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Abstract

As our intimate lives become more tangled with the
smartphones we carry, privacy has become an increasing
concern.  A widely  available  option  to  mitigate  security
risks is to set  a device so that it locks after a period of
inactivity,  requiring users to  authenticate  for  subsequent
use. 

Current  methods  for  establishing  one's  identity  are
known to be susceptible to even rudimentary observation
attacks. The  mobile  context  in  which  interactions  with
smartphones  are  prone  to  occur  further  facilitates
shoulder-surfing.

We  submit that  smartphone  authentication  methods
can be better adapted to the mobile context. Namely, the
ability  to  interact  with  the  device  in  an  inconspicuous
manner  could offer users more control and the ability to
self-protect against observation. 

Tapping is a communication modality between a user
and a  device  that  can be  appropriated  for  that  purpose.
This work presents a technique for employing sequences
of  taps,  or  tap  phrases,  as  authentication  codes.  An
efficient and accurate tap phrase recognizer, that does not
require training, is presented.

Three  user  studies  were  conducted  to  compare  this
approach to the current leading methods. Results indicate
that  the  tapping  method  remains  usable  even  under
inconspicuous authentications scenarios. Furthermore, we
found  that  it  is  appropriate  for  blind  users,  to  whom
usability barriers and security risks are of special concern.

Keywords: security, usability, mobile, gestures, tapping
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Resumo

Os smartphones que trazemos connosco estão cada vez
mais  entranhados nas  nossas  vidas  íntimas.  Estes
dispositivos  possibilitam novas  formas  de  trabalhar,  de
socializar, e até de nos divertirmos.  No entanto, também
criaram novos riscos à nossa privacidade.

Uma  forma  comum  de  mitigar  estes  riscos  é
configurar o dispositivo para bloquear após um período de
inatividade.  Para  voltar  a  utilizá-lo,  é  então  necessário
superar uma barreira de autenticação. Desta forma, se o
aparelho cair das mãos de outra pessoa, esta não poderá
utilizá-lo de forma a que tal constitua uma ameaça. 

O  desbloqueio  com  autenticação  é,  assim,  o
mecanismo  que  comummente  guarda  a  privacidade  dos
utilizadores  de  smartphones.  Porém,  os  métodos  de
autenticação  atualmente  utilizados  são  maioritariamente
um legado dos computadores de mesa. As palavras-passe e
códigos de  identificação  pessoal  são  tornados  menos
seguros pelo facto de as pessoas criarem mecanismos para
os memorizarem mais facilmente. Além disso, introduzir
estes códigos é inconveniente, especialmente no contexto
móvel,  em  que  as  interações  tendem  a  ser  curtas  e  a
necessidade  de  autenticação  atrapalha  a  prossecução  de
outras tarefas.

Recentemente,  os  smartphones  Android  passaram  a
oferecer  outro  método  de  autenticação,  que  ganhou  um
grau  de  adoção  assinalável.  Neste  método,  o  código
secreto do utilizador é uma sucessão de traços desenhados
sobre uma grelha de 3 por 3 pontos apresentada no ecrã
táctil.

Contudo, quer os códigos textuais/numéricos, quer os
padrões Android, são suscetíveis a ataques rudimentares.
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Em ambos os casos, o canal de entrada é o toque no ecrã
táctil; e o canal de saída é o visual. Tal permite que outras
pessoas  possam  observar  diretamente  a  introdução  da
chave; ou que mais tarde consigam distinguir as marcas
deixadas pelos dedos na superfície de toque. Além disso,
estes  métodos  não  são  acessíveis  a  algumas  classes  de
utilizadores, nomeadamente os cegos. 

Nesta  dissertação  propõe-se  que  os  métodos  de
autenticação em smartphones podem ser melhor adaptados
ao contexto móvel. Nomeadamente, que a possibilidade de
interagir com o dispositivo de forma inconspícua  poderá
oferecer aos utilizadores um maior grau de controlo e a
capacidade de se auto-protegerem contra a observação do
seu código secreto.

Nesse  sentido,  foi  identificada  uma  modalidade  de
entrada que não requer o canal visual: sucessões de toques
independentes de localização no ecrã táctil. Estes padrões
podem assemelhar-se (mas não estão limitados) a ritmos
ou código Morse.

A primeira contribuição deste trabalho é uma técnica
algorítmica para a deteção destas sucessões de toques, ou
frases  de  toque,  como  chaves  de  autenticação.  Este
reconhecedor  requer  apenas  uma  demonstração  para
configuração, o que o distingue de outras abordagens que
necessitam de vários exemplos para treinar o algoritmo. O
reconhecedor  foi  avaliado  e  demonstrou  ser  preciso   e
computacionalmente  eficiente.  Esta  contribuição  foi
enriquecida  com  o  desenvolvimento  de  uma  aplicação
Android que demonstra o conceito.

A segunda contribuição é uma exploração  de fatores
humanos  envolvidos  no uso de  frases  de  toque  para
autenticação.  É  consubstanciada  em  três  estudos  com
utilizadores, em que o método de autenticação proposto é
comparado  com  as  alternativas  mais  comuns:  PIN  e  o
padrão Android.

O primeiro estudo (N=30) compara os três métodos no
que  que  diz  respeito à  resistência  a  observação  e  à
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usabilidade,  entendida  num  sentido  lato,  que  inclui  a
experiência de utilização (UX). Os resultados sugerem que
a usabilidade das três abordagens é comparável, e que em
condições de observação perfeitas,  nos três  casos existe
grande viabilidade de sucesso para um atacante.

O segundo estudo (N=19) compara novamente os três
métodos  mas,  desta  feita,  num  cenário  de  autenticação
inconspícua.  Com  efeito,  os  participantes  tentaram
introduzir os códigos com o dispositivo situado por baixo
de  uma  mesa,  fora  do  alcance  visual.  Neste  caso,
demonstra-se  que  a  autenticação  com  frases  de  toque
continua  a  ser  usável.  Já  com  as  restantes  alternativas
existe  uma  diminuição  substancial  das  medidas  de
usabilidade.  Tal  sugere que a autenticação por frases de
toque  suporta  a  capacidade  de  interação  inconspícua,
criando  assim  a  possibilidade  de  os  utilizadores  se
protegerem contra possíveis atacantes.

O  terceiro  estudo  (N=16)  é  uma  avaliação  de
usabilidade  e  aceitação do método de  autenticação com
utilizadores  cegos.  Neste  estudo,  são  também elicitadas
estratégias de ocultação  suportadas pela autenticação por
frases  de  toque.  Os resultados  sugerem que a  técnica  é
também adequada a estes utilizadores.

Palavras-chave: segurança, usabilidade, móvel, gestos, toque
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Chapter 1

Introduction

Smartphones and tablets have, to a large degree, fulfilled aspirations of ubiquitous

computing. They have brought along new ways to work, play and socialize, whenever

and  wherever.  And  as  they  move  from  our  desks  to  our  pockets,  computers  have

become, more than personal, intimate. Mobile devices can be tokens of one's identity -

whoever  has  Alice's  smartphone  is,  in  many  ways,  Alice.  That  person  can  send

messages to her contacts, access private communication, shop with her credit card, and

even  know  where  she  has  been.  General  trust  in  ubiquitous  computing  cannot  be

sustained if devices weighting a few dozen grams, that are easily lost or stolen, can

enable exposure of private life, impersonation or pervasive surveillance of one's every

movement. 

In this dissertation, an authentication method for smartphones that aims to mitigate

this  threat  is  proposed.  This  proposal  is  framed  within  recent  advances  in  the

understanding that human factors play a central role in security, that is, within the field

of HCI Security (HCISEC).

1.1  Motivation

Security and privacy risks related to new usage practices are an enduring challenge.

As people store more personal data in their mobile devices, the consequences of security

failures can become devastating. A typical counter-measure to avoid this risk is to set up

a secret code that has to be entered to unlock the device after a period of inactivity. The

expectation is that an ill-intentioned party that acquires a person's phone will not be able

to use it in any meaningful way, lacking the knowledge to successfully authenticate. 

Unlock authentication is,  in a sense, the gatekeeper to privacy. But the methods

used  to  authenticate  in  mobile  devices  are  largely  a  legacy  from  the  desktop  era.

Entering passwords is known to consume a non-trivial amount of time and to require

significant cognitive effort (Lee & Zhai 2009). Such may be acceptable when sessions

are long, but typical mobile sessions are of a different nature – they are typically short,
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single application interactions  (section  2.2 provides an overview of smartphone usage

patterns). It is not reasonable to expect that only but a few zealous users are willing to

constantly authenticate in such a fashion (Clarke & Furnell 2005). 

Usability, in a broad sense, is an upper bound to security. As  Cranor & Garfikel

note in the preface of their  seminal  book “Security and Usability” (2005, p.iv),   “a

computer that makes you authenticate every five minutes with a password and a fresh

drop of blood might be very secure, but nobody would use it”. Causing too much of an

inconvenience to the user is a sure path to prevent meaningful adoption (Adams & Sasse

1999).

Currently, the leading unlock authentication methods for commodity smartphones

rely on PINs, passwords, and, more recently, graphical codes, like Android's pattern

unlock, where the user joins points in a 3x3 grid. Although there is some evidence that

the latter is a move forward in usability (Zezschwitz et al. 2013), in all cases security is

hampered by the fact that these methods resort to a) location-dependent touch input, and

b) visual output. This makes them susceptible to even rudimentary attacks, through a)

recognition  of  smudges  left  on  touch  surfaces,  and  b)  direct  observation  of  input

interaction, respectively.

These methods, by relying on visual feedback, also prohibit adoption by users with

permanent or situational sight impairments. In the particular case of blind users, using

graphical  codes is  not  possible,  and using PINs or passwords requires  unreasonable

effort. To enter a PIN with a virtual keyboard reader, such as iPhone’s VoiceOver1, one

must  pass  a  finger  over  the  screen  while  a  voice  reads  out  the  digits  underneath.

Azenkot et al. (2012) found that even in a group of blind users familiarized with this

technology, unlocking took in excess of 7 seconds, which is clearly too cumbersome for

casual  use.  Furthermore,  the  process  of  selecting  each  digit  makes  it  easier  for

bystanders  to  discern  the  PIN.  Finally,  authenticating  in  a  such  a  conspicuous  way

draws attention to  the use of  assistive technology,  potentially  leading to  feelings  of

self-consciousness (Shinohara & Wobbrock 2011).

The latter point highlights an aspect of usability that must not be overlooked: the

social context. The leading unlock authentication methods, by requiring explicit visual

and touch interaction, make it possible that people around a user can observe the code.

In this situation, to unlock the device, the user is left with two options: either try to

conceal  the  action,  for  example  covering  the  device  with  one hand,  and risk  being

perceived as distrustful of others; or no conceal it, and risk later intrusion. 

1 IOS Accessibility, http://www.apple.com/accessibility/ios/ 
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In summary, changes in penetration and usage of mobile devices have highlighted

the need for privacy protection. Unlock authentication, being the first step in securing a

device,  and  despite  recent  advances,  remains  a  challenge.  New  technology  that

addresses it should take into consideration usability, security and accessibility concerns,

all in the context of the social settings in which ubicomp devices are often used.

1.2  Objectives

The general objective of the research effort here presented is to provide a mobile,

non-visual authentication method that affords inconspicuous behavior.

Specifically, the focus is on using patterns of finger taps on the device as the input.

Rhythmic interaction is a modality that, although little explored, has been identified as

useful when the visual channel is not available  (Ghomi et al. 2012).  The rationale for

such a focus is twofold. First, when resorting to this type of input in a smartphone, the

screen  location  in  which  tapping  occurs  is  irrelevant,  rendering  smudge  attacks

immaterial. Secondly, since the user's visual perception is not needed for tapping, the

authentication task can more easily be performed inconspicuously.

A fundamental principle underlying this research is “designing with an adoption

process in mind” (Grudin 1994; Grudin & Poltrock 2012). This translates into, from the

outset,  a)  creating  actual  software artifacts  that  target  widespread hardware,  namely

commodity  smartphones,  and  2)  evaluate  working  prototypes  with  users,  looking

beyond standard usability metrics, into factors that influence acceptance, including the

social context.

To that end, the specific objectives are as follows:

1. Develop an authentication technique using tap phrases – patterns of taps on a

binary  sensor  over  time,  independent  of  location.  This  technique  should  be

computationally efficient and require minimal configuration by example, as is

the case with PIN's, passwords and Android's graphic code.

2. Deploy  unlock  authentication  software  to  commodity  mobile  devices.  The

architecture of this artifact should mimic current practices, including using the

touchscreen as the sensor.

3. Thoroughly evaluate this authentication method in regards to user experience,

resilience to shoulder-surfing attacks, and accessibility.

1.3  Contributions

The work here presented encompasses contributions in two axes:
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• A data-driven  tap pattern recognition technique requiring a single example for

configuration.

• An exploration into human factors concerning the use of tapping interaction for

authentication in mobile devices.

Regarding the technical contribution, the specific artifacts produced are as follows:

1. An algorithm to match a tap phrase input to a pre-configured template.

2. An  Android  implementation  of  this  algorithm  within  a  proof-of-concept

application. 

3. An analysis workbench, which takes traces from user interactions and replays

the  authentication  operations  on  competing  matching  algorithms,  providing

accuracy metrics.

 The proof-of-concept Android application is made available in online in  Google

Play2 (the source is also available online3).  Technical details of these contributions are

explained in Chapter 3.

The human factors investigation consists of three user studies:

1. A comparative  study  (N  =  30)  where  tap  unlock  is  compared  to  PIN  and

Android's  graphic  unlock,  in  regards  to  user  performance,  experience,  and

resilience  to  shoulder-surfing  (or  lack  thereof).  The  results  suggest  that  tap

unlock is comparable to the leading alternatives, and that all three approaches

are highly susceptible to shoulder-surfing. (Chapter 4)

2. A second  comparative  study  (N  =  19)  where  the  3  alternatives  are  again

compared, but this time in a context of inconspicuous authentication, i.e. without

visual feedback. Results clearly show that tap authentication is better performing

than  the  alternatives  and  therefore  better  suited  for  sensitive  social  settings.

(Chapter 5)

3. A study with blind users (N = 16) where usability and acceptance of tap unlock

was  evaluated,  and  interaction  concealment  strategies  were  elicited  through

role-playing.  Results  suggest  that  the  technique  is  adequate  for  blind  users,

addressing concerns of usability, security, and conservation of social comfort.

(Chapter 6)

2 https://play.google.com/store/apps/developer?id=Diogo+Marques   

3 https://github.com/diogomarques/android-tap-phrase-detector  
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1.4  Publications

In the duration of my masters degree, I co-authored the following publications:

• Diogo Marques, Luís Duarte and Luís Carriço (2012). Privacy and secrecy in

ubiquitous text messaging. In Proceedings of the 14th international conference

on Human-computer interaction with mobile devices and services companion –

MobileHCI  ’12.  New  York,  New  York,  USA:  ACM  Press.

doi:10.1145/2371664.2371683

• Diogo Marques, Tiago Guerreiro, Luís Duarte and Luís Carriço (2013). "Under

the  Table:  Tap  Authentication  for  Smartphones",  Proceedings  of  British

Computing Society Human-Computer Interaction Conference – The Internet of

Things XXVII. Uxbridge, UK: British Computer Society.

• João  Guerreiro,  Daniel  Gonçalves,  Diogo  Marques,  Tiago  Guerreiro,  Hugo

Nicolau  & Kyle  Montague  (2013),  "The  Today  and  Tomorrow  of  Braille

Learning", poster accepted for publication in ASSETS'13

• H. Nicolau, K. Montague, J. Guerreiro, D. Marques, T. Guerreiro, C. Stewart &

V. Hansong (2013) "Augmenting Braille Input through Multitouch Feedback",

poster accepted for publication in UIST'13

This first publication presents work that provided initial motivation into supporting

inconspicuous  behavior  and a  starting  point  for  the  development  of  our  tap  phrase

recognition software.  The  second presents initial results of the work presented in this

dissertation.  The  third and  fourth are collaborations  that  emerged  in  the  context  of

evaluating tap  authentication with blind users.

1.5  Work Context

The  research leading  to  this  dissertation was  conducted in  the  Large-Scale

Informatics  Laboratory's  (LaSIGE)  Human-Computer  Interaction  and  Multimedia

Research Team, located in the Department of Informatics, Faculty of Science, of the

University of Lisbon.

This  dissertation is  a  result  of  work  supervised  by  Prof.  Luís  Carriço,  and

conducted  in  collaboration  with  Luís  Duarte  and  Prof.  Tiago  Guerreiro,  who

co-authored previous publications. Therefore, when referring to the work, “we” is used

instead of “I”.
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Chapter 2

Background and Related Work

The present chapter is a critical overview of the state of the art pertaining to this

work. First, an account of user behaviors and perception is presented, starting at general

accounts  of  privacy  and  it's  relation  to  technology,  and  then  honing  in  on  specific

practices emerging from the introduction of smartphones.  In the final sections, criteria

for assessing smartphone authentication methods are proposed and matched against the

most  widely-adopted  technologies  and  also  novel  proposals  in  the  literature.  The

approach  taken  in  presenting  the  related  work  is  to  introduce  specific  critiques

throughout, and use these critiques to articulate the relationships in prior art.

2.1  Privacy and Technology

2.1.1  Perception of Privacy

From the end user perspective, security is a practical problem, that comes into play

when one asks the question: “is this system secure enough for what I want to do now?”

