ,

where W (Γm) ⊂ H1(Γm,R) is the space of scalar continuous piecewise linear functions

on Γm, with {χm
k }

Km
Γ

k=1 denoting the standard basis of W (Γm). For later purposes, we
also introduce πm : C(Γm,R) → W (Γm), the standard interpolation operator at the

nodes {~qmk }
Km

Γ

k=1, and similarly ~πm : C(Γm,Rd) → V (Γm). Throughout this paper, we will
parameterize the new closed surface Γm+1 over Γm, with the help of a parameterization
~Xm+1 ∈ V (Γm), i.e. Γm+1 = ~Xm+1(Γm). Moreover, for m ≥ 0, we will often identify ~Xm

with ~id ∈ V (Γm), the identity function on Γm.

For scalar, vector and matrix valued functions we introduce the L2–inner product
〈·, ·〉Γm over the current polyhedral surface Γm as follows

〈v, w〉Γm :=

∫

Γm

v . w dHd−1 .

If v, w are piecewise continuous, with possible jumps across the edges of {σm
j }

Jm
Γ

j=1, we

introduce the mass lumped inner product 〈·, ·〉hΓm as

〈v, w〉hΓm := 1
d

Jm
Γ∑

j=1

Hd−1(σm
j )

d∑

k=1

(v . w)((~qmjk)
−),

where {~qmjk}
d
k=1 are the vertices of σm

j , and where we define v((~qmjk)
−) := lim

σm
j ∋~p→~qmjk

v(~p).

Given Γm, we let Ωm
+ denote the exterior of Γm and let Ωm

− denote the interior of Γm,

so that Γm = ∂Ωm
− = Ω

m

− ∩Ω
m

+ . We then partition the elements of the bulk mesh T m into
interior, exterior and interfacial elements as follows. Let

T m
− := {om ∈ T m : om ⊂ Ωm

−} ,

T m
+ := {om ∈ T m : om ⊂ Ωm

+} ,

T m
Γm := {om ∈ T m : om ∩ Γm 6= ∅} . (4.3)

Clearly T m = T m
− ∪T m

+ ∪T m
Γm is a disjoint partition, which in practice can easily be found

e.g. with the Algorithm 4.1 in [11]. Here we assume that Γm has no self intersections,
and for the numerical experiments in this paper this was always the case. In addition, we
define the piecewise constant unit normal ~νm to Γm by

~νm
j := ~νm |σm

j
:=

(~qmj2 − ~qmj1 ) ∧ · · · ∧ (~qmjd − ~qmj1 )

|(~qmj2 − ~qmj1 ) ∧ · · · ∧ (~qmjd − ~qmj1 )|
,

where ∧ is the standard wedge product on R
d, and where we have assumed that the

vertices {~qmjk}
d
k=1 of σm

j are ordered such that ~νm : Γm → R
d induces an orientation on

Γm, and such that ~νm points into Ωm
+ .
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Before we can introduce our approximation to (3.9a–d), we have to introduce the
notion of a vertex normal on Γm. We will combine this definition with a natural assump-
tion that is needed in order to show existence and uniqueness, where applicable, for the
introduced finite element approximation.

(A) We assume for m = 0, . . . ,M − 1 that Hd−1(σm
j ) > 0 for all j = 1, . . . , Jm

Γ , and that

Γm ⊂ Ω. For k = 1, . . . , Km
Γ , let Ξm

k := {σm
j : ~qmk ∈ σm

j } and set

Λm
k := ∪σm

j ∈Ξm
k
σm
j and ~ωm

k :=
1

Hd−1(Λm
k )

∑

σm
j ∈Ξm

k

Hd−1(σm
j ) ~ν

m
j .

Then we further assume that dim span{~ωm
k }

Km
Γ

k=1 = d, m = 0, . . . ,M − 1.

Given the above definitions, we also introduce the piecewise linear vertex normal
function

~ωm :=

Km
Γ∑

k=1

χm
k ~ωm

k ∈ V (Γm) ,

and note that

〈~v, w ~νm〉hΓm = 〈~v, w ~ωm〉hΓm ∀ ~v ∈ V (Γm), w ∈ W (Γm) . (4.4)

Following a similar approach used by the authors in [11] in the context of the para-
metric approximation of dendritic crystal growth, we consider an unfitted finite element
approximation of (3.9a–d). On recalling (4.3), we introduce the discrete density ρm ∈ Sm

0

and the discrete viscosity µm ∈ Sm
0 , for m ≥ 0, as either

ρm |om=





ρ− om ∈ T m
− ,

ρ+ om ∈ T m
+ ,

1
2
(ρ− + ρ+) om ∈ T m

Γm ,

and µm |om=





µ− om ∈ T m
− ,

µ+ om ∈ T m
+ ,

1
2
(µ− + µ+) om ∈ T m

Γm ;

(4.5a)

or

ρm |om = v−(o
m) ρ− + (1− v−(o

m)) ρ+ and µm |om= v−(o
m)µ− + (1− v−(o

m))µ+ ,

where v−(o
m) =

Ld(om ∩ Ωm
− )

Ld(om)
, ∀ om ∈ T m . (4.5b)

We also set ρ−1 := ρ0. Clearly (4.5a,b) only differ in the definitions of ρm and µm on the
elements in T m

Γm .

Our finite element approximation for two-phase Navier–Stokes flow is then given as
follows. Let Γ0, an approximation to Γ(0), and ~U0 ∈ U

0 be given. For m = 0, . . . ,M − 1,
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find ~Um+1 ∈ U
m, Pm+1 ∈ P̂

m, ~Xm+1 ∈ V (Γm) and κm+1 ∈ W (Γm) such that

1
2

(
ρm ~Um+1 − (Im0 ρm−1) Im2

~Um

τm
+ (Im0 ρm−1)

~Um+1 − Im2
~Um

τm
, ~ξ

)

+ 2
(
µmD(~Um+1), D(~ξ)

)
+ 1

2

(
ρm, [(Im2

~Um .∇) ~Um+1] . ~ξ − [(Im2
~Um .∇) ~ξ] . ~Um+1

)

−
(
Pm+1,∇ . ~ξ

)
+ β

〈
~Um+1, ~ξ

〉
∂2Ω,~t

− γ
〈
κm+1 ~νm, ~ξ

〉
Γm

=
(
ρm ~fm+1

1 + ~fm+1
2 , ~ξ

)
∀ ~ξ ∈ U

m , (4.6a)
(
∇ . ~Um+1, ϕ

)
= 0 ∀ ϕ ∈ P̂

m , (4.6b)
〈

~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
~Um+1, χ ~νm

〉
Γm

= 0 ∀ χ ∈ W (Γm) , (4.6c)

〈
κm+1 ~νm, ~η

〉h
Γm +

〈
∇s

~Xm+1,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) (4.6d)

and set Γm+1 = ~Xm+1(Γm). Here we have defined ~fm+1
i (·) := Im2

~fi(·, tm+1), i = 1, 2. We
remark that (4.6a–d), in the case that ρ+ = ρ− = 0 and ∂1Ω = ∂Ω, collapses to the finite
element approximation for two-phase Stokes flow introduced in [10]. Moreover, on setting
ρ+ = ρ− > 0, µ+ = µ− > 0 and γ = 0, the scheme (4.6a,b) reduces to a standard finite
element approximation of the incompressible Navier–Stokes equations in Ω; see e.g. [49].

Let
E(ξ, ~V ,M) := 1

2
(ξ ~V , ~V ) + γHd−1(M) ,

where ξ ∈ L1(Ω), ~V ∈ U and M ⊂ R
d is a (d− 1)-dimensional manifold.

Theorem. 4.1. Let the assumption (A) hold. Then for m = 0, . . . ,M − 1 there exists

a unique solution (~Um+1, Pm+1, ~Xm+1, κm+1) ∈ U
m × P̂

m × V (Γm)×W (Γm) to (4.6a–d).
Moreover, the solution satisfies

E(ρm, ~Um+1,Γm+1) + 1
2

(
(Im0 ρm−1) (~Um+1 − Im2

~Um), ~Um+1 − Im2
~Um
)

+ 2 τm
(
µmD(Um+1), D(Um+1)

)
+ β

〈
~Um+1, ~Um+1

〉
∂2Ω,~t

≤ E(Im0 ρm−1, Im2
~Um,Γm) + τm

(
ρm ~fm+1

1 + ~fm+1
2 , ~Um+1

)
. (4.7)

Proof. As the system (4.6a–d) is linear, existence follows from uniqueness. In order to

establish the latter, we consider the system: Find (~U, P, ~X, κ) ∈ U
m×P̂

m×V (Γm)×W (Γm)
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such that

1
2 τm

(
(ρm + Im0 ρm−1) ~U, ~ξ

)
+ 2

(
µmD(~U), D(~ξ)

)
−
(
P,∇ . ~ξ

)

+ 1
2

(
ρm, [(Im2

~Um .∇) ~U ] . ~ξ − [(Im2
~Um .∇) ~ξ] . ~U

)

+ β
〈
~U, ~ξ

〉
∂2Ω,~t

− γ
〈
κ~νm, ~ξ

〉
Γm

= 0 ∀ ~ξ ∈ U
m , (4.8a)

(
∇ . ~U, ϕ

)
= 0 ∀ ϕ ∈ P̂

m , (4.8b)
〈

~X

τm
, χ ~νm

〉h

Γm

−
〈
~U, χ~νm

〉
Γm

= 0 ∀ χ ∈ W (Γm) , (4.8c)

〈κ~νm, ~η〉hΓm +
〈
∇s

~X,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) . (4.8d)

Choosing ~ξ = ~U in (4.8a), ϕ = P in (4.8b), χ = γ κ in (4.8c) and ~η = γ ~X in (4.8d) yields
that

1
2

(
(ρm + Im0 ρm−1) ~U, ~U

)
+ 2 τm

(
µmD(~U), D(~U)

)
+ β

〈
~U, ~U

〉
∂2Ω,~t

+ γ
〈
∇s

~X,∇s
~X
〉
Γm

= 0 . (4.9)

It immediately follows from (4.9) and a Korn’s inequality that ~U = ~0 ∈ U
m. In addition,

it holds that ~X ≡ ~Xc ∈ R
d. Together with (4.8c) for ~U = ~0, (4.4) and the assumption (A)

this immediately yields that ~X ≡ ~0, while (4.8d) with ~η = ~πm[κ ~ωm], recall (4.4), implies

that κ ≡ 0. Finally, it now follows from (4.8a) with ~U = ~0 and κ = 0, on recalling (4.1),

that P = 0 ∈ P̂
m. Hence there exists a unique solution (~Um+1, Pm+1, ~Xm+1, κm+1) ∈

U
m × P̂

m × V (Γm)×W (Γm) to (4.6a–d).

