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Eliminating Spurious Velocities with a Stable

Approximation of Incompressible Two-Phase Flow

John W. Barrett† Harald Garcke‡ Robert Nürnberg†

Abstract

We present a parametric finite element approximation of two-phase flow. This

free boundary problem is given by the Stokes equations in the two phases, which

are coupled via jump conditions across the interface. Using a novel variational

formulation for the interface evolution gives rise to a natural discretization of the

mean curvature of the interface. In addition, the mesh quality of the parametric

approximation of the interface does not deteriorate, in general, over time; and an

equidistribution property can be shown for a semidiscrete continuous-in-time variant

of our scheme in two space dimensions. Moreover, on using a simple XFEM pressure

space enrichment, we obtain exact volume conservation for the two phase regions.

Furthermore, our fully discrete finite element approximation can be shown to be

unconditionally stable. We demonstrate the applicability of our method with some

numerical results which, in particular, demonstrate that spurious velocities can be

avoided in the classical test cases.

Key words. incompressible two-phase flow, Stokes equations, free boundary problem,
surface tension, finite elements, XFEM, front tracking

1 Introduction

It is well-known that non-physical velocities can appear in the numerical approximation
of two-phase incompressible flows. These so-called spurious currents appear in different
representations of the interface, with and without surface tension. If surface tension
effects are taken into account, a jump discontinuity in the pressure results, and this
poses serious challenges for the numerical method. As the pressure jump is balanced
by terms involving the curvature of the unknown interface, it is necessary to accurately
approximate the interface, its curvature and the pressure. In this paper we introduce a
new stable parametric finite element method with good mesh properties, which leads to an
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approximation of the interface, and the conditions on it, with the property that undesired
spurious velocities are either small or vanish completely. Although Bänsch, [3], proved
a stability result for a (highly nonlinear) parametric discretization of the Navier–Stokes
equations with a free capillary surface, to our knowledge, our stability result, for a linear
scheme, is the first in the literature for a parametric discretization of two-phase flow.

When approximating two-phase flows, one has to decide first of all on how to repre-
sent the interface. The most direct choice is an explicit tracking of the interface. In these
tracking methods the interface is either triangulated or represented by a connected set
of particles, which carry forces. The interface is then transported using the flow veloc-
ity. Variants of these approaches are called front tracking methods, immersed interface
methods or immersed boundary methods, see e.g. [40, 28, 3, 31, 19] for details.

In a second completely different approach the interface is captured implicitly by defin-
ing a function on the whole domain. In the volume of fluid (VOF) method the charac-
teristic function of one of the fluid phases is used in order to evolve the interface, see e.g.
[25, 34, 32]. In the level set method, instead of a characteristic function, the interface
is represented as the zero level set of a smooth function, see e.g. [38, 37, 30, 23] for this
approach. Finally, in the phase field approach, instead of a sharp interface description,
the interface is considered to be diffuse with a small interfacial layer in which a phase
field variable rapidly changes from the different constant values in the two phases, see e.g.
[1, 26, 16].

Spurious velocities have already been observed in the numerical approximation of
one-phase incompressible fluid flow with external forces, see [21], where a projection
method to deal with this phenomenon is also proposed. In two-phase flow with surface
tension effects it is well-known that the imbalance between the discrete computation of
the curvature of the interface and the pressure jump at the interface can create spurious
velocity fields near the interface, even in situations where the exact solution has zero
velocity. Several methods to compute the discrete curvature and different choices of
enriching the pressure space have been introduced to reduce spurious velocities, see e.g.
[33, 34, 27, 17, 39, 18, 24, 42, 2].

In this paper we propose a numerical method for two-phase incompressible Stokes
flow based on a parametric representation of the interface. We use finite elements to
approximate the velocity and the pressure, and the interface is approximated using a
lower dimensional mesh. Here we allow both for a fitted approach, where the bulk mesh
is adapted to the interface, and an unfitted approach, where the bulk and interface meshes
are totally independent. Typical meshes for both approaches are shown in Figure 1. In
this paper we use the unfitted approach for our numerical results, which means that we
can avoid remeshings of the bulk mesh at every time step. As discussed for example in
[18], unfitted bulk meshes for two-phase flow with pressure jumps, due to surface tension
effects, lead to a poor approximation of the pressure. We avoid this by using locally
refined bulk meshes at the interface in practice. But we stress that all our theoretical
results presented in this paper also hold for fitted meshes. Another strategy in the context
of the unfitted approach, which can be combined with our proposed method, is to enrich
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Figure 1: Fitted and unfitted bulk finite element meshes for a circular interface.

the pressure finite element space by functions providing additional degrees of freedom
close to the interface; and, in particular, allow for pressure jumps in the elements cut by
the interface. Such an enrichment technique is an example of the extended finite element
method (XFEM), and has been used for two-phase problems in the context of level set
methods. A major drawback of this approach is that the resulting linear algebraic system
is typically very ill-conditioned, because the linear independence of the finite element basis
deteriorates as enrichment functions with very small support arise. Although strategies
have been developed to reduce the problem of ill-conditioning, see e.g. [24, 2, 35], the
computational effort still remains large due to the reconstruction of the XFEM basis
as the interface moves. An XFEM approach is also possible within the context of our
method, and will be discussed later.

A common problem in approaches which directly parameterize an evolving interface is
that typically the mesh deteriorates, and often computations cannot be continued without
remeshing the interface. Situations often occur in which distances between some interface
mesh points or some angles in the interface triangulation become very small. In earlier
work, the present authors introduced a new methodology to approximate curvature driven
curve and surface evolution, see [4, 5, 6]. The method has the important feature that in-
terface mesh properties remain good during the evolution. In fact, for curves semidiscrete
versions of the approach lead to polygonal approximations where the vertices are equally
spaced throughout the evolution. The approach has been successfully used for various ge-
ometric evolution equations, including surface diffusion, [4], and grain boundary motion,
[8], and was recently applied to crystal growth phenomena, see [9, 10]. In this paper we
generalize the approach to two-phase incompressible Stokes flow. The generalization to
the Navier–Stokes case will be considered in the forthcoming article [12].

Studies of other groups reveal that the main source of spurious velocities in two-phase
flow with surface tension is the fact that discontinuous functions allowing for jumps at
the interface are not in the pressure space for an unfitted bulk mesh. In addition, it has
been observed that the size of the spurious velocities depend both on the calculation of
the interface curvature in the surface tension term and on the approximation properties of
the pressure space, see e.g. [18]. We address the issue of obtaining a good approximation
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of the curvature term by using the tangential degrees of freedom in the interface represen-
tation appropriately. This approach is based on our earlier work on geometric evolution
equations, where we observed good approximation properties for the curvature also for
surfaces in three spatial dimensions, see [6, 7]. The issue concerning the approximation
properties of the pressure space is taken into account by an adaptive refinement of the
bulk mesh close to the interface. In addition, we extend the pressure space by one degree
of freedom by the addition of the characteristic function of one of the phases. It turns
out that this enriched space in a semidiscrete version leads to exact volume conservation
(area conservation in 2d) for the two phase regions. This new pressure space also ensures
that stationary spherical states can be computed exactly. In particular, it turns out that
the approach eliminates spurious velocities in the standard test case of a spherical drop
in equilibrium, see e.g. [20] for the difficulties other approaches have with this simple test
case. Moreover, in more general situations spurious velocities either do not appear at all
or are small. We also observe that the conditioning of the resulting linear systems is not
so badly effected, in contrast to other XFEM approaches which involve far more degrees
of freedom.

Let us state a few properties of our scheme.

• The semidiscrete continuous-in-time version of our scheme is stable in the sense that
for a closed system the total interface energy decreases in time at a rate given by
the energy dissipated. Similarly, for the fully discrete scheme the rate of decrease is
at least that given by the energy dissipated.

• If no outer forces act, then we can easily show that any discrete stationary solution
must have zero velocity, i.e. we can prove that there are no stationary solutions
with spurious velocities. In addition, we can prove the existence of such stationary
solutions for our scheme.

• For the semidiscrete version of our scheme we obtain in two spatial dimensions
that the interface mesh points are equally spaced. In three space dimensions the
semidiscrete solutions are conformal polyhedral surfaces, see [6], which are known to
have good mesh properties. In practice we also observe for the fully discrete scheme
that the computed discrete interfaces have good mesh properties. In particular, no
remeshings of the discrete interface are necessary.

• In two spatial dimensions polygonal curves with equidistributed vertices on a cir-
cle have constant discrete mean curvature and lead to discrete solutions with zero
velocity and a constant pressure jump across the interface. In three spatial dimen-
sions we numerically compute stationary polyhedral approximations of a sphere with
constant discrete mean curvature. These polyhedral surfaces lead to zero velocity
solutions with a constant pressure jump. These solutions are the natural discrete
analogues of the stationary circle/sphere, which are the only stationary solutions of
this incompressible two-phase flow in the case when no outer forces act.

• Our scheme can be applied both in the fitted interface mesh approach, as well as
in the unfitted approach. The latter avoids the repeated remeshing of the bulk
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Figure 2: The domain Ω in the case d = 2.

mesh to ensure that it remains fitted to the interface mesh, while the former natu-
rally captures pressure jumps at the interface with standard pressure finite element
spaces.