The question may be very hard to answer, not only because of  their  limited  technical

knowledge, but because the way security is implement is often not visible (Wood 1977).

Most users are unaware that little information is needed for establishing their identity,

being  mostly  concerned  with  protecting  addresses,  driver’s  licenses,  credit  card

numbers, and official identity numbers (Zhu et al. 2012). Despite that crossing gender,

birth  date  and zip code is  sufficient to uniquely identify 63% of the US population

(Golle 2006).  Indeed, studies have consistently  shown that users misunderstand many

security technologies, from browser cues like the security padlock (Dhamija et al. 2006)

to  guarantees of confidentiality in data circulated in  Wi-Fi  and  mobile data  networks

(Klasnja et al. 2009; Chin et al. 2012). 

Another complication is that privacy means different things to different users. It has

been suggested, for instance, that younger adults have a greater desire for fine-grained

control  over  disclosure  of  personal  information  than  older  adults,  who  are  mainly
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concerned with official information, such as health or financial records (Kwasny et al.

2008). Gender differences  have  also  been  observed:  in  a  recent  survey,  female

participants showed more reluctance to make financial transactions on mobile devices

and more acceptance of security technologies (Sieger & Möller 2012). 

It  has  also  been  observed  that  privacy  sensitivity  is  guided  by  individual

personality traits.  A study of  attendance control systems with students in Japan and

Australia  suggests an  effect  of  the  “Big  Five”  personality  traits  (openness,

conscientiousness, extraversion, agreeableness, neuroticism) on perceptions of security.

In particular that newer technologies tend to be looked at with more suspicion, despite

no  actual  differences  in  security  level  (Uesugi  et  al.  2010).  Our  own survey  of

text-messaging behavior indicated that worries about observation that one is texting are

situational  but  worries  about  observation  of  text  message  content  seem  to  vary

according to the user's personality (Marques et al. 2012). 

2.1.2  Privacy as a Social Phenomenon

Privacy  is an elusive concept.  From an individual  perspective,  privacy  is  often

understood as the ability to select what others can know about us (Kwasny et al. 2008).

Therefore,  privacy  is  inherently  dependent  on  individual  inclinations.  These

inclinations, nevertheless, do not exist in a void: they are influenced by extrinsic factors,

such as the social, institutional, or cultural contexts. 

A  visible  consequence of overlooking  the  social  and cultural dimensions  is that

privacy-related problems still persist in new systems, even those designed with privacy

as  a  key concern.  For instance,  many operating  systems– including  the most  recent

versions of Android OS4 – now  support guest  user  accounts,  a feature designed for

protecting privacy in device-sharing situations. Usable and secure as the feature may be,

it  just may not protect us when a friend asks to “just check my email”: logging out of

one's account  can indicate suspicion,  violating an unwritten contract.  Privacy is  not a

static set of preferences, but a social product, the result of a two-way interactive process

between self and world (Lehikoinen et al. 2007; Dourish & Anderson 2006). Designing

systems  that  accommodate the  transient boundaries  of  privacy  is  an  active research

topic (Barkhuus 2012). 

2.1.3  The Cost of Privacy

The fact that users knowingly compromise their privacy, for instance by using the

easier possible password that a system accepts  (Florencio & Herley 2007), has been

investigated as a cost-benefit problem. 

4 Android, “What's New”, http://www.android.com/whatsnew/ 
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One view is that the neglect of privacy protection in computer systems is “entirely

rational  from  an  economic  perspective”  (Herley  2009).  The  reasoning  is  that,  in

aggregate, following security advice and obeying policies is more costly than the benefit

of reducing (not eliminating) the risk of privacy integrity. This is so because the costs in

time  and  effort  are  very  frequent  and  probable,  and  the  potential  benefit  is  very

occasional and improbable.  For instance,  mandating every user to  visually inspecting

the  URL of  every  link  in  every  email  will  create  a  large  aggregate  cost. But  the

aggregate  benefit of precluding just one vector for  phishing attacks5 is not that high.

Indeed,  most  security  breaches  that users  experience  have  relatively  low impact.  A

recent study of smartphone “undesired behavior” (Felt et al. 2012) points out that users

mainly have to deal with unsolicited offers (spam, ads) and resource drainage (battery,

memory, bandwidth).

At the level of the individual user, demanding attention for security decisions also

imposes  an opportunity cost,  creating negative externalities on every other decision.

Böhme  & Grossklags  (2011) proposes a rationale  behind  the  instant  dismissal  of

security dialogs, in which the user  is supposed to make a careful decision, but often

doesn't: their attention budget is over-consumed.

Too often a view is taken that users do not protect their privacy because they are

lazy. Systems are designed with the premise that if only the users were aware of the risk,

they would make decisions that enhance their security;  and if  the benefits of properly

using security features are high enough, they will use them. But since attention and time

are scarce,  what users want and what users  do are not the same thing (Connelly et al.

2007;  Spiekermann  et  al.  2001).  The  implication  for  designers is  that  imposing

excessive costs to users can lead them to make bad decisions, rationally.

2.1.4  Usable Privacy and Security

Insights from social sciences have propelled a new understanding of privacy, one in

which the user is the pivot between security and the lack thereof. The study of security

as a user-centered design problem is now an established discipline. 

Even before personal  computing was a  reality,  the human element  was already

recognized as central to security. In the classic Saltzer and Schroeder  (1975) paper on

security principles, the necessity that “the human interface be designed for ease of use,

so that users routinely and automatically apply the protection mechanisms correctly”

was recognized. The problem of authentication was recognized early on, giving rise to

5 An attack where an ill-intentioned party poses as a trustworthy entity in order to obtain personal

information, such as credit card number.
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proposals  like  pass-phrases,  as  a  way  to  “maximize  […]  the  ease  of  remembering

passwords” (Porter 1982).

Two  landmark articles published  in  1999  propelled researchers  in  the  field  of

Human-Computer Interaction  (HCI) to investigate  the interplay between security and

usability from several vantage points. The first, “Why Johnny can't encrypt” (Whitten &

Tygar 1999), is a usability evaluation of Pretty Good Privacy, an encryption system that

had received great attention.  It reveals that,  despite its soundness, the system wasn't

secure in practice, due to user behavior. In  effect, only one third of participants  were

able to sign and encrypt an email message within 90 minutes.  Many though that they

had been successful, but weren't in fact. The second landmark study, “Users are not the

enemy” (Adams & Sasse 1999) was specifically about password practices. Among the

findings, a cardinal insight is that users will find ways to circumvent the most stringent

security  policies and create usability where there is none – for instance, writing down

system-generated optimal passwords.

The field has since matured, receiving contributions from the many disciplines that

inform HCI. A growing body of knowledge has been produced and disseminated in the

standard  HCI  outlets,  and  also  specialized  forums,  most  notably  the  annual  ACM

Symposium on  Usable  Privacy  and  Security  (which,  at  the  time  of  writing  of  this

document, is ranked 9 among HCI publications  in Google Scholar6).  More extensive

accounts of the inception and development of the discipline, sometimes dubbed “Usable

Privacy & Security” (UPS) or “HCI  security” (HCISEC) can be found in Payne &

Edwards (2008) and Garfinkel (2005, chap.2). An overarching view of the domains of

interest and foundational contributions is available in Cranor & Garfinkel's book (2005).

Efforts in understanding the human element have undermined a somewhat autistic

view  of  IT security,  one  in  which  there  is  a  major  trade-off  between  security  and

usability; the implication being that users need to pay so their privacy can be assured. In

fact, security systems must address a broad set of requirements, otherwise they won't be

viable. Usability is one of them, and a crucial one at that. If experts were to design an

encryption system that was uncrackable but took 13.8 billion years to encode a message

using all computational power currently available,  one would say that it wasn't viable

because it does not address the requirement of efficiency, and not that it should print out

the warning “please hold for a universe's lifetime to complete this task”. Yet, people are

expected to memorize a different password for each online service they use and, adding

insult to injury, that each password is lengthy an unintelligible, despite the fact that this

is all but humanly possible. As we cannot easily upgrade our brains, usability should be

6 Google Scholar, Top publications - Human Computer Interaction, http://scholar.google.com/citations?

view_op=top_venues&hl=en&vq=eng_humancomputerinteraction 

10

http://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_humancomputerinteraction
http://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_humancomputerinteraction


seen as a prerequisite,  not an obstacle,  for any security system that involves human

activity.

2.2  Smartphone Usage

It  is  hardly  a  surprising  observation  that  smartphone  usage  is  fundamentally

different  than  that  of the  desktop  computer.  These  devices  come  equipped  with  a

plethora of context sensors, allow new interaction techniques, and follow us (or even

guide us!) everywhere.

One interesting empirical  observation  is that interactions with mobile phones are

“bursty”, that is, very short and clustered. In study of activity logs from 20 users “in the

wild”,  looking at how much time the device screen was on,  83% of interactions were

below 40 seconds (Shye et al. 2009). A larger study of 255 Windows Phone users found

that in  most interactions  (90%)  only a single application is used  (Falaki et al. 2010).

This study sheds light on another point: it is still hard to identify the typical user. The

average daily number of  interactions  and interaction time lengths varied by a order of

magnitude:  10 to  200 and 10 to 250 seconds. Average data  consumption per user/day

even more so: from 1 to 1000 MB. However dramatic these variations are, they can be

explained  by  the  kind  of  activities  users  perform.  The  study  finds that  application

popularity  can be modeled as an exponential  distribution.  It  follows that  users who

engage  in  the  activities  that  the  most  popular  applications  enable  will  show

overwhelmingly increased usage statistics.

The bursty-ness of usage is revealed not only in interaction frequency and length,

but actually in attention spans (Oulasvirta et al. 2005). Mobile interactions are often not

a goal but a means; they are intertwined with human activity (e.g. finding a route to a

destination)  and  context  (e.g.  walking  in  a  rainy  day)  that  require  attention.  One

implication of these observed patterns is that, when designing mobile applications and

systems, it is advantageous to optimize for time and cognitive effort, breaking action

chains into smaller units, allowing for interruptions. 

Recent work about long-running mobile tasks indicates that supporting not only

interruption,  but  recovery  from  interruption is  crucial.  Brumby  &  Seyedi (2012)

analyzed  the  impact  of  device  auto-locks  on  driving  performance  while  writing  a

message, and found that interruptions caused by the driving context were more taxing to

lane-keeping performance when the auto-locks were frequent. Since the cost of recovery

was high (unlocking), users opted to focus more on the device and less on the road.

In  summary,  smartphones  present  a  great  opportunities  but  also  a  number  of

limitations  when  compared  with  traditional  computers.  Beyond  the  obvious  battery

consumption considerations, or lack of performance of virtual keyboards  (Lee & Zhai
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2009), users are easily frustrated if systems require them to jump through hoops when

they want to complete a simple, often very quick task.

2.3  Smartphone Users' Security Concerns

There is abundant evidence that users worry about security in their smartphones.

Even  in  the  pre-iPhone era,  a  study of  factors  influencing  the  choice  of  a  handset

indicated that security  considerations  ranked second, only after battery life  (Clarke &

Furnell 2005). User concerns over security are preventing them to take full advantage of

the technology at their disposal: as many as 70% of users are reluctant to perform many

privacy-sensitive tasks on smartphones (Ben-Asher et al. 2011). In comparison to what

they do in desktop computers,  users worry more about,  for instance, disclosing their

social security number and health data, using banking services or shopping (Chin et al.

2012). 

The concerns of  users  can be classified,  broadly,  in  three categories:  data  loss,

financial costs, and data exposure. 

2.3.1  Data Loss

Concerns with data loss are  widely recognized and currently addressed by many

popular synchronization and automatic backup systems. Modern smartphone operating

systems,  in  effect,  incorporate  such functionality  – for instance,  Apple iCloud7,  and

Android's Google Sync8 and Backup API9.  Third-party applications for such purposes

are  also  widely  disseminated  (e.g.  Dropbox10,  DataSync11,  Wuala12).  Nevertheless,

recent findings indicate that users are reluctant to backup their data to the “cloud”, and

also have difficulties in setting-up the appropriate configurations for safeguarding some

types of data that they find valuable or sensitive (Muslukhov et al. 2012).

2.3.2  Financial Costs

Smartphones bring along new financial considerations for the user, namely: 1) the

cost of the device itself and 2) the cost of using the network infrastructure for voice and

data.  In  a  recent  survey  of  concerns  about  smartphone  malware  effects, the  top  3

user-ranked risks were related to financial costs. First-ranked is the risk of permanently

7 iCloud, http://www.apple.com/icloud/setup/ios.html 

8 Google Sync, http://www.google.com/sync/index.html 

9 Backup API, http://developer.android.com/guide/topics/data/backup.html 

10 Dropbox, http://www.dropbox.com 

11 DataSync, https://play.google.com/store/apps/details?id=com.quintstoffers.DataSync 

12 Wuala by laCie, http://www.wuala.com/ 
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damaging the device. Second and third were the risks of malware making calls or send

messages to services that cost money (Felt et al. 2012). User concerns seem, then, to be

raised when financial costs are higher. Indeed, another recent survey indicates that users

perceive making international calls as a more security-sensitive task than making local

calls, which tend to be cheaper (Ben-Asher et al. 2011).

2.3.3  Data Exposure

Many types of information kept on smartphones can be considered sensitive, in the

sense that it would have detrimental effects to the owner if it were to be exposed. In a

survey  of 465 smartphone users, more than 50% considered stored passwords, files,

contacts, emails, text messages, call logs, location traces, schedules, pictures and videos

to be sensitive of very sensitive (Ben-Asher et al. 2011). These findings align with the

aforementioned study about  perceived malware risks  (Felt  et  al.  2012):  instances  of

highly-ranked  concerns  among  users  includes  malware  that shares  photos  or  text

messages, changes the PIN/lock pattern, or captures the call log.

Although malware infection can lead to data exposure, violation of privacy is often

the  product  of  another  person  gaining  physical  access  to  device  (Muslukhov  et  al.

2013).  Unlock  authentication  provides  a  defense  against  this  most  straightforward

threat. 

2.4  Smartphone Authentication Methods

For smartphones – the most common private computers –, authentication methods

are the de facto gatekeepers to privacy. Typically, in order to save battery, these devices

partially shut down after a period of inactivity, and can be set-up so that authentication

is  required for  bringing them  back  to  operation.  This  has  been recognized as  great

opportunity to protect the user's privacy. Even if the device is lost or stolen, it is highly

likely that it  will be locked when and if  an ill-intentioned party gains  physical  access,

thus limiting privacy risks to the owner.

However,  there is  a  growing  realization  that  authentication  methods  from  the

desktop era are unsuited for the mobile context. Passwords  and proprietary tokens are

such a cause for worry among the technology industry that in 2013 a consortium was

launched  to  tackle  the  issue:  the  Fast  Identity  Alliance13,  which  includes Google,

PayPal, LG, and others, working under the slogan “Forget Passwords!”. 

There has also been a large influx of proposals of novel and exotic authentication

methods  specifically  targeted  to  ubicomp  devices  coming  from  the  HCISEC

13 FIDO Alliance, http://fidoalliance.org/ 

13

http://fidoalliance.org/


community.  Some  of  these  proposals  are  beginning  to  echo  with  the  smartphone

manufacturers: in May 2013, Motorola executives discussed some of their explorations

into touchless  authentication, namely using radio-enabled tattoos or pills14.  Motorola's

model Moto X, launched in July 2013, is also able to use any Bluetooth device selected

by the user as a token for unlock authentication15.

In  the next  subsection,  the  currently  widely-adopted authentication  mechanisms

will  be  reviewed. Following,  an  overview  of  security  risks  that  they impose  are

articulated into  a  general  threat  model,  focused  on  casual  and  opportunistic  ill

intentions.  Recent  proposals  for  smartphone  authentication  methods  that  attempt  to

address this type of threat  are  then  organized  according to Wood's taxonomy.  Finally,

recent efforts in making authentication accessible to blind users are presented.

2.4.1  Leading Methods

“No one pretends that democracy is perfect or all-wise. Indeed, it has been said that

democracy is the worst form of government except all those other forms that have been

tried  from  time  to  time”,  famously  said  Churchill.  Replacing  “government”  and

“democracy” for “passwords”  and  “authentication” gives an accurate  account of the

general understanding of authentication methods  until  recently.  Much was tried but,

despite the problems, we were more-or-less stuck with passwords.

Passwords, unlike democracy, are so generally despised that finding ways to make

them obsolete became the main driver for the emergence of HCISEC. We know that if

we assign good passwords to users, they won't be able to memorize them, and will write

them down  (Adams  & Sasse  1999) or  use  other  coping  strategies,  rendering  them

insecure.  If instead we allows users to choose their own passwords,  we can be certain

that security will lack, since they will choose sequences that are easy to memorize and

quick to enter, and thus susceptible to dictionary attacks16. The middle-ground between

these two approaches has been imposing password composition policies, e.g. enforcing

a minimal number of characters or the mixed use of number and letters. But imposing

these policies is a zero-sum game: if they are too restrictive, users  typically resort to

(insecure) coping strategies,  if  they  are  too  loose,  user  will  choose  easy  passwords

14 Motorola’s Dennis Woodside and Regina Dugan: The Full D11 Interview, 

http://allthingsd.com/20130529/motorolas-dennis-woodside-and-regina-dugan-talk-moto-x-tattoos-an

d-taking-big-risks-at-d11-full-video/ 

15 Motorola Moto X, http://www.motorola.com/us/shop-all-mobile-phones/Moto-X/FLEXR1.html 

16 A type of attack were authenthication attempts are made using large sets of words, including many

variations of words in the dictionary and passwords found to be frequent in previous password mass

leaks (like the infamous 32 million passwords leaked from the RockYou.com service in 2009).
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(Inglesant & Sasse 2010). As a consequence, these policies are often very unrestrictive

and therefore largely misguided (Bonneau & Preibusch 2010; Komanduri et al. 2011).