It remains to establish the bound (4.7). Choosing ~ξ = ~Um+1 in (4.6a), ϕ = Pm+1 in

(4.6b), χ = γ κm+1 in (4.6c) and ~η = γ ( ~Xm+1 − ~Xm) in (4.6d) yields that

1
2

(
ρm ~Um+1, ~Um+1

)
+ 1

2

(
(Im0 ρm−1) (~Um+1 − Im2 ~Um), ~Um+1 − Im2 ~Um

)

+ 2 τm
(
µmD(Um+1), D(Um+1)

)
+ β

〈
~Um+1, ~Um+1

〉
∂2Ω,~t

+ γ
〈
∇s

~Xm+1,∇s ( ~X
m+1 − ~Xm)

〉
Γm

= 1
2

(
(Im0 ρm−1) Im2

~Um, Im2
~Um
)
+ τm

(
ρm ~fm+1

1 + ~fm+1
2 , ~Um+1

)
.

and hence (4.7) follows immediately, where we have used the result that
〈
∇s

~Xm+1,∇s ( ~X
m+1 − ~Xm)

〉
Γm

≥ Hd−1(Γm+1)−Hd−1(Γm)

see e.g. [7] and [8] for the proofs for d = 2 and d = 3, respectively.

The above theorem allows us to prove unconditional stability, in terms of the chosen
time step sizes, for our scheme under certain conditions.
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Theorem. 4.2. Let the assumption (A) hold and let {ti}
M
i=0 be an arbitrary partitioning

of [0, T ]. In addition, assume that

((Im0 ρm−1) Im2
~Um, Im2

~Um) ≤ (ρm−1 ~Um, ~Um) for m = 1, . . . ,M − 1. (4.10)

Then it holds that

E(ρm, ~Um+1,Γm+1) + 1
2

m∑

k=0

[(
ρk−1 (~Uk+1 − Ik2 ~Uk), ~Uk+1 − Ik2 ~Uk

)

+4 τk

(
µk D(~Uk+1), D(~Uk+1)

)
+ 2 β τk

〈
~Uk+1, ~Uk+1

〉
∂2Ω,~t

]

≤ E(ρ−1, ~U0,Γ0) +

m∑

k=0

τk

(
ρk ~fk+1

1 + ~fk+1
2 , ~Uk+1

)
(4.11)

for m = 0, . . . ,M − 1.

Proof. The result immediately follows from (4.7) on noting that our assumptions yield

that E(Im0 ρm−1, Im2
~Um, ~Xm) ≤ E(ρm−1, ~Um, ~Xm) for m = 1, . . . ,M − 1.

The assumption (4.10) for Theorem 4.2 is trivially satisfied in the case ρ+ = ρ− = 0, see
also [10]. Otherwise it is for instance satisfied when either (i) T m = T 0 form = 1, . . . ,M−
1; i.e. when no mesh adaptation is employed, or when (ii) Um−1 ⊂ U

m for m = 1, . . . ,M−
1; e.g. when mesh refinement routines without coarsening are employed. In principle, one
can completely avoid the assumption (4.10) by considering a variant of (4.6a) in which

Im0 ρm−1 is replaced by ρm−1 and Im2
~Um is replaced by ~Um, i.e. no interpolation to the

current finite element spaces is used for the solutions from the previous time step. For this
approach Theorem 4.2 holds without assumption (4.10). However, as this strategy requires
the computation of integrals involving finite element functions from two different spatial
meshes, its implementation is far more involved than the implementation of (4.6a–d). For
all the computations presented in this paper we will always use the more practical variant
(4.6a–d).

The stability bounds (4.7) and (4.11) control the total surface area (length in two
dimensions) Hd−1(Γm+1) and correspond to the continuous energy bound (3.11). For a
larger surface energy density γ this control is stronger and fluid drops are less unstable.
However, if a stable numerical scheme does not conserve the total volume (area in two
dimensions) of the fluid phases, a large value of γ can lead to situations where drops
decrease their size during the evolution in order to reduce their surface area. Of course
this is an artefact and has no analogue in the continuous problem. Conversely, an unstable
numerical scheme that does conserve the total volume of the fluid phases may for large
values of γ suffer from oscillations in the discrete representation of the interface. Hence
for numerical approximations of two-phase Navier–Stokes flow it is important to have
both: stability and conservation of the phase volumes.

The stability bounds (4.7) and (4.11) are the main result of this paper. In practice we
observe that for large values of γ, the numerical solution is better behaved than for small
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γ, in analogue to the continuous situation. We note that this is in contrast to existing
methods for two-phase Navier–Stokes flow, for which no stability results can be shown;
see e.g. [26, p. 280].

Remark. 4.1. We stress that our approximation (4.6a–d) results in a linear system of
equations. This is due to the lagging in the approximation ρm of the densities. Alter-
natively, one could choose to not lag ρm and then obtain the following nonlinear approx-
imation. For m = 0, . . . ,M − 1, find ~Um+1 ∈ U

m, Pm+1 ∈ P̂
m, ~Xm+1 ∈ V (Γm) and

κm+1 ∈ W (Γm) such that

1
2

(
ρm+1 ~Um+1 − (Im0 ρm) Im2

~Um

τm
+ (Im0 ρm)

~Um+1 − Im2
~Um

τm
, ~ξ

)
+ 2

(
µmD(~Um+1), D(~ξ)

)

−
(
Pm+1,∇ . ~ξ

)
+ 1

2

(
ρm+1, [(Im2 ~Um .∇) ~Um+1] . ~ξ − [(Im2 ~Um .∇) ~ξ] . ~Um+1

)

+ β
〈
~Um+1, ~ξ

〉
∂2Ω,~t

− γ
〈
κm+1 ~νm, ~ξ

〉
Γm

=
(
ρm+1 ~fm+1

1 + ~fm+1
2 , ~ξ

)
∀ ~ξ ∈ U

m

(4.12)

and (4.6b–d) hold. Now, as ρm+1, via the analogues of (4.5a,b), depends on Γm+1 =
~Xm+1(Γm), the system (4.12), (4.6b–d) is highly nonlinear. Assuming existence of a
solution, it is then straightforward to establish the corresponding stability results, i.e.
(4.7) and (4.11) with ρℓ−1 replaced by ρℓ, for ℓ ≥ 0.

Remark. 4.2. It is worthwhile to consider a continuous-in-time semidiscrete version of
our scheme (4.6a–d). Let T h be an arbitrarily fixed regular partitioning of Ω into disjoint
open simplices and define the finite element spaces Sh

k , U
h and P

h similarly to Sm
k , Um

and P
m, with the corresponding interpolation operators Ihk and discrete approximations

ρh(t) ∈ Sh
0 and µh(t) ∈ Sh

0 , which will depend on Γh(t) via the analogues of (4.5a,b). Then,

given Γh(0) and ~Uh(0) ∈ U
h, for t ∈ (0, T ] find ~Uh(t) ∈ U

h, P h(t) ∈ P̂
h, ~Xh(t) ∈ V (Γh(t))

and κh(t) ∈ W (Γh(t)) such that

1
2

[
d

dt

(
ρh ~Uh, ~ξ

)
+
(
ρh ~Uh

t ,
~ξ
)
− (ρh ~Uh, ~ξt)

]
+ 2

(
µhD(~Uh), D(~ξ)

)

−
(
P h,∇ . ~ξ

)
+ 1

2

(
ρh, [(~Uh .∇) ~Uh] . ~ξ − [(~Uh .∇) ~ξ] . ~Uh

)

+ β
〈
~Uh, ~ξ

〉
∂2Ω,~t

− γ
〈
κh ~νh, ~ξ

〉
Γh(t)

=
(
ρh ~fh

1 + ~fh
2 ,

~ξ
)

∀ ~ξ ∈ U
h , (4.13a)

(
∇ . ~Uh, ϕ

)
= 0 ∀ ϕ ∈ P̂

h , (4.13b)
〈
~Xh
t , χ ~νh

〉h
Γh(t)

−
〈
~Uh, χ ~νh

〉
Γh(t)

= 0 ∀ χ ∈ W (Γh(t)) , (4.13c)

〈
κh ~νh, ~η

〉h
Γh(t)

+
〈
∇s

~Xh,∇s ~η
〉
Γh(t)

= 0 ∀ ~η ∈ V (Γh(t)) , (4.13d)

where ~fh
i := Ih2

~fi(t), i = 1, 2. In (4.13a–d) we always integrate over the current surface

Γh(t), with normal ~νh(t), described by the identity function ~Xh(t) ∈ V (Γh(t)). Moreover,
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〈·, ·〉hΓh(t) is the same as 〈·, ·〉hΓm with Γm and ~Xm replaced by Γh(t) and ~Xh(t), respectively;

and similarly for 〈·, ·〉Γh(t).

Using the results from [8] it is straightforward to show that

d

dt
Hd−1(Γh(t)) =

〈
∇s

~Xh,∇s
~Xh
t

〉
Γh(t)

.