The remainder of the paper is organized as follows. In Section 2 we describe the
mathematical model of two-phase flow and introduce a suitable weak formulation. In
Section 3 we propose our discretization and establish existence, stability and other theo-
retical results. Finally, in Section 4 we present some numerical results in two and three
space dimensions, including some convergence experiments for stationary and expanding
bubble problems.

2 Mathematical setting

We consider the governing equations for the motion of unsteady, viscous, incompressible,
immiscible two fluid systems. For low Reynolds numbers one can neglect the inertia terms,
and so the equations for the velocity ~u and the pressure p are given by

−µ±∆ ~u+∇ p = ~f , ∇ . ~u = 0 in Ω±(t) ;

where Ω+(t) and Ω−(t) are the time dependent regions occupied by the two fluid phases.
For a given domain Ω ⊂ R

d, where d = 2 or d = 3, we now seek a time dependent
interface (Γ(t))t∈[0,T ] such that Γ(t) is completely contained in Ω and separates it into the
two domains Ω+(t) and Ω−(t). Here the phases could represent two different liquids, or
a liquid and a gas. Common examples are oil/water or water/air interfaces, see Figure 2
for an illustration. For later use, we assume that (Γ(t))t∈[0,T ] is a sufficiently smooth
evolving hypersurface parameterized by ~x(·, t) : Υ → R

d, where Υ ⊂ R
d is a given

reference manifold, i.e. Γ(t) = ~x(Υ, t). Then V := ~xt . ~ν is the normal velocity of the
evolving hypersurface Γ, where ~ν is the unit normal on Γ(t) pointing into Ω+(t). We
consider cases in which the viscosity of the two fluids can be different and introduce
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µ(t) = µ+XΩ+(t) + µ−XΩ−(t), with µ± ∈ R>0 denoting the fluid viscosities; where, here
and throughout, XA denotes the characteristic function for a set A.

In order to define the conditions that have to hold on the interface Γ(t), we introduce
the stress tensor

σ = µ (∇ ~u+ (∇ ~u)T )− p Id = 2µD(~u)− p Id , (2.1)

where Id ∈ R
d×d denotes the identity matrix and D(~u) := 1

2
(∇~u + (∇~u)T ) is the rate-

of-deformation tensor. Now on the free surface Γ(t), the following conditions have to
hold:

[~u]+− = ~0 , [σ ~ν]+− = −γ κ ~ν , V = ~u . ~ν ,

where γ > 0 is a positive constant and κ denotes the mean curvature of Γ(t), i.e. the
sum of the principal curvatures of Γ(t). Here we have adopted the sign convention that
κ is negative where Ω−(t) is locally convex. Moreover, as usual, [~u]+− := ~u+ − ~u− and
[σ ~ν]+− := σ+ ~ν − σ− ~ν denote the jumps in the velocity and the normal component of
stress across the interface Γ(t). Here and throughout we employ the shorthand notation
~g± := ~g |Ω±(t) for a function ~g : Ω× [0, T ] → R

d; and similarly for scalar and matrix-valued
functions. To close the system we prescribe the initial data Γ(0) = Γ0 and the boundary
condition ~u = ~0 on ∂Ω. Using the fact that the velocity is divergence free, we can rewrite
the total system as

−µ∇ . (∇ ~u+ (∇ ~u)T ) +∇ p = ~f in Ω±(t) , (2.2a)

∇ . ~u = 0 in Ω±(t) , (2.2b)

~u = ~0 on ∂Ω , (2.2c)

[~u]+− = ~0 on Γ(t) , (2.2d)

[µ (∇ ~u+ (∇ ~u)T )~ν − p~ν]+− = −γ κ ~ν on Γ(t) , (2.2e)

V = ~u . ~ν on Γ(t) , (2.2f)

Γ(0) = Γ0 , (2.2g)

which is appropriate for the weak formulation considered in this paper.

For the system (2.2a–g) an a priori energy bound holds, and our goal is to introduce
a discretization that satisfies a discrete analogue. First, on noting (2.1) and (2.2e), we
have that
∫

Ω+(t)∪Ω−(t)

(∇ . σ) . ~ξ dLd = −
∫

Ω

σ : ∇ ~ξ dLd −
∫

Γ(t)

[σ ~ν]+− . ~ξ dHd−1

=

∫

Ω

(
p∇ . ~ξ − 2µD(~u) : D(~ξ)

)
dLd + γ

∫

Γ(t)

κ ~ν . ~ξ dHd−1

∀ ~ξ ∈ H1
0 (Ω,R

d) , (2.3)

where, here and throughout, Ld and Hd−1 denote the Lebesgue measure in R
d and the

(d− 1)-dimensional Hausdorff measure, respectively. Then using the identity

d

dt
Hd−1(Γ(t)) = −

∫

Γ(t)

κ V dHd−1 , (2.4)
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see e.g. [14], we obtain from (2.2a–c,f) and (2.3) that

γ
d

dt
Hd−1(Γ(t)) = −γ

∫

Γ(t)

κ ~ν . ~u dHd−1

= −2

∫

Ω

µD(~u) : D(~u) dLd +

∫

Ω

~f . ~u dLd . (2.5)

Due to the incompressibility condition, the volume of the two fluids is preserved. We have
from (2.2b,f) that

d

dt
Ld(Ω−(t)) =

∫

Γ(t)

V dHd−1 =

∫

Γ(t)

~u . ~ν dHd−1 =

∫

Ω−(t)

∇ . ~u dLd = 0 . (2.6)

It is a further aim that our discretization also preserves the fluid volumes.

In order to compute a discrete version of the mean curvature for polyhedral surfaces,
we note the identity

∆s ~x = κ ~ν on Γ(t) , (2.7)

where ∆s = ∇s .∇s is the Laplace–Beltrami operator on Γ(t), with ∇s . and ∇s denoting
surface divergence and surface gradient on Γ(t), respectively. We note that the sign
convention in (2.7) is such that κ < 0 where Ω−(t) is locally convex. It is possible to
use a weak formulation of this identity, which was first suggested by Dziuk, [15], and was
used in [3] for the Navier–Stokes equations with a free capillary surface. A variant of
Dziuk’s approach, which leads to good mesh properties, has been introduced in [4] for
d = 2 and in [6] for d = 3, and this will be the basis of our novel weak formulation.
The main novelty, which inherently leads to good mesh properties, is that in [4, 6] the
mean curvature is treated as a scalar and is discretized separately from the normal ~ν, in
contrast to discretizing ~κ := κ ~ν directly as in [15, 3, 18], see also §3.6 below.

Before introducing our finite element approximation of (2.2a–g), we will state an ap-
propriate weak formulation. With this in mind, we introduce the function spaces

U := H1
0 (Ω,R

d) , P := L2(Ω) , P̂ := {η ∈ P :

∫

Ω

η dLd = 0} ,

X := H1(Υ,Rd) and K := L2(Υ,R) ,

where we recall that Υ is a given reference manifold. Let (·, ·) and 〈·, ·〉Γ(t) denote the L2–
inner products on Ω and Γ(t), respectively. On recalling (2.3), a possible weak formulation
of (2.2a–g) is then given as follows. Find time dependent functions ~u, p, ~x and κ such

that ~u(·, t) ∈ U, p(·, t) ∈ P̂, ~x(·, t) ∈ X, κ(·, t) ∈ K and

2
(
µD(~u), D(~ξ)

)
−

(
p,∇ . ~ξ

)
− γ

〈
κ ~ν, ~ξ

〉
Γ(t)

=
(
~f, ~ξ

)
∀ ~ξ ∈ U , (2.8a)

(∇ . ~u, ϕ) = 0 ∀ ϕ ∈ P̂ , (2.8b)

〈~xt − ~u, χ~ν〉Γ(t) = 0 ∀ χ ∈ K , (2.8c)

〈κ ~ν, ~η〉Γ(t) + 〈∇s ~x,∇s ~η〉Γ(t) = 0 ∀ ~η ∈ X (2.8d)
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holds for almost all times t ∈ (0, T ], as well as the initial condition (2.2g). Here we have
observed that if p ∈ P is part of a solution to (2.2a–g), then so is p + c for an arbitrary
c ∈ R. Moreover, we note that for convenience we have adopted a slight abuse of notation
in (2.8a–d). In particular, in this paper we will identify functions defined on the reference
manifold Υ with functions defined on Γ(t). That is, we identify v ∈ K with v ◦ ~x−1 on
Γ(t), where we recall that Γ(t) = ~x(Υ, t), and we denote both functions simply as v. For

example, ~x ≡ ~id is also the identity function on Γ(t).

3 Discretization

We consider the partitioning 0 = t0 < t1 < . . . < tM−1 < tM = T of [0, T ] into possibly
variable time steps τm := tm+1 − tm, m = 0 → M − 1. Let us now introduce the space
discretization.