The general understanding that passwords offer security is, in fact, a notable case of

suspension of disbelief.

Virtually all  commercial  smartphones now incorporate “secure” unlock features.

Vendors offer authentication using Personal Identification Numbers (PIN), which are

simply numeric passwords, but more convenient to input (Clarke & Furnell 2005), and

also standard alphanumeric passwords. Even in the smartphone era, passwords remain

the  leading  approach  to  authentication,  despite  virtual  keyboards  being  even  more

taxing to passwords authentication performance (Schaub et al. 2012).

There  is,  however,  already  significant movement towards  other  mechanisms.

Currently, the only widely-used alternative is Android's pattern unlock. In this method,

users are presented with a matrix of 9 points, and must trace a directed path over them

with their finger.  Recent research  (Zezschwitz et al. 2013) indicates that, in the wild,

users take more time and make more input errors with this method, and yet still like it

better than using PINs. One possible reason for this dichotomy is that PIN entry errors

are more adverse, in the sense they cause a non-trivial interruption, raising the cost of

recovery (see section 2.2 for a discussion of interruptions and recovery from them).

Recent  versions of  Android  also  include  a  face  recognition  technique  for

unlocking.  This feature,  however,  has  been  widely publicized on the web for  being

insecure17,  since it  is  easy  to  bypass  using  pictures  from  the  owner,  extracted  for

instance  from social  media  services.  This  is  a  known problem of  face  recognition

systems, and stems for the fact that liveness is difficult to detect unobtrusively (Findling

& Mayrhofer 2012; Tronci et al. 2011). In our own studies, we failed to found a single

user that uses Face Unlock. 

Media reports suggest that, at the time of writing of this dissertation, manufacturers

Apple  and  Samsung  are  preparing  to  deploy  fingerprint  readers in  their  high-end

devices,  namely  in  the  upcoming  iPhone  5S18 and  Galaxy  S  line19 models.  The

manufacturer Motorola launched a model with fingerprint authentication in 2011, the

17 For instance, Wired, “Video: Ice Cream Sandwich Face Unlock Defeated With Photo”, 

http://www.wired.com/gadgetlab/2011/11/video-ice-cream-sandwich-face-unlock-defeated-with-phot

o/ 

18 BGR, New iPhone 5S part leak points to fingerprint scanner, 

http://bgr.com/2013/08/14/iphone-5s-photos-parts-fingerprint-scanner/ 

19 SamMobile, “HOT: Samsung prepares fingerprint protection”, 

http://www.sammobile.com/2013/05/21/hot-samsung-prepares-fingerprint-protection/ 
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Atrix 4G20, but has since then discontinued it. It is unclear why the same technology is

now expected to solve a problem that it didn't before.

In summary, however inadequate are PINs and passwords, they are currently still

the  basis for  leading smartphone authentication  methods. Android's secret “drawing”,

however,  is  already a widely  adopted  alternative,  at  least  for  unlock authentication.

These are, at this point in time, the leading methods. Some other attempts have been

made by the industry, including using fingerprints and face recognition, but these did

not seem to gain much traction. 

2.4.2  Casually Insecure: a Threat Model

A  major  cause  for  the  failure  of  passwords  as  a  general-purpose  form  of

establishing identity is an ill-defined threat models. Any security feature of a system

makes sense only in the context of the types of threats it is securing against. Passwords

and  respective  composition  policies  have,  unfortunately,  gained  the  status  of  being

secure against a mythical general threat model, despite the fact that they are designed to

address,  in  essence,  brute  force  attacks performed  by  security  specialists.  Even  so,

passwords are commonly being cracked through dictionary or brute-force attacks.

But is  the threat  of cracking important in all systems where passwords are used?

The answer is an emphatic no. ATMs, for instance, usually require a card and a 4-digit

numeric  password;  after  3  failures  to  properly  enter  the  code,  further  attempts  are

blocked. Even if an attacker gains access to the card, cracking PIN's by trying random

combinations  has  a vanishing  likelihood  of  success21.  In  effect,  ATM  breaches  are

usually the result of surreptitious observation and social engineering performed by con

artists, or outright violence by criminals.

When  considering the  two  leading  smartphone  authentication  methods,

PIN/password  and  Android's  draw  code,  even  if  it  was stipulate  that  brute-force

cracking is unfeasible,  some attacks  are so rudimentary  that even the casual user can

employ.

Shoulder-surfing Attack

Shoulder-surfing is a direct observation attack where a third-party is able to discern

at  least  some  features  of  a secret  code.  Although  the  expression  indicates  that  the

20 Motorola, Atrix 4G, 

https://motorola-global-portal.custhelp.com/app/product_page/faqs/p/30,6720,7898/ 

21 It is not impossible that an attacker gains mass access to an ATM system through other means, for 

instance obtaining the database of user and card data,, and then performing an offline attack but this 

has little to do with the end-user authentication mechanism.
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third-party is  located behind the user,  it  is  commonly used as an umbrella  term for

situations in which there is the ability to detect details of the interaction directly and

surreptitiously.  For instance,  the observing party might  be across the table  from the

authenticating user.

The  ability  to  infer  keyboard  input  using  video  from  the  interaction  is  well

established, both for desktop keyboards  (Balzarotti et  al.  2008) and for smartphones

(Maggi  et  al.  2011;  Schaub et  al.  2012),  even in  realistic,  noise-filled settings.  For

smartphone security,  addressing the  threat  of observation by  video-cameras  or  other

human-analog sensors, is, however, less of concern than thwarting shoulder-surfing by

humans, given the high mobility of the device and the frequent use in social settings

(Church & Oliver 2011), that enable casual observation.

Smudge Attack

When a user interacts with touchscreens it is very likely that oily residues from

the fingertips will be transferred to it. This can leave compromising traces that enable an

attacker to, at least partially,  reconstruct  the authentication interaction. This  has been

called a smudge attack. Aviv et al.  (2010), presents the first systematic analysis of the

feasibility of such attacks, suggesting that the smudges are very persistent, and usually

not wiped off in normal operation, including pocketing the device. Their study focused

on Android's  pattern  unlock,  but  subsequent  work  indicates  that  the  same principle

applies  to  virtual  keyboards  (Zhang  et  al.  2012),  especially  numeric  keypads  for

PIN-entry.

Although in these studies images of the devices were captured with photography

for a more reliable analysis, smudges from authentication interaction are often visible to

the  naked  eye.  This is  evident  in  figure  1,  which  show  unaltered  photographs  of

smudges from pattern and PIN entry. The implication is that,  by simple observation,

even non-experts can discover (or reduce the space of) a user's password or pattern.
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upon simulated Android pattern entry.



Device Acquisition

Authentication mechanisms often seem to address a threat model wherein highly

sophisticated bad guys, after acquiring one's phone and taking it to their lairs, are able to

crack them and do us harm. This is very unlikely to happen. But our children, spouses,

friends, co-workers, strangers in the subway and coffee-shops, who just happen to have

an opportunity to acquire our devices, are very real adversaries. No technical knowledge

is actually needed to perform shoulder-surfing or smudge-attacks. Smartphones are used

in a social context, and it is in this context the threat must be framed. 

2.4.3  New Ways to Establishing Identity

In a seminal study of passwords, Wood (1977) identifies three types of methods by

which “a person's identity may be established for the purpose of allowing access to a

remote computer system:

• something the person knows

• something the person has

• something the person is”

Although some of the  current  methods can fall within more than one category22,

this taxonomy largely captures the main trends in smartphone authentication, including

recent advances in PIN/password  variations, graphical secrets,  Bluetooth/NFC tokens,

biometrics and many other hybrid proposals. The method proposed in this dissertation

falls  within  the  first  category,  “something  a  person  knows”,  or  knowledge-based

authentication (KBA). Others have previously offered systematic overviews of classic

and  novel  authentication  methods  in  the  three  families,  including  De  Luca  (2011,

chap.2),  Paz  (2011, chap.2) and Dunphy  (2013, chap.2). Here, the focus is on recent

KBA proposals, accounting for:

1. The limitations imposed by smartphone usage, namely the need to optimize

for  unobtrusiveness  to  the  main  objective  the  user  is  trying  to  perform

(Adams & Sasse 1999). This means, at the very least, not imposing strong

costs in time and effort.

2. The  social context  in which smartphones are used, namely the threat to

security  posed  by  non-expert  adversaries  in  said  context,  including  the

degree  to  which  they  are  protected  from  smudge  and  shoulder-surfing

attacks, and the ability to allow inconspicuous interaction.

22 For instance, ATMs require “something a person has”, a card, and “something a person knows”, a

PIN.
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3. The  degree  to  which  these  techniques  are  deployable  in  existing  or

foreseeable  smartphone  platforms.   This  aligns  with  an  aspect  of  the

motivation  for  this  work,  namely  the  principle  of  “designing  with  the

adoption process in mind”, as enumerated in Chapter 1.

Having the user share a secret with the system is often the most cost-effective way

to establish identity, and the basis for the most disseminated methods, like PINs and

passwords.  Weaknesses  in  password-reliant  methods  has  motivated  the  exploration

other KBA approaches. 

Graphical Passwords

Graphical passwords are a particularly interesting case study, since they have been

a great focus of HCISEC research since the inception of the field. An in-depth overview

of  mechanisms relying on graphical passwords is outside the scope of this work, and

can be found, for instance, in Biddle et al.  (2012).  Usually, graphical passwords are

categorized in:

• Drawmetric systems, where users insert a drawing, which is then compared to a

template.  Examples  include  Android's  pattern  unlock  and  Draw-a-Secret

(Jermyn et al. 1999).

• Locimetric systems, where users leverage their recognition of image features, for

instance selecting specific locations. Examples include Passpoints (Wiedenbeck

et al. 2005) and Windows 8/RT picture password sign-in23.

• Cognometric  systems,  where  users  must  only recognize some images,  which

they previously memorized, from a greater set of images that includes decoys.

The most notorious example is Passfaces24.

Besides Android's pattern unlock, other graphical password-reliant techniques have

not  found  wide  uptake in  smartphone  platforms.  Reasons  for  this,  aside  from

understandable inertia, include: 

• Not  considering  deployability  in  smartphone  platforms  as  a  requirement

(Dunphy et al. 2010). 

• Many methods being found less secure than claimed after further examination

(Biddle et al. 2012).  For instance, drawmetric and locimetric mechanisms are

often  susceptible  to  smudge  attacks,  when they  require  location-specific

interaction with the touchscreen.

23 Windows, “Sign in with a picture passwords”, 

http://windows.microsoft.com/en-us/windows-8/picture-passwords 

24 PassFaces ™, http://www.passfaces.com/ 
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• Unreasonable demand of effort to the user, given smartphone usage patterns.

Regarding the last claim, usability problems in graphical passwords schemes have

been previously observed,  for instance in Chiasson et  al. (2007),  but still  endure in

recent  work.  One  classic  measure  of  usability  is  task  completion  time.  As  per  our

studies  presented  in  the  following  chapters,  PIN  entry  consumes  approximately  3

seconds.  Others have measured it to be approximately 1.5 seconds (Bianchi & Oakley

2012). Differences can be explained by how measurement is performed. Many consider

the first key press or touch event to be the beginning of the interaction. In this work, the

interaction  is  considered  to  begin as  soon  as  the  PIN  entry  screen  is  shown,  thus

accounting for the time a user needs to get ready for entry. Following, three examples of

recent graphical password techniques that address aspects of the proposed threat model,

but impose unfeasible task completion times.

Zakaria  et  al.  (2011) proposed  addressing  shoulder-surfing  protection  for

drawmetric  systems with  three  obfuscation  techniques,  finding  that  only  one  had

simultaneously  “reasonable”  usability  and  security.  “Reasonable”,  however,  means

imposing  an  average  login  time  for  medium-security  passwords  of  6.5  seconds.

WYSWYE, another proposal, but this one addressing shoulder-surfing for cognometric

systems, required upwards of 20 seconds (Khot et al. 2012). Recently, von Zezschwitz

et  al.  (von  Zezschwitz  et  al.  2013) proposed  Marbles  and  Marble  Gap,  two

cognometric-like techniques  designed to be resilient to smudge attacks. The secret is

composed by a sequence of colors, e.g. red-white-blue-yellow.  In Marbles, users are

presented with a circle of 10 colored marbles an must drag the right sequence to the

center; the circle rotates in each interaction so that smudges left have no fixed meaning.

In Marble Gap, 20 circles are dispersed through the screen, and must be dragged to a

specific  area  in  order;  in  each  interaction  the  circles  are  redistributed  randomly.

Although the techniques are shown to be resilient to smudge-attacks, entry consume on

average 6 to 8 seconds.  When comparing to 3 seconds,  all  these techniques are too

taxing to users' attention. 

Haptic Techniques

Other recent proposals have departed from the graphical password paradigm, and

tried  to  leverage  the  augmented  capabilities  provided  by smartphone  hardware.

PhoneLock  (Bianchi, Oakley, Kostakos, et al. 2011)  is  a PIN entry system that uses

audio or vibrotactile cues. Since it does not rely solely on visual cues, the system is

resilient to shoulder-surfing (in the audio case, observation is prevented with the use of

headphones). Furthermore, this system allows eye-free interaction, therefore being well

suited for social contexts, and is actually implement in the iPhone platform. The method

works by mapping possible PIN digits to audio/tactile cues, having the user lookup the

20



appropriate cues traversing their finger through  a circular interaction area,  and finally

performing a gesture upon successful recognition of each digit. The cost the user pays is

memorizing the cues that map to each digit, which is non-trivial effort. Even if training

demands are discounted, authentication was found to take an average of 19.9 seconds in

haptic mode and 12.2 seconds in audio mode,  likely because of the cognitive effort

required to  map digits  to  cues  and the need for explicit  lookup (Bianchi  & Oakley

2012).

SpinLock  (Bianchi, Oakley & Kwon 2011) is a related haptic technique, but one

where no mapping is required. In this system, as the user moves a finger in the circular

interaction area,  he/she receives periodical cues,  having only to  count  their  number.

Each number is also associated with a clockwise or counterclockwise direction, thus

expanding  the  key space.  The  system  gives  safeguards  against  smudge  attacks  by

varying the space between cues, i.e. one time a full spin may give 4 cues and the next 10

cues. However, average interaction times were found to be 13.8 seconds in haptic mode

and 10.8 seconds in audio mode, which should again be compared with 3 seconds for

traditional PIN entry.

Gaze-based Techniques

One recent trend in KBA systems is using eye-gaze to tackle both shoulder-surfing

and smudge attacks. Since the gaze does not require physical contact, smudge attacks

are impossible; shoulder-surfing protection is also assured as long as there's no obvious

feedback on screen. Observation of eye movement can be a threat in some cases, where

a sequence of eye movements is visible to the attacker.

EyePassword (Kumar et al. 2007) was a seminal proposal for password/PIN entry

using eye-gaze,  in a time where eye trackers were becoming affordable.  Although a

keypad is proposed, the evaluation only considers alphanumeric keyboards. Login times

are between 9 and 12 seconds, depending on keyboard layout and whether key selection

is performed by dwelling 450ms on a key or pressing the space bar.  De Luca et al.

(2007) further explored eye-gaze PIN entry, using a virtual keypad modeled after an

ATM  interface.  They  found  that  login  time  varied  between  12  and  13  seconds,

depending on the key selection technique. They also found error rates varying between

20.6% and 23.8%, which is considerable, especially if error recovery is not possible, as

is the case (since validation only occurs at the end of entry).

Some gaze-based techniques are extensions of locimetric graphical passwords, i.e.

the user is presented with an image (or a sequence of images) and selects some secret

locations within it. The selection, instead of requiring clicks or touches, requires only
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suspended gaze.  Forget et al.   (2010) investigated this approach and found it viable.

Login time, however, averaged 36.7 seconds in the best performing of two conditions. 

One known problem with selecting locations in a picture is that users tend to select

obvious  hotspots,  or  salient  features  of  the  image.  Bulling  et  al.  (2012) propose

addressing these issues by automatically detecting these hotspots and preventing the

user from selecting them by obfuscating them with a mask. Although the study indicates

that  the security  of the method is  increased with this  obfuscation,  usability  remains

problematic: only ~25% of users rated it as high, compared with ~75% for eye-gaze PIN

entry. 

EyePassShapes  (De  Luca  et  al.  2009) is  an  approach  similar  to  drawmetric

graphical  passwords  that  uses  eye-gaze,  specifically  eye  gestures.  A PassShape  (De

Luca, Weiss & Hussmann 2007) is a graphical secret that maps into a PIN, much like

Android's pattern unlock (the 3x3 matrix can be conceived as digits, and the drawing

connects them sequentially). For users that selected a PassShape with a single stroke,

login took an average of 5.3 seconds, which is promising. The technique was shown to

be more resilient to observation than traditional PIN entry, but still suffered from a 55%

successful attack rate, when the eye gestures were made visible to others.