It is then not difficult to derive the following stability bound for the solution (~Uh, P h, ~Xh, κh)
of the semidiscrete scheme (4.13a–d):

d

dt

(
1
2
‖[ρh]

1

2 ~Uh‖20 + γHd−1(Γh(t))
)
+ 2 ‖[µh]

1

2 D(~Uh)‖20 + β
〈
~Uh, ~Uh

〉
∂2Ω,~t

=
(
ρh ~fh

1 + ~fh
2 ,

~Uh
)
. (4.14)

Clearly, (4.14) is the natural discrete analogue of (3.11). In addition, it is possible to prove
that the vertices of Γh(t) are well distributed. As this follows already from the equations
(4.13d), we refer to our earlier work in [7, 8] for further details. In particular, we observe
that in the case d = 2, i.e. for the planar two-phase problem, an equidistribution property
for the vertices of Γh(t) can be shown.

4.1 XFEMΓ for conservation of the phase volumes

In general, the fully discrete approximation (4.6a–d) will not conserve the volume of
the two phase regions, i.e. the volume Ld(Ωm

− ), enclosed by Γm will in general not be
preserved. Clearly, given that volume conservation holds on the continuous level, recall
(3.12), it would be desirable to have an analogue property also on the discrete level.

For the semidiscrete approximation (4.13a–d) from Remark 4.2 we can show the fol-
lowing true volume conservation property in the case that

XΩh
−
(t) ∈ P

h , (4.15)

where here we need to allow the pressure space to be time-dependent. Choosing χ = 1 in

(4.13c) and ϕ = (XΩh
−
(t) −

Ld(Ωh
−
(t))

Ld(Ω)
) ∈ P̂

h(t) in (4.13b), we then obtain that

d

dt
Ld(Ωh

−(t)) =
〈
~Xh
t , ~ν

h
〉
Γh(t)

=
〈
~Xh
t , ~ν

h
〉h
Γh(t)

=
〈
~Uh, ~νh

〉
Γh(t)

=

∫

Ωh
−
(t)

∇ . ~Uh dLd = 0 ;

(4.16)
which is the discrete analogue of (3.12). Clearly, for the discrete pressure spaces P

h

induced by (4.2a–c) the condition (4.15) will in general not hold. However, the assumption
(4.15) can be satisfied with the help of the extended finite element method (XFEM), see
e.g. [26, §7.9.2]. Here the pressure spaces Pm need to be suitably extended, so that they
satisfy the time-discrete analogue of (4.15), i.e. XΩm

−
∈ P

m, which means that then (4.6b)
implies 〈

~Um+1, ~νm
〉
Γm

= 0 , (4.17)
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which together with (4.6c) then yields that

〈
~Xm+1 − ~Xm, ~νm

〉h
Γm

= 0 . (4.18)

We recall that for area/volume preserving geometric evolution equations the authors,
in previous works, observed excellent area/volume preservation for fully discrete finite
element approximations satisfying (4.18), see [7, 8].

Hence the obvious strategy to guarantee (4.18) is to add only a single new basis
function to the basis of Pm, namely XΩm

−
. Then the new contributions to (4.6a,b) can be

written in terms of integrals over Γm, since

(
∇ . ~ξ,XΩm

−

)
=

∫

Ωm
−

∇ . ~ξ dLd =
〈
~ξ, ~νm

〉
Γm

∀ ~ξ ∈ U
m .

In the remainder of this subsection we are going to consider this approach. Let
(Um, P̂m) satisfy (4.1). For example, P

m may be given by one of (4.2a–c). Then we

let φPm

Km
P
+1 := XΩm

−
and define Pm

XFEM := span{φPm

i }
Km

P
+1

i=1 , with P̂
m
XFEM := P

m
XFEM∩ P̂; recall

(3.3).

We are unable to prove that the element (Um, P̂m
XFEM) satisfies an LBB condition, i.e.

that

inf
ϕ∈P̂m

XFEM

sup
~ξ∈Um

(ϕ,∇ . ~ξ)

‖ϕ‖0 ‖~ξ‖1
≥ C1 > 0 , (4.19)

where the constant C1 ∈ R>0 is independent of hm. The lack of a proof for (4.19) means

that we cannot prove existence and uniqueness of the discrete pressure Pm+1 ∈ P̂
m
XFEM for

the system (4.6a–d), (4.17). It is for this reason that we consider the following reduced
system for our existence result for the extended pressure space P

m
XFEM instead.

Let U
m
0 := {~U ∈ U

m : (∇ . ~U, ϕ) = 0 ∀ ϕ ∈ P
m
XFEM}. Then any solution

(~Um+1, Pm+1, ~Xm+1, κm+1) ∈ U
m × P̂

m
XFEM × V (Γm)×W (Γm) to (4.6a–d), (4.17) is such

that (~Um+1, ~Xm+1, κm+1) ∈ U
m
0 × V (Γm)×W (Γm) satisfies

1
2

(
ρm ~Um+1 − (Im0 ρm−1) Im2

~Um

τm
+ (Im0 ρm−1)

~Um+1 − Im2
~Um

τm
, ~ξ

)

+ 2
(
µmD(~Um+1), D(~ξ)

)
+ 1

2

(
ρm, [(Im2 ~Um .∇) ~Um+1] . ~ξ − [(Im2 ~Um .∇) ~ξ] . ~Um+1

)

+ β
〈
~Um+1, ~ξ

〉
∂2Ω,~t

− γ
〈
κm+1 ~νm, ~ξ

〉
Γm

=
(
ρm ~fm+1

1 + ~fm+1
2 , ~ξ

)
∀ ~ξ ∈ U

m
0 , (4.20a)

〈
~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
~Um+1, χ ~νm

〉
Γm

= 0 ∀ χ ∈ W (Γm) , (4.20b)

〈
κm+1 ~νm, ~η

〉h
Γm +

〈
∇s

~Xm+1,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) . (4.20c)
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Theorem. 4.3. Let the assumption (A) hold. Then there exists a unique solution

(~Um+1, ~Xm+1, κm+1) ∈ U
m
0 ×V (Γm)×W (Γm) to (4.20a–c). Moreover, the solution satisfies

the stability bound (4.7).

Proof. As Um
0 is a subspace of Um, existence to the linear system (4.20a–c) follows from

uniqueness, which is easy to show. In fact, similarly to the proof of Theorem 4.1 we obtain
(4.9) and hence the desired uniqueness result. The stability result follows analogously.

4.2 Alternative curvature treatment

There is an alternative way to approximate the curvature vector κ ~ν in (1.1). In contrast
to the strategy employed in (4.6a–d), where κ and ~ν are discretized separately, it is also
possible to discretize ~κ := κ ~ν directly, as proposed in the seminal paper [18]. We then

obtain the following finite element approximation. For m = 0 → M −1, find ~Um+1 ∈ U
m,

Pm+1 ∈ P̂
m, ~Xm+1 ∈ V (Γm) and ~κm+1 ∈ V (Γm) such that

1
2

(
ρm ~Um+1 − (Im0 ρm−1) Im2

~Um

τm
+ (Im0 ρm−1)

~Um+1 − Im2
~Um

τm
, ~ξ

)

+ 2
(
µmD(~Um+1), D(~ξ)

)
+ 1

2

(
ρm, [(Im2

~Um .∇) ~Um+1] . ~ξ − [(Im2
~Um .∇) ~ξ] . ~Um+1

)

−
(
Pm+1,∇ . ~ξ

)
+ β

〈
~Um+1, ~ξ

〉
∂2Ω,~t

− γ
〈
~κm+1, ~ξ

〉
Γm

=
(
ρm ~fm+1

1 + ~fm+1
2 , ~ξ

)
∀ ~ξ ∈ U

m , (4.21a)
(
∇ . ~Um+1, ϕ

)
= 0 ∀ ϕ ∈ P̂

m , (4.21b)
〈

~Xm+1 − ~Xm

τm
, ~χ

〉h

Γm

−
〈
~Um+1, ~χ

〉
Γm

= 0 ∀ ~χ ∈ V (Γm) , (4.21c)

〈
~κm+1, ~η

〉h
Γm +

〈
∇s

~Xm+1,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) (4.21d)

and set Γm+1 = ~Xm+1(Γm). A highly nonlinear discretization based on (4.21a–d) has first
been proposed by Bänsch in [5] for one-phase flow with a free capillary surface in the very
special situation that

~ξ |Γm∈ V (Γm) ∀ ~ξ ∈ U
m ,

which in general cannot be satisfied for the unfitted approach. It is not difficult to
extend the results from Theorem 4.1 to the linear scheme (4.21a–d). However, the crucial
difference between (4.21a–d) and (4.6a–d) is that in (4.21c) the tangential velocity of the

discrete interface is fixed by ~Um+1, and this has two consequences. Firstly, there is no
guarantee that the mesh quality of Γm will be preserved. In fact, as mentioned in the
Introduction, typically the mesh will deteriorate over time. And secondly, even for the
case that XΩm

−
∈ P

m, it is not possible to prove (4.18) for (4.21a–d), as ~χ = ~νm is not a
valid test function in (4.21c), and so true volume conservation in the semidiscrete setting,
recall (4.16), cannot be shown. It is for these reasons that we prefer to use (4.6a–d).
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4.3 The fitted mesh approach

Although in deriving the finite element approximation (4.6a–d) we have assumed an un-
fitted bulk mesh triangulation T m that is independent of Γm, the approximation (4.6a–d)
can also be employed for a fitted bulk mesh. In particular, it is possible to use (4.6a–d)
for a moving fitted mesh approach, where for m = 0, . . . ,M − 1 it holds that

Γm ⊂
⋃

om∈T m

∂om . (4.22)

Here the solution ~Xm+1 to (4.6a–d) defines the position of Γm+1, as usual, but now a new
bulk mesh T m+1 needs to be obtained by fitting it to Γm+1.