3.1 Finite element spaces

For simplicity we consider Ω to be a polyhedral domain. Then for all m ≥ 0, let T m

be a regular partitioning of Ω into disjoint open simplices omj , j = 1 → Jm
Ω . We set

hm := maxj=1→Jm
Ω
diam(omj ). Associated with T m are the finite element spaces

Sm
k := {χ ∈ C(Ω) : χ |om∈ Pk(o

m) ∀ om ∈ T m} ⊂ H1(Ω) , k ∈ N ,

where Pk(o
m) denotes the space of polynomials of degree k on om. We also introduce Sm

0 ,
the space of piecewise constant functions on T m. Then our approximation to the velocity
and pressure on T m will be finite element spaces Um ⊂ U and P

m ⊂ P. We require also
the space P̂m := P

m ∩ P̂. The velocity/pressure finite element spaces (Um,Pm) satisfy the
LBB inf-sup condition if there exists a C0 ∈ R>0, independent of h

m, such that

inf
ϕ∈P̂m

sup
~ξ∈Um

(ϕ,∇ . ~ξ)

‖ϕ‖0 ‖~ξ‖1
≥ C0 > 0 , (3.1)

where ‖ · ‖1 := ‖ · ‖0 + ‖∇ · ‖0 denotes the H1–norm on Ω; see e.g. [22, p. 114]. Here we

take the reduced pressure space P̂
m in (3.1) because

(
1,∇ . ~ξ

)
=

∫

∂Ω

~ξ .~n dHd−1 = 0 ∀ ~ξ ∈ U
m ,

where ~n denotes the outer unit normal to Ω. For example, we may choose the lowest
order Taylor-Hood element P2–P1, the P2–P0 element or the P2–(P1+P0) element on
setting U

m = [Sm
2 ]d ∩ U, and P

m = Sm
1 , Sm

0 or Sm
1 + Sm

0 , respectively. It is well-known
that these choices satisfy the LBB condition (3.1). We only remark that results for P2–P1
and P2–(P1+P0) need the weak constraint that all simplices have a vertex in Ω, see [13]
for the P2–(P1+P0) element.
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The parametric finite element spaces in order to approximate ~x and κ in (2.8a–d)
are defined as follows. Similarly to [6], we introduce the following discrete spaces, based
on the work of Dziuk, [15]. Let Γm ⊂ R

d be a (d − 1)-dimensional polyhedral surface,
i.e. a union of non-degenerate (d− 1)-simplices with no hanging vertices (see [14, p. 164]
for d = 3), approximating the closed surface Γ(tm), m = 0 → M . In particular, let

Γm =
⋃Jm

Γ

j=1 σ
m
j , where {σm

j }
Jm
Γ

j=1 is a family of mutually disjoint open (d−1)-simplices with

vertices {~qmk }
Km

Γ

k=1. Then for m = 0 → M − 1, let

V (Γm) := {~χ ∈ C(Γm,Rd) : ~χ |σm
j

is linear ∀ j = 1 → Jm
Γ } =: [W (Γm)]d ⊂ H1(Γm,Rd) ,

(3.2)
where W (Γm) ⊂ H1(Γm,R) is the space of scalar continuous piecewise linear functions

on Γm, with {χm
k }

Km
Γ

k=1 denoting the standard basis of W (Γm). For later purposes, we
also introduce πm : C(Γm,R) → W (Γm), the standard interpolation operator at the

nodes {~qmk }
Km

Γ

k=1, and similarly ~πm : C(Γm,Rd) → V (Γm). Throughout this paper, we will
parameterize the new closed surface Γm+1 over Γm, with the help of a parameterization
~Xm+1 ∈ V (Γm), i.e. Γm+1 = ~Xm+1(Γm). Moreover, for m ≥ 0, we will often identify ~Xm

with ~id ∈ V (Γm), the identity function on Γm.

For scalar and vector functions v, w on Γm we introduce the L2–inner product 〈·, ·〉Γm

over the current polyhedral surface Γm as follows

〈v, w〉Γm :=

∫

Γm

v . w dHd−1 .

If v, w are piecewise continuous, with possible jumps across the edges of {σm
j }

Jm
Γ

j=1, we

introduce the mass lumped inner product 〈·, ·〉hΓm as

〈v, w〉hΓm := 1
d

Jm
Γ∑

j=1

Hd−1(σm
j )

d∑

k=1

(v . w)((~qmjk)
−),

where {~qmjk}dk=1 are the vertices of σm
j , and where we define v((~qmjk)

−) := lim
σm
j ∋~p→~qmjk

v(~p).

Given Γm, we let Ωm
+ denote the exterior of Γm and let Ωm

− denote the interior of Γm,

so that Γm = ∂Ωm
− = Ω

m

− ∩Ω
m

+ . We then partition the elements of the bulk mesh T m into
interior, exterior and interfacial elements as follows. Let

T m
− := {om ∈ T m : om ⊂ Ωm

−} ,
T m
+ := {om ∈ T m : om ⊂ Ωm

+} ,
T m
Γm := {om ∈ T m : om ∩ Γm 6= ∅} . (3.3)

Clearly T m = T m
− ∪T m

+ ∪T m
Γm is a disjoint partition, which in practice can easily be found

e.g. with the Algorithm 4.1 in [11]. Here we assume that Γm has no self intersections,
and for the numerical experiments in this paper this was always the case. In addition,
we define the piecewise constant unit normal ~νm to Γm such that ~νm points into Ωm

+ . Of
course, in the case of a fitted bulk mesh it holds that T m

Γm = ∅.
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3.2 Finite element approximation

Before we can introduce our approximation to (2.8a–d), we have to introduce the notion
of a vertex normal on Γm, which is given as a weighted sum of the neighbouring normals.
We will combine this definition with a natural assumption that is needed in order to show
existence and uniqueness for the introduced finite element approximations.

(A) We assume for m = 0 → M − 1 that Hd−1(σm
j ) > 0 for all j = 1 → Jm

Γ , and that

Γm ⊂ Ω. For k = 1 → Km
Γ , let Ξm

k := {σm
j : ~qmk ∈ σm

j } and set

Λm
k :=

⋃

σm
j ∈Ξm

k

σm
j and ~ωm

k :=
1

Hd−1(Λm
k )

∑

σm
j ∈Ξm

k

Hd−1(σm
j ) ~ν

m
j .

Then we further assume that ~ωm
k 6= ~0, k = 1 → Km

Γ , and that dim span{~ωm
k }

Km
Γ

k=1 = d,
m = 0 → M − 1.

We refer to [4] and [6] for more details and for an interpretation of this assumption. Given
the above definitions, we introduce the piecewise linear vertex normal function

~ωm :=

Km
Γ∑

k=1

χm
k ~ωm

k ∈ V (Γm) , (3.4)

and note that

〈~v, w ~νm〉hΓm = 〈~v, w ~ωm〉hΓm ∀ ~v ∈ V (Γm) , w ∈ W (Γm) . (3.5)

Following a similar approach used by the authors in [11] for crystal growth phenomena,
we consider an unfitted finite element approximation of (2.8a–d). On recalling (3.3), we
introduce the discrete viscosity µm ∈ Sm

0 , for m ≥ 0, as

µm |om=





µ− om ∈ T m
− ,

µ+ om ∈ T m
+ ,

1
2
(µ− + µ+) om ∈ T m

Γm .

(3.6)

Clearly, for a fitted bulk mesh T m, (3.6) reduces to µm = µ+XΩm
+
+ µ−XΩm

−
∈ Sm

0 .

Our finite element approximation is then given as follows. Let Γ0, an approximation
to Γ(0), be given. For m = 0 → M − 1, find ~Um+1 ∈ U

m, Pm+1 ∈ P̂
m, ~Xm+1 ∈ V (Γm)
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and κm+1 ∈ W (Γm) such that

2
(
µmD(~Um+1), D(~ξ)

)
−

(
Pm+1,∇ . ~ξ

)
− γ

〈
κm+1 ~νm, ~ξ

〉
Γm

=
(
~fm+1, ~ξ

)
∀ ~ξ ∈ U

m ,

(3.7a)(
∇ . ~Um+1, ϕ

)
= 0 ∀ ϕ ∈ P̂

m , (3.7b)
〈

~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
~Um+1, χ ~νm

〉
Γm

= 0 ∀ χ ∈ W (Γm) , (3.7c)

〈
κm+1 ~νm, ~η

〉h
Γm +

〈
∇s

~Xm+1,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) (3.7d)

and set Γm+1 = ~Xm+1(Γm). Here we have defined ~fm+1(·) := ~Im2
~f(·, tm+1), where ~Im2 is

the standard interpolation operator onto [Sm
2 ]d. Note that here ∇s denotes the surface

gradient on Γm, and so it depends on m. We observe that (3.7a–d) is a linear scheme in

that it leads to a linear system of equations for the unknowns (~Um+1, Pm+1, ~Xm+1, κm+1)
at each time level.

Furthermore, we note that in line with our earlier work in e.g. [4, 6] we employ mass
lumping on the first terms in (3.7c,d). The latter is necessary in order to be able to prove
good mesh properties, while the former is then enforced to yield a stable scheme. On the
other hand, it will become clear in §3.4 below that for conservation of the phase volumes
we must use true integration for the remaining term in (3.7c), which in turn enforces true
integration for the third term in (3.7a) for stability reasons.

3.3 Existence and stability results

We now demonstrate that the discretization (3.7a-d) satisfies an energy estimate, which
corresponds to the computation (2.5) in the continuous case.