As  is  the  case  with  graphical  passwords  and  haptic  techniques,  gaze-based

techniques  imposed  extended task  completion times, in  many cases  not  suitable  for

smartphone usage. Although none of the aforementioned methods was implemented in

smartphones,  in  this  particular  case,  they  should  not  be  dismissed,  given  the  rapid

advances in  computer  vision/gaze-detection techniques and the diffusion of libraries

such  as  OpenCV25,  that  make  them  viable  alternatives  in  the  foreseeable  future.

Regarding supporting a social context, namely the ability to interact inconspicuously,

these methods occupy a middle-ground: in some specific cases,  for instance with the

phone laying on a table, authentication could be performed without others noticing it.

Implicit Authentication

Some recent authentication techniques have combine elements of the “something

you know” to  the  “something you are”  paradigms,  without  being  exactly  biometric

methods. Instead, they still require a user to enter the secret, but also assess if the way in

which input was performed is consistent with previously known parameters measured

from the same user. These approaches have advantages in terms of theoretical security,

since the key space is expanded, and, conceptually, do not pose much greater usability

barriers than the KBA method they are based on.  Furthermore, they tend to provide

25 OpenCV, Open Source Computer Vision, http://opencv.org/
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resilience  to  shoulder-surfing  and smudge attacks,  since  the  implicit  gaging of  user

behavior can't easily be replicated.

One implicit authentication method is analyzing keystroke dynamics while a user is

inserting a password  (Bergadano et al.  2002).  While this is a somewhat well-known

technique for passwords in physical keyboards, one experiment with mobile devices

(Hwang et al. 2009) makes the feasibility of smartphone deployability questionable. To

use keystroke dynamic effectively for PIN entry, users had to be forced into an artificial

rhythm, which in turn raises the effort required of them.

More  promising  results  were,  however,  obtained from  gaging implicit  behavior

while using Android's pattern unlock. De Luca et al.  (2012) finds that by extracting

features like  pressure, time and speed  of touch events, the graphical password can be

inserted  with  no  increased  effort  to  the  user  but  with  added  security,  including

protection from observation and smudge attacks. The approach, however, is parametric,

that is, the users had to create a  model by  exemplifying multiple times at enrollment.

Furthermore,  the  system  also  denied  access  when  a  legitimate  user  was  trying  to

authenticate ~19% of the time, which is rather high, i.e. in one of every five attempts

users could not login. It should be noted that some users performed much better than the

average,  suggesting  that  there  is  room  for  substantive improvement.  A  similar

observation was made in our studies, suggesting that learning the interaction technique

may improve results. In this case, however, the interaction technique itself is not new, so

expecting improvements from learning effects contradicts, in a sense, the concept of

implicit authentication.

Rhythmic Authentication

The  work presented  in  this  dissertation consists of  a  method that  uses  tapping

patterns on a touchscreen for authentication. This approach builds upon previous work

on rhythmic interaction in general, and rhythmic authentication in particular, although

we  don't  impose  any  measure  or  motif  constraints  on  the  pattern.  In  other  words,

unintelligible tap phrases or ones resembling Morse code are encompassed. 

Ghomi  et  al.  (2012) attempts  to  generalize  an  input  method  based  on  rhythm,

making use of both taps and breaks. In this work the types of words that can exist are

bounded to 5 – three varieties of tap and two of break, varying in canonical duration.

Using fixed durations and threshold-based approaches, in our own experience (Marques

et al. 2012), leads to very weak matching, and is thus unsuitable for authentication or

other critical interactions.

RhythmLink (Lin et al. 2011), although targeted to peripheral pairing, also relies on

detection of rhythmic  input.  This modality  is argued to be  well suited for interacting
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with devices that have limited I/O capabilities, since only a binary sensor is needed.

Several  examples  are  required  to  train  the  recognizer which,  if  applied  to  an

authentication system, would bloat the required effort for configuration. The algorithm

does not fully take into consideration tap and break time spans, instead measuring only

the distance between each tap. This makes it suitable for devices in which tapping a

binary sensor fires events on press but not on release, although it implies losing some of

the richness of tap phrases.

The main proposal in which the present work builds upon is TapSongs (Wobbrock

2009), a system were users can configure tapping patterns representing songs. Although

the paradigm is similar, TapSongs requires several repetitions on configuration. We also

expand  on  this  work  by  exploring  the  usability  of  tap-based  authentication in

comparison to the alternatives, within the context of a well-defined threat model.

Authentication  using  rhythms,  or  tap  patterns,  addresses  the  three  dimensions

identified in section 2.4.3, respectively:

1. Since the theoretical key space is limited only by the resolution of the detection

technique,  tap phrases can be created that are very short and yet very distinct.

The implication is that the user can configure a very short pattern, and therefore

limit the usability barrier for him/herself.

2. Tap  phrase authentication  can  be  performed  without  resorting  to  the  visual

channel, and, as we'll show, is well suited for social contexts in the sense that it

affords  inconspicuous  interaction.  This  allows  the  user  a  way  to  prevent

observation from casual adversaries when he/she feels threatened. Furthermore,

since the location on the screen where the tapping occurs is irrelevant, smudge

attacks are, in practice, impossible.

3. As we'll show, tap phrase authentication can be deployed to current smartphone

platforms very efficiently.

2.4.4  Towards Accessible Knowledge-based Authentication

One advantage of resorting to eyes-free interaction methods is that they very often

can  address  problems  of  users  with  visual  impairments.  Working  on  accessible

technologies is a staple of the research team within which the work here presented was

conducted.  In  consequence,  the  opportunity  to  evaluate  tapping  authentication  with

blind users was rapidly identified.

Although limited,  authentication for  blind  users  has  been previously addressed.

ATMs,  for  instance,  often  offer  auditory  assistance,  provided  the  user  connects
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headphones. Mobile phones with T9 keyboards are also easy to navigate using only

touch.

But smartphones typically have touchscreens with virtual keyboards. At least one

authentication method has been proposed for these devices: PassChords (Azenkot et al.

2012).  With  this  technique, users  input  a  secret  that  is  a  sequence  of  multi-finger

touches, using the 4-finger chord analogy which is already familiar to individuals who

write Braille,  possibly enhancing recall in those cases. Entering PassChord consumes

very little time, in average 2.67 seconds, when comparing to PIN entry with a screen

reader (7.52s), and even PIN entry and other KBA techniques for non-blind users. The

technique  also  offers  reasonable  protection  from smudge  attacks,  given  that  in  the

calibration phase all 4 fingers are pressed down. The fact that entry requires 4 fingers

has two adverse implication: first, it makes it more difficult to authenticate with a single

hand, limiting the capacity for concealment of interaction (e.g. perform authentication

inside  the  pocket);  and secondly  it  requires  a  smartphone  that  can  detect  4  fingers

simultaneously, which is not the case with cheaper commodity devices. 

Shinohara  (2010) summarizes interviews to 19 users of assistive technologies in

social and professional settings, finding that they were very aware that using special

devices  marked  them  in  the  eyes  of  others,  preventing  them  from  blending  with

landscape, and thus causing negative feelings. As a response, Shinohara & Wobbrock

(2011) proposes that assistive technology should be designed for social acceptability or,

even  better,  that  mainstream  technology  should  have  accessibility  built-in,  i.e.  be

inclusive, as to avoid necessary unease and feelings of self-consciousness. This is one

aspect in which our approach has an advantage over the (yet few) alternatives that have

been considered for blind users: it does not require adaptation.

2.5  Summary

This chapter frames  our research in a larger context. It starts by contextualizing

findings in the social sciences that provide pieces of the puzzle that is privacy. There is

now an understanding that  privacy is  not  an immovable concept,  but  one rooted in

individual  preferences,  which  in  turn  respond  to  a  larger  context.  One  interesting

vantage point to understand why people make poor choices when it comes to preserving

their own privacy is  a cost-benefit  analysis. Many of the seminal findings in HCISEC

can be explained within this framework. Users choose poor passwords because memory

is costly. Users don't encrypt their emails because understanding how to do it correctly

is costly. 

The introduction of smartphones has heightened the problem of preserving privacy.

As Bell & Dourish (2006) eloquently put it,  “The ubicomp world was meant to be clean
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and  orderly;  it  turns  out  instead  to  be  a  messy  one.”  Using  smartphones  creates

situations and practices where our intellectual resources are even more constrained, and

where new risks emerge. The threat of forced exposure has become more pernicious as

smartphones became intertwined with our intimate selves. 

Some recourse can be found in the ability our devices have to lock out people that

can't  establish themselves as the owner.  But are the ways we authenticate ourselves

appropriate?  The  current  widely  adopted  authentication  methods  are  susceptible  to

rudimentary attacks by untrained users, namely shoulder-surfing and smudge attacks.

The fact that smartphones are made to be used anywhere, not uncommonly in social

settings, is of special concern.

In this context, recent proposals for smartphone knowledge-based authentication

methods are overviewed. We find that, when this threat model is addressed, generally it

is  at  the  cost  of  the  user's  convenience.  This  trade-off  isn't  mandatory.  Rhythmic

authentication  is  a  proposition  that  has  the  potential  do  address  both  constraints.

Furthermore,  rhythmic interaction is a modality that can be employed by blind users,

potentially enlarging the accessibility frontier of this approach. 
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Chapter 3

A Tap Phrase Recognizer for Authentication

This chapter introduces a simple, efficient and accurate tap phrase recognizer based

on template-matching. In essence, it  allows for a user (or developer) to create a tap

phrase by exemplifying it a single time; and, at runtime, recognize if new tap phrases

match the template. The recognizer is targeted at the mobile authentication scenario,

which informs both the choices  made in  the algorithm design (section  3.2)  and the

accuracy  evaluation  procedure  (section  3.3).  To  demonstrate  the  feasibility  of  the

technique,  the  recognizer  was  implemented  as  proof-of-concept  tap  phrase

authentication Android app (section 3.4).

3.1  Background

Modern smartphones  commonly resort  to touch input and on-screen gestures as

principal interaction styles. One class of gestures that is widely used is tapping. While

keystrokes are usually perceived as single events, taps have an implied duration in time.

Single taps, long presses and double taps are some examples. These simplest of patterns

can  be  detected  efficiently  with  crude  algorithms,  that  rely  solely  on  timers.  For

example:

• A tap is long if the release event does not happen within a certain amount

of time from the touch event; 

• A single tap can be distinguished from a double tap by starting a timer after

the release and observing if a second touch  event  doesn't occur before it

finishes.

Tap phrases can be more generally defined as sequences whose words are intervals

of “on” and “off” timespans. This definition can be seen as also subsuming Morse code

and rhythmic patterns.  In  Morse, “on”  members have one of two fixed sizes (dot  or

dash), as do “off” ones (spaces between letters or between words). In rhythmic patterns

the “on” and “off” intervals are arranged to fit a musical motif. 
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Operationally, tap phrases are composed by the ordered time distances within and

between taps. In a touchscreen, starting with an area that is at rest, a tap phrase begins

with the first touch event. When the screen is released, the first tap is finished, having

lasted an amount of time  t1
on,  which is the first  word. At the same instant,  the first

interval  between  taps  begins.  At  the  next  touch  event,  this  interval  (word t2
off)  is

finished, and so on, until the screen is left again at rest. This would indicate that a tap

phrase is a sequence of words {t1
on, t2

off, …}. However, the screen being left at rest, and

the interaction ending, is uncertain at the time of the last release event. It is impossible

to tell if a new “off” word has started or if the  interaction  is finished. For practical

purposes, an additional constraint is therefore placed on this sequence: it has to start and

finish with a tap, being of the form {t1
on, t2

off, …, tn
on}.

For  humans,  comparing  two  pieces  of  Morse  code,  two  rhythms,  or  two  tap

phrases, is a simple enough task, provided some training. But two  tap phrases that a

human identifies as being equal may have a great  deal of variation. Figure  2 shows a

representation of tap phrases through time. Each pair represents two phrases entered by

the same user, and both are perceived by this user as being equal. It is clear, however,

that they are not. 

To  match tap  phrases, an algorithm  is needed that is precise enough as to  reject

inputs that are too different from the original template, while at the same time not being
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Figure 2:  Sixteen cases of tap phrases chosen by end users. Each pair represents a

users’ template  and  subsequent  repetition,  highlighting  the  actual  differences  in  tap

phrases that users perceive as equal. “On” words are represented as black lines and

“off” words as the intervals between them.



so restrictive that the user experiences rejections even when perceiving the phrase to be

equal to the template. 

3.2  Tap Phrase Matching

Our  proposal to  matching follows  a commonly used  approach:  first, synthesize  a

representation of tap phrases that maintains the richness of the raw input while allowing

efficient computation; and then perform comparisons using adaptations of well-known

similarity metrics  and further optimizations.  In the following subsections, we define a

class of recognizers that follow this prescription and identify what are the variables that

can be manipulated to produce specific instances that perform well in the authentication

scenario.

3.2.1  Non-functional Requirements

Usability and security are obvious requirements of software tools developed in the

scope  of  this  work.  But  developing  a  recognition technique  that  is  suited  for

authentication and performs well on smartphones brings additional constraints that we

wanted to address from the outset.

First,  smartphones  are  limited  in  battery  and  computational  power,  so  special

attention to performance must be taken, otherwise sound theoretical approaches may be

unfeasible  in  real  devices,  violating  our  principle  of  “designing  with  the  adoption

process in mind”.

Secondly, as Li (2010) points out, “it is hard to foresee what gestures an end user

would specify and what the distribution of these gestures will look like”, indicating that

parametric approaches, in which classification of inputs relies on statistical properties of

several examples,  are  not  suited.  Beyond  this  abstract  consideration,  using  several

examples for configuration creates usability and security problems in the authentication

scenario. If the user as to enter the same tap phrase several times for configuration, the

process will be very time-consuming. This, in turn, creates an incentive for  users to

choose weak tap phrases and, furthermore, to not change them frequently.

 Therefore, two major non-functional requirements to our classifier are imposed:

1) It must be purely data-driven, with a single example acting as a template, and;

2) It must be able to run smoothly on commodity smartphones.

These requirements are the source of many of the design choices that are explained

in more details in the next subsections. 
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3.2.2  Representation of Inputs

The first step of  the proposed technique is generating comparable representations

of  tap  phrases that  are  machine-friendly  and  still  hold  enough  information  for

distinctions  to  be  made  accurately.  These  representations  are  composed  of  features

described in the next subsections.

Feature #1: Bit Array

The recognizer first  digitizes the raw tap phrases into bit arrays.  In them, bits are

set to 1 for each time unit in which the user was pressing the touch screen, and left at 0

otherwise. 

Two reasons informed the choice of this representation. First,  it allows the use of

common logic operation  over two inputs,  which is a requirement of many similarity

metrics.  Secondly,  Java,  the  language  in  which  the  Android  demo  was  developed,

already offers a compact representation of bit arrays in its standard library, in the form

of the BitSet class26. This class also already has methods for efficiently performing the

aforementioned logic operations27.

The underlying Android OS provides resolution for touch events at the order of the

millisecond. This same resolution can be approximated by the bit arrays. But since it is

very unlikely that both the template and the candidate input have the exact same total

time, one of them will need to be compressed in order to get bit arrays of the same

length (and therefore comparable).

This is achieved by, at runtime, setting the bit array size to the minimum between

the candidate's  and input's  total  time (the sum of  the words in  the tap phrase).  For

instance,  if a  template  lasts 1000ms  and  the  candidate  input  1020ms,  both  will  be

represented by bit arrays of size 1000. Having calculated the size, the bit arrays are

populated through a sampling process. First, the total time of each tap phrase is divided

by the bit array size, obtaining a period (for one of them it will be  surely  1).  Then,

26 BitSet javadoc, Android Developers Reference, 

http://developer.android.com/reference/java/util/BitSet.html 

27 Aside from logic operators, some metrics require the size of the bit array. In Java's BitSet 

implementation, calling size() will return the length of a vector used internally to keep state, and not 

the size requested at creation. This can be easily solved by extending the class so it behaves has 

expected. See  

https://raw.github.com/diogomarques/onoff-similarity/master/src/net/diogomarques/similarity/FixedB

itSet.java 
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progressing through the tap phrase, at each period set the corresponding element in the

bit array to 1 or 0, depending if it falls within an “on” or “off” interval28.  

Feature #2: Total Time

Although  the  bit  array  representation,  given  enough  resolution, contains

information about the “on” and “off” words, certain important features are  necessarily

lost.  The process of compressing either the template or the candidate input by itself

eliminates the information about the total entry time of one of them. Notice that, for any

given tap phrase, any other phrase where the words are symmetrically proportional will

have the same bit array representation. For example, {200on, 200off, 200on, 200off  ,200on}

has the same bit array representation as  {400on, 400off, 400on,  400off ,400on},  although

they are quite different. To address this issue, the total time of the tap phrase is added as

a feature of the representation.

Feature #3: Number of Taps

When there is compression, a characteristic as important as the number of taps may

be  underrepresented  in  the  bit  array.  If  the  tap  phrase  that  is  compressed  has

comparatively short taps or pauses,  compression may indeed completely remove  any

information about them, given the sampling process. To address this issue, a third and

final feature is explicitly added to the representation: the number of taps.

In summary, the complete representation of a tap phrase is a triplet in the form (bit

array, total time, number of taps). 

3.2.3  Matching

Our approach to finding a well-performing algorithm is rooted in defining a general

class  of  recognizers  that  share  the  same logic,  and then  evaluating  the  accuracy of

instances produced by different sets of parameters. In this sub-section, we identify the

underlying logic in all instances and identify the values that can be manipulated.  