The main advantages of the fitted mesh approach (4.22) over the unfitted approach
are that (a) with the elements (4.2b,c) the discontinuity in the pressure at Γm can be
resolved and that (b) the inner products 〈·, ·〉Γm in (4.6a,c) now only involve integration
over edges/faces of bulk elements om ∈ T m, which is standard. A further consequence
of (a) is that for the elements (4.2b,c) it automatically holds that XΩm

−
is an admissible

test function in (4.6b), which yields (4.18), and so approximate volume conservation
on the fully discrete level. An additional advantages of the fitted mesh approach is
that, since T m

Γm = ∅, it holds that (4.5a,b) reduce to ρm = ρ− XΩm
−
+ ρ+ (1 − XΩm

−
) and

µm = µ− XΩm
−
+ µ+ (1− XΩm

−
).

We stress that the fitted mesh approach (4.22) for (4.6a–d) would also satisfy the sta-
bility result (4.7). However, due to the nature of the moving bulk mesh, the assumptions
of Theorem 4.2, for ρ± 6= 0, in general do not hold, and so the stability result (4.11) need
not hold over several time steps. Another disadvantage of the fitted mesh approach is
that at every time step, due to the fact that the underlying bulk mesh changes globally,
the obtained velocity solution ~Um+1 ∈ U

m needs to be appropriately interpolated on the
new mesh T m+1. These interpolation errors may significantly impact on the accuracy of
the approximation.

A variant of the method described above, which avoids the repeated interpolation
onto a new finite element bulk mesh, is the so-called Arbitrary Lagrangian Eulerian
(ALE) approach, see [30]. Here a prescribed flow drives the movement of the bulk mesh
vertices, and this prescribed flow needs to be accounted for in the approximation of the
momentum equation. This means that at present it does not appear possible to prove a
stability result similar to Theorem 4.2 for the ALE approach. On the other hand, the fact
that the movement of the bulk mesh is incorporated in the finite element approximation
means that an interpolation of finite element data after every time step is not needed.
The prescribed bulk mesh flow is usually chosen in a way to obtain a good quality bulk
mesh. However, in practice the ALE moving mesh approach may fail if the approximated
phases change their shape dramatically, as was reported in e.g. [31] for the two-dimensional
test case 2 there. In higher space dimensions such pathological mesh defects are more
frequent, which poses a significant computational challenge. For further details on the
ALE approach for two-phase Navier–Stokes flow we refer to [21, 23].
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In this paper we will focus on the general unfitted mesh approach, similarly to our
previous work for Stefan problems in [9, 11]. An investigation of the possible benefits of
fitted mesh approaches for (4.6a–d), and in particular of ALE methods, is left for future
research.

5 Solution of the discrete system

As is standard practice for the solution of linear systems arising from discretizations
of Stokes and Navier–Stokes equations, we avoid the complications of the constrained
pressure space P̂

m in practice by considering an overdetermined linear system with P
m

instead. Introducing the obvious abuse of notation, the linear system (4.6a–d), with P̂
m

replaced by P
m, can be formulated as: Find (~Um+1, Pm+1, κm+1, δ ~Xm+1), where ~Xm+1 =

~Xm + δ ~Xm+1, such that




~BΩ
~CΩ −γ ~NΓ,Ω 0

~CT
Ω 0 0 0

~NT
Γ,Ω 0 0 − 1

τm
~NT
Γ

0 0 ~NΓ
~AΓ







~Um+1

Pm+1

κm+1

δ ~Xm+1


 =




~g

0

0

− ~AΓ
~Xm


 , (5.1a)

where (~Um+1, Pm+1, κm+1, δ ~Xm+1) ∈ (Rd)K
m
U × R

Km
P × R

Km
Γ × (Rd)K

m
Γ here denote the

coefficients of these finite element functions with respect to the standard bases of Um,
P
m, W (Γm) and V (Γm), respectively. The definitions of the matrices and vectors in

(5.1a) directly follow from (4.6a–d), but we state them here for completeness. Let i, j =
1, . . . , Km

U
, n, q = 1, . . . , Km

P
and k, l = 1, . . . , Km

Γ . Then

[ ~BΩ]ij :=
(

ρm+Im
0

ρm−1

2 τm
φUm

j , φUm

i

)
Id+ 2

((
µmD(φUm

j ~er), D(φUm

i ~es)
))d

r,s=1

+ 1
2

(
ρm, [(Im2

~Um .∇)φU
m

j ]φU
m

i − [(Im2
~Um .∇)φU

m

i ]φU
m

j

)
Id ,

[ ~CΩ]iq := −
((
∇ . (φU

m

i ~er), φ
P
m

q

))d
r=1

, [ ~NΓ,Ω]il :=
〈
φU

m

i , χm
l ~νm

〉
Γm ,

[ ~NΓ]kl := 〈χm
l , χ

m
k ~νm〉hΓm , [ ~AΓ]kl := 〈∇s χ

m
l ,∇s χ

m
k 〉Γm Id ,

~gi =
(

Im
0

ρm−1

τm
Im2

~Um + ρm ~fm+1
1 + ~fm+1

2 , φUm

i

)
; (5.1b)

where we recall that {~er}
d
r=1 denotes the standard basis in R

d and where we have used the
convention that the subscripts in the matrix notations refer to the test and trial domains,
respectively. A single subscript is used where the two domains are the same.

For the the solution of (5.1a) we employ a Schur complement approach that eliminates

(κm+1, δ ~Xm+1) from (5.1a), and then use an iterative solver for the remaining system

in (~Um+1, Pm+1). This approach has the advantage that for the reduced system well-
known solution methods for finite element discretizations for the standard Navier–Stokes
equations may be employed. E.g. the authors in [19], for the reduced system matrix
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(
~BΩ

~CΩ

~CT
Ω

0

)

recommend a GMRES iterative solver with the preconditioner

P =

(
~P ~B

~CΩ

0 −PS

)
(5.2)

where ~P ~B is some preconditioner for the matrix ~BΩ, and PS acts as a preconditioner for

the Schur complement operator S = ~CT
Ω
~B−1
Ω

~CΩ. An application of the preconditioner
(5.2) amounts to solving the equations

(
~P ~B

~CΩ

0 −PS

)(
~U

P

)
=

(
~v

q

)
⇐⇒ PS P = −q , ~P ~B

~U = ~v − ~CΩ P .

As the initial guess for the iterative solver the authors in [19] recommend ( ~B−1
Ω (~g −

~CΩ P (0)), P (0)), or an approximation thereof, where P (0) is the initial guess for the solution

of the pressure approximation. It remains to discuss the choices of ~P ~B and PS. The

optimal choice for ~P ~B is ~P ~B = ~BΩ. When that is not practical this can be replaced with
a suitable multigrid or Krylov solver approximation. In the case ρ+ = ρ− = 0, a good
choice for PS is PS = Mµ, where

[Mµ]nq =
(
(µm)−1 φPm

q , φPm

n

)
n, q = 1, . . . , Km

P
;

see e.g. [37]. For the general Navier–Stokes equation, the following BFBt preconditioner
works better. Here

P−1
S = ( ~CT

Ω
~M−1
u,1

~CΩ)
−1 ~CT

Ω
~M−1
u,1

~BΩ
~M−1
u,1

~CΩ ( ~CT
Ω

~M−1
u,1

~CΩ)
−1 , (5.3a)

where ~Mu,1 = diag( ~Mu) is the diagonal part of the mass matrix for the velocity space Um,
and, for later purposes similarly Mp,1 = diag(Mp), i.e.

[ ~Mu]ij =
(
φU

m

j , φU
m

i

)
Id i, j = 1, . . . , Km

U
, [Mp]nq =

(
φP

m

q , φP
m

n

)
n, q = 1, . . . , Km

P
.

See e.g. [19, 26] for more details. Here we note that the rank deficiency of ~CΩ means

that e.g. ~CT
Ω

~M−1
u,1

~CΩ is singular, with kernel {1}, 1 = (1, . . . , 1)T ∈ R
Km

P . But restricted

to the subspace {1}⊥, ~CT
Ω

~M−1
u,1

~CΩ is a positive definite matrix with range {1}⊥. Com-

puting ( ~CT
Ω

~M−1
u,1

~CΩ)
−1 with a preconditioned conjugate gradient (pCG) solver can then

be rigorously justified, e.g. for a right-oriented preconditioning of GMRES with (5.3a).
We refer to [19, §8.3.4] for more details. However, in practice it turns out that the inner

pCG iteration for the computations of ( ~CT
Ω

~M−1
u,1

~CΩ)
−1 in (5.3a) is much more stable if

the projections P1 := Id − 1 1T

1T 1
are included explicitly. In particular, in the case that ~CΩ

does not have full rank, we implement (5.3a) as

P−1
S = P1 (P1

~CT
Ω

~M−1
u,1

~CΩ P1)
−1 P1

~CT
Ω

~M−1
u,1

~BΩ
~M−1
u,1

~CΩ P1 (P1
~CT
Ω

~M−1
u,1

~CΩ P1)
−1 P1 .

(5.3b)
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The desired Schur complement approach for eliminating (κm+1, δ ~Xm+1) from (5.1a)
can be obtained as follows. Let

ΞΓ :=

(
0 − 1

τm
~NT
Γ

~NΓ
~AΓ

)
.