Theorem. 3.1. Let the assumption (A) hold, and let (Um, P̂m) satisfy the LBB condition
(3.1), m = 0 → M − 1. Then for m = 0 → M − 1 there exists a unique solution

(~Um+1, Pm+1, ~Xm+1, κm+1) ∈ U
m × P̂

m × V (Γm) × W (Γm) to (3.7a–d). Moreover, the
solution satisfies

γHd−1(Γm+1)+2 τm

(
µm D(~Um+1), D(~Um+1)

)
≤ γHd−1(Γm)+τm

(
~fm+1, ~Um+1

)
. (3.8)

Proof. As the system (3.7a–d) is linear, existence follows from uniqueness. In order to

establish the latter, we consider the system: Find (~U, P, ~X, κ) ∈ U
m×P̂

m×V (Γm)×W (Γm)

11



such that

2
(
µm D(~U), D(~ξ)

)
−
(
P,∇ . ~ξ

)
− γ

〈
κ~νm, ~ξ

〉
Γm

= 0 ∀ ~ξ ∈ U
m , (3.9a)

(
∇ . ~U, ϕ

)
= 0 ∀ ϕ ∈ P̂

m , (3.9b)
〈

~X

τm
, χ ~νm

〉h

Γm

−
〈
~U, χ~νm

〉
Γm

= 0 ∀ χ ∈ W (Γm) , (3.9c)

〈κ~νm, ~η〉hΓm +
〈
∇s

~X,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) . (3.9d)

Choosing ~ξ = ~U in (3.9a), ϕ = P in (3.9b), χ = γ κ in (3.9c) and ~η = γ ~X in (3.9d) yields
that

2 τm

(
µmD(~U), D(~U)

)
+ γ

〈
∇s

~X,∇s
~X
〉
Γm

= 0 . (3.10)

It immediately follows from (3.10) and Korn’s inequality that ~U = ~0. In addition, it

holds that ~X = ~Xc ∈ R
d. Together with (3.9c) for ~U = ~0, (3.5) and the assumption

(A) this immediately yields that ~X = ~0, while (3.9d) with ~η = ~πm[κ ~ωm], recall (3.5),

implies that κ = 0. Finally, it now follows from (3.9a) with ~U = ~0 and κ = 0, on recalling

(3.1), that P = 0. Hence there exists a unique solution (~Um+1, Pm+1, ~Xm+1, κm+1) ∈
U

m × P̂
m × V (Γm)×W (Γm) to (3.7a–d).

It remains to establish the bound (3.8). Choosing ~ξ = ~Um+1 in (3.7a), ϕ = Pm+1 in

(3.7b), χ = γ κm+1 in (3.7c) and ~η = γ ( ~Xm+1 − ~Xm) in (3.7d) yields that

2 τm

(
µmD(~Um+1), D(~Um+1)

)
+ γ

〈
∇s

~Xm+1,∇s ( ~X
m+1 − ~Xm)

〉
Γm

= τm

(
~fm+1, ~Um+1

)
.

Hence (3.8) follows immediately, where we have used the result that

〈
∇s

~Xm+1,∇s ( ~X
m+1 − ~Xm)

〉
Γm

≥ Hd−1(Γm+1)−Hd−1(Γm)

see e.g. [4] and [6] for the proofs for d = 2 and d = 3, respectively.

The above theorem allows us to prove unconditional stability for our scheme.

Theorem. 3.2. Let the assumption (A) hold and let {tk}Mk=0 be an arbitrary partitioning
of [0, T ]. Then it holds that

γHd−1(Γm+1) + 2
m∑

k=0

τk

(
µk D(~Uk+1), D(~Uk+1)

)
≤ γHd−1(Γ0) +

m∑

k=0

τk

(
~fk+1, ~Uk+1

)

(3.11)

for m = 0 → M − 1.

Proof. The result immediately follows from (3.8).
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Remark. 3.1. It is worthwhile to consider a continuous-in-time semidiscrete version of
our scheme (3.7a–d). For t ∈ [0, T ], let T h(t) be a regular partitioning of Ω into disjoint
open simplices and define the finite element spaces Sh

k (t), U
h(t) and P

h(t) similarly to Sm
k ,

U
m and P

m, with the corresponding interpolation operators Ihk and discrete approximations
µh(t) ∈ Sh

0 (t), which will depend on Γh(t) via the analogue of (3.6). Then, given Γh(0),

for t ∈ (0, T ] find ~Uh(t) ∈ U
h(t), P h(t) ∈ P̂

h(t), ~Xh(t) ∈ V (Γh(t)) and κh(t) ∈ W (Γh(t))
such that

2
(
µhD(~Uh), D(~ξ)

)
−
(
P h,∇ . ~ξ

)
− γ

〈
κh ~νh, ~ξ

〉
Γh(t)

=
(
~fh, ~ξ

)
∀ ~ξ ∈ U

h(t) , (3.12a)
(
∇ . ~Uh, ϕ

)
= 0 ∀ ϕ ∈ P̂

h(t) , (3.12b)
〈
~Xh
t , χ ~νh

〉h

Γh(t)
−

〈
~Uh, χ ~νh

〉
Γh(t)

= 0 ∀ χ ∈ W (Γh(t)) , (3.12c)

〈
κh ~νh, ~η

〉h
Γh(t)

+
〈
∇s

~Xh,∇s ~η
〉
Γh(t)

= 0 ∀ ~η ∈ V (Γh(t)) , (3.12d)

where ~fh := ~Ih2
~f(t). In (3.12a–d) we always integrate over the current surface Γh(t), with

normal ~νh(t), described by the identity function ~Xh(t) ∈ V (Γh(t)). Moreover, 〈·, ·〉h
Γh(t)

is the same as 〈·, ·〉hΓm with Γm and ~Xm replaced by Γh(t) and ~Xh(t), respectively; and
similarly for 〈·, ·〉Γh(t).

Using the results from [6] it is straightforward to show that

d

dt
Hd−1(Γh(t)) =

〈
∇s

~Xh,∇s
~Xh
t

〉
Γh(t)

,

which is the discrete analogue of (2.4) on noting (3.12d). It is then not difficult to derive

the following energy bound for the solution (~Uh, P h, ~Xh, κh) of the semidiscrete scheme
(3.12a–d):

γ
d

dt
Hd−1(Γh(t)) + 2 ‖[µh]

1

2 D(~Uh)‖20 =
(
~fh, ~Uh

)
. (3.13)

Clearly, (3.13) is the natural discrete analogue of (2.5). In addition, it is possible to prove
that the vertices of Γh(t) are well distributed. As this follows already from the equations
(3.12d), we refer to our earlier work in [4, 6] for further details. In particular, we observe
that in the case d = 2, i.e. for the planar two-phase problem, an equidistribution property
for the vertices of Γh(t) can be shown, while in the case d = 3 it can be shown that Γh(t)
is a conformal polyhedral surface; see also (3.20) below.

3.4 XFEMΓ for conservation of the phase volumes

In general, the fully discrete approximation (3.7a–d) will not conserve mass, which means
in particular that the volume Ld(Ωm

− ), enclosed by Γm will in general not be preserved.
Clearly, given that volume conservation holds on the continuous level, recall (2.6), it would
be desirable to preserve the volume of the two phases also on the discrete level.
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For the semidiscrete approximation (3.12a–d) from Remark 3.1 we can show conser-
vation of the two phase volumes in the case that

XΩh
−
(t) ∈ P

h(t) . (3.14)

Choosing χ = 1 in (3.12c) and ϕ = (XΩh
−
(t)−

Ld(Ωh
−
(t))

Ld(Ω)
) ∈ P̂

h(t) in (3.12b), we then obtain,

on recalling that ~Uh ∈ U, that

d

dt
Ld(Ωh

−(t)) =
〈
~Xh
t , ~ν

h
〉
Γh(t)

=
〈
~Xh
t , ~ν

h
〉h

Γh(t)
=

〈
~Uh, ~νh

〉
Γh(t)

=

∫

Ωh
−
(t)

∇ . ~Uh dLd

=
(
∇ . ~Uh,XΩh

−
(t)

)
=

(
∇ . ~Uh,XΩh

−
(t) −

Ld(Ωh
−(t))

Ld(Ω)

)
= 0 ; (3.15)

which is the discrete analogue of (2.6). Clearly, for fitted bulk meshes T h(t) with Sh
0 (t) ⊂

P
h(t) the condition (3.14) trivially holds. In the case of the unfitted approach, on the

other hand, discrete pressure spaces P
h(t) based on piecewise polynomials, such as Sh

0 ,
Sh
1 or Sh

0 + Sh
1 , will in general not satisfy the condition (3.14). However, the assumption

(3.14) can now be satisfied with the help of the extended finite element method (XFEM),
see e.g. [24, §7.9.2]. Here the pressure spaces P

m need to be suitably extended, so that
they satisfy the time-discrete analogue of (3.14), i.e.

XΩm
−
∈ P

m ,

which means that then (3.7b) implies 〈~Um+1, ~νm〉Γm = 0, which together with (3.7c) then
yields that 〈

~Xm+1 − ~Xm, ~νm
〉
Γm

= 0 . (3.16)

Hence the obvious strategy to guarantee (3.16) in the context of unfitted bulk meshes is
to add only a single new basis function to the basis of Pm, namely XΩm

−
. We remark that

in practice (3.16) leads to excellent phase volume conservation properties for the fully
discrete scheme (3.7a–d). Moreover, we note that the contributions to (3.7a,b) coming

from XΩm
−
− Ld(Ωm

−
)

Ld(Ω)
∈ P̂

m can be written in terms of integrals over Γm, since

(
∇ . ~ξ, 1

)
= 0 and

(
∇ . ~ξ,XΩm

−

)
=

∫

Ωm
−

∇ . ~ξ dLd =
〈
~ξ, ~νm

〉
Γm

∀ ~ξ ∈ U
m . (3.17)

We will call this particular enrichment procedure the XFEMΓ approach. For example,
P
m may be given by one of

P
m = Sm

0 + span{XΩm
−
} , P

m = Sm
1 + span{XΩm

−
} or P

m = Sm
0 + Sm

1 + span{XΩm
−
} ,

(3.18)
with T m being independent of Γm.