Bit Array Similarity Measurement

Once  tap  phrases  are  represented  as  bit  arrays of  equal  length,  they  can  be

compared using a  number of  similarity  metrics.  We explored four  standard metrics,

instrumenting them so that they have fixed semantics, namely: 

• 0 means completely different, and 

28 The Java implementation of this logic can be found in 

https://raw.github.com/diogomarques/onoff-similarity/master/src/net/diogomarques/similarity/TimePa

tternDigitizer.java 
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https://raw.github.com/diogomarques/onoff-similarity/master/src/net/diogomarques/similarity/TimePatternDigitizer.java
https://raw.github.com/diogomarques/onoff-similarity/master/src/net/diogomarques/similarity/TimePatternDigitizer.java


• 1 means “completely” equal. 

The  tentative  metrics considered  were the cosine similarity29,  the Dice-Sorensen

coefficient30,  the  Jaccard  /  Tanimoto  index31,  and  the  complement  of  the  Hamming

similarity32. These metrics are widely used for comparing vectors of binary features in

fields like information theory, cryptography and biology. For instance, the Hamming

distance  was  initially  developed  for  error  correction  in  telecommunication,  and  the

Jaccard index was devised as a statistic for plant comparison. 

The suitability of these metrics to the tap phrase authentication problem was left as

an empirical question, to be addressed in evaluating instances of  recognizers that use

them. 

The definitions of  similarity metrics  for  binary vectors  are sometimes vague and

subject to different interpretations.  Following, precise definitions of  the  operators and

tentative metrics, as they are understood in the scope of this work, are presented.

Operators over the bit array representations are defined as follows:

• The size of a bit array is the count of 0’s and 1’s in it contained.

• The cardinality of a bit array is the count of 1’s in it contained.

• Binary logic operators AND, OR and XOR can be applied to bit arrays, resulting

in a new bit array with equal size, whose members are the result of applying the

operation bitwise.

Given two bit sequences A and B of equal length, which are representations of tap

phrases in which “1” stands for an “on” time unit and “0” stands for an “off” time unit:

• The  function  Cosine,  derived  from the  cosine  similarity,  measures  how  the

amount of coinciding “on” time units in A and B relates to the geometric mean

of “on” time units in the representations, and is defined as

• The function  Dice,  which is the Dice-Sorensen coefficient, measures how  the

amount of coinciding “on” time units in A and B relates to the arithmetic mean

of “on” time units in the representations, and is defined as

29 Wikipedia, Cosine similarity, http://en.wikipedia.org/wiki/Cosine_similarity 

30 Wikipedia, Sorensen-Dice coefficient, http://en.wikipedia.org/wiki/Dice%27s_coefficient 

31 Wikipedia, Jaccard index, http://en.wikipedia.org/wiki/Jaccard_index 

32 Wikipedia, Hamming distance, http://en.wikipedia.org/wiki/Hamming_distance 

32

Cosine( A , B)=
cardinality ( A AND B)

√cardinality (A)×cardinality ( B)

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Jaccard_index
http://en.wikipedia.org/wiki/Dice's_coefficient
http://en.wikipedia.org/wiki/Cosine_similarity


• The function  ComplHamming,  adapted from  the  Hamming distance,  measures

the complement of the ratio between the quantity of time units where “on” and

“off” do not coincide and the total number of time units in the representations,

and is defined as 

• The function Jaccard, derived from the Jaccard / Tanimoto index, measures how

the quantity of coinciding “on” time units in A and B relates to the total number

of  “on” time units occurring in either A or B, and is defined as

The metrics are themselves a parameter for the recognizer instances.

The Decision Threshold

The decision threshold  is  the minimum level of similarity above which template

and input are considered to match. Since similarity is between 0 and 1, this parameter

must also be in that range.

Controlling Input Time and Number of Taps

Aside from the bit array similarity, the  final similarity  function accounts for the

number of taps and total time length  variations.  This is done by placing two controls

before the bit array similarity metric is applied, rejecting the user when: 

• the number of taps does not match or

• the template and input tap phrases have very different total time.

To verify if template and input are very different time-wise, another threshold is

defined. This threshold is a decimal value above or equal to  0.0, and represents the

proportion of allowed time variation in relation the minimum between the total times of

template  and  input.  For  instance,  if  the  threshold  is  .2,  the  template's  total  time  is
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Dice ( A , B)=
2×cardinality( A AND B)

cardinality( A)+cardinality( B)

ComplHamming( A , B)=1−
cardinality ( A XOR B)

size( A)
=1−

cardinality (A XOR B)

size (B)

Jaccard ( A , B)=
cardinality ( A AND B)

cardinality ( AOR B)



1000ms, and the candidate's total times if 1020ms, a subsequent input will be rejected if

it's lower than 800ms or greater than 1200ms. This threshold of allowed time variation

is also a parameter in recognizer instances.

3.2.4  General Recognizer Algorithm

This class of recognizers can be modeled like an algorithm, in which the execution

result  is dependent on the values of the parameters ascribed to each of the mechanism

defined in  the  previous  subsection.  Each  instance  of  the  recognizer is,  in  effect,  a

different matching algorithm, identified by the set of parameters. 

The recognizer can be summarized as a sequence of 4 steps: 

1. Transform raw  tap  phrases  representing  a  template  and  an  input  into  the

representations as a triple. 

2. Reject the user in the cases where the number of taps does not match.

3. Reject the user in cases where the  difference in  total time  lengths of  template

and candidate input are beyond the allowed time variation threshold (parameter

atv).

4. Otherwise,  calculate the bit array similarity as measured by a given similarity

function (parameter *sm) and:

a. Reject the user if it is below the decision threshold (parameter dt).

b. Otherwise, accept.

In pseudo-code:

function match(raw_template, raw_input, atv, *sm, dt)

template := transform(raw_template)

input := transform(raw_input)

if template.n_taps != input.n_taps

reject()

else if abs(template.total_time – input.total_time) 

                                    > atv * min(template.total_time, input.total_time)

reject()

else 

if sm(template.bit_vector, input.bit_vector) < dt

reject()

else

accept()
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3.3  Accuracy Evaluation

This section presents results of an empirical evaluation that was performed with the

objective of determining parameter combinations that yield well-performing recognizer

instances. The performance of a classifier instance is understood in terms of its capacity

to correctly match a candidate input to a template.  What is being evaluated is not the

interaction style or the authentication method, but solely the degree to which algorithms

work as expected.

In  a  matching  algorithm,  performance  is  usually  defined  in  terms  of  accuracy,

which  is  measured  by the  number  of  errors  it  produces  (Griaule  Biometrics  2009).

Errors in matching are of two kinds:

1. The algorithm erroneously rejects an input. In authentication, this usually means

rejecting  a  genuine  authentication  attempt  by  the  user. These  errors  tend  to

increase when the matching technique is too strict. We will refer to these errors

as  false  rejections (FR),  but  they  are  also  commonly  referred  to  as  false

non-match errors (FNME).

2. The  algorithm  erroneously  accepts  an  input.  In  authentication,  this  usually

means  accepting  an  impostor's  authentication  attempt.  These  errors tend  to

increase when the matching technique is too lenient. We will refer to these errors

as false acceptances (FA), but they are also commonly referred to as false match

errors (FME).

A well-performing  algorithm  is,  then,  one  in  which  both  these  errors  occur

infrequently.  This  is  a  non-trivial  objective  to  attain  since  errors vary in  opposite

directions according to the strictness of matching.

3.3.1  Method

Datasets

The  evaluation  here  presented  uses  a  dataset  extracted  from  the  user  study

described  in  chapter  4,  in  which  users  first configured  tap  phrases  and  then

authenticated by repeating them. The  Android  app kept logs of these interactions in

XML files. For  this  evaluation,  the  data  extracted  was:  1)  the  template  each  user

recorded,  represented  as  a  sequence  of  time  intervals;  and  2)  each  user's  last

authentication attempt, represented in the same way. There were only three  instances

where the user failed to authenticate in the first attempt, but they were noticeable cases

of entry errors, since a) the number of taps did not coincide,  and b) they were able to

authenticate in a subsequent attempt.  The criteria of extracting only the last  attempt

excludes these cases, which are not pertinent for accuracy.
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In the initial phases of development, a small dataset, containing the logs of repeated

interactions  of  3  users  was used  to  develop a  matching algorithm that  would  work

“well-enough”. This algorithm was implemented in the Android application used in the

subsequent user studies33. This dataset, however, is not  adequate, given that it is very

small  and  that  the  data  collection  procedure  required  the  users  to  perform several

repetitions at speeds different than that of  pre-configured  templates. Since that at the

time of  writing  of  this  document  better  datasets  were collected,  the  evaluation  was

performed on the larger of these.

Apparatus & Procedure

The selected approach to assessing accuracy is exploratory data analysis  (EDA).

Since the  algorithm  has  many  moving  parts  and  parameters  that  interact  with  one

another, we found model creation and hypothesis testing to be less productive approach

than EDA.

To retrieve metrics, we implemented a simulation tool in Java that is able to replay

user interactions given the logs.  It can  also instrument the  logic of the algorithm to

bypass steps the execution, namely to isolate the effects of enforcing equal number of

taps  and/or time  variation  thresholds (which  are  independent  from  the  metric  and

decision threshold) from the similarity calculation.  The tool automates the process of

running the dataset through one or many instances of the recognizer. 

The parameters that were used are shown in Table 1. When the class of algorithm is

instrumented to not enforce one of its three steps, some parameters are irrelevant. For

instance, the allowed time variation parameter set is irrelevant when the algorithm is

instrumented to not enforce the time variation  control. This will be made clear when

discussing results.

Parameter Levels # Levels

Similarity metric Cosine, Dice, ComplHamming, Jaccard 4

Allowed time variation (ATV) 0.5, 0.10, 0.15, …, 0.45 9

Decision threshold (DT) 0.01, 0.02, 0.03, …, 1.00 99

Table  1:  Summary  of  parameters  and  respective  level  sets  used  in  accuracy

assessments. 

33 This early implementation is explained in Marques et al. (2013)

36



Metrics

For each recognizer instance, errors were measured in the following way:

• Each tap phrase input used in a unlock attempt is matched against the template

from the same user. If  the  recognizer rejects the authentication attempt,  this is

considered a false rejection. Since there are 30 pairs of template/candidates, for

each  instance  of  the  classifier,  30  simulations  of  “genuine”  authentication

attempts are performed.

• Each  template  is  matched  against  the  templates  of  every  other  user.  If  the

recognizer  accepts,  this  is  considered  a  false  acceptance. Since  there  are  30

templates, for each instance of the classifier, C30
2=435 simulations of “impostor”

authentication attempts are performed.

The outputs of these simulations that are used for EDA are, for each recognizer

instance:

• The similarity score of every simulation in which the input was accepted.

• FRR - the false rejection rate (number of rejections of genuine authentication

attempts over 30).

• FAR  -  the  false  acceptance  rate  (number  of  acceptances  of  impostor

authentication attempts over 435).

• DOT - the dot product of the pair (FRR, FAR) with (0, 0), which summarizes the

objective of minimizing both types of errors.
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3.3.2  Results

Similarity Metric Function

Analyzing  the  similarity  metric  functions  is  the  first  step  to  understand  if  the

algorithm is viable. To do this, we first look at the distribution of similarity scores for

genuine authentication attempts. 

To isolate the effect of the metric, four variants of the algorithm were used, each

one instantiated with one metric.  All  instances were instrumented to  not control  for

number of taps or entry time variations.

Figure  3 shows the distribution  of  similarity  scores  for  each metric  in  genuine

authentication  attempts.  The  first  observation  that  can  be  made  is  that  the

ComplHamming seems to better map to the semantic values of 1 and 0.  The average

ComplHamming score was .836 (SD=0.069), which approximates “completely equal”

better than Jaccard (M=.483, SD=.185), Dice (M=.630, SD=.176) and Cosine (M=.633,

SD=.175). The ComplHamming scores are also much less dispersed, with IQR=.109,

which compares with Jaccard IQR=.363, Dice IQR=.337 and Cosine IQR=.319. 
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Figure  3: Distribution of scores in genuine authentication attempts. Recognizer

instrumented not to control for differences in number of taps and total time.



Low dispersion is desirable because it makes it easier to identify a small range of

decision  thresholds that  allows most genuine authentication attempts  to be accepted.

This  is  particularly  of  concern  because  the  similarity  threshold  is,  in  practice,  the

greatest obstacle to genuine authentication, since a user knows the number of taps and

the approximate length of his tap phrase. For an impostor, controlling for these two

factors already blocks many attempts, and similarity score is the last resort. Therefore, if

there is  much dispersion,  the genuine user  will  likely be burdened with many false

rejections, which is highly undesirable since it hinders usability.

Given  the  visible  differences  in  dispersion  of  similarity  scores  yielded  by  the

similarity  functions,  we hypothesized that  there is  a fundamental  difference in  their

sensitivity to the ratio of zeros and ones in the bit array. We found that there is, in fact,

evidence for such phenomenon. Table 2 illustrates the effect on each metric of having

mismatches in  both sparse and compact  arrays  through  two examples,  showing that

ComplHamming, unlike the other measures, is equally sensitive to differences between

input and template whether the array is sparse or not. 

Since it is difficult to tell what kind of tap phrases users will select “in the wild”,

namely if they will be have long intervals and short taps, long taps and short intervals,

or  anything  in  between, we  conclude  that  the  other  metrics  are  not  adequate.  The
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Table  2:  Examples of the effect of the bit array density on the similarity function's

results. Functions other than ComplHamming are more sensitive to mismatches in sparse

arrays. 

Function Arguments Similarity
(dense template, candidate w/ 1 error) .94
(sparse template, candidate w/ 1 error) .94
(dense template, candidate w/5 errors) .68
(sparse template, candidate w/ 5 errors) .68

Cosine

(dense template, candidate w/ 1 error) .95
(sparse template, candidate w/ 1 error) .82
(dense template, candidate w/ 5 errors) .74
(sparse template, candidate w/ 5 errors) .29

Dice

(dense template, candidate w/ 1 error) .95
(sparse template, candidate w/ 1 error) .80
(dense template, candidate w/ 5 errors) .74
(sparse template, candidate w/ 5 errors) .28
(dense template, candidate w/ 1 error) .90
(sparse template, candidate w/ 1 error) .67
(dense template, candidate 5 w/ errors) .58
(sparse template, candidate 5 w/ errors) .17

ComplHamming

Jaccard

Dense template: 1100011100001111
Dense candidate input with 1 error: 1000011100001111
Dense candidate input with 5 errors: 1000000110011111
Sparse template: 1000001000000001
Sparse candidate input with 1 error: 0000001000000001
Sparse candidate input with 5 errors: 0100000100000011



ComplHamming function, unlike the others, is able to distinguishing among tap phrases

regardless of the distribution and length of “on” and “off” words. 

Controlling Time and Number of Taps

The first measure in place to deny access to impostors is to control for the number

of taps and the total time difference between template and candidate input. To assess the

effect  of  these  controls,  which  are  the  first  two  actionable  steps  in  the  class  of

recognizers,  we  first  assess  the  effect  of  each  control  separately,  and  then  in

conjunction.

To assess the effect of controlling only the number of taps, a single instance of the

recognizer was used, in which only the first step was executed, with the result being 0 if

the number of taps  did not match, and 1 if they  did. Running all inputs through this

variant  gave a false acceptance rate (FAR)  of 18.16%,  and no false rejections. This

means that controlling the number of taps for itself was already filtering out 81.84% of

impostor attempts.

The  effect  of  controlling  only  for  total  entry  time  was assessed  by  creating  9

instances of the recognizer, each parametrized with a different ATV value. In this case,

the algorithm was instrumented to not control for the number of taps, and to return 1 in

case input  and template entry times were within bounds,  and 0 otherwise.  Figure  4

(left), shows the result on the FRR and FAR of the various levels of ATV.  At  the  .15

level, the  FA and FR rates were the closest,  with 23.33% of genuine authentication
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Figure  4:  False acceptance and rejection rates as a  function of  the allowed time

variation  between template  and candidate  input,  controlling  (right)  or  not  controlling

(left) for equal number of taps. Similarity metric and decision threshold not applied.



attempts refused, and 25.29% of impostor attempts accepted. For ATV equal or greater

than .30, there were no false rejections, while the false acceptance rate was kept at 45.05

%.

Both the controls for total time variation and number of taps created obstacles for

impostor attempts, but the former also had an impact on genuine attempts when set too

high. Since the recognizer uses both controls, we next assessed the effect on accuracy of

the two controls in conjunction. To that effect, also nine instances of the recognizer were

used, this time instrument to execute the first two steps, but outputting 0 if any of the

controls failed, and 1 if none failed. Figure 4 (right) shows that controlling for taps and

time variations shifted the false acceptance rates downwards while maintaining the false

rejections constant. As a result, only using these two controls, it was possible, at the .25

ATV level,  to  have the  FAR at  8.27% and the  FRR at  3.33%; or,  at  the  .30 level,

completely eliminate false rejections while keeping the FAR at 9.43%. 

The implication is that, even before controlling for similarity, and in the best case

scenario where one  user configured a tap phrase with the same number of taps than

others,  this tap phrase  would only be accepted in  approximately  1 out of each 10 of

others' devices.