It is a simple matter to adapt the argument in the proof of Theorem 4.1 in order to show
that the matrix ΞΓ is nonsingular. Then (5.1a) can be reduced to

(
~BΩ + γ ( ~NΓ,Ω 0) Ξ−1

Γ

( ~NT
Γ,Ω

0

)
~CΩ

~CT
Ω 0

)(
~Um+1

Pm+1

)
=

(
~g − γ ( ~NΓ,Ω 0) Ξ−1

Γ

(
0

~AΓ
~Xm

)

0

)
(5.4a)

and (
κm+1

δ ~Xm+1

)
= Ξ−1

Γ

(
− ~NT

Γ,Ω
~Um+1

− ~AΓ
~Xm

)
. (5.4b)

In practice we solve (5.4a) with a preconditioned BiCGSTAB iteration, with the precon-

ditioner (5.2). For ~P ~B we choose ~BΩ in the case d = 2, and 20 SSOR iteration steps

for ~BΩ in the case d = 3, and for PS we use (5.3b). Here we replace ~BΩ in (5.3b) with
~BΩ + γ ( ~NΓ,Ω 0) Ξ−1

Γ

( ~NT
Γ,Ω

0

)
.

5.1 Solution of the linear system for XFEMΓ

The linear system for the approximation from Theorem 4.3 in Section 4.1 is given by
(5.1a,b) with Km

P
replaced by Km

P
+1. However, in order to highlight the changes needed

for the implementation of our XFEMΓ method, we use an alternative formulation here
that builds on the matrix definitions as in (5.1a,b).

The linear system for (4.6a–d) with P
m replaced by P

m
XFEM can be formulated as: Find

(~Um+1, Pm+1, λm+1, κm+1, δ ~Xm+1), where ~Xm+1 = ~Xm + δ ~Xm+1, such that




~BΩ
~CΩ

~DΩ −γ ~NΓ,Ω 0
~CT
Ω 0 0 0 0

~DT
Ω 0 0 0 0

~NT
Γ,Ω 0 0 0 − 1

τm
~NT
Γ

0 0 0 ~NΓ
~AΓ







~Um+1

Pm+1

λm+1

κm+1

δ ~Xm+1




=




~g

0

0

0

− ~AΓ
~Xm




, (5.5)

where (~Um+1, Pm+1, λm+1, κm+1, δ ~Xm+1) ∈ (Rd)K
m
U ×R

Km
P ×R×R

Km
Γ × (Rd)K

m
Γ . Here all

the matrices are as defined in (5.1b), and the entries of ~DΩ, for i = 1, . . . , Km
U
, are given

by
[ ~DΩ]i,1 := −

〈
φU

m

i , ~νm
〉
Γm
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As before, the system (5.5) can be solved with a Schur complement formulation similarly
to (5.4a,b), which is now given by



~BΩ + γ ( ~NΓ,Ω 0) Ξ−1
Γ

( ~NT
Γ,Ω

0

)
~CΩ

~DΩ

~CT
Ω 0 0

~DT
Ω 0 0






~Um+1

Pm+1

λm+1


 =



~g − γ ( ~NΓ,Ω 0) Ξ−1

Γ

(
0

~AΓ
~Xm

)

0

0




and (5.4b).

5.2 Assembly of interface-bulk cross terms

We note that the assembly of the matrices arising from (4.6a–d) is mostly standard. For
the cross terms between bulk mesh and parametric mesh one needs to compute contri-

butions of the form
〈
φU

m

i , χm
j

〉
Γm

, where {φU
m

i }
Km

U

i=1 and {χm
j }

Km
Γ

j=1 are the canonical basis
functions of Sm

2 and W (Γm), respectively. We recall that in [9, §4.5] the calculation of
such contributions has been considered when Sm

2 is replaced by Sm
1 . We now extend these

techniques to the space of piecewise quadratic functions Sm
2 . Firstly, we need to compute

the intersections between bulk elements oml and surface mesh elements σm
j . For notational

convenience, we will drop the subscripts l and j in the remainder of this subsection.

In two space dimensions, i.e. d = 2, the intersection of a segment σm of the polygonal
curve Γm and a bulk mesh element om ∈ T m is always given by a segment, say om∩σm =
[~q1, ~q2]. Then the contribution over [~q1, ~q2] for

〈
φU

m

i , χm
j

〉
Γm

is

〈φU
m

i , χm
j 〉[~q1,~q2] =

1
6
|~q1 − ~q2|

2∑

k=0

ωk φ
U
m

i (~qk)χ
m
j (~qk) , (5.6)

where ~q0 :=
1
2

∑2
k=1 ~qk and ω0 =

2
3
, ω1 = ω2 =

1
6
from Simpson’s rule.

The natural generalization of (5.6) to d = 3 is given as follows. Here the intersection
of a triangular element σm of the polyhedral surface Γm with a bulk mesh element om is
a convex l-polygon P, with 3 ≤ l ≤ 7. Some example intersections are given in Figure 2,
and an algorithm to compute P = om∩σm is stated in [9, p. 6284]. Then the contribution
over P ≡ conv({~qi}

l
i=1) for

〈
φUm

i , χm
j

〉
Γm

can be easy calculated by partitioning P into l

triangles with the help of the centroid ~q0 :=
1
l

∑l

k=1 ~qk of P, see Figure 3. In particular,
let ~pk := 1

2
[~q0 + ~qk] and ~pl+k := 1

2
[~qk + ~qk+1] for k = 1, . . . , l, with ~ql+1 := ~q1, denote the

edge midpoints of those triangles, and let ~ck :=
1
3
[~q0 + ~qk + ~qk+1], for k = 1, . . . , l, denote

their barycentres. Then the contribution over P for
〈
φU

m

i , χm
j

〉
Γm

is given by

〈
φUm

i , χm
j

〉
P
:=

l∑

k=0

ωP
k φUm

i (~qk)χ
m
j (~qk) +

2 l∑

k=1

ωP
l+k φ

Um

i (~pk)χ
m
j (~pk)

+
l∑

k=1

ωP
2 l+k φ

Um

i (~ck)χ
m
j (~ck) . (5.7)
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Figure 2: Intersections of a triangle and a simplex in R
3.
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Figure 3: Sketch of the partitioning of P into triangles (left), and the sampling points for
(5.7) (right).

where the weights ωP
k in (5.7) need to be defined such that the right hand side in (5.7) is

equal to
∫
P
φUm

i χm
j dHd−1. Clearly here it suffices to find a quadrature rule that is exact

for cubics on P. With the help of the above described partitioning of P into triangles this
reduces to finding a quadrature rule that is exact for cubics on triangles. Here we employ
a quadrature rule with sampling points at the vertices, at the edge midpoints and at the
centroid of the triangles. The weights for the sampling points are then given by 1

20
, 2

15

and 9
20
, respectively; see e.g. [46].

For the definitions of ρm and µm in (4.5a,b) the disjoint partition T m = T m
− ∪T m

+ ∪T m
Γm

of bulk elements is needed, and this can easily be found with e.g. Algorithm 4.1 in [11].
For the strategy (4.5b) we need in addition a procedure to compute Ld(om ∩ Ωm

− ) for all
elements om ∈ T m

Γm . Let V := om ∩ Ωm
− . Then the divergence theorem yields that

Ld(V ) =

∫

V

1 dLd = 1
d

∫

∂V

(~id− ~z0) . ~νV dHd−1 , (5.8)

where ~id is the identity function on R
d, ~z0 ∈ R

d is an arbitrarily fixed point, and where
~νV denotes the outer normal to V . Here we note that ∂V is a union of flat facets with
~νV = ~νm on om ∩ Γm and ~νV = ~νom , the outer normal of om, on ∂om ∩ Ωm

− . Hence the

integral in (5.8) simplifies on noting that ~id . ~νV is constant on each facet, and vanishes on
each facet that contains ~z0. Now assume that om has an edge/face that is not intersected
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by Γm. Any such element we call regularly cut, and for the element om at hand we denote
by F the edge/face that is not cut by the interface. Now let ~z0 be the vertex opposite F .
Then it follows from (5.8) that

Ld(V ) = 1
d

∫

om∩Γm

(~id− ~z0) . ~ν
m dHd−1 if ~z0 ∈ Ωm

− . (5.9a)

Similarly, it holds that

Ld(V ) = 1
d

∫

F

(~id− ~z0) . ~νom dHd−1 + 1
d

∫

om∩Γm

(~id− ~z0) . ~ν
m dHd−1

= Ld(om) + 1
d

∫

om∩Γm

(~id− ~z0) . ~ν
m dHd−1 if ~z0 ∈ Ωm

+ . (5.9b)

Hence it follows from (5.9a,b) that for regularly cut elements we can calculate Ld(V ) =
Ld(om ∩ Ωm

− ) if we can decide for each vertex of the bulk mesh whether it belongs to Ωm
−

or to Ωm
+ . In practice this information can, for example, be obtained with the algorithm

presented in [11, Algorithm 4.2]. On setting

L̃d(om ∩ Ωm
− ) =

{
Ld(om ∩ Ωm

− ) if om is regularly cut ,
1
2
Ld(om) else ,

it holds that
L̂d(Ωm

− ) :=
∑

o∈T m
−

Ld(o) +
∑

o∈T m
Γm

L̃d(o ∩ Ωm
− ) (5.10)

is an approximation to Ld(Ωm
− ) that is exact if all the elements in T m

Γm are regularly cut.
It remains to compute Ld(om ∩ Ωm

− ) for all the elements in T m
Γm that are not regularly

cut. Let om be such an element, and assume that om itself is partitioned into smaller
elements. Then it is straightforward to extend the definition (5.10) to this partitioning

of om to yield a definition for L̂d(om ∩ Ωm
− ), where an analogue of the decomposition

T m = T m
− ∪ T m

+ ∪ T m
Γm needs to be defined for the local partitioning of om.