We note that the above XFEM approach is different to that in e.g. [24, 2, 35], where
in the level set context a standard finite element pressure space is enriched with numer-
ous discontinuous basis functions in the vicinity of the interface in order to improve its
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approximation of the pressure jump across the interface. Some of these basis functions
may have support on a small fraction of a bulk element cut by the interface, and this can
lead to ill-conditioning of the associated linear system.

Similarly to the other XFEM approaches, we are unable to prove that the elements
(Um, P̂m), where Pm is given by one of (3.18), satisfy the LBB condition (3.1). This means

that we cannot easily prove existence and uniqueness of the discrete pressure Pm+1 ∈ P̂
m

for the system (3.7a–d) with P
m given as in (3.18). It is for this reason that we consider

the following reduced system for our existence result for the extended pressure spaces
(3.18) instead.

Let (Um,Pm) be an arbitrary pair of velocity/pressure spaces on T m. We define

U
m
0 := {~U ∈ U

m : (∇ . ~U, ϕ) = 0 ∀ ϕ ∈ P̂
m} .

Then any solution (~Um+1, Pm+1, ~Xm+1, κm+1) ∈ U
m × P̂

m × V (Γm)×W (Γm) to (3.7a–d)

is such that (~Um+1, ~Xm+1, κm+1) ∈ U
m
0 × V (Γm)×W (Γm) satisfies

2
(
µm D(~Um+1), D(~ξ)

)
− γ

〈
κm+1 ~νm, ~ξ

〉
Γm

=
(
~fm+1, ~ξ

)
∀ ~ξ ∈ U

m
0 , (3.19a)

〈
~Xm+1 − ~Xm

τm
, χ ~νm

〉h

Γm

−
〈
~Um+1, χ ~νm

〉
Γm

= 0 ∀ χ ∈ W (Γm) , (3.19b)

〈
κm+1 ~νm, ~η

〉h
Γm +

〈
∇s

~Xm+1,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) . (3.19c)

For the reduced system (3.19a–c) we can prove existence and uniqueness independently
of the LBB condition (3.1).

Theorem. 3.3. Let the assumption (A) hold. Then there exists a unique solution

(~Um+1, ~Xm+1, κm+1) ∈ U
m
0 ×V (Γm)×W (Γm) to (3.19a–c). Moreover, the solution satisfies

the stability bounds (3.8) and (3.11).

Proof. As U
m
0 is a subspace of Um, existence to the linear system (3.19a–c) follows

from uniqueness, which is easy to show. In fact, similarly to the proof of Theorem 3.1
we obtain (3.10) and hence the desired uniqueness result. The stability results follow
analogously.

3.5 Properties of discrete stationary solutions

We now consider stationary states, Γm+1 = Γm, of the fully discrete system. It follows
from (3.5) that a stationary solution to (3.7a–d) satisfies

〈
∇s

~Xm,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) with ~η(~qmk ) . ~ω
m
k = 0, k = 1 → Km

Γ , (3.20)

where we note (3.4). We recall from [4] that (3.20) in the case d = 2 implies that Γm

is equidistributed, with the possible exception of elements σm
j that are locally parallel to
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each other. Moreover, we recall from [6] that surfaces in R
3 that satisfy (3.20) are called

conformal polyhedral surfaces.

Next we consider discrete stationary states when no outer forces act, i.e. when ~f = ~0.
Here it turns out that our stability results from §3.3 have an immediate consequence.

Lemma. 3.1. Let (~Um+1, Pm+1, ~Xm+1, κm+1) ∈ U
m× P̂

m×V (Γm)×W (Γm) be a solution

to (3.7a–d) with ~fm+1 = ~0, or let (~Um+1, ~Xm+1, κm+1) ∈ U
m
0 × V (Γm) × W (Γm) be a

solution to (3.19a–c) with ~fm+1 = ~0. If ~Xm+1 = ~Xm, then ~Um+1 = ~0.

Proof. On recalling Theorems 3.1 and 3.3, the solution (~Um+1, ~Xm+1) fulfills (3.8)

with Γm+1 replaced by Γm and ~fm+1 = ~0. Hence we obtain (µm D(~Um+1), D(~Um+1)) = 0,

and so Korn’s inequality implies ~Um+1 = ~0.

The above lemma guarantees, independently of the choice of µ±, that no spurious
velocities appear for discrete stationary solutions, Γm+1 = Γm. For the XFEMΓ approach
we can even show that polyhedral surfaces with constant discrete mean curvature and
zero velocity are stationary solutions.

Lemma. 3.2. Let XΩm
−

∈ P
m and let Γm be a polyhedral surface with constant discrete

mean curvature, i.e. there exists a constant κ ∈ R such that

κ 〈~νm, ~η〉Γm +
〈
∇s

~Xm,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) . (3.21)

Then Γm satisfies (3.20) and (~Um+1, ~Xm+1, κm+1) = (~0, ~Xm, κ) is the unique solution to

(3.19a–c) with ~fm+1 = ~0.

Proof. It immediately follows from (3.5) that (3.20) holds. Theorem 3.3 implies that in

order to establish the remaining result, we only need to show that (~Um+1, ~Xm+1, κm+1) =

(~0, ~Xm, κ) is a solution to (3.19a–c) with ~fm+1 = ~0. But this follows immediately from
κ 〈~νm, ~η〉Γm = 〈κ~νm, ~η〉hΓm for all ~η ∈ V (Γm), and

〈
~νm, ~ξ

〉
Γm

=
(
∇ . ~ξ,XΩm

−

)
= 0 ∀ ~ξ ∈ U

m
0 ,

where we have recalled (3.17).

Remark. 3.2. A stationary solution to the continuous problem with ~f = ~0 is a circle
(d = 2) or a sphere (d = 3) with zero velocity and a piecewise constant pressure with a
discontinuity across the interface, see (4.1a,b) below.

For d = 2, one can choose Γm with equidistributed points on a circle as an approx-
imation of this circle, i.e. a closed regular polygon. Such a Γm has constant discrete
curvature, i.e. there exists a κ ∈ R such that (3.21) is satisfied. Hence Lemma 3.2 yields

that in this situation (~Um+1, ~Xm+1, κm+1) = (~0, ~Xm, κ) is the unique solution of (3.19a–c)

with ~fm+1 = ~0.

For d = 3, we observe in practice that conformal approximations of the sphere, i.e.
spherical Γm satisfying (3.20), also satisfy (3.21); see [6, Fig. 11] and §4.2 below.
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3.6 Alternative curvature treatment

As mentioned in Section 2, there is an alternative way to approximate the curvature
vector κ ~ν in (2.7). In contrast to the strategy employed in (3.7a–d), where κ and ~ν are
discretized separately, it is also possible to discretize ~κ := κ ~ν directly, as proposed in
the seminal paper [15]. We then obtain the following linear finite element approximation.

For m = 0 → M − 1, find ~Um+1 ∈ U
m, Pm+1 ∈ P̂

m, ~Xm+1 ∈ V (Γm) and ~κm+1 ∈ V (Γm)
such that

2
(
µm D(~Um+1), D(~ξ)

)
−
(
Pm+1,∇ . ~ξ

)
− γ

〈
~κm+1, ~ξ

〉
Γm

=
(
~fm+1, ~ξ

)
∀ ~ξ ∈ U

m ,

(3.22a)(
∇ . ~Um+1, ϕ

)
= 0 ∀ ϕ ∈ P̂

m , (3.22b)
〈

~Xm+1 − ~Xm

τm
, ~χ

〉

Γm

−
〈
~Um+1, ~χ

〉
Γm

= 0 ∀ ~χ ∈ V (Γm) , (3.22c)

〈
~κm+1, ~η

〉
Γm +

〈
∇s

~Xm+1,∇s ~η
〉
Γm

= 0 ∀ ~η ∈ V (Γm) (3.22d)

and set Γm+1 = ~Xm+1(Γm). A discretization based on (3.22a–d) has first been proposed by
Bänsch in [3] for one-phase flow with a free capillary surface in the very special situation
that

~ξ |Γm∈ V (Γm) ∀ ~ξ ∈ U
m . (3.23)

Clearly, (3.23) requires the fitted approach and in that case can be satisfied e.g. for the
lowest order Taylor–Hood element, P2–P1, and a piecewise quadratic variant of V (Γm),
see [3], or for the MINI element, P1bubble–P1, with the piecewise linear V (Γm) from (3.2).
We note that if (3.23) holds, then (3.22a–d) can be equivalently rewritten as

2
(
µm D(~Um+1), D(~ξ)

)
−
(
Pm+1,∇ . ~ξ

)
+ γ

〈
∇s

~Xm+1,∇s
~ξ
〉
Γm

=
(
~fm+1, ~ξ

)
(3.24)

for all ~ξ ∈ U
m, together with (3.22b,c). For a nonlinear variant of this scheme involving

space-time finite elements, in the context of the Navier–Stokes equations with a free
capillary surface, Bänsch proved existence, uniqueness and stability of discrete solutions,
see [3].