Putting It All Together

Having identified  the ComplHamming similarity function as the most adequate,

and established that controlling for number of taps and entry time variation already did

filter out  many impostor  attempts,  without  necessarily  imposing to  the user  a  great

number of false rejections, we then combined both aspects. To that end, instances of the

recognizer that progress through all the steps were created. These instances used the 99

decision  thresholds  and 9  allowed time variation  levels  defined in  table  1,  i.e.  891

recognizers were simulated. 

Figure  5 shows, for  each level  of ATV, the FAR and FRR as  functions of  the

decision threshold.  As the results for the allowed time variation effects suggested,  at

the .25 ATV levels the lines converged, indicating this  was the minimum value for

which both rates could be kept low simultaneously. Since it is difficult to discern in the

graphs  what were the best performing recognizers, the 10 instances where the DOT

metric was lower are shown in Table 3.  It is clear the the top-performing instances had

ATV set to between 0.25 and 0.35, and DT between 0.67 and .7.
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A careful look at the table indicates that setting ATV at .25 always resulted in  at

least 3.3% FRR, the same rate which was observed when the similarity metric was not

put in place.  Given that the FRR is calculated with only 30 comparisons, this means

there was only a false rejection due to the total time variation control that could not be

avoided. 

Notice, however, that setting decision threshold to .7, it was possible to reduce the

FAR from 8.92% to 4.6%. Similarly, for the .30 ATV level and the same .7 DT, the FAR

was reduced from 9.43% to 5.52%. It is, therefore, clear that using the ComplHamming

metric could indeed improve the resistance to impostor authentication attempts. 
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Figure 5: False acceptance and rejection rates as a function of the decision threshold,

for 9 levels of allowed time variation between template and candidate input. 



Computational Performance

The  simulation  tool  was  imported  to  an  Android  Test  Project,  using  Android's

testing framework, and 414315 consecutive authentication simulations were performed

on a clean  Samsung Galaxy mini device34.  Recognizers  were  instantiated with all the

combinations of the parameters in Table 1, except for the similarity metric, which was

set to  ComplHamming.  Each operation  took an average of  0.23 milliseconds,  which

suggests that the recognizer is indeed fast. 

3.3.3  Discussion

The  exploratory  data  analysis  indicates that  for  the  dataset  were  authentication

simulations were run, the proposed algorithm is feasible. It's computational efficiency

was attested  by  performing the  actual  operations  that  a  Java  implementation  of  the

algorithm requires, on stock, low-end devices. Furthermore, by  having the  recognizer

enforce all the proposed mechanisms and setting the decision threshold to around .7 and

the allowed time variation to 0.25 or 0.30, the false acceptance and false rejection rates

can be kept at low levels, in the region of 5%. There is evidence that all the steps of the

matching algorithm do indeed improve accuracy.

Some recent  fingerprint  recognition  techniques  promise  extraordinary  low false

acceptance and rejection  rates. In the ongoing Fingerprint Recognition Competition35,

some algorithms which were evaluated to standardized benchmarks have achieved rates

below 1%. However, these results aren't comparable to the ones here presented. Aside

from  the  fact  that  achieving  such  precision  in  fingerprint  recognition  requires

34 A low-end device was chosen intentionally to approximate a worst-case scenario. Specifications: 

http://www.samsung.com/galaxyace/mini_techspec.html

35 FVC-onGoing: on-line evaluation of fingerprint recognition algorithms, 

https://biolab.csr.unibo.it/fvcongoing 
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Table 3: The 10 recognizer instances with lower DOT, out of 891 simulations using 9

levels of allowed time variation, 99 levels of decision threshold (as per table 1), with the

sampling coefficient set to 1.

DT ATV FAR FRR DOT
0.7 0.3 5.52% 0.00% 5.52%
0.7 0.25 4.60% 3.33% 5.68%
0.69 0.3 5.75% 0.00% 5.75%
0.69 0.25 4.83% 3.33% 5.87%
0.68 0.3 6.44% 0.00% 6.44%
0.68 0.25 5.52% 3.33% 6.45%
0.7 0.35 6.90% 0.00% 6.90%
0.69 0.35 7.13% 0.00% 7.13%
0.67 0.25 6.44% 3.33% 7.25%
0.67 0.3 7.36% 0.00% 7.36%

https://biolab.csr.unibo.it/fvcongoing
http://www.samsung.com/galaxyace/mini_techspec.html


technology that isn't yet available on smartphones (namely, precise optics), there is a

fundamental difference between biometrics and knowledge-based systems as tap phrase

authentication. Everyone has a different fingerprint. Not everyone has a different secret.

The false acceptance rates in our analysis can be the result of users choosing the same

(or very similar) tap phrases. It may be what as aptly been called a “password problem”

(Maguire & Renaud 2012), not a recognition problem.

One  limitation  of  this  analysis is  that,  in  a  sense,  the  parameters  found  to  be

adequate to instantiate an accurate recognizer are, in fact, optimized for the dataset that

was used. This is of special concern in the case of the false rejection rate, since for each

recognizer instance only 30 genuine comparisons were performed, one for each pair of

user template configuration and subsequent authentication attempt. One way to mitigate

this is to perform subsequent evaluations with repeated authentication attempts, ideally

over a long period of time (in order to also tackle memorability and skills-improvement

effects, which were not addressed here). Designing such a study will benefit from the

analysis that we presented, since solid and testable hypothesis can now be put in place. 

3.4  Android Demo

As  the  oft-heard  mantra  goes,  “simulations  are  doomed  to  success”.  Not

considering the practicalities of deploying authentication systems has been identified

has one reason hindering adoption of post-password solutions  (Dunphy et  al.  2010).

With the explicit objective to demonstrate the practical feasibility of our approach, we

developed a small Android application in which tap authentication can be experienced.

The proof-of-concept application has only three features:

1. Configuration of a template:  a three-step process similar to Android's pattern

configuration, with an added tap phrase visualization facility.

2. Authentication: for subsequent tap phrase entry and matching.

3. Settings: an Android-standard preferences manager.

These  features  are  shown in  subsection  3.4.1.  Designing interaction around the

recognizer  also raised the question of entry confirmation:  how does a user  tells  the

system that he has finished entering the tap phrase? The demo includes three options to

address this problem – using buttons, gestures, or not requiring user confirmation at all.

The trade-offs between these alternatives  discussed in subsection  3.4.2.  Deploying an

actual application also had the collateral effect of producing a code base that developers

can  apply to tap phrase recognition  problems  in other  contexts.  The main re-usable

components are shortly presented in section 3.4.3.
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3.4.1  A Top-down View
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Figure 6: Digital wireframe for the Android demo application. Arrows represent the

main transitions. Some non-GUI actions and transitions represented in flowchart style.



Figure  6 illustrates the interaction flow in the demo application.  The application

starts  at  the  dashboard  screen  (1),  which  connects  to  the  configuration  and

authentication screens. The second is blocked until a template is configured. 

From the dashboard, using Android's option buttons, it is also possible to initiate a

preferences screen (1.1). This screen defined declaratively in an XML file and rendered

by Android depending on version and theme. The following preferences can be set: 

• Decision threshold 

• Allowed time variation

• Entry confirmation style (see subsection 3.4.2)

• Number of allowed attempts

Configuration is  performed through three successive screens  (2 to 4).  The user is

required to enter the tap phrase two times, as is  customary. The template is recorded

from the second example, and only if it  is sufficiently similar to the first. In the third

step, the user can visualize the tap phrase as a succession of flashes, and then confirm.

Once  the  configuration  is  completed,  the  “unlock”  option  is  opened  in  the

dashboard (5) and the user can then experience authenticating with a tap phrase (6).

Successes  and  failures  are  acknowledged  through  short  and  long  vibrations,

respectively, and also Android's toasts (self-dismissing text notification). In the case of

failures, the toast indicates how many attempts are left. Confirmation of input depends

on the selected mode. The three available mechanisms are explained in the next section.

3.4.2  Entry Confirmation

When a user releases the screen, one of two things might be happening: either the

pattern insertion was completed  or  a new off interval was started.  To overcome this

ambiguity, a number of approaches are possible.

The obvious approach, and the one we initially followed, is to set a timer after each

release event and wait for another touch. If the timer ends without further touch events,

one  assumes that  the  interaction  is  over. This  approach  was  abandoned because,  in

practice, it is ineffective, for two reasons. First, it forces “off” words to have an upper

bound equal to the timer's length, thus limiting the richness of phrases that the users can

select. Secondly, it imposes a wait period before an input is accepted or rejected, adding

to  the  task completion  time,  which impacts  usability.  In  effect,  a  trade-off  between

security and usability is created: if the timer length is too short, the task completion time

improves but the theoretical key space is reduced, and vice-versa.
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We therefore explored two other modes of operation, and decided to leave it to the

developer which to  make available to the user. Both approaches have advantages and

disadvantages that we make clear. The specific use case should inform the choice of the

appropriate mode.

Mode 1: Action-triggered Confirmation

In this  interaction style, the user is required to perform an additional action after

inserting the tap phrase.  We propose  two variations,  one using  buttons  and another

on-screen gestures.

Buttons: in the bottom of the screen,  two buttons appear: “Clear” and “OK”. The

first resets the input logger; the second triggers the recognizer.

Gestures: the user performs a swipe gesture36 on the screen; left-to-right to confirm

and right-to-left to clear.  To capture the confirmation gesture, a  standard recognizer is

attached to the screen where the tap phrase is entered.

The main advantage of this style,  in both variants, is the ability to correct errors

using the “clear” action. Quick recovery from self-detected errors tends to have positive

impact on user experience, and has very recently been identified as one of the reasons

why users favor Android's pattern unlock over PINs, despite increased number of errors

and task completion times (Zezschwitz et al. 2013). Conversely, usability is negatively

impacted  by  having  to  perform  an  additional  action.  In  the  variant  that  resorts  to

buttons, finding them on the screen can also prevent inconspicuous interaction, at least

for the novice user. For the gesture variant this is a lesser issue, since the user can swipe

anywhere on the screen, using just one finger. However, since gesture detection can fail

if the user does not perform the gesture within the detector's parameters, entry errors can

be increased.

Mode 2: Continuous Verification

Another possible approach is to calculate similarity  every time that a  tap  phrase

candidate emerges,  that is, every time the user releases the screen.  This approach also

resorts to a timer, but one that can be much longer, since it will only run out if the input

does  not  match  the  template  –  if  it matched,  that  last  candidate  already  had  been

accepted. 

In pseudo-code:

36 Gestures, Android Design Patterns, http://developer.android.com/design/patterns/gestures.html. 
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function onReleaseEvent()

if similarity(template, candidate,...) > threshold

accept();

else 

startTimer();

function onTimerFinished()

reject();

The great disadvantage of this approach is that it noticeably reduces the key space.

For example, the input {200down,  200up,  200down,  200up,  200down}  will be accepted if the

template is either {200down, 200up, 200down, 200up, 200down}, or {200down, 200up, 200down,} or

{200down}. In other words, a triple tap covers the space of single, double and triple taps

phrases.

Comparison 

Table 4 summarizes the advantages and disadvantages of both modes of operation

and respective variants.  The observations reflect  the general case. Users may miss the

right button in the action-triggered mode, or be able to use the button without visual

feedback, but these tend to be the extremes of novice and proficient users.

Mode of

operation / variant

Provides error

correction?

Increases  entry

errors?

Increases task

completion time?

Requires visual

feedback?

Reduces key

space?

Action-triggered /

buttons

Yes. No. Yes – finding the

button and

performing action.

Yes. No.

Action-triggered /

gestures

Yes. Yes, due to gesture

detection failures.

Yes – recalling the

gesture and

performing action.

No. No.

Continuous No. No. No. No. Yes.

Table 4: Advantages and disadvantages of the modes of operation

These  factors,  instead  of  imposing a  trade-off,  cross-cut  both  the  usability  and

security dimensions. In particular, although continuous authentication reduces the  key

space,  security  considerations  only make sense in the context  of  a threat  model.  In

reference  to  the  one  presented  in  section 2.4.2,  in  which  the  adversary  is  a  casual
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observer in a social setting, to the extent that this mode of operation affords non-visual

interaction  and  consumes  less  time  than  the  alternative,  it  can  be  said  to  favor

inconspicuous use. In this sense, security is improved, offsetting at least some of the

effect of reducing the  key space.  A more conservative approach would be to use the

action-triggered / gestures style, which also does not require visual feedback, but does

not reduce the key space.

3.4.3  Utility Components

In the course of implementing the demo, a number of UI and support components

were developed. To facilitate reuse, these components were packaged in an Android

library project, which is available online37.  

The three main re-usable components are:

• TapPhraseRecognizer,  which contains  an  implementation  of  the  recognition

algorithm, providing an API to match two tap phrases.

• TapPhrasePad, a UI component (an Android View) for entering tap phrases, as

seen in screens 2, 3 and 6 of figure 6. It encapsulates a logger that keeps track of

touch and release events over time. It also implements the plumbing behind the

action-triggered modes of confirmation, and allows registering a listener for the

continuous recognition mode.

• TapReplayView, a UI component that can replay a tap phrase in several output

channels: visually, through a flashlight metaphor (as seen in screen 4 of figure

6), through sound, with a dial-like tone, and through haptics, using the vibration

actuator. 

More detailed considerations and implementation details are available in the the

online documentation.

3.5  Summary and Outlook

This  chapter  presented  a  simple,  efficient  and  accurate  tap  phrase  recognizer

designed for smartphone authentication. The recognizer algorithm and the deployment

to  the  Android  platform  consummate  the  technical  research  objectives  of  this

dissertation.

Tap phrase recognition was previously described in the literature. RythmLink (Lin

et  al.  2011) and TapSongs  (Wobbrock 2009) are founded upon the same interaction

style. Both, however, require more than one template to “train” the recognizer, which is

37 https://github.com/diogomarques/android-tap-phrase-detector  
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clearly an inconvenience to users. This inconvenience may result in the choice of poor

tap phrases, or rich tap phrases that aren't ever changed. Our technique shows that this is

not necessary: with a single example, we have observed false acceptance rates in the

order of 5% (including the cases where users select the same tap phrase), while keeping

false rejections also at minimal levels. 

The  fact  that  this  recognizer  was  deployed  to  Android  adds  value  to  the

contribution.  Deployability  issues  have  in  the  past  plagued  proposal  for  new

authentication  methods,  and are  at  the  core  of  much  (meta-)  debate.  In  fact,  some

authentication methods proposed in the literature were shown to have design flaws upon

closer inspection (Dunphy et al. 2010; Perković et al. 2011; Tari et al. 2006; Maguire &

Renaud 2012; Biddle et al. 2012). There  seems to be a  sense in the mobile HCISEC

community that the platforms the industry provides are at a point where any advances

are incremental. The upside is that smartphones are now evolved and mature enough so

that, although research is meant to be forward-looking, there is a clear opportunity to

close the time gap between knowledge-production and improving the lives of people.

There  is  an  unmistakable  trend  in  major  research  outlets  of  deploying  functioning

prototypes, often to Android.

In section  3.3.3 we have identified some limitations which will be the target of

continued efforts. Bigger data sets  are  needed for more robust accuracy assessment.

Furthermore, interactions between accuracy and a larger context are in order. Can users

remember tap phrases in continued usage? Can they remember more than one? Do they

become more accurate by training? What other contextual and ecological factors in their

daily lives can influence accuracy? Open questions like these will be the focus of future

work.

There is also opportunity in exploring the recognizer,  and software components

implemented, for other domains. For instance, developers can use these components to

program  tap  patterns  into  their  systems  by  demonstration.  The  recognizer  can  be

co-opted  to  add another category  of  gestures  to  the tool-belt  of  mobile  interaction

designers
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Chapter 4

User Study: “Out in the Open” Authentication

This chapter presents the first of three user studies that were conducted to address

two  dimensions.  First,  the  usability  dimension,  which  is  evaluated  with  the

understanding that causing too much of an inconvenience creates an incentive for users

to not secure their smartphones. Secondly, the security dimension, which is evaluated

within  the  frame  of  a  threat  model  in  which  the  adversaries  are  not  sophisticated

hackers, but instead actors that act opportunistically, as defined in section 2.4.2.

In  this  first  study,  tap  phrase  authentication  is  compared  to  the  two  leading

approaches, PIN and Android's pattern unlock, in an “out in the open” setting. The study

includes two parallel experiments, one in which users performed unlocking tasks, and

other  where  they  performed  simulated  shoulder-surfing  attacks.  The  disposition  of

participants emulated close-to-perfect observation conditions on the part of the attacker

(see figure  7).  This represents  a worst-case scenario,  but one that is not necessarily

uncommon, if we consider that users may in fact perform authentication in settings like

public transportation. It also compensates for the fact that the adversary only has one

chance to shoulder-surf, whereas “in the wild” someone familiar to the user may have

many opportunities to do so.

The usability dimension is, as previously stated, understood more generally than

“user performance”. One aspect of usability that falls outside user performance is user

experience  (UX),  that  is,  “perceptions  and  responses  that  result  from  the  use  or

anticipated use of a system”38.  These perceptions  can influence the acceptance of new

technologies. This is an aspect that is explored in this study more thoroughly than in the

following two. The approach that was taken to UX evaluation was a  quantitative  one,

namely using a well validated questionnaire.

38 ISO 9241-210:2010 - Ergonomics of human-system interaction - Part 210: Human-centred design for 

interactive systems, available at 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52075.
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4.1  Research Questions

This study aims  at establishing a baseline for the understanding of  PIN, Android

pattern and tap phrase unlock by answering the following questions: 

1. Do the three evaluated methods provide similar usability?

2. Under good observation condition, do the three methods offer similar resilience

to shoulder-surfing? 