Hence in order to compute Ld(om ∩Ωm
− ) for a not regularly cut element it is sufficient

to locally refine it until L̂d(om ∩ Ωm
− ) = Ld(om ∩ Ωm

− ). In practice we use an iterative
bisectioning procedure, where we stress that the refined partitionings are only created for
the purpose of computing the integral in (5.8). In particular, the refinements do not affect
the approximation spaces Um and P

m. In order to avoid excessive refinement we stop the
iterative bisectioning procedure of the not regularly cut elements whenever

∣∣∣∣∣∣
Ld(Ωm

− )−
∑

om∈T m
−

Ld(om)−
∑

om∈T m
Γm

L̂d(om ∩ Ωm
− )

∣∣∣∣∣∣
< tolV ,

where tolV is a small tolerance, and where we note that Ld(Ωm
− ) =

1
d

∫
Γm

~Xm . ~νm dHd−1

is known exactly. In practice we always use tolV = 10−8.
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Finally, we mention that determining if ~z0 ∈ Ωm
± in (5.9a,b) in practice is not very

efficient. A better, and more robust, strategy makes use of the fact that ~z0 ∈ Ωm
± in

(5.9a,b) is equivalent to the integral in (5.9a) being negative/positive, i.e.

~z0 ∈ Ωm
± ⇐⇒ ∓

∫

om∩Γm

(~id− ~z0) . ~ν
m dHd−1 > 0 .

In practice it remains to robustly deal with the case that
∣∣∣
∫
om∩Γm(~id− ~z0) . ~ν

m dHd−1
∣∣∣ is

very small, which means that numerical noise may influence the sign of the integral. But
in the vast majority of the cases, the smallness (in magnitude) of the integral will be
caused by Hd−1(om∩Γm) being small, because F , the edge/face opposite ~z0, is not cut by
Γm. Then the sign of the integral can in general be robustly detected by inspecting the
sign of the (piecewise constant) integrand (~id − ~z0) . ~ν

m. In all instances where the sign

of
∫
om∩Γm(~id− ~z0) . ~ν

m dHd−1 cannot be robustly ascertained in practice, it is prudent to
treat the element om as if it is a not regularly cut element, and to proceed as outlined
above. This is the strategy that we use in all our computations for (4.5b). This works
well for d = 2, mainly because not regularly cut elements are very rarely encountered.
Unfortunately, this is different for d = 3, where not regularly cut elements are far more
generic. On recalling Figure 2, and especially the last two examples there, this may have
to do with the fact that for d = 3 it is possible for a single element σm of Γm to intersect all
d+1 faces of a bulk element om, something that is not possible for d = 2. Unfortunately,
this means that (4.5b) at this stage is not practical for d = 3.

6 Mesh adaptation

We implemented our finite element approximation (4.6a–d) within the framework of the
finite element toolbox ALBERTA, see [44]. In what follows we describe the mesh refine-
ment strategies used for both bulk and interface mesh. These are similar to the approach
described in [9].

6.1 Bulk mesh adaptation

Given a polyhedral approximation Γm, m ≥ 0, of the interface, we employ the following
mesh adaptation strategy for the bulk mesh triangulation T m. The strategy is inspired
by a similar refinement algorithm proposed in [9], and it results in a fine mesh around Γm

and a coarse mesh further away from it.

In particular, given two integer parameters Nf > Nc, we set hf = 2H
Nf

, hc =
2H
Nc

, where

for simplicity we assume that Ω = ×d
i=1(Li, Ui) with H = 1

2
mini=1,...,d(Ui −Li). Then we

set

volf =
hd
f

d!
and volc =

hd
c

d!
, (6.1)
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that is, for d = 3, volf denotes the volume of a tetrahedron with three right-angled and
isosceles faces with side length hf , while for d = 2 it denotes the area of a right-angled
and isosceles triangle with side length hf , and similarly for volc.

Now starting with the triangulation T m−1 from the previous time step, where here for
convenience we define T −1 to be a uniform partitioning of mesh size hc, we obtain T m as
follows. First any element om−1 ∈ T m−1 satisfying Ld(om−1) ≥ 2 volf and om−1 ∩ Γm 6= ∅
is marked for refinement. In addition, any element satisfying Ld(om−1) ≥ 2 volf , for which
a direct neighbour intersects Γm, is also marked for refinement. Similarly, an element that
is not marked for refinement is marked for coarsening if it satisfies Ld(om−1) ≤ 1

2
volc and

om−1 ∩ Γm = ∅. Now all the elements marked for refinement are halved into two smaller
elements with the help of a simple bisectioning procedure, see [44] for details. In order
to avoid hanging nodes, this will in general lead to refinements of elements that were not
originally marked for refinement. Similarly, an element that is marked for coarsening is
coarsened only if all of its neighbouring elements are marked for coarsening as well. For
more details on the refining and coarsening itself we refer to [44].

This marking and refinement process is repeated until no more elements are required
to be refined or coarsened. Thus we obtain the triangulation T m on which, together with
Γm, the new solutions (~Um+1, Pm+1, κm+1, ~Xm+1) will be computed. In practice only at
the first time step, m = 0, more than one of the described refinement cycles are needed.

6.2 Parametric mesh adaptation

As mentioned before, the equation (4.6d) means that the vertices of the parametric ap-
proximation Γm are in general very well distributed, so that mesh smoothing (redistri-
bution) is not necessary in practice. Similarly, an adaptation of the parametric mesh is
in general not necessary. However, in simulations where the total surface area Hd−1(Γm)
increases significantly over time, it is beneficial to locally refine the triangulation where
elements have become too large.

The mesh refinement strategy can be described as follows, where we assume that an
arbitrary polyhedral approximation Γ0 of Γ(0) is given. Let

volmax := max
j=1,...,J0

Γ

Hd−1(σ0
Γ) .

Then for an arbitrary m ≥ 0, given Γm and the solution (~Um+1, Pm+1, κm+1, ~Xm+1)

to (4.6a–d), we define Γm+1,⋆ := ~Xm+1(Γm). Clearly, Γm+1,⋆ =
⋃Jm

Γ

j=1 σ
m+1,⋆
j , where

σm+1,⋆
j := ~Xm+1(σm

j ), j = 1, . . . , Jm
Γ . We will now define a finer triangulation

⋃Jm+1

Γ

j=1 σm+1
j ,

with Jm+1
Γ ≥ Jm

Γ , for the same polyhedral surface Γm+1,⋆ = Γm+1. To this end, we mark all
elements σm+1,⋆

j , that have become too large due to the growth of the interface, for refine-

ment. In particular, any element with Hd−1(σm+1,⋆
j ) ≥ 7

4
volmax is marked for refinement.

Then all refined elements are replaced with two smaller ones with the help of a simple
bisectioning procedure. Note that this bisection does not change the polyhedral surface
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Γm+1,⋆ = Γm+1. Moreover, we note that in order to prevent hanging nodes, in general
more elements will be refined than have initially been marked for refinement. The cycle
of marking and refining is repeated until no more refinements are required. In practice,
this was always the case after just one such refinement step.

In conclusion we stress that the given parametric mesh adaptation algorithm means
that Theorem 4.2 still holds. Moreover, apart from this simple mesh refinement, no other
changes were performed on the parametric mesh in any of our simulations. In particular,
no mesh smoothing (redistribution) was required.

7 Numerical results

Throughout this section we use uniform time steps τm = τ , m = 0, . . . ,M−1. In addition,
we set ~U0 = ~0, β = 0 and, unless otherwise stated, we employ (4.5a) and XFEMΓ.

We will often present detailed discretization parameters and CPU times for our sim-
ulations. Here the CPU times, which we report in seconds, correspond to a single-
thread computation on an Intel Xeon E5-2643 (3.3 GHz) processor with 16 GB of main
memory. To summarize the discretization parameters we use the shorthand notation
n adapt

(⋆)
k,l , where the superscript (⋆) ∈ {(1), (0), (1, 0)} indicates which of the elements

(4.2a–c) is employed. The subscripts refer to the fineness of the spatial discretizations,

i.e. for the set n adapt
(·)
k,l it holds that Nf = 2k and Nc = 2l, recall (6.1). For the

case d = 2 we have in addition that K0
Γ = J0

Γ = 2k, while for d = 3 it holds that
(K0

Γ, J
0
Γ) = (770, 1536), (1538, 3072), (3074, 6144) for k = 5, 6, 7. Finally, the uniform time

step size for the set n adapt
(·)
k,l is given by τ = 10−3/n, and if n = 1 we write adapt

(·)
k,l.

7.1 Numerical results in 2d

In this subsection we present numerical results for our approximation (4.6a–d) for the
case d = 2. In particular, we will present benchmark computations for the two test
cases proposed in [31, Table I]. To this end, we define the following benchmark quantities
for the continuous solution (~u, p,Γ) of (3.1a–h). Let yc(t) =

∫
Ω−(t)

x2 dL2/L2(Ω−(t))

denote the x2-component of the bubble’s centre of mass. Let c/(t) denote the “degree of
circularity” of Γ(t), which is defined as the ratio of the perimeter of an area-equivalent
circle and H1(Γ(t)). Finally, let Vc(t) =

∫
Ω−(t)

u2(t) dL
2/L2(Ω−(t)) denote the bubble’s

rise velocity, where ~u(·, t) = (u1(·, t), u2(·, t))
T . In this paper, we use the following discrete

approximations of these benchmark quantities:

ymc =
1

L2(Ωm
− )

∫

Ωm
−

x2 dL
2 , c/m = 2 [πL2(Ωm

−)]
1

2 [H1(Γm)]−1 , V m
c =

(ρm− Um
2 , 1)

(ρm− , 1)
,

(7.1)
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K0
Γ J0

Ω NDOFbulk M CPU CPU XFEMΓ

adapt
(1)
5,2 32 536 2475 3000 78 94

adapt
(1)
7,3 128 2320 10563 3000 610 790

2 adapt
(1)
9,4 512 9728 44019 6000 8400 20640

5 adapt
(1)
11,5 2048 39328 177459 15000 138100 327700

adapt
(1,0)
5,2 32 536 3011 3000 229 401

adapt
(1,0)
7,3 128 2320 12883 3000 2590 13900

2 adapt
(1,0)
9,4 512 9728 53747 6000 40900 111800

Table 1: Simulation statistics and timings for the test case 1 in [31].

where ρm− ∈ Sm
0 is defined as in (4.5a,b) but with ρ+ replaced by zero. Finally, we also

define the relative overall area/volume loss as

Lloss =
Ld(Ω0

−)− Ld(ΩM
− )

Ld(Ω0
−)

,

and as a measure of the mesh quality we introduce the element ratios

rm :=
maxj=1,...,Jm

Γ
Ld(σm

j )

minj=1,...,Jm
Γ
Ld(σm

j )
, m = 0, . . . ,M . (7.2)

7.1.1 2d benchmark problem 1

We use the setup described in [31], see Figure 2 there; i.e. Ω = (0, 1) × (0, 2) with
∂1Ω = [0, 1]×{0, 2} and ∂2Ω = {0, 1}×(0, 2). Moreover, Γ0 = {~z ∈ R

2 : |~z−(1
2
, 1
2
)T | = 1

4
}.