It is not difficult to extend these results to the linear scheme (3.22a–d) for two-
phase Stokes flow. In particular, one can show that there exists a unique solution to
(3.22a–d) that also satisfies the stability bounds (3.8) and (3.11). Similarly, the ana-
logues of Lemma 3.1 and, if (3.23) is satisfied, of Lemma 3.2 hold. In the latter case we
observe that the curvature part of the discrete stationary solution is given by the unique
~κm+1 ∈ V (Γm) such that 〈~κm+1, ~η〉Γm = κ 〈~νm, ~η〉Γm for all ~η ∈ V (Γm). We stress that if
(3.23) does not hold, then it does not appear possible to show the analogue of Lemma 3.2,
which means that it is not possible to prove the existence of discrete stationary solutions
for (3.22a–d).
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However, the crucial difference between (3.22a–d) and (3.7a–d) is that in (3.22c) the

tangential velocity of the discrete interface is fixed by ~Um+1, and this has two conse-
quences. Firstly, there is no guarantee that the mesh quality of Γm will be preserved. In
fact, as mentioned in the Introduction, typically the mesh will deteriorate over time. And
secondly, even for the case that XΩm

−
∈ P

m, it is not possible to prove (3.16) for (3.22a–d),
as ~χ = ~νm is not a valid test function in (3.22c), and so true volume conservation in the
semidiscrete setting, recall (3.15), cannot be shown. It is for these reasons that we prefer
to use (3.7a–d).

We now return to the equivalent rewrite (3.24), (3.22b,c) of (3.22a–d). This has
the advantage that the explicit computation of the curvature vector ~κm+1 is avoided,
although in practice the gain in computational efficiency is negligible because the main
computational task is to solve the Stokes equations in the bulk. We recall that for the
equivalence between (3.24), (3.22b,c) and the original (3.22a–d) it was crucial to enforce
the strong assumption (3.23), which relies on a fitted bulk mesh. A variant of this rewrite
can be obtained for (3.22a–d), with 〈·, ·〉Γm replaced by 〈·, ·〉hΓm , also in the absence of

the assumption (3.23). This then leads to (3.24) with ∇s
~ξ replaced by ∇s (~π

m ~ξ). Being
equivalent, this rewrite inherits all the theoretical properties of (3.22a–d), with 〈·, ·〉Γm

replaced by 〈·, ·〉hΓm , namely the stability results (3.8) and (3.11) and the analogue of
Lemma 3.1.

It is important to note that unconditional stability for (3.24), (3.22b,c), even in the
presence of (3.23), can no longer be shown if the third term in (3.24) is changed to

γ
〈
∇s

~Xm,∇s
~ξ
〉
Γm

, (3.25)

where we note that 〈∇s
~Xm,∇s

~ξ〉Γm = 〈1,∇s . ~ξ〉Γm . The formulation (3.24), (3.22b,c)
with the third term in (3.24) replaced by (3.25) has been exploited in [18, 20]. Proving
existence and uniqueness for this simpler variant is trivial, but it is no longer possible to
establish stability, or the analogues of Lemmas 3.1 and 3.2.

Finally, we mention that the ideas presented in this section on how to discretize the
curvature term arising from (2.2e) can also be applied in the level set approach. Here
(3.22c) is replaced with an approximation of the level set transport equation

φt + ~u .∇φ = 0 in Ω , (3.26)

and this is then combined with (3.22a,b), where the third term in (3.22a) is replaced by
(3.25) with Γm now being a suitable reconstruction of the discrete interface arising from
the zero level set of a discretization of the level set function φ in (3.26). See e.g. [23, 24, 2]
for some examples. We stress that the level set method is a convenient computational tool
for the interface motion, but that it does not appear possible to derive stability results in
the spirit of (3.8) and (3.11) for the level set method.
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3.7 Solution methods

As is standard practice for the solution of linear systems arising from discretizations
of Stokes and Navier–Stokes equations, we avoid the complications of the constrained
pressure space P̂

m in practice by considering an overdetermined linear system with P
m

instead. With a view towards some numerical test cases in Section 4, we also allow
for an inhomogeneous Dirichlet boundary condition ~g on ∂Ω and for ease of exposition
consider only piecewise quadratic velocity approximations. Then we reformulate (3.7a–d)

as follows. Find ~Um+1 ∈ U
m(~g) := {~U ∈ [Sm

2 ]d : ~U = ~Im2 ~g on ∂Ω}, Pm+1 ∈ P
m,

~Xm+1 ∈ V (Γm) and κm+1 ∈ W (Γm) such that (3.7a,c,d) with U
m = [Sm

2 ]d ∩ U hold
together with

(
∇ . ~Um+1, ϕ

)
=

(ϕ, 1)

Ld(Ω)

∫

∂Ω

(~Im2 ~g) . ~n dHd−1 ∀ ϕ ∈ P
m . (3.27)

If (Um,Pm) satisfy the LBB condition (3.1), then the existence and uniqueness proof
for a solution to (3.7a,c,d), (3.27) is as before. In the absence of (3.1), the existence and
uniqueness of a solution to the reduced system that is analogous to (3.19a–c) hinges on the

nonemptiness of the set Um
0 (~g) := {~U ∈ U

m(~g) : (∇ . ~U, ϕ) = 0 ∀ ϕ ∈ P̂
m}. The linear

system (3.7a,c,d), (3.27) can be solved with the help of a Schur complement approach,
which reduces the system to a standard saddle point problem arising from discretizations
of Stokes problems.

4 Numerical results

For details on the assembly of the linear system arising at each time step, as well as
details on the adaptive mesh refinement algorithm and the solution procedure, we refer
to the forthcoming article [12]. In particular, we recall that the scheme in general uses
an adaptive bulk mesh that has a fine mesh size hf around Γm and a coarse mesh size
hc further away from it. The special case hf = hc leads to a uniform bulk mesh which
will be sufficient for some of the simple test problems considered in this section. For all
the numerical results presented in this paper no refinement or remeshing procedure was
applied to the discrete interface approximations Γm. We remark that we implemented
our scheme with the help of the finite element toolbox ALBERTA, see [36].

In order to test our finite element approximation (3.7a–d), we consider the trivial
true solution of a stationary circle/sphere, as it has been considered in e.g. [18, 23]. In
particular, Γ(t) := {~z ∈ R

d : |~z| = r(t)}, where

r(t) = r(0) , (4.1a)

together with

~u(~z, t) = ~0 , p(~z, t) = λ(t)

[
XΩ−(0) −

Ld(Ω−(0))

Ld(Ω)

]
, (4.1b)
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where λ(t) = λ(0) = γ (d− 1) [r(0)]−1, is an exact solution to the problem (2.2a–g).

A nontrivial divergence free and radially symmetric solution ~u can be constructed on
a domain that does not contain the origin. To this end, consider e.g. Ω = (−H,H)d \
[−H0, H0]

d, with 0 < H0 < H. Then Γ(t) := {~z ∈ R
d : |~z| = r(t)}, where

r(t) = ([r(0)]d + α t d)
1

d , (4.2a)

together with

~u(~z, t) = α |~z|−d ~z , p(~z, t) = λ(t)

[
XΩ−(t) −

Ld(Ω−(t))

Ld(Ω)

]
, (4.2b)

where λ(t) = γ (d− 1) [r(t)]−1 + 2α (d− 1) (µ+ − µ−) [r(t)]
−d, is an exact solution to the

problem (2.2a–g) with the homogeneous right hand side in (2.2c) replaced by ~g, where
~g(~z) = α |~z|−d ~z.

From now on we fix Γ(0) = {~z ∈ R
d : |~z| = 1

2
}. Throughout this section we use uniform

time steps τm = τ , m = 0 → M −1. For later use, we define hm
Γ := maxj=1→Jm

Γ
diam(σm

j ).
We also define the errors

‖ ~X − ~x‖L∞ := max
m=1→M

‖ ~Xm − ~x(·, tm)‖L∞ ,

where ‖ ~X(tm)− ~x(·, tm)‖L∞ := maxk=1→Km
Γ

{
min~y∈Υ | ~Xm(~qmk )− ~x(~y, tm)|

}
and

‖~U − ~Ih2 ~u‖L∞ := max
m=1→M

‖Um − ~Im2 u(·, tm)‖L∞(Ω) .

In order to evaluate the errors in the pressure, we define

‖P − p‖L2 :=

[
τ

M∑

m=1

‖Pm − p(·, tm)‖2L2(Ω)

] 1

2

.

When we use XFEMΓ, we also evaluate the following errors for the pressure, ‖Pc − pc‖L2

and ‖λh−λ‖L∞ := maxm=1→M |λm−λ(tm)|. Here pc(·, tm) := p(·, tm)−λ(tm)XΩ−(tm) ∈ R

for the test problems (4.1a,b) and (4.2a,b), and Pm
c := Pm − λm XΩm−1

−

is piecewise

polynomial on T m−1.

4.1 Numerical results in 2d

For our first set of experiments we fix Ω = (−1, 1)2 and use the true solution (4.1a,b) for
the parameters

µ = γ = 1 .