4.2  Methodology

For the experimental part of this study, a repeated measures design was employed.

There were two parallel moderated experiments. In one, users performed authentication

tasks using the three methods. In the other,  they observed another  user  authenticating

and tried to repeat their secret  code.  In both, the independent variable was the unlock

method, with three levels: draw pattern, PIN and tap phrase.

After completion of experimental tasks, users responded to the UX questionnaire.

This  questionnaire  was  a  version  of  the AttrakDiff  instrument  first  proposed  in

Hassenzahl et al. (2004). Choosing standardized over ad hoc questionnaires has a clear

advantage: the latter have already gone through psychometric qualification; and in the

case  of  AttrakDiff,  longer  term reviews  of  its  application  are  already  available

(Bargas-Avila & Hornbæk 2011). To keep the evaluation procedure short, the 10-item

version (van Schaik et al. 2012) was chosen.
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4.2.1  Apparatus

For the experiments, a single Google Galaxy Nexus device with Android 4.1 was

used.  An  application  for  data-gathering  was  developed,  implementing  the  three

unlocking methods: 1) Android's graphic (draw) pattern, 2) PIN and 3) tap phrase. For

the tap unlock method, we used the  recognizer described in the previous  chapter; for

PIN, we created a simple form with a text field and had the system present a numeric

keyboard; finally, for draw pattern unlock, since Android is open-source, we extracted

the code actually deployed to commercial devices.  

Between tasks, the Android application also prompted the user to answer the single

ease question (SEQ) and gather results. The SEQ is a standardized usability instrument

proposed in Sauro & Dumas (2009), whereby users are asked to complete the statement

“Overall, this task was:”. We employed the recommended seven point scale, where 7 is

“very easy”, and 1 “very difficult”. 

The application generated an XML file containing logs of every  user interaction,

including the answer to the SEQ answers.

The  post-experiment  questionnaire was  administered  with  a  Google  Documents

web form. Users were asked to answer it immediately after the experiments.  It started

with  standard  demographic  questions  and  then  proceeded  to  the  10  semantic

differentials for UX assessment. Each semantic differential had a seven-point scale, with

1 being the negative adjective, and 7 the positive. Answers were collected automatically

to a spreadsheet.

4.2.2  Participants

Thirty  volunteers were  recruited  through  mailing  lists,  social  media  and

word-of-mouth.  All were students or research staff.  Seventeen were male and thirteen

female. Ages ranged from 21 to 50 years old, with the average being 26 (SD = 6). Only

two participants reported not being at all familiar with smartphones; 13 reported being

extremely  familiar.  Eleven  participants  reported  currently  using  either  a  PIN  or

password to unlock their  personal devices;  8 reported using Android's draw pattern.

Participants were offered no compensation.

4.2.3  Procedure

Participants  were  introduced  to  the  experiments  and  explained  their  roles  as

unsuspecting user and opportunistic observer. They were given no mention that one of

the  unlock  methods  was  proposed  by  the  researchers.  The  participant  playing

unsuspecting user was given a smartphone, with the test application already launched.
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For  each unlock method,  users learned or  configured  their code  and tried  it  out  in

seclusion until they were confident that it was memorized.

The observer, which we referred to as challenger, was then called to shoulder-surf

while the other performed the authentication task, having a maximum of 10 trials to

complete it. Upon completion, the application prompted the user to answer the SEQ.

The device was then given to the challenger, which also had 10 trials to replicate the

code.  Unlocking  methods  were  presented  in  random  order.  For  each  method,  a

participant acted one time as the unsuspecting user and one time as the opportunistic

observer.  After  finishing  the  experiments,  participants  were  directed  to  respond  the

online questionnaire.

Experimental sessions were conducted in  various locations around the university

campus,  including  meeting  rooms,  offices,  bars  and  sidewalks,  as  per  participant

convenience.  We  reasoned  that  although  this  may introduce  greater  variability  in

measurement, it increases ecological validity.  That is,  the experiment mimics as much

as possible real-life situations.

Random 4-digit PINs were supplied to the user by the application; the length 4

being chosen because it is widely used, as the default option in ATMs, SIM cards, etc.

For draw patterns, the application also generated random 5-point patterns; the length 5

being the median of a small-scale (N = 11) survey of colleagues. In pilot runs, users

showed great difficulty in replicating random tap phrases. We therefore ended up letting

them  configure  their  own,  with  the  limitation  that  it  had  to  contain  at  least  three

touches.  We tried to limit biases in memorability by allowing unbounded learning time

for PINs and draw patterns. Providing random codes for these two methods may lead to

greater resilience to attacks, in comparison to tapping, which, being user-configured,

may be more intelligible. Tap patterns, not being bounded in time, also can increase task

completion  times.  These  limitations  are  reasonable  in  so  much  as  they  favor  the

alternatives against which tap authentication is evaluated.

4.2.4  Measures

In the unlocking experiment, we acquired the total time it took to complete the task

and the SEQ score. The task completion time was measured from the moment the user

was presented with the screen to the moment when authentication was successful. This

measure therefore also encapsulates:

• the time users take to situate themselves before starting input; and

• errors in input and recovery from them.
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 In the observer experiment, we measured the success within 10 trials. The higher

this success rate is, the lower the method's resilience to shoulder-surfing is.

Table 5 shows the semantic differentials in the UX questionnaire. We summarized a

pragmatic quality score for each user by calculating the average rating of the first 4

answers. We did the same to synthesize and hedonic quality score, using the following 4

answers. The beauty and goodness quality score are simply the rating given in the last

two answers, respectively.

I judge the unlocking method to be

PQ1 Confusing – Structured

PQ2 Impractical – Practical

PQ3 Unpredictable – Predictable

PQ4 Complicated – Simple

HQ1 Dull – Captivating

HQ2 Tacky – Stylish

HQ3 Cheap – Premium

HQ4 Unimaginative – Creative

I judge the unlocking method overall to be

B1 Ugly – Beautiful

G1 Bad – Good

Table  5:  Semantic  differentials  in  the user  experience questionnaire.  From van

Schaik et al. (2012).

The task completion times did not follow a normal distribution, as indicated by a

Shapiro-Wilk test. Friedman tests were therefore employed, as they were for the ordinal

data obtained in questionnaires. For the challenge task, since outcomes are binary, a

Cochran's Q test was used. The alpha level was set at 0.05. For post-hoc tests, it was

adjusted with the Bonferroni correction.
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4.3  Results

Table  6 shows a summary of statistically significant effects in pairwise  analysis,

which were only assessed when there was a significant  omnibus effect of method on

measure.  The  following  subsections  give  descriptive  statistics  and  the  results  of

hypothesis testing for each measure.

Measure Pair Point estimate

Unlock task completion time Draw / PIN 3.82s / 2.81s

Perceived unlock task ease Tap / PIN

Tap / Draw

6 / 7

6 / 7

Perceived pragmatic quality PIN / Draw

Draw / Tap

Tap / PIN

5.88 / 5.05

5.05 / 3.91

3.91 / 5.88

Perceived hedonic quality Draw / PIN

PIN / Tap

5.30 / 3.23

3.23 / 4.57

Perceived beauty PIN / Draw

Draw / Tap

Tap / PIN

3.09 / 5.37

5.37 / 4.87

4.87 / 3.09

Perceived goodness - -

Shoulder-surfing attack success - -

Table 6: Summary of significant effects in follow-up analysis.

4.3.1  Unlock Task Completion Time

The mean task completion times were 2.81s (SD = 1.56s) for draw pattern unlock;

3.82s (SD = 2.60s) for PIN unlock; and 3.73s (SD = 3.10s) for tap pattern unlock (see

figure 8).  The effect of method on this metric was significant (χ²(2) = 17.267, p =.000).

Pairwise,  significance  was  only  found  between  draw pattern  and  PIN unlock  (Z  =

-2.437, p = .015, r = .315). There was no evidence of a significant effect between tap

pattern unlock and both PIN (Z = -.627, p = .530, r = .081) and draw pattern unlock (Z =

-2.273, p = .023, r = .293). We conclude that using a draw pattern was faster than using

PIN;  in  the  remaining  comparisons,  neither  method  showed  to  be  less  or  more

time-consuming than the other. 
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4.3.2  Perceived Unlock Task Ease

The median SEQ score was 7 (IQR = 1) for draw pattern unlock; 7 (IQR = 1) for

PIN unlock;  and 6  (IQR = 3)  for  tap  pattern  unlock  (see  figure  9),  and  statistical

significance was found (χ²(2) = 7.750, p =.021).  Pairwise, tests showed no significant

differences between draw pattern and PIN unlock (Z = -.690, p = .490, r = 0.089), and

significant differences between tap pattern unlock and both PIN (Z = -2.670, p = .008, r

= .345) and draw pattern unlock (Z = -2.864, p = .004, r = .370). We conclude that

unlocking was perceived as most difficult when using the tap pattern method. Draw

pattern and PIN unlocking were perceived as  easiest,  with  no significant  difference

between them being found.

4.3.3  Perceived Pragmatic Quality

The mean perceived pragmatic quality (PQ) score was 5.05 (SD = 1.41) for draw

unlock, 5.88 (SD = .69) for PIN unlock, and 3.91 (SD = 1.65) for tap pattern unlock (see

figure 10). Again the effect of method on this metric was significant (χ²(2) = 24.748, p

=.000). Pairwise tests indicate that the effect is significant for all  pairs (PIN - draw

pattern: Z = -2.490, p = .013, r = .321; tap pattern - draw pattern: Z = -3.441, p = .003, r

= .444; tap pattern - PIN: Z = -4.146, p = .000, r = .535). We conclude that PIN unlock

was perceived  has  having  superior  pragmatic  quality,  followed  by  draw  pattern

unlocking, and then tap pattern unlocking.

4.3.4  Perceived Hedonic Quality

The mean perceived hedonic quality (HQ) score was 5.30 (SD = .99) for draw

unlock, 3.23 (SD = .97) for PIN unlock, and 4.57 (SD = 1.47) for tap pattern unlock (see
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figure  10). A significant main effect was found (χ²(2) = 30.360, p =.000).  Pairwise,

significant effects are present for the pairs draw pattern – PIN (Z = -4.789, p = .000, r

= .618) and tap pattern - PIN (Z = -4.306, p = .000, r = .556). However, no significant

effect was found for the tap pattern – draw pattern pair (Z = -2.364, p = .018, r = .305).

We conclude that PIN unlock was perceived has having the lowest hedonic quality, and

that, in this regard, a difference between draw and tap pattern methods could not be

established. 

4.3.5  Perceived Beauty

The mean perceived beauty score was 5.37 (SD = .83) for draw unlock, 3.09 (SD =

1.10)  for  PIN unlock,  and 4.87 (SD = 1.37) for tap pattern unlock  (see figure  10).

Statistical  significance was again found (χ²(2) = 41.397, p =.000).  Post-hoc analysis

indicates that the effect is significant for all pairs (draw pattern - PIN: Z = -4.227, p = .

000, r = .546; tap pattern - PIN: Z = -3.429, p = .001, r = .443; tap pattern – draw

pattern: Z = -2.498, p = .012, r = .322). We conclude that draw pattern unlock  was

perceived has having superior beauty, followed by tap pattern unlocking, and then PIN

unlocking.

4.3.6  Perceived Goodness

The mean perceived goodness score was 5.17 (SD = 1.37) for draw unlock, 4.97

(SD = 1.30) for PIN unlock, and 4.93 (SD = 1.63) for tap pattern unlock (see figure 10).

A Friedman test was ran, and no statistical significant effect was found (χ²(2) = 1.200, p

=.549). 
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4.3.7  Shoulder-surfing Attack Success

In the  shoulder-surfing task, subjects were able to successfully replicate another

person's code (within 10 trials) 5 out of 30 times when using either draw or tap pattern

unlock, and 9 out of 30 times when using PIN unlock. To see if the unlock method had a

significant  effect  on this  task's  completion  rate,  we ran  a  Cochran's  Q test,  and no

statistical significance was found (χ²(2) = 2.462, p = .292). In conclusion, no evidence

of method having an effect on resilience to shoulder-surfing attacks was found.

4.4  Discussion

This first user study indicates that tap  phrase unlocking is comparable to the two

leading methods in terms of usability and resilience to shoulder-surfing.

As for user performance, there is no statistical evidence that tap  phrase unlock is

more time consuming that either PIN or draw unlock. The subjective perceptions were
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more mixed. Tap unlock was perceived to be more difficult, but still easy, with median

score being 6 where 7 means “very easy”. It was also found to have lower  perceived

pragmatic  quality  than  the  alternatives.  It  had,  however,  better  hedonic  quality  and

beauty ratings than PIN unlock. 

It is easy to see why PIN unlock can be perceived as easier: we are accustomed to

them.  PIN's  are  used  in  many  critical  contexts,  giving  them  some  measure  of

respectability, which may be influencing the pragmatic quality ratings. But for the same

reasons,  PINs can be seen as  dull, hence being worse than tapping – and, indeed, the

worst – in hedonic quality and beauty ratings. Draw pattern unlock presents the highest

beauty score, but still no differences in hedonic quality were found in relation to tap

unlock. 

This study  also  addresses  shoulder-surfing  resilience.  The  results  showed  no

statistical significance, but the fact that PINs were successfully replicated by the subject

playing the attacker 9 times, in comparison to the 5 observed in the tap and draw pattern

unlock methods, should give us pause. This is likely a symptom of a phenomenon we

observed while doing the experiments: 4-digit PINs are fast to memorize, at least for a

short period of time.  Committing a tap or draw pattern to memory takes more time.

While the user that was authenticating had unlimited time to memorize the code, the

attacker could only do it in the short period she was observing the victim. Anecdotal

evidence  of  this  is  present  in  the  logs.  When users  were given a  random PIN and

prompted to try it, in almost every case they only tried once before signaling that they

had learned it. For draw patterns, there are many instances where users tried the code

they were given up to 3 times before indicating it was memorized. 

In  summary,  regarding  the  question  of  whether  the  methods  provide  similar

usability, there is evidence that this is the case, although the subjective perceptions of

tap  phrase  authentication  are  mixed.  Regarding  shoulder-surfing  resilience,  under

perfect observation conditions, we found evidence that all methods are very susceptible.
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Chapter 5

User Study: Inconspicuous Authentication

The threat model that tap phrase authentication aims to address is one where the

social context matters. Using an input modality that does not require the visual channel

has  the  potential  to  allow  inconspicuous  behavior,  which  users  can  leverage  for

self-protection. The first user study establishes a dreading baseline: when observation is

possible,  shoulder-surfing  attacks  are  very  much  feasible  against  the  assessed

authentication  methods.  This  second  study explores  the  feasibility  of  authenticating

away from prying eyes.

This study  consisted  of  a  single  experiment,  where  subjects  were  asked  to

configure/learn a code, and then unlock the device under a table (see figure 12). Again,

tap unlock was compared to the leading approaches: PIN and Android's pattern unlock. 

Having the users authenticate under the table was a way to isolate the effect of not

having visual feedback or an observation angle for a third-party, while maintaining a

realistic scenario for inconspicuous interaction with a smartphone. The user study in the

next chapter gives further insight into strategies for dissimulated interaction.

5.1  Research Questions

 This study addresses the following questions: 

1. Do the three methods provide similar usability when there is no visual feedback?

2. For  each  method,  how  is  usability  impacted  by  unlocking  being  performed

inconspicuously, in comparison to the previous setting?

5.2  Methodology

Nineteen out of the 30 subjects that participated in the previous study were again

recruited.  The  same  apparatus  (device  with  data-gathering  app)  was  used.  The  19

subjects that also participated in this study averaged 27 years of age (SD = 7, range:

21-50). The procedure was similar to the one used in the previous unlock experiments,
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except for the placement of device away from sight. The observer experiment does not

apply. Users were  only  allowed to look at the screen between trials, thus observing if

they were successful or not, and repositioning themselves for a new trial in the latter

case. One additional measure was gathered from the logs: the number of input errors.

This measure was extracted in this case because there was a reasonable expectation,

from pilot testing, that errors could vary considerably depending on the authentication

method.

5.3  Results

In the following subsections, statistics for both conditions are constrained to the 19

subjects that participated in this study. Therefore, small changes in metrics for the visual

feedback condition are to be expected.

5.3.1  Unlock Task Completion Time

In the condition where visual feedback was available, the mean task completion

times were 2.77s (SD = 1.31s) for draw pattern unlock, 4.34s (SD = 3.15s) for PIN

unlock,  and  4.14s  (SD =  3.84s)  for  tap  pattern  unlock  (Figure  12).  Without  visual

feedback, the mean task completion times were 30.32s (SD = 31.42s) for draw pattern

unlock, 43.14s (SD = 32.52s) for PIN unlock, and 6.18s (SD = 9.21s) for tap pattern

unlock. 
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The unlock method had an effect on the time it took to complete the task without

visual feedback (χ²(2) = 15.474, p =.000). Pairwise comparisons were conducted, and

no significant differences were found between PIN and draw pattern unlock (Z = -1.690,

p = .091, r = .274). However, between tap pattern and both PIN (Z = -3.380, p = .001, r

=  .548)  and  draw pattern  unlock  (Z  =  -2.978,  p  =  .003,  r  =  .483)  the  effect  was

significant. 