The physical parameters from the test case 1 in [31, Table I] are then given by

ρ+ = 1000 , ρ− = 100 , µ+ = 10 , µ− = 1 , γ = 24.5 , ~f1 = −(0, 0.98)T , ~f2 = ~0 .
(7.3)

The time interval chosen for the simulation is [0, T ] with T = 3.

Some discretization parameters and CPU times for our approximation (4.6a–d) are
shown in Table 1. Here and throughout the CPU times correspond to computations for the
simple strategy (4.5a), but the times for the more involved choice (4.5b) are very similar.
Some quantitative values for computations with the P2-P1 element (4.2a) are given in
Table 2. Here the observed relative area losses for the runs without XFEMΓ were 32.1%,
8.2%, 2.1% and 0.5%; and so we do not present the remaining statistics for these runs.
Here we recall from §4.1 that for the semidiscrete continuous-in-time variant of (4.6a–d)
with XFEMΓ true volume conservation (area conservation in 2d) holds. In general, we
also observe excellent volume conservation for the fully discrete scheme. Similarly, in
Table 3 we present quantitative values for computations with the P2-(P1+P0) element
(4.2c). Once again we omit the results for the runs without XFEMΓ, for which the
observed relative area losses were 7.2%, 1.9% and 0.5%. We observe that the results in
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adapt
(1)
5,2 adapt

(1)
7,3 2 adapt

(1)
9,4 5 adapt

(1)
11,5

Lloss 0.0% 0.0% 0.0% 0.0%

c/min 0.9136 0.9068 0.9034 0.9019

tc/=c/
min

2.0760 1.9430 1.9110 1.9028

Vc,max 0.2478 0.2415 0.2414 0.2416

tVc=Vc,max
0.9470 0.9360 0.9255 0.9200

yc(t = 3) 1.0906 1.0823 1.0815 1.0817

adapt
(1)
5,2 adapt

(1)
7,3 2 adapt

(1)
9,4 5 adapt

(1)
11,5

Lloss 0.0% 0.0% 0.0% 0.0%

c/min 0.9061 0.9034 0.9018 0.9014

tc/=c/
min

1.9260 1.9040 1.8990 1.8988

Vc,max 0.2430 0.2422 0.2418 0.2417

tVc=Vc,max
0.9210 0.9270 0.9250 0.9212

yc(t = 3) 1.0894 1.0832 1.0821 1.0818

Table 2: Some quantitative results for the test case 1 in [31]. Here we use the P2-P1
element (4.2a) with (4.5a) and XFEMΓ. The bottom table is for (4.5b) and XFEMΓ.

Tables 2 and 3 are in very good agreement with the corresponding numbers from the
finest discretization run of group 3 in [31], which are given by 0.9013, 1.9000, 0.2417,
0.9239 and 1.0817. Here we note that of the three groups in [31], group 3 shows the most
accurate and the most consistent results for the test case 1. Their method is based on
the ALE approach with a piecewise quadratic velocity space enriched with cubic bubble
functions, with a discontinuous piecewise linear pressure space and with a second order,
fractional step θ-scheme in time. We stress that our simulation results appear to be in
better agreement with the results from group 3 than other recently published results on the
same benchmark problem, see e.g. [2, Tables III-V], [52, Table XVI] and [16, Table VII].

Overall our results that appear to agree most closely with the results from group 3 in
[31] are the ones for the finest run with the P2-(P1+P0) element and the strategy (4.5b);
see Table 3. In what follows we present some visualizations of the numerical results for
that run. Here we recall from Table 1 that this run took less CPU time then the run for
5 adapt

(1)
11,5, i.e. the finest discretization for the P2-P1 element. A plot of ΓM can be seen

in Figure 4, while the time evolution of the circularity, the centre of mass and the rise
velocity are shown in Figures 5 and 6. A plot of the discrete energy as well as a plot of
the mesh quality of Γm over time, recall (7.2), are shown in Figure 7.
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adapt
(1,0)
5,2 adapt

(1,0)
7,3 2 adapt

(1,0)
9,4

Lloss 0.0% 0.0% 0.0%

c/min 0.9055 0.9044 0.9027

tc/=c/
min

2.0950 1.9470 1.9105

Vc,max 0.2483 0.2414 0.2413

tVc=Vc,max
0.9490 0.9480 0.9255

yc(t = 3) 1.0837 1.0806 1.0811

adapt
(1,0)
5,2 adapt

(1,0)
7,3 2 adapt

(1,0)
9,4

Lloss 0.0% 0.0% 0.0%

c/min 0.9007 0.9015 0.9014

tc/=c/
min

1.9410 1.9040 1.9000

Vc,max 0.2417 0.2418 0.2417

tVc=Vc,max
0.9250 0.9250 0.9230

yc(t = 3) 1.0873 1.0824 1.0819

Table 3: Some quantitative results for the test case 1 in [31]. Here we use the P2-(P1+P0)
element (4.2c) with (4.5a) and XFEMΓ. The bottom table is for (4.5b) and XFEMΓ.
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Figure 4: (2 adapt
(1,0)
9,4 ) The final bubble for the test case 1 at time T = 3.
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 0.9035

 0.904

 0.9045

 0.905

 1.8  1.85  1.9  1.95  2

Figure 5: (2 adapt
(1,0)
9,4 ) Circularity for the test case 1.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  0.5  1  1.5  2  2.5  3
 0

 0.05
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Figure 6: (2 adapt
(1,0)
9,4 ) Centre of mass and rise velocity for the test case 1.
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Figure 7: (2 adapt
(1,0)
9,4 ) Discrete energy E(ρm, ~Um+1,Γm+1) and the mesh quality rm for

the test case 1.
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K0
Γ J0

Ω NDOFbulk M CPU CPU XFEMΓ

adapt
(1)
5,2 32 536 2475 3000 195 277

adapt
(1)
7,3 128 2320 10563 3000 2600 11270

2 adapt
(1)
9,4 512 9728 44019 6000 33000 76200

adapt
(1,0)
5,2 32 536 3011 3000 770 2520

adapt
(1,0)
7,3 128 2320 12883 3000 13600 53600

2 adapt
(1,0)
9,4 512 9728 53747 6000 517900 611400

Table 4: Simulation statistics and timings for the test case 2 in [31].

7.1.2 2d benchmark problem 2

We use the same setup as in Section 7.1.1, and take the physical parameters from the test
case 2 in [31, Table I], which are given by

ρ+ = 1000 , ρ− = 1 , µ+ = 10 , µ− = 0.1 , γ = 1.96 , ~f1 = −(0, 0.98)T , ~f2 = ~0 .
(7.4)

The time interval chosen for the simulation is [0, T ] with T = 3, as before.

Some discretization parameters and CPU times for (4.6a–d) are shown in Table 4.
Selected benchmark quantities are shown in Tables 5 and 6 for the elements (4.2a) and
(4.2c), respectively. We observe that the results in these two tables are in good agreement
with the corresponding numbers from the finest discretization run of group 3 in [31], which
are given by 0.5144, 3.0000, 0.2502, 0.7317, 0.2393, 2.0600 and 1.1376. Here we note that
there is little agreement on these results between the three groups in [31], but we believe
the numbers of group 3 to be the most reliable ones.

We again visualize the numerical results for our simulation with the finest discretiza-
tion parameters for the P2-(P1+P0) element and the strategy (4.5b). A plot of ΓM can be
seen in Figure 8, where we observe that no self intersections have occured, in line with the
results of group 3 in [31]. Some quantative statistics are shown in Figures 9 and 10. Plots
of the discrete energy and of the mesh quality of Γm are shown in Figure 11. Here the
discontinuities in rm, recall (7.2), are caused by the local refinement of Γm as described
in §6.2. For the displayed run we start with J0

Γ = 512 elements and finish with JM
Γ = 662

elements.