This means that the true solution reduces to r(t) = 1
2
, ~u(·, t) = ~0 and p(t) =

2 [XΩ−(0) − 1
4
L2(Ω−(0))] for all t ≥ 0. Some errors for our approximation (3.7a–d) for
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2
1

2/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

4 10−2 1.7401e-02 3.4406e-02 5.8656e-01

8 10−2 7.9853e-03 1.7896e-02 4.0791e-01

16 10−2 3.5541e-03 8.9120e-03 2.9411e-01

Table 1: (µ = γ = 1) Stationary bubble problem on (−1, 1)2 over the time interval [0, 1]
for the P2–P1 element without XFEMΓ.

2
1

2/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

4 10−2 2.0198e-02 3.0165e-02 5.9176e-01

8 10−2 9.7242e-03 1.4778e-02 4.5001e-01

16 10−2 4.6101e-03 8.0770e-03 3.1948e-01

Table 2: (µ = γ = 1) Stationary bubble problem on (−1, 1)2 over the time interval [0, 1]
for the P2–P0 element without XFEMΓ.

the P2–P1 element can be seen in Table 1. The same convergence test for the pressure
spaces P0 and P1+P0 are shown in Tables 2 and 3, respectively. Here we always choose
uniform spatial discretizations such that hc = hf = h and hm

Γ ≈ h/8. We varied the time
discretization parameter τ from 10−2 to 10−4, but as the errors were nearly indistinguish-
able for these runs, we only report on the computations with τ = 10−2. It appears that
the three errors ‖ ~X − ~x‖L∞ , ‖~U − ~Ih2 ~u‖L∞ and ‖P − p‖L2 in Tables 1–3 converge with

O(h), O(h) and O(h
1

2 ), respectively.

We note that for the experiments in Tables 1–3 we choose an equidistributed approx-
imation Γ0 of the circle Γ(0). In this special case our approximation with XFEMΓ, i.e.

(3.7a–d) with XΩm
−

∈ P
m, yields the exact solution ~Um+1 = ~0. In particular, on recall-

ing Lemma 3.2, we have that the unique solution to (3.19a–c) for m = 0 is given by
~Um+1 = ~0, ~Xm+1 = ~X0 and κm+1 = −λ0 ∈ R, where −λ0 ≈ −2 approximates the cur-
vature of Γ(0), and by induction for all m = 0 → M − 1. This implies that ~Um+1 = ~0,

Pm+1 = λ0 [XΩ0
−
− 1

4
L2(Ω0

−)], ~Xm+1 = ~X0 and κm+1 = −λ0 is a solution to (3.7a–d),
and it is this solution that is found by our solution method in practice, see Tables 4–6.
We remark that these results remain unchanged for nonconstant µ, e.g. when choosing
µ+ = 10µ− = 1. We visualize the final pressures for the finest runs in Tables 1–6 in
Figure 3. Here in the case of the enrichment XFEMΓ being used, we plot PM

c , which is

2
1

2/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

4 10−2 5.8351e-03 1.1813e-02 4.4080e-01

8 10−2 2.1014e-03 5.6510e-03 3.2709e-01

16 10−2 5.9531e-04 3.3472e-03 2.3255e-01

Table 3: (µ = γ = 1) Stationary bubble problem on (−1, 1)2 over the time interval [0, 1]
for the P2–(P1+P0) element without XFEMΓ.
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2
1

2/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖Pc − pc‖L2 ‖λh − λ‖L∞

4 10−2 0 0 3.1537e-04 2.4120e-03

8 10−2 0 0 7.8851e-05 6.0254e-04

16 10−2 0 0 1.9713e-05 1.5061e-04

Table 4: (µ = γ = 1) Stationary bubble problem on (−1, 1)2 over the time interval [0, 1]
for the P2–P1 element with XFEMΓ.

2
1

2/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖Pc − pc‖L2 ‖λh − λ‖L∞

4 10−2 0 0 3.1537e-04 2.4120e-03

8 10−2 0 0 7.8851e-05 6.0254e-04

16 10−2 0 0 1.9713e-05 1.5061e-04

Table 5: (µ = γ = 1) Stationary bubble problem on (−1, 1)2 over the time interval [0, 1]
for the P2–P0 element with XFEMΓ.

almost identically equal to a constant, and λM XΩM−1
−

separately.

We now demonstrate that this remarkable property is generic to our method, in the
sense that the circular, equidistributed numerical steady state solution is recovered by
our method even if we choose very noncircular or very nonuniform initial data Γ0. Of
course, this is the discrete analogue of the fact that circles are the unique steady state
solutions in the continuous case, recall Section 1. In particular, we choose Γ0 to be a very
nonuniform approximation of Γ(0), where we represent the upper half of the circle by a
single vertex, while the lower half is properly resolved to resemble a semicircle. In total
we use K0

Γ = 64 vertices for Γ0, and we use an adaptive bulk mesh with hc = 8hf = 2−
1

2 .
Choosing τ = 10−4 we simulate the evolution with our scheme for the time interval [0, 5].

In Figure 4 we show some snapshots of the evolution, while in Figure 5 a plot of ‖~Um‖L∞(Ω)

over time can be seen. Here we use the P2–P1 element. As expected, the approximations
Γm converge towards an equidistributed circle, while ~Um converges to zero.

For our second set of convergence experiments we fix Ω = (−1, 1)2 \ [−1
3
, 1
3
]2 and use

the parameters
α = 0.15 and µ = γ = 1

for the true solution (4.2a,b). With T = 1 as before we obtain that Γ(T ) is a circle
of radius r(1) =

√
0.55 ≈ 0.742. Some errors for our approximation (3.7a–d), where

2
1

2/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖Pc − pc‖L2 ‖λh − λ‖L∞

4 10−2 0 0 3.1537e-04 2.4120e-03

8 10−2 0 0 7.8851e-05 6.0254e-04

16 10−2 0 0 1.9713e-05 1.5061e-04

Table 6: (µ = γ = 1) Stationary bubble problem on (−1, 1)2 over the time interval [0, 1]
for the P2–(P1+P0) element with XFEMΓ.

22



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 3: (µ = γ = 1) Pressure plots at time T = 1 for the stationary bubble problem.
The pressure spaces are P1, P0 and P1+P0 without and with XFEMΓ.
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Figure 4: (µ = γ = 1) The discrete interface Γm at times t = 0, 1, 5 together with the
adaptive bulk mesh (top), and details of the distribution of vertices on Γm (bottom). Here
we use the P2–P1 element with XFEMΓ.
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Figure 5: (µ = γ = 1) Plot of ‖~Um‖L∞(Ω) over the time interval [0, 5] for the P2–P1
element with XFEMΓ.

1/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

3 10−2 9.6884e-03 2.5200e-02 5.0519e-01

6 10−3 3.4188e-03 1.6696e-02 3.5383e-01

12 10−4 1.7263e-03 7.7395e-03 2.4944e-01

Table 7: (α = 0.15, µ = γ = 1) Expanding bubble problem on (−1, 1)2 \ [−1
3
, 1
3
]2 over the

time interval [0, 1] for the P2–P1 element without XFEMΓ.

we again use uniform bulk meshes with hc = hf = h, are shown in Tables 7–12. We
observe that the computations without XFEMΓ indicate a convergence for the pressure
error ‖P − p‖L2 of O(h

1

2 ). The simulations with XFEMΓ show a significant improvement
in all errors compared to the results in Tables 7–9.

For our final set of convergence experiments we fix Ω = (−1, 1)2 \ [−1
3
, 1
3
]2 and use the

parameters
α = 0.15 and µ+ = 10µ− = γ = 1

for the true solution (4.2a,b). Some errors for our approximation (3.7a–d) without XFEMΓ

can be seen in Tables 13–15. Here we always choose the spatial discretization parameters
such that hc = 8hf and hm

Γ ≈ hf . The same convergence experiments now for the
pressure spaces enriched with XFEMΓ can be found in Tables 16–18. We visualize the
final pressures for the coarsest runs in Tables 13–18 in Figure 6. Here in the case of the

1/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

3 10−2 1.2003e-02 3.7696e-02 5.6246e-01

6 10−3 5.3537e-03 1.7035e-02 3.9392e-01

12 10−4 2.8129e-03 9.7768e-03 2.8218e-01

Table 8: (α = 0.15, µ = γ = 1) Expanding bubble problem on (−1, 1)2 \ [−1
3
, 1
3
]2 over the

time interval [0, 1] for the P2–P0 element without XFEMΓ.
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1/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

3 10−2 5.0366e-03 1.5689e-02 4.3367e-01

6 10−3 7.4242e-04 6.2453e-03 2.9131e-01

12 10−4 3.8317e-04 3.3759e-03 2.0658e-01

Table 9: (α = 0.15, µ = γ = 1) Expanding bubble problem on (−1, 1)2 \ [−1
3
, 1
3
]2 over the

time interval [0, 1] for the P2–(P1+P0) element without XFEMΓ.

1/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖Pc − pc‖L2 ‖λh − λ‖L∞

3 10−2 3.1597e-03 1.2035e-02 2.3486e-01 7.1367e-01

6 10−3 2.1580e-04 1.9889e-03 1.9056e-02 2.4283e-02

12 10−4 2.9774e-05 2.7515e-04 3.8804e-03 3.8788e-03

Table 10: (α = 0.15, µ = γ = 1) Expanding bubble problem on (−1, 1)2 \ [−1
3
, 1
3
]2 over

the time interval [0, 1] for the P2–P1 element with XFEMΓ.