Comparing the visual to the non-visual condition for each method, there was no

evidence of an effect for tap pattern unlock (Z = -1.207, p = .227, r = .196) There were,

however, effects for both draw pattern (Z = -3.783, p = .000, r = .614) and PIN unlock

(Z = -3.823, p = .000, r = .620). 

We conclude that unlocking without visual feedback was significantly faster using

a tap pattern than using a PIN or draw pattern. In this condition, a difference between

PIN  and  draw  pattern  unlocking  could be  established.  Furthermore,  the  latter  two

methods  consumed significantly  more  time  when  there  was no  visual  feedback  in

comparison to the previous setting.

5.3.2  Unlock Input Errors

When there was no visual feedback, the mean number of input errors was 2.84 (SD

= 2.544) for draw pattern unlock, 3.53 (SD = 3.325) for PIN unlock, and .42 (SD =

1.387)  for  tap  pattern  unlock.  Statistical  tests  showed  that  the  differences  were

significant  (χ²(2)  =  15.474,  p  =.000).  Pairwise,  differences  between  PIN  and  draw

pattern unlock were non-significant (Z = -0.514, p = .607, r = .083). However, again

there  were  significant  differences  between  tap  pattern  and  both  between  PIN (Z  =
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Figure 12. Mean task completion times (in seconds) for each method and each visual

condition. Error bars indicate the 95% confidence interval.



-2.894, p = .004, r = .469) and draw pattern unlock (Z = -3.020, p = .003, r = .490). We

conclude that unlocking without visual feedback was less error-prone when using a tap

pattern. 

5.3.3  Perceived Unlock Task Ease

We again measured the perceived ease of completing the task using the SEQ with

equally labeled levels  (see figure  13). With visual feedback, the median score was 7

(IQR = 1) for draw pattern unlock, 7 (IQR = 1) for PIN unlock, and 6 (IQR = 3) for tap

pattern unlock. Without visual feedback, the median score was 3 (IQR = 2) for draw

pattern unlock, 3 (IQR = 3) for PIN unlock, and 7 (IQR = 1) for tap unlock. 

When visual feedback was not available, the unlock method had an effect on the

subject's perceived ease (χ²(2) = 22.377, p =.000).  Post-hoc analysis yet again does not

show significant differences between draw pattern and PIN unlock (Z = -1.361, p = .

174, r = 0.221), and shows them between tap pattern unlock and both PIN (Z = -3.613, p

= .0000, r = .586) draw pattern unlock (Z = -3.536, p = .004, r = .574). 

The pairwise comparisons between the visual and non-visual settings do not reveal

a significant effect in the case of tap unlock (Z = -1.342, p = .179, r = .218). For the

other two methods, such effects were present (Z = -3.454, p = .001, r = .560) and PIN

unlock (Z = -3.742, p = .000, r = .607). 

We conclude that, without visual feedback, tap unlocking was also perceived as

least  difficult.  Comparing  visual  and non-visual  entry,  for  tap  unlock there  was no

evidence  of  a  difference,  contrary  to  draw  pattern  and  PIN  unlock,  which  were
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Figure 13: Mean single ease question score for each metho and each condition, in

a  1 (very  difficult)  to  7 (very  easy)  scale.  Error  bars  indicate  the  95% confidence

interval.



perceived as more difficult  in comparison to the condition where visual feedback was

available.

5.4  Discussion

This study largely confirmed that tap phrase unlocking is an adequate solution for

situations  where  a  user's  visual  channel  is  not  available. For  PIN and draw pattern

unlock the time it takes and the number of errors greatly increases in this condition. The

same cannot be said for tap pattern unlock. The subjective perception of easiness, not

surprisingly, is in line with these findings. 

This  is  in  stark contrast  to  the  findings  of  the  previous  user  study.  Tap phrase

unlocking  may  have  comparable  or  even  slightly  worse  usability  when  the  visual

channel  is  available.  But  when concealing authentication from one's  sight  and from

prying eyes, there is  clear evidence that the method offers considerable more usability

than the alternatives. 
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Chapter 6

User Study: Tap Authentication for Blind People

To blind users, using touchscreen-based devices like smartphones is a challenge.

As  Guerreiro  et  al.  (2008) observes,  “most  interactions  […]  require  hand-eye

coordination, making it difficult to for blind users to interact with mobile devices and

execute tasks”. Nevertheless, security is not less important for the blind. In fact,  blind

users may  be  more  exposed to  observation,  given  the  absent  visual perception  of

surroundings.

Currently, the only widely available authentication method for blind users resorts to

PINs and a screen reader. For instance, with the iPhone's VoiceOver facility, as the user

passes its fingers through the screen, a voice reads  out each key. A second touch is

required to select.  Azenkot  et  al.  (2012) found that even experienced users  took an

average  of  7.52s  to  authenticate themselves  in  this  way.  Moreover,  not  only  is

shoulder-surfing possible, but a vector for aural eavesdropping is also opened when the

user is not wearing a head-set.

This third user study is an exploration into using tap phrase authentication as an

inclusive – not adapted – technical solution. It addresses both the usability of tap phrase

authentication  in  this  specific  population,  and the  affordance  of  the method  to

inconspicuous  interaction.  The  16  participants  were  asked  to  perform  a  tap

authentication task and then come up with strategies for dissimulating interaction. This

gave further insight into how users can easily adapt and self-protect in a threatening

environment if the appropriate tools are provided.

6.1  Research Objectives

The objectives  of this study  were to understand if, after a short learning period,

blind users could: 

1. Perform authentication easily and in a reasonable amount of time, and;

2. Devise strategies for inconspicuous authentication.
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6.2  Methodology

6.2.1  Apparatus

A single Samsung Galaxy mini smartphone, with Android 2.3, was used  for the

authentication task and subsequent role-playing procedure. The data-gathering Android

application  was modified to only include the  tap unlocking  method. A training mode

was available in which data was not recorded and optional sound output (emission of a

tone while the screen was being touched) was available. A short vibration was emitted

on successful unlock. 

Paper questionnaires were employed to gather demographic data, register responses

to the single ease question, and record concealment strategies suggested by participants.

6.2.2  Participants

The  16  participants  were  volunteers  recruited  in  a  local  vocational  training

institution for blind people.  Two participants  had some residual  vision.  Ages varied

between 26 and 64 years old, the average being 47 (SD = 12). Twelve participants were

male and 4 female. Although all participants had mobile phones, they reported having

none or very little experience with touch-screen devices. Eleven reported being very

familiar with using PINs in electronic devices, albeit in physical keyboards. Participants

reported never or rarely using headphones paired with their mobile devices.

6.2.3  Procedure

Participants were initially introduced to the concepts and explained the tasks they

were asked to perform. At this stage, they were given no mention that the tap unlocking

was the method being proposed by the researchers. They were handed a device to feel

and get accustomed to while being administered a short demographic questionnaire. 

In a first stage, a moderated training session lasting approximately 5 minutes was

conducted, in the following steps:

1. Users  freely  explored  the  touch-screen  area  with  their  fingers.  When  they

touched any point in the screen, an audio tone was emitted. Participants were

explained that the whole screen acted as a single button and  were guided to

explore the fact that tap phrases are composed of taps and breaks lasting in time. 

2. Users were asked to imagine tap phrases that they could record and later use for

unlocking.  They  experimented  freely,  with  sound  enabled,  until  they  were

confident that they had grasped the concept.
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3. Users  were introduced to  the  vibrotactile  feedback emitted  on authentication

success (short) and failure (long).

4. With  sound  output  now  removed,  users  conducted  a  complete  dry-run,  first

configuring a template of their choice, then attempting to unlock.

After training, participants were asked to again configure a template and then try to

unlock.  This  time,  the  interaction  was  recorded  in  log  files.  Immediately  after

completing this task, users responded to the single ease question.

In  the  second  stage  of  this  study,  participants  were  introduced to  the

shoulder-surfing threat and asked to imagine strategies they could use to conceal the

input  from  potential  observers.  To  facilitate  this  process,  participants  engaged  in

role-playing two scenarios: a meeting and a commute in public transportation. To that

end, they were given a smartphone so they could simulate authentication. A facilitator

gravitated  at  times  around  the  participant  to  make  him  aware  of  possible  visual

observation  angles.  In  the  end,  participants  were  asked  to  summarize  the  viable

strategies they had identified.

6.2.4  Measures

For the unlocking task, we acquired: 

1. The  time  it  took  to  complete  authentication,  measured  from  the  moment  a

facilitator clicked a start button and initiated the unlocking screen to the moment

an input was accepted as the correct secret code;

2. The number of input errors, and;

3. The SEQ rating, from 1 to 7. 

For the elicitation part of this study, the strategies indicated by participants were

recorded in paper and occurrences counted. Since the alternatives mentioned were clear

and not very numerous, no special categorization was performed.

6.3  Results

After training, all users were able to authenticate in the first trial, so there were no

input errors to record. 

The mean task completion time was 4.32s, with standard deviation 2.1s (see figure

14, left). A Shapiro-Wilk test  indicated that the data is normally distributed (S-W = .

890, df = 16, p = .056). A one-sample t test was conducted at an alpha level of .05 to

evaluate if tap unlocking was faster than the 7.52s benchmark for PIN with VoiceOver

found by Azenkot et al. (2012). The test showed significance (t = -6.062, df = 15, p = .
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000, Cohen’s d = -1.52), indicating that unlocking with taps was indeed faster than with

PIN/VoiceOver. 

The median SEQ score was 6 (IQR = 3), where 7 means “very easy” and 1 “very

difficult” (figure 14, right), indicating that participants perceived tap unlocking as being

easy to perform.

In  the  second  stage  of  the study,  inconspicuous  authentication  strategies  were

elicited through role-playing. The user-suggested approaches are summarized in table 7.

Each user contributed, on average, 3 strategies (SD = 1). The top suggestions, with 9

occurrences, were performing authentication under the table or inside a pocket.

Strategy Occurrences

Under the table 9

Inside pocket 9

Occluded by clothes (e.g. jacket) 7

Cover with one hand 5

Lean device against body 3

Inside bag / purse 3

Using device upside down 3

Move to an isolated location 2

Under the seat 1

Postpone2 1

Table  7:  Suggested  authentication  concealment  strategies.  The  left  column

identifies the strategy; the right column indicates how many participants suggested it.
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6.4  Discussion

The results for task completion time and perceived easiness of authenticating with

tap phrases are encouraging. Even so, the relatively large standard deviation in task

completion time deserves a closer look. From our observations, there are two possible

explanations for this fact: 1) some users, lacking the confidence and experience using

smartphones, operated the device with an unusual level of caution, thus  taking more

time and 2) there may be, in fact, an extended initial period where a blind user needs to

situate himself before starting tapping with confidence.

The top suggestions for inconspicuous authentication strategies include many cases

that are made possible, or at least easier, by the tap phrase method. This is true not only

for  blind users,  but in  any situations  where the visual  channel  is  not  available.  For

instance, the previous study already showed that PIN and Android's pattern unlock are

much less usable when authenticating under the table, which was among most frequent

strategies identified.  The feasibility of actually using  some of the selected strategies

must, however, be further evaluated in realistic settings.  For example, using a pocket

may not be possible because hand movements can be constrained.

In  conclusion,  the  research  objectives  were  achieved.  Blind  users  could

authenticate  easily and  in  lesser  time  than  the  most  common  method  available  in

smartphones.  They  were  also  able  to  easily devise  strategies for  inconspicuous

authentication, showing that with the right tools it is possible to self-protect against the

threat of shoulder-surfing in social contexts.
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Chapter 7

Conclusion

Mobile devices are becoming extensions of ourselves, permeating many aspects of

our  lives.  Smartphones in particular have become more than personal assistants. They

are, in many ways, intimate computers. For all the benefits that we can gain from this

relationship, we also face new dangers. How can we trust  a friend that puts us at risk

every time we engage with it? We have found ways to cope with this same problem in

interpersonal relationships. In the presence of others, we whisper. We wink. We nod. We

pull  closer.  But  it  is  still  challenging to  limit  the  exposure of  interactions  with our

smartphones.

7.1  Summary

This  document presents  an  authentication  method  that  allows inconspicuous

interaction, using tap phrases as passwords. It offers users more control  on how they

perform perhaps the most critical recurring interaction with a smartphone: establishing

identity.  By  using  tap  phrases  as  shared secrets,  users  can  choose  to  authenticate

themselves overtly; but if they feel they might be exposing a secret to bystanders, they

can do it away from sight.

The first contribution of this work is a novel tap phrase recognizer that was shown

to  be  accurate  and  efficient.  This  recognizer  was  specifically  designed  for  the

authentication  scenario,  although  it  can  be  appropriated  for  other  purposes.  Our

approach improves on previous work by requiring a single example for configuration, as

is  the norm with  other varieties of knowledge-based authentication.  Having to insert

several examples to train a matching algorithm would have created incentives for users

to select poor tap phrases and not change them frequently. This contribution was further

enriched with the development of a proof-of-concept Android application. The first two

research objectives  are  thus fulfilled respecting the principle  of “designing with the

adoption process in mind”.
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The  second  contribution  is  an  evaluation  of  the  usability  and  security  of  this

method. The first user study indicates that this approach is usable when compared to the

leading unlock authentication methods,  PIN and Android's pattern unlock.  We found

that the three alternatives are susceptible to shoulder-surfing when clear observation is

possible.  The  second  study  validates  that,  unlike  the  alternatives,  tap  phrase

authentication  allows  inconspicuous  interaction,  thus  not  only  offering  increased

security (in relation to  the defined threat  model)  but also enabling compliance with

social norms. The third user study expands the understanding of usability to include

accessibility. It indicates that the proposed method is inclusive and more usable by blind

people than the typical PIN coupled with a screen reader. 

7.2  Limitations

Computer security is in many ways like a short blanket. When we snuggle, our feet

are  left  in  the  cold.  Authentication  through  tap  phrases  reduces  the  threat  of

shoulder-surfing,  and  thwarts the  smudge-attacks  that  touchscreens  enable.  This  is

valuable in the sense that it addresses an important threat model, where the adversary is

not necessarily a security expert, but someone that has the incentive and opportunity to

gain access to the device. This threat model is of special importance  for smartphone

security, since the mobile contexts in which the devices are used are prone to present the

most challenging situations in terms of potential exposure to ill-intentioned parties.

But even if less  common, attacks by experts are a  real threat. These  adversaries

have the advantage of not having to be co-located with the user, and can therefore target

much more people. This is the case with malware. In this other threat model, tap phrase

authentication may present new risks.

One of them is the age-old exploitation on key strength, materialized in brute-force,

guessing and dictionary attacks. The feasibility of these attacks is mainly dependent on

two factors, both of which were not analyzed in this work. The first is the diversity of

possible  keys,  which affects how many guesses it takes to find the secret  (Weir et al.

2010). Tap phrases have a theoretically unbounded key space, but since recognition is

not exact but based on similarity, information entropy is certainly reduced. The second

factor is human-centered. Passwords are made easier to guess because people tend to

choose secrets that are easy to memorize (Adams & Sasse 1999), thus reducing the de

facto key space. A similar effect may be present in tap phrases, whereby people may be

choosing tap phrases that map famous songs, jingles or chants.

The proposed technique may also be susceptible to other types of attack, namely

capturing what are sometimes called “compromising emanations” (Aviv et al. 2012; Cai

& Chen 2011; Foo Kune & Kim 2010; Miluzzo et al. 2012).  When a user taps on the
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screen, it may be possible to detect the pattern through the device's own microphone,

camera or accelerometer. There is also the possibility of external automated observation,

for instance through video cameras.

7.3  Future Work

Clear  avenues  for  further  research  were  opened.  Future worked  is  planned  in

several threads:

• Extending the tap phrase recognizer to be a more general  tap phrase library. A

clear opportunity for expanding the utility of the work in Chapter 3 is creating a

tap phrase dictionary component that can be easily plugged in other applications.

Some  pieces  created  in  the  process  of  developing  the  proof-of-concept

application already pack much of the functionality needed for configuring tap

phrases  by  demonstration.  The  recognizer,  however,  needs  to  be  retooled  to

instead of making a final decision on matching, providing an n-list of possible

matches.

• Analyzing  learning  effects  and  skill  improvement.  During  this  work,  we

observed  that  with  prolonged  use,  people  tend  to  be  more  accurate  in

reproducing tap phrases. Wobbrock  (2009) suggests that there are “subtle but

reliable  individual  differences  in  people's  tapping”  that  can  be  leveraged  to

prevent others from being able to  repeat our tap phrases accurately  even when

they can observe them. Although we didn't design our studies to test this effect,

we suspect that this will only be the case when the users themselves are very

accurate.  What we observed, in the short experiments we conducted,  was that

users  didn't  seem  to  behave  this  way.  Do  users  become  significantly  more

accurate  with  training?  This  is  clearly  an  empirical  question  that  can  be

addressed. If the answer is yes, there is an opportunity to personalize tap phrase

authentication.

• Characterizing  tap  phrase  choice  and  associated  strength.  Although  the

theoretical security of the tap phrases is favorable, since it has an infinite key

space, what ultimately determines the strength of any type of secret is the human

element.  Further  studies,  with  a  broader  temporal  horizon,  are  necessary  to

characterize  what  types  of  tap  phrases  people  choose,  and why they choose

them. It is reasonable to assume that people will try to cope with limitations in

memory by using patterns they are familiar with. One  dimension that will be

explored is comparing the actual variety of tap phrases with that of passwords.

This  research  approach  is  made  possible  by  the  rather  large  sets  of  leaked

passwords that have come to public.
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