7.2 Numerical results in 3d

In this subsection we present numerical results for our approximation (4.6a–d) for the case
d = 3. In particular, we will present benchmark computations for the natural 3d analogue
of the two-dimensional test case 1 proposed in [31, Table I]. Moreover, we will present
some rising droplet simulations that are based on real physical parameters suggested in
[26].
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adapt
(1)
5,2 adapt

(1)
7,3 2 adapt

(1)
9,4

Lloss 0.0% 0.0% 0.0%

c/min 0.5892 0.5192 0.5167

tc/=c/
min

3.0000 3.0000 3.0000

Vc,max1 0.2584 0.2480 0.2488

tVc=Vc,max 1
0.8800 0.7610 0.7310

Vc,max2 0.2283 0.2305 0.2356

tVc=Vc,max 2
2.0000 1.9500 2.0490

yc(t = 3) 1.1275 1.1238 1.1319

adapt
(1)
5,2 adapt

(1)
7,3 2 adapt

(1)
9,4

Lloss -0.4% 0.0% 0.0%

c/min 0.5671 0.5086 0.5077

tc/=c/
min

3.0000 3.0000 3.0000

Vc,max1 0.2517 0.2507 0.2504

tVc=Vc,max 1
0.7370 0.7270 0.7085

Vc,max2 0.2310 0.2376 0.2392

tVc=Vc,max 2
1.9270 2.0250 2.0520

yc(t = 3) 1.1162 1.1296 1.1350

Table 5: Some quantitative results for the test case 2 in [31]. Here we use the P2-P1
element (4.2a) with (4.5a) and XFEMΓ. The bottom table is for (4.5b) and XFEMΓ.
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Figure 8: (2 adapt
(1,0)
9,4 ) The final bubble for the test case 2 at time T = 3.
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adapt
(1,0)
5,2 adapt

(1,0)
7,3 2 adapt

(1,0)
9,4

Lloss -0.2% 0.0% 0.0%

c/min 0.5701 0.5172 0.5131

tc/=c/
min

3.0000 3.0000 3.0000

Vc,max1 0.2580 0.2480 0.2489

tVc=Vc,max 1
0.8790 0.7620 0.7295

Vc,max2 0.2295 0.2311 0.2356

tVc=Vc,max 2
1.9640 1.9400 2.0445

yc(t = 3) 1.1226 1.1234 1.1318

adapt
(1,0)
5,2 adapt

(1,0)
7,3 2 adapt

(1,0)
9,4

Lloss -0.4% 0.0% 0.0%

c/min 0.5542 0.5055 0.5067

tc/=c/
min

3.0000 3.0000 3.0000

Vc,max1 0.2503 0.2507 0.2504

tVc=Vc,max 1
0.7150 0.7150 0.7175

Vc,max2 0.2300 0.2372 0.2389

tVc=Vc,max 2
1.9327 2.0290 2.0535

yc(t = 3) 1.1224 1.1316 1.1356

Table 6: Some quantitative results for the test case 2 in [31]. Here we use the P2-(P1+P0)
element (4.2c) with (4.5a) and XFEMΓ. The bottom table is for (4.5b) and XFEMΓ.
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Figure 9: (2 adapt
(1,0)
9,4 ) Circularity for the test case 2.
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Figure 10: (2 adapt
(1,0)
9,4 ) Centre of mass and rise velocity for the test case 2.
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Figure 11: (2 adapt
(1,0)
9,4 ) Discrete energy E(ρm, ~Um+1,Γm+1) and the mesh quality rm for

the test case 2.

For the 3d benchmark computations, we introduce the natural extensions of the quan-
tities defined in (7.1). That is, the discrete approximations of the x3-component of the
bubble’s centre of mass, the “degree of sphericity” and the bubble’s rise velocity are
defined by

zmc =
1

L3(Ωm
− )

∫

Ωm
−

x3 dL
3 =

3∫
Γm

~Xm . ~νm dH2

∫

Γm

1
2
( ~Xm . ~e3)

2 (~νm . ~e3) dH
2 ,

s/m = π
1

3 [6L3(Ωm
− )]

2

3 [H2(Γm)]−1 , V m
c =

(ρm− Um
3 , 1)

(ρm− , 1)
.

7.2.1 3d benchmark problem 1

Here we consider the natural 3d analogue of the problem in §7.1.1, i.e. of test case 1 in
[31], where only benchmark problems in two space dimensions are presented. To this end,
we let Ω = (0, 1)× (0, 1) × (0.2) with ∂1Ω = [0, 1] × [0, 1] × {0, 2} and ∂2Ω = ∂Ω \ ∂1Ω.
Moreover, we set T = 3, Γ0 = {~z ∈ R

3 : |~z − (1
2
, 1
2
, 1
2
)T | = 1

4
}, and choose the physical

parameters as in (7.3).
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K0
Γ J0

Ω NDOFbulk M CPU XFEMΓ

adapt
(1)
5,2 770 22320 95542 3000 68500

adapt
(1)
6,3 1538 89616 383206 3000 456600

Table 7: Simulation statistics and timings for the 3d benchmark problem 1.

adapt
(1)
5,2 adapt

(1)
6,3

Lloss 0.0% 0.0%

s/min 0.9570 0.9508

ts/=s/
min

3.0000 3.0000

Vc,max 0.3823 0.3845

tVc=Vc,max
1.1930 1.0800

zc(t = 3) 1.5516 1.5555

Table 8: Some quantitative results for the 3d benchmark problem 1.

Our discretization parameters and CPU times are shown in Table 7. The quantitative
values for the evolution are given in Table 8. In what follows we present some visual-
izations of the numerical results for the run with adapt

(1)
6,3. Plots of ΓM can be seen in

Figure 12, while the time evolution of the sphericity, the centre of mass and the rise
velocity are shown in Figures 13 and 14.

7.2.2 Rising butanol droplets in 3d

Here we consider a problem that is inspired from §1.3.1 in [26], where we apply a con-
venient rescaling in space. In particular, we let Ω = (0, 1.2) × (0, 1.2) × (0, 3) with
∂1Ω = [0, 1.2] × [0, 1.2] × {0, 3} and ∂2Ω = ∂Ω \ ∂1Ω. Moreover, we set Γ0 = {~z ∈ R

3 :
|~z − (0.6, 0.6, 0.3)| = R0} with R0 = 0.1. Finally,

ρ+ = 9.865× 10−4, ρ− = 8.454× 10−4 , µ+ = 1.388× 10−5 , µ− = 3.281× 10−5 ,

γ = 1.63× 10−3 , (7.5)

with ~f1 = −(0, 0, 981)T and ~f2 = ~0. These parameters model the evolution of a rising
butanol droplet in a tank filled with water. In [26, §1.3.1] a terminal rise velocity of
V M
c = 5.3 (rescaled to our applied transformation in space) is reported at time T = 0.5,

while the final position of the bubble is at about zMc = 2.7. The discretization parameters
for our approximation (4.6a–d) are shown in Table 9. For our finest run we obtain
V M
c = 5.33 and zMc = 2.69. See Figure 15 for plots of ΓM , and Figure 16 for plots of

sphericity, centre of mass and rise velocity over time.

We recall from [26, Fig. 1.13] that the shape of the rising butanol droplet changes
dramatically if the initial droplet is chosen larger. To illustrate this, we repeat the previous
simulation but now choose the radius of the initial sphere to be R0 = 0.2, i.e. the droplet
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Figure 12: (adapt
(1)
6,3) The final bubble for the 3d benchmark problem 1 at time T = 3.

Views from the top (left) and from the front (right).
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Figure 13: (adapt
(1)
6,3) Sphericity for the 3d benchmark problem 1.
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Figure 14: (adapt
(1)
6,3) Centre of mass and rise velocity for the 3d benchmark problem 1.
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K0
Γ J0

Ω NDOFbulk M CPU XFEMΓ

2 adapt
(1)
5,2 770 4608 21056 1000 7860

2 adapt
(1)
6,3 1538 19536 87530 1000 30830

2 adapt
(1)
7,3 3074 47712 206652 1000 113300

Table 9: Simulation statistics and timings for the rising butanol droplet with R0 = 0.1.
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Figure 15: (2 adapt
(1)
7,3, R0 = 0.1) The final butanol droplet at time T = 0.5. Views from

the top (left) and from the front (right).
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Figure 16: (2 adapt
(1)
7,3, R0 = 0.1) Sphericity (top), as well as centre of mass and rise

velocity (bottom) for the rising butanol droplet.
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K0
Γ J0

Ω NDOFbulk M CPU XFEMΓ

2 adapt
(1)
5,2 770 4608 21056 800 11820

2 adapt
(1)
6,3 1538 19536 87530 800 68880

2 adapt
(1)
7,3 3074 47712 206652 800 450800

Table 10: Simulation statistics and timings for the rising butanol droplet with R0 = 0.2.
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Figure 17: (2 adapt
(1)
6,3, R0 = 0.2) The final butanol droplet at time T = 0.4. Views from

the top (left) and from the front (right).

is twice as large as before. As the larger droplet is rising faster, we stop the simulation at
time T = 0.4. The discretization parameters for our approximation (4.6a–d) are shown
in Table 10, and we visualize the simulation with the finest parameters in Figures 17 and
18.

7.2.3 Rising toluene droplet in 3d

Here we consider a problem that is inspired from §7.11.2 in [26]. In particular, we use all
the parameters from the first simulation in §7.2.2, with the exceptions of

ρ+ = 9.988× 10−4, ρ− = 8.675× 10−4 , µ+ = 1.029× 10−5 , µ− = 5.96× 10−6 ,

γ = 3.431× 10−2 .

These parameters model the evolution of a rising toluene droplet in a tank filled with
water. Here the properties of the outer phase (water) slightly differ from the ones in
(7.5), which models the fact that some saturation with toluene has taken place to avoid
any mass transfer between the two phases. The main difference to the rising butanol
droplet in §7.2.2 is the higher surface tension γ, which the authors in [26] state makes this
simulation computationally much more challenging. In [26, §7.11.2] ten time steps with
τ = 5 × 10−4 are performed for this experiment. We continue this simulation until time
T = 0.4, and observe a terminal rise velocity of V M

c = 7.5, as well as zMc = 2.78 for our
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Figure 18: (2 adapt
(1)
6,3, R0 = 0.2) Sphericity (top), as well as centre of mass and rise

velocity (bottom) for the rising butanol droplet.

K0
Γ J0

Ω NDOFbulk M CPU XFEMΓ

2 adapt
(1)
5,2 770 4608 21056 800 14760

2 adapt
(1)
6,3 1538 19536 87530 800 68650

2 adapt
(1)
7,3 3074 47712 206652 800 340600

Table 11: Simulation statistics and timings for rising toluene droplet with R0 = 0.1.

finest simulation; see Table 11 for the precise discretization parameters. The evolution
of the sphericity, the centre of mass as well as the rise velocity can be seen in Figure 19,
where we note that the droplet stays almost perfectly spherical throughout the evolution.
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