1/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖Pc − pc‖L2 ‖λh − λ‖L∞

3 10−2 2.2001e-03 6.0761e-03 1.0310e-01 2.2378e-01

6 10−3 1.6084e-04 9.7213e-04 5.6229e-03 3.0091e-02

12 10−4 2.6827e-05 1.2680e-04 9.1875e-04 3.1451e-03

Table 11: (α = 0.15, µ = γ = 1) Expanding bubble problem on (−1, 1)2 \ [−1
3
, 1
3
]2 over

the time interval [0, 1] for the P2–P0 element with XFEMΓ.

1/h τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖Pc − pc‖L2 ‖λh − λ‖L∞

3 10−2 2.9540e-03 1.6556e-02 7.2662e-01 2.2105e-00

6 10−3 2.2475e-04 2.2898e-03 3.8525e-02 1.1152e-01

12 10−4 3.0103e-05 3.0178e-04 6.2078e-03 2.2342e-02

Table 12: (α = 0.15, µ = γ = 1) Expanding bubble problem on (−1, 1)2 \ [−1
3
, 1
3
]2 over

the time interval [0, 1] for the P2–(P1+P0) element with XFEMΓ.

1/hf τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

24 10−2 2.1219e-03 2.7166e-02 3.1792e-01

48 10−3 1.2865e-03 1.4738e-02 2.2452e-01

96 10−4 6.7906e-04 9.0482e-03 1.5907e-01

Table 13: (α = 0.15, µ+ = 10µ− = γ = 1) Expanding bubble problem on (−1, 1)2\[−1
3
, 1
3
]2

over the time interval [0, 1] for the P2–P1 element without XFEMΓ.
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1/hf τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

24 10−2 3.2325e-03 2.2733e-02 3.6175e-01

48 10−3 1.7798e-03 1.1853e-02 2.5000e-01

96 10−4 9.3414e-04 7.3246e-03 1.7635e-01

Table 14: (α = 0.15, µ+ = 10µ− = γ = 1) Expanding bubble problem on (−1, 1)2\[−1
3
, 1
3
]2

over the time interval [0, 1] for the P2–P0 element without XFEMΓ.

1/hf τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

24 10−2 3.2486e-04 1.7170e-02 2.8290e-01

48 10−3 1.6914e-04 1.0384e-02 1.9551e-01

96 10−4 1.1920e-04 6.6529e-03 1.3816e-01

Table 15: (α = 0.15, µ+ = 10µ− = γ = 1) Expanding bubble problem on (−1, 1)2\[−1
3
, 1
3
]2

over the time interval [0, 1] for the P2–(P1+P0) element without XFEMΓ.

1/hf τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

24 10−2 7.7759e-04 1.8081e-02 1.3118e-01

48 10−3 1.2812e-04 9.7040e-03 9.0830e-02

96 10−4 2.9108e-05 6.2708e-03 6.2309e-02

Table 16: (α = 0.15, µ+ = 10µ− = γ = 1) Expanding bubble problem on (−1, 1)2\[−1
3
, 1
3
]2

over the time interval [0, 1] for the P2–P1 element with XFEMΓ.

1/hf τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

24 10−2 7.6544e-04 1.6390e-02 1.3925e-01

48 10−3 1.3313e-04 1.0512e-02 9.6750e-02

96 10−4 3.0199e-05 6.8224e-03 6.6541e-02

Table 17: (α = 0.15, µ+ = 10µ− = γ = 1) Expanding bubble problem on (−1, 1)2\[−1
3
, 1
3
]2

over the time interval [0, 1] for the P2–P0 element with XFEMΓ.

1/hf τ ‖ ~X − ~x‖L∞ ‖~U − ~Ih2 ~u‖L∞ ‖P − p‖L2

24 10−2 8.4735e-04 1.5378e-02 1.5429e-01

48 10−3 1.5376e-04 9.7116e-03 1.0642e-01

96 10−4 3.5443e-05 6.4129e-03 7.2764e-02

Table 18: (α = 0.15, µ+ = 10µ− = γ = 1) Expanding bubble problem on (−1, 1)2\[−1
3
, 1
3
]2

over the time interval [0, 1] for the P2–(P1+P0) element with XFEMΓ.
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Figure 6: (α = 0.15, µ+ = 10µ− = γ = 1) Pressure plots at time T = 1 for the expanding
bubble problem. The pressure spaces are P1, P0 and P1+P0 without and with XFEMΓ.

enrichment XFEMΓ being used, we plot the pressure parts PM
c and λM XΩM−1

−

separately.

We recall from (4.2b) that the jump λ(T ) in the pressure is made up from two components.

A jump of 0.55−
1

2 ≈ 1.35 due to the curvature, and a jump of 0.27/0.55 ≈ 0.49 due to
the difference in µ. When the XFEMΓ enrichment of the pressure space is used, then
the discretizations will treat these two jumps differently. As can be seen from (3.7a), the
jump due to curvature can be absorbed by XΩm

−
, while the jump in µ, recall (3.6), is left

to the standard bulk pressure space. It appears from our plots in Figure 6 that this is
indeed what happens in practice.

4.2 Numerical results in 3d

Similarly to the simulation in Figures 4 and 5, we show that our approximation (3.7a–d)
with XFEMΓ naturally eliminates spurious velocities also in three space dimensions. We
recall that in our experiments in 2d it was necessary (and sufficient) for the polygonal
curve Γm to be an equidistributed approximation to a circle in order to admit a constant
discrete curvature κm+1 = κ ∈ R. This leads to a constant pressure jump across Γm,
which can be picked up by our extended finite element function XΩm

−
.

In 3d a necessary condition for κm+1 to be constant requires Γm to be a conformal
polyhedral surface, recall Lemma 3.2. Here we note that the tangential movement of ver-
tices induced by (3.7d) leads to stationary solutions being conformal polyhedral surfaces,
see [6] for details. We demonstrate this, and the fact that this property leads to the elim-
ination of spurious velocities, with a numerical simulation for (3.7a–d) with XFEMΓ on
Ω = (−1, 1)3 with µ = γ = 1. We start with a standard triangulation of the sphere Γ(0)
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Figure 7: (µ = γ = 1) The discrete interface Γm at times t = 0, 5. Here we use the P2–P1
element with XFEMΓ.
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Figure 8: (µ = γ = 1) Plot of ‖~Um‖L∞(Ω) over the time interval [0, 10] for the P2–P1
element with XFEMΓ.

and compute the evolution over the time interval [0, 10] with the time step size τ = 10−4.

We visualize Γ0 and ΓM in Figure 7, while a plot of ‖~Um‖L∞(Ω) over time is shown in Fig-
ure 8. We observe that the initial triangulation of the sphere evolves towards a numerical
steady state for our approximation (3.7a–d). Such a numerical steady state will be given
by a conformal polyhedral surface, recall (3.20). Similarly to [6, Fig. 11] it can be ob-
served that the final triangulation in Figure 7 exhibits many groups of two, four and eight
triangles that form “curved squares”, as well as groups of six and twelve triangles that
form “curved equilateral triangles”. These are typical for conformal polyhedral surfaces,
and we conjecture that conformal polyhedral approximations of the sphere have constant
discrete mean curvature, i.e. satisfy (3.21). In fact we note that for the simulation at hand
the extremal values of κ1 are given by −6.47 and −2.51, while for κM they are −4.07 and
−4.05, i.e. κM is close to being constant.

We end this section with a shear flow experiment that is motivated by similar simula-
tions in [29]. Here we take Ω = (−1, 1)3 and for ~u prescribe the inhomogeneous Dirichlet
boundary condition ~g(~z) = (z3, 0, 0)

T on ∂Ω. For the remaining parameters we choose
µ = 1 and γ = 3. The results for our simulation with the adaptive mesh parameters
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Figure 9: (µ = 1, γ = 3) The discrete interfaces Γ0 and ΓM . Here we use the P2–P1
element with XFEMΓ.

hc = 8hf = 2−
7

2 and τ = 10−2 can be seen in Figure 9, where we plot the initial and the
final discrete interface. Each is made up of 768 elements. The interface at the final time
T = 5 is close to being a numerical steady state. The “sphericity” of ΓM , see [41], is given

by π
1

3 [6L3(ΩM
− )]

2

3 [H2(ΓM)]−1 = 0.957. We observe an excellent mesh quality throughout
the evolution, in contrast to the elongated elements that can be seen in [29, Fig. 14].

Conclusions

We have presented a novel front-tracking method for two-phase flow which can be shown
to be stable. The numerical method couples a parametric finite element approximation of
the interface with a standard finite element approximation of the Stokes equations in the
bulk. Here the bulk mesh may be chosen to be either fitted (or adapted) to the interface,
or it can be totally independent of the interface mesh. In the latter case, we introduce an
XFEM approach to guarantee that our scheme conserves the volumes of the two phases.

The stability of the proposed method implies that the well-known static bubble test
problem can be computed exactly. More generally, we can show that our scheme admits
time-independent discrete solutions, which all have the property that the velocity is zero.
This means, in particular, that it is possible to eliminate spurious velocities for stationary
solutions.

The second prominent feature of our numerical method is the excellent mesh quality
of the interface approximation. This is induced by an inherent discrete tangential motion
of the vertices that make up the discrete interface. In particular, for a semidiscrete
continuous-in-time variant of our scheme it can be shown that the discrete interfaces are
equidistributed polygonal curves (d = 2) and conformal polyhedral surfaces (d = 3),
respectively.
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